UNIVERSITY
D THE
YWITWATERSRAND,

wk,
w JOHANNESBURG
v

The Design and Implementation
of A TINA Based ASP Service
for the SATINA Trial

Chris Chung Hang Ip

A project report submitted to the Faculty of Engineering, University of the Witwa-
tersrand, Johannesburg, in partial fulfilment of the requirements for the degree of

Master of Science in Engineering.

Johannesburg, February 2001

Declaration

I declare that this project report is my own, unaided work, except where other-
wise acknowledged. It is being submitted for the degree of Master of Science in
Engineering in the University of the Witwatersrand, Johannesburg. It has not been

submitted before for any degree or examination in any other university.

Signed this __dayof _ 20___

Chris Chung Hang Ip.

Abstract

As the Application Service Provider (ASP) becomes increasingly popular in the soft-
ware market, this project proposes an ASP service, Remote Software Management
Service (RSMS), which is based on the distributed computing environment. The
uniqueness of this service is that it uses the Telecommunication Information Net-
working Architecture (TINA) concepts for the specification, design, implementation
and deployment of the service. The method used for developing the RSMS is the
Description Plane Model (DPM), which contains five planes namely the Objective
Plane, the Definition Plane, the Design Plane, the Implementation Plane and the
Physical Plane. The output of the planes is a system consisting of a number of
service providers, each having its own roles and functions in the system. The soft-
ware of the system is implemented and deployed on the South Africa TINA trial
(SATINA) platform. By applying the TINA concepts on the service design and
implementation, most of the problems of the traditional ASP service providers can

be resolved.

ii

Acknowledgements

I want to thank Prof. H. Hanrahan for giving me the opportunity to study this
course. In addition, without my parent’s moral and financial support I would not
be able to finish this report. I also want to my colleagues for building the SATINA
platform together with me. Specifically Jimmy for providing the Object Oriented
database for subscriber and service management; Russell, Brandon, Kersten and
John for building some part of the retailer reference points and DPE; Fillipe for
providing me the sample JAVA code for the client components; Shaun for convert-
ing the client JAVA application into JAVA applet; and Justin for providing the
documentations on the JAVA codes. Thanks to staff of the Language Lab of the

English department of the university for proof reading of my report.

Many thanks to Telkom, Siemens and THRIP who supported me in studying this
course. I also want to thank the people in Easysoft, especially Claire, for sponsoring
me the full version of the ODBC Bridge Software, which is one of the important

components I employed to implement my project design.

iii

Contents

Declaration i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures ix
List of Tables xi
Acronyms xii
1 Introduction 1
1.1 The need for ASPs e 1

1.2 Different types of ASPs o oL 2

1.3 Current ASP Business Model 2
1.4 Shortcomings of the current ASP model 3

1.5 Problem Statement 4
1.6 TINA Overview« o o v i e e e e e e e e e e 5
1.6.1 TINA System Framework)

iv

1.6.2 General TINA Business Model

1.6.3 TINA Session Concept
1.6.4 Benefits of using TINA for designing the RSMS
1.7 Implementation Methodology
1.8 Report Overview

2 Objective Plane

2.1 Imtroduction
2.2 SATINA ASP Business Model
2.3 Stakeholder, roles and obligations,
2.4 Policies
2.5 SATINA RSMS Business Relationship instance
2.6 UseCaseDiagrams
2.6.1 ServiceUsage
2.6.2 Service Maintenance oo
2.6.3 Third Party Sessions

3 Definition Plane

3.1 Introduction.
3.2 The Information Model
3.2.1 The User Partition
3.2.2 The Content Provider Partition
3.2.3 The Integrated Retailer Service Provider Partition

4 Design Plane

5

4.1 Imntroduction. e

4.2 Computation Model L oo

4.3 Service Logic

4.3.1

4.3.2

4.3.3

Pre-Service Events,

Main Service Events o

Auxiliary Service Events L.

Implementation Plane

5.1 Introduction e

5.2 Engineering modelo

5.3 Implementation Code

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

9.3.7

5.3.8

5.3.9

5.3.10

5.3.11

Basic Object Types
IA, UA, PA and SF Implementation
USM Implementation
SSM Implementationo
CompUSM Implementation
Retailer PA Implementation
RSMSCore Implementation
ssUAP Implementation
ODBC Bridges and Database Engine Implementation

Retailer and 3rd party Admin GUI Implementation

Web Interface Implementation

vi

31

31

31

34

35

36

45

48

48

48

ol

92

o4

54

o6

99

60

62

65

68

6 Physical Plane

6.1

6.2

6.3

6.4

6.5

Introduction

Technology Model

6.2.1

6.2.2 Software Technology

Physical Deployment Model

Topology

Applicable Application Software

7 Conclusion

7.1

7.2

7.3

Discussion

Conclusion

Future Work

References

A Sequence Diagrams

B IDL definitions

B.1

B.2

B.3

B4

B.5

B.6

RSMSCommonTypes

TINA3rdpartyCommonTypes . .

TINA3rdptyInitial

TINAProvider3rdpartyUsage . .

RSMSRetUSM

RSMSRetSSM

vii

Hardware Technology . .

76

76

76

76

77

81

83

85

87

87

88

89

91

92

96

B.7 RSMSCUSM 107

B.8 RSMS3rdUSM e 109
B.9 RSMS3rdSSM e 111
B.10 RSMSCore o i e e e e 113
C Tested Applications 116
Bibliography 117

viii

List of Figures

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

Current ASP Business Model 3
TINA DPE and Underlying Node)
TINA Business Model 7
Service Design Planes 9
RSMS Business Model oo 12
Business Relationship Instance Diagram 15
Service Usage Use Case Model Package 18
Service Maintenance Use Case Model Package 19
Third Party Sessions Use Case Model Package 20
Information Model oo 23
Information Model - User Partition Highlight 24
Information Model - Content Provider Partition Highlight 26
Information Model - Integrated Retailer Partition Highlight 27
Computational Model o oo 33
Main Service Flow o o oo 36
Sessions and Domainso 0oL 38
Request Software List 40

ix

4.5

4.6

4.7

5.1

5.2

9.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

6.1

6.2

Al

A2

A3

Remote Execution Flowchart 41
Modify Software Entry oL 46
Usage Record Query by User 47
DPE Architecture 49
Node, Capsules and Clusters 50
Computational Object, eCO template, and eCOs 50
Deploying Computational Object to Engineering Object 51
Login Dialog 66
Software List Dialog, 67
Software Details Dialog, 67
Relational Database Tables 69
Ret Admin GUI Main Menu 71
Add Application Dialog oo 72
Application List Dialog 73
Usage Records List Dialog 74
Web Interface for Usage Record Queries 75
Topology 83
Logical Network Planes 84
Remote Execution 93
Start Third Party Sessions 94
Destroy Third Party Sessions 95

List of Tables

2.1

5.1

5.2

5.3

0.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

6.1

Stakeholders, Roles and Obligations 14
Additional Interfaces and Client for RSMS USM 55
Additional Interfaces Required by RSMS USM 55
Additional Interfaces and Client for RSMS SSM 57
Additional Interfaces Required by RSMS SSM 57
Interfaces and Client for compUSM 59
compUSM Required Interfaces 60
Additional Interfaces and Client for Retailer PA 61
Additional Interfaces Required by Retailer PA 61
Interfaces and Client for RSMSCore 62
RSMSCore Required Interfaces 62
Interfaces and Client for RSMS ssUAP 65
RSMS ssUAP Required Interfaces 65
Components Deployment Table 82

x1

Acronyms

ASP
compUSM
CORBA
DPM
GUI

IA

IDL

ISP

ISV
MAP
MFC
ODBC
OMG
ORB

PA

POA
QoS
RDP
RM-ODP
RSMS
SATINA
SF

SQL
SSC
SSM
ssUAP
TINA
UA
UML
USM

Application Software Provider

Composer User Session Manager

Common Object Request Broker Architecture
Description Plane Model

Graphical User Interface

Initial Agent

Interface Definition Language

Internet Service Provider

Independent Software Vendor

Managed Application Provider

Microsoft Foundation Classes

Open Database Connectivity

Object Management Group

Object Request Broker

Provider Agent

Portable Object Adapter

Quality of Service

Remote Desktop Protocol

Reference Model for Open Distributed Processing
Remote Software Management Service

South African TINA Trial

Service Factory

Structured Query Language

Special Service Component

Service Session Manager

Service Session User Application
Telecommunication Information Networking Architecture
User Agent

Unified Modeling Language

User Session Manager

xii

Chapter 1

Introduction

One of the purposes of the next generation networks is to support different kinds
of services, in addition to the traditional voice service. An example of such services
is the Application Software Provider (ASP) service, which is becoming more pop-
ular in the present market [5]. However there are some limitations of the current
ASP implementations due to the existing network architecture and traditional busi-
ness model. In order to resolve these issues, the background of the ASP must be

considered.

1.1 The need for ASPs

The concept of ASP is as old as computers themselves. In the early days when the
cost of hardware was unaffordable for most companies, mainframes were designed to
host a particular application where relatively cheap, dumb terminals were connected
to the mainframe sharing its expensive processing time. Nowadays, companies are
looking for alternative ways to share their expansive resources —the software, as the

cost of ownership of software becomes higher and higher.

Besides sharing of software resources, the main drive behind the ASP market is the
tremendous growth of the Internet, which creates the basic distributed computing
platform for the ASP services. Although the Internet brings the connectivity from
the client to the server, it is far from ideal. This kind of connectivity introduces

concerns such as insecurity and unreliable quality of service.

The convergence of the telecommunication networks and the Internet brings the
concept of next generation networks, such as the TINA platform, which may be

used to improve the service offered by the present ASPs. At the same time, the

convergence also opens up the doorway for different parties, such as traditional

Telcos, to fight fiercely against each other for the ASP market.

1.2 Different types of ASPs

The Internet and the ASP industry have been growing so fast that almost everybody
with different fields of expertise are rushing into the business. This results in different
“types” of ASPs such as the ISP/Telcos, ASP pure play or independent software
vendors (ISVs). Since most of the ASPs only specialise in their own field, they
normally lack the necessary experience in other fields. For example the ASP pure
play may be very strong in developing and hosting applications but may not have
a sound understanding of customer support such as ISP/Telcos do. In contrast,
ISP /Telcos may have a solid communication infrastructure but may not be able to

develop as flexible an application as ISVs would.

Normally a single ASP may not be able to offer everything that a particular firm
requires and multiple ASPs are needed. Thus, integrating and communicating be-
tween applications from different ASPs are gaining in importance. In addition to
the integration problems, when a company decides to switch from one ASP to an-
other, porting the hosted applications and their data to the new ASP should also

be seriously considered.

1.3 Current ASP Business Model

There are two main ASP models: one offers the traditional standalone software
packages through the use of the client-server architecture such as Citrix client and
Microsoft Terminal Server, and X-client and X-server. The other model is the web-
based application such as the web based e-mail services. In the first case the appli-
cations are running in the server side and the outputs (such as screen and sound)
are “exported” to the client terminal using a proprietary communication protocol',
as if the applications are running locally on the client side. The second case allows
the potentially millions of terminals equipped with a standard browser to interact

with the application server remotely.

The current models, as shown in figure 1.1, usually involve either two or three parties,
namely the client, the ISP and the ASP, or the client and a combined ISP/ASP

Windows systems use Remote Desktop Protocol(RDP) while Unix systems use X-Protocol

Application
Software
Provider (A)

Application
Consumer Internet IS Software
Provider (B)

Private

Application
Software
Provider (C)

Figure 1.1: Current ASP Business Model

provider. A single client can be served by multiple ASPs which are normally running
in parallel and independently. As most ASPs are competing against each other,
they usually operate their supporting functions, such as accounting, billing, network
management, database administration, in their own proprietary way. The client
company might even have to install different network connections and gateways in

order to communicate with different providers.

1.4 Shortcomings of the current ASP model

The shortcomings of the current ASP model can be summarised as follows:

Quality of service - reliability problems associated with the Internet Protocol and
the public portion of the network result in mission critical applications not

suitable for hosting.

Interoperability between ASPs - it is possible that ASPs do not have a trans-
port medium or might not have adequate bandwidth between each other. Dif-
ferent authentication mechanisms implemented by different ASPs makes it
difficult to communicate between each other. Lack of common interfaces or

reference points also complicates communication.

Compatibility between ASPs - the method of accomplishing the same task is
not compatible among different ASPs . For example, data format stored in

different ASPs might not be compatible between one another. This leads to

difficult data exchange between ASPs and the reluctance of the client to switch

from an unsatisfactory ASP to another competing ASP.

Integration with third parties - due to lack of interfaces and weak definitions
of business relationships between different parties, the current ASP model
prevents the integration of different parties from creating a pure electronic
e-commence environment. For example, without integration, an ASP hosted
application cannot charge the customer for the goods through the bank auto-
matically. It cannot issue an electronic delivery order to the courier service
company to deliver the goods. If integration is needed, it is presently done
using proprietary interfaces and communication protocols between both sides
of the system. As a result of the non standard interfaces, the ASP is bound
to a specific third party and cannot switch to other players without a major

modification of the existing system.

Weakness in certain fields - since the ASP may involve many different disci-
plines, such as software development, traffic analysis, customer training and
support etc, a single ASP may not have adequate experience or manpower to

serve all these areas efficiently and effectively.

Security - inherent insecurity of the Internet causes sensitive data to be vulnerable

to unauthorised access.

1.5 Problem Statement

This project specifies, designs, implements and deploys an experimental ASP service
called the Remote Software Management Service (RSMS) to address the limitations
of the current ASP implementations, by adopting the concepts and principles from
the Telecommunication Information Networking Architecture (TINA). The imple-
mentation is to be deployed on the South African TINA Trial (SATINA) platform.

As TINA covers many different aspects of a distributed computing environment,
it is very difficult to follow and implement all the concepts involved. Thus, only
the TINA service architecture and computational architecture are applied in the
development of the RSMS. Other TINA defined architectures, such as the network
resource architecture and management architecture, are considered in the service

design but they are not fully implemented.

1.6 TINA Overview

The TINA architecture provides a set of concepts and principles that can be applied
in the specification, design, implementation, deployment, execution, and operation
of software for the telecommunication systems in the distributed computing envi-
ronment. The objectives of TINA include the provision of a software architecture
that offers reusable software components; supports network-wide software interoper-
ability; reduces the lead time to introduce new services to the market; and hides the
heterogeneity of the underlying technologies from the service designer. Due to the
distributive nature of the ASP service, the TINA architecture is the ideal candidate

to be applied to designing such a service.

The TINA architecture is very broad in its scope and in-depth in detail. In this
introduction, only those concepts that the RSMS benefits most are discussed. More

detailed guidelines for TINA concepts can be found in [3] and [7].

1.6.1 TINA System Framework

The TINA based system is made up of several layers. These layers provide different
levels of abstraction to describe the components of which the system comprises.

Figure 1.2 shows the layers of a TINA system.

telecommunications

DPE
“surface”

DPE

implementation inter-DPE

interface

NCCE

hardware

Figure 1.2: TINA DPE and Underlying Node

The topmost layer is the application layer where the TINA application resides. A

TINA application is defined as a set of interacting objects, which is located in the

application layer.

The second layer is the Distributed Processing Environment (DPE), which is the
software that supports the distributed execution of the objects that comprise of
the TINA applications. The DPE provides uniform communication mechanism and

basic services to the objects.

The DPE is actually created by a number of computing nodes that execute the DPE
software. The third layer, namely the DPE implementation layer, consists of these
nodes. The Kernel Transport Network (KTN) is used to provide the communications

between these nodes.

Under the DPE implementation layer is the Native Computing and Communica-
tions Environment (NCCE) which describes the computing environment, such as
the operating system, within a particular node. This layer is used to support the ex-
ecution of DPE and non-DPE software and to interface the DPE with the underlying

communication devices.

The lowest layer is the layer where the hardware resources exist. These hardware
resources are responsible for the physical exchange of information between the com-
puting nodes. Examples of the hardware resources are the network adapters and
switches. Special hardware, such as the real time video encoder, is also included in

this layer.

1.6.2 General TINA Business Model

The TINA business model is a general framework for use to identify the appropriate
roles, reference points and related interfaces for any TINA service. It is based on the
RM-ODP enterprise viewpoint, which specifies the roles of the actors of the system.
It provides the guideline for defining the scopes and boundaries of different parties
involved in a service. The model also defines some consistent interfaces between dif-
ferent parties. These interfaces facilitate interoperability between different systems.
Five main roles are defined in the TINA business model, namely the consumer, re-
tailer, broker, connectivity provider and third party service provider, as shown in

figure 1.3.

Broker

Bkr Bkr Bkr Bkr Bkr
consumer| _Ret_| Retailer | _3PY | 3pty Service
Provider]
RtR 3Pty
TCon TCon ConS ConS TCon
Connectivity

Provider

CSLN LNFed

Figure 1.3: TINA Business Model

1.6.3 TINA Session Concept

Even though the services are different, they provide a fundamental property that
is a context for relating activities. Such a context is regarded as a Session. The

generic definition of term “session” stated in [3] is:

A temporal period during which activities are carried out with the pur-

pose of achieving a goal.

Four types of sessions have been identified by TINA: Service Session, User Session,
Communications Session, and Access Session. The Service Session represents a sin-
gle activation of a service. The User Session represents a single user’s interaction
with a Service Session. The Communications Session represents the connections as-
sociated with a Service Session. The Access Sessions represents a user’s attachment

to a system and his involvement in its services.

The purposes of these session concepts are to separate out different concerns and to
promote distribution of functionality. For example, separating the Access Session
and Service Session allows the access methods and technology for different users
to vary. It also provides generic access methods to different Service Sessions. The
separation of the Service Session and the User Session permits the distribution of
functions and state. The storing of state permits the suspension and resumption of
the service. The separation of the Service Session and the Communication Session

supports the division of the service functions from the physical connections involved.

1.6.4 Benefits of using TINA for designing the RSMS

The benefit of using the TINA business model is that it provides standard reference
points for the different parties involved in a service, such as the data repository
provider, the confidence provider and managed application provider (MAP), and
integrating them as a single TINA application to provide new services. Different
ASPs can communicate between each other using the retailer to retailer (RtR) ref-
erence points. In addition, they can share the service offered by third party service
providers. For example, they can share the same data repository provider in or-
der to access the same database to maintain data integrity. The relationships can
be dynamically established implying that no one service is bounded to a specific

provider.

The business model also facilitates the cascaded outsourcing solution. For example,
the ASPs might outsource other MAPs to manage the set of applications they host.
In this way the specialist companies can offer services with their fields of expertises
while developing other components to compete with other service providers. For
instance, existing ISP /Telcos can implement the standard interfaces as the connec-
tivity provider while exploring the ASP market by developing the retailer interfaces
for the ASP services separately.

Using the TINA service architecture, different domains (e.g. ASP and MAP) have
to gain access to other domains using the same access session mechanism. The same
confidence provider can be used to authenticate the identity of different parties.
Thus, trusted relationships between different parties can be established. The session
concepts ease the integration between different parties as they promote distribution

of functionalities.

The architectural separation of TINA allows the quality of service and other network-
ing issues such as location transparency and transportation protocol to be isolated
from the service design. Therefore, service providers, such as the RSMS, do not
have to consider these issues when designing the service. The problems are left to

the underlying network connectivity provider to handle.

1.7 Implementation Methodology

This project uses the Description Plane Model (DPM)[3] as the design guideline for
the RSMS. The DPM defines five planes of development where each plane is used

to create certain development activities. The output of the planes of the DPM is
the abstract language constructs that can be used to express the design of a system.
The output models of the DPM are based on the five viewpoints? of the Reference
Model for Open Distributed Processing (RM-ODP). These output models are the
essential building blocks of a TINA service.

Alongside with DPM the elements of Unified Modeling Language (UML), such as
the Use Case Diagrams, State Diagrams and Sequence Diagrams, are integrated in
the planes. The additions of the UML elements strengthen the concepts and ideas
behind the development activities. These elements fit very well into different planes
of the DPM and they support object oriented programming and the implementation
of the RSMS service.

&2 < . Design components
2 — Design]
GE) g Computation model
E -
£33 g3
R 3 g
S0 8
P~ E E c
TRRY] 9 o \
Sc= @ © 35
22 ° 8
£ 0 &8 Qo £ Impl. components
[T T |- E 5 - .
< g2 . O » Implementation
S cc n £ . .
nou Engineering model
c
o o
o =
2 c y
"5' =
o 8 | Phys. components
g »| Physical
Technology model

Figure 1.4: Service Design Planes

1.8 Report Overview

The main body of this report is divided into five chapters, corresponding to the five
planes of the DPM. The first plane of the development cycle, which is discussed
in chapter 2, is called the objective plane. This plane is concerned with the roles
that people and organizations will be carrying out with respect to the service and
its supporting environment. Within this plane, the business model is defined. In
addition, the Use Case Diagrams of the UML are used to further describe the roles
of each participant of the RSMS service.

2The five viewpoints are: Enterprise, Information, Technology, Engineering and Computation

Chapter 3 relates to the second plane of DPM named the definition plane, which
constructs an object-oriented description of the service and its environment. The

information model is defined in this plane.

The third plane is the design plane, which contains object-oriented descriptions of the
components of logic and data that will be used to implement the service. This plane
also contains the computational model. The sequence diagrams and state diagrams
defined in UML are used to illustrate the interactions of the computational objects.

This plane is discussed in chapter 4

Chapter 5 describes the implementation plane, which defines the deployable soft-
ware modules comprising of the service on a distributed platform. The outputs of
the implementation plane are the engineering model and the implementation code.

Screen outputs are also described in this chapter.

Chapter 6 deals with the last plane of the DPM, which is the physical plane. This
plane concerns the operational deployment and execution of the software modules.
The physical plane maps to the technology viewpoint of the RM-ODP standard,
which requires detailed system information such as programming language, the hard-
ware platform, operating system and network protocols. This chapter describes the
technology employed on the SATINA platform and how the RSMS components are
deployed on the platform.

Although the structure of this report shows the logical sequence of the development
process, the development of the design plane, implementation plane and physical
plane are in parallel order as can be seen in figure 1.4. The reason for the parallel
development of the planes is because the information needed by these planes is
interdependent. For example, one of the outputs of the implementation plane is
the implementation code, which cannot be completed without the knowledge of the
required programming language that is defined in the physical plane. Therefore,
there are overlapping areas which may not seem logical. However, cross-references

of these areas are provided to ease the reading of this document.

10

Chapter 2

Service Design: Objective Plane

2.1 Introduction

The first plane of the development cycle specified by the DPM is called the objective
plane, which is concerned with the roles that people and organizations will be carry-
ing out with respect to the service and its support environment. Within this plane,
the business model is defined. This plane corresponds to the enterprise viewpoint
of the RM-ODP model.

2.2 SATINA ASP Business Model

The RSMS implementation tries to follow the TINA business model as closely as
possible. Figure 2.1 shows an example business model that can reflect the typical
business scenario. It is based on the general TINA business model discussed in
section 1.6.2. It shows the business relationship of different service providers that
are integrated together to provide a single RSMS service. It shows stronger bonds
between the service providers than the current ASP business model shown in figure
1.1.

In figure 2.1, six different parties are identified as the key parties involved in con-
structing the RSMS.

The first party identified is the user, who represents the consumer in the business

model. The consumer is the party that requires the use of a particular service.
The second and third participants are the RSMS Service Provider and the ASP

11

Naming Service (Broker)

Database

depository
(3pty service

3py-Rt
3ty
RSMS Servicg

ettt PrOVIQer A ASP Content

(Retailer) Provider A

Connestill oty o T
y Provider)
User
(Consumer) RIR py-Rt

ASP Content

Provider B
RSMS Servicé (3pty service

Ret-Rt Provider B 3pty
(Retailer) 3ty
3ptyRt

Account and
Billing (3pty

Service)

Figure 2.1: RSMS Business Model

Content Provider respectively. The RSMS Service Provider acts as the retailer
while the ASP Content Provider acts as the third party service provider. The main
function of RSMS Service Provider is oriented towards customer management and
value adding. On the other hand, the ASP Content Provider presents and maintains
the service content, which is to execute the hosted applications and export the visual

outputs to the user terminal.

The fourth party participates in the system is the naming service, which is a cut
down version of the broker function in the TINA business model discussed in section
1.6.2. The function of the naming service is to enable the ASP retailer to locate the

available ASP third parties within the system.

The fifth party is the database provider, which is acting as a third party service
provider. It provides database functionalities to the other parties who need to access

the database.

The last party identified is the connectivity provider, which provides the physical
connection to all the parties involved. To reduce the complexity of figure 2.1, the

lines joining the connectivity provider to the other parties are not shown.

12

2.3 Stakeholder, roles and obligations

The stakeholder, roles and obligations summary is one of the outputs of the objective
plane. It clearly defines the responsibility of different stakeholders participated in
delivering the RSMS service. This discrete separation of responsibility is important
for an environment that requires cooperation and federation of service providers.
Table 2.1 lists the stakeholders that participate in the RSMS service and their roles

and obligations.

2.4 Policies

Policies are the rules that all the parties should follow while providing or utilising
the service. The followings are the basic policies that should be observed by relevant

parties.

1. The service provider has the right to determine which user has access to the

service of the content providers.

2. The content provider has the right, over the retailer, to determine who can

access the contents it provides, in this case the application software.

3. The content provider has the right to add, modify and remove the application
software entries in the central database, only if that entry belongs to that

content provider.

4. The content provider has the right to review all the usage records in the central

database only if the records are related to that content provider.

5. The service provider has the right to remove any application software entries
in the central database, no matter which third party content providers they

belong to.

6. The service provider has the right to modify any application software entries,
provided that a notice is given to the concerned third party content provider.
The concerned third party has the right to remove that modified entry from

the central database afterward.

7. The content provider cannot terminate the executing application software
without informing the user. Enough time should be given to the users to

save their current work.

13

Table 2.1:

Stakeholders, Roles and Obligations

Stakeholder| Roles Obligations
User Consumer - Subscribe the service
- Check if usage record is correct
- Pay for the service to retailer
- Choose correct application software to use
Service Retailer - Query the naming service for available third party
Provider providers
- Subscribe to service offered by third party providers
- Subscribe to the database provider to create a central
database for the service
- Manage the content of the central database
- Control client access
- Pay the third party providers service charges
Content Third Party | - Register its presents on the naming service
Provider
- Update its available application software on the central
database
- Inform the retailer about its availability status
- Provider streaming of remote software control protocol
between the client and its application server
- Control retailer access
- Ensure the usage is recorded correctly on the central
database
Database Third Party | - Maintain the database service such that down-time is
Provider minimum
- Restrict access to the database
Naming Broker - Provide retailer fair access of the presents of third party
Service content providers
- Restrict access to the service
Network Connectivity| - Provide kernel transport connection between different
Operator Provider parties

- Provide streaming connections between the user and the
content provider

- Maintain the service up-time and Qos

14

8. The user has the right to check and verify his own usage records.

9. The usage records cannot be modified unless agreed by all three parties namely

the user, the content provider and the service provider.

2.5 SATINA RSMS Business Relationship instance

After all the policies and obligations are defined, a specific business relationship
instance of the RSMS service is produced. This business relationship is specific to
a particular instance, in this case the SATINA implementation, which defines the

reference points relationships between different stakeholders.

‘'Stakeholder: Application

{Stakeholder: User H i Stakeholder: Intergrated Retailer Service Provider H N
: : : : Software Provider
Business Admin : i {Business Admin Domain: RSMS Service Provider - : [Business Admin Domain :
Domain: User Domaig : i : i |Content Provider :
: i Business : : -
: Business Role] : Ret : Role: : Business Role}
i Consumer I retailer Business Role: Connectivity Provide | : Third Party
: : H "1 Tcon = Provider
i B [| AL
: i1 TCon H— el
: |l ConSf—
W L J
: : | | :
D\ — H :
: : g ‘ 3Pty ‘ ‘Cons‘ Bkr E)E :
e esersesassens s e] I
N Y a N
: Business Role: :
= contract instance : Business Role: Broker
(arrow indicates constraints): ;h"d,dparty
: rovider i i in:
= reference pt instance EusmessSAdmmPDomgm. :
incl. bus. relationships \aming service "rovider) :
T] ' Business Admin Domain: |
Xyz | = business relationship |Database Provider

Figure 2.2: Business Relationship Instance Diagram

Figure 2.2 shows the business relationship instance of the SATINA RSMS service.
The diagram shows three main stakeholders of the service, namely the User, the
Integrated Retailer Service Provider and the Application Software Provider. On the
top-left of the figure is the stakeholder-User, it has one business administration do-
main named the user domain. It can be thought of as the PC or the equipment that

is under the user’s control. The business role within this domain is the consumer.

The Integrated Retailer Service Provider has three different business administration
domains namely the RSMS Service Provider, the Database Provider and the Naming
Service Provider. The SATINA RSMS implementation considers the database and
the naming service belonging to the same stakeholder. This provides a smooth

transition path from non-TINA to TINA service, as a non-TINA service provider

15

would usually have its own database functions attached to the service. However, the
database functions can be completely divided from the main service logic if necessary.
A more generic database function, which acting as a third party service provider, can
be provided to different service providers in this distributed process environment.
Although the database is presented as a generic third party provider, currently no
other service depends on it. Therefore, it is considered that the Integrated Retailer

Service Provider has complete control of the database services.

The naming service is a simplified version of a broker function defined in the TINA
business model. The purposes of the naming service are for the third party content
providers to register themselves in the retailer domain and to enable the retailer
to locate the content providers. Since this broker function is not a public service
and is not supposed to be shared among different retailers, it is regarded that the
Integrated Retailer Service Provider has complete control over those who can register
in the naming service. However, this broker function can be shared among different

retailers without modification of the implementation code.

Inside the RSMS Service Provider business administration domain, two roles are
defined: one is the retailer and the other is the connectivity provider. Since the
SATINA platform does not have an implemented instance of a separate, independent
connectivity provider, it is considered that the network connection belongs to the

retailer service provider who has control over the network connections.

The stakeholder Application Software Provider is on the right-hand side of figure
2.2. It has one business administration domain called Content Provider and it has

a business role as a third party service provider.

Between different business administration domains, reference points and contracts
are defined. The reference points provide a set of standard interfaces wherein ob-
jects can invoke operations on one another. Contracts provide constraints on which

interfaces can be used and how it should be invoked.

The reference-points-instance bounded by contract A has two business relationship
namely the Ret and TCon, which are defined in the TINA business model. It shows
that the user has retailer relationship to the RSMS Service Provider and the user
accesses the network though the TCon interfaces. The overall functionality and
scope of the Ret reference are standard and can be found in [4]. The functionality

of TCon is not defined in this project.

16

In contract-instance E and C, the Bkr reference point is applied. The overall func-
tionality of the Bkr is to provide third party service providers interfaces to register
and deregister their service, together with useful information about their services.
It also provides interfaces for retailers or other brokers to retrieve the information
about the registered third party service providers. As there is presently no document

released by TINA consortium on the Bkr reference point, it is not TINA compliant.

The reference point instances constrained by contract instance B, D and F contain
the 3Pty reference point. The SATINA implementation uses the Ret reference point
as the basis for the 3Pty reference point, with added customised interfaces to sup-
port 3Pty operations. The design and implementation can be found in chapter 4
and in chapter 5. The main functions of the 3Pty reference point are authentication,
starting the access and usage sessions. The reference point instances governed by
contract instance B and F is related to the database, which provide interfaces of ac-
cessing and modifying the data stored in the database. The reference point between
the RSMS Service Provider and the Content Provider offers interfaces to access the

main ASP related functions, which is discussed in detail in later chapters.

2.6 Use Case Diagrams

Use case diagram is one of the many useful tools defined in UML to describe part of a
complex system. The use case diagrams are employed to help illustrate the different
roles and functions of the stakeholders defined in the TINA business model. Use
case diagrams comprise of actors, use cases and their relationship within the system.

The definitions [8] of an actor and a use case are the followings:

An actor is a role of object or objects outside of a system that interacts
directly with it as part of a coherent work unit (a use case). An Actor
element characterises the role played by an outside object; one physical

object may play several roles and therefore be modeled by several actors.

A wuser case is a coherent unit of functionality provided by a system
or class as manifested by sequences of messages exchanged among the
system and one or more outside interactors(called actors) together with

actions performed by the system.

In order to explain different aspect of the system, three use case model packages are

sketched, namely the Service Usage, Service Maintenance and Third Party Sessions.

17

2.6.1 Service Usage

The Service Usage use case model package presents the scenarios that are related
to service usage issues. The model, which is shown in figure 2.3, contains three use

cases: Request Software List, Remote Fxecute and Log Usage Record.

Service Usage

—

Request Software List

B Database
/ Provider
User (
Remote Execute Retailer
Log Usage Record Third Party

Figure 2.3: Service Usage Use Case Model Package

The use case Request Software List shows the situation that when the user queries
the system for a list of available application software. It is not the interest of
this plane to understand the detailed operations' in this use case, but the actors
involved. As in figure 2.3, the actors involved in this use case are the user, the

database provider and the retailer.

The use case Remote Execute reflects the situation that the user requests the desired
application software to be executed in the remote server?. The actors involved in
this use case are the user, the database provider, the retailer and the third party

content provider.

The last use case that is defined in this package is Log Usage Record. This use case

describes the procedure that the third party content provider logs a usage record

1See section 4.3.2 for details
2See section 4.3.2 for details

18

after the user has executed a particular application software. The third party content

provider and the database provider are involved in this use case.

2.6.2 Service Maintenance

The Service Maintenance use case model package expresses the facts on the service
maintenance issues. This model contains five use cases, namely Check Service Mode,
Modify Service Mode, Check Software List, Modify Software List and Check Usage

Records.

Service Maintenance

U

Check Service Mode

U

%/

Retaileny Service Mode
Check Software List Database
% Provider

Third Party

s

U

Modify Software List

%>

Check Usage Record

U

User

Figure 2.4: Service Maintenance Use Case Model Package

The use cases Check Service Mode and Modify Service Mode are only accessible by
the retailer. They are used by the retailer to manipulate the available service modes
that can be applied to all application software. Example service modes that can
be applied to the software are “Remote Executable” and “local installation” mode.

The retailer can add, remove or modify the available service modes.

The use cases Check Software List is accessible to the retailer and the third party.
According to the policy defined in section 2.4, the retailer can read all available
software in the central database, with detailed information about the individual ap-
plication software in the list. The third party content provider can read all available
software under its registration. Similar rules apply to the use case Modify Software
List where the retailer or third party content provider can modify the list or modify

the information associated to the individual application software.

The use case Check Usage Record is accessible to the retailer, the third party and
the user. The only difference between the three parties is that the retailer can check
all the records; the third party can only check the usage records that are related to

it; the user can only check his own records.

2.6.3 Third Party Sessions

As the 3Pty reference point standard has not been released by TINA consortium,
the 3Pty reference point and related functions are defined along side with the RSMS
project. Figure 2.5 shows the use case model package that describes third party

sessions.

Third Party Sessions

- X

—Create 3pty Session

Broker

A | A

Destroy 3pty Sessio Third Party

bl

Register 3pty Server

Retailer

Figure 2.5: Third Party Sessions Use Case Model Package

This package includes three use cases namely Create Ipty Sessions®, Destroy Spty

3See section 4.3.2 for details

20

Sessions* and Register 3pty Server®. The first use case is related to the creation of a
third party session, which involves the retailer, the broker and the third party. The
second use case shows that when destroying the third party sessions, only retailer and
third party service provider are involved. The third use case presents the situation

when the third party content provider informs the naming service about its existence.

4See section 4.3.2 for details
5See section 4.3.1 for details

21

Chapter 3

Service Design: Definition Plane

3.1 Introduction

The second step of service development is the definition plane. In this plane, the
business model is used as the input to construct an object-oriented description of
the service and its environment, without concerns about the actual implementation
of the objects. Therefore the objects are not computational objects, rather they
are information objects. Consequently, the information model serves as the output
of this plane. These information specifications are produced early in the analysis
phase of system development since they define the information necessary for using
the system and thereby define the context in which the system is going to be used.
The information model generated corresponds to the information viewpoint of the
RM-ODP standard.

3.2 The Information Model

The service information model describes the world of service in terms of all the per-
tinent actors and components. It contains descriptions of the service environment
as well as a description of the components used to build the service and their rela-

tionship, using the modeling notions defined by object modeling technique (OMT).

Unlike computational specifications, the information model is aimed to collect the
knowledge necessary to make appropriate use of a system or any part of the system.
One does not required to understand how the system is implemented or what kind

of technology is used in order to use the system appropriately. The abstraction

22

level that applies to an information specification may vary from the very abstract
where distribution aspects are not considered, to very low levels where the DPE is
involved. The information specification defined in this section only focus on the high
level aspects of the system. To reduce the complexity of the information model, only

objects that are directly relevant to the RSMS service are shown.

Use

Integrated Retailer Service Provider ‘ Content Prvoider

1+

1
ContractRet_3pty
ContractUser_Ret
Use Database Provider
Registe|
RSMS Service Provider ‘ Query Naming Service Provider
check
1+ Query
Terminal Mouse Database Engine
+Send Modify
Keyboard
+8end
Log/Check
. Usage Records Table
Uonitor
Modi
+Receive ——— fy
Application List Table

Chqose

l create 1+

Usage Record
Usage ID Application Server
User ID
App ID +Process |nstructions
Start Time
+Recelive End Time
Cost per unit +Send Eyents
Remote Display Server ’_ﬂ - Application Software Remote Display Client
Name
Cost Execut
@ Description xecute
14 3pty Server | 2
Service Mode
Charge Model
App ID
Export Display

Figure 3.1: Information Model

The rectangular blocks shown in figure 3.1 are the information objects. Since this
model is aimed at providing high level abstract information of the system, the infor-
mation objects do not necessarily have one-to-one relationship to the computational
objects that are described in chapter 4. The line that links two information objects
represents the relationship between the two objects. Different relationships can be
represented by using different shapes at the end of the lines. Brief explanations of
the notation are provided later when necessary. However, detailed descriptions of

the notation can be found in [8].

23

The information model shown in figure 3.1 is organised in such a way that the higher
the object, the higher abstract level the object has. The topmost three objects are
the stakeholders namely the user, the content provider and the Integrated Retailer
Service Provider. To explain this information model in an organised fashion, the
model is subdivided into three main partitions that are related to the three topmost

objects.

3.2.1 The User Partition

The user partition concerns the information objects that reside in the user domain.
These objects are highlighted in figure 3.2, which is the portion on the left-hand side

of the main diagram shown in figure 3.1.

User r
ContractUser_Ret

Use

4@
check
1+
Terminal Mouse
+8end

Q Modlif

Keyboard

+$end

Monitor

+Receive IS
Chqgose

(

+Receive

Applicat

Remote Display Server

+Send

1+

Figure 3.2: Information Model - User Partition Highlight
The six highlighted objects are the user, the terminal, mouse, keyboard, monitor

24

and the remote display server. The user object represents the role that the user
takes part in the system. It has one line linking itself and the terminal object, which
has one filled circle at the end of the line. This notation means the user can have

one or more terminal.

The terminal has the mouse, keyboard and monitor objects attached. There are
three diamonds at the end of the three lines. This diamond notation denotes that
the terminal contains the mouse, keyboard and the monitor objects. These objects

are the information models of the physical hardware attached to the system.

The terminal object also has a link connecting to the remote display server object.
The remote display server object stands for the programming entity that runs in the
user’s terminal. It receives the inputs from the keyboard and mouse from the user’s
terminal and sends the signal, through a data stream connection, to the remote
display client, which resides in the content provide domain, for processing. It also
receives the screen output data from the remote display client. Subsequently, the

remote display server draws the screen output on the monitor of the user’s terminal.

3.2.2 The Content Provider Partition

The content provider partition, which is the portion that locates in the right-hand
side of the main diagram, is shown in figure 3.3. The information objects belonging

to this partition are highlighted in the figure.

The content provider partition consists of three information objects: the content
provider, the application server and remote display client. The content provider
object represents the business administration role that the application software
provider participates in the service. Figure 3.3 shows that the content provider

object can contain one or more application server objects.

The application server information object, similar to the terminal object in the user
partition, represents the actual server that executes and processes the instructions
given by the application software. It executes a particular application software when
an execution request is issued from the content provider. The execution request is
originated from the end user and forwarded to the content provider by the RSMS

Service Provider.

The remote display client, similar to the remote display server mentioned in the

previous section, represents a piece of software that is running under the application

25

1+

Content Prvoider

Wh

Register

Query

Log/Check

Modify

create 1+

Application Server

+Process instructions

+Send Events
[)

Remote Display Client

Figure 3.3: Information Model - Content Provider Partition Highlight

server object. There are two main functions of the remote display client. Firstly,
it is used to receive all the user events, such as mouse click and key-down events,
through a separated data stream between the remote display server and the remote
display client. The received events are passed to the application server for pro-
cessing. Secondly, the remote display client sends any updates data of the screen
outputs, received from the application server, to the remote display server in the user
partition. The update data is sent through the stream connection. This tight rela-
tionship between the application server and the remote display client is represented

by placing a link between these two objects.

26

3.2.3 The Integrated Retailer Service Provider Partition

The Integrated Retailer Service Provider Partition is the middle part of the main
information model diagram shown in figure 3.1. The objects that are assigned to

this partition are highlighted in figure 3.4.

Integrated Retailer Service Provider

{
ContractRet_3pty W
ContractUser_Ret

Use Database Provider

Query Registel
RSMS Service Provider | Naming Service Provider
check
@ 1t Query
Database Engine
+$end Log/Check
Usage Records Table I
e
+Receive Modify

Application List Table

Chqose

Usage Record create "
Usage ID
User ID) —
App ID Application Server
Start Time +Process [nstructions
+Receive (E:ndtTime .
ostpertm +Send Egents
Application Sofware Remote Display Client
Name
Cost
@ Description Execute
3pty Server Y
" Service Mode
Charge Model
App ID
Export Display

Figure 3.4: Information Model - Integrated Retailer Partition Highlight

The topmost object in this partition is the Integrated Retailer Service Provider.
It represents the stakeholder in the retailer domain. The Integrated Retailer Ser-
vice Provider object has links to three other information objects namely the RSMS
Service Provider, the Database Provider and the Naming Service Provider. As
described in the previous sections, the diamonds at the end of the links presents
containment. Thus, the Integrated Retailer Service Provider object contains the
three objects mentioned above. These three objects represent the roles that the

Integrated Retailer Service Provider has to perform in the system.

27

The Database Provider Object

The Database Provider Object represents one of the few business administration
domains in the stakeholder Integrated Retailer Service Provider. It has a link con-
necting to the database engine information object. The database engine object
provides operation interfaces to other information object for accessing the database.
The database engine contains two main tables, namely the application list table and
usage record table. These two tables are represented in the model as two information

objects.

The main function of the application list table is to store application software en-
tries. An application software entry is presented as an application software object
in the information model shown in figure 3.4. Each application software object
provides descriptive information about the application software it represents. The
application software object contains attributes such as the name of the application
software, the cost, description of the application, the identity of the hosting third
party provider, the service mode and the change model. The links between the user
object, application software object and the application server objects show that the

user can choose one or more application software to execute in the application server.

The purpose of the usage records table is to store usage record entries. The usage
record entry is also presented in the model as usage record object. Every time a user
has finished executing an application software, a new usage record is added into the
usage records table. The usage record contains the information of who(the user ID),
what (application software ID), when(start time and end time) and how much(cost)
of a particular usage event. Through the database engine object, the user, the RSMS
Service Provider and the Content Provider can check the usage records for billing
or verification purposes. The relationships between the usage record table and the
stakeholders can be seen from the links between these objects in the information

model.

The RSMS Service Provider Object

The RSMS Service Provider object is another business administration domain that
the Integrated Retailer Service Provider contains. It is the frontier object that serves
the user. The users authenticate themselves by logging into the RSMS Service

Provider domain and establishing access sessions and usage sessions'. The link

1See section 4.3.2 for details

28

between the RSMS Service Provider and the database engine comes from the fact
that the RSMS Service Provider needs to query the database engine for a list of
available application software. When a new service session starts or when the users
indicate that they want to update the software list, the RSMS Service Provider

contacts the database provider for a list of available software.

The relationship between the RSMS Service Provider object and the content provider
object is very similar to the connection between the user and the RSMS Service
Provider object. The RSMS Service Provider authenticates itself to the content
provider and establishes both access sessions and service sessions just like the user.
The user requests, such as request for software execution, are forwarded from the
RSMS Service Provider to the content provider if the requests require the content

provider to accomplish.

The Naming Service Provider Object

The last business administration domain that the Integrated Retailer Service Provider
contains is the Naming Service Provider object. It represents the broker in the in-
formation whose main responsibility is to provide information about the third party

providers to the retailer.

The Naming Service Provider object has two links, one to the RSMS Service Provider
and the other to the content provider, representing the relationships with each other.
For the content provider to announce its existence, the content provider registers
itself with the Naming Service Provider by posting its contact reference to the Nam-
ing Service Provider. On the other hand, the Naming Service Provider answers the
queries from the RSMS Service Provider about the existence of the content providers.
If the queried content provider is found in the registry, its contact reference is re-
turned back to the RSMS Service Provider.

The Contract Objects

The link between the user and the Integrated Retailer Service Provider, and the
link between the Integrated Retailer Service Provider and the content provider have
contract objects attached. The contract object points out that between the user
and the Integrated Retailer Service Provider, there is a contract bounds to the
relationship between the two objects. Similar situation applies to the Integrated

Retailer Service Provider and the content provider. The contact objects show that

29

different users may apply different constrains to the relationship bound to the service

provider and vice versa.

30

Chapter 4

Service Design: Design Plane

4.1 Introduction

In this chapter, the third plane of the system design process is presented. This plane
is called the design plane which contains object-oriented description of the compo-
nents of logic and data. These components are the inputs of the implementation
(coding) of the software of the service. The output of this plane is the computational
model of the service, which defines the units of programming called computational
objects. This model maps to the computational viewpoint of the RM-ODP archi-

tecture.

In addition to the computational model, flowcharts and sequence diagrams of dif-
ferent events are used to illustrate the logic of interactions of the computational

objects.

4.2 Computation Model

Whereas the information model provides the necessary knowledge of interacting
appropriately with a system or subsystem, the computational model specifies the
system itself. Objects identified in the information model may correspond to objects
in the computational model, but this is not necessary to have one-to-one relationship
between the information objects and the computational objects, which is the case
of the RSMS.

The main components of the computational model are the computational objects

31

(CO). CO, which provides encapsulation of data and processing instructions, may
contain several operational interfaces, which are the interaction points for other
objects to access its data or processing instructions. It may also contain stream
interfaces, which facilitate stream connections between itself and other COs. A
stream can be regarded as a sequence of bits, which represents some information

flow.

The TINA service architecture defines four generic sessions for any services, namely
the access session, the service session, user session and the communication session.
The effect of separating the sessions emerges on the computational model shown in
figure 4.1. The computational objects above the horizontal-dotted line are access-
related components where the objects under the horizontal-dotted line are usage-
related components. The vertical-dotted lines separate the stakeholder domains,
which are related to the information objects defined in the chapter 3. Since the
vertical-dotted lines separate different domains, they also represent the reference

points defined in the business model.

The access-related components provide a framework for secure and personalized ac-
cess to services and a framework for mobility support. The provider agent (PA) (2
in figure 4.1) and the user agent (UA)(4) interact within a secure, trusted relation-
ship between the user and the integrated retailer service provider. They support
authorization, authentication and customisation of the service access, and provide

a secure mechanism for starting and joining service sessions.

Usage-related components provide a framework for defining services, which can be
accessed and managed across multiple domains. The service session manager (SSM)
(6 in figure 4.1), user service session manager (USM)(7) and the composer usage
session manager (compUSM)(8) are instantiated by the service factory (SF)(5). The
compUSM is a generic component that is served as an interface to the third-party
service provider. Since the USM, the compUSM and the SSM are created by the SF
each time a new service session starts, they are dynamic objects with life span the
same as the service session. If another ASP retailer were involved, the PeerUSM!'
would be used to interface between different retailers. The USM, compUSM and
PeerUSM are inherited from the member usage session manager (MUSM) object
defined by [2].

Service specific components are a subset of the usage-related components, which
provide the functionalities that are specific to a particular service. For example,
the RSMS Core object (15), Retailer Admin GUI object (22) and 3pty Admin GUI

'PeerUSM is currently not defined in this project

32

[PPOIN Teuoryeinduwo)) 1§ 2anSr

(n) 4 - Aresoudorg (9) 1y - frepaudosg (o) el (8) 1Y
35EgeIRq
0 (92) _g@_mm (1ua1p)
ssiog | — %_w\,zmwmcn_ —Aw%w_wm (67) Jonup
] ey wo| 3500 W W W
L1} (uaip)
(luaya) ' , ocw__uv , !
el | g oy e | o m
_ aopug ! f ! ; ! !
o lme] 50 - ow | o W
[&4]
[) | ”) o { @ ” A
| — m 1 g 11 s) o TS o U 1
Y 2600 0N
affesn m | X B W
| s | (945 |
$5300Y . re
m : (mn ; (6)vd (r) : (¢)vd
! m ” ! il
(on)v v (1 dvn
lojpny euieixy (hde)uewoq (fade) urewoq (19|re13Y) Urewog (1aunsuod) urewog
[SIOEASUpY I9pI0Id BSeqeleq J9pIN0I4 10 ~ I3poid B0NAS SNSY 198N

33

object (24) are specifically designed for RSMS use. The ODBC Bridge Client and
Server objects (16,17,18,21,23,25) are for the exclusive use of data depository. All
these components together constitute the service logic. The service support com-
ponent (SSC) represents special resources controlled by the service session. In this
case, the RSMS Core object (15) is regarded as an inherited instance of the SSC
object. The RSMS Core object contains a streaming interface to communicate with
the client’s service specific User Application (ssUAP)(20). The RSMS Core object
is a dynamic object as it is only created when the third party service session is
established. The database service-related objects, such as the ODBC Bridge client
and ODBC Bridge server, are static objects. They only have a single instance, which

services requests from different third party service sessions.

The interfaces of the retailer reference point (a in figure 4.1) between the consumer
and the RSMS retailer are implemented using the standard retailer reference points
defined by [4]. However, the reference points between RSMS third party and the
database depository (c) are currently implemented using interfaces not specified by
TINA.

Since the TINA third party reference point have not been released yet, the third
party reference point (b) implemented in SATINA is basically a cascaded retailer
reference point with SATINA specific extensions to support third-party-related func-
tions. The standard retailer reference point components are only discussed briefly
in this document, as detailed reference can be found in [4]. On the other hand, the
objects that support the SATINA specific extension are discussed in detail later in
this chapter and the following chapters.

4.3 Service Logic

This section discusses both the service logic of the RSMS service and various ses-
sion models that are involved in the service logic. To aid explaining the service
logic clearly, this session is subdivided into three main subsections namely the Pre-
Service Events, the Main Service Events and the Auxiliary Service Events. These
subsections map the use cases, which are defined in chapter 2, into different events
or activities. These events are described in terms of the interactions between the

computational objects. All of these events comprise the service logic of RSMS.

34

4.3.1 Pre-Service Events

The pre-service events are the activities that are the prerequisites before the service
could start. Although they are important, they are not directly related to the service

logic.

Content Provider Registration

The naming service server commences its service before the RSMS service provider
(retailer). This enables the third party PA (9 in figure 4.1), which represents the
content provider (third party), to register itself with the naming service before the
retailer starts the service. Each of the content providers must have a different
third party PA representing themselves in the retailer domain. The third party
PA contains the object reference of the IA(10) of the content provider it belongs.
The reason for this registration is that the retailer needs to know which third party
content providers are available when the service starts. The retailer accomplished
this by querying the naming service through the specific interfaces, which can be
considered as the simplified, proprietary broker reference points. Since the third
party PA is designed as a completely service generic component, it is located above

the horizontal-dotted line in the “Access” region in figure 4.1.

In addition to the registration of the third party PA, the initial agent (TA) (3, 10),
user agent (UA) (4, 11) and service factory (SF) (5, 12) in the retailer domain and

third party domain must be initialised before an access session starts.

Exporting the Available Software List

Initially the database depository does not have any application software entries in
the database. The third party content providers therefore have to export or register
the application software that will be hosted for the consumer to use. This is done
through the specific designed third party administration GUI (24 in figure 4.1), the
ODBC Bridges (23, 18) and the proprietary reference point (d). The retailer has
the right? to modify the available software entries at later stage using the retailer
administration GUI (22). The exporting of the available software list has to be done
before the retailer service starts because the retailer needs the list to present to the

consumer once the service has started.

?Refer to the policies defined in chapter 2

35

4.3.2 Main Service Events

This section contains the events directly involved in the service delivery. The use

cases defined in chapter 3 are served as the inputs of the event design. Contrary to

the use case diagrams, which shows the service events from the stakeholder’s point

of view, figure 4.2 shows the logic flow sequence of the events.

Main Start

Login and Create
Access Session

[Access Session }

Created

Start RSMS Service and
Create Service Session

\

[Service Session }

Created

Request
—— A
Software List

Wait for

Selection -
function return
Choosed Spmething ‘
Remote
Update List Remote Execute ESEEE Create ne

Finsihing
State
Destroy 3pty
Sessions

@ Main Exit

Figure 4.2: Main Service Flow

Wait for

Application Finish
thread S

Log Usage
Record

@ Exit Thread

The rounded blocks of the flowchart are the events (activities) and the rectangular

blocks are the states. An overall description of the flowchart in figure 4.2 is given

below and the detailed explanation of the events follows.

The first event is the login event, which enables the users to authenticate themselves.

36

After authentication, the access session between the consumer and the retailer is
created. Once the access session has been created, the user is presented with a list
of subscribed services for him to choose. The retailer service session is then created
once the user has chosen to start the RSMS 2. Thereafter the retailer requests a list
of available application from the database provider and forwards it to the user. The
user can then select to exit the service, update the received list or execute one of the
application software entries in the list. If the user chooses to execute an application
software, the retailer starts the Remote Fxecute event, which creates a new thread
that issues an execution order to the third party content provider. The new thread
continues governing the execution of the application software, even if the user has
exited the service and the main thread no longer exists. After the user has finished
using the application software, the new thread will create a new usage record entry

to the database provider.

While the new thread is executing the application software, the main thread returns
to the Wait for Selection state loop. The user can therefore choose to start another
application simultaneously with the running application. If the user chooses to exit
the service, the retailer enters the Finishing state and destroys all third party service

sessions and retailer service sessions.

Create Access Session Event

When the users want to start a service, they start the client package which will
request the users to enter their login and their password. The client package contains
both the user application (UAP)(1 in figure 4.1) and PA (2). The authentication
information is then sent via the PA to the IA (3) and UA (4) in the retailer domain
to create a retailer access session®.

Similar to the consumer, the retailer has to authenticate itself to the third party
content provider with the procedure described above to establish a third-party access
session. While the database depository components (16,17,18,19,21,23,25) are not
fully implemented as TINA objects, the RSMS Core object (15) is pre-programmed
to hold the reference of the database depository. Thus, the RSMS Core object is
able to access the database directly without authentication and without creating an

access session.

3To reduce irrelevant branches of the logic flow, it is assumed that the user chooses to start the

RSMS only.
“Detailed event traces, object interactions, and interfaces involved have been defined by TINA

consortium which can be found in [2].

37

To provide the service, at least two access sessions are needed. One access session
connects between the consumer and the retailer; another access session connects
between the retailer and the third party. If more then one content provider is
involved, the retailer might create multiple access sessions to logon to different third
party domains. These access sessions are generic to different kind of services. E.g.
Video on Demand service, Voice over IP service and ASP can share the same access
sessions. A single third party service provider can offer multiple services shared by
a single access session. However, the retailer has to create separate access sessions
to connect to different third parties since the retailer might use different identity
to logon to different third parties. Figure 4.3 shows the relationships between the

sessions and domains.

User Domain RSMS Service Provider Content Provider A
(Consumer) (Retailer) (3rd party)

[Access Session J [Access Session J
[| [

(Service Session)
[3pty Service Session J
Retailer Service Session
[3pty Service Session J
. /

[Access Session J

Content Provider B
(3rd party)

Figure 4.3: Sessions and Domains

Create Service Session Event

After the access session has been established between the client and the retailer,
the client is then prompted to choose a service. As soon as the RSMS service has
been chosen, the service factory (SF) (5 in figure 4.1) dynamically creates two service
specific components, namely the user session manager (USM) and the service session
manager (SSM). Since all services can share the same access session, the SF will have
to instantiate the correct service component according to the service. This is done
by assigning a different service ID to different services. A new USM (6) and SSM
(7) will be created with each new service session using the corresponding service ID.

Detailed event traces of creating the service session are defined in [2].

38

Each time the retailer starts a third party service session, a new composer user
session manager (compUSM)(8) will be created by the SF. Therefore, there will
be a unique USM, a unique SSM and more then one compUSMs within the same
retailer service session. The compUSM is unique within a single third party service
session, as one retailer service session can have multiple third party service sessions.
The retailer service session starts as soon as the USM (6) and the SSM (7) have
been created. Thereafter the ssUAP (20) can communicates with the USM (6).

To delivery the service to the consumer, one retailer service session and at least
one third-party service sessions are required. If more then one third party content
providers are involved, multiple third party service sessions can be created, each
corresponds to a particular content provider. The retailer service sessions and the
third party service session(s) can be considered as the sub-sessions which comprise

of the main service session. (Refer to Figure 4.3)

Request Software List Event

This event can be mapped to the use case Request Software List shown in the figure
2.3 in Chapter 2. Whenever the user requests a list of available software, the ssUAP
(20 in figure 4.1) sends the requests to the interface i_PartyAppSoftManager® on
the retailer USM (6) by calling the function Request_Software_List (). Next, the
retailer USM (6) forwards the request to interface i_ProviderAppSoftwareManager
on the retailer SSM (7), which holds the reference of the database provider. The
retailer SSM then queries the central database in the database provider for a list of
currently available application software on the third party content providers. The
return parameters of the function Request_Software_List () include a program-
ming object type called AppSoftList, which is a list that contains an sequence or
an array of AppSoft programming object. An AppSoft object contains the infor-
mation of an application software package, such as the name, cost and location of
the third party service provider etc. Once the list has returned to the retailer SSM
(7), it may apply the necessary filtering operations on the result and may send a
modified list of available applications to ssUAP (20) for the consumer to choose.

Figure 4.4 shows the event traces of the Request Software List Event.

5See 5.3.3 for details

39

%% ssUAP RSMSRetUSM : RSMSRetSSM : g%

i_PartyAppSoftManager i_ProviderAppSoftManager
normal user : User Database Inteface :

Databasd Provider

u

1: Request_Software_List

|
|
|
|
|
g

‘ 3: Request_Software_List(...)
|

|

N

4: Database Query (ODBC)

a
i

: Filter_Operation()

P—

/ITL: Request_Software_List(...)
\
\
\
\
\
\
\
\
\
\

i

B —

Figure 4.4: Request Software List

Remote Execute Event

Due to the complexity of the Remote Execute Event, it is subdivided into smaller
events, namely the Retrieve Host Server Information Event, Search for Established
Third Party Service Session Event, Create Third Party Sessions Fvent and Ezxecute
Software in New Thread Event. A flowchart (shown in figure 4.5) and an event trace
(shown in figure A.1) are used to describe the logical sequences of these events and

the object interfaces involved in these events.

Retrieve Host Server Information Event

When the user issues an order to execute a particular hosted application, the ssUAP
immediately invokes the function Remote_Execute_AppSoft () on the retailer USM
(6 in figure 4.1). After that, the retailer USM forwards the request to the retailer
SSM (7). Once the retailer SSM has received the request, it will check which third
party content provider should be contacted. This is done by examining the property
Server ID contained in the AppSoft object, which is one of the input parameters
of the function Remote_Execute_AppSoft(). The retailer SSM can then use this

information to search and contact the correct third party content provider.

40

. Start Remote Execute

Retrieve hosting server
information)

/" Search for established third party service

\ sesssions y
AN /

No N

Match? >~~~ Create 3pty
. Session

Yes

Start Application
Execution

/" Execute software in ™\ Execute

New Thread ‘; @ new thread

@ function return

Figure 4.5: Remote Execution Flowchart

Search for Established Third Party Service Sessions Event

To process the software execution requests from the consumer, the retailer SSM (7)
has to use the service rendered by the third party content provider. Therefore, a
third party service session between the retailer and third party is required. The
retailer SSM (7) internally holds a table of the currently established third party
service sessions, together with detailed information about the sessions, such as the
session ID, the third party Server ID and the object reference of the third party
PA. As soon as the retailer SSM has interpreted the Server ID value, it checks
all the entries in that table to see if the service session with the particular third
party server, which hosts the requested application software, has been created or
not. If the session is not present in the table, the retailer SSM will proceed to
call the function start_3pty_session on the interface i_Provider3rdpartyReq to
establish a service session between the retailer and the requested third party content

provider.

41

Create Third Party Sessions Event

If the required third party service session has not been created, the retailer SSM
(7) will instruct the naming service to look for the agent of the particular third
party content provider. The result from the naming service is an object reference
pointing to the corresponding third party PA (9). By the time the retailer SSM
queries the naming service, the third party service provider should have already

6. If it is not case, the naming service will not

registered with the naming server
be able to find the corresponding third party PA (9) and a Service Not Available
exception will be thrown. As soon as the retailer SSM has received the third party
PA reference, it requests the third party PA to start the access session with the
content provider which the third party PA represents’. After the access session
between the retailer and third party content provider has been created, the third
party PA will obtain the content provider’s service by starting a third party service
session with that content provider. These two steps (creating the access session and
third party service sessions) are done by invoking the Start_3pty_Service function
on the interface i_thirdPartySupport, which is one of the interfaces on the third
party PA, using the necessary information, such as the third party login, password

and service ID, as the function parameters.

The third party PA summits the authentication information to the content provider
and it will try to start an access session between the retailer and the content
provider®. If the access session has been created successfully, the third party PA
will start the third party service session. To setup the third party service sessions,
the third party SF (12) needs to instantiate the third party USM (13), third party
SSM (14), and the RSMS core object (15). The RSMS core object is a service
specific object which contains all the intelligence needed to execute the service in-
structions. The object references of the interfaces of the newly instantiated third
party USM (13) are then passed all the way back to the retailer SSM (7) as the
return parameter sessionInfo of the function Start_3pty_Service®. Thereafter
the retailer SSM instructs the retailer SF (5) to instantiate a new compUSM (8) for
the new third party service session. The returned object references from the third
party USM (13) are also passed when instantiating the new compUSM. After the
instantiation of the compUSM, the retailer SF returns the object reference of the

newly instantiated compUSM to the retailer SSM. The compUSM will then acting

SDiscussed in section 4.3.1 in this chapter

"Bach content provider has its own representative third party PA in the retailer domain, its
corresponding PA must contain the reference to contact the content provider’s TA.

®Detailed operations similar to the one defined in [2].

9See section 5.3.6

42

as a proxy for the retailer to communicate with the third party. After the new com-
pUSM is successfully instantiated, the setup processes of a new third party service

session are completed.

Next, the retailer SSM (7) appends the newly created third party service session
into its internal third party sessions table. Information regarding the new session,
such as the object reference of the instantiated compUSM, is stored in the table. If
the client later requests to execute an application software, which its hosting third
party service provider is already in the third party sessions table, the retailer SSM
will contact the corresponding compUSM directly, instead of creating a new access
session and a new third party service session again. Figure A.2 shows the sequence

diagram of this event.

Execute Software in New Thread Event

After the retailer SSM (7 in figure 4.1) has received the reference of the correct com-
pUSM (8), the retailer will issue a request to execute the software to the compUSM,
using the function Remote_Execute_AppSoft () on the interface i_CUSMAppSoftManager.
Once compUSM has received the function call, it will forward the request to the cor-
responding third party SSM (14) through the third party USM (13). If the instruc-
tion is approved by the third party SSM (14), the third party SSM will instruct the
RSMS core object (15) to execute the requested application by invoking the function
Remote_Execute_AppSoft () on the interface i_RSMSCoreExecManager. The RSMS
core object carries out the order by forking itself into the main thread and a new
thread, which is a new operating system kernel process. The new kernel process
actually handles the execution of the requested application. The main thread then

returns to the retailer SSM (7) waiting to receive new service instructions.

A stream is established between the requested application, which is running by the
new thread of RSMS core object (5), acting as the X-client, and the client ssUAP
(20) acting as the X-server. This bi-directional stream carries the user inputs data
from the ssUAP to the RSMS core object in one way. In the other way it transfers
the screen output data from the RSMS core object to the ssUAPY.

10X _protocol is used in the TCP stream for communication between the client and the hosted

application, see the implementation plane

43

Log Usage Record Event

The RSMS core object (15) logs all user activities, e.g. information like whom,
which application, when and duration, into the database depository (19). The new
thread, which is described in the previous section, is also responsible for logging the
usage record, in addition to the execution of the application software. The logging of
the usage events happens whenever the user has finished and exited the application

software.

The new thread is running in parallel to the main service thread. As a result,
the service will certainly be recorded as soon as the user stops running the remote
application, even if the user has exited the TINA RSMS service (main thread) while

the user is still using the remote application.

Destroy Third Party Sessions Event

The Destroy Third Party Sessions event describes the processes involved when the

user exits the RSMS service. The purposes of these processes for are the followings:

1. To clean up the created objects to free system resources

2. To shut down the third party access sessions and third party service sessions,

for security reasons, after the service is finished.

Figure A.3 in the appendix shows the sequence diagram of destroying the third
party sessions. When the user gives an indication to exit the system (e.g. clicking
the EXIT button on the GUI), the ssUAP (20 in figure 4.1) asks the retailer USM
(6) to end the sessions by invoking the function endSessionReq() on the interface
i_ProviderBasicReq. The signal is then forwarded to the retailer SSM (7) where it
calls the function End_3pty_Service () to terminate all existing third party sessions.
The End_3pty_Service() function checks the internal third party sessions table
and sends the function endSessionReq() to all the compUSM (8) objects that are
listed on the table. Each compUSM then forwards the endSessionReq() to its
corresponding third party USM (13), which in turn forwards the message to the
third party SSM (14) and then to the RSMS core object (15). As soon as the RSMS
Core object received the function call, it destroys itself and frees the resources it is
holding on the system. The function then returns to the third party SSM and it

starts freeing the system resource it holds. After that the function returns to the

44

third party USM and then the compUSM, they in turn destroy themselves in the
similar fashion. When all these objects are destroyed, one third party session ends.
Next, the retailer SSM begins to end the next third party session, if it exists in the
third party sessions table. This continues until all the third party sessions have been

destroyed.

After all the third party sessions listed in the third party sessions table hadended,
the retailer SSM (7) destroys itself and returns the endSessionReq() function to the
retailer USM (6). The retailer USM in turn destroys itself and the retailer service
session is considered closed. Once the objects have been destroyed, their object
references become invalid. Thus, unauthorised use of the references by other objects

will not be possible.

4.3.3 Auxiliary Service Events

The auxiliary service events include all the activities that are not directly related
to the service usage. It is highly related to the service maintenance use case model
described in figure 2.4 in chapter 2. There are two main categories of events dis-
cussed in this section, namely the Application Software Database Management Cat-
egory and the Usage Record Query Category. The Application Software Database
Management Category describe the activities involved in modifying the application
software database, which include the use cases Check Service Mode, Modify Service
Mode, Check Software List and Modify Software List defined in figure 2.4. The
Usage Record Query Category maps to the use case Check Usage Records.

Application Software Database Management

Alongside with all the TINA objects and components, a computational object called
the Retailer Admin GUI (22 in figure 4.1) is included in the system to perform
administration tasks of the application software database for the retailer. This
object provides a graphical user interface that is capable of adding, removing and
querying any hosted applications in the database (19). The service modes!' and
charge models can also be modified and reviewed using the same GUIL. Figure 4.6

shows the event traces of modifying a software entry in the database.

Service modes are the forms of service that are delivered to the client side. Currently there is
only one service modeRemote Ezecution, but it can be expanded to include services such as Local

Installation and Management of a particular software.

45

RSMS Retailer ODBC Bridge ODBC Bridge Native ODBC

Administrator :_ Admin GUI Client Server Driver
Retailer
| 1: modify_Software_entry |

|

2: Local_ODBC_CALL

: ODBC_Bridge_Forward]|

1]

4: Local_ODBC_CALL

[

e

Figure 4.6: Modify Software Entry

When the administrator adds, removes, or modifies a software entry in the GUI,
the GUI generates a SQL statement, which describes the modification, is sent to
the local ODBC Bridge client through the local OS system call. The ODBC Bridge
client contacts the remote ODBC Bridge Server using the proprietary reference point
(d in figure 4.1). The ODBC Bridge Server then forwards the SQL statement to
the local ODBC driver, which has the ability to access and modify the database
according to the SQL statement.

Each of the third party content providers is provided with a component called the
3pty Admin GUI (24), which is the same as the retailer’s administrative interface
except the restriction of the access to database entries of other third party service
providers. This third party administrative interface is designed for the third party
service providers to add or update their own available application software on the
central database depository, without interfering other third party service providers’

data.

Usage Record Query

The retailer and the third party can check the usage records using the GUI compo-
nents discussed in the previous section. The main different between these two cases
is that the retailer can query all the usage records while the third party can only

see the usage records related to their services. The usage record query goes through

46

similar process which has been explained in figure 4.6.

A

NormalUser : User

Web Browser | |Active Server Page | | ODBC Bridge ODBC Bridge Native ODBC
Web Server Client Server Driver

|1: Enter_User_ID| \
\

‘2: Summit_request()}

&

\
\
\
\
\
\
\
ODBC_Bridge_Forwang
|

b: Local_ODBC_CALL

1

u 3: Local_ODBC_CALL
\
\
|
\
|
\
\
|
|
\

Figure 4.7: Usage Record Query by User

Besides the administration GUIs, the system includes a web interface (26 in figure
4.1) for the users to query their usage on the RSMS service. The users have to
use a normal WWW browser (27) to visit the specified web page. The web page
then prompts the users to enter their user ID. Once the users have entered the
correct ID, the web server (26) executes a script that issues an SQL statement to
the ODBC Bridge client (23). The request is then forwarded by the ODBC Bridge
server (18) to the database provider (19). The matched records are retrieved and the
usage information is passed back to the web server (26), again through the ODBC
Bridges. After that the web server converts all the usage information received, such
as the starting time, ending time, application name, cost, etc, into a normal web page
and returns the page back to the client web browser. Figure 4.7 shows the sequence

diagram of the user querying the usage records through the WWW interface.

47

Chapter 5

Service Implementation:

Implementation Plane

5.1 Introduction

So far all the design issues discussed only involve in high level design matters, such
as the roles of stakeholders, relationships between objects, functions of different ob-
ject etc. In this chapter, focus is shifted to the real implementation concerns of
the system, such as how objects communicate with each other and how to deploy
objects into the system. The development phase described in this chapter is the im-
plementation plane, which corresponds to the engineering viewpoint of the RM-ODP
standard. This plane contains descriptions of the deployable software modules that
comprise the service. The outputs of the implementation plane are the engineering

model and the implementation code.

5.2 Engineering model

The TINA engineering modelling concepts[6] describe how to structure and deploy
the application components in order to execute them on the infrastructure. The
infrastructure defined in TINA is the Distributed Processing Environment (DPE),
which hides the complex details of the mechanisms required for interaction between
service components that are spread over a distributed heterogeneous system. The
model for the distributed environment separates three main entities: TINA appli-

cations, DPE nodes, and the kernel Transport Network.

48

i k b S
DPE) Application ’ DPE
Serviceg Software Services,
RFE, REE, !
L

Key:
(a) Basic DPE interface
(b) DPE services interface
(c) Inter-DPE interface

Figure 5.1: DPE Architecture

The DPE provides location transparency and basic services, such as object lifecycle
management service, to engineering objects (eCO), which are the basic unit of the
service components in the engineering model. The DPE makes use of the Kernel
Transport Network to exchange discrete messages between the engineering objects.
On the other hand, the Transport Network is used to establish stream connections

between objects, for streaming of continuous data such as voice and video.

The location transparency characteristic of the TINA DPE enables object inter-
actions independently of their location. It hides from the application components
that they are executing in different computing environments in different DPE Node.
Thus, the service designer does not need to consider the locations of the service

components.

The TINA DPE is formed by a number of DPE nodes, which are the devices running
the TINA DPE platform software on top of their native computing environment. A
DPE node may contain one or more capsules. Within the capsules, there are clusters,
which define groups of co-located engineering objects. In the current implementation
of the RSMS, each eCO simply belongs to a single cluster, and each cluster belongs
to a capsule. However, many capsules can co-exist in the same DPE node. Figure

5.2 shows the structure of a DPE node.

The computational objects (CO), which are defined in the previous chapter, are

49

node node

Capsule apsule

Cluster

Cluster
OOy :

intra-cluster inter-cluster
interaction interaction
(channel)

Figure 5.2: Node, Capsules and Clusters

mapped into the engineering objects in this implementation plane. The eCOs are
then programmed or coded according to the defined parameters and behaviours. The
CO has one-to-one relationships to the eCO template where the interface parameter
types may be changed from the computational objects to the engineering objects,
but the behaviours are identical. The eCO template can be instantiated into a
particular instance of an eCO. For example, a new SSM eCO is instantiated every
time a new service session is created. Figure 5.3 shows the relationship between the
CO and the eCO.

A computational object (CO) template...

... is mapped onto ... @ one-to-one

... its engineering
representation (eCO template) ...

... which is instantiated into ... / @ \ one-to-many
... one or more eCO @ @ @

Figure 5.3: Computational Object, eCO template, and eCOs

Since the computational objects are subjected to distribution, there may exist a
number of possible sets of distribution configuration. These sets of configuration
are deployed under the restrictions such as the QoS requirements and the security

requirements.

50

one .

computational

specification

with various

deployments -

based on different ... resulting in

QoS statements... different
engineering

structures

ot le Of

Figure 5.4: Deploying Computational Object to Engineering Object

The design of the RSMS imposes no restriction on the locations of the eCOs, except
the location of the ODBC Bridge objects. Since the ODBC Bridge client does not
accept CORBA connections but only local ODBC function calls, the computing
node that hosts the database provider is a non-DPE node. All eCOs, which needs
to contact the ODBC Bridge client, must be located in the same computing node
as the ODBC Bridge client. However, different instances of ODBC Bridge client
can be created to suit the needs of other eCOs. This is because all the instances of
the ODBC Bridge client are able to contact the ODBC Bridge server irrespective of
their location. The ODBC Bridge Server has to be located in the same computing

node and the actual database engine.

The physical locations of the eCOs and the deployment strategy are discussed in
chapter 6.

5.3 Implementation Code

Since the implementation codes of all the objects involved are massive, this section
only discusses the highest level and most important parts of the code, including the
IDL and screen outputs of the GUIs. The low level code is self-explanatory and
the code is essentially the translation of the high-level design planes to the low-level

language that computers can understand.

o1

11

12

13

14

15

16

17

18

19

20

21

22

5.3.1 Basic Object Types

This section describes those basic object types but not specified in the standard
TINA documentation, but defined in this system, as they are either service specific
or SATINA specific components. These include the RSMS common types and the
third party common types defined along the development of the RSMS system. It is
important to study these basic objects types before discussing the implementation

code in detail.

RSMS Common Types

The IDL file describing the RSMS common types is listed below.

module RSMSCommonTypes {

typedef TINACommonTypes::t_PropertyList t_RSMSAppSoftProperties;

struct t_RSMSAppSoft {
string name;
t_RSMSAppSoftProperties properties;
s

typedef sequence <t_RSMSAppSoft> t_RSMSAppSoftList;

};

This IDL defines a module RSMSCommonTypes. The module includes a TINA prop-
erty list called t_RSMSAppSoftProperties, which is a table of undefined name and
property pairs. This object type can be used to describe the properties of a particular

application software such as the hosting server ID and the cost.

An object type named t_RSMSAppSoft is also defined to represent the application
software object. It contains the name attribute, which is the name of the application
software and the t_RSMSAppSoftProperties attribute, which stores the application

software’s properties.

A t_RSMSAppSoftList is defined as an array of t_RSMSAppSoft which is used to

represent a list of application software object.

52

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Third Party Common Types

The IDL file describing the third party common types is listed below.

module TINA3rdpartyCommonTypes {

enum t_3rdpartyUsageErrorCode {

UnknownUsageError,

ThirdPartyServerNotFound, //

UsageNotAllowed, // You don’t have permission to do it
UsageNotAccepted, // Owners have declined request

InvalidThirdPartyLogin,
ThridPartyServerBusy
s

exception e_3rdpartyUsageError {
t_3rdpartyUsageErrorCode errorCode;

s
typedef TINACommonTypes::Istring t_ThirdPtyName;
struct t_ThirdPtyInfo {
t_ThirdPtyName name;
TINACommonTypes: :t_PropertyList properties;
TINACommonTypes: :t_InterfacelList itfs;

TINAAccessCommonTypes: :t_SessionInfo thirdpartySessionInfo;

};

typedef sequence<t_ThirdPtyInfo> t_ThirdPtyInfolist;

typedef TINACommonTypes::Istring t_ThirdPtyServerName;

}; //module TINA3rdpartyCommonTypes

The module defined in this IDL is called TINA3rdpartyCommonTypes. It contains the
third party related error code called t_3rdpartyUsageErrorCode. Included in the
error code are the common errors such as UsageNotAllowed, UsageNotAccepted and

InvalidThirdPartyLogin etc. This error code is used when throwing an exception

that is related to third party errors.

93

The most important object type defined in this IDL is the t _ThirdPtyInfo, which
represents a connected third party information. This object type contains detailed
information about the particular third party session, including the interface list of

the compUSM and the object reference of the t_SessionInfo object.

The IDL also defines an array of the object type t_ThirdPtyInfo, which is used by
the retailer SSM to store currently established third party sessions in the third party

sesstons table, which is discussed in the previous chapters.

5.3.2 TA, UA, PA and SF Implementation

These TINA objects are service generic and not directly related to the design of the
RSMS service. Since they are standard objects defined by TINA, official documen-

tation of the specifications of these objects can be found in [2], [4] and [1].

5.3.3 USM Implementation

There are two variations of the USM implemented in the RSMS system. One is the
retailer USM (RSMSRetUSM)and the other is the third party USM (RSMS3rdUSM).
These USMs inherits the interfaces of standard USM, with added service specific in-

terfaces to support the service specific logics.

As the third party reference point is an expanded version of the retailer reference
point, the functions of the retailer USM and the third party USM are almost the
same. Because the RSMS does not involve multi parties (end users), the main
function of the USM is to forward the client’s request to the SSM. In the retailer’s
case, the client is the user ssUAP; while in the third party’s case, the client is the
retailer compUSM. The implementations of the both USMs are identical as their

functions are the same.

The specifications of the standard USM interfaces can be found in [2] and [4]. There
is only one service specific interface in the retailer and third party USM, named

i_PartyAppSoftManager, which is discussed in the following section.

54

Table 5.1: Additional Interfaces and Client for RSMS USM
Interface Client(s) Event | IDL
Traces
RSMSRetUSM: :i_PartyAppSoftManager ssUAP fig.4.4 | B.5
& Al
RSMS3rdUSM: : i_PartyAppSoftManager compUSM | fig.A.1| B.8

Table 5.2: Additional Interfaces Required by RSMS USM

Server Interfaces
RSMSRetSSM RSMSRetSSM: :i_ProviderAppSoftmanager
RSMS3rdSSM RSMS3rdSSM: : i_ProviderAppSoftmanager

i_PartyAppSoftManager

This interface allows the ssUAP or compUSM to request the RSMS service specific

operations. It forwards the request to the SSM for processing.

The IDL of the i_PartyAppSoftManager is listed below.

14 interface i_PartyAppSoftManager {

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

void Request_Software_List (

)

out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,

in TINACommonTypes::t_Sessionld Sessionld,

in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps,

in boolean UpdatelList

void Batch_Download (

)

void Remote_Execute_AppSoft (

in RSMSCommonTypes: :t_RSMSAppSoftList alist,

in TINACommonTypes::t_Sessionld Sessionld,

in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

in TINACommonTypes::t_Sessionld Sessionld,

95

34
35
36
37
38
39
40
41
42

43

45 F;

in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes: :t_UserProperties UserProps

)

void Local_Execute_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

This interface provides the following operations:

Request_Software_List () - allows the client to request the available soft-
ware list, in the form of the return parameter t_RSMSAppSoftList, from the

database server.

Batch_Download() - allows the client to load all the software contained in the

list. It is intended for future expansion use and is currently not implemented.

Remote_Execute_AppSoft () - allows the client to execute the requested appli-
cation software, as indicated in the input parameter t _RSMSAppSoft, remotely

in the server.

Local_Execute_AppSoft () - allows the client to run the application software
locally after download. It is intended for future expansion use and is currently

not implemented.

5.3.4 SSM Implementation

There are two customised SSM objects designed for the RSMS system. One is the
retailer SSM (RSMSRetSSM) and the other is the third party SSM (RSMS3rdSSM).
These two SSMs inherit all the interfaces provided by the standard SSM, for which

the detailed explanations can be found in the official TINA documentations [2], [4]
and [1]. While both of the retailer SSM and the third party SSM contain the service

specific interface i_ProviderAppSoftmanager, the retailer SSM contains addition

service generic interfaces that support third party sessions. These interfaces are

i_Provider3rdpartyReq and i_ProviderRegister3rdpartyInterfaces.

o6

Table 5.3: Additional Interfaces and Client for RSMS SSM

Interface Client(s) Event | IDL
Traces

RSMSRetSSM: :i_ProviderAppSoftManager Ret USM | fig.4.4 | B.6
& Al

RSMS3rdSSM: :i_ProviderAppSoftManager 3pty USM | fig.A.1| B.9

TINAProvider3rdpartyUsage::

i_Provider3rdpartyReq Ret SSM fig.A.2| B4
& A3

TINAProvider3rdpartyUsage::
i_ProviderRegister3rdpartyInterfaces compUSM | fig.A.2| B4

Table 5.4: Additional Interfaces Required by RSMS SSM

Server Interfaces

Ret PA TINA3rdptyInitial::i_thirdPartySupport
compUSM RSMSCUSM: : i_CUSMAppSoftManager
RSMSCore RSMSCore: :i_ RSMSCoreExecManager

i_ProviderAppSoftManager

This interface allows the clients (retailer USM or third part USM) to invoke the
RSMS specific operations. It forwards the clients’ requests to the compUSM (in
case of the retailer) or RSMSCore (in case of third party) to further processing the

requests.

The IDL of the i _ProviderAppSoftManager is very similar to i_PartyAppSoftManager
and is listed in appendix B.6. This interface provides the operations the same as

the interface i_PartyAppSoftManager described in section 5.3.3.

i_Provider3rdpartyReq

This interface is for internal use of the retailer SSM. It allows the other interfaces,
such as the i_ProviderAppSoftManager, in the retailer SSM to start or end a third
party session.
The IDL of the i_Provider3rdpartyReq is listed below.

40 interface i_Provider3rdpartyReq {

41

o7

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

void Start_3pty_Service (
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINAProviderAccess::t_ApplicationInfo app,
in TINAAccessCommonTypes::t_Serviceld serviceld,
in TINACommonTypes::t_UserId thirdptyLogin,
in TINACommonTypes::t_UserProperties thridptyProps
) raises (
TINAUsageCommonTypes: :e_UsageError,
TINA3rdpartyCommonTypes: :e_3rdpartyUsageError
)3

void End_3pty_Service (
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_ParticipantSecretld SecretlId,
in TINA3rdpartyCommonTypes: :t_ThirdPtyServerName ServerName
) raises (
TINAUsageCommonTypes: :e_UsageError,
TINA3rdpartyCommonTypes: :e_3rdpartyUsageError
)3

This interface provides the following operations:

e Start_3pty_Service() - allows the other interfaces in the SSM to request
for starting a third party session. The authentication information, such as the
third party ID, the login and password to the third party server and the service
ID of the third party service should be provided as the input parameter.

e End_3pty_Service () - allows the other interfaces in the SSM to end an
established third party session by provider the third party server ID and the

session ID.

i_ProviderRegister3rdpartyInterfaces

This interface only contains one operation called registerInterfaces(). It pro-
vides the function for the newly created compUSM objects to register their interfaces

to the retailer SSM.
The IDL of the i_ProviderRegister3rdpartyInterfaces is listed below.

o8

27 interface i_ProviderRegister3rdpartyInterfaces {

28

29 void registerInterfaces (

30 in TINACommonTypes::t_ParticipantSecretld myId,

31 inout TINACommonTypes::t_RegisterInterfacelist itfs,

32 in TINA3rdpartyCommonTypes::t_ThirdPtyServerName ServerName
33) raises (

34 TINAUsageCommonTypes: :e_UsageError,

35 TINACommonTypes: :e_InterfacesError,

36 TINACommonTypes: :e_RegisterError

37);

38 T // interface i_Provider3rdpartyInterfaces

5.3.5 CompUSM Implementation

The full specification of the compUSM is not defined in any of the official TINA
documentations. The only information given is that the compUSM, similar to the
USM, is inherited from the Member User Session Manager object (MUSM)][1]. Thus,
the normal USM is applied as a template when implementing the compUSM object.
A service specific compUSM (RSMSCUSM) is implemented with two interfaces,
i_CUSMAppSoftManager and i_ProviderBasicReq. The former is a service specific

interface while the later is a service generic interface.

A CompUSMs is instantiated when a new third party service session is created.
Therefore, each compUSM instance is associated with a particular instance of a third
party service session. The compUSM is essentially a proxy between the retailer and

its corresponding third party service provider.

Table 5.5: Interfaces and Client for compUSM

Interface Client(s) Event | IDL
Traces
RSMSCUSM: : i_CUSMAppSoftManager Ret SSM fig.A.1| B.7
TINAProviderBasicUsage: : ref to
i_ProviderBasicReq Ret SSM | fig.A.3| [2]

99

Table 5.6: compUSM Required Interfaces

Server Interfaces

3pty USM RSMS3rdUSM: :i_PartyAppSoftManager

Ret SSM TINAProvider3rdpartyUsage::
i_ProviderRegister3rdpartyInterfaces

i_CUSMAppSoftManager

This interface allows the retailer SSM to request for the RSMS specific operations.
It forwards the request to its corresponding third party’s USM to further processing.

The IDL of the i_CUSMAppSoftManager is very similar to i_PartyAppSoftManager
and is listed in appendix B.7.

As the compUSM is the proxy between the third party and the retailer, the opera-
tions provided by this interface is the same as the interface i_PartyAppSoftManager

described in section 5.3.3.

i_ProviderBasicReq

This interface is a standard TINA interface which is revealed in [2]. It supports many
operations but only one is relevant to the RSMS service, which is the endSessionReq().
This operation is implemented to terminate the service session and to free up the

system resources used by the compUSM object.

5.3.6 Retailer PA Implementation

Since there is lack of definition of the third party reference point from TINA Con-
sortium, this system uses a cascaded retailer reference point for third party access.
To use the retailer reference points to access the third party provider, there should
be a Provider Agent (PA) in the retailer domain, the same as there is a PA in the
consumer domain. Thus, the retailer PA is created to accomplish this requirement.
The retailer PAs are used to represent third party providers in the retailer domain.
It is designed to be service generic, which means that other services can use this PA

without any customisation or modification.

The retailer PA is developed base on the standard PA implementation, which can
be found in [2]. In addition to the standard PA interfaces, the retailer PA has the

60

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

interface i_thirdPartySupport for accessing the third party domain.

Table 5.7: Additional Interfaces and Client for Retailer PA

Interface Client(s) Event | IDL
Traces

TINA3rdptyInitial::i_thirdPartySupport Ret SSM fig.A.2| B.3
& A3

Table 5.8: Additional Interfaces Required by Retailer PA

Server Interfaces

None None

i_thirdPartySupport

This interface allows the retailer SSM to contact the third party that the retailer PA
represents. The retailer SSM can start the third party service session on demand
when needed. It takes the authentication information from the retailer SSM and
login to the third party domain using the same procedure as the consumer PA login

to the retailer domain.

The IDL of the i_thirdPartySupport is listed below.

interface i_thirdPartySupport {

void Start_3pty_Service (
out TINAAccessCommonTypes::t_SessionInfo sessionInfo,
in TINAAccessCommonTypes::t_Serviceld serviceld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps,
in TINAProviderAccess::t_ApplicationInfo app
) raises (
TINA3rdpartyCommonTypes: :e_3rdpartyUsageError
)s

void End_3pty_Service (

in TINAAccessCommonTypes::t_SessionInfo sessionInfo
) raises (

TINA3rdpartyCommonTypes: :e_3rdpartyUsageError
)3

61

35 13

This interface provides the following operations:

e Start_3pty_Service() - allows the retailer SSM to establish the access ses-

sion and service session to the third party service provider.

e End_3pty_Service() - allows the retailer SSM to terminate the third party

access session and service session.

5.3.7 RSMSCore Implementation

The RSMSCore object is the central component of the RSMS service. It contains
all the intelligence to render the ASP service, contrary to the other objects that
only contain architectural supporting functions. The RSMSCore object a Service
Support Component (SSC) defined in [1]. It contains one stream interface which
is used to transfer both the screen output data and user input data, between the
third party content provider and the consumer. Three interfaces are included in
this object, namely i_RSMSCoreExecManager, i_RSMSCoreDownloadManager and

i_ProviderBasicReq.

Table 5.9: Interfaces and Client for RSMSCore

Interface Client(s) Event | IDL
Traces
RSMSCore: :i_RSMSCoreExecManager 3pty SSM | fig.4.4 | B.10
RSMSCore: :i_RSMSCoreDownloadManager 3pty SSM | None | None
TINAProviderBasicUsage: :i_ProviderBasicReq 3pty SSM | fig.A.3 | ref.
to [2]

Table 5.10: RSMSCore Required Interfaces

Server Interfaces

3pty SSM TINAProviderBasicUsage::

i_ProviderRegisterInterfaces

i_RSMSCoreExecManager

This interface allows the third party SSM to forward the remote execution requests
originated from the consumer. This interface will create a new process in the op-

erating system to execute the application software after it has received a remote

62

execution request.

The IDL of the i_RSMSCoreExecManager is listed below.

35 interface i_RSMSCoreExecManager {

36
37
38
39
40
41
42
43
44
45
46
47
48

49

51 F;

void Request_Software_List (
out RSMSCommonTypes::t_RSMSAppSoftList RequestedList,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps,
in boolean UpdatelList
)3

void Remote_Execute_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

This interface provides the following operations:

e Request_Software_List() - allows the client to retrieve the available soft-

ware list stored in the central database. The current implementation relies
on the third party content providers to export their available software lists to
the central database. However this is operation can be implemented in such
a way that the retailer actively polls the available software list on each of the
contracted third party providers, without modification of the existing inter-
faces. This operation places the available software list to the output parameter

RequestList when the function returns.

Remote_Execute_AppSoft () - executes the application software and exports
the display to the consumer through an established TCP/IP stream. The
input parameter _AppSoft indicates which application to execute. The other
input parameter UserProps contains user properties such as the IP address of

the user’s terminal, which is used when exporting the display.

63

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

i1_RSMSCoreDownloadManager

This interface allows the third party SSM to forward the batch-download requests
from the retailer side, for remote software installation and management purpose.
Although the IDL of this interface is defined, it is intended for future expansion use

and it is currently not implemented.

The IDL of the i_RSMSCoreDownloadManager is listed below.

interface i_RSMSCoreDownloadManager {

void Request_Software_List (
out RSMSCommonTypes::t_RSMSAppSoftList RequestedList,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps,
in boolean UpdatelList
)3

void Batch_Download (
in RSMSCommonTypes: :t_RSMSAppSoftList alist,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes: :t_UserProperties UserProps

};

This interface provides the following operations:

e Request_Software_List () - It has the same functionality as the one defined in
the i_RSMSCoreExecManager interface. The reason for duplicating this opera-
tion is that the third party content provider can choose to support either the in-
terface i_RSMSCoreExecManager or the interface i_RSMSCoreDownloadManager,

and still has the Request_Software_List () function included.

e Batch_Download() - Uploads one or more requested software packages to the

user’s terminal and performs installation remotely.

64

i_ProviderBasicReq

This interface is the same as the i_ProviderBasicReq described in section 5.3.5.

5.3.8 ssUAP Implementation

To accommodate different computing platforms of the user terminal, three different
favours of the service specific user application are implemented. The first one runs
on the Linux platform, the second one runs on the MS Windows platform and the
third one runs on the JAVA virtual machine. The Linux and Windows version have
built-in PA while the JAVA version relies on the SATINA service generic PA, which
is also written in JAVA. The JAVA ssUAP is implemented as a class that the service

generic PA can be call upon when needed.

The Linux and Windows version are designed to integrate seamlessly with the service
generic PA. Once the user has created the access session through the JAVA PA, the
JAVA PA initiates the native Linux or Windows ssUAP, with the access references
passed as the command-line parameter. The Linux or Windows ssUAP then uses
the existing access session to create the RSMS service session. If the access reference
is invalid or nothing is passed from the command-line, Linux or Windows ssUAP
will use its own build-in PA to prompt for the user login and password to create a

new access session.

Currently the ssUAP is implemented as a pure client object, i.e. there is no op-
erational interface for the other object to connect to it. However, it contains one

stream-binding interface.

Table 5.11: Interfaces and Client for RSMS ssUAP

Interface Client(s) Event | IDL
Traces
None None None | None

Table 5.12: RSMS ssUAP Required Interfaces

Server Interfaces

Ret USM RSMSRetUSM: :i_PartyAppSoftManager

65

Graphical User Interfaces Implementation

This section describes the typical sequence of the appearances of the graphic user
interfaces provided by the ssUAP. These interfaces may look slight different from
the Linux, Windows and JAVA implementations due to different GUI components

used!. However, the operation methods are the same among the three.

1. Login Dialog

RSMS Login | x|
Lagin: I

Password: I

caren_|

Figure 5.5: Login Dialog

If the SATINA service generic PA is not used to initiate the ssUAP, i.e. the
access reference is not provided as a command-line parameter when the ssUAP
starts, the login dialog will appear. This prompts the user to enter the login
ID and password, in order for the build-in PA to create a new access session.
This dialog will not be displayed if the access reference passed form the service
generic PA is pointing to a valid access session. The GUI is shown in figure
5.5.

2. Software List Dialog

Once the ssUAP has received the valid reference to access session, it will
start the RSMS service session and automatically request for a list of avail-
able software, using the operation Request_Software_List (), on the inter-
face i_PartyAppSoftManager of the retailer USM. The returned list is then
displayed in a dialog similar to one shown in figure 5.6. The titles of the ap-
plication software are displayed on the list-box in the middle of the dialog.
Clicking the “Refresh” button causes the ssUAP to re-request for the avail-
able software list from the server. If the user double clicks on a software title
on the list or if the user has selected one title by clicking the title once and
then clicks the “OK” button, the Software Details Dialog would appear. If the

“Cancel” button is clicked, the dialog would be closed and would cause the

!The screen captures shown in this section are taken from the Windows version of the ssUAP.

66

#= RSMS Client

Acrobat
clock
Esheep
Freecell
JBuilder
Ksokoban
Ktop
kawirite
Salatire
Star Office

QK Refresh Cancel

Figure 5.6: Software List Dialog

ssUAP to terminate the access session, using the operation endSessionReq()

on the interfaces i_ProviderBasicReq on the retailer USM.

3. Software Details Dialog

armie: IAc:robat
Description: Iacrobat reader
Charge Model: Ipay per minute
Awailable Mode: Irun remately

Cost: IR 060

Cancel

=t | Femote Exec |

Figure 5.7: Software Details Dialog

This dialog displays the details of the application software selected by the
user, which is shown in figure 5.7. The ssUAP extracts the AppSoft object
of the selected software from the array AppSoftList. From the attribute
t_RSMSAppSoftProperties of the extracted AppSoft object?, the ssUAP can

2See section 5.3.1

67

determine all the information that the user needs to know about the particular

application software.

If the “Remote Execute” button is clicked, the operation Remote_Execute_AppSoft (),
on the interface i_PartyAppSoftManager will be invoked on the retailer USM.
If the execution of the application software is successful, the screen output of

the software will be displayed on the user’s terminal.

If the “Install” button is clicked, the operation Batch_Download(), which
suppose to remotely install and manage of the application software, will be

called on the retailer USM. Currently this feature is disabled.

Either the “OK” or the “Cancel” button will cause this dialog to close and

return to the Software List Dialog.

5.3.9 ODBC Bridges and Database Engine Implementation

The ODBC Bridge Client and Server are implemented using commercially available
software package. The ODBC Bridge Client and Server does not run on top of the
TINA DPE, rather they are at the same level of the TINA DPE, which is running
directly on top of the native computing environment of a computing node. The
ODBC Bridge Client has to register its existence on its local system, typically by
assigning a Data Source Name (DSN) through the ODBC administration interface
offered by the operating system. The ODBC Bridge is running as a daemon on top
of the native computing environment and listening to the requests from the ODBC
Bridge Client on a specific TCP port. The ODBC Bridge Client has to be configured
so that it contains the IP address and the port number of the ODBC Bridge Server.

In Microsoft Windows environment, ODBC is a build-in feature. On the other
hand, in the Unix environment, the freely available Unix-ODBC package has to be
installed. ODBC is a database middleware that isolates the database client from
the underlying database engine. To use the database engine through the ODBC
interface, the database engine vendor has to provide a specific ODBC driver for the
particular database engine. The ODBC then uses this drive to access the database

and provides standardise access functions to the client applications.

The components that need access to the central database, e.g. the retailer SSM or
the third party SSM, have to invoke the standard ODBC function call on the local
system, using the DSN that registered by the ODBC Bridge Client. The ODBC
Bridge Client uses the pre-determined address to forward the database call to the
ODBC Bridge Server. The ODBC Bridge Server then access the database engine

68

through the local ODBC function call.

Database Structure Implementation

The actual database engine implemented in the RSMS system uses relational database
to store the database entries. Structured Query Language (SQL) is used to query
or modify the database.

opp_table
app_ID
app_name
charge_model_ID
app_cost
commandline
lapp_description
mode_ID
package_path
enabled

server

charge_model_table
charge_model_ID
charge_model_name

Figure 5.8: Relational Database Tables

The database structure is shown in figure 5.8. It contains four tables namely
app_table, usage_log, charge_model_table and mode_table, with primary keys app_ID,
usage_ID, charge_-model_ID and mode_ID respectively. These primary keys are used

to index and cross referencing between the tables.

The mode_table contains a table of the names of the service modes. Example of
the service modes are “run remotely” and “install locally”. Currently only the “run

remotely” mode is supported.

The charge_model_table contains a table of charging models. These models are sup-
posed to be used by the service generic billing service. Examples of the charge

models are “pay per use” and “pay per minute”.

69

The app_table contains a table of available application software supported by all the
third party service providers. It contains detailed information about the application
software, such as the application name and the third party server ID. It also includes
charge_model_ID and mode_ID of the application software, which can be used as

references to the table charge_model_table and mode_table.

Each entry in the usage_log contains information about a particular usage event of
the third party content provider. Information such as start_time, end_time and cost
are recorded. Each usage entry also contains app_ID in such a way that the details

of the application used can be lookup in the app_table.

5.3.10 Retailer and 3rd party Admin GUI Implementation

The retailer and third party administration GUIs are implemented as two normal
applications, which only invoke the local ODBC calls without any CORBA capa-
bility. Therefore, they can only communicate with the ODBC Bridge Client but
not the other TINA objects. These two admin GUIs can be located in any of the
computing node within the system as long as there is an instance of the ODBC
Bridge Client running on the same node. They access the database directly through
the ODBC Bridges similar to those procedures discussed in section 5.3.9.

The main difference between the retailer admin GUI and the 3pty admin GUI is that
the retailer admin GUI can access the entire content of the database while the 3pty
admin GUI can only access the content that is related to its server. This restriction
is implemented by forcing the 3pty admin GUI to include some specific SQL search

criteria.

Graphical User Interfaces Implementation

This section describes various dialogs implemented for the retailer admin GUI and
the 3pty admin GUI.

e Admin GUI Main Menu

Figure 5.9 shows the main menu of the retailer admin GUI. It contains two
groups of buttons namely “List Operations” and “Register”. The visual differ-
ence between the retailer and third party admin GUTI is that both the “Modify
Modes” button and “Modify Charge Models” button do not exist in the main
menu of the third party admin GUI.

70

‘A RSMSAdmin E
—List Operations———————— —Register
List Application Add Application
List Usage Log Modify Modes
Modify Charge
Models

Figure 5.9: Ret Admin GUI Main Menu

When the user clicks the “Add Application” button, the Add Application Di-
alog will appear. When the user clicks the “List Application” button, the
Application List Dialog will be displayed. If the “List Usage Log” button is
clicked, the Usage Records List Dialog will appear. These dialogs are discussed

in the subsequence sections.

Clicking the “Modify Modes” button, a dialog will appear which allows the
user to change the entries in the table mode_table described in section 5.3.9.
Clicking the “Modify Charge Models” button opens a dialog that enables the
user to modify the entries in the table charge_model_table. Since the two dialogs

are very simple, there is no need to discuss them further in this section.

Add Application Dialog

This dialog is almost the same for the retailer admin GUI and the third party
admin GUI except that the “Server Name” field in the third party admin GUI
is fixed to the third party content provider’s ID. This is to ensure that the
third party administers can only create new entries for their own server. This
dialog enables the retailer or the third party to register the available software
to the central database by creating database entries in the appt_table discussed

in the section 5.3.9.

This dialog requires the administrators to enter the details of one application
software. Some of the fields are optional and others are compulsory. Clicking
the “update” button will cause the GUI to check if all the compulsory fields
have been entered. The system prompts the administrator to enter all the
compulsory fields if any one of them is empty. Otherwise, the system will send
an SQL to the central database, through the ODBC Bridges, to create a new
entry in the app_table.

71

Add Application

Mame: |Star Office

Charge Model: I pay per minuta =
Cast: ID.E

Execute Command: I,.fusr,"IDcaIISDﬁicefsuﬁice

Descrigtions: IOﬁice Applications

Mode: I fun remotely j

Fackage Fath: I

Server Mame: IsEmerA

Enabled: v

Update | Close |

Figure 5.10: Add Application Dialog

There is a special field called “Enable”, which is a Boolean field. If the value of
the field is FALSE, the entry will not be included in the returned application
software list when the user’s ssUAP invokes the Request_Software_List ()

operation on the retailer USM, i.e. it is not visible by the user.

Application List Dialog

Figure 5.11 shows the Application List Dialog. It displays the contents of
the table app_table in a list, according to the search criteria given by the
administrator. There are three main parts in the dialog: the top part of the
dialog contains four textboxes, which are for the administrator to enter the
search criteria. The middle part of the dialog enables the administrator to
decide on how to sort the list. The bottom part is a listbox showing the result

of the search.

The system will formulate a SQL statement according to the search criteria,
once the “Query” button is clicked. The formulated SQL statement is then
sent to the database provider. Once the result has been fetched, the listbox
will be refreshed. The third party admin GUI does not contain the search
criteria. “Server Name”. For the third party admin GUI, the list only shows
the software entries that belong to the third party that the GUI is designed
for. The third party ID is customised during the installation process of the
third party admin GUI and cannot be changed afterward.

Double clicking a particular entry on the listbox will cause a new dialog, which

72

List of Applications

I~ Marne: I Enahled:
 Enabled ¢ Disaghlad & Both

™ Server Name:] ’7 1sase s

[~ Charge Madel: | =l I~ Mode: =
—Sort By

* Name " Cost " Command " Desctiption " Charge Model Mode Server

App D [Name Cost|Command Descrigtion Fath Charge Model |Server taode
p|22 Acrobat $0.60 |wine "fusrflocalfwi |acrobat reader pay perminute |Macrosoft run rema

£h clock $0.00 [xclock a clock applicatic pay perminute [Notus run remo

24 Esheep $0.02 [wine "fusrflocalfwi | Screen Mate pay perminute |Macrosoft run remo

20 Freecell $0.01 jwine fusrflocal fwin |windows freecell pay perminute |Macrosoft run remo

21 JBuilder $1.50| fusrflocalfjbuilderz| J builder pay perminute |Notus TN rermno

1 Ksokohan $0.50 |ksokoban a puzzle game pay peruse MNaotus T rermno

2 Ktop $0.10 | ktop resource viewer pay peruse Macrosoft T Fermno)

4 kawite: $0.60 | kvrite awordpad clone pay peruse MNotus T Fermno)

23 Solatire $0.50 |wine fusrflocal/win |&a stupid game pay perminute |Macrosoft FUR FErmno

5 Star Office $1.20 | /Office51 /bin/soff | ofice suite by SU pay peruse Motus FUR FErmno

19 test $0.60 [test test test pay peruse Macrosoft install lo

3 XEYES $0.10 [xeyes simple testing pre pay peruse tMacrosoft install lo
| 3

Close |

Figure 5.11: Application List Dialog

looks very similar to the Add Application Dialog, to appear. The administra-
tors can use this dialog to modify the information of the chosen application

software entry in the database.

Usage Records List Dialog

Similar to the Application List Dialog, the Usage Records List Dialog, which
is shown in figure 5.12, is partitioned into three parts. The first part contains
five textboxes for the administrator to enter the list criteria. The second part
allows the administrator to sort the list by a specific field. The third part is a
listbox showing the search result. The dialog in the third party admin GUI, as
expected, does not have the field “Server Name”. For the third party admin
GUI, the search result listed in the bottom part of the dialog shows only the
records that are related to the third party.

The listbox shows the usage record entries in the table usage_log in the database
according to the criteria specified. The list includes information such as the
starting time, ending time, user ID, the application name and the third party
server ID etc. The total cost of all the entries is calculated and displayed on

the dialog.

73

. Usage List JS[= E3
™ Application Name: Start Time
I (I From: |10/22/00 I To IH;’EE,-’DD
I~ UserlD: I Server Name:
— Sort By
& Application = UserlD " Cost/Unit " Start Time " End Time " Server
Application User D Cost{Unit| Start Time End Time Sub Total |Server B
Kiop 20002ZA-2196 $0.10/10/18/00 3:47:11 PK 10418700 3:41:24 PM $1.30 |Macrosoft
Kiop 200027 A-2196 $0.10/10/18/00 3:46:07 PR |10/18/00 3:46:13 Phd $0.60 |Macrosoft
Kiop 20002ZA-2196 $0.1010/18/00 1:42:02 Pk |10/18/00 1:42:10 P4 $0.60 |Macrosoft
Kiop 20002ZA-2196 $0.10]10/18/00 4:39:01 Ph 10418700 4:39:08 P $0.70 |Macrosoft
Kiop 20003ZA-2196 $0.10/10/18/00 %:10:07 Ak 10718700 9:10:32 AM $2.50 |Macrosoft
Kiop 20002ZA-2196 $0.10/10/18/00 5:10:10 PR 10418700 5:10:15 Phd $0.50 |Macrosoft
Kiop 20002ZA-2196 $0.10110/19/00 3:44:43 PR 10419700 3:45:02 P $1.30 |Macrosoft
Kiop 20002ZA-2196 $0.10(10/18/00 5:09:47 Pk 10418700 5:09:55 Phd $0.80 |Macrosoft
kawrite 200022A-2196 $0.60(10/18/00 402:37 Ph 10418700 4:02:42 PM $3.00 |Notus
kanrite 20002ZA-2196 $0.60(10/18/00 3:46:00 PR |10/18/00 3:46:03 Phd $1.80 |Notus
kawrite 20002ZA-2196 $0.60(10/18/00 3:45:36 PR |10/18/00 3:45:44 P $4.60 |Notus T
Star Office 20002ZA-2196 $1.20010/20/00 2:03:42 Ph 10420700 2:04:00 P $21.60 |Notus =
Close |

Figure 5.12: Usage Records List Dialog

5.3.11 Web Interface Implementation

A web interface is provided for the users to check their usage, with the convenience
of using a standard browser. A Visual Basic (VB) script is written on the web
page to contact the database provider through the ODBC Bridges. After the user
has entered the user ID, the web server executes the VB script and formulates a
SQL statement. The web server sends the SQL query to the ODBC Bridge Client,
through the local ODBC call. The SQL statement is forward all the way to the
database engine and the query is then actually carried out. The query result is
passed back to the web server, which converts the result to a HTML page. The page
is then sent back to the browser. The result page appears to the client as a normal
web page and the execution of the script is transparent to the client. Figure 5.13

shows the snapshot of a standard browser displaying an usage record.

74

A usage - Microsoft Internet Explorer 1H[=] &3
JEiIe Edit “iew Fawortes Tools Help |

& s B) Q 3] 4 Eh @~ S
Back Farward Stop Fefresh Haome Search Fawvorites History Il Size Frint
JAQdeSSIQ http:/f sunfrsms/default asp j @ Go |J Lirks

SATINA RSMS Usage Log -

Enter User ID [20002ZA-2196

Submit Query | Resetl

Application name: Ksokoban
Cost: 2

Charge Model: pay per use
Third party server: Notus

Start Time: 10/19/00 3:30:45 PM
End Time: 10/19/00 3:30:49 PM
Cost per Unit: 0.5

& s s dd

4 Application name: Ktop
4 Cost: 0.8

|@ Dlone‘ — I_I_E'g Local intranet

K

Figure 5.13: Web Interface for Usage Record Queries

75

Chapter 6

Service Implementation: Physical

Plane

6.1 Introduction

The last plane of the service development model is the physical plane. It is con-
cerned with the operational deployment and execution of the software modules. The
outputs of this plane are the technology model and the physical deployment model. A
technology model describes in detail the software technology, hardware technology,
and the topology of the system. The physical deployment model shows the location

of the software modules in terms of the computing nodes.

6.2 Technology Model

The technology model is one of the outputs of the physical plane. It corresponds to
the technology viewpoint of the RM-ODP standard. This viewpoint focuses on the
choice of technology to support the system. To describe the choice of technology,
the technology model is separated into two parts, the hardware technology and the

software technology.

6.2.1 Hardware Technology

To mimic the typical scenario of the ASP service, six workstations in the SATINA

platform were used. The names of these machines are: Fire, Ruby, Sun, Mint,

76

Glacier and Sky. All these machines are X86-processor based and have standard
components installed, such as the hard disk and the CD-Rom driver. In addition to
the standard components, all the machines have one or more network interface cards
(NIC) equipped. All these NIC support 100Mpbs Fast Ethernet connections, which
provide a common protocol for the machines to communicate with each other. Two

Ethernet switches are used to have all these six machines connected!.

No special hardware technology is required to support the RSMS system. However,

there are a few requirements on the hardware configurations, which are listed below.

e All the machine should have some means of connection to the rest of the

machine. Currently only Ethernet is used.

e The hard disk should have enough capacity to store all the assigned software

components or modules.

e The processor and memory space must be capable of running the assigned
tasks. For example the third party content provider must be able to run at

least a few remote applications simultaneously.

e The bandwidth is wide enough that the delay experienced by the user is ac-
ceptable?.

6.2.2 Software Technology

This section discusses various software technologies employed on the system to sup-

port the RSMS service.

Operating System

To create a heterogeneous computing environment, three computers (Fire, Ruby and
Mint) have Linux (RedHat 6.x distributions) operating system installed. The rest
of the computers (Glacier, Sun and Sky) have Microsoft Window NT 4 (with service

Lrefer to section 6.4
2The average user activities (mouse and keyboard) use about 3-4kbytes per second to stream

between the server and the client terminal. Screen changes on the remote application cause bursts
in the network. The time to display screen changes depends on the area of change, screen resolution,
bandwidth between the user terminal and the server, and the processing speed of the user terminal

and the server.

77

pack 3+) operating system installed. On top of the OS, the TCP /IP network stake

is installed on all of the machines.

Distributed Processing Environment

The open source Mico Object Request Broker (ORB) is used to provide the basic
functions of a standard TINA DPE for all the programs written in C++ (Both
Windows and Linux platform). JAVA applications use Orbacus ORB to provide
basic DPE functions. These two ORBs are compatible with each other, therefore
the components sitting on top of different ORBs are able to communicate with each

other.

IA, UA, SF, USM, SSM, CompUSM, RSMSCore and Retailer PA

The TA, UA, SF, USM, SSM, CompUSM, RSMSCore and Retailer PA objects are all
implemented in C++ and compiled using GNU C Compiler (GCC). The implemen-
tation code of these components has not been ported in the Windows environment.
Therefore, these components have to be deployed on the nodes that have Linux

installed as the operating system.

For implementation purpose, the engineering objects (e.g. IA and UA) are mapped
into executable binaries; the interfaces (e.g. i_PartyAppSoftManager) of these engi-
neering objects are mapped into C++ classes; the operations (e.g. Request_Software_List())
on the interfaces are mapped into C++ methods (or functions). Therefore, creat-
ing an instance of an USM object is equivalent to running the USM executable on
the system. Similarly, passing the reference of an interface to another engineering
objects is equivalent to passing a pointer of an instance of an object class in C++.
Invoking an operation on an interface of an engineering object is the same as calling

a method on a C++ object.

PA

The PA is written in JAVA version 1.2. Due to incompatible reasons, the build-in
Visibroker ORB on JAVA 1.2 platform is overrode by the use of Orbacus ORB. This
is a service generic component and is able to call the JAVA class of the ssUAP when
needed. Since it is written for JAVA virtual machine, the same compiled binary can

be executed under different operating system.

78

ssUAP

Different ssUAPs have been built in this project: an ASCII text based ssUAP for
both Linux and Windows operating system; a Microsoft Foundation Classes (MFC)
based ssUAP for Windows OS; a QT2 based ssUAP for Linux OS; and a Java based
ssUAP. The compiler used under Linux system is the GNU C compiler and the

compiler used under Windows is the Visual C++ compiler.

All the clients developed, except the JAVA version, have build-in PA component
which can be used as standalone application. The JAVA version has to use the
service generic PA. The build-in PA enables the ssUAP to create their own access
sessions to request for services or if the access IOR is passed as the command-line
argument, they can use the existing access sessions. This allows the C++ compiled
ssUAP to run independently of the JAVA components (service generic PA). Thus,
any computing node without the JAVA virtual machine installed can still be able to

run the C++ version of the ssUAP.

For the user’s terminal to display the screen output of the application software
running in the remote server, a X-server is required to be installed in the user’s
terminal. The X-server uses X-protocol to send all the events such as the mouse
clicks and keyboard scan-codes to the X-client. The X-client is used by the hosted
applications that are running in the remote server. The X-server is used to interpret
the screen output data sent from the X-client and redraw the screen on the monitor

of the user’s terminal. Therefore, the X-server is regarded as a part of the ssUAP.

For the nodes that are running under Linux OS, Xfree86 X-server is used. This
X-server is a standard feature that comes with most of the Linux distributions.
For the nodes that are running under Windows, an evaluation version of the X-
server from Starnet Corporation is used. This X-server can use the native Microsoft
Windows as the windows manager of the Unix system. This feature enables the
remote application running in the remote server has the look and feel as if it is

running locally.

The X-server can be regard as a dumb terminal with graphics and mouse functions.
The reasons for the popularity of the dumb terminal model in the past are: firstly,
the costs of the dumb terminal are low. Secondly, they require little bandwidth.
Thirdly, the user interface (ASCII characters) is standard. X-server has similar
characteristics compared to the traditional dumb terminal. It costs little and it is

standard in the Unix community. Furthermore, network operators are continuously

3 A portable, generic GUI library

79

upgrading their networks to support multimedia applications, which results in the
bandwidth used by X-protocol appears to be relatively small compared with audio
or video streaming. Since the graphical interface is a necessity nowadays, thin clients
equipped with X-server or a standard browser will probably replace the traditional,

dumb and text based terminals in the future.

Naming Service

The naming service provided by the Mico Orb is used as the simplified broker func-
tion in the system. It is compiled as a standalone executable and can be run in
background as an independent process. It is written in C++ and is portable to
Windows or other Unix platform. The naming service allows the third party con-

tent providers to register their PA’s object references.

Database Provider

The commercially available software package from EasySoft Corporation is used for
the ODBC Bridge Server and ODBC Bridge Client components. As the ODBC
Bridge does not accept CORBA connections, it does not run on top of the TINA
DPE. Therefore, the ODBC Bridge components can be located on non-DPE nodes.
Although they can also be deployed on DPE node, co-existing with other engineering
object, they do not communicate to the other objects through the DPE.

In order to contact the ODBC Bridge Client, the contacting party should invoke
the ODBC function call on the local operating system. The ODBC functionality is
build-in for Microsoft Windows system. For Unix systems, the open source package
Unix-ODBC is used to provide the local ODBC interface.

The actual database used is the Microsoft Jet Engine. The database tables discussed
in section 5.3.9 in Chapter 5 is implemented using Microsoft Access. As the ODBC
Bridge Server needs to contact the database driver locally to actually issue the SQL
commands to the database, the Microsoft Access ODBC driver has to be installed

on the machine that hosts the database.

The advantages of using ODBC are its simplicity and its portability. Database en-
gines produced by different software vender can be used, as long as a supported
database driver is installed, i.e. the database clients do not depend on a particular

database implementation. For example, the database used in this implementation

80

is Microsoft Access, but it can be changed to other database engine without modifi-
cation of the existing objects. Combined with the ODBC bridge, the database can
be located anywhere in the network, i.e. the database is location transparent. In
addition, many different programming languages, such as C, Visual Basic and JAVA
(through JDBC), support the ODBC functions.

Administration GUIs

The administration GUIs (Retailer Admin GUI and Third party Admin GUI) are
developed using Microsoft Visual Basic. The reason for using Visual Basic is that it

is simple and fast to build.

To access the service data, the administration GUIs communicate with the ODBC
Bridge Client directly through the local ODBC calls. In addition, the GUIs do not
need to contact with the other engineering objects. Therefore, these components

can be located on the non-DPE nodes.

Web Server

Microsoft Internet Information Server is used as the web server. The RSMS web
interface for the usage records is written in Visual Basic (VB) script, which is stored
in an active server page. The web page relies on the web server to carry out the VB

script to communicate with the database provider.

6.3 Physical Deployment Model

To simulate the multi-service providers environment, a RSMS service provider (re-
tailer), a database provider, two content providers (third party), a naming service
provider and two users are produced. The service components of these stakeholders
are spread across the six computers®. Table 6.1 shows the distributions of the com-
ponents on the six computing nodes, together with their roles and, the operating

system used and the orb used.

The RSMS service provider (retailer) occupies two computing node, Fire and Sun.

“There is not necessary to have one-to-one relationship between the computing node and the
service provider. Many service providers can share a single computing node while a service provider

may possess many different nodes.

81

Table 6.1: Components Deployment Table

Fire Ruby Sun Sky Glacier Mint
0S Linux 2.2 Linux 2.2 Windows NT 4 Windows NT 4 Windows NT 4 |Linux 2.2
Role(s) Retailer Content Provider A [Database Provider ~ |Retailer Admin Consumer | {Consumer II
Broker Content Provider B 3pty Admin A
3pty Admin B
ORB Mico Mico Mico Mico
Orbacus Orbacus
Components {IA 1A (AB) Access ODBC Driver |Retailer Admin GUI |PA PA
UA UA(AB) Database Engine |3pty Admin GUI (A) [sSUAP (JAVA) [sSUAP (JAVA)
SF SF(AB) 3pty Admin GUI (B) |sSUAP (MFC) |ssUAP (Qt)
App Software Binaries X-Win32 XFreeg6
RetPA(AB) (X-clients) (X-server) |(X-server)
RSMSRetUSM RSMS3rdUSM (A,B) {Web Server Web Browser |Web Browser
RSMSRetSSM~ [RSMS3rdSSM (AB)
RSMSCompUSM [RSMSCore (A,B)
ODBC Bridge Client |ODBC Bridge Client - |ODBC Bridge Client |ODBC Bridge Client
Naming Service |Windows Emulator |ODBC Bridge Server

All the retailer components (IA, UA, SF, RSMSRetUSM, RSMSRetSSM, RSM-
SCompUSM) are deployed on Fire. In addition to the retailer components, Fire
also contains some components that belong to the naming service provider and the
third party content providers (Ret PAs). There are two instances of Ret PA, which
represent the two content providers. The retailer admin GUI is not located on fire

but it is located on the node with the other admin GUIs, Sky.

There are two content providers, A and B. These two content providers are running
separately and independently on the same node Ruby. Therefore, there are two
instances of the components TA, UA, SF, etc., one for each content provider. Ruby
also contains the binary executables of the hosting application software, which is
used by the consumer for remote execution. In addition, the content providers
have their representatives PA in the node Fire. Similar to the retailer, the content

providers have their admin GUI located on Sky.

The database provider has its components ODBC Bridge Client spread on all the
computing nodes that need data access (Fire, Ruby, Sky). The node Sun that
actually hosts the database engine contains the ODBC Bridge Server and the native
MS Access ODBC Driver. In addition, Sun runs the active server page enabled web
server at the background. Therefore, Sun also needs the ODBC Bridge Client to be

installed for the web server to query the database. As Sun does not need to contact

82

the other engineering objects, it does not contain the DPE.

The node Sky only hosts the administration interfaces for the three service providers
(retailer, third party A and third party B). As the administration interfaces do not
require the DPE, no ORB is needed on the node. Therefore, Sky is a non-DPE

node.

There are two user domains, namely Consumer I and Consumer II. These two
domains are running under two nodes Glacier and Mint. The two nodes contain
two different operating systems for testing purposes. Consumer I occupies Glacier
that runs Microsoft Windows NT and that contains ssUAP JAVA and MFC (c++)
version. Consumer II possesses Mint, which runs Linux OS and has ssUAP JAVA
and Qt (c++) version installed. Consumer I uses X-Win32 as the X-server while
Consumer IT uses XFree86 as the X-server. Both nodes contain a standard browser

for the users to view their usage records through the WWW page.

6.4 Topology

This section discusses the physical and logical connections between the nodes. The
physical connections between the six computers and two Ethernet switches are shown

in figure 6.1.

switch A

Figure 6.1: Topology

The connections are arranged to reflect the roles of the nodes. The consumer nodes
(Mint and Glacier) are concentrated into switch A. The nodes that host the com-

ponents of the service providers are connected to switch B. Although this may not

83

be the optimised configuration, it is simple to manage. If specific QoS requirements
are imposed, the engineering objects can be relocated or the physical connections

between the nodes can be changed to suit the requirements.

TINA separates the network connections into different layers. One of the purposes
of these layers is to separate the service logic from the physical connection. Three
network planes, namely the Kernel Transport Network, the Transport Network and

the Path Layer Network, of the system configuration are shown in figure 6.2.

‘Kernel
i Transport
- Network

Sky

(Non DPE Node)

Glacier

(Non DPE Node)

Transport
Network

Path
Layer
Network

Figure 6.2: Logical Network Planes

Path Layer Network

The lowest plane is the Path Layer Network, which is related to the physical path of
the network. The fully connected nodes on the plane show that the six computing
nodes in the system can make a point-to-point direct connection path to one another.
Physically the connections are made possible by going through the two Ethernet

switches.

84

Transport Network

The middle plane is the Transport Network, which shows the stream binding con-
nections. The middle plane in figure 6.2 shows that the two consumer nodes (Glacier
and Mint) have direct stream binding connections to the third party content provider
node (Ruby).

Kernel Transport Network

The top plane is the Kernel Transport Network, which shows the logical connections
between the objects that exchange messages through the operational interfaces. One
can notice that the consumer nodes (Glacier and Mint) only connect to the retailer
node (Fire). This is logical because the consumers only obtain the service from the
retailer. The engineering objects in the consumer nodes only invoke the operations
on the engineering objects inside the retailer node. In this project, the Transport
Network and the Kernel Transport Network use the same physical connections pro-

vided by the Path Layer Network.

The retailer node (Fire) has connections with the database provider node (Sun) and
the third party content provider node (Ruby). These connections illustrate that

they have business relationships.

The administration node (Sky) only has one connection to the database provider
node (Sun). The communications between these two nodes do not pass through the
DPE, as they are non-DPE nodes.

6.5 Applicable Application Software

Most Unix software packages® designed for use in the X environment can be used
as the hosted application, providing that it is executable under the same machine
that hosts the RSMSCore object. The software packages that cannot be used as
the hosted application are the packages that use special X-server extensions, such as
the “MIT-SHM”® Besides Unix packages, Java applications can also be used as the

hosted applications. Unfortunately, Microsoft Windows executables are not designed

SRefer to Appendix C for a list of tested applications
5The “MIT-SHM” extension enables video memory to be shared between the application and

the VGA card for fastest possible video data transfer. This is normally for video playback purpose.

Normal application does not require this extension.

85

for use in the X environment. There are two solutions for this problem:

1. Use Windows Emulator under Unix environment.

2. Use Windows Terminal Server and have ssUAP integrated with the Citrix’s

Terminal Server Unix client.

The first solution has already been tested as workable in this project. However, the
software packages that can be run under Windows Emulator are limited. Coupled
with the performance and reliability factors, this solution is not very practical. The
second solution needs the RSMSCore object to be ported into the Windows Terminal
Server Environment. As there is insufficient available documentation about the
Windows Terminal Environment, to be able to tightly integrate with the Terminal
Server is very difficult, even if the source code of the Terminal Server is available.
Nevertheless, the trend of the software industry is towards open source and platform
independent, which may result in the requirement of running Microsoft Windows

executable less and less important.

86

Chapter 7

Conclusion

7.1 Discussion

The RSMS is a realisation of some concepts of the TINA specifications. In building
the RSMS service, some abstract TINA concepts become clearer and more under-
standable. It demonstrates the viability and flexibility of the TINA system. Besides
the objective of building the RSMS service, the contributions of this project to the
SATINA platform are the followings:

1. The third party related interfaces are defined for the platform. These interfaces
complement the existing retailer interfaces to create something close to the
third party reference points, which has not yet been undefined by TINA. The
RSMS shows how to use these interfaces to activate, maintain and destroy
third party sessions. These interfaces are service generic and have been used

by other services on the SATINA platform.

2. The incorporation of ODBC Bridge components shows the use of non-DPE

services in the TINA environment.

3. The RSMS shows the feasibility of the platform independence of the DPE by
providing components that are designed for different platform. For example,
the RSMS has JAVA, native Windows and native Linux client GUIs that use
different software libraries. It demonstrates the way to use the service generic
JAVA PA to initiate the native Windows ssUAP or native Linux ssUAP.

4. The usage records stored in the database can be used for testing the TINA

billing service that may be created in future.

87

Apart from the contributions of the RSMS, the system has some the following limi-

tations:

1. A few applications that uses special X-server extensions cannot be executed
under remote X-servers, for example the MIT-SHM extension. In addition,
Microsoft Windows applications have to be run under the Windows emulator,

which results in performance degradation and unreliability.

2. The database provider is not DPE compliant, which make it difficult for the

other services to use the database.

3. The startup sequence of the system is quite complicated. However, this cannot
be avoided as the environment is much more complex than that of a single

service provider.

7.2 Conclusion

An experimental ASP service, namely the Remote Software Management Service
is designed and implemented. The TINA service architecture and computation ar-
chitecture are used in designing and implementing of such service. The software
developed in this project is deployed on the SATINA platform. The service offered
by the RSMS is a collaboration of several service providers, which fellows the busi-
ness model defined by TINA. The TINA concepts enable the RSMS system model to
have advantages over most of the traditional ASP services. Some of the shortcomings

of the existing ASP architecture are being addressed.

Quality of service - The QoS requirement is separated from the service design.
Theoretically, the RSMS service provider can achieve the QoS requirements
by requesting the connectivity provider to provide the adequate bandwidth.
The standard connectivity reference points allow the RSMS service provider
to easily switch to or aggregate with other compliant connectivity provider.
This can be achieved once the required network resource architecture has been

fully defined on the SATINA platform.

Interoperability between ASPs - The standard reference points enable the com-
munication between the components of the content providers through the DPE.
Therefore, the content providers can form alliance and operate together to

achieve a common goal.

88

Compatibility between ASPs - The content providers have standard authenti-
cation mechanism, standard access sessions, standard database service and
standard billing records. Adhering to the standard interfaces ensures the ser-

vice providers to be compatible with each other.

Integration with third parties - The clear scope of responsibilities and prede-
fined policies allow the cooperation of different parties with minimum confu-
sion. The agreements on the reference points among different parties create
standard interfaces. Such interfaces enable the retailer to make use of the third

party services as if they were its own functions.

Weakness in certain fields - As the service is divided into smaller service providers,
they can focus on their fields of expertises. Moreover, the service providers
are fully compatible, which allows the users to try to use different service
providers. The users can then choose the best one to use, before committing

to a long-term contract with the service provider.

Security - Although security is presently not concerned in the RSMS prototype, it
is relatively easy to integrate confidence providers and security modules into
the RSMS system.

7.3 Future Work

This project only builds the prototype of the RSMS and is not suitable for practical
use in the business environments. The followings are the areas that need further

attention.

1. Apply the TINA management architecture - The administrator interfaces are
currently interacting with the database provider directly without authenticate
or verification. It is recommended to use the TINA management architecture
or other management architecture to create a proper management environment

and components.

2. Upgrade Non-DPE node to DPE node - The database provider uses the ODBC
Bridge components, which are not DPE compliant. Other TINA engineering
objects, except those specifically designed for use with ODBC Bridge, will not
be able to communicate directly with the database provider. Two solutions
are suggested: the first solution is to upgrade the entire database provider to

the object oriented database, which support CORBA functions. The other

89

solution is to wrap the ODBC components with TINA objects and provide
access interfaces to the other engineering object to use the ODBC components
through the DPE.

. Incorporate other service modules - other service modules can be developed
and integrated into the RSMS system as third party service providers. For
example, a printing service provider, which offers printing service for different
content providers, can be designed. The service can be implemented as a
personal printing manager or a commercial printing service, which enables a
user to use the same printing service provider even if different RSMS third
party content providers are used. This approach can be extended to other
areas such as remote storage provider (similar to the Internet hard disk), fax

service provider and so on.

. Integrate the X-server in the ssUAP object - The X-server is presently a stan-
dalone commercial package. As there are open source pure JAVA X-server
recently available, the X-server can be integrated in the ssUAP object. This
leads to a more secure and consistent ssUAP. The applications running re-
motely from the content provider can then be displayed on a standard browser.
By converting the ssUAP from JAVA application to JAVA applet, the client
can then use a standard browser as the platform for the entire ssUAP. This

results in a completely platform independent ssUAP.

. Security enhancement - Currently the content provider spawns the applica-
tion software under the same Unix user, which introduces security concerns.
Improvement can be achieved by mapping the individual TINA users into

different Unix users when accessing the third party domain.

. TINA compliant billing system - The usage records stored in the database
should be pushed up to the service generic billing service defined by TINA.
The user should be able to review the usage records through the generic billing

service instead of the Web interface provided by the RSMS service.

90

References

[1]

[7]

8]

C. Abarca, P. Farley, J. Forslow, J. C. Garcia, P. F. Hansen T. Hamada, S. Hogg,
H. Kamata, L. Kristiansen, C. A. Licciardi, H.Mulder, E. Utsunomiya, and
M. Yates. Service Architecture. TINA Consortium, June 16, 1997. Version
5.0.

C. Abarca, P. Farley, J. C. Garcia, T. Hamada, P. F. Hansen, P. Hellemans,
C. A. Licciardi, K. Nakashiro, and M. Yates. Service Component Specification.
TINA Consortium, Jan 19, 1998. Version 1.0b.

Martin Chapman and Stefano Montesi. Qwerall Concepts and Principles of
TINA. TINA Consortium, Feb 17, 1995. Version 1.0.

P. Farley and R. Minetti. Ret Reference Point Specifications. TINA Consortium,
Jan 27, 1998. Version 1.0.

C. Gerlach. The ASP Revolution: Why Hosted Application Will Transform Busi-
ness. Mainspring eStrategy Report, January 2000.

P. Graubmann, W. Hwang, M. Kudela, K. MacKinnon, N. Mercouroff, and
N. Watanabe. Engineering Modelling Concepts (DPE Architecture). TINA Con-

sortium, December 1994.

Y. Inocue, M. Lapierre, and C. Mossotto. The TINA Book. Prentice Hall Europe,
1999.

Rational Software Coporation. UML Notation Guide, Sep 1, 1997. Version 1.1.

91

Appendix A

Sequence Diagrams

92

UOTINIOXG] 9JOWdY 'Y 2INTI

(08q0) 8besnpi0sy 10T

| F | | | | | |

(™)yosddy81nd8x3 " sl0way ‘6 i 7 7 7 7 7 7

7 7 (Juorssiuiad Yoy

|
:
7 7 7 ()yosddyanaex3 a1oway :/ ;

|
7 7 7 7 (+Ywosddy~amnoax3ajoway :9 }\ 7 7 7
I
(

“yosddyanoex3 sloway :§

7 7 7 | UoissasAidgarealn, | 1 | | |

| | | | 8529851 UEIS | | | |
asinaylo g dals 0} L~

7 7 7 7 paadoJd Uy Sisixe 7 OWsno 1au0y aualq 7 7

INSNWod pajsanbal | ;
ay} J|: deis uo aloN

|

: |

7 7 7 7 7 7 (yosddy™an2ax3 "8loway 7 :
7 7 7 7 7 7 7 ()yosddyaIndax3 ajowsy ;7 j\

f

7 7 7 7 7 7 7 ?cm%<|9§xmuw_oemm T 7

EFESIEEE | | | | | | | 7

| | | | | | | | N N

19S() © Iash [ewliou

TabBUBIaXIRI00SNSY | | | TabetepjoSddyiapinolg | || IGeueosddvAEg | | | 7aBeueoSddyNsnD | | eleueNioSddyiapinolg | TaheeoSaddyATRd |
- 910QSINSY - INSSPIESINSY INSNPIESNSY “INSNJIBYSINSY - INSSIBYSINSYH - INSNI9YSINSY dvnss

93

SUOISSog AjIeJ PIMYJ, 1e)S g’V oIndig

“Juoissassdwo)areald (9

|
|
|
|
|
Hw__|L_o_mmmw|bam|ﬁcwt:olo Alnusa mau ppv :8
|
|
|
|
|
|
|

7
7
<
7
|
7
7
7
f
7
7
f
7
7
7
f
7

(")saoepaupIdlsiBal g

4
7
|
,

T
A...vmmmou,%mjngww:cmm K7

"

L

ﬁ..vmo_zowlbamltﬁm :
|
f
f
|
|

mf

h
7
7
f
7
7
f
7
7
|
7
7
7
”
7
>
7
7
f
7
7
f

leammsUmmlholmo_lﬁﬁzwml\n_w:

:

A
;
f

318aIDSS |

T TTNSNWod

-dS

Sa0elIBIUIAedPICISISIOo g IapIACId |

T(QJNSSIvY

ToddnSARdpIIg |
Tvded

bagAmredpIciapircld |

T(TJNSSIvY

fired
PIYL © (VI)IUSDwenu|

(.vwo_iwwlbamltﬁw T

T3¥01g © 9JIAaShUIeN

|

l9[elay © uondun4auwos

94

|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ayuoIssaspu

SUoIssog AjreJ pIyJ, A0I)so(] £y 2IN3iq

uJnjal uayl ou Ji
SuoISSas

Adg alow

ou |jun g-g dais
Buisn ‘NSNWO2
1Xau 819]|9p Sak
:6 da1s uo a10N

|
|
|
|
7
9:8
7
wv_u
|
|
|
|
|
|
|
7
|
|
f
7
|
7

9HUOISSaSPUd “M
1®

N

|
f
|
f
|
f
|
(")bayuoissagpua ”of

FI

Hm_xmlco_mmwwlbaml*_lv_owco 6

uin)al as|e
G dais

0106 uayy sak J|
7 da1s uo a10N

—~

“)bayuolissaspus g

s

—

%

1SIxa uoissas Aidg Il yo8y)D i

.

:

('1)801n18s Aide puz e
| [
7 (")bayuoissagpus g
7 7 }\
| | |
7 7
baygoisegiapiaoid | bagorlsegiopinoid | bagoisegiopinoid | bagAITedpIgIapIACIg | bagATedpIgiopincig | bagorsegiopinoig | 3g0ISegIopIAOIg |
"T9IOJSINSYH TINSSPIE TINSNpIE TIWSndwod HGNSSER] T(T)NSSIIE TINSNRY

ﬁ..vcmmco_wwwmvcm T

Jg|lelay : uondun4awos

95

10

-

1

12

13

14

15

16

17

18

19

20

21

22

23

Appendix B

IDL definitions

B.1 RSMSCommonTypes

//Source file: Z:/RETAILER/IDL/RSMSTYPES/RSMSCOMMONTYPES.IDL

#ifndef __RSMSCOMMONTYPES_DEFINED
#define __RSMSCOMMONTYPES_DEFINED

/* CmIdentification

W% WQh hZh KWk */

#include "TINACommonTypes.idl"

module RSMSCommonTypes {

};

#tendif

typedef TINACommonTypes::t_PropertyList t_RSMSAppSoftProperties;
struct t_RSMSAppSoft {

string name;

t_RSMSAppSoftProperties properties;

};

typedef sequence <t_RSMSAppSoft> t_RSMSAppSoftList;

96

B.2 TINA3rdpartyCommonTypes

1
> // File TINA3rdpartyCommonTypes.idl

3 // author: Chris Ip

4 // Description: For 3rd party usage Common. Not defined in TINA Specification
5 // Date: 16/08/2000

o [111177177

7

s #ifndef tina3rdpartycommontypes_idl

9 #define tina3rdpartycommontypes_idl

10

1 #include "TINACommonTypes.idl"

12 #include "TINAAccessCommonTypes.idl"

13

14 module TINA3rdpartyCommonTypes {

15

16 enum t_3rdpartyUsageErrorCode {

17 UnknownUsageError,

18 ThirdPartyServerNotFound, //

19 UsageNotAllowed, // You don’t have permission to do it
20 UsageNotAccepted, // Owners have declined request

21 InvalidThirdPartyLogin,

22 ThridPartyServerBusy

23 };

24

25 exception e_3rdpartyUsageError {

26 t_3rdpartyUsageErrorCode errorCode;
27 };

28

typedef TINACommonTypes::Istring t_ThirdPtyName;

)
©

30

s1 struct t_ThirdPtyInfo {

32 t_ThirdPtyName name;

33 TINACommonTypes: :t _PropertyList properties;

34 TINACommonTypes: :t_Interfacelist itfs;

35 TINAAccessCommonTypes: :t_SessionInfo thirdpartySessionInfo;
36 };

37

97

typedef sequence<t_ThirdPtyInfo> t_ThirdPtyInfoList;

typedef TINACommonTypes::Istring t_ThirdPtyServerName;

}; //module TINA3rdpartyCommonTypes

#tendif

98

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

B.3 TINA3rdptylnitial

//author: Chris Ip
//date: 23/06/2000
//description: For third party services

//this is not in TINA Specification and is SATINA specific

#ifndef __TINA3rdptyInitial DEFINED
#define __TINA3rdptyInitial DEFINED

#include "TINACommonTypes.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINAProviderAccess.idl"

#include "TINA3rdpartyCommonTypes.idl"
module TINA3rdptyInitial {
interface i_thirdPartySupport {

void Start_3pty_Service (
out TINAAccessCommonTypes::t_SessionInfo sessionInfo,
in TINAAccessCommonTypes::t_Serviceld serviceld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes: :t_UserProperties UserProps,
in TINAProviderAccess::t_ApplicationInfo app
) raises (
TINA3rdpartyCommonTypes: :e_3rdpartyUsageError
)3

void End_3pty_Service (

in TINAAccessCommonTypes::t_SessionInfo sessionInfo
) raises (

TINA3rdpartyCommonTypes: :e_3rdpartyUsageError
)3

99

38 F;
30 #fendif

100

1

B.4 TINAProvider3rdpartyUsage

> // File TINAProvider3rdpartyUsage.idl

3 // author: Chris Ip

4 // Description:For 3rd party usage. SATINA specific

s [/111117177177177777777777777777777777777777771777177717717
6 // author: Chris Ip

7

// Date:

10/08/2000

s // Description: Add Multiple 3rd party functions

9

//

w [/11177777777777777777777777777771777777777777717177771777777
1 // author: Chris Ip

12

// Date:

16/08/2000

13 // Description: Add Exceptions for error handling

[ITTT7771777

-

4

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

#ifndef tinaprovider3rdpartyusage_idl

#define tinaprovider3rdpartyusage_idl

#include
#include
#include
#include

#include

"TINACommonTypes.idl"
"TINAUsageCommonTypes.idl"
"TINAAccessCommonTypes.idl"
"TINAProviderAccess.idl"
"TINA3rdpartyCommonTypes.idl"

module TINAProvider3rdpartyUsage {

interface i_ProviderRegister3rdpartyInterfaces {

void registerInterfaces (

)

in TINACommonTypes::t_ParticipantSecretld myld,

inout TINACommonTypes::t_RegisterInterfacelist itfs,

in TINA3rdpartyCommonTypes: :t_ThirdPtyServerName ServerName
raises (

TINAUsageCommonTypes: :e_UsageError,

TINACommonTypes: :e_InterfacesError,

TINACommonTypes: :e_RegisterError

101

38 F;

39

// interface i_Provider3rdpartyInterfaces

10 interface i_Provider3rdpartyReq {

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 T3
64
65
66
67 T3
68

69

70 #endif

void Start_3pty_Service (
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINAProviderAccess::t_ApplicationInfo app,
in TINAAccessCommonTypes::t_Serviceld serviceld,
in TINACommonTypes::t_UserId thirdptyLogin,
in TINACommonTypes: :t_UserProperties thridptyProps
) raises (
TINAUsageCommonTypes: :e_UsageError,
TINA3rdpartyCommonTypes: :e_3rdpartyUsageError
)3

void End_3pty_Service (
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_ParticipantSecretId SecretId,
in TINA3rdpartyCommonTypes: :t_ThirdPtyServerName ServerName
) raises (
TINAUsageCommonTypes: :e_UsageError,
TINA3rdpartyCommonTypes: :e_3rdpartyUsageError
)3

// interface i_Provider3rdpartyReq

// module TINAProvider3rdpartyUsage

102

1

2

3

4

=

0

11

-

2

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

B.5 RSMSRetUSM

//Source file: Z:/RETAILER/IDL/RSMSRET/RSMSRETUSM.IDL

#ifndef __RSMSRETUSM_DEFINED
#define __RSMSRETUSM_DEFINED

/* CmIdentification

WX hQh KZh TWh */

#include "../RSMSTypes/RSMSCommonTypes.idl"
#include "TINACommonTypes.idl"

module RSMSRetUSM {

interface i_PartyAppSoftManager {

void Request_Software_List (
out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps,
in boolean UpdatelList
)3

void Batch_Download (
in RSMSCommonTypes: :t_RSMSAppSoftList alist,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps

)

void Remote_Execute_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

103

38
39
40
41
42
43
44

a5 };

46

void Local_Execute_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes: :t_UserProperties UserProps

a7 interface i_PartyAdminAppSoftManager {

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65)
66

67 T3

68

69 F;

70 #endif

void Add_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

)

void Del_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes: :t_UserProperties UserProps

)

void List_AppSoft(
out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

104

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

B.6 RSMSRetSSM

#ifndef __RSMSRETSSM_DEFINED
#define __RSMSRETSSM_DEFINED

#include "../RSMSTypes/RSMSCommonTypes.idl"
#include "TINACommonTypes.idl"

module RSMSRetSSM {

interface i_ProviderAppSoftManager {

void Request_Software_List (
out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps,
in boolean UpdatelList
)3

void Batch_Download (
in RSMSCommonTypes: :t_RSMSAppSoftList alist,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes: :t_UserProperties UserProps

)

void Remote_Execute_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps

)3
void Local_Execute_AppSoft (

in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

in TINACommonTypes::t_Sessionld Sessionld,

105

38 in TINACommonTypes::t_UserId UserlID,

39 in TINACommonTypes: :t_UserProperties UserProps
40) 3

41

a2 };

43

a4 interface i_ProviderAdminAppSoftManager {

45

46 //the administrators interface for adding and removing appsoft
a7 //from the server should not be exported accross the retailer
a8 //interface this interface is to be exported to the USM

49

50

51 void Add_AppSoft (

52 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

53 in TINACommonTypes::t_UserId UserlID,

54 in TINACommonTypes::t_UserProperties UserProps

55)

56

57 void Del_AppSoft (

58 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

59 in TINACommonTypes::t_UserId UserlID,

60 in TINACommonTypes::t_UserProperties UserProps

61)

62

63 void List_AppSoft(

64 out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
65 in TINACommonTypes::t_UserId UserlID,

66 in TINACommonTypes::t_UserProperties UserProps

67

68)

69 };

70 };

71 #endif

106

1

2

3

4

=

0

11

-

2

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

B.7 RSMSCUSM

//Source file: Z:/RETAILER/IDL/RSMSRET/RSMSCUSM.IDL

#ifndef __RSMSCUSM_DEFINED
#define __RSMSCUSM_DEFINED

/* CmIdentification

WX hQh KZh TWh */

#include "../RSMSTypes/RSMSCommonTypes.idl"
#include "TINACommonTypes.idl"

module RSMSCUSM {

interface i_CUSMAppSoftManager {

void Request_Software_List (
out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps,
in boolean UpdatelList
)3

void Batch_Download (
in RSMSCommonTypes: :t_RSMSAppSoftList alist,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,
in TINACommonTypes::t_UserProperties UserProps

)

void Remote_Execute_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

107

38

39 void Local_Execute_AppSoft (

40 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

41 in TINACommonTypes::t_Sessionld Sessionld,

42 in TINACommonTypes::t_UserId UserlID,

43 in TINACommonTypes::t_UserProperties UserProps
44)

45

a6 };

47
4s interface i_CUSMAdminAppSoftManager {

49

50 //the administrators interface for adding and removing appsoft
51 //from the server should not be exported accross the retailer
52 //interface this interface is to be exported to the USM

53 void Add_AppSoft (

54 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

55 in TINACommonTypes::t_UserId UserlID,

56 in TINACommonTypes::t_UserProperties UserProps

57) H

58

59 void Del_AppSoft (

60 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

61 in TINACommonTypes::t_UserId UserlID,

62 in TINACommonTypes::t_UserProperties UserProps

63) H

64

65 void List_AppSoft(

66 out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
67 in TINACommonTypes::t_UserId UserlID,

68 in TINACommonTypes::t_UserProperties UserProps

69

70) H

7}

2 };

73 #endif

108

B.8 RSMS3rdUSM

1 //Source file: Z:/RETAILER/IDL/RSMSRET/RSMS3rdUSM.IDL
2

3 #ifndef __RSMS3RDUSM_DEFINED

4 #define __RSMS3RDUSM_DEFINED

5

6 #include "../RSMSTypes/RSMSCommonTypes.idl"

7 #include "TINACommonTypes.idl"

8

9 module RSMS3rdUSM {

10

11 interface i_PartyAppSoftManager {

12

13 //behaviour: this interface is to be exported to the client PA

14

15 void Request_Software_List (

16 out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
17 in TINACommonTypes::t_Sessionld Sessionld,

18 in TINACommonTypes::t_UserId UserlID,

19 in TINACommonTypes::t_UserProperties UserProps,
20 in boolean UpdatelList

21)

22

23 void Batch_Download (

24 in RSMSCommonTypes: :t_RSMSAppSoftList alist,

25 in TINACommonTypes::t_Sessionld Sessionld,

26 in TINACommonTypes::t_UserId UserlID,

27 in TINACommonTypes: :t_UserProperties UserProps
28)

29

30 void Remote_Execute_AppSoft (

31 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

32 in TINACommonTypes::t_Sessionld Sessionld,

33 in TINACommonTypes::t_UserId UserlID,

34 in TINACommonTypes::t_UserProperties UserProps
35

36)

37

109

38 void Local_Execute_AppSoft (

39 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

40 in TINACommonTypes::t_Sessionld Sessionld,

41 in TINACommonTypes::t_UserId UserlID,

42 in TINACommonTypes: :t_UserProperties UserProps
43)

44

45 };

46
a7 interface i_PartyAdminAppSoftManager {

48

49 //the administrators interface for adding and removing appsoft
50 //from the server should not be exported accross the retailer
51 //interface this interface is to be exported to the USM

52

53 void Add_AppSoft (

54 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

55 in TINACommonTypes::t_UserId UserlID,

56 in TINACommonTypes::t_UserProperties UserProps

57);

58

59 void Del_AppSoft (

60 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

61 in TINACommonTypes::t_UserId UserlID,

62 in TINACommonTypes::t_UserProperties UserProps

63);

64

65 void List_AppSoft(

66 out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
67 in TINACommonTypes::t_UserId UserlID,

68 in TINACommonTypes::t_UserProperties UserProps

69

70);

7}

2 };

73 #endif

110

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

B.9 RSMS3rdSSM

#ifndef __RSMS3RDSSM_DEFINED
#define __RSMS3RDSSM_DEFINED

#include "../RSMSTypes/RSMSCommonTypes.idl"

#include "TINACommonTypes.idl"

module RSMS3rdSSM {

interface i_ProviderAppSoftManager {

//behaviour: this interface is to be exported to USM within the retailer

void Request_Software_List (

out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,

in TINACommonTypes
in TINACommonTypes

in TINACommonTypes::t_UserProperties UserProps,

::t_SessionId SessionId,

::t_Userld UserlID,

in boolean UpdatelList

)

void Batch_Download (
in RSMSCommonTypes
in TINACommonTypes
in TINACommonTypes
in TINACommonTypes
)3

: :t_RSMSAppSoftList alist,
::t_SessionId SessionId,
::t_Userld UserlID,

::t_UserProperties UserProps

void Remote_Execute_AppSoft (

in RSMSCommonTypes

in TINACommonTypes

in TINACommonTypes

in TINACommonTypes
)3

: :t_RSMSAppSoft _AppSoft,
::t_SessionId SessionId,
::t_UserId UserlID,

::t_UserProperties UserProps

void Local_Execute_AppSoft (

111

domain

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_Sessionld Sessionld,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

};

interface i_ProviderAdminAppSoftManager {

//the administrators interface for adding and removing appsoft
//from the server should not be exported accross the retailer

//interface this interface is to be exported to the USM

void Add_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

)

void Del_AppSoft (
in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

)

void List_AppSoft(
out RSMSCommonTypes::t_RSMSAppSoftList RequiredList,
in TINACommonTypes::t_UserId UserlID,

in TINACommonTypes::t_UserProperties UserProps

);
+;
+;
#endif

112

B.10 RSMSCore

1 //author: Chris Ip

> //date: 20-05-2000

3 //description: idl for the CORE functions of RSMS service
4

5 #ifndef __RSMSCORE_DEFINED

6 #define __RSMSCORE_DEFINED

7

s #include "../RSMSTypes/RSMSCommonTypes.idl"

9 #include "TINACommonTypes.idl"

10

11 module RSMSCore {

12

13 //3rd party provider could choose to support either interfaces or both

14 //this is why request software list appears on both interfaces

17 interface i_RSMSCoreDownloadManager {

18

19 void Request_Software_List (

20 out RSMSCommonTypes::t_RSMSAppSoftList RequestedList,
21 in TINACommonTypes::t_Sessionld Sessionld,

22 in TINACommonTypes::t_UserId UserlID,

23 in TINACommonTypes: :t_UserProperties UserProps,
24 in boolean UpdatelList

25)

26

27 void Batch_Download (

28 in RSMSCommonTypes: :t_RSMSAppSoftList alist,

20 in TINACommonTypes::t_Sessionld Sessionld,

30 in TINACommonTypes::t_UserId UserlID,

31 in TINACommonTypes::t_UserProperties UserProps
32)

33 };

34
35 interface i_RSMSCoreExecManager {
36

a7 void Request_Software_List (

113

38 out RSMSCommonTypes::t_RSMSAppSoftList RequestedList,

39 in TINACommonTypes::t_Sessionld Sessionld,

40 in TINACommonTypes::t_UserId UserlID,

41 in TINACommonTypes::t_UserProperties UserProps,
42 in boolean UpdatelList

43)

44

a5 void Remote_Execute_AppSoft (

46 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

47 in TINACommonTypes::t_Sessionld Sessionld,

48 in TINACommonTypes::t_UserId UserlID,

49 in TINACommonTypes::t_UserProperties UserProps
50);

51 };

52
53 interface i_RSMSCoreAdmin{

54

55 //the administrators interface for adding and removing appsoft
56 //from the server should not be exported accross the retailer
57 //interface this interface is to be exported to the USM

58 void Add_AppSoft (

59 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

60 in TINACommonTypes::t_UserId UserlID,

61 in TINACommonTypes::t_UserProperties UserProps

62) H

63

64 void Del_AppSoft (

65 in RSMSCommonTypes: :t_RSMSAppSoft _AppSoft,

66 in TINACommonTypes::t_UserId UserlID,

67 in TINACommonTypes::t_UserProperties UserProps

68) H

69

70 void List_AppSoft(

71 out RSMSCommonTypes::t_RSMSAppSoftList RequredlList,
72 in TINACommonTypes::t_UserId UserlID,

73 in TINACommonTypes::t_UserProperties UserProps

74

75) H

76 F;

114

m };
7s #fendif

115

Appendix C

Tested Applications

Acrobat Reader (Windows, ver 4)
Freecell (Windows, ver 4.10)
Gedit (Linux, ver 0.5.4)
gFTP (Linux,ver 2.04)

GIMP (Linux, ver 1.04)
Gnome Calender (Linux, ver 1.0.10)
GnomeCard (Linux)
Gnumeric (Linux, ver 0.35)
Gqview(Linux, ver 0.7.0)
Gtop (Linux, ver 1.0.3)
Hearts (Windows, ver 4.10)
Karchie (Linux, ver 1.1.2)
Kcale (Linux)

Kdvi (Linux, ver 0.4.3)

Kedit (Linux, ver 1.2.2)
Kfind (Linux, ver 0.4.1)
Kfinger (Linux, ver 0.8.2)
Kghostview (Linux, ver 0.7)
Kmahjongg (Linux, ver 0.4.1)
Kmail (Linux, ver 1.0.28)
Kmines (Linux, ver 1.0.1a)

Korginizer (Linux, ver 1.1.1)

Kpackage (Linux, ver 1.3.8)
Kpaint (Linux, ver 0.4.3)
Kpoker(Linux, ver 0.5)
Kreversi (Linux, ver 1.0.1)
Ksokoban (Linux, ver 0.2.2)
Ktop (Linux, ver 1.0.1)
Kview (Linux, ver 1.8)

KVt (Linux, ver 1.1.1.1)
Kwrite (Linux, ver 0.98)
Lotus Organizer (Windows)
Minesweeper (Windows, ver 4.10)
MpegTV (Linux, ver 1.1.1.1) video only
MSPaint (Windows, ver 4.10)
NotePad(Windows, ver 4.10)
Solitaire (Windows, ver 4.10)
Star Office(Linux, ver 5.1)
WordPad (Windows, ver 4.10)
Xcale (Linux)

Xclock (Linux)

Xdvi (Linux, ver 22.05d-k)
Xpaint (Linux, ver 2.4.9)

Xview (Linux, ver 4.1)

116

[Place Bibliography Here]

117

