Vol.:(0123456789)1 3 Archaeological and Anthropological Sciences (2023) 15:173 https://doi.org/10.1007/s12520-023-01871-9 RESEARCH Ochre use at Olieboomspoort, South Africa: insights into specular hematite use and collection during the Middle Stone Age J. Culey1,2 · T. Hodgskiss3  · S. Wurz1,2 · P. de la Peña4,5,6 · A. Val1,7 Received: 10 August 2023 / Accepted: 3 October 2023 / Published online: 31 October 2023 © The Author(s) 2023 Abstract Recent excavations at Olieboomspoort (OBP) in the Waterberg Mountains of South Africa confirmed previous research at the site that highlighted an abundance of ochre in the Middle Stone Age (MSA) deposits. Here, we report on the results of an analysis of the ochre from the MSA deposits excavated in 2018–2019. Fossilised equid teeth from these deposits were recently dated to approximately 150 ka, an early date for such a sizeable ochre assemblage in southern Africa. Calcium carbonate concretions were removed from ochre pieces using hydrochloric acid. Macro- and microscopic analyses were undertaken to identify raw material types and to investigate utilisation strategies. There are 438 pieces in the assemblage and only 14 of them show definite use-traces. The predominant raw material is a micaceous, hard specular hematite, which is rare at MSA sites elsewhere in southern Africa. A preliminary investigation into the geological nature of the ochreous materials in the archaeological sample and those available in the area was performed using semi-quantitative portable X-ray fluorescence (pXRF), XRF, and inductively coupled plasma mass spectrometry (ICP-MS). Together with site formation processes, we suggest possible, primarily local sources of the ochre found in the deposits. The data do not support previous suggestions that OBP was used as an ochre caching site that may have formed part of an exchange network during the MSA. Instead, the local abundance of nodules of specular hematite within the Waterberg sandstone, the limited number of used pieces in the assemblage, and the stratigraphic context indicate a more natural, less anthropogenic explanation for the abundance of ochre at the site. Keywords Waterberg · Sourcing · Middle Pleistocene · MIS 5 · MIS 6 · Ochre cleaning Introduction Ochre sensu lato is described as a variety of ferruginous materials that produce a colourful streak or powder (Dayet 2021; Popelka-Filcoff and Zipkin 2022). Apart from the more obvious uses of ochre as a pigment for artistic or symbolic purposes (Rudner 1982; Thackeray et al. 1983; Watts 2002; Taçon 2004; Henshilwood et al. 2011; Villa et al. 2015), “ochre” and iron-oxide-rich clayey minerals have a wide variety of functional applications—ethnographi- cally and archaeologically. These include use as a sunscreen (Rifkin et al. 2015; Havenga et al. 2022), topical insect repellent (Rifkin 2015), an ingredient in adhesives for tool hafting (Wadley 2005; Lombard 2007; Wadley et al. 2009), hide preservative (Audouin and Plisson 1982; Rudner 1982; Rifkin 2011), and topical medicine (Buthelezi-Dube et al. 2022). Ochre pieces found at archaeological sites are often interpreted as pigments used for symbolic and artistic pur- poses, but in the last two decades in-depth analyses of ochre * T. Hodgskiss tammy.hodgskiss@wits.ac.za 1 School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa 2 SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway 3 Origins Centre, University of the Witwatersrand, Johannesburg, South Africa 4 Departamento de Prehistoria y Arqueología, Facultad de Filosofía y Letras, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, Spain 5 McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK 6 Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa 7 Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Universidade do Algarve, Faro, Portugal http://crossmark.crossref.org/dialog/?doi=10.1007/s12520-023-01871-9&domain=pdf http://orcid.org/0000-0003-4184-8406 Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 2 of 20 assemblages around the world have increased in frequency and shown that humans had more varied interactions with these colourful minerals in the deep past. Uses of ochre have been interpreted as indicators of complex cognition as well as evidence for symbolically mediated behaviours among early Homo sapiens (Henshilwood and Lombard 2013; Wadley 2010, 2013). Southern African Middle Stone Age (MSA) sites have been the focus of archaeological research into the emergence of innovative behaviours and abilities by H. sapiens. There is, however, a distorted geographical focus within southern Africa, with relatively less focus on MSA ochre assemblages from inland sites compared to sites along the coast (Dayet Bouillot et al. 2017; Culey 2022). Ochre use in southern Africa dates back to the Middle Pleistocene. Specular hematite and hematite pieces, some utilised, were found in ~500,000 year old (ka) layers at Kathu Pan (Watts et al. 2016); specular hematite pieces are found in ~300 ka layers at Canteen Kopje (Chazan et al. 2013; Watts et  al. 2016); and a single piece of crayon- shaped, ground hematite was found in ~200 ka layers at Nooitgedacht (Beaumont and Morris 1990; Barham 2002). Ochre is commonly found at MSA sites (approx. 300–30 ka) (Watts 2002; Wadley 2015) in southern Africa, particularly in Late Pleistocene archaeological assemblages, after the onset of Marine Isotope Stage (MIS) 5 at roughly 130 ka. After 100 ka, evidence of humans making deliberate markings, or engravings, on ochre, as well as evidence of processing ochre into a secondary form—powder—is reasonably common (e.g., Watts 2002; Dayet et al. 2013, 2016; Hodgskiss and Wadley 2017; Dapschauskas et al. 2022). Notably, large amounts of anthropogenically modified (utilised) ochre pieces have been found at Blombos Cave. This includes the oldest known geometric engraved design found on an ochre piece dating to ~77 ka (Henshilwood et al. 2009), as well as ochre processing kits dated to 100 ka (Henshilwood et  al. 2011). These consist of ground ochre pieces, ochre-stained grindstones, and abalone shells containing a compound mixture of ochre powder, crushed bone, and charcoal. The ochre assemblages at most Middle Pleistocene and early Late Pleistocene sites in southern Africa generally contain a small percentage of pieces that have been used or modified. Some of these sites include Pinnacle Point (Marean et al. 2010; Watts 2010), Border Cave (Watts 1998; Backwell et al. 2018), Rose Cottage Cave (Hodgskiss and Wadley 2017), Bushman Rock Shelter (Watts 1998, 2002; Porraz et al. 2018), Cave of Hearths (Mason 1988; Watts 1998), Wonderwerk Cave (Chazan and Horwitz 2009), Wonderkrater (Backwell et al. 2014), and Mwulu’s Cave (Watts 1998; de la Peña et al. 2019). Most evidence of utilisation on ochre pieces from this period comes in the form of grinding or abrasion striations on the surface of the pieces, with rare instances of engravings, pecking, or crushing activities. The purpose of the powders produced by grinding is largely speculative as many possible uses are archaeologically invisible. Ochre powder residues are found on various artefacts such as grindstones, bone tools, and lithics, as well as various types of shell beads with most evidence coming from assemblages younger than 100 ka (Henshilwood et al. 2001, 2004; Dayet et al. 2013; Wojcieszak and Wadley 2018). Ochre-stained grindstones are found at Diepkloof Rock Shelter, Klasies River, and Mwulu’s Cave in layers older than 100 ka (Watts 1998; Dayet et al. 2013; Culey 2019; Feathers et al. 2020). Online Resource 1 provides an inventory of MIS 6 and 5 ochre assemblages from South African sites and we refer to Hodgskiss (2020), Watts (1998, 2002), and Dapschauskas et al. (2022) for overviews of ochre finds at (southern) African MSA sites. It is worth noting that harder, more obviously mica- ceous specular hematite generally appears more fre- quently within earlier MSA assemblages than softer, less specular ochre varieties such as ferricretes, shales, and mudstones (see Online Resource 1). This may suggest an earlier preference for this harder, specular raw mate- rial, which was later gradually abandoned for softer ochre varieties that required less effort to process. This overall change in raw material type may be indicative of ochre application changes through time, perhaps dependent upon behavioural or social changes. However, given that most of the sites at which this specular hematite occurs at this early date are within the interior (mostly in the Limpopo), this may simply be due to different geological contexts. The MSA ochre finds at Olieboomspoort (OBP) are distinctive compared to other MSA ochre assemblages. Firstly, there is an exceptionally high volume of specular hematite, which is relatively rare at archaeological sites elsewhere in southern Africa, and, secondly, few of the pieces have been utilised. Specular hematite does occur at other sites in the Waterberg region and in the broader area, such as Red Balloon Rock Shelter (Wadley et al. 2021; Mauran 2023) and Mwulu’s Cave (de la Peña et al. 2019), but not in the quantities found at OBP. The unique- ness of this assemblage has spurred questions about the origin of this specular hematite: was it brought to the site intentionally by humans or is it an accumulation result- ing from natural processes (or some degree of both)? Van der Ryst (2007) and Watts (1998, 2002) suggested—based partly on the anomalously high quantities of unutilised specular hematite at the site—that OBP may have been a “special purpose” or “factory” site. They proposed that pieces might have been collected from a nearby source, brought back to the site, cached, and processed as needed, with some of the pieces being transported as part of a (hypothetical) regional trade network. Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 3 of 20 173 Olieboomspoort OBP is a red sandstone rock shelter situated within the Mogalakwena Formation in the Waterberg Mountain Range of Limpopo Province, South Africa (23° 52′ 42″ S; 27° 38′ 17″ E). The shelter is 70 m in length, and the overhang extends, today, to a maximum of 7 m deep, although much of the shelter is shallower (van der Ryst 2007; Val et al. 2021) (Fig. 1). The shelter lies a few metres away from the perennial and shallow Riet Spruit River, which is a tributary of the Mokolo River that runs across the Waterberg plateau. The Mogalakwena geological formation within the Water- berg group is comprised of coarse-grained sandstones and quartz conglomerates, interbedded with micaceous shales, likely with fluvial depositional influences (Brandl 1996; Corcoran et al. 2013; Masia 2022). The Mogalakwena is a likely source of the various iron-rich minerals common in both the MSA and Later Stone Age (LSA) levels of OBP (van der Ryst 2007; Eriksson et al. 2008; Masia 2022). It includes iron oxides or hematite in the form of locally abun- dant hematite nodules, crystal matrices, and sheets of specu- larite (van der Ryst 2007). The archaeological deposits at OBP contain evidence of human visits to the rock shelter perhaps as far back as the Earlier Stone Age (ESA) and more regularly in pulses dur- ing the MSA and again during the last two millennia (Mason 1962; van der Ryst 2007; Val et al. 2021). The ESA pres- ence at OBP is ephemeral and followed by repeated use of the shelter during the MSA. An extensive chronological hiatus separates the Middle Pleistocene archaeological deposits from the late Holocene phase, which preserve mixed LSA and Iron Age cultural remains (van der Ryst 2007; Val et al. 2021). Evidence of recent occupations also occurs in the form of densely painted, but poorly preserved, rock art on the shelter walls—rock art styles associated with San hunter-gatherers, geometric Khoekhoe herder finger paintings, as well as geo- metric and animal depictions made by Bantu-speaking groups, likely northern Sotho-speakers (van der Ryst 2007). OBP was first excavated by Prof. Revil Mason in 1954 (Mason 1962; Watts 1998) and by Dr Maria van der Ryst in 1997 (van der Ryst 2007). The most recent excavations in 2018 and 2019 were led by a team from the University of the Witwatersrand (Val et al. 2021). Excavations at OBP have yielded a rich, predominantly quartzite and quartz, lithic assemblage including Levallois flakes, cores, and retouched pieces. Well-preserved faunal remains signal a dominance of species relying on open grassland and riverine environ- ments, as well as the rocky surroundings. Pollen spectra Fig. 1 Location of the Waterberg Mountains (red dot) and Limpopo Province (in light blue) in South Africa, and the location of OBP and other sites mentioned in the text within Limpopo Province (adapted from Wadley et al. 2022) Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 4 of 20 and phytolith data reflect vegetation typical of savanna and woodland environments within the Summer Rainfall Zone. We refer the reader to Val et al. (2021, 2023) for detailed information about the site and recent excavations. The 2018 and 2019 excavations identified an unclear and deflated stra- tigraphy (Val et al. 2021). Three distinct sedimentary units inside the MSA deposits were differentiated based on Mun- sell chart colours and textures. These include grey sediment (GS), dark reddish grey sediment (DRG), and yellow-reddish sand (YRS), which form part of a larger sedimentary unit corresponding to the MSA. Uranium-series combined with electro-spin resonance (ESR) dating on two fossilised equid teeth from the GS unit provided an age estimate of approxi- mately 150 ka for the MSA deposits at the site (Val et al. 2021). This tentatively places these three MSA units within the MIS 6—190–130 ka. Previous ochre research at OBP The OBP ochre assemblage from Mason’s excavation, re- analysed by Ian Watts, is one of the heaviest ochre assem- blages excavated at an MSA site in southern Africa—com- prising only 304 pieces but weighting 12 kg (Watts 1998). To put this into context, Sibudu, for example, had an analysed assemblage of 5449 pieces weighing 15.4 kg (Hodgskiss 2012). The Mason OBP ochre sample comprises 8.2% of the total ochre and lithic assemblage from the MSA deposits, but by weight accounts for nearly half of the assemblage (Watts 1998). Specularite (or specular hematite) dominates the ochre assemblage in both the MSA and LSA levels (Watts 1998, 2002; van der Ryst 2007). Roughly 13% of the ochre pieces excavated by Mason exhibit use-traces, in the form of striations, faceting, and polish (Watts 1998, 2002), most of which indicate use in the form of grinding or abrasion against a rock or lower grindstone. Several ochre-stained grindstones were reported from the MSA levels that con- firm this activity (Mason 1962; van der Ryst 2007). Mason (1962) suggested that the ochre powder was possibly used for cosmetic and art purposes. Watts (1998) identified the majority of the ochre pieces (98.7%) as “specular hematite”, whereas van der Ryst uses the term “specularite” to refer to the same raw material, with the terms being used interchangeably. In this study, we have chosen to use the term “specular hematite” (see the descrip- tion of the raw material in the methodology). This material is hard (generally Mohs 5) and streak colours are mostly hues of red, ranging from dark red to metallic grey-red (Watts 1998). Some of the ground pieces have a polished/reflective surface, increasing the natural shiny nature of the raw material, and Watts (1998) questioned whether this shine might have been a goal of the abrasive actions. Both utilised and unutilised “ochre”, hematite, and specular hematite pieces are noted in archaeological assemblages from sites in the Waterberg (e.g., Red Balloon Shelter) (Wadley et al. 2021). The high quantity of unutilised specular hematite at OBP is unusual, and speculations that the rock shelter may have functioned as a factory site for ochre (Watts 1998, 2002; van der Ryst 2007) were underlying factors that initiated this research. Water has likely affected the deposits at OBP, which are a significant palimpsest of concentrated material, including specular hematite nodules. Some of these nodules could be derived from disintegration processes of the surrounding sandstone. Waterberg-based geologist Dr Richard Wadley observed that the lower sediments of the Waterberg super- group contain an unusually high concentration of iron oxides, mostly in the form of hematite (Jansen 1982; Callaghan 1987; R. Wadley, pers. comm. 2022). Due to various tectonic events in the deep past (i.e. 1600–200 ma), intrusive diabase dykes and sills resulted in contact metamorphism of the sediments (Callaghan 1987; R. Wadley, pers. comm. 2022). One of the consequences of this metamorphic process of the iron- rich sandstones seems to have been the mobilisation of the iron and its reconstitution in nodules within the sandstone, i.e. secondary, or diagenic mineralisation of the sediments (R. Wadley, pers. comm. 2022). There is evidence of these hematite nodules found in the sediments, especially in prox- imity to the current diabase contacts. These are nearly always associated with the Mogalakwena formation. The precise process whereby the disseminated iron within the sediments was mobilised and re-concentrated in nodules within the sedi- ments has not yet been adequately described, but that it was secondary, or diagenetic in nature, is generally accepted (R. Wadley, pers. comm. 2022). When these sediments erode, masses of iron-rich quartzitic gravels are found; some of these concretions comprise crystalline specular hematite. Further investigation into ochre use patterns, ochre types, and proximity of OBP to specular hematite and other “ochre” sources is necessary to obtain a clearer picture about whether OBP functioned as a factory site or was part of a regional network during the MSA. In this study, we investi- gate how much of the ochre found at the site is the result of deliberate collection and use, and how much is the result of natural accumulation processes. Materials and methods The assemblage reported on here was excavated from OBP in 2018 and 2019. The MSA assemblages from the Mason and Val excavations are curated by the Archaeology Division of the School of Geography, Archaeology, and Environmen- tal Studies at the University of the Witwatersrand, Johannes- burg, South Africa. The material analysed from the 2018 to 2019 excavation includes both the plotted specimens and the >10 mm pieces retrieved during sorting of sieved material. Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 5 of 20 173 Like most bone remains and lithic artefacts, many of the ochre pieces from OBP are covered in calcium carbonate concretions, some almost entirely. This can obscure raw material type classification and prevent use-trace identifi- cation. Given the lack of literature presently available on cleaning methods for archaeological ochre pieces, particu- larly those involving chemicals, it was necessary to perform experimental cleaning with modern ochre samples and dif- ferent acid solutions in order to develop an effective way to remove these concretions without damaging the surfaces of the archaeological pieces. Diluted hydrochloric acid was chosen as it has been used to successfully remove calcium carbonate concretions on lithics. Six modern ochre samples were chosen for testing— including hard hematite, soft shales, and snuffbox shale (hard ironstone “casings” with soft pockets of soft iron-rich pigment, see Hodgskiss 2012)—as well as two pieces from the OBP assemblage that did not exhibit any visible signs of use. Four samples were placed in 10% hydrochloric acid and tap water solution, and four in 20% solution. All the samples were left in the solutions for approximately 40 min while being monitored. Both solutions were equally effec- tive in removing the concretions, with the 20% solution act- ing faster. The samples were removed from the solution and rinsed with tap water. Surfaces were examined macroscopi- cally and these tests indicated that this form of hydrochlo- ric acid treatment did not cause macroscopic damage to the surfaces of the ochre varieties (Fig. 2). It was not necessary to acid clean all the archaeologi- cal ochre pieces. Rather, we selected pieces with significant concretions that inhibited accurate size and weight meas- urement, surface feature visibility, colour, and raw material identification. Additionally, pieces that had a surface shape that may indicate use (e.g. flat surfaces may suggest grinding or abrasion), or that had concretions obscuring a part of the piece that may potentially exhibit use-wear, were also chosen for cleaning. We did not clean soft or crumbly pieces that may get damaged during the cleaning process. Prior to clean- ing, details and features of the pieces were photographed and recorded, as well as the percentage solution used, length of time in the solution, and any other relevant information. Twenty percent solution was used for pieces with thick or extensive concretions. For pieces with fewer concretions, 10% solution was used. Spot treatment with the acid solution was performed on pieces where only a particular area of the piece needed to be exposed, and for pieces with signs of use. This was done to avoid submerging the areas with pos- sible use, and minimise any possible damage on the surfaces. Pieces were submerged for 7 to 40 min, depending on how quickly the concretions dissolved. Cleaning was avoided on pieces that showed possible use-traces. This protocol can be built upon by further research, specifically concerning any microscopic and elemental effects of acid cleaning on ochre (specifically concerning whether hydrochloric acid could compromise iron oxide signatures), the effects of this cleaning on a broader range of ochre/residue types, and the efficacy of different acid types, such as acetic and citric acid. Macroscopic analysis A standard set of criteria was used to macroscopically describe each piece (Hodgskiss 2010, 2012; Rosso et al. 2016; Dayet Bouillot et al. 2017; Rosso et al. 2017; Vel- liky et al. 2018). These categories included raw material, colour, hardness, size, weight, approximate grain size, surface morphology, piece shape, and specularity (i.e. Fig. 2 Hydrochloric acid treat- ment of specular hematite. OBP specular hematite piece with calcium carbonate concretions. Left: before acid treatment. Right: after acid treatment Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 6 of 20 the presence of specular particles giving pieces a glittery appearance). All pieces were examined under natural light, and each piece was individually numbered and stored in a labelled plastic bag. The outer surfaces of most of the pieces in the OBP assem- blage are dark (often black) and give little to no indication of the true piece/powder colour. Thus, streak tests were per- formed on the unutilised surface (or least likely surface to be utilised based on indications such as surface shape) of each piece against a matte white porcelain tile, altering a <1mm2 area of the piece (Hodgskiss 2012; Velliky et al. 2018). Streak tests allow for more accurate determination of the colour of ochre pieces in terms of the powder they produce (Dayet Bouillot et al. 2017). Most of the tested areas are not macro- scopically visible on the surface of the piece afterwards. The streaks were assigned a Munsell code and then categorised into general colour groups (e.g. dark red, dark red-purple) (Hodgskiss 2012; Velliky et al. 2018). Estimated grain size was determined by surface texture observations made through macroscopic and microscopic examination; “sandy” pieces have clearly visible grains, “silty” pieces have a gritty texture, but grains are small or only visible microscopically, and clayey pieces are fine-grained and do not have any gritty texture. To clarify our terminology and define the raw material categories used in our analysis, we provide brief descrip- tions of each raw material below. Specular hematite There are two main sub-types or varie- ties of “specular hematite” and “specularite” raw materi- als in the ochre assemblage from OBP (note: “specular hematite” as used throughout this paper encompasses both). The most common form of specular hematite in the study assemblage is medium to hard with a dark black, sometimes silvery grey, metallic outer colour (Watts 1998) (Fig. 3a). Streaks range between very dark purples and dark reds, which have a glittery appearance. This glit- tery quality is especially visible on the interior of pieces that have been broken (Fig. 3a). This specular hematite has a predominantly fine-grained surface texture. The second, less common, form of specular hematite found in the study assemblage has a flaky, micaceous struc- ture that does not lend itself easily to powder production (Fig. 3b). Streak colours are similar to those produced by the first type. Hematite While this raw material is in many ways similar to the predominant form of specular hematite, it does not have a glittery appearance. The hematite pieces have medium to hard Mohs scores, with dark grey/black surface colour (Fig. 3c). They predominantly have a clayey and clayey/silty texture. Streak colours range between red, dark red, dark purple, and dark red purple. Mudstone These are soft, fine-grained pieces, which tend to be crumbly and mostly produce a dark red, vibrant powder when streak tests are performed (Fig. 3d). Shale This raw material is medium to soft, fine-grained, and with a fissile or platy structure (Fig. 3e). Many of the pieces have a glittery appearance, although not all. Shales from OBP commonly produce a dark red streak, but some produce a dry, grainy powder. Fig. 3 Representative speci- mens of the ochre raw material categories found in the OBP ochre assemblage. a The most common form of specular hematite (OBP-1896-4; con- cretions form the light rim); b flaky, micaceous specular hematite (OBP-1744-1; note sandy concretions on the piece); c hematite (OBP-4708-2); d mudstone (OBP-2409-42); e shale (OBP-3290-4); f ferricrete conglomerate (OBP-321-1) Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 7 of 20 173 Ferricrete conglomerate This raw material is mostly sandy in texture with a medium harness, but is heterogonous and often has visible inclusions of quartz, which Watts (1998: 181) described as “material cemented by iron minerals” (Fig. 3f). They mostly produce a dark purple/red streak. Microscopic analysis Each piece was microscopically analysed using an Olympus SC50/SZ61 reflected light microscope fitted with an Olym- pus EP50 camera, using a variety of magnification levels from ×0.67 to ×4.5. Any surface modification on the pieces was noted—this includes abrasive and percussive traces, or any markings on the surface. Use-traces not clearly visible macroscopically, such as microstriations (microscopically visible parallel striations) or polish, were identified during this stage of examination. Pieces were placed into catego- ries based on use-traces: definite signs of use (“utilised”), possible signs of use (“possibly utilised”), and “unutilised” pieces. Pieces with markings or use-traces that we could not determine whether they resulted from anthropogenic modifi- cation or natural processes were categorised as possibly uti- lised. Pieces with no use-traces were classified as unutilised. Pieces with clear signs of anthropogenic modification were categorised as utilised, and where possible assigned to use-wear activity categories (such as grinding/abrasion, pecking or rubbing). The identification of use-traces and inferences about the anthropogenic processes that may have caused them are based predominantly on previous experi- mental ochre use studies (e.g. Hodgskiss 2010; Rifkin 2012) and ochre use-trace analyses (e.g. Hodgskiss 2012; Velliky et al. 2018). Grinding or abrasion actions involve abrading an ochre piece back and forth against a second flat, harder raw material (grindstone), producing powder. This results in parallel striations, which often extend to the edges of the piece, and a flattened surface shape. Ochre rubbed against softer raw materials, such as hide or skin, acquires use- traces in the form of smoothing, microstriations, rounded edges, and polish. It should be noted that these studies do not include significant amounts of specular hematite. This highlights the need for locally procured reference materials and experimental analyses on this material. Elemental analyses A preliminary elemental investigation of pieces from the study assemblage and ochre source samples was undertaken to obtain qualitative and quantitative information about the nature of the archaeological assemblage and modern ochre sourced from around the site. Non-destructive port- able X-ray fluorescence (pXRF) analyses were performed on the archaeological ochre. Given the wide variability in ochre raw material composition and that pXRF instrument calibrations rarely provide accurate quantitative characteri- zations (Dayet 2021; Popelka-Filcoff and Zipkin 2022), the results presented here only allow for qualitative and semi- quantitative elemental conclusions about the composition of the pieces. These analyses were performed with a Thermo Scientific Niton XL3t GOLDD+ spectrometer at the Earth Sciences Laboratory at the University of the Witwatersrand. Samples were analysed with an 8-mm diameter beam, with a 50kV excitation source and a current intensity of 1mA. No filters were used in the analyses. Thirty-four elements were quantified. Only elements that were reliably measured, and were above the limits of detection, were used in the analy- sis (Online Resource 2). Twenty-four archaeological pieces underwent pXRF analysis—23 from the current assemblage, and one from the Mason assemblage. Effort was made to include all raw material types but suitably sized pieces with a flat surface were not present for some types. The concre- tions were also tested to discern their qualitative geological composition. One reading of 240 s was taken on each piece. Two geological surveys were carried out in the area in 2021 to determine preliminary sourcing possibilities. The first survey (undertaken by Jasmin Culey, Tammy Hodg- skiss, and Aurore Val) focused on identifying possible sources of the specular hematite found in the study assem- blage in the areas surrounding the site and aimed to develop an understanding of the different ochreous raw material types available in the OBP landscape. The second survey was undertaken by colleagues (Dineo Masia, Zubair Jin- nah) and one of the authors (Paloma de la Peña) working on lithic sourcing in the area. Iron ore and iron mineral varieties were collected from several areas directly around the site, as well as from neighbouring farms and towns. Sampled sources include two local sources. The first (secondary) source identified during these two surveys comprises loose nodules found in large numbers within 1 km of the site and in the dripline of the shelter. The second source is an his- toric iron ore mine on a neighbouring farm (<10 km from the site). We sampled a non-local source, the commercial iron ore-mining region of Thabazimbi ~100 km from the site (Fig. 4). The nearby town of Lephalale, higher up the Mokolo River (Phalala), was also explored for ochre out- crops, but none were located. Sourcing of rocks and pebbles in the river was attempted, but due to vegetation growth, we were unable to find or determine if any ochre types occur in the riverbed. Pieces were informally experimented with by grinding and rubbing the pieces to test their colouring abilities, specularity, and use-trace formation (Fig. 5). These experiments allowed for a better understanding of the raw material characteristics and the formation of use-traces on the pieces during various activities. The geological samples were prepared and analysed using equipment at the School of Geography, Archaeol- ogy and Environmental Studies at the University of the Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 8 of 20 Witwatersrand. Large pieces were crushed with a jaw crusher, with all components cleaned with acetone and vac- uumed to avoid contamination. Samples were milled in a TS-250 Mill. The samples were milled in steel milling pods, which were cleaned between samples with coarse silica sand and acetone. Invasive X-ray fluorescence (XRF) and induc- tively coupled plasma mass spectrometry (ICP-MS) tests were performed on the samples to establish the elemental composition of the ochre types (Popelka-Filcoff et al. 2007; Mauran et  al. 2021). Major elements were determined using a Panalytical Axios XRF spectrometer, with samples analysed at 50kV and 50mA. Sample weight was 0.35 gm and flux weight 2.0 gm (see Online Resource 2 for addi- tional information on analytical procedures). Oxides were determined using the Norrish Fusion technique (Norrish and Hutton 1969) using certified calibrations standards. ICP-MS samples were analysed on a Thermo Scientific iCAP RQ. Plasma temperature was 70,000°C, with Ar flow rates at 1L/ min, and kinetic energy discrimination (KED) was used with He as the binding element. All measurements were done in triplicate. Forty-two elements were quantified. Further ICP- MS operating procedures are provided in Online Resource 2. Fig. 4 Geological map of the Waterberg, showing the loca- tion of OBP, the geological ochre sample source areas, and approximate locations of some nearby MSA sites. S1: loose nodules within 1 km of the site and in the dripline of the shelter. S2: historic iron ore mine on a neighbouring farm (Masia 2022). S3: Thabazimbi mine. Map modified from Warwick Tarboton, Waterberg Bioquest Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 9 of 20 173 Given the heterogeneous nature of the samples, multi- variate analyses were used to differentiate groups within the modern reference and archaeological ochre samples. Data processing and pre-treatment followed procedures used in previous ochre studies (Popelka-Filcoff et  al 2007; Eiselt et al. 2011; MacDonald et al. 2011; Dayet et al. 2016; Mauran et al. 2021). Principle component analyses (PCA) that were based on hierarchical cluster analyses using the UPGMA algorithm in PAST (PAST®, Hammer et al. 2001) were used. From the datasets, only elements that were reliably measured, therefore above the limits of detection, were used in the analysis. All data for the PCA were log-transformed to remove bias towards major elements. Results Macro‑ and microscopic analyses The 2018/2019 MSA ochre assemblage consists of 438 pieces of ochre (>10 mm) with a total weight of 4.6 kg from the sedimentary units YRS, GS, and DRG. Fourteen pieces show definite signs of utilisation (3%) with a total weight of 0.4 kg (364.7 g) (Fig. 6), 38 pieces have possible signs of utilisation (9%) with a total weight of 0.7 kg (706.4 g), and 386 pieces show no signs of utilisation (88%) with a weight of 3.5 kg (3532.1 g). Most pieces (70.81%, n=310) come from GS, 27% of pieces (n=124) are from YRS, and 1% (n=4) from DRG. Most ochre pieces in the assemblage have streaks that are red-hued, with dark red, red, dark red-purple, and dark purple constituting 83% of the utilised and unutilised pieces (Table 1). Raw materials are mostly fine-grained, with 93% of the pieces with clayey to silty grain-size surface texture, and the majority of pieces are irregular or fragmented. Specular hematite varieties account for 79% of the ochre assemblage. The dark red and dark red- purple streaks also often contain visible glittery parti- cles. This specular quality is especially noticeable on the exposed faces or edges on the interior of pieces, which have fragmented. Hematite, shale, mudstone, and ferri- crete conglomerate are present in the assemblage in small quantities. All 14 utilised pieces come from layers YRS and GS (Fig. 6; Table 1). Specular hematite is the predominant raw material in the utilised assemblage (n=10, 71%), and 93% of the utilised pieces (n=13) have dark red or dark red-purple streaks. A Fisher’s exact test shows a significant correlation between dark red streak colour and utilisation (p=0.0139). Use-traces on the pieces are in the form of striations, microstriations, polish, and smoothing (Fig. 7)—often occurring together on one piece. Parallel striations are found on 86% of the utilised pieces, whereas microstriations and smoothing are found on 71% of pieces—often occurring together with each other, and macroscopically visible striations. Polish occurs on 36% of pieces, most of which also dis- play microstriations within the polish (Fig. 7). These use-traces suggest the most common way these pieces were used was by grinding, abrading or rubbing pieces against a surface. Six pieces in the utilised assemblage have faceted edges from use and have flat and parallel, striated surfaces, consistent with grinding or abrasion against a hard surface (Fig. 8). Five of the pieces show rounded edges with unmodified surface shapes, together with microstriations, consistent with rubbing against a soft surface or a similar low intensity action. Fig. 5 Specular hematite nodules (non-archaeological) collected from the areas sur- rounding OBP. Inserts: a streak colours produced from these specular hematite nodules, b close up of the specular surface appearance Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 10 of 20 Elemental analyses Twenty-four of the archaeological specular hematite, hem- atite, ferricrete conglomerate, shale, and mudstone pieces underwent pXRF analysis (Fig. 9a; Table 2; Online Resource 3). The analysis on the concreted area on OBP-694-1 shows the highest proportion of calcium (Ca) among the analysed pieces, supporting the hypothesis that the concretions are calcium carbonate. High wt% of Fe2O3 were found in dark red hematite and specular hematite pieces. One piece that physically resembled hematite (OBP-1543-2) was ruled out as such due to elevated Si and low Fe proportions. The X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) results on the 10 (powdered) geo- logical samples provided information on the major and trace elemental composition of the modern ochreous raw mate- rial (Table 2; Fig. 9b; Online Resources 4 and 5). A unique feature of the Mogalakwena formation is elevated Ti and Zn values (Corcoran et al. 2013); however, we find a negligible correlation between these two elements in both the geologi- cal and archaeological samples (R = 0.0898). Based on log-transformed data of the overall content (excluding elements below the limits of detection), the geological and archaeological samples, when clustered and analysed in a PCA, show clear distinctions between the two samples in the composition of the pieces (Fig. 10a). This is possibly due to the nature of the semi-quantitative data received from the pXRF analysis (which is more useful for relative frequency comparisons), compared with the XRF data. Notably, the archaeological pieces have higher Al and Si levels than the modern pieces. The archaeological pieces also show greater variation in the iron concentrations with Fe levels varying between 11 and 90%, while the modern samples have Fe values between 80 and 97% (and with one outlier with 60% Fe). A third cluster of outliers are pieces that have Mg levels below the limits of detection. Fig. 6 The utilised ochre assemblage from the 2018/2019 OBP exca- vations. a OBP-656-1 (specular hematite). b OBP-831-2 (mudstone), c OBP-582-1 (specular hematite), d OBP-4310-1 (hematite), e OBP- 605-1 (specular hematite), f OBP-3290-4 (shale), g OBP-3820-1 (specular hematite), h OBP-1783-7 (specular hematite), i OBP- 2238-1 (specular hematite), j OBP-4267-1 (specular hematite), k OBP-3646-8 (specular hematite), l OBP-2042-3 (hematite), m OBP- 3290-3 (shale), n OBP-2408-2 (specular hematite) Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 11 of 20 173 Cluster analysis of the archaeological sample pXRF sig- natures groups the pieces into five clusters (Fig. 10b; Fig OR6.1). Looking at links between physical features and elemental data, there are a few observations, but we do note that raw material types or streak colours are not distinct. Cluster 1 (Fig. 10b) includes all specular hematite pieces with darker red streaks, with dark grey surfaces. Cluster 2 has more variety in the raw material composition and is comprised of specular hematite, ferricrete conglomerate, and shale pieces. Cluster 3 contains specular hematite pieces with various darker red/purple streak colours. Cluster 4 con- sists of mostly dark red streaked pieces, with a range of raw material types. A fifth cluster of three pieces has unique signatures from the others; two of these pieces are specular hematites that are utilised, and one is a specular shale, with possible utilisation; all three pieces have dark red streaks. Specular hematite nodules appear in all clusters suggesting a variable elemental composition of these pieces—perhaps indicating different sources. The modern geological samples group into loose clus- ters with most of the specular hematite and hematite pieces grouped in cluster A (Fig 10c; Fig OR6.2). The two pieces collected from the historic iron ore mine (M-OBP-7 and 8) cluster together (cluster A1) although they are physically distinct (shale versus specular hematite). Within the same loose cluster, four pieces of hematite and specular hema- tite collected near OBP in secondary contexts (M-OBP-1 to 4, cluster A2) are included, possibly linking the mine to the site, or suggesting similar geological origins. The four pieces are the same, in physical appearance at least, to many of the archaeological pieces in the OBP assemblage. The two pieces collected from Thabazimbi (M-OBP-9 and 10) Table 1 Comparison between the piece physical characterises (rows) in the unutilised and utilised 2018/2019 OBP ochre assemblages, per layer (column). Highest values for each category are italicised, indi- cating potential preferential selection. A dash represents 0%. UNU unutilised, U utilised (possibly utilised pieces not included) Physical qualities GS (n=282) DRG (n=3) YRS (n=115) Total (n=400) UNU U UNU U UNU U UNU U n=274 n=8 n=3 n=0 n=109 n=6 n=386 n=14 Raw material Specular hematite 77.0% 87.5% 33.3% - 81.7% 50% 78% 71.4% Hematite 16.0% 12.5% 66.6% - 11.0% 16.7% 15.0% 14.3% Mudstone 1.8% - - - 0.9% - 1.6% - Shale 0.4% - - - 5.5% 33.3% 1.8% 14.3% Ferricrete conglom. 4.7% - - - 0.9% - 3.6% - Raw material sub-total 100% 100% 100% - 100% 100% 100% 100%   Colour Dark red 24.5% 75% 66.6% - 20.2% 66.6% 23.6% 71.4% Red 22.3% - 33.3% - 12.8% 16.7% 19.7% 7.1% Dark red-purple 20.4% 12.5% - - 17.4% - 19.4% 7.1% Dark purple 13.9% 12.5% - - 23.9% - 16.6% 7.1% Red-purple 3.3% - - - 3.7% - 3.4% - Red-orange 4.7% - - - 4.6% - 4.7% - Red-brown 3.3% - - - 6.4% - 4.1% - Pink 1.1% - - - - - 0.8% - Black & very dark red/purple 5.8% - - - 10.1% - 7% - Faint streak 0.7% - - - 0.9% 16.7% 0.8% 7.1% Colour sub-total 100% 100% 100% - 100% 100% 100% 100%   Specular Present 78.5% 75% 33.3% - 81.7% 83.3% 79% 78.6%   Grain size Clayey 29.6% 12.5% 33.3% - 24.8% 33.3% 28.2% 21.4% Clayey-silty 31.0% 37.5% - - 38.5% 16.7% 32.9% 28.6% Silty 31.8% 50% 66.6% - 30.3% 50% 31.6% 50% Silty-sandy 6.2% - - - 2.8% - 5.2% - Sandy 1.5% - - - 3.7% - 2.1% - Grain size sub-total 100% 100% 100% - 100% 100% 100% 100%   Piece shape Nodule 15.7% 12.5% 100% - 12.8% 33.3% 15.5% 21.4% Irregular/fragment 84.3% 87.5% - - 87.2% 66.7% 84.5% 78.6%   Piece shape sub-total 100% 100% 100% - 100% 100% 100% 100% Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 12 of 20 group together with a piece collected near OBP (M-OBP-5) in cluster B. All have high Fe values and lower V values and correlations in trace element frequencies, but raw mate- rial characteristics and streaks differ. M-OBP-6 a bright red shale fragment collected near the site; it has higher MnO and low Fe proportions and is a clear outlier from the other pieces. Discussion Natural wear vs anthropogenic use It can be difficult to distinguish between certain forms of deliberate use, such as rubbing, and traces of natural wear, such as smoothing from river currents or post-depositional processes. Several of the pieces collected during the ochre sourcing trip in the OBP area, none of which was utilised, bear a close resemblance to the archaeological pieces in the study assemblage in terms of shape and surface fea- tures—nodular pieces that look smoothed and polished. Many pieces from the Mason ochre assemblage, analysed by Watts (1998), are also smoothed, have a nodular shape, and were described as “pebbles”. Specular hematites form naturally in the sandstones in the Mogalakwena formation via diagenesis, although the exact process through which this occurs has not yet been fully understood or described (Callaghan 1987; R. Wadley pers. comm. 2022). At OBP, local weathering of the sandstone possibly resulted in some specular hematite nodules being deposited into the sedi- ments (van der Ryst 2007; Val et al. 2021; R. Wadley pers. Fig. 7 Selection of utilised specular hematite pieces from the OBP 2018/2019 assemblage, with arrows indicating the direction of stria- tions. a and b Specular hematite nodule (OBP-4267-1 from YRS) showing striations with polish and smoothing. c Hematite piece (OBP-4310-1 from YRS) with microstriations and polish. d Specular hematite nodule (OBP-831-2 from GS) with striations on flat surface Fig. 8 Ochre utilisation at OBP. a Frequency of each use-trace in the OBP utilised ochre assemblage. b Percentage of pieces assigned to each activity category Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 13 of 20 173 Fig. 9 Ochre pieces analysed to obtain elemental signatures. a Archaeological ochre pieces from OBP. b Modern geological samples analysed with XRF and ICP-MS to establish elemental composition. Piece numbers correspond to Table 2, Fig. 10, and OR6 Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 14 of 20 comm. 2023). Additionally, given the proximity of the site to the Riet Spruit (approx. 20 m away), it is probable that some of the pieces were transported by the stream when it swelled, although recent sourcing of the river bed itself was unsuccessful. When rainfall in the Waterberg is particularly high, valleys and open floodplains become wetlands (Wadley et al. 2021). The Riet Spruit has been recorded to reach the talus of OBP (van der Ryst 2007). Flooding of the shelter and winnowing of the sediments and fine fraction could explain the concentrations of lithics and ochre found below the dripline of the site. The low number of utilised pieces compared to unutilised ochre at OBP (discussed further below) could confirm these processes. Furthermore, some of the lithics and faunal remains recovered from the GS and YRS layers are rounded, which suggests that they have been abraded by water (Val et al. 2021). Natural wear pro- cesses have to be taken into account when interpreting the polish and smoothing and nodular shape of the archaeo- logical ochre pieces. The appearance of smoothing and polish are therefore problematic in discerning possible anthropogenic use on the specular hematite found at OBP. Table 2 Physical attributes of ochre pieces and geological samples that underwent elemental analysis (Fig. 9). Groups based on cluster analysis in Fig OR6.1 and OR6.2 and illustrated in Fig.  10b and c. UNU unutilised, U utilised, PossU possibly utilised, “OBP-” pieces are archaeological, “M-” pieces are modern samples Piece Source Location/layer Surface marks Acid prep Raw material Piece shape Streak colour Cluster OBP-1080-1 OBP GS PossU Y Specular hematite; silty Nodule Dark red 1 OBP-1221-1 OBP GS PossU Y Specular hematite; silty Nodule Dark red 5 OBP-1330-1 OBP GS PossU Y Specular hematite; silty Nodule Red 1 OBP-1334-1 OBP GS PossU Y Specular hematite; clayey Nodule Dark red 3 OBP-1896-4 OBP GS PossU Y Specular hematite; silty Nodule Red 2 OBP-200-1 OBP GS PossU Y Specular hematite; clayey Frag. Black 3 OBP-2245-10 OBP GS PossU Y Specular hematite; silty Frag. Dark purple 4 OBP-2457-1 Ferricrete conglom; silty Nodule Dark red 4 OBP-2660-1 OBP GS PossU Y Specular hematite; clayey Nodule Dark red 1 OBP-2688-1 OBP GS PossU N Specular hematite; clayey Nodule Dark red 2 OBP-2790-1 Ferricrete conglom; silty Frag. Red-purple 2 OBP-3120-9 OBP YRS3 UNU Y Mudstone, specular; sandy Frag. Dark red 4 OBP-321-1 OBP GS PossU Y Specular hematite; clayey Nodule Dark red OBP-3290-3 OBP YRS4 UT N Shale, specular; silty Frag. Dark red 5 OBP-3290-4 OBP YRS4 UT N Shale, specular; silty Frag. Dark red 5 OBP-3302-1 OBP YRS5 PossU Y Specular hematite; clayey Nodule Dark red-purple 4 OBP-3820-1 OBP YRS9 UT N Specular hematite; clayey Nodule Red 4 OBP-4630-1 OBP YRS14 - N Hematite; clayey Frag. Dark red 4 OBP-4736-1 OBP GS PossU N Hematite; silty Frag. Purple 3 OBP-565-1 OBP GS PossU Y Specular hematite; silty-clayey Frag. Dark red-purple 1 OBP-656-1 OBP GS Utilised N Specular hematite; silty-clayey Frag. Dark red 1 OBP-694-1 OBP GS PossU Y Specular hematite; clayey Frag. Dark red 2 OBP13.15_68 OBP GS UNU N Hematite; clayey Nodule Dark red 2 M-OBP-1 Modern Near OBP - N Hematite; silty. Magnetic Nodule Dark red-purple A.1 M-OBP-2 Modern Near OBP - N Specular hematite; clayey Nodule Dark red-purple A.1 M-OBP-3 Modern Near OBP - N Specular hematite; clayey Frag. Red A.1 M-OBP-4 Modern Near OBP - N Hematite; silty-clayey Nodule Red A.1 M-OBP-5 Modern Near OBP - N Shale; silty Frag. Dark red B M-OBP-6 Modern Near OBP - N Shale; clayey Frag. Red C M-OBP-7 Modern Historic mine - N Shale; clayey Frag Dark red-purple A.2 M-OBP-8 Modern Historic mine - N Specular hematite; silty-clayey Nodule Dark red-purple A.2 M-OBP-9 Modern Thabazimbi - N Hematite; silty-clayey Nodule Dark red-purple B M-OBP-10 Modern Thabazimbi - N Shale/mudstone; silty Frag. Dark red B Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 15 of 20 173 Ochre use and collection at OBP Within the ochre assemblage excavated from OBP during the 2018/2019 excavations, only 3% of pieces are utilised. This is a low percentage compared to MIS 6 and 5 ochre assem- blages from other South African sites, where the utilised percentage usually ranges from 10 to 20% (Online Resource 1). Mwulu’s Cave, an inland site dated to MIS 5, also in Limpopo Province, is the only site that has an assemblage with a smaller percentage of pieces (>2%) definitely utilised (de la Peña et al. 2019). A low percentage of utilised ochre is also noted for the MSA deposits at the neighbouring site of Red Balloon Shelter (Wadley et al. 2021; Mauran 2023). When considering possible explanations for this low uti- lised percentage at OBP compared to other sites elsewhere in South Africa, raw material types and colour should be taken into account. There is no significant relationship between ochre use at OBP and raw material (specular hematite), and specular hematite also dominates the unutilised assemblage. This suggests that specular hematite was likely not reserved solely for “special” purposes on account of its specular qual- ities as has been documented in ethnographic contexts, for example as a hairdressing cosmetic among the Tswana and San (Bleek and Lloyd 1911; Thackeray et al. 1983; Robbins 2016). In the utilised assemblage at OBP, it should be taken into account that the glittering quality of specular hematite draws the human eye in a way which other, less, or non- glittery ochre types do not. This specularity, as well as the dark red colour of the powder produced through use, both appear to have been important factors in determining which pieces were ultimately used. Yet, this particular type of specular hematite, whether deliberately collected and brought to the site or naturally deposited at the site, was rarely used. It is possible that it was used in ways that do not modify the surface of the pieces, for example as an aesthetic/decorative or symbolic object, instead of being processed for its pigment, but this is pure conjecture. A possible explanation for this low use fre- quency was that OBP was an ochre procurement and cach- ing site where specular hematite was deliberately collected and stored (Watts 1998, 2002). Comparison between the major and trace elements of the archaeological and (mod- ern) sampled ochre, together with physical characteristics of the pieces, allows us to propose some cautious, preliminary conclusions on ochre provenance at OBP. We are cognisant of the restraints of the pXRF data, as well as using differ- ent analytical methods to analyse the archaeological versus modern samples, and hope this study will lay the ground work for further research into ochre provenance around OBP, and into specular hematite and hematite formations in the Waterberg. The two pieces collected from the historic mine on the neighbouring farm have similar elemental signatures to four specular hematite and hematite pieces collected in the drip-line of the site (Table 2; Fig. 10c). In physical appearance, the four pieces are also representative of many of the archaeological pieces in the OBP assemblage—pos- sibly confirming links between the site and the historic mine source. The two pieces from Thabazimbi are elementally and physically distinct from these; Thabazimbi is therefore an unlikely source of the ochre at OBP. Physically, the specular hematite types present at OBP are also found at neighbouring archaeological sites, Red Bal- loon Rock Shelter (Wadley et al. 2021) and possibly North Brabant (Schoonraad and Beaumont 1968). Not only was a very small amount of the specular hematite at OBP actually utilised, but the pieces that were utilised were not utilised intensively. Most pieces in the utilised assemblage have only one worked surface, and many of the unutilised pieces are fragmented or broken. It is possible that these pieces were only lightly utilised or broken to test their quality. This may further suggest that the raw material was available in such abundant quantities that the users could afford not to utilise pieces more extensively. The use-traces on the few utilised ochre pieces suggest grinding activities. Grinding or abrading of ochre, presumably to obtain powder, is one of the most predominant use-wear activities among ochre assemblages from both coastal and inland South African sites (Online Resource 1). The fact that the specular hematite found at OBP is hard compared to other ochre types also suggests that grinding would have been the most likely (i.e. the most successful) method of producing pigment powder. However, given that many pieces are fragmented, it is also possible that crushing and/or pounding may have been a likely method of processing, but the absence of use-traces indicating percussion on most of the pieces in the study assemblage means that this is difficult to corroborate. Whether the specular hematite pieces were collected and “tested” before eventually being transported to other sites is unclear. Evidence of this would have to come from prov- enance studies of other similarly aged sites in the area. This then raises the question of which other sites this specular hematite would have been taken to and used at. Bushman Rock Shelter, Mwulu’s Cave, and Red Balloon Rock Shel- ter are some of the few other sites in Limpopo with MIS 5 assemblages in which specular hematite occurs; in all of these assemblages, only a small number of pieces are uti- lised (Online Resource 1). It is of course possible that the ochre was processed and used up entirely, in ways which left no archaeologically visible evidence. The large quantities at OBP could certainly suggest a substantial demand and desire for this raw material. However, the presence of specu- lar hematite at these other sites can be more parsimoniously explained by the fact that they are located within the same geological context as OBP. Additionally, it is important to note that the rock art at the site is mostly orange, bright red, and yellow varieties Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 16 of 20 Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 17 of 20 173 and seemingly different in colour from the dark reds and purples produced by the specular hematite that dominates the assemblage. This suggests that the people using the site during the Later Stone Age and Iron Age periods may have been collecting ochre from another source, which we have not been able to locate yet. This does not exclude the possi- bility that other colours may have been collected from a dif- ferent area of the same sources, that taphonomic processes have affected the paint or that binders added to the pigments may have changed the colours. Further sourcing studies and research into comparisons between the historic iron ore mine and the rock art paint made by more recent hunter-gatherer and herder groups will be useful in understanding the fuller story of habitation and use of ochre at the site through time. The nature of the specular hematite pieces in the archaeo- logical assemblage, whether they were deposited near the site via the Riet Spruit, found as loose nodules in the sand or possibly collected from—as yet unknown—source areas, suggests that instances of collection were opportunistic. Users probably picked up nodules of specular hematite, which already occur naturally in the area, because these were available but perhaps also because they were attractive first on account of their specular qualities and then, after being gently utilised to reveal their colour, on account of their dark red streak colour, and utilised them. That specular hematite was available in abundance but was not more extensively utilised suggests that the ethnographically documented tradi- tion of using specularite for “special” or cosmetic purposes does not extend this far back into the MSA at this site. Conclusion The recently excavated OBP ochre assemblage constitutes a unique MSA ochre assemblage in terms of raw material type and quantity, as well as usage patterns. There are few sites dated to over 100,000 years old in southern Africa that have ochre collections of this volume of specular hem- atite with such a low percentage of utilised pieces. The use of these dark-red pieces, mostly in the form of grinding or abrasion actions that would have produced a pigmented, micaceous powder, was not intensive and most pieces only have small areas of use. We have demonstrated that some of the specular hematite and other ochre varieties were brought to and used at the site. Site formation processes including local degradation of the surrounding sandstone matrix, flooding events of the nearby Riet Spruit, and the geology of the area almost certainly played a role in the volume of specular hematite found at OBP and the surface morphology of these pieces. The preliminary geochemical and statistical analyses here—combined with physical analyses—have high- lighted the local ochre types and location of a primary and some secondary ochre sources around OBP. Some of these ochre sources are geologically similar to some of the semi-quantitatively tested archaeological pieces. Physico- chemical analyses suggest that the MSA users were most probably collecting ochre opportunistically around the site and bringing it back, occasionally to produce powder, or possibly collecting from outcrops, such as identified in the historic ochre mine ~10 km away from the site. Other ochre sources suggested in previous research, such as Thabazimbi, do not correspond geologically with the archaeological ochre analysed and it seems unlikely that this source—100 km away—was used by the MSA ochre users at OBP. The suggestion that OBP was used as an ochre caching and “factory” site that formed part of some sort of exchange network during the MSA could not be supported by the current data. Further in-depth analysis of the trace element properties of the archaeological ochre, combined with intra-site comparisons and additional ochre sourcing data, is necessary to draw conclusions on ochre provenance. This paper contributes to the body of knowl- edge on specular hematite collection and use during the Middle and early Late Pleistocene in southern Africa. Supplementary Information The online version contains supplemen- tary material available at https:// doi. org/ 10. 1007/ s12520- 023- 01871-9. Acknowledgements We are extremely grateful for advice, assistance, and support received from Jerome Reynard, Richard Wadley, Dominic Stratford, Louis Mudalahothe, and Marlin Patchappa. We thank Zubair Jinnah and Dineo Masia for geological sourcing and advice. We thank Bernhard Zipfel and Sifelani Jirah at the Evolutionary Studies Institute, University of the Witwatersrand, for the initial curating of the mate- rial from Olieboomspoort, and Thembiwe Russell at the Archaeology division of the School of Geography, Archaeology and Environmental Studies (University of the Witwatersrand), for ongoing curation of the material from the site. Excavations at Olieboomspoort in 2018 and 2019 were conducted under the auspices of the South African Heritage Resources Agency (SAHRA permit 2799). We are extremely grateful to Andries and Dirk Beukes for allowing us to access the site located on their farm and being supportive of the research project. Studies at the Olieboomspoort site and archaeological material are not pos- sible without the volunteers who helped during the fieldwork and we express here special thanks to Annina Deirdre van Neel, Rose Emily, Tumelo Molefyane, Humphrey Nyambiya, Byron Jones, and Wim Biemond. Thank you to Warwick Tarboton for permission to use his geological map. We would like to thank our various funders: GENUS (Center of Excellence in Palaeosciences) (Aurore Val, Paloma de la Peña, and Tammy Hodgskiss), the Portuguese Foundation for Science and Technology (AV), the European social fund, the Agencia Estatal Fig. 10 PCA of log-transformed major and minor elemental data from the OBP and geological ochres (elements included Fe, Si, Mn, Mg, P, Ti, V, Cr, Co, Ni, Cu, Zn, As, Rb, Sr, Zr, Sn, Sb). a PCA of major and trace elements in the archaeological and geological sam- ples. “M” for modern; numbers correspond to piece numbers in Table 2. b PCA of the OBP archaeological sample pXRF signatures, with clusters indicated (Fig. OR6.1). c PCA of the XRF and ICP-MS majors and trace elements of the modern geological samples (Fig. OR6.2) ◂ https://doi.org/10.1007/s12520-023-01871-9 Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 18 of 20 de Investigación (Spain), and a Poroulis grant (PdlP). We thank the anonymous reviewers for their valuable comments on the manuscript. We thank Marcela Sepúlveda and Michelle Young for inviting us to contribute to this special edition. Author contributions All authors contributed to the writing and editing of the manuscript. SW and TH conceived the research question. AV and PdlP allowed access to material and site, and facilitated sample sourcing. JC examined the archaeological assemblage, cleaned pieces, performed pXRF, and analysed the data, under the supervision of TH and SW. TH submitted samples for geochemical analysis and analysed data. JC and TH co-wrote the first draft. AV, PdlP, and SW contrib- uted to the writing and editing of the manuscript, and have read and approved the final manuscript. Funding Open access funding provided by University of the Wit- watersrand. This paper is based on MSc research undertaken by JC funded by the NRF. Excavations and sourcing were generously funded by GENUS (DST/NRF Center of Excellence in Palaeosciences). PdlP has aRamón y CajalResearch contract (RYC2020-029506-I) at theUni- versidad de Granada(Spain) funded by European social fund and theA- gencia Estatal de Investigación(Spain). The prospection survey for raw material procurement analysis was made possible thanks to a Poroulis grant facilitated by Cambridge University to PdlP. AV was supported by the personal grant #2021.00782.CEECIND/CP1672/CT0005 of the Portuguese Foundation for Science and Technology (FCT). Opinions expressed and conclusions arrived at are those of the authors and cannot necessarily be attributed to the funding bodies. Data availability The authors confirm that the relevant data support- ing the findings of this study are available within this article and sup- plementary materials, and any further data is available upon request. Declarations Competing interests The authors declare no competing interests. Ethics approval Not applicable. Consent to participate Not applicable. Consent for publication All authors contributed to the writing and edit- ing of the manuscript and they consent to the publication of the paper. Conflict of interest The authors declare no competing interests. Open Access This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. References Audouin F, Plisson H (1982) Les ocres et leurs témoins au Paléo- lithique en France: enquête et expériences sur leur validité archéologique. Cah Rech Préhist fr 8:33–80 Backwell LR, McCarthy TS, Wadley L, Henderson Z, Steininger CM, de Klerk B, Barre M, Lamothe M, Chase BM, Woodborne S, Susino GJ, Bamford MK, Sievers C, Brink JS, Roussouw L, Pol- larolo L, Trower G, Scott L, d’Errico F (2014) Multiproxy record of later Quaternary climate change and Middle Stone Age human occupation at Wonderkrater, South Africa. Quat Sci Rev 99:42– 59. https:// doi. org/ 10. 1016/j. quasc irev. 2014. 06. 017 Backwell LR, d’Errico F, Banks WE, de la Peña P, Sievers C, Stratford D, Lennox SJ, Wojcieszak M, Bordy EM, Bradfield J, Wadley L (2018) New excavations at Border Cave, KwaZulu-Natal, South Africa. J Field Archaeol 43:417–436. https:// doi. org/ 10. 1080/ 00934 690. 2018. 15045 44 Barham LS (2002) Systematic pigment use in the Middle Pleistocene of South-Central Africa. Curr Anthropol 43:181–190. https:// doi. org/ 10. 1086/ 338292 Beaumont PB, Morris D (1990) Guide to archaeological sites in the Northern Cape. McGregor Museum, Kimberley Bleek WHI, Lloyd LC (1911) Specimens of Bushman folklore. George Allen and Company LTD, London Brandl G (1996) The geology of the Ellisras area: explanation of sheet 2326, scale 1:250 000. Geological Survey of South Africa, Pretoria Buthelezi-Dube N, Muchaonyerwa P, Hughes JC, Modi AT, Caister K (2022) Properties and indigenous knowledge of soil materials used for consumption, healing and cosmetics in KwaZulu-Natal, South Africa. Soil Science Annual 73(4, 145708): 1–12. https:// doi. org/ 10. 37501/ soilsa/ 157408 Callaghan CC. (1987) The Geology of the Waterberg group in the southern portion of the Waterberg Basin. Unpublished MSc dis- sertation. University of Pretoria, Pretoria Chazan M, Horwitz LK (2009) Milestones in the development of symbolic behaviour: a case study from Wonderwerk Cave, South Africa. World Archaeol 41:521–539. https:// doi. org/ 10. 1080/ 00438 24090 33745 06 Chazan M, Porat N, Sumner TA, Horwitz LK (2013) The use of OSL dating in unstructured sands: the archaeology and chronology of the Hutton Sands at Canteen Kopje (Northern Cape Province, South Africa). Archaeol Anthropol Sci 5:351–63. https:// doi. org/ 10. 1007/ s12520- 013- 0118-7 Corcoran PL, Bumby AJ, Davis DW (2013) The Paleoproterozoic Waterberg Group, South Africa: provenance and its relation to the timing of the Limpopo orogeny. Precambrian Res 230:45– 60. https:// doi. org/ 10. 1016/j. preca mres. 2012. 12. 009 Culey, J (2019) Ochre from the 100-110 ka Middle Stone Age levels of Klasies River Cave 1, South Africa. Unpublished Hons dis- sertation. University of the Witwatersrand, Johannesburg Culey, J (2022) An analysis of early Middle Stone Age ochre from Olieboomspoort Rock Shelter, South Africa. Unpublished MSc dissertation. University of the Witwatersrand, Johannesburg Dapschauskas R, Göden MB, Sommer C, Kandel AW (2022) The emergence of habitual ochre use in Africa and its significance for the development of ritual behavior during the Middle Stone Age. J World Prehist 35:233–319. https:// doi. org/ 10. 1007/ s10963- 022- 09170-2 Dayet L (2021) Invasive and non-invasive analyses of ochre and iron-based pigment raw materials: a methodological perspec- tive. Minerals 11:210. https:// doi. org/ 10. 3390/ min11 020210 Dayet L, Texier P-J, Daniel F, Porraz G (2013) Ochre resources from the Middle Stone Age sequence of Diepkloof Rock Shel- ter, Western Cape, South Africa. J Archaeol Sci 40:3492–3505. https:// doi. org/ 10. 1016/j. jas. 2013. 01. 025 http://creativecommons.org/licenses/by/4.0/ https://doi.org/10.1016/j.quascirev.2014.06.017 https://doi.org/10.1080/00934690.2018.1504544 https://doi.org/10.1080/00934690.2018.1504544 https://doi.org/10.1086/338292 https://doi.org/10.1086/338292 https://doi.org/10.37501/soilsa/157408 https://doi.org/10.37501/soilsa/157408 https://doi.org/10.1080/00438240903374506 https://doi.org/10.1080/00438240903374506 https://doi.org/10.1007/s12520-013-0118-7 https://doi.org/10.1007/s12520-013-0118-7 https://doi.org/10.1016/j.precamres.2012.12.009 https://doi.org/10.1007/s10963-022-09170-2 https://doi.org/10.1007/s10963-022-09170-2 https://doi.org/10.3390/min11020210 https://doi.org/10.1016/j.jas.2013.01.025 Archaeological and Anthropological Sciences (2023) 15:173 1 3 Page 19 of 20 173 Dayet L, Le Bourdonnec F-X, Daniel F, Porraz G, Texier P-J (2016) Ochre provenance and procurement strategies during the Middle Stone Age at Diepkloof Rock Shelter, South Africa. Archaeom- etry 58:807–829. https:// doi. org/ 10. 1111/ arcm. 12202 Dayet Bouillot L, Wurz S, Daniel F (2017) Ochre resources, behav- ioural complexity and regional patterns in the Howiesons Poort. Jr Afr Archaeol 15:20–41 de la Peña P, Val A, Stratford D, Colino F, Esteban I, Fitchett JM, Hodgskiss T, Matembo J, Moll R (2019) Revisiting Mwulu’s Cave: new insights into the Middle Stone Age in the southern African savanna biome. Archaeol Anthropol Sci 11:3239–3266. https:// doi. org/ 10. 1007/ s12520- 018- 0749-9 Eiselt BS, Popelka-Filcoff RS, Darling JA, Glascock MD (2011) Hematite sources and archaeological ochres from Hohokan and O’odham sites in central Arizona: an experiment in type identification and characterization. J Archaeo Sci 38:3019–3028 Eriksson P, Long D, Bumby A, Eriksson K, Simpson E, Catuneanu O, Claassen M, Mtimkulu M, Mudziri K, Brümer J, van der Neut M (2008) Palaeohydrological data from the c. 2.0 to 1.8 Ga Water- berg Group, South Africa: discussion of a possibly unique Pal- aeoproterozoic fluvial style. S Afr J Geol 111:281–304. https:// doi. org/ 10. 2113/ gssajg. 111.2- 3. 281 Feathers JK, Evans M, Stratford DJ, de la Peña P (2020) Exploring complexity in luminescence dating of quartz and feldspars at the Middle Stone Age site of Mwulu’s cave (Limpopo, South Africa). Quat Geochronol 59:101092. https:// doi. org/ 10. 1016/j. quageo. 2020. 101092 Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9 Havenga D, Akoba R, Menzi L, Azizi S, Sackey J, Swanepoel N, Gibaud A, Maaza M (2022) From Himba indigenous knowledge to engineered Fe2O3 UV-blocking green nanocosmetics. Sci Rep 12(2259):1–9. https:// doi. org/ 10. 1038/ s41598- 021- 04663-0 Henshilwood CS, d’Errico F, Marean CW, Milo RG, Yates R (2001) An early bone tool industry from the Middle Stone Age at Blombos Cave, South Africa: implications for the origins of modern human behaviour, symbolism and language. J Hum Evol 41:631–78. https:// doi. org/ 10. 1006/ jhev. 2001. 0515 Henshilwood C, d’Errico F, Vanhaeren M, Van Niekerk K, Jacobs Z (2004) Middle stone age shell beads from South Africa. Science 304:404. https:// doi. org/ 10. 1126/ scien ce. 10959 05 Henshilwood CS, d’Errico F, Watts I (2009) Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa. J Hum Evol 57:27–47. https:// doi. org/ 10. 1016/j. jhevol. 2009. 01. 005 Henshilwood CS, d’Errico F, Van Niekerk KL, Coquinot Y, Jacobs Z, Lauritzen SE, Menu M, Garcia-Moreno R (2011) A 100,000-year- old ochre-processing workshop at Blombos Cave, South Africa. Science 334:219–222. https:// doi. org/ 10. 1126/ scien ce. 12115 35 Henshilwood CS, Lombard M (2013) Becoming human: archaeology of the sub-Saharan Middle Stone Age. In: Renfrew C, Bahn P (eds) The Cambridge world prehistory, 1 vol. Cambridge Uni- versity Press, Cambridge, pp 106–130. https:// doi. org/ 10. 1017/ cho97 81139 017831. 010 Hodgskiss T (2010) Identifying grinding, scoring and rubbing use- wear on experimental ochre pieces. J Archaeol Sci 37:3344–3358. https:// doi. org/ 10. 1016/j. jas. 2010. 08. 003 Hodgskiss T (2012) An investigation into the properties of the ochre from Sibudu, Kwa-Zulu Natal, South Africa. S Afr Humanit 24:99–120 Hodgskiss T (2020) Ochre use in the Middle Stone Age. Oxford Research Encyclopaedia of Anthropology. Oxford University Press, Oxford Hodgskiss T, Wadley L (2017) How people used ochre at Rose Cottage Cave, South Africa: sixty thousand years of evidence from the Middle Stone Age. PLoS One 12:1–24. https:// doi. org/ 10. 1371/ journ al. pone. 01763 17 Jansen H (1982) The geology of the Waterberg Basins in the Transvaal, Republic of South Africa. Mem Geol Surv S Afr 71:98 Lombard M (2007) The gripping nature of ochre: the association of ochre with Howiesons Poort adhesives and Later Stone Age mas- tics from South Africa. J Hum Evol 53:406–419. https:// doi. org/ 10. 1016/j. jhevol. 2007. 05. 004 MacDonald B, Hancock RGV, Cannon A, Pidruczny A (2011) Geo- chemical characterization of ochre form the central coastal British Columbia, Canada. J Archaeol Sci 38:3620–3630. https:// doi. org/ 10. 1016/j. jas. 2011. 08. 032 Marean CW, Bar-Matthews M, Fisher E, Goldberg P, Herries A, Kar- kanas P, Nilssen PJ, Thompson E (2010) The stratigraphy of the Middle Stone Age sediments at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa). J Hum Evol 59:234– 55. https:// doi. org/ 10. 1016/j. jhevol. 2010. 07. 007 Masia, D (2022) Raw material procurement analyses at Olieboom- spoort Rock Shelter and Mwulu’s Cave (Limpopo). MSc disserta- tion. University of the Witwatersrand, Johannesburg Mason RJ (1962) Prehistory of the Transvaal: a record of human activ- ity. University of the Witwatersrand, Johannesburg. https:// doi. org/ 10. 1017/ s0079 497x0 00155 89 Mason RJ (1988) Cave of Hearths, Makapansgat, Transvaal. University of the Witwatersrand Archaeological Research Unit, Johannesburg Mauran G (2023) Red Balloon rock shelter Middle Stone Age ochre assemblage and population’s adaption to local resources in the Waterberg (Limpopo, South Africa). Archaeol Anthropol Sci 15:79. https:// doi. org/ 10. 1007/ s12520- 023- 01778-5 Mauran G, Caron B, Détroit F, Nankela A, Bahain J-J, Pleurdeau D, Lebon M (2021) Data pretreatment and multivariate analyses for ochre sourcing: Application to Leopard Cave (Erongo, Namibia). J Archaeol Sci 35:102757. https:// doi. org/ 10. 1016/j. jasrep. 2020. 102757 Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta 33:431–53. https:// doi. org/ 10. 1016/ 0016- 7037(69) 90126-4 Popelka-Filcoff RS, Zipkin AM (2022) The archaeometry of ochre sensu lato: a review. J Archaeol Sci 137:1–13. https:// doi. org/ 10. 1016/j. jas. 2021. 105530 Popelka-Filcoff RS, Robertson JD, Glascock MD, Descante Ch (2007) Trace element characterization of ochre from geological sources. J Radioanal Nucl Chem 272:17–27. https:// doi. org/ 10. 1007/ s10967- 006- 6836-x Porraz G, Val A, Tribolo C, Mercier N, de la Peña P, Haaland MM, Igreja M, Miller CE, Schmid VC (2018) The MIS5 Pietersburg at ‘28’ Bushman Rock Shelter, Limpopo Province, South Africa. PLoS One 13:1–45. https:// doi. org/ 10. 1371/ journ al. pone. 02028 53 Rifkin RF (2011) Assessing the efficacy of red ochre as a prehistoric hide tanning ingredient. J Afr Archaeol 9:131–158. https:// doi. org/ 10. 3213/ 2191- 5784- 10199 Rifkin RF (2012) Processing ochre in the Middle Stone Age: testing the inference of prehistoric behaviours from actualistically derived experimental data. J Anthropol Archaeol 31:174–195. https:// doi. org/ 10. 1016/j. jaa. 2011. 11. 004 Rifkin RF (2015) Ethnographic and experimental perspectives on the efficacy of red ochre as a mosquito repellent. S Afr Archaeol Bull 70:64–75 Rifkin RF, d’Errico F, Dayet-Boulliot L, Summers B (2015) Assessing the photoprotective effects of red ochre on human skin by in vitro laboratory experiments. S Afr J Sci 111:1–8. https:// doi. org/ 10. 17159/ sajs. 2015/ 20140 202 Robbins LH (2016) “Sebilo”: 19th century hairdos and ancient specularite mining in southern Africa. Int J Afr Hist Stud 49:103–131 https://doi.org/10.1111/arcm.12202 https://doi.org/10.1007/s12520-018-0749-9 https://doi.org/10.2113/gssajg.111.2-3.281 https://doi.org/10.2113/gssajg.111.2-3.281 https://doi.org/10.1016/j.quageo.2020.101092 https://doi.org/10.1016/j.quageo.2020.101092 https://doi.org/10.1038/s41598-021-04663-0 https://doi.org/10.1006/jhev.2001.0515 https://doi.org/10.1126/science.1095905 https://doi.org/10.1016/j.jhevol.2009.01.005 https://doi.org/10.1126/science.1211535 https://doi.org/10.1017/cho9781139017831.010 https://doi.org/10.1017/cho9781139017831.010 https://doi.org/10.1016/j.jas.2010.08.003 https://doi.org/10.1371/journal.pone.0176317 https://doi.org/10.1371/journal.pone.0176317 https://doi.org/10.1016/j.jhevol.2007.05.004 https://doi.org/10.1016/j.jhevol.2007.05.004 https://doi.org/10.1016/j.jas.2011.08.032 https://doi.org/10.1016/j.jas.2011.08.032 https://doi.org/10.1016/j.jhevol.2010.07.007 https://doi.org/10.1017/s0079497x00015589 https://doi.org/10.1017/s0079497x00015589 https://doi.org/10.1007/s12520-023-01778-5 https://doi.org/10.1016/j.jasrep.2020.102757 https://doi.org/10.1016/j.jasrep.2020.102757 https://doi.org/10.1016/0016-7037(69)90126-4 https://doi.org/10.1016/0016-7037(69)90126-4 https://doi.org/10.1016/j.jas.2021.105530 https://doi.org/10.1016/j.jas.2021.105530 https://doi.org/10.1007/s10967-006-6836-x https://doi.org/10.1007/s10967-006-6836-x https://doi.org/10.1371/journal.pone.0202853 https://doi.org/10.3213/2191-5784-10199 https://doi.org/10.3213/2191-5784-10199 https://doi.org/10.1016/j.jaa.2011.11.004 https://doi.org/10.1016/j.jaa.2011.11.004 https://doi.org/10.17159/sajs.2015/20140202 https://doi.org/10.17159/sajs.2015/20140202 Archaeological and Anthropological Sciences (2023) 15:173 1 3 173 Page 20 of 20 Rosso DE, PitarchMartí A, d’Errico F (2016) Middle Stone Age ochre processing and behavioural complexity in the horn of Africa: evidence from porc-epic Cave, Dire Dawa, Ethiopia. PloS One 11:e0164793. https:// doi. org/ 10. 1371/ journ al. pone. 01647 93 Rosso DE, d’Errico F, Queffelec A (2017) Patterns of change and con- tinuity in ochre use during the late Middle Stone Age of the Horn of Africa: the Porc-Epic Cave record. PloS One 12:e0177298. https:// doi. org/ 10. 1371/ journ al. pone. 01772 98 Rudner IE (1982) Khoisan pigments and paints and their relationship to rock paintings. South African Museum. Goodwin Series 4, pp 14–2 Schoonraad M, Beaumont P (1968) The North Brabant Shelter, north western Transvaal. S Afri J Sci 64:319 Taçon PS (2004) Ochre, clay, stone and art. In: Boivin N, Owoc M (eds) Soils, stones and symbols: cultural perceptions of the min- eral world. UCL Press, London, pp 31–42 Thackeray AI, Thackeray JF, Beaumont P (1983) Excavations at the Blinkklipkop specularite mine near Postmasburg, Northern Cape. S Afr Archaeol Bull 38:17–25. https:// doi. org/ 10. 2307/ 38882 11 Val A, de la Peña P, Duval M, Bansal S, Colino F, Culey J, Hodgskiss T, Morrissey P, Murray A, Murungi M, Neumann FH, Shadrach K, Thomsen KJ, van der Ryst M, Witelson DM, Zhao JX, Stratford D (2021) The place beyond the trees: renewed excavations of the Middle Stone Age deposits at Olieboomspoort in the Waterberg Mountains of the South African savanna biome. Archaeol Anthro- pol Sci 13:116–147. https:// doi. org/ 10. 1007/ s12520- 021- 01302-7 Val A, de la Peña P, Stratford D (2023) Olieboomspoort, South Africa. Handbook of Pleistocene Archaeology of Africa: Hominin behav- ior, geography, and chronology. Springer International Publishing, Cham, pp 1603–1613 van der Ryst MM (2007) Seeking shelter: Later Stone Age hunters, gatherers and fishers of Olieboomspoort in the western Water- berg, south of the Limpopo. PhD thesis. University of the Witwa- tersrand, Johannesburg Velliky EC, Porr M, Conard NJ (2018) Ochre and pigment use at Hohle Gels cave: results of the first systematic review of ochre and ochre-related artefacts from the Upper Palaeolithic in Germany. PLoS One 13:1–40. https:// doi. org/ 10. 1371/ journ al. pone. 02098 74 Villa P, Pollarolo L, Degano I, Birolo L, Pasero M, Biagioni C, Douka K, Vinciguerra R, Lucejko JJ, Wadley L (2015) A milk and ochre paint mixture used 49,000 years ago at Sibudu, South Africa. PLoS One 10:e0131273. https:// doi. org/ 10. 1371/ journ al. pone. 01312 73 Wadley L (2005) Putting ochre to the test: replication studies of adhe- sives that may have been used for hafting tools in the Middle Stone Age. J Hum Evol 49:587–601. https:// doi. org/ 10. 1016/j. jhevol. 2005. 06. 007 Wadley L (2010) Compound-adhesive manufacture as a behavioral proxy for complex cognition in the Middle Stone Age. Curr Anthropol 51:S111–S119. https:// doi. org/ 10. 1086/ 649836 Wadley L (2013) Recognizing complex cognition through innovative technology in Stone Age and Palaeolithic sites. Camb Archaeol J 23:163–183. https:// doi. org/ 10. 1017/ s0959 77431 30003 09 Wadley L (2015) Those marvellous millennia: the Middle Stone Age of southern Africa. Azania: Archaeol Res Afr 50:155–226. https:// doi. org/ 10. 1080/ 00672 70x. 2015. 10392 36 Wadley L, Antonites AR, Biemond W, Hodgskiss T, Jacobs Z, Laue G, Mauran G, Sievers C, Thorp C, Zwane B (2022) Late Holocene use of Kaingo Sheep Rock Shelter in the western Waterberg, Lim- popo, South Africa. S Afr Humanit 35:103–148 Wadley L, Hodgskiss T, Grant M (2009) Implications for complex cog- nition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa. Proc Natl Acad Sci 106:9590– 9594. https:// doi. org/ 10. 1073/ pnas. 09009 57106 Wadley L, Mauran G, Sievers C, van Deventer H, Biemond W, Seanego K, Li B, Jacobs Z (2021) Red Balloon Rock Shelter: Iron Age and Middle Stone Age occupations on the Waterberg Plateau in Limpopo, South Africa. S Afr Humanit 34:19–58 Watts I (2002) Ochre in the Middle Stone Age of southern Africa: ritu- alised display or hide preservative? S Afr Archaeol Bull 57:1–14. https:// doi. org/ 10. 2307/ 38891 02 Watts I (2010) The pigments from Pinnacle Point Cave 13B, Western Cape, South Africa. J Hum Evol 59:392–411. https:// doi. org/ 10. 1016/j. jhevol. 2010. 07. 006 Watts I, Chazan M, Wilkins J (2016) Early evidence for brilliant ritual- ized display: specularite use in the Northern Cape (South Africa) between ~500 and ~300 Ka. Curr Anthropol 57:287–310. https:// doi. org/ 10. 1086/ 686484 Watts I (1998) The origin of symbolic culture: the Middle Stone Age of southern Africa and Khoisan ethnography. PhD thesis. University College London, London Wojcieszak M, Wadley L (2018) Raman spectroscopy and scanning electron microscopy confirm ochre residues on 71 000-year-old bifacial tools from Sibudu, South Africa. Archaeometry 60:1062– 1076. https:// doi. org/ 10. 1111/ arcm. 12369 Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. https://doi.org/10.1371/journal.pone.0164793 https://doi.org/10.1371/journal.pone.0177298 https://doi.org/10.2307/3888211 https://doi.org/10.1007/s12520-021-01302-7 https://doi.org/10.1371/journal.pone.0209874 https://doi.org/10.1371/journal.pone.0131273 https://doi.org/10.1016/j.jhevol.2005.06.007 https://doi.org/10.1016/j.jhevol.2005.06.007 https://doi.org/10.1086/649836 https://doi.org/10.1017/s0959774313000309 https://doi.org/10.1080/0067270x.2015.1039236 https://doi.org/10.1080/0067270x.2015.1039236 https://doi.org/10.1073/pnas.0900957106 https://doi.org/10.2307/3889102 https://doi.org/10.1016/j.jhevol.2010.07.006 https://doi.org/10.1016/j.jhevol.2010.07.006 https://doi.org/10.1086/686484 https://doi.org/10.1086/686484 https://doi.org/10.1111/arcm.12369 Ochre use at Olieboomspoort, South Africa: insights into specular hematite use and collection during the Middle Stone Age Abstract Introduction Olieboomspoort Previous ochre research at OBP Materials and methods Macroscopic analysis Microscopic analysis Elemental analyses Results Macro- and microscopic analyses Elemental analyses Discussion Natural wear vs anthropogenic use Ochre use and collection at OBP Conclusion Anchor 17 Acknowledgements References