Aziz, Taha2015-05-062015-05-062015-05-06http://hdl.handle.net/10539/17646A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2015.This thesis is primarily concerned with the analysis of some nonlinear problems arising in the study of non-Newtonian fluid mechanics by employing group theoretic and compatibility approaches. It is well known now that many manufacturing processes in industry involve non-Newtonian fluids. Examples of such fluids include polymer solutions and melts, paints, blood, ketchup, pharmaceuticals and many others. The mathematical and physical behaviour of non-Newtonian fluids is intermediate between that of purely viscous fluid and that of a perfectly elastic solid. These fluids cannot be described by the classical Navier–Stokes theory. Striking manifestations of non-Newtonian fluids have been observed experimentally such as the Weissenberg or rod-climbing effect, extrudate swell or vortex growth in a contraction flow. Due to diverse physical structure of non-Newtonian fluids, many constitutive equations have been developed mainly under the classification of differential type, rate type and integral type. Amongst the many non-Newtonian fluid models, the fluids of differential type have received much attention in order to explain features such as normal stress effects, rod climbing, shear thinning and shear thickening. Most physical phenomena dealing with the study of non-Newtonian fluids are modelled in the form of nonlinear partial differential equations (PDEs). It is easier to solve a linear problem due to its extensive study as well due toenNon-Newtonian fluids.Fluid mechanics.Differential equations, Partial.Group theoretical and compatibility approaches to some nonlinear PDEs arising in the study of non-Newtonian fluid mechanicsThesis