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“Abstract ,‘-Jf o S o
] _ _
Thus research report lmvestigates the apphca.tmn of Cha.rmn-Bost’s measure of co);l- '
currency o Mllnel\?s Caltnlug'of Communicating Systems (CC8). The aim of thm
is twofold: first to ew[ilucnté the. measure m in terms of criteria ga.thered from the

- Hieroture; a.nd“second 1ﬂtc;t determine the feasibility of measusing concurrency in CCS
and bence pmv’ide g rlaw tool for understa.ndmg concurrency using CCS. The ap-

proach ta.ken g15 $0 1dentlfy the differences between the message-passing formalism in

o v.hach the measure m is defined, and CCS' and to modlfy this formalism to-enable

the mapping of CCS agents toit. A softwa.re tool, the Concurrency Measurement
Tool, is developed to permit experimentation with chosen CCS agents. These ex-
periments show that the measure m, althcmgh intuitively appealing, is deﬁ.ned by an
algebraic expression that is ill-behaved. A new measure is defined and it is shown
that it fnatches the evaluation criteria better than m, although it is still not ideal,
This work demonstrates that it is feasible to measure concurrency in CCS and that

~ a methodology has been developed for evaluating concurreiicy measures,
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u--.:Préface
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The reason, for undertaking this research was to investigate nisasurement of

concyrrency in Milner's Calculus of (‘ommunica.tmg Systems (CCS) and to address

the issue of evaluation of measures of concurrency.- ecs provides a formalism that -

describes concurrency, and additional toals, such as measures of concurrency can aid
in the task of umlerstandmg goncurrency. A number of measures of corcurrency have
“been presented in the htera.ture, however, they are generally not accompanied by a

full eva.lu&tmn This is partly a result of the fact that there is not yet an accepted
"~ get of criteria a.ga.mst which to evalmte concurrency measures, It is xmportant that

. research is performed 16 address both of these | issues. -
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1. _'Intr_c')duiction

As Hoare has noted ‘Concurrency rema.ihs one of the major challenges fa.ing Com-
puter Science, bdih in theory and in practice’ [50,.%reword]_. For this reason, the
_ invéstigaﬁon of iséués that relate to concurrency is an important area of research,
‘a8 such in}r&atiga.tioi;s can further our _1u1@ersta.ndmg of concurréncy. - |

1.1 -Pmblem"}notivation and analysis

Algeﬁra.ic calculi of processes provide an approach to modelling communication and
concurrency by describing the behaﬁour of concurrent commitnicating systems in
terms of an operational semantics. Robin Milner’s CCS (Calculus of Communicat-
ing Systems) is an example of this type of caleulus. CCS provides for the definition
of agents using a small number of operators and allows for the description and spec-
_ification of concurrent systems, and hence for an; understand.mg of the behaviour of
such systems and the comparison of different S))ﬁtems. CCS also allows for speci-
| fications that abstract from the internal details; and for partial specifications that
use agent variables. Any new voals developed for use with CCS will further the
understa.ndmg of concurrent systems. e
" In-the llte:rature, there are a number of approaches to analysing the beh:mour
and performance of concurrent systerss. Lamport and Lynch [47] note that there
are 1I.\wo basic complexity measures for distributed algorithms: tm:w. f:umplemty and
mesaage complexlty. Time complexity measures the amount of time ta.ken by mes-
sage passing in a particular algorithm, since the time taken for message passing is
assumed to be much longer than that required for computation. Message complexity
is based on the number of messages transmitted during a computation, alt_hough it
can also be based on the total number of bits transmitted. _\O'ften with distributed
algorithms there is a tradeoff between time and message coiple:dty_—van algorithm
can he ‘improved’ by decreasing its message complexity with a resulting jncrease jn
time complexicy. ' Parallel programs also exhibit concurrency and their performance
can be measured isy speednp; the ratio of time taken to execufe the program on one
processor and the time taken on n processors [57}.
However, as Bernadette Charron-Bost has noted [15), none of these measures



CHAPTER _'1.' INTRODUCTION T e

assess the struc*ure ‘of the consputaticn. She g(ves the example oi‘ 4 multlbro ?:ast -

problem vnth two solutions—the solution with the Iower number of meesages w]‘rarks
in an esmntmly less concurrent manner and is less resistant to failure than the
solution with the hu;her number of messages. She also notes tha.t message complexity
can be misleading smce the length of messages is not taken into account although
this can be ameliorated by using bit complexity. ’ ‘
- The issue of thessage and time comple}uty in distributed aystema will not be

discussed further 4 A this document; howevar, \speed-up in pa.ra.]le.l systems will be

discussed in Chapter 2 because this gives an indirect indication of the amount of
' pa.ra.llehsm present i a coutputation. '

Raet,ently in the latera.ture, the notion of a concurrency measure has been proposed_

by a munber of ailt‘ hm's 2, 3, 4 5, 14, 15, 32 36, 38, 44, 45, 59}. ’I‘]us notjon is
~ based on the concep% of 2 quuntlta.twe:measure of the amount of concurrency ‘in

a computation or alg{,mhm -These mi

Although there have been a number- of different measures propqsed there has

‘been a lack of expenmental results for. these maeasures, atd the majoiity reqmre
© further evalua,txon\ Genera.lly, it appears that researcheas present Tieasures but
little {urther researdl is done ta evalnate the usefalness of the defined meaanies for
dealing with concurrency in more practical situations, One aspect of 'alus resea,rch'__
is to remedy this situation by first investigating one specificymeasure, and second -

by proposing a general approach for evaluating measures,

To evaluate measures of concurrency, it is necessary to determine which features
or characteristics are generally desirable. Dispersed throughout thé_].ite;i%.ture' are
a number of different criteria for evaluating measures of concurrenc}'. These dif-
ferent approaches v{;ill be drawn together in this research and used to evaludte the -

measure of coneurrency to be investigated. Evaluation critezia can be divided ingo
- twa categories—those that are subjective and those that are objective. The ithree
objective criteria are those that relate to the performance of the algorithm used

to calculate the measure, to wiiether a measure of concurrency can be determined

for a specific event, and to the stability of the measure with respect to granularity.
(Thesg**!!ms will be defined and explained in Chapter 2.) - |

The -emaining criteria can be described as subjective. The intuitive understand—
ability of the measure and its behaviour on small exa:mp_les are ;ubjet:twe because

3 ey are defined either on [0,1] or [0,00),
and they are nsually based on an mhutwe‘ty a.ppemlmg fea.ture of the théoreucal
. framework within w!* cn they are defined, - o

o Ty
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they relate to individuals' perceptions of mnrurrency These two cmtena, are often
~ used in the original design of the measure, Fa

 Another important criterion is that of compatibility \y}“’[ opera.tors. Operators
on concurrent computations allow computations to DP’”‘JOlIlGd' in some sense. Ex-
amples of such operators are parallel concatenatxon;/é.nd sequential concatenation, -
When two computations are combined by an opera,";’gr, it would be desirable that the
meagure of concurrency for the combined compuy'mons can be explained i in terms of
the type of operator. For example, when compafations are combined in pa.rallel it is
reasonable to expect the measure to increase # the computation has in some sen.e
become more parallel, There are a rmmher of different approaches to operaturs in
the literature which will be tlmcusaed in this document. Compatibility with opéra- -
tors is an impartant criterion as it relates tg»/fhe diffarent Jevels of abstraction that
are used In specifications, and to partial specifications. If the effect of an operator
can be explained, then the effect on the amount of voncurrency when exchanging
components or instantiating variables can he determined. Tlus will lewd to a better
understanding of concurrent systems. _-

Finally there are two further criferia, which are also subjective, that relate to
the functionality of the measure—usability in analysing distributed algorithms and
apphca.l:xhty to real sitiations. ‘These last two criteria obviously are importa.nt in
determining the \mefuiness of the measure.

1.2 Statement of problem and cbj_éctives of the re-
“searck | |

CCS is a formalism for the investigation of cdhcurrench that provides an understand-
ing of concurrent hehaviour and any tools that can be used with CCS will advance
this understanding. An example of this type-of tool for investigating concurrency
is the concept of a measure uf concurrency. A number of these measures are pre-
sented in the lterature; however, most. of these have not been fully evaluated. "The.
objective of this research is to address these issues by usmg CCS as a ira.mework in
which to evaluate measures of concurrency,

“The focug of this resea.rch therefore will be to a.pply & measure of concurrency
to CCS, As will be shown in Chapter 2, Charron-Bost’s meagure of concaryrucy
. [14] has been chosen as the measure to be siudied in this research, as it is qne
of a number appearing in the literature that require investigation. This measure
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of concurrency is based wn. the concept.that ‘the less the stopping of one of the
processes blocks the other processes, the more concurrent is the computa.tmn [14,
p. 45]. s
By apnlying a measure to C(‘S a new approich o investigating aspects of con-
currency will be gained and a new methodolagy for evaluating concurfency measures
in CCS will be defined, although in tmh research only one measure will be investi-
Ty ga.ted

The main a:abjectiv'es of this reseapch are to: ) N

1. Evaluate m as a measire of concurrency by applying it to CCS a,nd using the _
evaluation criteria that are found in the literature,

2. Tnvestigate the feasibility of meastl_x-ing Eo‘ncurrency in CCS.

LA

3, Develop and evaluate a tool to measure the concurrency of CCS agents,

The outcome of achieving these objectives will be:

1. A nieasnre of concurrency defined for CCS will provide a new topl for the inves-
tigaticn of concurrency and a framework for the measurement of concurrenay
in CCS. '

2. The measure of concurrency m will be evaluated, first in terms of its applica--
bility and second in terms of itz validity as a measure.

3. An approach to evaluating measures of concwrrency will be developed.

1.3 Method of investigation
The research will be conducted in the following manner:

1. A Hterature survey of evaluation criteria for measuzgs of concurrency, measures |
of concurrency and relevant issues in CCS will be presented and the choice of
the measute m will be justified.

2. The dxﬁ'erences betWeen the message. passmg formahsm in which the measure
is tleﬁned and CCS will be identified.
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© 8. The message- pa.ssing formalism wlll be redaﬁned 80 tha.i.l CC Tﬁts cat l‘.be

© translated hito this formalism while ensuring that the bustx i(.a ﬁcm for the
measure of concm:rency remains the same. It will be shqwn tha.t l;he exlsﬁing

) results still hold m the redefined model. - F ,;5' ' :

) i . t i . .
4. A translahon algornthm will be devaloped to ma.p CCS a,ge nts into fhe message- :
 passing formahsm “The algotithm will deal only with a subset of CCS and this

sibset wxll be chouaen and mslptwa.ted

5. An al;;onthm wi]! be tleve1u1ﬁwd to calculate the measu,re and a theoretlcal .

analysis of this algunthm w1;[ he prlaaented
. P S -
6. _The f oncurrency Mea.gmrement 'I'ool will be 1mp1emented to automate the

. _calcul&tlon of the measure fm' CCS agents. The C“bncurrency Mea.surement
Tool will Be used to experlm@nt on chosen CCY ageﬁta

7. The rasults of t.he expenmenta will he used to ev&lua.te of the measure in
terms of the critesia presented in the literature survey and to investigate the
feasibility of measuring concurrency in CCS

1.4 Organisation of the research report

The report will he strnctﬁregl as follows:
. Chapter 1. Introduction

Chapter 2. Concurrency : measures and formalisms This chapter will
present the background iiterature that relates to concurrency measures. Ways to
evaluate measnres of concurrency will be presented first to set the scene for the
discussion of measures of concurrency, These criteria will be described in detail, and
a framework will be developed to discnss the interpretation of compatibility with
operators. Messures will be gronped in terms of the frameworks‘\\wltlrf&l which they
are defined. Lamport’s mess: jg-passing formalism that defines a partial ordering
model of a d.tstribnted systemf 'will be discussed in some detail, as a number of
measures including the measur& 46 he w:gyalna.te(l in this research, are defined in this
formalism., A discussion of relevaat issues in C'CS, such as iba,rtial ordering, time
and a measure of maximum parallelism will also be presented. The justification of
m as the measure for consideration will he given in the final section. '
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G’“hapter 3. Applymg the meagure to CCS In this chapter, the differences
; Letween the message-passing formalism that describes a distributed system and CCS
§ will be identified and discussed. After this, the message-passing formalism will be
redefined to take into account these differences. This redefinition will be done so
that the justification for the measure still holds in the new formalism. A number of

 results are required to define the meaaure, and it will be shown thai these results are

'Chathér 4. Coancurrency Measurement Tool This chapter will discuss the -

valid in the redefined formalism. Finally, jssues relating fo the translation procedure
for mappmg CCS agents into the message—pa,smng formal\sm wlll be dmt:usaed and

the tzranwlatlon algorithm Wlll l)e presented
i .

pmgr m written to perform the experiments on CCS agents. The ‘main focus of the .
n;hapti r will be on the algonthm for connting the number of consistent cuts althongh '

gor:thms and an overview of the program will be presented. An analysis of

|

-Chapfter 5. Results emd evaluatmn The experiments that were performed

uging ‘the (..oncurrency Measurement Tool will be detailed inclutlmg S descrxptmn :

ency in terms of the criteria presented in. Cha.ptér 2, These results will éiiow
_miidoes not meet all the priteria and A modified measure myg, will be presented

X‘ 6, Further research and conclusions. In this chapter, a summary of
‘the rese

orlthm for cou,\uhgg consistent cuts will be presented and the performance of
_ peurTency Mea@ﬁrement Tool will be related to the theoretxcal results for the
algon‘r.lun Other algorlthms will be anggeated a,nd a.na.lysed :

uated. This evalu.';t;ion will show that niew is better Beha.ved than m. It

rch and the conclusions will be presented. Further reséarch will be outlined.



2. Cencurrency measures a.nd

| formahsms

.

2.1 _Introduction

g

Tn this chapter, backgmﬁﬁd literature will be presentad, relating to both measures
of +neurrency and CCS. Criteria for the evaluation of meastives of concurrency will
be detailed, and a new framewoik for: ‘e discussion of compatibility with operators

* will be deveioped This will facilitate the discussion of measures of concurrency -
that will follow. I‘he ma.Jont;y of the measures to be dlscussed in this cha.pter are
defined in the message-passing mudel of a rlistributed system defined by Lamport
Tlus formalistn will be described and then the relevant measnres will e presented
including Charron-Bost’s measure m which is the focus of the research. In the
section on CCS, the components of an a.lgebra:c ralculus will be presented and:
partial orders \%nd time i CCS will be discussed (an overview of CCS is presented
in Appendix A}, A measure of maximum parallelism defined for CCS will also be
presented In the ﬁna,i ttion, the justification for the choice of Cha.rron-Boat‘
measgire m,wﬂl be given. . . _ :

r - : T \\

2.2 Evaluat:lon crzterla for measures of concurrency

'I‘he fdea belund a measure of concurrency/para]lehsm is to obtain a mumerical
value to indicate the amount of concusrency there mi_a.y be in a cdmputa.tion or
an algorithm. This value will then allow for the wmﬁiarison of computations or
algorithms in terms of the amount of concurrency.

In general measures of concurroncy‘ fall into two distinct groups thh tespect
%o the range of values that theé measure can obtain, Measures in the first group give
a value in the interval [0, 1], indicating the amount of concurrency present with 0
indicating no concurrency and 1 indicating some maximurn amot s of concurrency.
Those in the second greup returs a value in the interval [0, t‘.no) giving some indication

1In the rest of this research report, the term ‘measure of concumncy will ba used to indxcata
both & measure of oonclmency and & mensmre of pam]lehsm
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|
of the number of concurrent procggses. t
It is necessary when developmg a new tool to perform expenments to ensure
that the tool behaves correctly. In most of the literature dealing with measures of
con'curreticy, this experiinentaé on is not preﬂent, except for a few small examples:
For a measure of concurreney; !Io become useful expenments and expanences with
the measure need to be reported.. _ '
The process: of defining a measure. of concurrency presents difficulties as there '
s no single objective way to determine if the measure is performing as desired.
Consider the following example. If a new technique is being developed for measuring
short distatices, it can be svaluated and checked for consisteﬂcy against methods '
proven to work, for example, tape measures. However, in this situation, there is no
well-defined method with which to compare a concurrency measure to determine its
corre mmg T}us means that it is neaessa.ry to determine a mumbex of criteria tha.t
can . ’}ﬂ to eva,luate the measure, Thix is complicated by the fact is that some of
these criteria ate also used in the definition of the measure. For example, 2 measure
¢an be defined by finding an intuitively appealing explanation for using & particular
feature of a formal model, and by using the measure on small examples and with
operaiors. ' , '_ _
‘The criteria that ave found in the literature are as follews:

1. Intuitive understan(hng of the measups f14]
2. Being well behaved for s:mple examplea [14, 15].
3. Compa.t_ibxhty with opera.tors on computations [15, 18, 32].

4, Usa.'bahty for comparison and a_nalyéia of distrihuted algorithms and applica-
bility to'teal situations [15, 45]. N '

5. Ability to calculate measure during the computation for a specific event [32,
50). - '

6. Tiack of expense of computation in terms of both, time and space. [32, 38, 59).

7. Stability with respect to granularity [16]

These criteria are open to criticism Lecanse a.lthough they can show that a measure
is poor, the process of showing whether a measure is good is more dlﬂ‘icnlt as there
is no objective way to do this. '
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In following sections, each criterion will e explained. The first four items are
very subjective criteria aithough they may not all seem so at first. The next three

are more ubJeetnre and it is possible to check objectively whether a measure of

Lorrturrency satisfies them, although Lthere is some debate a.bout whether the final
cntenon is apphcable to all meagures. : o
_ “This section is presented efore the I\ng of concurrency measures because the

concepls given here are required to discusshe measures. However, some material

in Section 2.2.8 relies on definitions that occur () ter in this cha.pter, and the ; ader
is advised to read that section briefly at first.(/-

2.2.1 -Intui_tive___und“erstanding of

" This criterion relates to Laing able to ui;dersta_ﬂd why the'deﬁn.ition of the measure

is sensible [14]. For example, Charron-Bost's measure m, produces a value in the

‘range [ﬂ 1], where 0 represents total sequentiality and 1 total concurrency. The -

concepts that are bemg use{l to define the measure, namely consistent cuts,

“explained as a way of meashnng the tolerance of the compntation to gtopping. Thia

explana.tmn appea.rs to give & good approa,ch to measuzing concurrency.
- This criterion is, of course, subjectwe as one cannot objectively determine the _

_ intuitive appeal of a definition. Tt is also concelva.ble, owever, tha.t a measure could

be defined in such a way that its definition is non—mt tlve or even counter-intuitive;

and still satisfy all other criteria.

e

2.2.2 Being well behaved for small examples

It is desirable t]ﬁxét a meaaufé_df concwmrrency will work in a reasonable way on small

examples [15]. In fact, as described above, this is often used in defining 2 measure.
Charron-Bost [14] nses these grou:nds to reject the meagire &, Sh presents two
examples that have the same measure nunder w, However, the spacs-iime diagrams
of the examples show that one appears more concurrent. This means that this is a
subjective criterion, sinee it involves perceptions of concurrency, In small exaniples,
it would seem fairly easy to obtain some sort of consensus in the area; however,
when dealing with laxger computations, it becomes more difficult to decide.

2.2.3 Compatibility with operators on computations

Compatibi]ity with operators means that when computations are ‘joined’ by opera-
tors, the amount of concurrency will change in a way that can be explaiy i by the
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actions of the operators. This issue is discussed both by Charron-Bost [15, 16, 18]
and Fidge- [32] in their papers on measures of concurrency. This section will be
urga.nised as .‘ollowa. first, the a.pprua.ches taken in the literature will be discussed

in detail, then a framework will be developed to generalise the work that has been .
presented. The explanation of the operatoss relies on definitions to be presented
later in the chapter and it is suggested that the reader give this sectmn a brxef

- reading at first, returning after the completion of Section 2.3.

Charron-Bost [15] defines two opera,tors—~concatena.tlon an.@ fusion. Concatena-
tion is essentially the joining of one computation after anothqr J?here the computa-
tions have the same number of pro«:aases2 (see Fignre 2.1a). Fusmn occurs when two-
computations have some process sequences with common prefixes. The processes are
merged to obtam the longest computations for each pro{:essa (see Fignre 2.1b). The

effect is to obtam a computa,tmn from the two computations that i is more para.ﬂel s
~ than either o the component computations, '

Chatron-Bost’s meastire of patallelism p is evaluated in terms of these twb op-

_erators [15]. If C is the concatenation of C' and C", with measures p, p' a.nd p"’

resPectwe]y, then p can be expreqsed as

p=w'p’ +u"p" where v’ + w" =1

- where w' and w correaqpaud to the re‘a.twe mzes of the computa.tmns C“' and cH,

This lmplles tha.t . ‘

p2 min(s, ) and

p £ max(p', p").

Since for p, 0 rei)resénts & totally concurrent computation and 1 a totally gerial com-
putation, this shows that the computation formed by concatenation cannot become
more parallel than its more parallel component, nor can it become less parallel than

" ite less parallel component

2Consider the computations
¢ ={C,Ca,Ca} with Oy sql Cirweds Ca = fghifk
¢ = {0}, 04, CY with Cf ={ G =mn C} = opg
then ' : .
C" ={CMCPCY) with Of =abl O =cdemn G = fghjkopy.
is the conc-utenauun of C and €', :
3Cansider the computations
C ={0,C,Ch)} with ) =abede Cy=fgh Cy=jk
¢ ={C{,C,C} with C]=eab 4 = fgh Cf = 3kimno
then _ . o
" = {CP,C8,CY) with Of =abede O = fgh Cf == jklmno.
is defined as the fusion of & and O'. Note that £ is a prefix of €y and €} is a prefix of CY.
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_ Ffﬁum?.l:_f(a) Concatenation, (b) Fusion.

A}so. 1f o™ | is the conca.tena.tlon of Cm times wath measure p“‘ then

) ) ) oL . L
P =p. - : .
: Charmn-Bust argues tha.t this ghows the beha\rmur of the measure p is correct.
- I Cis the fusion of and C*, with meaaures g, o' and p" reapectwely, then it

~ can be shown that . ’l

p < max(p', o).

~ Since for P, O represents & ’sota]ly concurrent computation and 1 a totally serial
computation, this shows that the computation formed by fusion iz mose parailel
than the lesser of two computations combined to form the fusion.

' Fidge [32) has defined a measure f with range [0, 1] with O representing total
sequantla.hty a.nd 1 representing total concurrency. The following rela.tmnﬂhip holds
for the computa.tmns Ciyve ,Cn

' .(019-«': n)<ﬁ(cll'“|0n)

where ; represents the serial concatenation of computations and | represents the
parallel concatenation of computations?, Also '

 B(C;.5Ca) € max A(C)

“The definition of ; and | are mniplgr in Fidge's formalism since neate:_l parallelism is aliowed.

i
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BG:1 1G> mn BC). L -

Wflen computations are concatenated serially then the amount of concurrency can-

not “become greater than the most concurrent compunent computation; sxmlla.rly
whbn computations are concatenated in parallel then the amount of concurrency
caimot hecome smaller than the Ieast concurrent camponent computation. He also -

' \mﬂ ies that .

H

B(Cu.-iCn) = max x A(C7) when £ ,)-ov=e{1,...,n}

alt; hough in the general case, A is mgmﬁca.ntl,y reduced.

La

quneralisa,tion - : i

? L ) o e y ) .
-’I‘q’} write these concepts in a genera:lised-formﬁ, let ] represent some generic form

of parallel concatenation, ~» some generic form of serial concatenation and MG a-

geJiéric concuvrency measure, defined on [0, 1] with 0 representﬁlg atotally sequeﬁtial}:

computation and 1 a totally concurrent computation. :
.1 have chosen the following rules to describe compatzbmty mth upera.tora in the

_genera.l case for meagures defined on {0, 1]:

| g.' Me(Clr ol 5 maa:(MC(C"')', Ma[C"))
© ME(CNC™) 2 min(me(CY), MA(C").

They can be described as follows: - o

"o when dealing with serjal concatenasion the concurrency cannot hecome greater
* than the amount occunmg in any component computation;

o when dealing with pamllel concatenation the concurrency cannot become less
than the amount occurring in any component computation,

These rules have been chosen becanse .they appeal to an intuitive understanding
of the application of aperators to computations, they are not dependent on any
particular measure as both hold for p and 8, and although they are general, they
are not so general as to be meaningless. . _

Both Charron-Bost® and Fidge state that sequentixl-zdmposition should make -
the resulting compu'fa.tion no more concurrent than its more concurrent component;

. ®As the work done by Charcon-Bost telates to a measure defined so that 1 represents lotal
seduentinlity and 0 represents totally concnrrency, it is necessary to ‘invert’ the results with respect
to the generic concurrency measure that is defined so that 3 represents total comcurrency and 0
reprezents total sequentiality, as nxe most measnres presented in the literature,
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R \
- computation; and that parallel concatenation lelould make the resultmg computa,-'
tion no léss concurrent than its least concurrent component computation, .

: Haweven t.hey dlﬂ'er with respect to sequential concatenation on two results.
First mth respect to thﬁtond.ltmn under which equality should occur; Fidge states
that equality only happens when hoth component computations are sequential and

therefore have measure 0, whereas for Charron-Bost equality occurs when thetwo
~ component computations are the same. Second, they differ on whether the resulting
computation can become less concurrent than the componant cnmpntatxons, it can
be shown from Charron-Bost’s work that. the resulting computation cannot become
less concurrent than the less concurrent of the component computations, wherea.s

= Fidge does not draw this conclusion. In the rules given above, I liave taken a more

general approach that does not excinde any of these interpretations.

2.2.4 Usability and applicability

" A measure of concurrency must be usable for comparing and pnaly_ﬁing rea.ld.xs-

tribyted algorithms [15 45]. " 'This can be tested by perferming the measurement
~and investigating the results, As noted earlier, it is difficult to have an objective

or even intuitive idea about the amount of concurrency present in an algorithm, so
this presents problems for evaluating the results of the experiment.

An issue that can also be raised under this heaxling is the issue of the dlstnbutaon
.of values in the range of the measure. If the values. obta.med for algorithms being

measured tend to fall in a small subrange, there are a number of pOSSlble IEaSONs:

¢ Thej 'algorithms thai are bemg investigated have some pa.rtlcuia.r characterlstlc'
other algorithms will have différent measures, '

¢ The measure is poor and all *real’ algorlthma will ha.Ve a smular measure that
does not differentiste between them. '

» The rheasure is in a sense ‘non-linear’ and all ‘real’ a.!gorithms will fall into a °
very small subrange; however the difference in the values of the measures is -

significant.

Although the last two items have very different implications, it is difficalt to deter-
mine which one actually holds for a particular measure, '
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2.2.5 'Ability to calculate meaﬁure fnr a specific evens

3

The measure can be calc1d&terl for a specific event if 11: has heen defined so that for

any given event, a value can be calculated for the camptﬂ:a.tion up to and mcludmg '

 this event [32 59]. This allows for an understa,ndmg of how the toncurrency changes
during the computation, and an indication of where bottlenecks are occurring, An-

other advantage occurs when these values can be determined during the running of_

the computation, as opposed to afterwa.rds This is obvmusly an objectlve cntenon
1 Coo '

'2.2.6 V'Expeuse of compuif&tion in terms of both time and space

This relates to the algerithm for the thlculation of the measure [32 48, 59]. The

questmns that need to be asked are as follows:

¢ Does the algorithm' require exponential _time?

e

» If the'a'.lgoritli{%f {1 exponential, does it allow the calculation of the measure

~ for reas'onably sized examples? What are the constants invulve&‘?..

. If the a.lgonthm is exponential, a.r% there any algorithms tha.t w111 allow for an

approximate solution? i

Again, this criterion can be classed atnong those that can be objectively determined.

2.2.7 S.tabilf‘lity with respeét-to granularity |

For some meaguras, it Is necessary to count events that have occurred in specific

procedses, Thqr,e:_’ore the definition of what constitutes an event becomes important,

and as this' definition becomes finer or coarser, there is an increase or decrease in

the number of events. Charron-Bost [16] defines this as granularity, However, she
expresses Teservations about whether it is necessarily’desirable for all measures to
be stable with respect to granularity. | . ot
2.3 Measures of concurrency

Under this heading, the measures of concurrency fbund in the_.li'teraturé will be

pres_eﬁted. it is only relatively recently that the concept of a measure of concurrency -

has ‘been proposed, and discussed in detail. In some references, the toucept is
developed a5 minor part of a broader topic, and in others, the focus of the article
is on a particular measure of concurrency. The different approaches that appear in
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‘\ . .
the htlature have not yet been comra.reﬁ rela.ted or fu]ly eva..ua.ted and the aim of
this resea.rch is to contribute towa,rtls this. '

< I

2.3.1 The message—passmg formalism ' I
. The measures of concurrency described in the {following sectxéns are deﬁned in the
fra.m.ework of space-tlme diagrams of Lamport [46), also refefred to as the message- )
pa.ss[mg forma.hs\ hese diagrams define 4 formal model of a distributed system -
" and a!low for the deﬁrutmn of a partial ordering on the events in the distributed
* systeld, called the *happened before’ relation. These raeasures af conserrency rel}'
on the definitions of logical clocks tha.t ca.pture the partxal ordermg of events in. the '
d;stnbuted computatmns. - g

Til& ‘happened before’ relatmn o | 3 g _“

="

LamPort [46] mtroduced the ‘happened before rela.tmn tha,t gives a partial order
of events in a distributed computn,tmn. Tlus framework has been formalised by
) Cha.rmn-Bust {14] a8 follaws: = . :
" A'distributed system consists of a ﬁmte set of sequentlal prbk:essea {A,.. Pn}.
A process P is cha.ra.cternsed by a set of sequenses of events. Each sei’ P is p;eﬁx '

1

closed, namely for any sequence in P, all prefixes of the sequence are a]so in B
Events fall into three t:la.sses '

0

1. an internal event, _ b ‘
2. the sending of a message to another process,
3 the recelpt of a message from another p;ocess. S

All events and messages are different and can be distinguished irom each other by.
some means, for example uniqﬁe ‘subgcripts. Messages are sent from one process
F; and received by another process PJ, 60 _a message. cannot be sent by mult:ple
processes or received by multiple processes. v

For each 4, let C; be one of the sequences defining P;. The relation < is defined
on the set of events obtained from the set of sequences® CyU-+-UC, as the smallest
transitive relation satisfying the fdllowing ':(1) if ¢ and b oceur in the same process -
and ¢ comes hefore b, then a<b, (2} if a is &ﬂpndmg of a message m, and b is
the receipt of m, then a<b, This relation, known as the- ‘happened before’ relation

“In [18}, » sequence of events is defined as » tqtnlly ardezed set of events, -
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Figure 2.2: A distributed computation expressed as a space-time diagra.m;

forms a.'partial order on the set of events, and wa.s'ﬁrst defined by Lamport {46). It
captures the causal relationship between events. '

C = LU UC, is called a computation of {Pl, (P} if itﬁsatisﬁea the
following: (1) (C, <) contains no cycles (2) for every recexpt of the message m, there
is a single sending of m. .

= is defined 28 & X b iff a~b or ¢ = b. Events a and b are concurrent (a co b) if
~{a % b) and ~(b £ a). Concurrent events are those that are causally independent
of each other, . .

_ The happened-hefore. 1e1atmnslup can'be captured in the space-time diagrams

introduced by Lainport [48] (sea Figure 2, 2) and such diagrams entirely define the
computation [14]. In Figure 2.2, the horizontal lines represent processes, the time
axis runs from left to right, and send and receive events are joined by = directed
line. ' ' ! '

Logical clocks

The reason for defining clocks on a distributed computation is to provide a tool
to determine if two events are concurrent with respect to the partiel ordey defined
above [14], This can be done by assigning a timestamp or date to each e fent and

_ companng these dates to see if two events are concurrent. / .
There are three different approaches to logical clocks as survayed by R}a,ynal [58]:

1. linear logical time ~ each date is represented by a single integer,
2. vector logical time ~ each date is represente& by an n-dimensional vettor,
3. matrix logical time ~ each date is represented by an » X n matrix,

Ounly the first and second have heen used for measures of con.cu:rree%cy and they will
be described here. '
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Figure 2.3: A distributed computation with linear logical clocks.

Linear logical time Linear logical time was defined hy Lamport [46] in 1978, ‘A
clock ¢; is defined for each process P, which assigns a number c;(d)r to each event a.
The catire system of clocks is defined by ¢ which assiguns to event b the number ¢(b)
where ¢(b) = c,(b) if & is in process P, The implementation rules for the clocks are
ag fallows

1. each clock o is mii;lahaed to 0
2. when process P; executes an mternal avent ¢; is incremented hy 1,

3. when process F; executes a send event, ¢; is incremented by 1 and the message
m contains a timestamp Ty, = ei{a), '

- 4, if event b is the receipt of a message m by process F;, then ¢; is set vo
max(Ty,, c;{#)) and incremented by 1.

These clocks satisfy the condition
a2 b= cla) € o(b)

Note that the converse implication cannot hold, as it would imply that ¢{z) = e(b)
if @ and b are concurrent [14]. Therefore the relationship between events cannot
be determined from the dates of events, Tinear vector clocks, however, give a total
ordering of the events and the time at any event gives the number of events (mr:ludmg
that event) in the longest causal chain preceding it. '

In Figure 2.3, the digtributed camputatmn of Figure 2 2is shown with linesr
" logical clocks,

.Vector" logical time Vector logical time was developed indepsndently in 1988 by
Fidge [30, 33), Mattern [49] and Schmuck [62],
{30, 62] are cited in Raynal's survey article on logical time [58].
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Partially ordered logical clocks are represented as vectors in N™:
S e Ifv E"N”othen 'v[z']" répresents the ith c.oinpone;lt of v,

o N is partinlly ordered by £; @ < b iff ofi] < b[z’] for each index i,

o Huw e N®, then w = sup(u, 0) is deﬁned as follows: for each mdex i, wii] =

max{u[i], »s}).

. Intuitively, the ith posi_tion in the vector clock of process P; represents the time in
P; and the jth position (j # ¢) represents the most recent knowledgs that F; has of
the time in process P;. Clocks are applied to processes as follows:

1. the initfal vale of the clock ©:is (0,.. 0),
2. when process P; executes an internal event, @‘[a] is mcremented by 1,

3. when process p; executes a send event, ©;[¢] is mcremented by 1 and the
~ message m contains a tlmastamp T =04 (a),

4. if event b is the receipt of a mwsage m by process F;, 0, is set to sup(‘I’m, 0] ,),
and ©;[] is incremented by 1; '

Note that this last rule is equivalent to saying increment @;[7] by one and
- set Oy to sup(Tm, ©;5), since O;[] always containe the most recent knowledge

about the logical time in process P;. So a more general rule for vector clocks

states increment ©;i] by 1 before any evént in process P;. This ie the formu-
Jation that Charron-Bost uses in her work, However, this cannot be applied
to linear logical time if the logical clock time s to-represent the length of the

1ongest causal chain of events before a given event (as is reqmred for two of -

tHe s concurrency measures presented below),

For any event a that oceurs in process J, its vector time is @(a) G)‘(a)
These clocks satisfy the condition

a%bﬁ e{a) < ().

This menns that vector clocks charactense concurrency--fmm the dates of two
events it is possible to determine whether the events are concurrent®, It has been

SPhere are other wayy to characterive conrurrency. For example, the absence of a path between
two events in the directed graph formed by the space-time dingram [44],

S
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Figure é_.al: A tiistrilmtecl.compltt'atinﬁ with vector Iogicak\clucks.\-

iy
shown by Charron-Bost that forn processes, clocks of size n are Optlm«l“thé pa.ma.l

ordering of events cannot be captured with smaller clocks [1?] _
In Flgule 2 4, the dmtnbuted romputatmn of Figure 2.2 is shown with vector

| logica.l clccks B T B .
Fidge {‘31]9 extends vector clacks to deal with nested parallelisr where processes
ran be dynam.cally cma.ted and ternunated . ) _ t;':;:

e
i

. o . . oy
In the following sections, T wil} Iiresent the five measures of concurrency defined in
the above described framewark, Fach measure is defined for a specific computation
of an algorithm, where a computation is defined to be a sperific execution of an
- algorithm, Charron-Bost notes [15, 16] that to obtain a measure, for an algnnthm
the average of the mea.smes of all the computations with a certain probability must
be calculated This is noi explicitly stated for all measures defined in this framework,
but is taken as given. At the end of each section, any e:ustmg work on the evaluation
of each measure will be presented,

| 2 3. 2 Chmon—Bost’s measure of concurrency w

Chanon-Boat (14] suggests a measire of concurrency « based on counting con~
current pa.trs of evenis-—the more concurrent pairs, the more concurrency in the
computation—-—deﬂnéd as '
PP (L0 N
Hia,b) | e € Ci,b € C; and i # 7} |
If each C; contains ¢; events, then there are zl$i<isn ¢ig; concurrent pairs in total
and this oceurs when the computation is totally concurrent. If the computation is
entirely se?{iential then there are no palrs of concurrent events. Hence the range
*Gited ir{l_iaz]. |
.
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of this' measure is [0,1], where § represents totally serial, and 1 totally coneurrent,. |

namely with no communication between processes.
Charron-Bost notes that this is not a very accurate measure [14}, and presents

S, . 20 example to show where the measuze does not behave in an intuitive way on a
%zmple exa.mpl The measure w does not allow the calenlation of a measure for a -

specific event, | i“ulge [32} haa presenied an algonthm to caleulate the measure, but
there is no analysis of its complexity. Kim et al [44] suggest an approXimation. to

w, W that is cheaper to calcnla.te The measure has not been evaluated in terms of

any other criteria, ' '

_2 3.3 Charron-Bost’s measure of concurrency ™

The measure m [14] will he the focus of this research, and themfore it mll be
'presented in detail. The ranaens for the choice are presented i in Section 2.5. The

measure m is based on cauntmg_the number of consistent cuts in a cﬂumputatmn. '

The cohcgpt hehind this is that the more pracesses walt, the less concurrency the
mmputa.l:ion exhibits. Since the ability of the computation to be cut cousistently is
related to iis tolerance to stopping, a computation’s concurrency can he measured

© in terms of its number of consistent cuts. _ .

A cut of a distributed computaﬂon can he deﬁned as fo]lnws- Conalder the sets

{z e C',, @ 2 u;}, where ¢; is an t-vent. in Cj, and thelr union

C= U {mGC,Ia:-ﬂu‘}
16{1, wh} _
This is called a cut. It is not & computation, as it way contain the recelpt: of a
message but not the sending of that message.
A consistent cut is a compufation and it can be viewed as a global state of the

computation where causality is nat violated [33], hence the consistent cut canpot-

contain the ‘recenpt of a message without its sending. However, this global state d,&)ves
include messages that are In transit, namely those messages that have been sent but
not yet recaived [49]. '

A ccns:stent cut ¢can be de:ﬂned forma]ly as fellows: a coasistent cut of a dis-
~ tributed compatation € is a cut’ €' that is left closed by the causality relation. This _

raeans that for any a,b € 0, i b € C' and a 3 b= a € C*. An exasaple of a consis-
tent cut is the past of an event a, ({ a)c or (| ) defined by ({ &) = {x € C,z £ a}.
oy ' : :

B
i
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a

Results from combinatorics are nused to define the measure. If it is assumed that
each C; contains g; events, thern the following values can be determined analytically:

. The value e represents the number of consistent cuts in a totally sequential
compitation. A totally sequential computation is one in which no events can
happen concurrently and it can be cont:eptualised' as vach process completing
hefore, the next process hegins. Hence, thera are g; events in each process at
which t e computation can be cut consistently, Together with the empty cut
that is aljo consistent, it follows that p* = L4+ g1 + -+« + gs.

» The value p° represents the number of grasistent cuts in a totally concurrent
comziuta.tion. This is defined to be a computation where there is no commu-
‘nication between processes. For each process, there are g; events at which
a consistent cut can accur plus the start of the process when no event has

_ yet ocenrred. Because all the ProCesses can ran concurrently, this means that
p°=(1+ql)'-'(1+f1n) '

4 _
The measure m i5 defined a8 - S ' S,

where g is the number.of cits in thi compatatxon under consideration, The measure
takes values in the interval [0, 1] with 1 for a concurrent computation and 0 for a.
sequential computation. '

- Chazron-Bost presents two methods te determine p.

¥

1. A ocut

C= U {:BEC',]:I‘-'{(;,}
15{1| nﬂ}

is consistent if and only if
sup(®{a), ..+, O(an)) = (@(w){1]),..., Oan)[n]).
Hence each cut can be checked for consistency usi.ﬁg the vector clocks.

3. The number of antichains (or independent subsets}'? of a partially ordered
set of events is equal to the number of consistent cuts in that distributed

Y An antichain or independent subset hnn the property that no pairs of elemeﬁts ate related by
the partial order relation. In this case, all the eventa in en antichain will be concurrent.
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. L { P
computation. Therefore each subssi<an be checked to see if it is an antichain.

Each pair of elements in the subsets can be checked for concurrency using the
vector clocks,

Charron-Bost also presents a geometric interpret.ﬁtiun of the measure, This inter-
preta.tiun allows for the identification of the events that contribute to a reduction in
concnrrency !

Charron-Bost presents a comparison of « and m and she notes that w 18 a
special case of m. Let k-antichains denote antichains of size &, then w mvestlga-tes
the mimber of 2-a.nticﬁajns, whereas m investigates the total number of k-antichains

for2<k<n. Hence w = m when there are 2 processes. She notes that there exist

computations ¢’ aad ¢’ such that w(C) < w(C’) and m(C) > m(C")

Charron-Bost [16] has compared two algorithms for calculating m, based on the
two metimds of t'ha.ra.ctensmg consistent cuts. She notes that the algorithm that
counts the number of antichains is efficient when the computation under ronsidera)\-

 tion contains few 2-antichains. This would occur when there is little concurrency in

the computation, namely when there are few concurrent events. Kim et al [44] have
lil_'ésented_ an analysis of the antichai_rg algorithm that suggests it requires exponential
time, No furtlier analysis of these {lgorithms has been presented.

characterisation of the degi;ee of toncurrency

Raynal [59] describes m as a go
.lm computation of x is not feasible. Fidge {32}
notes that the calenlation of p uqlng vector clocks requires EK,(“ ng; integers to
be stored and that m can only he calculated after the computation has terminated.
Recent work by Kim et al [44] suggests an approximation to m, denoted M
that is applied to formal protocol specifications. A computation js decomposed
into concurrency blocks and a measure is calculated for each block based on the
antichain approach. They show that the algorithm is fanter than Charron-Bost’s ..
antichain algorithm; however they do not evaluate M in terms of any of the other
criteria or show how the values returned by the approximation differ from those
retumed from the measure,
It has not been shown that there does not ex.tst a thst algorithm to calculate
pt, although any algorithm using vector clocks would have some expen‘Se in. terms
fspace, because of the necessity of storing the vector clock information and time,
because of the precedure for adding the vector clocks. Tt is possﬂ:le to compare
events for concurrency withont using vector clocks by showing that there is no
directed path In the graph between the events [44). This results in a tradeoff between
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gpace a}nd time; since once the vector clocks have been added, it is faster to check

for concurrency using the vector clocks of two events than to show the absence of 2

ke

path in the graph of events. _ _

Charron-Bost {16] bas shown that m does not give the experted results when
used with the operators concatenation a.nd fusion. She describes the following: if
¢ is the computation created from l gopies of C' concatenated together, and C
has measure m and C') measure m{), Then

_mm'-.:mﬂ-and [ co=mi) a0,

She notes that this is conrter-intuitive, as it would be expected that m() = m.
However, within" the generalisation for compatibility with operators. presented in

Section 2.2.3, this would be an acceptahle result for an operator such as concate-
nation. She also notes that with fusion some concurrency is guaranteed when two

very concu.rrent' ol;)era.tinna are joined by fusion. Finally, she states that there may
be other operators that are better adapted for use with m, but she is not awars of

y that are easily studied from the point of view of combinatories. :
Chmon-Bost {16] notes that the measure is not stable with respect to granula.r
ity but argtes that the cansal relationship camnot remain the same as granularity

changes. Therefore this criterion is not app}ica,ble' t0 & measure based on the cansal

_ dependence and independence of events, _
T I is not pos§ib1e o calculate the measure at a gpecific event in a computation,
" although the meastire can be interpreted geometrically which allows the hottlenecks

in the computation to be identified. The Ieasure has not baen evaillated in terms
of applicability t¢ real examples. '

Hence it appears that there is conflicting evidence regarding m. It ha.s heen de-
scribed as 2 good measure of concurrency, although it is computationally expensive
and is not compatible with operators; however, further work is required in these
areas.

2.3.4 Charron-Bost’s measure of parallelism p

In other papers {15, 18}, Charron-Bost presents a measure of parallelism, which relies
on the idea that the less processes wait, the more concurrent the computation, as
does m. This measure is presented in the a.bove-meu.tmned framework with tha_

W

following assumptions:

1. all processes start together,
a”f
I
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2 the time for an intemal event In E; is consta,nt and equal to 6,,
-3. sending a.nd remnlpt of messages s mstantaneous,
4. the time taken to deliver a message i constant and equal to ba.

A set of rules i is deﬁﬂ.ed for recursively tletermmmg the time T(4) at wh.iz:h avent
a occurs. T; is deﬁned as the time of the last event in process B, Let .p; be theé
number of internal ewants in C; and oy the number of messages in C. Two measures
. are defined. 'I‘he ﬁrst ,15 (p;,. cerPu) where ' -
| ; =.. PJJ' |
e E:E{m Y Pi% | _,
- The measure p; is caﬂed a coeﬂicient of coupling. T}ns descnbes the interactions

between F; and the _c:ther processes.” It is one when the computation is sequential
~ and zero whep It is .tc;'-tally concurrent and the last event of C.otcurs in C;. The
‘measure (p1,. .., 5} p’resenté problems for comparigon as R™ is not tatally ordered. "

A less accurate mepsure that allows for compa.nson is deﬁned ag:
p= Z;,__i(ﬂ mbi)
2= (et fha )

This nicasure takes on vaiues in 10 1] and equa.ls zero if entirely concurrent; however,

it rloes not pecegsarily iaqual one if sequential. The measure p ia called the mean
coefficient of coupling, .

‘Charron-Bost shows that' this measure is compatible with the aperators con-
catenation and fusioil on comput'\tions, itis stable with regpect to graﬁlnﬂé.rity, and
notes that it is well behaved for aunple examples of computatmns. It has not been
. evaluated in terms of any other cntena. ' '

El

2.3.5 Fidge's measure of concurrency g

Fidge's aims in designing a measure of concurtency are that it should be more
accurate than w but Jess compntationally expensive than m, should yield useful
results during the computation, and should be general encugh to deal with ‘nested
parallelism’, namely where prbcesaea can be created and can terminate dynamically
[32]). The meamure is defined at an event a in the complttatlnn as

1PlL-T

B=TET
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i~
P

where [ P | is the number of events that have occurred so far and is calculated by
summing the event-ccu:nts for each process in the clock fora '

[P = Z 9(@)[:]

F=1

A This value g,wes_ the number of events that accur before event a in terms of the
‘bappened before’ relation., Other events may have occurred in the computation,
but there is no inowledge of them at a. T° ds the linear logical time and repfé'senta
the minimum number of logma.l time steps necessary to rea.ch @ (thls is the same ag
the longest causal cham)

T = c{a).

‘The measure is based on the idea that as totally ordered time T increases in pro-

s

portion to the number of events that have occurred | P | the amount of concurrercy
" decrezses, The numera,tor denotes the amount of time ‘saved’ by the use of concur-
rency. The denonnna.tor represents the amount of time that could be ‘gaved’ if there -
were unlimited computmg Tesources, assuming that it is not pOsslble to execuie it
in less than one logical time unit. .

To calculate the observed concuiy "ency for the whole computa,tlon, it is assunted
when the ‘outer Jevel processes’ terminate; the logical clock is integrated as for
subprocesses, and the measure caw be calculated.

The range of the measure is [0, 1}, where 0 represents z fotally sequential compu-
tation and 1 a totally concurrent computation. In this context, 2 totally concurrent
éomputation would be one in which there is a process for each event in the oonipu—
tation, since new processes can always be created. Therefore, Fidge’s totally con-
current éoxpput_ation is more con_cﬁrrent than Charron-Bost’s definition where there
are a fixed number of processes and generally more than one event per process. o

Fidge notes that there are similarities between 8 and p, a8 p meagures the addi-
tional time introduced into the computation by concurrency. f tends to return lower
figures than w or m, since it assumes that more processes can be created, Fﬁlge
suggests a more realistic measure that takes number of proressors d into account

g PI=T
[BI=1P/d
He also shows that § is well behaved with respect to the operators ; (sequential
cencatenation) and | (parallel concatenation). It has not been evaluated in terms of
any other criteria, such as applicability to real systems or usability for comparing
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distributed aioc:'.%h'ms Calculation of the measure would seem not to be compiuta-
tlonally intensive since the measure can be calculated from the last known values of
the linear ¢lock an(l the vectut clack. '

2.3.¢ Raynal, Mizuno and Neilsen’s measurs of concurrency o

Raynal et al [59] present two 1neasures; a.(e) tliat measures how much time is wasted
~in synchi'anisatidn delay to. prodnce event e and a(C)' that measures how much time
is wasted by synchronisation delay in the whole computation.

Two ahstractions CONE and CYLINDER are described: A CONE refers { » the
- events that causally precede a given event. It is a pa.rtla.l]y ordered set and cad be
- defined in terms of the past of an event

CONE(e)—(l e)\{e} {b]beC b-<e}\{e}

A CYLINDER. refers to the partmlly ordered set assoma.te-d with a given computa-
tion.. i _

There are three values associated with each of the abstractions: volume, weight
“and height, The caleulation of these measures'zequ.ires an additional counter to be

introduced. Bach process P contains a counter W, € N™. W;[s] stores ¢;, the valie

of the linear logical clock; and W;i[j];4 # 7 stores the last known ¢; value of process . -

P;, The following rules are used:

1. Wiis iﬁitia]ised to (0,,..,9),

2 before process P; executes an event, Wil is mcremented by one,

3. when a mcssage is sent, it carries the value Wi,
4. when a process F; receives a message from F; containing W;

() Wilk]is set to max(Wi[k], Wi{K]) for 1 < k < n (k#4)
(b) Wili] is set to max{W;[s], W;{5]) and Wifs] is incremepted by 1.

- Also define ©;(C) (respectively, W;(C )) to denote the va.lues b1 O; (respectively, W)
when the computation ¢ terminates. b

The weight{CUNE{e)} represents the pumber of events that cansally precede
e and the welght(CYLINDER(C)) represents the total number of events that oc-
curred in the computation. « K '



The hmght( CONE(e)) répresents the mlmber of evcalts on the longt;.)it cansal path
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weight(CONF(e)) = (T, ere)m)i 1=]P -1
. #eight__(CYL‘INDER(C}): " 05(C31i] (= 2 1%)

‘ . The volume(CONE(e)) represents the ma.xm:&&m num’aer of events tha.t ccmid POE-

axbly have occurred before e, taking into a.ccomNm ‘Holes™ or nnused time slots.

former* by synchmnnatmn delays. The volume(CYLINDER(C)) tepresents- t’ne

maximum number of events that could have occurred m the Lomputa.tmn '
vbluine(C‘ONE(e)) (S Wile) [J’f)-# 1 B
valume(CYLINDER(C‘) ) = nx hexght(CYLINDER(C\) IR

.\

Cep

of events leading to e. The height(CYLINDER(C)) represents the {;rea.test log:cal
time that ocenzred in the cumputatmn.

4

'- hafrg'ht(CONE(e)) = -W_.-(e)iil -1=7-1
heizht(CYLINDEB(C_ )) = maxigjca Wi(C)[i]

The concurrency measures are defined as

' wlume(CONF(P)) welght(CONE(e))
volume{CONE(e)) - hmght(CONE(e)}’ '

volume(CYLIN DER(C )) weight( CYLINDER(C ))
volume(CYLINDER(C)) - he;ght(CYLINDER(C))

o o) =1~

.a(c);l

The ﬁ.rst Imeasure produces a value for a spet:iﬁ(. event, and the second for an _
entire computation. The numerator denotus the total synchronjsation delay that
oecarred. The denominator denctes the maximum synchronisation delay possible

f ) ) .
_ in the computatioig. The measures are not defined when the demominator is zero

which occurs when only one process is involved in the computation. Raynal et al
[69] also define other measures that guantify interaction between specific processes.

The measure allows for the caleulation of & measure for a single event, but has
1ot heen evaluated in terms of any other criterja. Calculation would seem not to be
computa.txonally intensive since the measnre can be calculmed from the last known
values of thé roks '

“
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2:3.7 "'Oth.er. meastires _ o | .

In this section, skort summaries of other measures of conrurzcacy will be presented.

S e
b

Fermal langoages

Tv}o concurrency ‘measures have been developed for the model defived by Arncld
‘and Nivat [1]? which deals with regular languages and uses the concept of the homo-
geneous (Cartesian) product of antomata to define a model of concurrent processes.

~ They are based on the concept that the less the processes wait, the more concur-

rency the computation exhibits, A speciif )'l_etter is introduced into '.t.he_a.utoﬁ:lata to

. indicate waiting and the concurrency measure is defined in terms of the number of

! “times this letter occurs, namely the amount of wa.iting that aceurs. The m’ieasure'_df.

(Genlet et al [37] is a probabilistic extension of Beanquier, Bérard and Thimonier’s -
measure {5]2 and is based on a mapping from automata to Mafkov chains. ©

| Arques et al {2] present 4 measure of the degree of authorised paralleliszn - for
dat:_ﬂmse concurrency control algorithms based on combinatorics of words. It is )

defined as the ratio of all possible serializable executions to the number of serializable

executions permitted by a speclﬁc cuncurrency control a.lgoni;hm :

. Frangon [36] presents a measure of pa\rallehsm for three different approa,ches to

mutual exclugion. The measure is defined on the behaviours of the system that

' .are defined as words over the alphabet of ‘allocate’ and ‘deallocate’. ‘The thyee

a.pproaches to mutual exclusion allow a numher of dzﬁerent beha.vmurs and these

0

_are used to calculate the measure.

The measures defined by Frangon and by Arques et al (and to s0mIE extent
the meastes of Bérard et al and Geniet et al) represent an interleaved approach
(see Sectibn 2.4.2) to concurrency, as they depend on‘lthe concept of a shuffle over
words™®, The behaviours of processes are represented as words of actions and the
meagure of Arques ct al compares the maximum number of behaviours with the ones
that actually occur.

This relates to an approach suggested by Charron-Bost [14} of counting the
number of linear extensions!? of a given pmrhal order of events. However, she rejects
this on the grounds that the aumber of linear extensions of a particular partial

1 Gited in [37). . o B _ ' : i4

2Cited in [37). : a

1P shuffle of two words, wy, g consists of the set of words obtained hy interleaving the Yetters
of wy and wa while retaining the order inside wy and ws, This can be défined recursively [35] se:
(o1 L Bug) == a1 LU bua) U e Ll.lw:) and v Ll & = e L1l o ={o} where ¢ is the empty word, .

M A linear extension of a partial order is a total order that extends the partial order,
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order can not be determined analytically from combfatorics, the somplexity of
connting linear extensions is not known, and an interleaving approach i not suitable
for distributed systems, Pruesse and Ruskey [64] have presented an algorithm to
_ generate linear extensions that runs in constant amortised time!s; however, in the
worst case there is an exponential number of linear extensions, This will be discussed
further in Chapter 6. '

Graph theareﬁical a;j.proach

Barhosa [4] investigates the effect of k-capacity channels on the attount of con-
* currenty using a graph theoretical approach. The reciprocal of the multi-chromatic
 index of the graph (7 Is defined to be the measure of concurrency, Barbesa shows that
the gain in concurrency ohtained by replacing O-capacity channels with k-capacity
channels can be de.cribed by a bound that is usnally small and tends to 1 as the
- system grows, '

Quening theoreticél aﬁbroach

Bambos and \pfalrand [3] defire a degree of parallelism within the area of queuing
theory. They/: /sssume an infinite number of processors; however, there are precedence
constraints on the jobs being proceaseg that produce a queuning phenomenon. The
degree of parallelism is defined to be the asyn #otic average number of processors
that work concurrently and it is equal to the a:}rera.gé.- quantity of work that enters
the system in one perlod,

‘Execution of program statements

Kumar [45] notes that many measures relate specifically ¢o the architecture they are
being applied to and they measure the patallelism that is present in that specific
architecture, and frequently only the reduction in completion time as a function
of the number of processes is used to characterise parallelism. He has .developed' a
software tool COMET to determine the maximum possible concurrency in a FOR-
TRAN program, It keeps track of the earliest time that a statement can be execuied
by determining when the values that it depends on arc computed. The measyre is
expressed in terms of ﬂle number of FORTRAN statements that can be executed

124 generation algorithm runs in constant amertised {me if it runs in O(N)_ wherg N is the
uumber of ohjects generated :
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at one time. Thig¢ value changes during the execution of the program, and the au-
thor notes that the instant parallelism can be several orders of magnitude farger or _
sinaller than the average paralielism, '

Pa;rall_el program execution times

This section discusses those m.eas!_tres that are associated with paraliel program
performance. An important reasure for parallel performance is speedup which
is a ratio of the time taken to ex@cute A program sequentmlly to the time taken to
exacute it in parallel. It measures concurrency indirectly hecause it only provides an
idea of the 2mount of toncurrency within a program without ta.kmg the structure of
the computation into account. It i is debatable whether these performance measures
achieve the same aims as concurTency measures.
Qumn [57, Chapter 2] defines. the speedup 5 for a pa:a.'ﬂel algorithm rlmning on
a parallel computer with n pmceaaors a8 '

T i
---l.ﬁ
S=7

n
xk\here T1 is the time tnken for the fastest sequantial algorit.hm to run on, tha.t com-
puter usirig one processor and T, is the.time for the parallel algorithm to run on %
proceseors, Other definitions take T} to be the time taken for the parallel a],gonthm
to run on one processor, or the tlme taken for the fasiest sequential algorithm to run
on the fastest sequential cumputeg\ Thus speedup indirectly measures the aNerage
amount.of parallelisin by coh‘@agl Wg the difference in execution times.

Eager ot al [20)] defines the average parallelism to be the average number of
processors that,are busy during the execution of the program, given an unlimited
number of processors and this i is eqmva.lent to speedup’ with unlimited processors.
This can be seen as an indiréct measure of the maximum concurrency.

Seveik [63)] investigates a number of ways to cha:asternse parallelism and inves-
tigates thejr use in scheduling. He defines the following parameters:

o f: the fraction sequential, i.e. the fraction of the prograin that must be
executed sequentially, '

« A: average parallelism .a.s deflned by Eager [29]“.

s m :"the minimum paralle]ism. l.e. the minlmum number of processors used |
during the computation.
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« M : the maximum parallelism, l.e. the maximum number of processors used
during the computation.

s F: the fraction spent at maximum parallelism. -
» V! the variance in parallelism.

His research has shown that it is not sufficient to use a single parameter in charac-
terising a parallel program for scheduling .purposes. It should be noted that none
of the parameters considered fully capture the structure of the computation in a
general sense, although the concept of using a number of para-meters to measure
concurrency has merit.
An a._pproach to determining execution tinie that deals with task precedence and
-random task execution times has been suggested by Robinson [61]. A task gro.ph
comsists of nodes that represent tasks and arcs that describe the precadence con-
straints between tasks; the task graph describes a partial order of tasks, Bounds on
the expected execution time can be determined from the random vatiables associ-
 ated with each task, The expected execution time can then be used to determine an
expected speedups This approach moves closer to the idea of a concurrency measure,
 but its focus remains on comparing execution times.
Amdahl’s Law {57) although not a measure, is an lmporta.nt result that gives a
bound on the speednp a8

1
T f+(1-f)fn }
where f represents that proportion of the program that iz inherently sequentml, also
known a8 the sérial fraction {43] or the fraction sequential [63]. This law describes
how one aspect of the structure of the computation can limit the speedup, although
it is not general enough to take into account the whole structure,

S<

Otker authors [40, 43] have disogreed with the extremely imiting nature of this
law and suggested other approaches. Gustafson [40] notes that f decreages a3 n
increases, because in real applications the parallel part of the computation grows'
with fhe number of processors but the sequential component does not grow, Karp
and Flatt [48] suggest that a new metric for parallel programs should be defined in
terms of a serial fraction which is determinéd experimentally.

How_aver, neither of these suggestions for modification of Amdahl’s Law remove
the fact that this law is based on timing and architecture, Amdahl’s law and modi-
fications of it therefore differ from the concept of a concurrency measure where the

o
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o M : the maximum parallelism, i.e. the maximum number of processors used
during the computation. '

o F: the fraction spent at maximum parallelism.

s V : the varlance in p@raneﬁsh;.

“His research has shown that it is not sufficient to use # single parameter in charac-

tetising A parallel program for scheduling purposes. It should be noted that none
of the parameters considered fully capture the structure of the compputation in a,
genera.l sense, although the concept of using A, number of parametcrs to measure
concurrency has merit. _

An approach to determining executlom‘.:me t.uat deals with task precedenct a.nd
random task.execution times has been suggested by Robizwon [61). (L task graph
consists of nodes that represent tasks and arcs that Jescribe the pw redeme, con-
straints between tasks; the task graph describes a partial order of tasks. Bounds on
the expected execution time can he determiued from the random’ vaiiables associ-
ated with each task, The expected execution time can then be nsed o determine an
expected speedup. This approach moves closer to the idea of a Loncurrency measure,

- but its focts remains on comparing execution times.

Amdahl’s Law [57] although not a measure, is an importam result that gives a

bound on the gpeedup as

1
S A= - |
where f represents that proportion of the program that is inherently sequential, also
known as the sérial fraction 43] or the fraction sequential [63]. ‘This law describes
how one aspect of the structure of the computation can limit the speedup; although
it is not general enough to take into Zcéount the whole structure.

Otlher authors (40, 43] have disagreed with the extremely limiting nature of this
law and su gested other approaches. Gustafson {40] notes that J docreases as n
increases, because in real applications the parallel part of the computstion grows
with the number of processors but the sequential component does not grow. Karp
and Flatt [43] suggest that & new metric for parallel programs should be defined in
terms of a serlal fraction which is determined experimentally, '

Howsver, neither of these suggestions for niodification of Amdahl’s Law remove
the fact that this law is based on timing and architecture. Amdahl’s law and modi-
fications of it therefore differ from the concept of a concurrency measure where the
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aim is to evaluate the concunent stlucture of algonthms independently of execution
times on specific alchltectules

2.4 CCS

In t}ua section, work will he presented that pertains to Mllner s Calculus of Com-

municating Systems [1:0] The operators that will be used in evaluating the measure
of concurrency m will be discussed and the definition of an algebraic ca.lculu_s of
~ processes will be given to facilitate the discussion of partial orders and time in CCS.
" An overview of CCS is presented in Appendix A. This appendix is presented to
give an overview of the topic for the reader with knowledge of CCS, and to detail
the CCS notation that will be used in this research report. |

241 Operators

As dxscusseﬁl eatlier, a criterion for the evaluation of concurrency measures is that of
compatibility with operators. CCS offers two combinators or opera.tors in the basic
set of combinators that can be used for obtaining new agents {50]:

» ‘Composition which allows the cm_xibinatian of two a,g.ents in parallel,

» Prefix which allows the preﬁ:dng of an agent by an action or sequence of
actions. Thig operator differs from the other types of sequential operators that
were presented earlier, since it cannot be nsed to put two agents in séquence.

Milner has defined a further two operators [50, Chapter 8]. The}* are Before and
Par and have the following deﬁnﬂc.ons'

Deﬁmtmn 1 \ _ | /;';;.;ffff’
' O
P Bsfore g ¢ (P[b/dore] ] b\\ﬁ})\b

I

;\k\ PPwg ¥ (P”ﬂdona] i Q[dg /dong] |
. (dl d3.done.0 + dy.dj.done. 0))\{&1, da}
These dpﬁnitinhs are only n;éani:i}lgﬁ;l when P and @ are well-terminating agents,

because they rely on the presence of a dons la.bel in the case of an agent that
terminates )
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Definition 2 P s well~termmatmg if, for every deﬂvatwe Pt of P, P! dﬂi i

imposssbk and also if P12 then P ~ Gone .

These .four opemtbrs wi]l be used in the evaluation of the c’(&sen measure,
2.4,2 Algebraic calculi of process and partial orders

The componenis of an algebraic calculns are defined in [8] as follows:
.8 a gyntax consisting of a family of opefatnra defined over a set of labels,

¢ an operstional semantics specifying the behaviour of the operators whichk re-
gults in a transition system (it is also possible to give a denotational semantics,
- for example, Hoare’s CSP {11] and Hennessy’s ATP [41]), -0

» the semantics given by equivalences compatible with the ai&ebi’aic- atrﬁctﬁ_re; |

These equivalences equate processes with similar hehaviours.

Aigebrai& caleuli for representing coneurrency and nondeterminism can be divided
into two I\E‘&m groups [27}: those that represent concurrency by interleaving and
those that represty t concurrency by some form of ‘true c.oncurrency y such as the
partial ordering of \ Svents. '

CCS is an example of the ﬁrst group---concurrency is represented by the fact |

that events can ocrur in any order, and this means that the parallel operator | is
not primitive with respect to observational congruence, as shown by the Expansion
- Law. Any agent confaining | can be equated with respect to behaviour to another
agent expressed in terins of the other operators, for example, '

%.5,0 + b.u. 0 = a0 ] 5.0,

These formalisms assume the existence of & global clock and global states [27] Advo-
cates of the mterlea\qng approach admit that for sonte a.pphca.tious this assumption

is not realistic; however, all formalisims have some sunp] ‘Hication and this particular -

simplification allows for mathematical models of large concutrent systems that are
amenable to specification and verification [66].

Caleuli’® in the second group represent concurrency by an alizence of ordering--
two events are concurrent if they are ca.usa]lj;_ intigpendent, and it is argued that

¥The caleuli based on a “true concurrency’ appmachvwlll be referred ta as having 3 cansal
sexnantics, because the causality between events is described in anch a formnallsm, This term :nchtdes
*partial ordering semantics® and ‘noninterleaving semantics’, :

AN
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sequential nondeterminism should be dwtmgmsheﬂ from concurrency to understand
- properties such as liveness in concurrent systems [27]. There is no assumption of a
 global clocklor linear timescale in these models and behaviowrs of the system are -
expressed as caifusal rela,tmns between actions performed by distributed subprocesses
{27, 39;. ' '

A number of dlﬁ'erent approaches ha.ve been taken in providing CCS with 4 causal
semantics. Best and Devillers [7], Goltz and Mycroft [39] and Hirschifield et al [42]
have used Petr1 nets to investigate c&usal models for CCS. Casteltani and Hennessy
[13)] define a dlsmbuted lahelled transition system that distingnishes the local and
global results of a transition and from this they define a distributed bisimulation
that distinguishes concurrent processes from nondetermmmtm sequential processes.
Their approach is based on an obse’r'va.tional view similar t6 Milner's but assumes

-a mumber of observers where each can \\(mly see the actions in a specific subprocess.
Boudol and Castellani define algebras {9, 10}, where labels on the transitions allow
for the unigue identification of each-transition and hence allow for the definition of a
concurrency relation. Degano, De Nicola and Montanari {22, 23, 24, 25, 26) present -
a anmber of approaches to prdviding CCS with a causal semantics, In their latest
work, they define a new operational semantics based on a partial ordering derivation
relation [27]. Many of these approaches involve decomposing a CCS agent into a set

" of sequential subprocesses and the transition relation describy how these sets are

transformed. .

The fssues discussed above relate to the semantics of CCS, whick I wil not

" e dealing with in this research. However, it may be possible for vector clocks to

be used to define a partial ordering semantics for CCS amd this will be discussed

further in Chapter 6.

2 4.3 Timein CCS - 1;}

- The concept of logical time has not heen a.pphe;l to CCS. Tofts [65] investigates
a ternporal model that is an extension of CCS that is more concerned with real- -
time isyues and ensmrmg that &vents oceur at certain instants than issues ¢y partial
ordering. 'I‘rans:tmna are divided into action transitions that represent actions of
no ‘duration, and temporal transitions that represent the passage of time. Two
extensions to CCS are defined—weakly timed CCS and strongly timed CCS. A new
equivalence, time-equivalence ~q is defined for strongly timed CCS,
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Quema.da. and. Fe.rnamlez [s61t7 mtrhdune time into LOTGS a data cominunica-
tion protocel specification langnage ba.séfi on CCS. T'Hoofs [64] demonstra,ted that -
Timed LOTOS was not suitable for thewlesmptlon of timers and time out mechar

nisms. This attempt at introducing time seems mainly ajmed at timing events.
" Other work in the area of time and concurrency theory includes the timed model
of CSP presented by Reed and Roscoe [60], the real-timed coneurrency theorj( of
Murphy [53], and the real-time consistent equivalence of van Glabbeek and Vaan-
- drager {86]. '

2.4.4 Medsuring concurrency in CCS

' Moller [52] in his PAD thesrs, presents a measure of concurrency for CCS. He con-
sulers the subset of CCS containing 0, Prefix, Summation and Composition and -
a.ttempts o deﬁ.ne a normal form for process terms as a product (para,llel composi-
tion} of terms - '

[ a@ze.
1&g _ .
- where each F; represeats a prime _prbcess and iz in some'_prhm'ndrma.l.foim such as
E aipi (> 0)
- 1%ign _
‘where each p; is in vormal form. He shows that a unique decomposition theorem
can he proved for this subset of CCS with or without cammﬁnica.tion, with respect
to strong and weak observational congruence. Ea.ch agent can be expressed 2 umque _
product of primes .
P=TI (30 asm).
) 1i<m 1isn
- This allows for the following deﬁnitmn of a measure of the measure of ma.ximum
parallelism as
mawpar(P)= Y (max maspar(ry).
l<iam ": . .
Thia CDIll‘.t:p'E is preaented at the begmmng of Moller’s thesis on axioms for congur-
rency and to the best of my knowledge has not been investigated further.

" Cited in [54].
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2.5 Choi{:e of measi_lre. o o ;‘/

|

~ 1In this section, the justification for the measure chosen to be -é‘.‘izplied_‘ to CCS ill

deﬁned are less saitable for a mtrnl}er of reasons which' will be discussed below._

~ after which the measures defined in Lamport’s message-pa.smng forma}ism will be
_ d.mcussed

Forma.l hnguages

The measures ly“le{ rh the Arnolchwat mudel [l] represent concurréncy by an

- m~tuple of actions dt:currmg in one timestep and therefore these measures ‘would

be mote a,pphca,hle to the synchronous calculus defined by Milner [80, Chapter 9].

Degano et i [25] have noted that the niultiset labels found in Synr.hronous CCS
~ give a direct representation of the amount of parallelism. : : _
" ’I'he other two measures based on formal languages relate to specific areas
(data.base concurrency control and mutual exclusion) a.nd are xlot ubvumsly gen-
‘exalisable to a wider settmg ' '

Graph thaoretwal approach

- Barbosa‘s work [4] relates spenﬁca]ly to the lsrue of alzepf cha.nnel aml its eﬁ'ect on

concurrency, therefore this measnre is difficult to generalise to allow the mves?:ga.tmn -

of other aspects of concurrent systems.

Quening theoretical é.pproa.ch

Bambos and Walrand [3] deal with quening theory which is not applicable to CCS,
mainly because of the emphasis on service times that are associated with each job, In
CCS, the only timiiig a.asmnption i that ‘concurrent agents proceed at indeterminate
relative speeds’ [..-.o p. 195}, Time has been applied to CCS as mentioned i in Section
- 2.4.3, but these variants of CC‘E are not under consideration in this research as the
- aim is to investigate a meastize of concurrency for CCS in its original form.
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Execution of program statements ' -

Kumar's concurrency measurement tool [45] is applicable to FORTRAN programs
and looks at the number of statements that can be executed at once. Again this
approach see;ns more applicable to Synchronous CCS, as the number of program
statements relutes to the number of multiset labels as described by Degano et al

sl

Para!lel program execution tlmes

The work that relates to performanre measures for pa.rallel progra.ms [57 29, 40,

43, 63] is not applicable to CCS for two reasons; first, as mentioned abave, the only

timing assufni:tidn in CCS is that nothing can be said about the relative speeds of

" processes; and seccmd  speedup does not ta.ke into account the structure of the com-

puta.tlan ‘because it measures concmrency only’i mdxrectly by comparing execution
times.

Moller’s measure of maxxmum parallelism

Ig} Section 2,4.4, Moller’s measure of concurrency in CCS is defined, The investiga-
tion of this measure relates to finding an a.lgonthm to decompose CCS agents into
niormal forms—a research issue which I have chosen not to pursue, although the ap-
iplication of this measure remains an unexplored ares of research. A second reason

) Jfor nat choosing this measure-is the fact that it measures the maximum pa.ra.llehsm
that an agent can have without taking into account the effect of communication and
therefore it van not be used to evaluate realistic algorithms, '

Measures defined in the message-passing formalism

In Secticn'z'.':;’.l, a number of meastres were presenited in Lampert’s framework. AR
of these measures have not yet been fully evaluated and therefors it would be worth-
while investigating any of them to determine their strengths and weaknesses. As will
- be shown, it is relatively easy to map from CCS to the message-passmg fnrma]:sm
There is a good match between the two models; it is easy to identify events and
processes in both, and neither moclel ma.kes agsumptions about the relative speeds
of processes. '
Charron-Bost’s measures p; and p [15] assume real times associated with each
event, and for similar reasons given above, these méasui‘eé were not chosen for the
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Lov]
4, 4

focus of this resea.f.:h. Charro Bast s measure w [14] has not bean chosan hecause

it is described as inaccurate and because m is an extension of it. : o

Three measures are therefore available for evaluation by application to CCS.
They are e, the measure of Raynal et al [59]; 8, Fidge's measure [32]; and Chatron-
Bost’s meagure m [14],

There is conﬂicting evidence about m. It is described as expensive to compute |

[59, 44]; however it has recently been used in' the literature as a model of measuring

concurrency [44]; hence it is important to fully emluai;e e and determine if it is a

suitable measure of concurrency. By applying theumeasure to CCS, more opérators
will become available to evaluate the compatibxhﬁ}r of m with these operators. Fie
nally, by testing m for usability and applirability, the worth of 7 for use with real
exa.mples can be determined. .

"‘he approach taken in this research will be general and will allow for the future
evalua«hmn and compa-rlson of dther meagures defined i in the same framework,

2'.'6 'Summary

In this chapter, & numbér‘ of measures of concurrency were presented. The mé,jority

are deﬁred in the message-passing formalism that deecribes distributed systems in
terms ,?{ the partial ordering of event.. in proces‘ses Amongst these is the measure

m which will be mVestlgated in this research.  Other sieasures that were described
fall mtro the models of concurrent systems based on formal languages, graph theory,
" queuing theory and parallel program execution times. ,
A number of cntena for the evaluation of measures of concurrency were presented
 and discussed. 'I'hey were divided into two groups—-abjective and subjective criteria.
An important criterion is that of compatibility with operators and & framework was
developed to discusa the different approaches presented in the literature. _
Work relating to partial ordering and time in CCS8 was described and a measure
of maximum parallelism for CCS agents was detailed. This measure is defined for
agents in a specific normal form.

Justification was given for the choice of m, n.lthough it was noted thd.t thexe are.

a number of measures that require an evaluation.

In the next chapter, the message-passing formalism will be redefined to actom-
modate synchronous communication and nested parallelism, so that v can be ap-
plied to CCS agents. o r

&



5.1 Introduction

o

The a.xm of this cha.pter is to deﬁel&p the necessary "'tb:ébry that will allow for the

application of the measura m to GCS. This will involve the identification of differ-

ences between the message-passing forma.hsm in which the measure is cleﬁhed and -
CCS. Once these differences have been detailed, it will be possible to redeﬁne
message-prssing formalism go that the Just:ﬁcatmn for the measure rema.lns and sq‘_

that CC5 can be translated into the redefined fotmalism. This pm\gess of redefiry:

tion will involve changing some basic features of the formalism a,nd proving that the
results adill hold i in this new formalism. Finally an algonthm can be 'leveloped to -
translate CCS into the new formalisri. This will involve detenmmng @41(:11 subset
of CCS can be ‘measured. "

3.2 The message'.-'passing formalism and CCS

In thls sectmn the exlstmg ;ﬂxmahsm a.nd Cr ?-will both be briefly presented as
well 35 & discussion of the differences. Then an outline of the necessary steps i:o '
apply the meagsure to CCS will be given. N

As discissed in Chapter 2, Charron-Bost! describes the fol’iov..ng fra.mework

» A fql'mal_ definition of a_\\thatmhuted system_ and computation.

» A pa.rtxal ordering of evenis in a distributed computation.

¢ The t;,on_ce_pt of 2 consistent cut.

« Vector clocks appiied to the distributed system.

o The deﬁnition of a‘ measure of t:‘uncurrency in terms of consistenf cuts.

« A combinatorial characterization of the number of consistent cuts in a totally
sequential computatxon and in a totally concurrent computa,tmn

1Charron-Bost [14] will be used as tny main reference althangh the materiat on lngnca.l time and
vector clocks has been presented in {33, 46, 49, 64].
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¢ Two meth‘{i.-is for calculating the corsistent cuts-—oue relating ta conditions *

ont the vector clock and the other relatmg 1o antxchams of the partial orders
\?

" Milner [5[}1 provides the following®: S

s A syn’snx of operators over a set of even’hs.

- N11 0, Prefix a., Summation +, Composition |, Restrrctxon\a, Re]a.belhﬁg :

1A Comstant (or Recursion fix(X = E) ). N - f

4l

. Opera.tio_nal semantics, specifying_ t_he hehaviour of operatdi‘s which results in

a transition system, namely the transition rules:
“  — Aet, Sum, Com, Res, Rel, Con.

o Semantics .given by an equivalence, for example strong e.tiuival_encé and obser-
vation equivalence. e '

In this research, a measure of concurrency for CC$ will be defined and it will involve
mapping the syntax and indirectly the operational sema.ntics to a formal model of

a dlstnbuted systeql. However, ib will ncﬂ; involve the second level of semantics.

First it is necessa.ry to determine the differences between. the messhge-passing.

formalism that Charron-Bost presents and the model of CCS. The ma._]or differences
can be detailed as follows:

1. (-“harron-Bost’s formalism assumes a fixed number of processes that all effec-
t;vel}r gtart at the szme time, and that no new processes are created durmg the
com\*m\a.txon. In CCS, certain agents can be interpreted as involying process
creation. For example a.b.(¢c.0 | 4.0), starts as one process that performs o and
b, and then ‘branche.’ into two processes, one that performs ¢-and one that

performs d. Therefore, in each case, there are a fixed number of processes, -

however, some processes can only start when other processes have finished.

2. Charron-Bost’s formalism assuines asynchrozous point-to-point copmunica- *

tion, so each message has a send process P; and receipt process P; associated
with it, and no other i?;'pce% can be involys. in the communication. In CCS;
communication uccu_rs'i:-retween a port e and ité'_"éz_amplement @ and this com-
muaication is synchronous, As in Charron-Bost’s formalism, osly two }imtm-

2Sé«; Appaidix A for an Idvm:view of CCS . !‘“\ N

‘\_-‘t._.r't' R
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\lll

ipants are permltted Note that in hoth case&, the cantent of the messages is
l

ignored?. - \\ _'

There is a difference in expressiﬁe power with respect to computations. The,
message-passing formalismn represents ane computation of an algorithm whereas
a CCS agent can describe an entire algorithm, Charron-Bost is not clear about

- how computations relate to algorithms and in her presentation she deals with.

individual distributed computations that are composed of individual sequen-

-tial computations. This lack of clagity extends to defining the measure for an

algorithm; she supgests briefly that a measure can be determined for an -algoy

rithm by calculating' the average across the values found for each computation.

The gteps in the process of a.pplymg Charron-Bost’s measure of concurrency to CCS

are a8 follows: _ - :

1

* this formalism. : : . .

cess creation and synchmnous coimmunication,

Radeﬁne Ch:m'ron-Bost‘s message-passing formalism to take into a.ccoutifc ptg-
o . .
Prove all pruofs with necessary modifications as given by Ch&rron-ant in the

new formalism. T

)

Show that intuitively the b;&a idea of a measure of concurrency s¢ill holds m

e

. Discuss the difference in expressive power between the mesgage-passing Sormal-

ism and CCS, 2nd determine how this 'aﬁ'ecta the meagurement of concurrency.

. Present an algorithm for translating CCS into this message-passing formalism.

This involves investigating various issues that relate to meururing concurrency
in CCS, for example: ' ' '
» What is a totally sequential agemt?
¢ What is a totally concuzrent agent? _ _
» Can all CCS agents be measdred or only a subset, If s0, which subset?

Use the algorithmic translation as u ba.ms 0i ihe Jmplement'—'hon of the con-
currency measurement tool, '

3This research-deals with the basic caleulus of CGS, not the value-passing caloulus. This is not
a mujor isme as it can he shown that the two are eqmv:nlent, go the method developed here will
extend to the value passing caloulus.

\\._



| CHAPTER 3. APPLYING THE MEASURE TO CCS . 1

3.3 Discussion

In f;his work, I will take a different approach to deﬁning synchronous commuuic;tion
in the message-passing formalism to that presented in the literature.

Charron-Bost et al and F:dge (19, 33] define synchronuus communication in the
message-passing formalism in a manner which I have found to be prublematlc when
using consistent £uts, The concept of consistent cuts has not been dealt with in
the frmnewa:k of synchronoug commumcatjgn except in [44] where it is deéalt with
briefly. -

_ The definition for synchronous comipunication gwen, in the literature results
o in the two events th'l.t form a gynchronous communication event being concurrent,
" which meéane that they are not related by the parti'ﬂ ordering relation. As deucnbed
~ fu Chapter 2, a consiatent cut is tleﬁned to be the left closnre of a cut with respect to
the pa,rt?ai ordar of events, Wlxen this definition of a conalstent cut is applied to the
situation where *ynchronons commumcat:on events are deﬁf;led to be concurrent, it
js possible for a cat to be consistent but to only include unJ of the'two events. This
* contradicts the intuitive idea fhat a consistent cut represents a conszstent global state
\m the computatlon [33]. (Note that in the case of asynchronous commmuca.tmn, '
' the send event can’occur in a consistent global state mthnut the corresponding
receive avent because tlle send event is clependent on the recelve event; however for -
gynchronous commumca,tmn, both events must be in the global state for it to be
cansistent because the two'zvents a:» mntually dependent.) '

~ Apother anomaly occurs in the situation described above. The partial order
information about pairs of synchronous communication events desctibes them as
éoncurrent, kowever thelr vector clock information is idanﬁca_,}j [34]. This means
that the vector clock characterisation of consistent cuts given by Charron-Bost [14]

 identifigs different coasistent cuts to those identified by the left closnre definition in
the synchronous case. It a,lso"implies that the vector clocks c_antaiﬁ more information
of the relationship between events thar loes the partial order.

My approach will be to equate the two events that form a synchronous communi-
cation event, With this definition the partial ordering of events is retained, however
the left closure definition of a consistent cub together with the eqﬁating of commu-
nicption eveats means that if one event occurs in the cut, the other event must alse
appear in the ent. This approach will also result in the vector clocks containing only
the Information of the partial order, and hence the vector clock charactematxon of
consistent cuts will identify the same cuts as the left closure definition.
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. The idea of equating the events in synchronouns commmpication v;.'"r-as parily de-
tived from the fact that in CCS, whenzqommunication occurs between two agents
that are concurrent, their two complementm y actions are transformed to 2 single 7
action. Taking the approach that synchronous communication represents a single -

' event therefore allows a closer match hetween CCS and the message-passing formal-
~ ism, The idea also arose from the work of .Charron-Boat et al [19] where although
they use the definition that results in the two events involved in a synchronoua't:om*
mupication eveﬁt being concurrent, they also make statements such as ‘.. in the
gynchronous case a pair of mnespanding send—receive events can be regarded as a
single corbined commummtmn event...’ [19, p. 25] and *.. they behave as if they
are glued together and can only ocenr together’ 19, p. 15]. _

This approach has one disadvantage in that the value of the number of cuts in
a totally sequentml computation must he retleﬁned to take into account that some
pairs of events are reduced to single events, This will d:acussed further in Section
344, ' '

3.4 New message-passing formalism

In this section, a new message—paséing formalism will be defined to take into ac-
" ¢ount the differences mentioned above. This exposition will have the same structure -
“as Chasron-Bost’s paper [14]. A snmmary.of the original theoretical framework
thut Cha.tmn-B'o_st'; uses was presented in Chapter 2, in thew'Sections tisled The
‘happened before relation’, Logical clocks and Charron-Bost’s measure of -
concurrency ™. |

3.4.1 Computation of a distributed systelm.

A 'cqmputiition of a distributed system consists of a finite set of progesses which are
dencted P = {P, P,.... P}, In Charron-Bost's formalism, each P; is a set of finite
sequences (; of events and is prefix closed. In ﬂlis new formalism, it will be assumed
that each F; represents only one specific finite sequence of avents. This means that
the property of prefix closure is no longer applicable to the P;’s, Howevers this
does not affect the definition of the concurrency measure, and allows for a simpler
definition 6f process creation.

§ € P gives the processes that start at the heginning of the computation. All
procesaes that are in \& are caused by other processes and the relation v+ b used



CHAPTER 3. APPLYTNG THE MEASURE TO CC§ | 44

Figt.re 3.1 Example of a dlstnbuted computation.
IR "‘x
:1?‘_‘.: -

to describa this. The fact that there aze a number of processes that can proceed
simultaneously allows for the expression of concurrency in this formalism.,

The notation F; ~ P; is used when process F; causes process P;, (i # 7). Each
_ progess in P\S is caused by exactly one proCess4 However, each process may cause
none, one or many prot.esses Define F € P, the set of processes that do not cauge
any processes; i.e. the ‘last’ procesises.

For example, let P = {Fy...Pr}, with § = {Pt,Pg} and F= {Py, Py, Py}, then
“if P, causes Py and Py, Py canses P5, Ps ca.usea Ps, and Py causes P7, then this
cotld be expressed a8

Pyvs Ps, PLis Pyy Py v Pry Py Po, Py s Py,

- Fach P is a finite seqnénce of events, Let a,b, ¢, .., denote events, It is assumed that
events can he distingnished from each other. The set of eventr that occur in specific
set of processes P or a specific process P is denoted by E(P) and E(P;) respectively.
The number of events in the sequence F; is denoted g;, i.e. | E(R) |= 4.

| The relation < can be defined on the set of events E(?) for a specific set of
processes P = {P]_,Pg,..., P,} as follows

1. if process P; = 6y03.. .0, and a; occurs before ax in the sequence, ie. j < k,
then a; < Bks '

-3, if process P; = 6107 .. uq, and P = b1bz ool and P, — PJr then g, < 61.

Define :<,_'='(-< U =), the transitive closure of < and =, Then ¢’ defines a partial
order® on E(P). (See Appendix B for the proof of this.) The relation <’ captures.
the cansality between events; if @ ¢ b then & s vausally depandent on a.

tThis meays that each process can only oceur once ir 2 computation.
54 partial order {s a relation that is reflexive, antisymmetric and transitive [20). Antisymmetry
hes the following definition: if 4 <* b and b ' a then a = b,
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Consider the following: P = {Py, Py, Ps, By}, 8 = {P, R}, F = {Py, Ps, P4}
and Py + Py, P; +» P3. Each process is defined as a sequence of events: Py =
abe, Py = def, Py = gh, Py = Kkl. This is expressed diagrammatically in Figure 3.1.
The diagram captures the information of the partial ovder <'; if there is aline golng
from. Ieft to right between a process e and e; then e; 4" ez, In the example, ¢ X' 4.

 As yet the formalism described does not allew for communication between pro-

cesses. In this formalism, only s'yuchronous commaunication will be represented.
‘Certain pairs of events represent synchronous commumca.tion events (this commu-

nication can only ocenr between Dairs of events) and an event can only participate

in one such communication. the also that the events must Séeur i in different pro-
cesses, The relation « will he used to describe this. If ¢ and b are the pair of events

in a synchronous communication, t;hen e« b Thls rela.tuon iz symmetric and has

 the pmpert}r that

Ya, b, cEE(P],c#a c# b, a’i;ab::-—r(awc)/\ﬂ(bwc)

It is necessary to redeﬁne <! to include mmmumca.tmn This will be done by the
: fo]lowmg rale

Va,be' E(P),a=b=a= b,

This will retain the partial ordering information of < and add the new inforn ‘.‘;:.'«--.‘*.on

given by the « relation by equating events involved in communication, -

it

RN

'cyclea. (Charron-Bost includes in

Then the relation < which inclndes commuhication can be defined as (<u=)*

or the transitive closure of < and =: however = now includes $he information from

«+. The relation X gives a partial order on E(P). (See Appendix B for the proof of

‘this,} The trans:tmty captures the causality that results from commupication. For

example, ifa,be E(P) and e,d
¢ are equated and a £ d. s
P is called a computation when ( E(P), %) as defined by +~ and « é&nta&ns_ no

E(P;), witha R band ¢ 2 d, then if b = ¢, b and

ina computa.tlon )
Two events are concurrent when they are not related by = <, Formaﬂy, a a,nd b

‘are concurrent (@ ¢o b) if ~(¢ < b) and ~(h < a.) Note that this deﬁmhon__ implies

er definition of a computation the additional -
condition that for each receipt of a-message m there is a (single) sending of m. In:

the new i’ogmaiism, this has heen deals with above in the definition of +¢, g0 that bj'
deﬁmtmn the two components of a aynchranous commumcatxon event are ‘ncluded
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Fxgure 3.2; An exa.mple of a distributed computa,tmn with synchronous communi-
catmn

L

.' tha.t ¢ and b are not in the same process, or in dﬂferent processes that are riela.ted

by ++, : '

* For example, consider the following: P = {P1, P, Bs, P}, S = {P1 Pz} F =

{Pz, P3, P} and Py v+ Py, Py = Ps. Each process is defined az a sequence of events:
Py=ab P = cde fg, Ps = hijklmg Py = npqrs and the cbmuniba.tion events are

j+= pand r = e, This is shown in Figure 3. 2 This diagra.m captures pa,rt;la.l order

" if there is a directed path joining event e and eq, then e; =< 5. For example,
ids and = e. Events 1 and d are cunmment. _ :

3.4. 2 Guts

bl

The meaaure mis based on the numﬁer of consistent cuts in a computa.tlon and for -
this reason the definition of a cut and a consistent’ cut are required. This deﬂnitmn'
has a similar intuitive basis as in the asynchronous case; however, for c.onsxstency
t6 hold, both events that take patt in a synchronous communication eveni must he
in the cut. | ' o

CharromBost deﬂnes a cut w;th respect to all processes: for each index i, let a;
be an event in B, then '

C= U {meE(P)Ia'-<a‘, _ :

i€{t,..n} - - o

~ is a cut of the compttation.” “

There is » problem with this deﬁmtion in that it does not allow & cut that
excindes some processes, i.e. processes where no events have occurred at the place
of the cut, for example, the empty cut. _ '

For example, if Py = aly Py = ed, ond P5 = ef, then it should be possible to
obtain the cut {e, ¢, f} from the definition ({c,e, f} = {zje BE(P) |z et {z €

" E(R) | ® % £}) (see Figure 3.3(a)). However, this isinot possible because the
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Figure 3.3: (a) An esca,mple of a ¢t *q Charron-Bost 8 forma!ism (b) An example
of a mt in the new formalism. _ '

déﬁ:ﬁtion tequires that an évent is chosen from each process, This is only a minor
problem in Charron-Bost's work®, but it becomes important when introducing the

' ¢unsal relation betWeen processes, —, For example, given P = P; and P; v B, it
-should e possxble to cut at an eveﬁt in P and at no event in P; or Py, because this

wounld satisfy the intuitive idea of » = ree Figure 3. 3(b})).
The definition can be modified - ows: let N = {1,..., n}, and let Eo € N.
E¢ will contain the indices of the processes that do not contribute any events to the

cut . Then for each § eN \Ea. choose an a; € E(F;), then

C:- U {xe B(F) e < a}
. EN\Eg

is & cut of the computation. _

Avconsistent cut ¢ of & computation Is defined as follows: C is a consistent cut
if it 15 & cut that is left closed by =, na.mely; if @,b £ E(‘P) such that b & ¢ and if
cbthengeC. ' | \ '

The past of an event e, is tleﬁned as follows: (e} = {z € B(P)|z da}. Itisa
consistent cut. The following notation will be used for the past of event « in process
P (la)i =l )N E(P) = {2 € E(F) |z 4 a}. Note that is not necessarily a
consistent cut. Note, however, that it is a totally ordered set, as a.]l events come
from one procass, and are ordered by <. : oL

The definition of a cut given above can therefore be mpmtten as

0= | wemE)ezad="|J (lak

iEN\Ee . i - ieN\EBg

- [ .
9 Charron-Bost’s. $1157 of ul N 1? eoncerning the checking of a cat for consistmcy usmg \rectnr
clocks it not complete as it omits the cuts $hat are not defined by n events,
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Consia'ler the exaxnple gnren in Flgure 3.2 (p. 46)
_ . Let Eo= {3,4he1=b a2 =, then C= {a,b ¢} and 1t is a consistent cut.

. LetEc-—@,a.l--b. ag—-e, aa.._l, g =8,
then C = {a,b, ¢, d, &, b, 5, 5, k, L, n, p, ¢, 7, 8}. Tt i & consistent cut.

s let Eg={l}, u=daa=iag=qthea C= {e,d,h,i,n,p, ¢} is a cut. It
“is not a consistent cut since 5 X h and b ¢ C.

As fﬁrt.her exa.rﬁi)les, {1 q) = {a b, i, don,pugds (L = a8}, (L 0)a = @,
(l 4‘)3 = {h'l ilj}! “' g = {”’spa q}' |

343 Clacks )

In this sectmn, the theoretical l)a.ckg;rmmd for vector loglcal clocks will be presented.
First. the clacks will be defined, then some results will be proved. The first result
shows that the vecior clock of an event gives the nwmber of events that have hap-
“pened in that pm;:ess before the event under consideration, The next two results
show how vector clocks can be used to characterise concurrency.

 Partially’ordered logical clocks are represented as vectors in N™:
¢ ‘If.v & N™ then 'v[i] represents-the ith -componenp ofv. ©
. N“ i partially ordered by <; a < b iff afi] < ﬂ[’e‘] for ea.ch index :'
o Ifu,v € N*, then w = sup(u, v) is deﬁnetl a.s follows: for each index :;\ \w[t'] =
max{ulf], v[i]) o v

%
1

IClocks are applied to the message-passing formalism described above as follows':i_:
o Ea.ch*process FP; has a clOt'k ©; that takes vqllues in N®, I‘
. O (a) represents the txme of event  in process P
) Imtml va.}.ues of clOCkB

- If P e S then the lmtlal wmlue of the clock 0. i (0,.. )
-¥Pe ‘P\S and Fi v P, then let @ be the last event in P{:\clock @,
takes the value of the dlock Gk(a) ’

]
Cu
i

» Updating values of clocks
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Figure 3.4: A distributed coinputation' with vector clocks.

— For each event in P;, O3] is incremented ‘ba(l
~ I @ « b is a synchronous communication event and a accurs in P; and b
in P;, then both O; and ©; are set to sup(©;, &;) when this event oceurs”,

e For any event e that occurs in process P;, its vector time is ©(a) = @;(a).

Consider the example given prewc:usly In Figure 3.4, vector clocks have been
added to the computa.tion Note that communication i§ treated as an event and
therefore the clock is incremented ‘At event _1, the third position has been cha.nged
to 3; a . the fourth to 2. - - |

. In themnext part of thlﬁ section, sorie results are proved that relate to vector
“clocks, The statements of these proofs do not differ from those stated by Charron-

~ Bost. To understai Jd why this is so, consndez' the following case: if F; =+ P; then. -

by the rules given above, ©; contains full khowledge of 0;, so0 it is possible to
present the proof statements without recourse to- $he — relatmn. Note also that the -
communication information ia contamed in the pa.rtia.l order and therefore does not '
need to be dealt with explic.ltly

Proposition 1 For any event o, ©(a)[f] equals the nurhber of the events of F; thut |
belong o the past of a O(e)[f] =| E(B)n{la)|=| (| 2) |
Prooft If P, € S, then ©; is initialised to (0,...,0) and on each event in B,
©;[4] is incremented by one, so this value represents the number of eventa up to and
including a in F;. '

If P; € P\S then the fullowmg situation exists for some Py, ..., Pj,

Py Py oo P Piwith P 8. <

When P;, starts;@; is initialised to (0,...,0}, so B‘-_,-, fi] =0, As P cannot be
started before P;, it is.not possible for it to communicate any timestamp to Py,

"This approach to_\rect.d} clocks in the case of synchronous communication is presenfed by Fidge
in {33]
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(ei.ther directly or indirectly). Therefore at the last event<ia Pj,, 0 i = 0 still
halds and therefore holds at the start of P,. This argument hoids._for each P;, hence
when P; starts the value of ;¢ is zero and so by a similar argument to above, on
event ¢ in" P, ©(a)i] will represent the number of events up to and including a in
P (In the case of a communication event, say a « b with a € E(P,), be E(P;); -
then & remains in P; and the count of the number of processes remains the same.)

[m]

The following result shows that the vector clocks totally capture the information

of the partial order, This is in contrast to linear vector clocks as mentioned in
Chapter 2. ' '

‘I‘heorelg 1 For any evénts a and b of a distributed computats‘&n the following holds
adbe=> O(a) < @(m "

PIDDf‘ S : .
L= Smce < is tramsitive, ¢ % a implies that ¢
{eeBP)loza)>ce{re BBy |s30b)ie {z€BP)]|zx
a} C {z € B(P) |z X b}. Therefore (| a)i C (} b)s, 60 from Proposition 1,
G[i](a) < O[ij(b) Vi & {1,...,n}, therefore ©(a) < O(b). o
~<= Asaume the converse, there are'two cases: . %g,__

=< b, hence for each 4, ¢ €

: 1L b« a by the first part of the proof xt can be shown that (b)) < G(a)-—-\\ |

contrathctlon

2 g €o b; therefore a € B(P) and b € E(P) with i # 7, sinee if 2 and. b are
in the same process, then they are not concurrént. Considar (| b ={z €
E(F;) | = 4 b}, There are two cases.

() (1 8)i=10 and hence (1 8% C (1 a).

(b)Y (1 8): 9& B, (1 b), is totally ordered and has o largest element ¢, say. Note
that ¢ < e, otherwise f & < ¢ then since < is transitive and ¢ £ b,
@ < b whicli would be a contradiction of ¢ co b. Therefore (4 ek € (1 aki.
However, (| b); = (] ¢); since ¢ is the lé.rgest element of (i &); and hence
(Lb) C (L a) o

In either case, ({ &) C ({ a).-.v Hence by Proposition 1 8(#)[i] < ©(a)[].
* Therefore it is not true that ©(a) < ©(b)—contradiction.

[ — = i+
Trem e,
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"

The final result in this section pl'esents a method for determm.ng lf two events
are congurrent, by mvestlgatmg the va.lues of the vector clocks,

ProPosxtmn 2 J.n-t ¢ and b be two eﬂc-mts ﬂzat befnng respectively to P- and P

Then 7

aenb s ( o)l < (e and O\a)b] < ow)m ).

Pmof ' ' \\:‘ ' ]
EX Assume co b, wﬂ:h o € B(F) a,nd be E(P,) Consider (L b = {a: €
- E(P) |a: < b}, r{ere are two cases, as in Theorem 1 and it.can be shown by a
similar argument that (1 b); C (1 e);. Hence by Proposition 1, Q(b)s] < ©{a)z].
By 2 symmetrical argument, it can heg'\,hown that (-?)(a)[j] < Q(b){]- |
<« 1 O(b)[E] < O(a)[#] and C-)(n)[J] < O(b)[f] show that @(a) £ @(b) and ©(b) £
- Qa). ‘Therefore from. Theorem 1, ~{a < b} and ﬁ(b = a), hence acod. =~ D

These restlts show how vector +lucks can fully descnbe the partial order <. This
allows for a characterisation of concurrency as shown in the last proposition.

3.4.4 Measure of concl‘lrrency_

ks

'i Charton-Bost motivates the measuring of concﬁrrency in terms of consistent cuts
\by a.rgumg that the tolerance o§ a computation to stopping relates to its ability to
he ent in 2 consistent manner, ‘ﬁkus argnument still holds in the new formalism, For
exawple, consider Figure 3.4 (p. 49). If process Ps is stopped (or cut) at i, then
process Py can be stopped (or cut) at », however, it cannot be cut at p because
event j has not occurred, becatse & the cut at 4. If the communication event j «» p
were not present, more cuts would be possible, for cxa,mplé at g.
Recall that the measure. of concurrency for the computatmn C is defined by
Charron-Bost [14] as -

2
c... ol
m(C) = EZEC,

By definition, m(C) should fa,ll in the interval [0,1]. As a result of the redefinition
of the formalism, there are now a few choices for p® and pt.
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a p* represents the number of consistent cate.ig a ﬁnta’.llyr’éeqqential execution
of C. It is determined hy summing,the number of everite in €. There are two
~ possible values - o '

ooz = 1oh 1+ F g

Fomin = Mmaz— |1

The first value counts each event sepa.rately, so each pair of communication
events is counted as twe events, In th_:e'sec'ond case, each pair of communication
events is counted as one event , to mirror the equating of communication events.
" This value is obtained by subtracting the cardinality of the communication
relation. To epsure that the meamu'é remains in the range [0, 1], it was decided
that the second valug Binin Would br | ysed. This can be expla.med by the fact
thet for some computa.txons i< '*;,g;_f 147 Lh;nr'e m <, 0, This occurs because -
.when ,u ig calenlated, pairs of cam:mi; ot n.t:cn etfents are viewed as one event,
. %?{hereas for pif,,. they are viewed as two.

» In the original formalism, a totally concurrent computation was one with no
communication constraints and therefore g = (1 + qu)(1 + d2)+-» (1 + gu).
In the new formalism, there are two factors that constrain the amount of
concurrency—rcommunication and the causality between processes. It was
decided that a totally concurrent agent in the new formalmm should be onein

~ which thereis no commuuication and in which the process structure is retained.

" The first condition is transferred from thie original formalism. The second
condition can be explained as follows: removing communication indicates how
concurrent the agent under congideration can pdssihly'%ecome; howevex, if the
process structure was removed, it wonld result in the concurreacy of. the agent
under cansideration belhg compared to the concurrency of a ai ,e;' “"*\agent

Betause the ca.usa.llty of processes is bemg saken into account, a mute complex
equation is required to characterise the number of consistent cuts u° ina tatally
-concurrent computation in terms of g '

= Jlpescuts(F)  where
a+ ] ous(B) #R¢F

cuta(P;) = {F\PPy)} |
. & + 1 . . if P;‘ € F.
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o .
s The number of consistent cuts in a given computation } can he caiculated by
’ metIhcds that will be discussed i in the next s:actmn.
G . .
¢ The ongmal measure Js defined for a Spe{:lﬁc cnmputa.non of an algonfhm. In
_this resea.r‘ch 1 wﬂl extend the measnre to algqnthms by defining-an ordered

pair Ja,q the measure of an algorithm. More specifically two values will be

chosen to" represent the measm‘e of concurrency of an algm; #thm A

!

~ mia{m(C)|Cis a computa.t;on of A}

- ’nax{m(C' ) 1 Cisa compu’c'l.txon of A}.

'I'lus makes it more dlfﬁc" )tc mmpe;re algorithmg because ﬂiyls not tota]ly_
ordéred However, it seems rea.hstlc that when taking into account all ‘.om_' i

putationg of an algorithm, there may be algorithmis that cannot ea.sﬂy be
compared. S : '.,._'\\ “

o+

Another possxble a.pproan:h suggested by Charmi.-Boat [15, 16] whick wﬂl bn___ __
discussed further in Chapier 6 s that of determimng probabilities for compu-
" tations, and using these I)I’O])H.bl]l,\tIEB :L. Welghts to determine a measure for
the n.lgorlthm from the measures\ f each computatmn This approach would \

generate a total q ‘]ermg of algorii !;una, : for T
ax
3.4. 5 Calculatmg the number of coralstent cuts

. Charron-l?.ost presents a result for detenmmng whether & cut*defined by @1,...48n

i cans:stent by chet:kmg a speclﬁc condxtmn on shewvector clocks

sup(G(az), eer &{an)) = (@)1}, @(un)In])-

The idea is that cor[sisi‘l'toncy o.'é:curs when the clock of a procesé F; has the most
up-to-date knowledge about its own “time’, and all other processes have the same
or older knowledge about its time.

_As the notion of a cut has been redeﬁned this result needs to be modsﬁed First,
to recap, the deﬁmtion of a cut is as follows: let N = {1, reyn}, and let g € M.

o

e \}

A

i

Eg will conta.m the ‘ndices of the processes that do not contribv*au any events to the o

cut C. Then far ea.ch i€ N\ Egq, choose atl t; € E(P), then o [
G_'b"j) U {ee _E[P{) |z < a;} = | U (L @) -
“" jem\Be . IEN\E vy

is a cut of the computation. - J
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~ Additional notation is reqnired'he'cauae of the new definition. L_et C be a cut
defined by E¢ and a; for i € N\Eg, Define T} € W™ as O(a;) if i € N\Eg otherwise
T} is defined as (0, ...,0). The value T;[f] will denote the jth componer.t of T;. The
following result can now be proved M

Propnsxtlon 3 The vut ¢ defined by Ec and a; for each i € N \Ee,
C= U {z€ BR)|»Za}= U (fa)

IEN\Eg {EN\E
ig a consistent cut if and only if

sup(Tl‘l *eay Tﬂu) = (Tl [1]| .. || Tn['n]).
P_rbof: " The proaf of this proposition appears in Appendix B. R o

Charron-Bost presents a second approach to counting consistent cuts, whereby
it is shown that the number of consistent cuts in a computation is equal to the
nuumber of antichains®, This result has not been proved in the redefined formalism,

Finally, it has beon s1lggestet1 that the number of consistent cats in a computa-
tion is equal to the number of nodes in the {finite) transition graph of a confluent
CCS agent. As yet, this result has not been proved and an outline of a possible
proof is presented in the section on further work in Chapter 6.

3.5 Expressive power

The message-passing formalism has now been redefined to deal with the first two
differences described in Section 3.2, The remainicg difference to be discussed is
that of expressive power. As noted earlier, the message-passing formalism repre-
sents one particular behaviour or computation of an algorithm, whereas CCS is a
description of the hehaviour of an algorithm. In the following section, some back-
ground material on computations and nondeterminiem will bé’%}esented, after which
it will be discussed how the difference in expressive power affects the measurement
of concurrency.

A computation is defined to be a specific behaviour or execution of an algorithm
or prdgram. Therefore for a sequential algorithm, there are a number of different
computations of that algorithm, each relating to different inputs. It is generslly

®An antichain is a subset of » partially ordered set with no pair of elemeuts comparable. Aa
antichain is slso ¢alled an independent subset. In this context, it menns that each pair of elements
is concurrent.
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exp'ected that sequential progfams or speciﬁca.tiona.will be ileterministic, that is for a.
glV” « input, the program will behave in a predictable way. Obvmusly it is possible for-
a construct that canses nondeterminism to be introduced into a sequentla.l lunguage.
However‘ the issue of nondeterminism hecames more important when dealing with
" concurrency as it is neczssary to model the nondeterminism that oecurs in the real
‘world because of relativistic effects of t:me—-—these effects are the result of a lack of
a global or centralised clock. _ ' B
Nondeterminism can be described ax follows: an algorithm exthibits nondeter-
ministic behaviour if for a subset of its inputs, two or mors different bebaviours
are posaubl\a for each input in th:s sntbset. 8o for each input, there are one or more
-. posmble compufa.tlons :

The message‘paos{ng fomialis;m does nat explicifly express nondet.eri:uinisni as
it descnibes individual computa.t:one, except for that nundetermmism which results
from the iniexleaving of events from different processes.

When dealing with a concurrent algorithm specified in CCS, nandetexmlmsm is
introduced by & number of factors and these result in different computations: |

o Swmmatjon, for exampla
| ~ a0 + b.0 can peflorm the action 4 o7 the action b
. Cﬁml;oéitioﬁ | |
~ a,0]5.0 can perfurmja thex b, or b then a
— a.0 | 2.0 can perform as a first action a, @ or T

There i3 a special class of nondeterministic agents called confluent agents (see ‘Ap-
| pendix A A_ithough these agents generate a number of cbmputa.tious, thef have
the characteristic that performing an action does not preclude the later octarrence -
of 5 different action that could have ocrurred at that time, These are a useful class
of agents since the property of confluence is desirable when specifying concurrent
systems [50]. Nondeterminism can ocenr in confluent agents as follows:

¢ Confluent Summation®, for example

"For a1y...,0n € Act,n 2 0, the Confluent Sum (o § ... | on). P i3 defined :ecﬁrshely a8
follows ' ) = '

o p -
(@} | )P & le.-f‘“ wifon ... ] imt | it {0 lan). 8 (n>0)
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~ (e ].ﬂb).ﬂ 4" .50 + b.a.0 can perform o and then b or alternatively & and
then . . : . . . 0
‘e Confluent Compusition’?, for examph

def

- @03 5.0 = (a.0] b 0)\# can perforin @ thep b, or b and then a.

- a0 ]{a} @0 _gt (2.9 | ©.0)\e can only perform 7, 50 this agent does not
display nondetériinism. ' :

" Note thai nondetemﬁnism can no louger occur becanse of potential communication”

. across the Composition operator since all communication is restricted by the set
‘used in the definition of Confluent Composition. (Sae Appendix A.)

It is necessary to determine what effect the difference in expressiveness has '6:1_

applying the measure to CCS. The most general approach is to cousider each trace!”
of actions aé a separate compuiation. However, in this resea.rch it will he ensured
tha.t at least the conflvent agents can be measurail.

The mmplest way | to deal with Confluent Summation is to conslder ea.ch ocour-
rence of the Summatmn operator as causing two different computations. Therefore,
in the example given abuve, there are two computations ab and ba. This approach

can be applied move generally to any occurrence of Summagion, where each ocour-
rence of this operator is treated ag the point where the computation becomes two
- computations, For example, given' 0.0 | (b.c.0 4 d.e.0), there are two computations
a.0 | b.c.0 and @.0 | 4.e.0, - | . '

The type of nondeterminism allowed by Confluent Composition can be consid-
ered as basic to the message-passing formalism since it is the nondeterminism that
occurs becanse of interleaving of events. Hence (2.0 | 5.0)\D can be regarded 25 two
processes, one of which performs 4 and the other 4. In a Confluent Composition

comemunication is ‘forced’, that is the set of actions in the Restriction is defined in.
such a way that communication has to happen if there is the potential for it, namely

if an action and its complement appear on opposite sides of the Composition, This
maps convmﬁently to the rejation « which defines the communication events. -
To generalise to Compo'siti.on, considey the differences between Composition and
Confluent Cumposition. There are two major differences; first, the two agents in-
volved in the Comimsition must be conﬂuent and second, nc.ndeterminism as a result

Ypor L L, Py |y Py &

c(?;jn LR} SLUL.
1A trace iz the sequence of actions generated by a CCY agent.

(P | P))\L is » Confluent Composition if c(m NL{P) = # and
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- of communication is removed. For the purposes of resolvmg the differences between
the fotmal:sms, the second is more important, since it permits the definition of the
communication event relation « and it would be desirable to retain this in an at-
tempt o make the approach more general. For example,‘given ¢.2 | 2.0 there is .
the Iiotential of @, & or . To retain a simple translation to «, the Composition
opera.tgr will be redelned so that communic:ﬂ:ion can only a.pi;ear when the action
and its complement are bound by R@strlctson. This involves comblmng Com;; with
Res as follows _ }f '
Com' _BLE FLE (¢ LUy
(B FNLZ & FN\L

This rule can alsn be viewad in terms ,91' a condition on Comg sta.tmg that it cannot

be applied if Com; or Comg can be applied. There are also similarities between the

Composltno"ﬂpemtor as redefined by Coma and Hoare's Conjunctmn and Hiding =

_ operators’, 4, pe 194]0

Note that communication in Confluent Composition w:ll sansfy this rule, as
communication alwayd falls in the scope of a Restriction. This redefinition does
affect the ageﬁts that can be described in CCS using Composition; however, it
does not have 2 serions 1mpa.ct becaunse in general communicatmn is restricted when
specifying concurrent sysiems i CCS. ' _
_ To understand how Composmon works whea Comy replaces Comj, con&tder

the following; if two complelgﬁﬂfary actions fall in the scope of a Restriction, these

actions wili be the events that are paired in the « relation and will be represented
by one 'r action—this is the same a8 in standard CCS. H@:wetref, the difference
‘occurs in the case where there is no Restriction, .In standard CC8, the occurrence
of the action, its complement or a communication action is permitted; however for
the purposes of thit research the ability to perform a commurication action will be
preciuded. | . ' ' ]

For example, in the agent (2.0 } @.0) only the actions & and @ will be permitted,
and in the agent (.0 | .0}\a only the 7 action is permitted, as in standard CCS.

This discussion also raises the issue of measuring the concurrency of an algo-
richm. As poted in Section 3.4.4, the measure of an algorithm will be determined by
the minimum and maximun values found over all computations of that algorithm,

4
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3.6 Translation of CCs

2.6.1 Discussion i

The message-passing formalism has now been extended to deal with synchronous
communication and procese creation, and can be applied to CC8. There are a number -
of questions that must he answered before the _tfanslaj.inr-. - CC3 agents into the
redefined formalism is presented. These relate to motivatis,; the tsuaslation and to
determining which subset of CCS should be modelled. ‘The followiwg points describe
" informaliy the intended translation process and are presented here to set the scene
for the discussion. ' \ e

. \i-~

-« CS actions will be mapped ‘ro events in the messa,ge-paamng formalizm, and
~ Uctions and their. complementb will be used to identify commupication event
pairs. When a communication event oceure, the two actions are replaced by a
single 7 action. For example, consider the following agent (.0 | Z.0)\a. The
comimunication event that ocmus between o a.n.d @ will be represented by the

* single actmn T o b ' '

- # An agent of the fcnrm @y en ol 8 where Qisa CCS agent that does not start
«with a prefixed action, will be identified as a process. So, for example, the
agent a.b.(c.d.8 | e.f.0) will be decomposed into three brocesses——ﬂ = ab,
Pg--cdamlPa—-Pf w:thﬁwf’ga.ndﬂm}’a. B

s As djscussed in the prevmus section, the Composition oPera,torwﬂl be modified
by the replacement of the transition rule Comg by Com) to allow simple”
tra.nﬁ_lation-fmm CCS t_o# the «» rela.tion.' When two comple'men.tary actions
fall in the scope of a Réstric;iun, these actions will be the events that are
paired in the < relation and will be reprééented by one 7 action. However,
wheén two com'plementary actions are not bound by a Restriction, they are not
considered as communication events, and therefore are not related by the

' :relation '

The approa.ch that will be taken here is that CCS agents can be broken down mto
a number of computations, each Cj‘Whl(‘h will be expressed in CCS notal;inn.
- Events and actions

In the message-passing formélism, processes are compased of events. I£ is necessary
to translate the actions of CCS to events. In CCS, there is the set of labels £ = AU;{,
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from which the set of actions Act = LU {r} is defined. 7 is a dlstmgmshed a,ctmn

that repreaents communication. The translation of actions to events can be déué ag
- follows:

'« Bach element of £ represents an event.

» A communication bair is indicated by an action a and its comple:ﬂb‘nt a. When
* the communication oceurs, it is indicated by a single event which iz represented
by the 7 action, " '

‘Processes

In the formalism, progesses are described as a ﬁ;iite sequence of even.ts; Thefefora,' '
to transfate CCS into this model, it would be reasonable to identiy sequences of -

action’ PreﬁXes as events. For'example, in the agent a.b.c.d.e.0, the process would
 consist pf the events abede. 4n general, an agent of the form al..“.a,..Q where Q
is a CCS agent that does not start with a prefixed action, will be identifled as a
© process. ' '
' ‘Uniqueness of events and messages «\\
In the,_meséa,ge-'passing formnalism, events and messages are assumed to be distin-
guishable from each other, In CCS, actions which will be treated as events, do not
have this property when considered as elements of Act, However, each action will
be mapped to a specific point in the time-apace diagram, and from the point of
view of the Concurrency Measurement Tool, this will be sufficient to distinguish
&ctiqnf. A more tigorous approach to the unique identification of actions is to label
them with the transition in which they occurred. For example, comsider the agent
2.b.0 | a.c.0. There are two possible actions both of which are g actions, They can
be d.mtmgulshed as: '

‘o the & action that canses the transition a.b.0 | a.c.0 % 5.0 ] 2.c.0 and

o

o the a action that causes the transition 4.5.0 | 2..0 3 .5,0 | ¢.0. -

Messages can be distingunished sumla.rly by a.ssomating them with the trunsition

where the communication occurred, This approach, hd{{.'evar, is not required for the
correct implementation of the Concnrrency Measurement Tool.

¥
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’rﬁnmmunicaﬁon ; . o . f . '
In the message-passing formalism, communication is defined by the & relation which

defines pairs of events between, which communication occurs. As discussed in detail”

- above, this set of events will be identified by using a redefined form of Compnsitidn -

where Restriction is used to perm:t communjcation, The communjra.tlon events tha’c
* can occur are those that are present in the Restnction get, '

Total_ly concurrent agents and tatally aequen%ial agents

As mentioned in Section 3.2, it is necessary to 5n\fﬂs£ig&te what agents will be inter-
preted as totally concurrent agents and totally sequennal agents. These agents are

- required to calculate the measure.

' As described in Section 3.4.4, ‘there are two factora that constra.m the amount
-Jf concurrency in a computation in the redefined formalism; commumca.tmn{_ nd
process cansality, In line with the disCﬁBs"ion given ip that section, a tota.llj con-
current agent will be defined as ozne { J_ no commuyaication, 50 each process is nat .
blocked by commlmlcatmn with other processes; Lowevd!, the process causality will

_ be retained in’ the de‘ﬁmtmn of a totally concmmnt;;ik This means that delays

e measure. For

that oceur ‘because of the structure of processes will contnbw
example, consider the agent c.b.(¢.d.0 | Z.e.0)\¢c. The totally concurreny
agent will be a.b,(c.d.0 | C.¢.0) where no communication can occur. So'the effects
of the communication on the concurrency are not taken into account; however, the
eﬁ'ecf.s of_ the fact that events ¢, &, d and ¢ can only occur after a and b are taken f '
into a.tconnt . fo ' P
A totally seqitential agenr. is the a.gt,nt where each pair of commupication e\rents _

has been reduced to one event, and where all events must occur one after anoth&. :
For example, cousider a.b.(c.d.0 ] €.2.0}\ ¢ again. A iotally sequential form of this
agent will be one interleaving of possible events, for example a.b.r.d.e.0 or a.b.7.e.d.0,

~ with the pair of communication eirents reduced to one 7 event, as discussed in Section
3.4.4. In effect, the agent that represents the sequential computations In the example
is abr.ded + ab7.ed0, the agent that is defined by the Expansion Law,

Finite agents = : ®

The formplism assnmes that processeéj__eventually terminate and therefore the mea-
sure can only he applied to a set of processes with a finite number of events. For
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that reason, only finite ag‘ents wﬂl be used. Milner [50, p. 160] defines finite agents

- as follows:; - _ _ P
An agent expression is finite if it contsins only finite Summations and

no Constants (or Recursions).
Snbset_of CCs
The subset of CCS that can be {lealt vﬁ;th oohtains the following operators:
0, Preﬁic. (finite} Summation, Composition, Restriction and Relabelling
and excludes: !

infinite Summation and Constant (or Recursion). | -

However, as discussed above the message-passing formalism does not allow the:

Summation operator, so the agents that are used for input will be divided into
the different computations that would result from the presence of a Summation.
Relabelling will be treated in a zamnla.r way- ~an a.gent for input wxll be i in a form,
where all Relabellings have been apphed '

The last question to be zmswered is the suitability of the subset of CCS. As
stated above, th_:s subset includes (finize) confluent agents which are defined by:

0, (ﬁ;ﬁte)_ Conﬂuent' Summation (which includes Prefix), Composition,
Restriction and one-to-one Relabelling. '

 Milner has noted in his bock [50] that %ctmﬂuai;ce is a desirable property for
ensuring well-behiaved specifications, This would.indicate that although it would be
preferable to capture the whole of CCS, the subset that has been dealt with is, in
fact, significant. Possible extensions to the subset will be discuSsed in Chapter 6.

Use of CCS notation

Note that the different syntactic furin_s of agent.s are usel to' distinguish the dif-

ferent forms these agents take in the message-passing form Hsm even though thesge
different syntactic forms may be equated iy the equivalence semantics (~y = oor
| =} of CCS. For example, consider Figure 3.5, (2} represents dia.gra.mma.tic;]ly, the
one computation that is possible in the message-passing formalism by the agent
a.0 | 5.0, and (b) represents diagrammatically the two computations that are pos-

sible in the new formalism by the agent 4.0.0 + b.4.0, although from the Expansion
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(a);. .t:'..a.o | (b) | I a b __
B _ b 4 v . ' : . .
. S . . . . . l b. . a -

5

Figure 3.5: (a) @.am% (b) 0.b.0 + b.0.0.

£ 5 .
. - . . I .
et .

fl

Law, a.0 [ 3.0 = a. 5.0 + b.o. Q. Note that (a) is the totally concnrrent form of the r

agent a.0 | 5.0 and {b) is its totally sequential form. .
- This use of notation does not impose any restncnons on the agernts tha.t can-bhe

. 'translated I-Iowever, this illustrates.that the resea;rch deals with the syntax and -

operatfonal sema,nmcs of CCS. but not the eqmvalence semaxitics of CCS.

3.6.2 'I‘ranslatmn algorzthm o

[

The algomthm presented is a static algonthm to translate a CCS agent into the

new formalism. It is static in the sense that the decomposition of the agent into
processes is based only on the syntax of the agent. The input isa CCS agent and the
output is a set of processes P.= {P1, Ps,.. ﬂ}, consisting of seqnences of events,
a relation _tha.t describes the causal links between processes —, and a rela.t:on that
deseribes the communication pairs «». Note that this translation algorithm maps
CCS agents into the message-passing fornalism, whereas the algorithm usgd in the
Coneurrency Measurement Tool which will be presented in the next chapter, maps
CCS agents into the data structures that represent the message-passing formalism.

In the following, a_;ent will be used to indicate the CCS a.gent and 4 j,k wxll
indicate process aumbers,
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translate(agent ,i) T
. if agent has the form a.E then
vadd a to B
translate(E, i)
if agent has the form E | F then -
get new process numbers 7 and &
cTeate empty processes Pjand P,
add (P;, P;) and (B, Pi) to —
translate( 5, 7)
tra.nsla.te(F Ry
if agent ha.s the form 0 then
do nothing =
if agent has the form E\e
 add the action a to the restriction mforma.tmn about E
translate( E,1)
After this has been done, the communication pa.:rs ++ can bha detenmned from
the restriction information that was recorded. A communication pair accurs
" whenever a label 4 and its complement @ oceur thhm two chstmct PrOCcesses
in the scope of a R.eatnctmn ona. - N

3.7 Summary

In this chapter, the differences between the messag'e-passing formalism of 2 dis-
tributed system and CCS were identified. The major differences are asynchronous
. YeIsus synchron‘c;us commrnication, and nesting of processes, and expressive power.
The formalism was redefined to allow for these differences, and it was shown that
 the original results are valid in a modified form in the new formalism, and that
the justification for the measax® still holds. The difference in expressive power be-
tween CCS and the formalism was resolved by defining how agents in CCS will be
measured. It was determined which subset of CCS will be uéed in the reszarch,
and it was shown that this subset includes confluent agenté. Fiﬁaﬂy, a translation
algorithm was preseﬁted to map CCS agents into the redefined formalism.

In the mext chapter, the Concurrency Measurement Tool which was developed
to measure the concurrency of CCS agents, will .be discussed. This discussion will
include the algorithms used in calcula.tmg the measure, and the performance of the
Concurrency Measurement Tool,



4. The 'COhcurre_ncy Me'aSUI'eme,nt
Tool

4.1 Intrcsduct ion

Y
i

'In thla chapter the Concurrency Ma'lsurement Tool wn]l be descnbed and discnssed,
The Conciirency Measurement Tool is a program that provides for the measure-
ment éf the cunmsrrency'nf agents in a specific subset of CCS, a5 detailed in the
‘previous chapter. First, an overview of the\\-p:ogfam'wiﬂ be given, with discuesion
of the appfoach taken, the data stractures ﬁse_d._. and the algorithms implemented,
The two major algorithms—that for updating vector clocks and that for calculating
p—will be'discussed. The second algorithm comprises the main work in determin
ing the teasnre and a theoretical ana.lysm of its performance will be gwen Thu ; |
analysis will be compa.retl with experimental results that Were obtained. buggea~
tions for optimising the a.lgonthm will also be presented Finally, extensions to the
~ Concurrency Measurement Tool and the application of it to other meagures wﬂl be -
dmcussed ' '

4.2 Description of approach

Since there is no known method for analytically determining the number of consis-
tent cuts in an a.rbitrarf cdmputa.tion, it is necessary to generate cuts and check
them for consistency. As there are a large number of possible cuts to be checked,
it becomes necessary to automate the process. Therefore, as part of this research, -
2 program was implemented to calculate the measure for a gi~> CCS agent, sub-
ject to the limitations described in Chapter 3. The program pn’.;\fides the ability
to perform experiments on CCS agents and hence to evaluate the measure and the -
feasibility of applying a measure of concurrency to CCS.

The program receives as input a CCS8 agent, and maps the a.gént in a data
structure that is a representat\ing of the message-passing formalism as redefined in
the previous chapter. As the algorithm requires vector clocks to determine if a
cut s consistent, vector clocks must be added to the events, Once this is done, the
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number of consistent cuts & can be couited, The values e and p’ can be det_eri‘nine'd
analytically and the measure can be calenlated. ' '

4.2.1 Data structures

‘The basic data structure is ‘that of the event. Events are combinél into a tree
- stru’ctﬁre-,—tha.t;{i:eprésents the'f)ossible causation of one process by another. Although
~ in Chapter 3, the presenta.tioh is at the level of processes, jn the implémenta.tii'.m of
. ‘the Copeurrency Measurement Tool, events cannot be repreSénted 28 a sequence of
_ Jabels attached to each process becanse of the amount of data associated 'with each
- event. It is sametimes necessary to have dummy events that represent no action,
as only binary branching is allowed. These dummy events are 1gnored when the
mea.sure 1s calculated, - _ _
In the following, the type declara.tlons (in C) for the data sructures-are pre- _'
sented. Both the action type and the res;.nctlon type contain Tabel fields. Instead
of ea,ch _a_ct:on being represented by a single character as in the previous chapter, an
action label consists of a string. This allows for the use of nieam.ingful names when
defining CCS agents. The action structure tﬁa.s a label field and a field to indicate
“whether thie label is complemented, The Restriction operator defines a subset of
actions that are ptecluded, and these actions. are stored in a hl;}}ied list, /3t is not -
necessary to store the complument of an action, since if I is the set_,ﬂtha.t is specified -
by the operator, then LUT is the set of actions that are prevented by.the Restriction.

*

. atyruct action t /* action type */
"“isbelstr label; /* labsl name %/
int barg /* complement indicator %/
3 |
gtruct ':?‘éstriat_t /% restriction type »/
¢ .
labelstr res; /% label nane +/ .

struct restrict.t *next_res; /+ po:.nter to ne:t restriction in list */

Y

The event strocture has two pointers to the two next events, a pointer toa possible
communication event and an action structure as described above, Next there is a
pointer to the variable that contains the vector clock, and a conater to record the
latest clock update. Other fields contain the event number and the process. number
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~in which -‘he event occurs, There js & pointer to a structure of Réfrictio ‘P that

_"ca.ptures all Re«tncntms that apply to tha.t event and hence to all events further
down the tree.

q

BHTUCY evehﬁ_t_ . /# eve;itﬁ_.,t_ype */ :
struct -avent";t 41_event; /# pointer to next (left) event */ -
struct evemtyt ¥r_event; /¥ pointer ta next (right) event */
- strucs _e?en‘l‘.j;é *comm; . /* pointer to ovent. {involved in communication
y . {may be NULL) +/ '
struci a.c:tion.;ﬁ'i?i»,/ /% agtion information (may ba empty) x/
. int *clock*_- = /* poinger to vector clock */ '
int update' Ly A4 gcmt rscent clock “upda..te._ */ \.\ .
int event n}mw _ _ ¢ s /% nnmbex of event */ -
int process-_nm' S }ﬁﬂumbnr{nt process that event occnrs in "

stzuct restrict. 1; *naxt_rea, /% pointer to list' of restrict:!.ons
i[_'_’ Yo , (pay be 301‘..!.)_ *
'k ok A =

Finally, there is a gtructure te keep track of process information Thts structure
- duplicates somfa of the information that can be obtained from the event tree.

struct process_ Pt - /% procese type ¥/ S -
gtruct event_ t *ﬁrét__e_vent; /% pointer to first ez’g‘b in process ¥/

int 'num_avants; . _/* nupber of avents in‘process %/ -
int il:i_?rst; /% £irst (non-empty) event in proceas */
int last; o+ last {nen-empty) event in process t/
int left; ' /% number of next (laft) process */

int right; _ _ /* number of mext {right) process */
E /* for convenience, this type contains im‘.e—= Ve
about which event (if any) in the process
iz conmtributing to the cuirent cut during
. . S ~ the cut checking process */
struct'aven:_t scut; O . /* pointer to event in current cut’
. ' " {may be NULL) %/
© f* indicator of whethar events in process
can contriblsta to current cut */

This structure capiures the ~ relation in the flelds left and right. It also con-
tains the information about the event (if eny) in the process is contributing to the
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current ent being checked. Finally, the snable field indicates wheiher the:process
is eurrently available to contribute evengs to the cut. This will be discussed in more
detail later. o grcd

o

/.-'? '
ey

4.2.2 Program overvies : it

There are two main sectiq/tfs in the progra.m The first relates to creating an event

tree, finding commumca.l;’én events and adding th. vector clock. The second consists

- of the procedures to ¢ %ula.te i, #° and p®and frum these to determine the value
of m. The structure of the program is as follows: '

input the agent ' ' SR
paxse agent and create avent tree

find poirs of comm&gicat:.on events and raeturn c.ount
~add vector clocka to events

calculate 4 by generating all cuts and checking them for consiatancy
calculate g° and p' analytically frou the number of events in each
process ‘ ' '

calculate measure and print results

“The agent is input via a file, in the form spec:ﬁett i the previous chapter. To
find pairs of comnmiunication events, the restriction lists are used to determine what
subtrees to scarch. Vector clocks are updated by the rules presented in Chapter
3. Durmy events receive the same time stamp as the event preceding them, The
procedurés used to find g will be discussed in more detail in the next section, and
u#* and p¢ can both be calculated by knowing the number of events in each process,
the structure of the processes and the number of communication events.

The output inclodes the measure, p, p°, 4°, the number of events, number of

procezses, number of commitnication events and the time taken to obtain .

4.3 Translation procedure

The translation procedure takes CCS agents and translates them into the data sirie-

tures given above. A recursive descent parser together with a number of s~wantic

routines is used to creato the event siructure. The grammar is shown below, includ-

ing the action symbols mdica.tmg the semantic routines, whu:h are the functions
that create the event tree:
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<,.> indicates ronterminals -

{..} indicates optional olements
#.. indicates action symbolsg

<agent>' ~-> ¥il <atail> #f¥il i
) LPar <agent> RPar <atail> #fPax
_ . Action #StoreAction Dot <agent>
<atail> --» Comp <agent> <atail> #iComp
Res <set> <atail> #fRes
. : eﬁpty string
<set>  —-> Action #Storelestrict
' )  LBrace <sételen> RBrace
<setelems ~~> Action #StoreRestrict {-Comma <setelem> }

terminals : . o : _ N

¥il 0 LPar < { RPar )
 LBrace {  BRBrace } Dot .
Contma, , Comp 1 Res \

Actiom  {’}% where X is a string consipting of one o#.more'leﬁsr
S cage letters, o Ca '
semantic routines asaoc:axed with action symbqls ,

-_Storeictxon ~ record details of action 10: use later in the
translation procedure
" Storeaeatrict'? add new action for restrictionm to list of actiors for

T later use - '

1Ni1, ZPar,
fhction, fComp,
1hes = (in general} q:eéte new events and ndd them to event tree

As opposed to the conceptual algorithm presented in Chapter 3, the grammar and
the semantic routines presented here embody the concrete algorithm that is used to
translate CCS agents into the dita. structnres that are themselves a coucretxsatlon
of the messa.ge—passmg formalism,

%

4. 4 Algorlthm for addmg vector clocks

Thp goal of the algunthm is to add vector clocks to the event tree using the rules
presented in Chapter 3, whick are presented here in 2 less formal fgrm‘
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" Iu;'tié.l valn_es of clocks
— X a efrent' oceurs at the beginning of a pmceéﬁ that is not caused by
- another pracess, then the mitla.l value of the clock is (0, . )

- If an event occurs at the 'begmmng of a process that 3 caused by ano

process, then the dlock is set to- the value of the clock of the last event B

the athei process,

. Upda,tmg values of clot:ks L ’ o ' 5

| - For ea.{:h eve:nt that occurs }n process P{, the ith posmon of the vector
clock is mc:remanted by i.

" K two events are partners in aynchmmus communication then their cocks
are get to' the maxipam df the va.lues of their clocks after the previous
step hag been done ' : 2

~ A -counter i5 used to'iudica.te if the update of the ith positior has been performed
and this is used to indicéxteawhich' events (nqdes)ﬁ'ha.ve been vistted, The algozithm
traverses the t: o depth-first adding vector clocks, If the beginuing of-a new process
m founcl the clock for the first event is copied from the last event in the previous

process, Iz a similar fashion, an event that is not 4t the beginning of a process takes

- & copy of the clock from the previou. ovent, Then regrrdless of whether the svent
is at the begmn.ing of a process, a communma.tmn. event ¢ any other ev:ant the ith
poamon iy maremented. However, if the event is one oi 4 pair of commumca.non
avents then it is necessary bo 1111(1 the maximum of the two clocks. This can only
be done once both clocks have had the position in the vector that correspond to
‘their procesy indices updated. If the ﬁartnar has not heen updated yet, the subtree
beneath the event cannot be updated and is left uniil the partner is upda.ted and
then vector clocks are added do the subtrees beneath both events,

As oach eveni is visited at most tmce, the a.lgonthm takes O(q } tlme where
qg= 23_1 g;, the total number of events. \

o

i
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add_clocks to avent .
if o iz not & communication aevent
copy clock Zrom previous event
if @ iz not a dummy event
. increment pos;tion i of the tlock, vhere e is iu process i
et update countsr to new value
add_clocks to the left child of e
‘add_elocks to the right child of o
alse /* o iz n vommunication event #/
if e’s communication partner has not baey updated
copy clock from previous event )
. increment position i, whera e is in process 1
. set update counter to new value
| else ' /* o'z has been updated #/ .
¢opy clock fxom provious eveat
‘increment position i of the clock, vhere e is in procesa i
‘take max of e’s clock and e’s partners clock
~ got update counter to new value ' ' S i
add.clocks to the left child of b '
add_clocks to the right child of e
add_clocks to the left child of’ ¢’s partner
add_clocks to the right child of e’s partney

4.5 . Algorithm for counting consistent cuts v

The anorithm for counting the number of consistent guts in an arbitrary compu-
tation is necessary to determine p. The approach taken is based on Propomtmn 3
which presents a condition for determining whether a cut Is consistent. :
_ This cut depends on the vector times of the events that defined the cuts. Let

C be a cut defined by Eg, and u; for each i € N\ Eg, € = Usemg (1 i), and
let T; € N® be defined as @(a;} if 1 € N\ E¢ otherwise (0,...,0). If the following
condition holds for a speciﬁ.: cut then the cut is consistent

SI!P(T1, srey Tﬂ) = (T [ljt ey Tn[n’])

This result suggests a slmple way for determining the number of consistent cuts,
first generate a cut, then nse the condition to check if the cut is consistei;ﬂ;.

There are two functions—gen.cuts and consistent. cut—for implementing this
algorithm. The fitst is a recursive procedure to generate all cuts and the second



CHAPTER 4, THE CONCURRENCY MEASUREMENT TOOL 71

checks whether a cut is consisiént or not. These algorithms will be discussed in
detail below. '

Function gan_cuts

In the ongmal mesaage—passmg formalism, there wera {qy 4 1)(qz +1) .. gy +1) cuts
to be checked, namely the nuinber of consistent cuts in a totally concurrent version

of the computation. However, in the new formalism, because of process ca.usahty,
this is described Wl '

cht.a(P,) where cuts(P.)—qg-}- ]:[ cuts(.ﬁ,').”
Res {P\PoFs}

Hence, to prevest extra work, the causality structure of the processes needs to be

taken into aceount. This will mean that +he actual number of vuts as described by
the above equanon, will be checked for consistency, as npposea to a.n mﬂated value

~iven by (% 1)(qa+ 1) oo (g + 1).

In arder to generate only those sets of events tha.t form cuts as defined by the
causality of processes, it is necessary to allow processes to be ‘enabled’ and ‘disabled’.
If F; -+ P then 1o eyentdiof process P; can i:c;;;tributé to a cut unless the final event
of process F; is in the cut, Therefere, process P; will be marked a8 disabled until
the final event of P; has been put in the cut. The algerithm proceeds by working
throngh each process, adding events (in order of occurren.ce) to the cuts. After each
process has haqd the opportunity to contribute an event, the cut is defined and can

be checked for consistency. The procedure is sta.rted by the call gen_cuts(O)

1This is the same as the more detailed equation presented in Section 3.4.4 sirce if B ¢ F
{PilPire B} =B aud [], = 1.
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- gen_cufs(int pr)

if pr = total_number_of_processes /* if each procaas has
' contrihuted an event #/

agif consiatent. cuk() | ' /#* chack cut for congintancy */
V Jincrement consistent cut counter : s o’

" olse . /% etill précessés to contributs */
_ gen_cuts(pr + 1) /% with no event. contributing from procass pr */

ireprocass pr is enabled :
while not last event in process pr /¥ add aach évant in turn
o from procesa pr to the #/
éddﬂnsxt avant to out /% cut, axcapt lapt ohe */
gen_cuta(pr + 1) “
o anable next processes : _ >
3 gan_cuts(pr +1) /% with last event from rrncaaa-pr */
eJ disable next proceaaas ' '

Function consistent_cut

As described a,bové,'the vestor clocks of the events that form & cut can be examined
to determine whether the cut is consistent. The condition that is required to hold
on the vector clocks can be rewritten as follows:

SUp(Th, v es T) = (Tafa},. " To[n])
 Vpe{l.n} 1@1};&5&“1’}[?] = Tylp]
& VYpie{l,...,n} T[p] £ TP[P]

Consider j and p; there are four thstmct scenarios tha.t can occur with respect
to membership of Eg: ' '

s j,p € Eg, then Tylp] = 0 = T,,[p]., and the condition holds,
»jeEFcandp¢ Ec,', then T;[p] = =0 < T,,[p} and the conditmn holds,
s j¢FBoandpe Ea, then 73{p) > Tplp] = 0, and the con(htwn does not hold,

* j,p ¢ Ec, then Ty[y] > 0 and T;[p] >.0 and these two values must be explicitly
checked to determine if the condition holds.

b
N,
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"To minimise the time involved in accessing complex data structures, the above
gcenarios Were. used to derive an algorithrn that first determines if a process lias
contributed an event to the cut before explicitly checking the clock valies, Assoon as
a cauntete:fa.mple is found, it can beindicated that the cut is not consistent. However
if a cut I8 consistent it requires O{n?) operstions to show this. The a.lgonthm can
be described as follows: )

foxr{ p=0; p < total_number.b!_proa.essas, )
for{ j = G; j < total number of.procezses; j+ }
it j € Eg
" /* do nothing sivce T;[p] =0 < Tplp] %/
i_a]_.ss' it -.p € Ec N

return(talse) /% condivien fails %/
- else if Tifp] > Tlpl - _
return(talse) " /* condition fails */

raturn{true) /* condition trte, cut iz consistent ¥/

7

4.5.1: Ana!ysxs 0f algor:thm

. In this section, I will present a Worst-case a.nalysis of the a.lgonthm used to check for
consistent cuts. This analysis is an extension of an analysis presented by Charron-
Bost [16). The number of cuts to be checked can be described by the following
’formula .
p= If)cuts(P,-) where cuts(F) = g+ H cuts{ ).
' Figs {P4|Py=Fy}

The worst case occurs for a given n where n is the number of processes when there
is no caugality between processes, namely when

"VP-E'P, PieSand e F.

-then there are p° = [Tl (@ + 1) cuts to be checked. .
To analyse this algorithm the following inequality which iz derived from the
relationship between geometric and arithmetic means [21] is required

«}mq DS LR I IR SN
| =1

therefore |
H(q1+1)<( +1)™ | o

il A
. r
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Al

From‘this,' #° can hé e:q;ressed as

pe= H(q. +1) € (o/n+ 1

=1

_ Note that in the case where all the g;’s are equal, 'n_amely.

vie{lL..,n}h g=q/n

then TL‘ ' - &

ue —H(q'+1)-(q+1)“

i=l .
.a.nd hence the upper bound is achieved in thls case,

Also in the worst case it takes n? steps to check a cut for conmstency which
therefore gives an upper. hound of ﬂ2 (q/ n 4 1) steps to genera.te and check all cuts
for consistency. -

This gives an algorithm of O(q“/ n*=2) where g q is the total number of events in
the computatnon a.nd n is the number of processes, Althuugh it has not been shown
- that this is a tight upper. bound for solvmg tlus prohlem, it is the tightest upper
‘bound known. . : : :

It would be 6;5‘1(:\111: to per’orm an average case analysis as this would require the
knowledge of the probabilities associated with the occurrence of certain computation

structures. However, an approach to the average case can be demonstrated as
follows. Assume that on average, when a cut is not consistent, it will require half

‘the time uged for determining if a cut is consistent to discover this, and let ¢ be the

time required in the worst case, then time taken in an average case can be described .

as

o + e

ot + 2ty = (B e on.

This shows that even friian a.verage case, the algorithm remains exponential. *
Fidge [32] notes that the calculation of  requives 35, ;c,, ng; integers to be

stored. Using g as defined above, this can be wriiten as

o
dong=ny g=ng

i=1 =1
In the implementation of the Concurrency Measurement Tool, assaming an average

number of restrictions per event, let the number of bytes required to store an event
be ¢;. The tofal number of events is defined above by ¢, and n is the total number
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of processes. Dummy events are x‘equiréd in some circumstances, but more than ¢ -
dumniy events are not possible. Sc the space required for the event tree is 2c;gn. If
~ each process requires ¢y hytes to ba stored, then czn bytes are required to store all
processes in the process structure. This gives a total of n(2e1¢ + ¢3) bytes for these
two data structures, or space comple:uty of O(¢n) which correlates with Fidge's
result.

These results show that the algorithm implemented ig exp‘ensijré. In the next
section, ather approaches will be discussed after which experimental timings for the
pi-u'gré,m be will compared to the_aboire theoretical result. '

4.5.2 Other algorithms

. 'The research done here did not focus on finding the most efficient algorithm to
perform the counting of consistent cuts, so in some sense the algorithm used is
naive. In the literature, however there are indications that an efficient algorithm,
has not been found. R,a,ynal et al [59] note that the calculation of y is not feasible
but do not give any further details. Fidge [32) notes that the space reqmremants for
calewlating g are expensive. ]
Charron~Bost [14, 16] has derived an algnrxt.hm based on her result tha.t relates
~ the number of consmtent cuts to the munber of aatichains in the partial order, The

algorlthm first determines all 2-antichains and from thess, bmlds the k-a.ntlcha.lns S

for & > 3. She notes that the algorithm is eﬂiment only when tls‘ere are few 2-
antmhaim in the computation under consideration. This occurs because if there aze
_ few 2-antichains, there are few k-antichains for k > 2. This is the same a8 saying
that. the algorithm is efficient when there is little concurrency in the computa.tmn.
The analysis of this algorithm is complex and requires deterinining the number of
k-antichains for each & in terms of the number of 2-antichains. I have investigated
this algorithm farther and found it to be O((ng)™+2). | |
Kim et al [44] present an approach whereby they divide computations into con-
currency blacks, and count the number of antichains in each block. This results in
an approximation to m that is faster to compute; namaly O((ng)*(6*~1), wherg b
is the number of concurrency blocks. : '
The algorithm that is used in the Concurrency Measurement Tool also exhibits
that property that the less concurrent the computation, the faster it iz to count
consistent cuts, as the procedure to check for consistency needs to find one index
pair for which the condition does not hold to show that a cut is not comsistent,
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P1 8 b - d -
Py e { ‘:\E

 Figure 4.1: An example computation.

e

- :
T g

although ag shown above it does not affect the complexity -of the algouthm

It ‘would seem therefore that all alganthms proposed in the literature are ex-
ponentzal However, in termﬁ of the algebmlc expressmus found by the analyses,
Chazron-Bost’s antichain a.!gonthm is:the more expensive. ‘Depending on the rel-
ative sizes of 1t and b, the analyses of algorithm that T have implemented and the
a]gonthm proposed by Kim et al are similar, but the latter algorithm is less desirable
because of the inaccuracy involved in the approximation of m.,,

A few different approaches have been suggested that attempt to falie the struc-
ture of the graph into account, however their worst case analysis appears to be the

same as the élgm:ithm given above. A Dbasic approach to improving the algorithm =
- i8 to ¢liminate the generation of cuts that are not consistent. This can be done by

*knowing’ whete the communication. events are in a graph. Consider Figure 4.1—let
~ the current cut be defined by (1 d)y U (l e)g. It s not consisient and in fact it will
only be consistent once the algorithm hag reached the cut (| d); U {} &). If the
communication events can be located, then it should be possible to avoid checking
the cuts created by ading f and g. Tn some sense, it is necessary for the algorithm
to, determma why the ot is not conmstent, namely in which processes the inconsis-

tency oceurs and how to skip it. This may require an additional data structure to

retain the cominunication structure, but this is aa issue for furthe» research.

4.6 = Use of the Concurrency Measurement Tool
As mentioned earlier in 4his chapter, the CCS agent is input via a file, v.i¢ calculation
is performed, and m, u, p°, p°, the number of events, the number of C& - n ~m1ca,tzon

eveuts, and the time taken to obtain u are output. . _
. To determine the maximum and minimum values for the measure of a specific
"7 COS agent, it is necessary to determine if there is any Summation in the agent

that may cause a nu_mbef of distinet computations. If this is the case, ths CCS

A
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agent must: be decomposed into a number of agents that represent the different .
computations that can occur. These agents are measured individually by distinct

sxecutions of the Concurrency Measurement 'I‘ool and the maximum and minimum

IIV‘.iues for the original agent can he determined from the values obtained, An aréa
" of further research i i to automate the decompositlon and the presentation of the
maximum and minimum values.

4.6.1 Experlmental error .

As thers is no posmblhty of different values for the measure being obta.ined from.
different expenments on the same agent, r,he issue of experimental error does not
play a major role in this research. The' executmn times presented later in this
'cha.pter form the onlyJ opportunity for experimental ervor; however they do not form
the crux of this research, . '

4.7 Performance of Concurrency Measurement ool

The Ccncurrency Measurement Tool consists of 1740 lines of optimised ANSI C
"~ code, and was executed on a Silicon Graphics Indigo workstation with on & 50MHz
MIPS R4000 processor. In the experiments that were performed the number of
cuts checked per second ranged from 83,000 to 168,000 This would indicate tf“s{.t
although the algonthm is exponential in the number of processes, it i3 still fea{ii\k
to calculate the measure for CCS ajgents as long as the number of events and ey

cesses temains within 2 reasonable range. For exa.mple, in the largest expenment

performed, there were 60 events, 23 processes and 1.8 X 10° cuts to be checked. Of

these, 11,836 were consistent and it took 2.2 X 10“ CPU seconds to check the cuts
and calculate the measure.

Table 4.1 presents a comparison of theoretical and a,ctnal execution times across

.a nuinber of expenments for different values of ¢ and n. The first two columns

give the values of n and q respectively. The third column gnres the numbez of CPyU -

seconds taken to calculate the number of consistent cuts, and the fourth column gives
the predicted number of operations obtained from the analysis of the algorithm as
given in Section 4.5.1.  The final column presents the ratio of the third column
to the fourth coluran. These figures in the final colurn range from 2.07 x 10% to

112.16.% 108 This range indicates that the number of overations given by the

analysis does to a fairly large extent predict the CPU time required to calculate the
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n g seconds operaiions  operations/
" (m¥g/n+ 1)) second

20 0.01 207x10*  207x108
28 006 3.13x10° 0 522x10°
40 ¢ 1291 107 x 108 8.33 x 10°

48 - 33.68 3.69 x 108 10.95 x 10°
64 14408 2.75x 10°  19.12x 108
96 885.80 5.22 x 101 58.94 x 10¢
16 f.56" ©1027.24 187 x 1010 15.27 x 108
10 64 213893 4.92x 10V 23,02 x 108
11 56 (1010.80 5.18x 101 27.11x 10
11 64 430032 1.79x 10"  43.68 x 108
10 80 6900.07 3.49x 10  50.53 x 10°
11 80 13398.80 1.50x 101 11216 10° -
12 60 22366.00 3,13 x 10U 14.02x 10% -, .

-mmmmm.&-

" Table 4.1; Comparison of a.ctﬁéu.l and theoretical times,

number of conéistent_: Cl&s. This confirms the analysis of the algorithm presente_d in
Section 4.5.1. o X

4.8 Extensions to the Concurrency Measurement Tool

One important extension is the addition of a preprocessor to apply Relabellings and
determine the different computations that result from the Summation operaicr, as
currently it is necessary to create individual input files by hand. The program can
alse be extended to deal with these different files and to print all results including
the minimum and maximum of the meastres. A preprocessor could also be used in
the case of probabilistic CCS [55] where actions are assigned pmbabilitiets Then a

‘weighting can be determined from these probablhtles for each posazble computa.tmn -

and a measure can be determined for the whole algonthm This is dlscussed further
in Chapter 6. '

Other extensions discussed in Cha.pter 6 relate to extending the subset of CCS
for which the measure is defined. To make these extensions fo the measure usable,
the Concurrency Measurement Tool would also require modification. In general,
the idea would be to extend the map of CCS to the message-passing formalism, and
hence the underlying algorithms are unlikely to need much alteration.
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4; 9 Galculatlon of other ‘Tﬁeasures

The oth ‘1 measures that have been defined in the measage passmg formalism axe
w [14], » [1'5], f [32] and @ [59] (see Chapter 2). I what foilows, modifications
required to enable the Concurrency Measurement Tool to calculate the measures
will be briefly detailed, | | | |

}:I?hé measure w “This measute is a special case of m and can be calcﬁlated by

determining the number of concurrerﬁ pairs of events it the computation. The data -

structires would remain the same.antl a functlon could be added to perforin pairmse

comparisons of events. If the antichain algorithm is used to count the number of

consistent cuts then finding the number of concurrent pa.irs ‘will be pa.rt of thls
algorithm as thahe a.re Jjust the 2—a.nt1cha.ms

The measure § The calcuhtmn of thls measure reqmres two additmns. First

- linear logical r.luckttxmes are required in the calculation of the measure. The second

addition.is more complex as it requires changes to the message—passing formalism,

since the clocks must be integrated &t vie end of the computation, namely

Opaar = _sup _ O(ay,).
: {F;|1PeF

It iﬁ necessary to check that this is a reasomable approach when applied to CCS

ﬁgents In; ~ms of the Congurrency Measurement, Toul however it is a relatively
simple moaméa.txon '

o : . o T

The measure'a This measure requires an additional vector counter W which to

be added to the event,data structure, As for the ‘measure B, the values of 'bo'th' 0.
and W are integrated at the end of the computatjon. &zam the mod.lﬁca.tmna are

\-.

relatxvely saple,

g

" The measure p This measure is nof deﬁned in ierms of vector clocks and hencs

the modifications required are more dlﬂicult p is defined in terms of event and

message times and the values of the measures can be determined analytically if

the number of everts and commumcat:on events are known. Therefore the data
structures and functions used by the Concurrency Measurement Tool wmﬂd not be
required and a new prog‘m should be written. '

e
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4.10 - Summary
In this chapt.er, the Concurrency Measnrement Tool was discusséd,'"includixig the
algorithms used te calculate the measure, the most important of tiwse being the
algorithm used to c.nlg{{a,te’ gt. 1t was shown that this algorithm was exponential
in 7, however it was possible to caleulate the measure for agents of a reasonable
size. Other algcnthms, extensions to the Concurrency Measurement Tool and the
calculatxon of othel Imeasures were discussed. Tn the next cha.ptar, results of exper-
' 1ments performed using the Cunc\mency Measurement Tool will be presented and
discussed with respect to the cxiteria used for evaluating the concurrency measure.

o L
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5. Results and evaluation

In this chapter, the resuits of g_xperiménts_perfnmed' on CCS agents using the
Concurrency Measurement Tool will be documented and.interpre{:ed. Firat, a review
of the evaluation criteria described earliel in this document will be presented after
which the expefiments that were perfurm’etl to evaluate m will be discussed in detail,
This discussion will include the aim of each experiment, the agents chosen, figures

" that include the measure for the agent and other relevant information, and a short
* interpretation of the results. Following this there will be a section that consists of a

foller discussion of the results obtained and an evaluation of the measure in terms of
the criteria. The next two sections will present suggestions for an improved measure

"and & discussion of this new measure in terms of the criteria.

Fil_xally, the _application of a measure of concurrency to CCS will be discussed

Cand it will he argued that this has resulted in new methodology for the evaluation
of concurrency measures defined in the message-passing formalism.

5.1 A review of evaluation criteria
This section presents a summary of the criteria presented in Chapter 2.
e Intuitive understanding of the measuré {(p. 9) [14].
» Being u_'rel‘i'-‘neha.v'ed for small examples (p. 9) [14, 15]
s Compatibility with operators on corﬁputa.tions (p. 9) [15, 18, 32]
« Usability and a.ppli(;a,liility {p. 13) [15, 45) |
» dMnl:,l‘.y to valculate measure for a specific event (p. 14) {32, 59] o
¥ E‘xpense of computation in terms of both time and space (p. 14) [32, 38 59]

s Stability with respect to granularity (p. 14) [16]
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5.2 The éxperiments |

The Conctlx?rency Measurement Tool will be used to perform a number of experi-
mentsthat have been designed to evaluate m with tespect to the issues discussed
above, The presentaticn format for each experiment contains the CCS dgents or a -
description of them, a short. description of the aim of the expetiment, the results of
the expenment and a hrief 111terpretauon of the rel}mlts . N

5.2.1 Experiment A: blmple example
Ay def (e.ay.p.03. a40|cb1 bg b3.04.0)\ 2
Ag (-l-—?-r (ay.6.09.03.64.0 | by.C.ba.ba.bg.0)\ e

: p chaf. ey
The agents : . Aa_. = {ay.a3.0.03.44,0 | b_;.bz.c.ba.bf.o)_\c_
Ay = ('ﬂ]..ug_.da-(!oﬂq.o i b].b’g.bg-a.bq.ﬂ)\c

' Aa__ d‘-—?-f '(ul'.ag.(za.n.;..c.ﬂ | b]_._bg.ba.ﬁ.g.ﬁ.(])\c

44

The aim ;  To investigate the behaviour of the measure on a simple example.
T N m

A 36 10 26 0.62

A; 36 10 20 038

Az 86 10 18 081

Ay 36 10 20 038

As 36 10 26 0.62

The results :

Interpretatior:ﬁ In Figure 5.1, the space-time diagrams are presented foi Ex-

periment A, The results show that there is a symmetry displayed about the middle

rof the computation, which was not expected. The closer the communication Is to _

"the middle of the computation the less copcurrency there is, Tlis can éasily be
explained by the fact that communication in the middle of the computation can
affect a greater number of events, therefore the proceases in thls compuﬁatmn are
thore susceptible to blocking. '

5.2.2 BExperiment B: "Simple example

The agent : B, € (c.a.-+.2.0 | €. b D)\ €



dr

o

The aim : To see how the measyre changes as the number of events in ea.ch-
"[A‘GSQSS mcreases . ' - -]},r )
- weop op omo
B, 4 1 R | B
_ : | |
The results : B 9 8 0:2
. By 2 8 1T 053
_ _ B 121 20 109 0.8 \
o By 10201 206 18001  0.98 )

Interpretation : +  In Figure 5.2 the spa.ce-time diagrams are pfesented for Ex-
~ periment B. The measure seems to extend across the whole of [0, 1) for increaging
- valnes of n. It shonld never reach 1 unless the smgle commu.nicatmn event in the
gra,ph Is removedt.. The fact that the amount of mncurrency increases is in accor-
dance with the expected behaviour of such an example, because as the number of
events increased, 2 single commuuzicatiorn event has less effect on the concw rency of

/ 'r

the computatmn. o ’ o : - 0

5.2.3 Expérimént ¢: Composition operator

_ . :: . ..C]_ “léf (¢1.a1.c2.0 |;IEI'.83.52.0 I ag.&.as.ﬁ)\{dl,cg,acg}

The agents : G dd! {cy.a1.62.0 | E5.00.52.0 | %.ﬁs.ms.ﬂ)\{cj, e2;ca} |
(61.a1.¢2.ﬂ | €1.03.82.0 | 0.%3.03.0)\ {cy, €2, 3}

The aim :  To investigate the behaviour of the measure when using the Conipo-

CHAPTER 5. RESULTS AND EVALUATION R Y

T

sition operator.. .

Theresulis: ¢, 64 7 12  0.0877
Gy 4096 13 144 - (L032t

Interpretation + ‘The agents for this experiment are described in Figure 5.3.
This experiment is used to determine the action of the measure under the CCS
operator Composition. As described in Section 2.2.3, it would be reasonable fo
expect the amount of concurrency to increase. However, in this éxperime:nt-there is
a decrease in the measured concurrency. :
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5.2.4 Experiment D: Prefix operator

lef - - -
. Dy tz_ {e1.a1.02.0 | €1.04.52.0 ) 03.83.a3.0)\{(21,CQ,C3}

def - - = :
Da = bybo.b3.(ey t1.02.0 | £1.€3.82.0 I aa.z.03.01\ {1, 62,93}

fra

_ Tile agents :

The aim : To investigate the behaviour of the measure when using the Prefix '.
operator, ' o

#opr op ' m. o
The results : Dy 64 7 12 0.0877
- D, 67 10 15  0.0877

| I'nterpretatiun :  The agent for this experiment is shown in Figure 5.4. In this
experiment, the effect of the CCS operator Prefix on the measure was investigated. -
- As can be seen from the above table there was no change in the measure.

5.2.5 Experiment E: Par operator

B 2 (jmp0|k5lrEme | Lago)\{na)

. - E, e By Pur By
The egents : & ((imp0 | kFgrdi0 | lngo\{pa}| .
' .64 jm.p0 | k.p.grda0 |1 n.g.00\{p,q} |
dy.dy.done.9 + dy.dy.dona)\ b

The aim :  To investigate the behaviour of the measure when using the Par
operator. ¢ '

IS 7] m
The reanlts : & 96 10 24 0.1628
By 36864 20 554 0.0145

Interpretation :  The agent used for this experiment (and for the mext) are
described in Figure 5.6. This experiment is used to determine the action of the
measute under the up.era.tor Par. As described in Section 2.2.3, it would be reason-
able to expect the measure of concutrency to increase, but to a lesser extent than
with the Composition operator because an additional agent is ‘introduced by the
Pur operator. As can be seen from the restlts, the measuze dacreases,
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Figure 5.5: The agent for Experiments F and F.

. 86

Bt



CHAPTER 5. RESULTS AND EVALUATION. 87

5.2.6 . Experiment F: Before operator

A Y (mpo|kpgedonss | ing0)\{zq}
} o : del' _
The agents : i df i Before Fy .
((Gmp.0| kpgrbo|lng0)\{p,q}|

| b(jmpo| kpgrEoneo | Lng0)\{peh\b

The aim : To investigate the behaviour of the measure when using the Before
operator, '

. s #é 3 m
Theresults: '/ 06 10 24  0.1628
< . F 9312 19 47 0.0030

JInterpretation : This experiment is used to determine the action of the measure
under the'upemtor Befare . As can be seen from the results, the measure decreases
significantly. '

5.2.7 Experlment (: Dining phllosophers

The next set of experiments involves the dining rhilosophers problem wluch was first
proposed by Dijkstra {28). This problem is of interest because it is a classic prob-
lem in concurrent systems, and involves mutual exclusion with multiple resources.
Solutions to the problem must ensure that (ieadiock does not oceur, Two solutions
are investigated: ' B

1 The room-ticket solution, where there are n—1 room-tickets which ensure that
deadlock cannot occul because it unly allows n — 1 philosophers in the room
at one time [12]. "’

2. The solution whe_n n i3 even, whera philosophers p, for { mod 2 = 0 pick up
their right forks first and philosophers p; for (i + 1) mod 2 = 0 pick up their
left forks first. This prevents a situation where all n philosophers are holding
‘a right fork and cannot obtain a left fork, Tlus will be referred to as the
odd—eVen solution {47]. '

The agents used for these experiments are detailed in Appendix B. To facilitate the
comparisons of results the notatioh zpy is used, where z indicates the number of
philosophers in the experiment and y indicates the number of eat and think actions
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that occurs, In Expertment 7, philosophers alternatively perform one ‘eat’ action -
and then one *think’ a.cnon, In Expemment H, the number of eat and thmk actions
is increased. ' '

Gy 2 philosophers ‘odd-eveti solution 2r1
G‘_g 4 philosophers odd-even solution 4pr1

. co 6 philosoph dd- solution.,

The agents : Gy philosophers  odd-even solution, 6?1
G4 2 philosophers  Tootn-ticket solution 2p1 |
Gs 4 philosophers room-ticket solution 4Pl

IThe_ aim ¢ To test the usability a.n;tl applicability of the measure for comparison
- of real distributed algorithms, | ' '
’ e " m
Gy 122x10° 1.30x10' 200x10'  578x 107% 2pl1
Ga 150%10° 250% 107 172x 107  9.79% 105 4p1
. Gs 1.84% 1{19 4.20 X ml 118x 10¢  6.42x 107 6p1
1'he results : : '
Gy 1L01x10* L70x10' 250x 100  7.92x 10~% 2p1
Gs 1.03x10° 3.30x 10 251x10*°  213x107° 4p1
1.85% 108 3.30% 100 449x10° . 2.25% 1'0-‘* 4rl

Interpretation: The mterpretatmns of experiments & and H ave related, there-
fore the interpretations will be discussed after the presentation of Expenment g

Note, however, that the values are very small and decrease as the size of the example
‘increases, There are two resnlts for G since there are two computations that can
oceur. The smaller of these values is listed first as the minimum measure for the
algunthm, and the larger secon(l as the maximiti measure.. '

5 2. 8 Experiment H: Dining phil’osophers

In the final expenment the mmnher of think and eat actions was increased for each
philosopher, to see wha.t eﬁ‘ect 2 lower ratio of communication events had on the
a.mount of concurrency and to test for stability wsth 1e3pect to gr&nuia.nty
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8

H;

The agents 1 H
Gs

. Hy

T Hy

4 philosophers

4 philosophers
4 philosophers

4 philosophers

4 pl:_iioéuphera

4 philosophers

4 philosophers

odd-even solution
odd-even solution
odd-even solution

odd-even solution

" room-tickat so_lution

room-ticket solution
room~ticket. solutioﬂ

1 eat

2 ea_t

4 eat
8 eat

1 eat
2 eat
4 sat

1 think
2 think

4 think

8 think

1 think
2 think
4 think

"5

4pl

4p2
4p4
4p8

4rl

4p2

4pd

fi?he aim :  Td test the usalnhty and '\.pphcabzhty of the measure for compatison

!1/“

of real dl;{»nbuted algorithms and to test for stability with respect to granularity.

G
H;
Hq
-

‘The results :
T Gs
Hy

Hg

#e

e S

1,50 x 10% 2,50 x 10! 1.72 x 102
4.10 x 105 . 3.30 x 10! 5.12 x 10?
179 X107 4,90 x 10 252 % 10°
1.22x 10% 8.10x 108  1.94 x 104

103.x 108 3.30 x 10* 2.51 x 10
1.85 % 108 3,30 x 10* 449 x 10%

432x 108 410x 10" 1.03 x 108
9.29% 108 410 x 10, 6.93 x 107

1.42 x 10% 570 x 10' 3.95% 16*
791 x 108 5.70 x 10' 3.13 x 10°

9,79 x 10°8
1.17x 107
1.38'% 104
1.59:x 10~%

2.13 x 108
2,25 X 10~8
2.41 x 10—¢
2,85 % 10~9
2.73 x 10~8
3.88 x 106-8

4pl
4p2
ipd
4r8

4Pl
4pl
4p2
4p2
4p4d
4p4

Interpretation The interpretation of these results will be presented in the next
section, From the results, it can be seen that additional internal events reduce the
amount of concnrrency measmed As in the previous experi.ment for each of the

room-’ucket solutlons, two values are ohtained for the two different computa.tmns
that ‘tan occar. They represent the minimum and maximum values :fonnd in each

experiment.

5.3 Discussion and evaluation of m

A number of issnes arose in the experiments; which will discus.sed under the following

headings:
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Bshavinﬁr of the measure with respect to parallel operators The be-
haviour of the measure when usmg the Compomtmn operator can be explained a8
fOlIOWh : P

e ‘the number of cuts in the totally concurrent pdmputétian is squared
B the number of cats in the computation itself is squared

e the numher of cuts in the sequential computa.tmn is douhled and decrnmented
by one. '

Conmdermg experiment C, this means that m({Cs) can he expressed aix\

(e, )* - (288, — 1)

(08, )2 - (208, - 1)
where Gy s i, s g, are the relevant measures fot_:_,gomputa.tipn' Ch.
Since pc, /pg, < 1, (per/ug,)? < Her/ p@ ‘Assuming that the size of 4® is
small with respect to i€ and p, as in this experiment, the value of m must decrease.

The operator Pur was used ir Experiment E and it too can be x\@ga.rded as a
paraliel operatar, In this experiment, the measured concurrency _decreased and this
decresse can be explaine'_d by a similar argument to that given abeve. Note,however,

that there is 2 sharper decrease in concurrency. This can be explainied by the fact L

that the Par operator defines an extra agent, dj. dz. done.0 + da.d;.done.0, to he .,
e

used for synchronisation purposes.

Y

Both of the restlts from Experiments c and E contradict the expectation that
m_((}'g) = m(G’ﬂC‘;) > m(Ch) and m(Bs) = m(EylEy) > m({}‘i) '
as discussed in Section 2.2.3. o
Behaviour of the meagure with respect to sequential operators The fact
that m does not change when the Prefix operator is used a8 explained in Expenment

D can he explained hy the fact that a constant number of cuts is added to each
element of the equation. This means that m({D;) can be expressed as - .

(ep, + &)= (#h, +¢) _ pp, Kb,
(u, + )= (up, +¢) ~ ph, = ph,

where pp,, g}, ip, are the relevant nuinber of cuts for computation Dy,
There are two possible explanations for why the measure does not change in the
presence of sequential operators as presented in Section 2.2.3; first, if the component
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compiutations are the samge; and second if the component computations are y quen-

tial. As can be sesn, nelther hold in this case. The Prefix does in a very stroug
-Benge make the computa.non more sequentlal and the fact that the measure does not
cha.nge means that the measure can not express this.

" Experiment [ deals with a sequential aperator which is more sxm11a1 to the

sequential concatenation presented b)ﬁ., Fidge and Charron_—Bost than the Prefix op-
“erator. In the presence of the Before operator, the amount of measured concurrency

fyoey

decreases, and this agrees with the expectation that %>

MC(C'C™) < max(me(C'), Me(C™)). | e E

The dining philc_vsdphers experiments It was unexpecled that thé measure -

would be so small for these examples, and that ‘the measure w{"iilld become smaller as

. nincreased. Censider, for example, experiment Gy (2r1) where only one philosopher -

can eat at one time because there is only onesruom-ncket This wonld indicate that
the system is in some sense serial, however this ﬁystem has a higher concurrency
measure than G5 (4P1) where two philosophers can eat simultaneously (although
_ three philosophers have access to the dmmg room)I | o' fact, becanse the values are so
small and cover such a small linear’ range, the use of these values for. the comparison
- of different algorithms is difficult to justify. ' . L

There are two basi¢ a.pproa.ches to compa.nson, taking the absolute value of the
differenice of the two valnes {additive comparison) or taking the ratio of the two

values (toultiplicative comparison). Because the measure takes on values in the _

ra.nge [0, 1), additive comparison is inappropriate, because the valtes are bmmded

Multlphcatwn comparison seems more valid to apply to 2 measure that returns

bounded values; and this approach will be taken hete,

When G (4r1) and G5 (4P1) are compared, the ratio of the first to the second is
42.61, Altkough it can be said that the odd-even solution has less message passing
than the room-iicket solution becanse thete are no room-ticket agents, it seems
unreasonable to say that the odd-even solution is 43 times more concurrent than

the room-ticket approach. Also note the overlap in the room-ticket example—the .

minimum value for Hy (4p4) is less than the maximum for H4 (492), so these values
do not distinguish between the different algorithms. _ | '
It can be seen from the relative sizes of x°, 4* and u that u° dominates the value

of m., Hence, the values obtained ix the experiment are small because p” occursin -

the denominator. From this, it can e argued that the algebraic expression for m is

;J.-’"

o
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i

m n Ym.

Gy 578% 10~ 4 0.2187 - 29l
Gy  9.79x107° 8 0.3154 4pl
G C642x107% - 12 0.3692 . 6pl
Gy 792x16~* 5 . 0.2307 2pl
(s 2.13 x 107 10 02709 4pl
Gs 2,25 % 106 11 0,3066 4pl
Hy L.17x 10~ 8 - 03224 4p2
Hy, ~ 138x10™* 8 0.3293 4p4
Hs 1.59 x 16-%- -8 0.3351 4p8

Hy 285410 10 . 0.2789 4p2
Hy 2.41 X 107° 11 0.3085 4p2

}ﬁ/ 3.88 x 10~% 10 0.2877 = 4p4
H: 7/ 2.73x10-¢ 11 - 0.3121 4p4
/ . .

- Taple 5.1: The nth root of m ' ¢

G

ilt beha.Ved
To support this argument t:on,mder Table 5.1, where the nth root of m is presented '

for both Experiments G and H. As can be seen from this table, ¥/m ~ 0.3, I it

can be assumed that {/m is in some sense constant then this implief that m &~ 0.3".

“This has two consequences—first that the value of the measute appesrs to be related

to n and second it would appear by extrapolation that as 7 — oo then m — 0. This
also implies tha.t the measure is inversely related to n; namely as n increases. m'
decreases. ' .

“The mterpréfa.tion given above relates to the experiments performed using the
dining philosophers agents. It would be desirable to be able to generalise these
results to all algorithins. Unfortunately this is not possible, because of particular
features of the dining philosopher problem that may be unique to this wlgorithm,
for exawiple, the fact that the number of 'processes carrelates with the number of
comtounication events. However, thxs has shown that there are algonthms for which -

the measure doeg not behave well,

The effect of changes in granularity Within the ?gents for each typé ‘of solu-
tion to the dining philosopher’s problem, there is little change in the measure as the
nwmber of non-communication events changes This can be explained by the fact
that the addition of non-communication eventsis causing g and p° grow imznma** )

it
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rate. Charron-Bost states that sﬂe' did not sgpect m to be stable with respect to
gramﬂarity as it is a measure hased on a causal relationship; ihis viewpoint can also
be mstified by the fact that the addition of more non-communication events results
in a computation that will he more tolerant to blocking and this approach will be
adopted here. Hence, the measure does not display the expected change when there
is a change in gmnulm.g:.

5.8.1 Evaluation of m with respect to the criteria

The measure m will be evaluated in terms of the criteria presented at the beginning
_ of the chapter. A short description will be given for each criterion and a summary
of these points and the preceding discussion will be presented afterwards.

Intuitive understanding of the measure The measure has a good intuitive
base as deseribed in Section 2.2.1. The concept that the number of consistent cuts
in a computatxon is an indication. of its tolerance to the stopping af individual
processes is valid, -

Being well behaved for simple examples The two experiments (4 and B)
performed on m would indicate that it is well behaved, The concurreney increases
in a way that is expected, i\.lthongh the symmetry found in Experiment A was
not expected However, this symme*ty can be explained as foliows: the single
commurication event divides the computatmn into two parts, and- the number of
consistent cuts in the computation equals one plus the number of consistent cuts in
the first part plus the number of consistent cuis in the second part, Hence, whether
the laxger part comes first or second does not affect the warber of consiatem_: cuts.

Nute that this only applies In the case of two procggs‘aes.
' i

Compatibility with operators The four experiments 'perfozmm to investigate
this had mixer] results. I the case of the parallel operators, Composition and Par
“the mesasure decreased—this would indicate that the measure is not compatible
with theése operators. In the case of the serial operator Prefix, the measure stag}'ed
the same, which cannot he explained in terms of the operator. Finally, the Before
aperator yielded the expected decrease in concurrency and hence it would seem that
m is compatible with this operator, although this has not been shown that this s
true in all esses. By using the CCS opeiators, it has been possible to corroborate
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e =)

Charron-Boét's results concervunb compa.tilnlity with operators and moreover, to .
show analytically why these remlts ocenr,

'Usa.bility and applicability The measure was tested on two solutions of the
dining philosephers problem. For all ex;.mples, the measure produced very small
values on a small subset. of [0, 1], This can be explained by the fact that the algebraic
structure of the equation defining m, and the manner in which g°, # and p* grow,
causes jif to dominate the resuitant value of the measure. The measurement of con-
currency for the dining philosophers solutions did not distinguish a more concurrent
algorithm, | B |
This has shown the measure does not work in some instances. It may be possible |
that the example chosen has certain peculiar characteristics that prevent measire-
ment of concurrency, althm—lgh' the analytic results dealing with operatars on compu-
tatiors suggest there are more fundamental problems with the measure, However,
- the dining philosophers example does show that in general, m ca.nnot he used to -

i

: \,ompare algorithms,

Ability to calcﬁlate measure for a specific event The measure m cannot be
ca.lcula.?ed for a simcn‘lc event, although it may be possible to extend the measure.
Howevér, the geometric interpretation (which has not been dealt with in detail here)
can be used to determine which events in the computatmn are causing a reduction

in the amount of conc\trré\\cy
o

Lack of expeuse of cqﬁiputation- ‘In Chapter 4, it was shown that the algorithm
used to calculate the number of consistent cuts in a.tij' given agent was exponential in
the number of processes, It wis, however, possibje to calculate the measure with the
computing power availaBle, with 1 4 X 10° cuts being the largest number chécked
for consistency in any experiment. The possﬂnhty that consistent cut counting is
intractable fieeds further investigation.

Stability with respect to granularity It was shown that the measure showed
some stability with respect to gramdarity, although this contradicts the expecta.tmn
that the measure would change as the granularity changed.

Summary The more important issues tising out of the cvaluation of m are as
follows: m is not compatible with a number of operators, it returns very small

; - N
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© valnes, it is expensive to calculate, the value of ;¢ appears to dominate the value of |

m since it grows faster than g ot u*, These results show that m does not meet the

criteria for evaluation and this contradicts hoth Charron-Bost [I4, 16] and Raynal.

et al [59].

5.4 A new measure

As shown in the previos sections, the measure m has a number of flaws which can
“be explained by the fact that 1 dominates the value of the measure. To salve these
problems, m was redefined and t'.he new measure is defined as

_ logp~ 10g i
1og e = logpe

“This farm was chosen becnuse taking loganthms reduces the size of the values, a.nd

: .should thus prevent u° from dominating the measure,

' Two other algebraic forms were considered, however they did not prove to beas

successful, alt‘.hoﬂgh the reaults were similar to those of Muew. They were

L VE-VE e
Mo = = Vi o

and mmw =
© The results of the experiments with the new measure are presented in the following
sections. Refer to Section 5.2 for further details of the experiments.

5.4.1 Experiment A: Simple example
I T m mmaww
Ay 86 10 25 0.62 0.7459
A; 36 10 20 038 05411
As 36 10 18 031 0.4580
A4 36 10 20 038 05411
As 36 10 26 -0.62 0.7459

" The resul‘l.'-é 3 |

S
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5.4.2 Experipzent B: Simple example

: ueoop? )] m Tgew

: ) . 4 .2 . 52 .
The resujts : B, 9 580 0.27
e - By 25 8 17 0.53 0.6815

By 121 20 105 03 0.9420

Bye 10201 200 10001  0.98 0.0950

5.4.3 Fxpenment s Compusxtmn nperator

o - BOE M ey
Theresults: ¢ 64 7 12 [ 00877 02436
02 4008 13 144 - 003”1 4180

]

5.4, 4 Expemment D Prefix operator

_ ;a’ # ___u: m Mgew oy
‘The results ¢ Dy 647 12 0.0877 0.2436
Dy 67 10 15 0.0877 0.213%

U‘ .o . . ]

5.4.5 Experirhent E: Pur operator _
| peE g m e

The results: B,  965°10 24  0.1628 0.3871

' E, 36864 20 554  0.0145 0.4417

5.4.6 Experiment F Before operator

- Wewr o pom Minaw
The resnlts ;- & 06 10 24 0.1628 0.3871
' B 0312710 47 0.0030 0.1462

pra L
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5.4.7 Experiment (i Dining philosophels
_ ue | ne H ™m Minaw
Gi 122x10° 1.30x 10! 2.00x 101  578x 107 0.0948
Gz L50x 10° 250% 10 1.72x 10  0.79% 165 0.1753
Ga. 184% 107 4.20x 10* 1.18 x 10% A2x 107% 0.3206
The results e 1§ % 10° 420x10' 118x 1 6.42 x 10 03.
G, LOIX10° 170x 10! 250 100 7.9 x 10~ 0.0604
Gs 1.03x 108 330x 100 251x 102 213x106 0.1357
C L85X 10% 3.30x 10 449x 102 225X 10~¢ O, mau
' 5.4.8 Exp;lariment H: Dining philosophers .
o | e N Mmoo Minew
(7 1.50% 10° 250x 10" 1L72x 102 9.79% 10~° B.1753
Hy 410x10% 3.20x 107 5.12x10%°  117x10°% 0.2337
b Hy 179x197 490x% 100 252x10°  1.38x 10~ 0.3076
Hy 1.22x10° 8.10x 10" 1.04x 101  1.59x10™* 0.3852
The results : R _ . - .
Gs 103x10° 330x10' 251%10° 218 107° 0.1357
185 x% 10 3.30x 10" 449x10°  2.25x107° 0.1680
Hy 412x10° 4.10x 10" 1.03x10°  241x10-% 0.2002
. 220%10° 410x 10" 6.03x10°  2.85x10~% 0.1820
He 142x10° 570x10° 3.95x% 108  2.73% 107% 0.2488
7.91 X 1'0a 5.70x 10! 3.1°.10°  3.88x10-° "o 2435

5.5 Discussmn @nd evaluatlon of the new measure

For Experiments A and B \ ¢ same trends are shown W rﬂmw as’ by m, althnugh
there is a general increase in {he values, -

Wheu applied to Expe ts € and E Mnew 8225 a better measure . than m
since the value inercades as the computation becomes more concurrent through use
of the Com[wiféu operator and the use of the Par operator. fowever, it is possible
to find agents where this does not hold, Consider the agents E" and where the

number of internal cvents has Leen mcrea.sed (See Flgure 5.6).

2r1
4pl
8rl

2pl
4qrl
4P}

4p1

4p2

4pd

4p8

4p1
4ipl
4p2
452
4p4
4p4



CHAPTER 5. RESULTS AND EVALUATION 8

oG B m_ P
ki ky ks ﬁ/ p_ dofie

b b how gl b

Figure 5.6: The agent B,

: E{ (31 2J2.J3. mp 0] kl k3. kapq T doneﬁ | 4505, Ig n.q¢.0)\ {p,q}
5- W E{ Par E}

E “.—':‘ El| By

where the measure has the following vaines

Mnew(E1) = 0.8268, mucw(E;) = 0.6369, Moy (EL) = 0.7514

. Once again, this coptradicts the expectation that
m(E}) 2 m(i) and m(ES) 2 m(EL).

This contradicilon ffan be explained by the fact as u¢ becomes very large, the value
" of log u® will still d ‘mma.te the value of the measure, hence as the agent size increases
because of concatdnation, the valie of Tnew Will decrease in some cases.

Considering the\Experiments D and F; the value of Muew DOW decreases, as was '
originalljr expected 5qth for Prefix and for Before . Note also that the decrease
caused by the Befare operator is not as marked. _

In both Experiments G and H, the values given by mpew are much increased on
those of m. Also as the number of philosophefs increases in Experiments G; (2p1),
G (4prl) and G3 (6P1), so does the value of iy ew, Which seems more promising than
the valueg for m. Similar results are shown for the room-ticket example. However, it
is still difficult to ::umpa,re the odd-even and rooum-ticket solutions, It appears that
for the same number of philosophers and the same number of eat and think a.ctmns,
the room-ticket algorithms are less concurrent than the odd-even algorithma, This
can be explained by the communication overhead requirtd by the use of room-tickets,

Similarly as the number of non-communication events increages in Experiments
Gi (4P1), Hy (482), Hy (4P4) and H; (4r8), the neasure also increases substantially.
This. would show that myey, is less stable with respect to granularity than m.
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§.5.1 Evaluation of the new measure with-respec-t to-th(é criteria

The IMEAsUTe Myeyw Will be evaluated in terms of the same criteria used i in Section
é 3.L ' '

3

Intuitive understanding of the measure The Measure Muew has a similar

intuitive base as m; however the use of loga.rlthms causes it to be less intuitive,

-»espemaily in the light of the fact that it does not seem intuitive that e domma.tes'. o

§
-y

Being well be_-hairéd for simple examp_les The two experiments (A and B)

- performed on Myey would indicate that it is well behaved as m for these examples. -

£l

Compatibility with opératora Maew AHOWS more compatibility with Preﬁx; Par

‘and Composition. However, there exist agents for which Migew d0es 10t hehave as
‘expected in the presence of parallel concatenation.

Usability and ap'plicability ‘The measure Myqy produced hetter results on the

dining philosophers problem. than m. The values of the measure were larger and

" increased as the number of p’lﬁlosopher:i inc;eé.sed, Different algorithms could be

distingunished by mpey. Further research is fequixéd\ on other examples,

Ability to calculate measure for a specific event Trigew cannot be calculated
for a specific event, although it may be possible to extend the measure.

Lack of expense of computation In Chapter 4 it was shown that the algorithm

usied to calculate the number of consistent cuts in any given agent was exponential
in the number of processes. Since Mypey, like m, is based on the number of consistent
cuts, it is a8 expensive to calculate as m. : o

Stability with respect to granuimi%ty The measture My, shows less stability
with respect to gremularity then m. As discussed earlier, this ig/:he result that is
expected because m s baseil on a cansal relationship and because the additfon of
more non-communication events makes a computation yote tolerant to blocking,

Summary The measure myew is better than m although it does nof 'fuliy- solve
all problems associated with m. ' '
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5.6 Evaluation of the measurement of -co_nt:uri'ency in

CCS

The focus of this chapter go far, has been on the evaluation of the measure m. Two

other important aspects of this research are the feasibility of measuring concurrency

in CCS and the development of a methodelogy for the evaluation of concurrency
_ measures. In the next two suhsections these points will be discussed in detail.

5.6.1 Measuring concurrency in CCS

In the course of this work it has been shown repeatedly by the fact that the evalu—
ation of the measure m was possible that the concept of measuring concurrency in
CCS is a workable one, Although the measures have been defined for a subset of
CCS, it was shown in Chapter 3 that this subset includes confluent agents. An area
" of research is the extension of the measure to the whole of CCS,

5.6.2 A methodology for the evaluation of concurrency ineasures

This research has shown that concurrency can be measured in CCS and that it
can be uzed to evaluate concurrency measures, Hence, the approach taken here
to evaluate m can be used to evaluate other measures. This will provide both for
evaluation of existihg measures and the development of new measures; and for the
further development of a new tool for the theoretical investigation of concurrency
usmg ces. _ .

When authors present measures of conc\m'ency in literature, generally they do
not present evaluations of these measures. For a measure to be-a useful tool, it is
essential that it is evaluated with respect to relevant criteria. The research has drawn
together a numbar of criteria and used them in conjunction with the Concurrency
Measurement Tool to evaluate m. This approach can also be applied to other
measures defined in the message passing formalism,

Therefore, an important ontcome of this work has been to produce a method-

ology for evaluating measures of concurrency. This approach currently can be used
for measures defincd in the message-passing formalism; however, it may be possible
“to use CCS with measures deﬁngd in other formalisms, It has been shown to be
a useful methodology by the fact that it facilitated the discovery that a specific
measure was ill behaved and allowed for the definition of a measure using the same
basis that fitted better with the evaluation criteris.
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5.7 Summary,

" In this chapter, criteria for the evélliation of cox_mnrréﬁf:y measures wﬁ ¢ reviewed.
The eéxperiments that were perfm'm'éd ilsi_ng the-Concurreﬁcy Meagrrement Tool
‘were presented. From these experiments, it was shown that the me fn-e m does not
fulfil some of the criteria for_ evaluation, such as.compa.til.)ility wlthi CCS operators
and applicability and usability. A new measu_re‘ Mpew WaS c_leﬁhed and ics values
were determined for the same experiments. It was shown that M.y although bhetter

than m was still problematic witli respect to a few criteria. -

" Through the experimetits on hoth m 2hd My it was shown that the concept of
_meamui}i_g concurrency can be applied to CCS a.ger_kts. Fmally it was ghoyvﬁ that this
research hag froduced a methodology for the evaluation of concurreticy measures, -

. . The work presented in this document has resulted in a number of questions for «

further research and these questions will be discussed in the next thapter I.'cogether )

with the final conclusions. o ' E '



6. Conclusions and further research

In this final chapter, an outline of the research and the conclusions drawn will be
- presented. After this section, issues that are suitable for further investigation a3
a result of this research will e discussed., There are a number of directions that

inclnde nnprovmg m, comparing cnncurrem'y measures, defining a measwre based _

v linear extensions, extending the measute to algorithms, proving that there i is the
same number of consistent cuts in the computation representing a confluent CCS
agent as there are nodes in a framsition graph of that agent, extending the meagure

to a larger subset of CC3, applying measures o other algebraic ca.lcuh c:f processes -

- and defining a partial ordering semantics fm CCs.

6.1 Outline

The aim of this research was to investigate the measurement of concurrency in CCS
and at the same time, to evaluate a particular measure of concurrency.
 Measutes of concurrency are proposed in the literature as a means of investigat-
ing distributed algorithms. These aim to assess the structure of computations, as
opposed to time éomplexity and message complexity which do not do this. CCSisa
caleulus of processes that allows for the investigation of toncurrency. By achieving
a fusion of the two, a new tool can be developed for the investigation of concur-
rency using CCS'and compatison of different agents. There até a number of criteria
which can be used to evaluate a measure and this work aims to address the fact that
Ineasures of concurrency presented in the literature are not fully evaluated.

6.2 Summary of work done

&

In this section, an overview of the work done in this report will be given.,

Literature survey First, the relevant hackground litérature was presented, to
draw together the different approaches-iv toncurrency measurement and evaluation
of these measures, The choice of model was narrowed down to Lamport’s space-time
model /message-passing formalism. A number of measures have been defined in this
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fra.mewor];:'l'llamd all require some further investigation and éva,lua.tiqn.'?Chaxmn-Bost.’s '
measure of concurrency m was chosen as the meacure to be applied to ¢es.

C'ompaﬁson of the mes_sage-passing formalism and CCS Once the model
and measure had been chosen, it was nétessary to compare_tha_ mesSage-passing"-
formalism and CCS, and determine any differences that would prevent the direct

- application of the measure to CCS agents. Threg main differences were foun&-:-the
message-passing formialism provides asyn'chrox}y//(i‘s communication and CCS provides
synchronbﬁs communication; CCS allows. for'ﬁrdcess creation, wheteas the message-
passing formalism has a fixed number of processes; and CCS has moze express;ve
power than the message-passiug fonnahﬁm "

' B.eiieﬁnitipn of the mes_sage_—passing formalism 'The message-pa;ssihg formal-
ism was redefined to take into ‘account theéé differences. This process involved
defining a new process structure, whereby a’‘process could ‘cause’ other processes,

- and determining the effect that synchronous communication had on the ordering of

processes. The result of this was a new partial ordering of events where the events '
in a process that causes another process, precede _?:heévents in the process that
“was cansed and where events thht take place in synchronous communications are
jequated, A number of results were shown to' hold in the new formalism. These
results and the mi“atwe basis for the measuré-{that of consistent cuts being related
to the tolerance of a computation to stoppmg) Jjustify the extension of the measure .
to the redeﬁned formalism.

Revelopment of the tramia’t’ibn algorithm After the redeﬁnitidn, it was pos-
sible to define a franslation algorithm to map CCS agents into the message-passing
formalism bnd hence for the measure to he applied to CCS agents. A subset of
CCS was chosen to be translated~—this subset includes finite agents defined using
Prefix, 0, (finite) Summation; Composition, Restriction and Rela.beliing, although
the Concurrency Measurement Tool is not able _!;o directly handle Summation and
Rela/ﬁrelling. It was shown that this subset includes finite confluent agents. - ,
_ o
Development of an algorithm fo calculate the measure An a.lgorithn\t\g.vas
defined to calculate the concurrency measure. The laxgest part of this a.lgurithﬁ@_.\ is
counting the number of consistent cuts in the agent ander consideration, since the
number of cuts in the totally concwrrent and totally sequential forms can be deter-
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mined a,na.!ytically. The algonthm genera.tes all posml;feu -cuts, and checks them for
consistency. It was shown that the algorithm has aworst case ar 'vsis of D(¢" )Ez“")
where ¢ is the total number of events in the mmputa.tmn and n is the nymber of

processes in the computation. Other algorithms were uuggested

¢
! J|

Implementatmn uf the Concurrh\cy Meaﬂrement Tool ’I‘he Concurrency

Measurement quj was 1mplemented to automate the caloulation of the meagyre for

CCS agents, using the algorithm that was«f"belaped It was used %o experiment with

. " chosen CCS a,gents to evaluate m and its penfarm&nce was measuretl to compare it

with the theoretical a.nalym given abmre. It was show tha.t théx‘ktheoretzcal a.ua.lysis

dld Ia.rgely pled.lct the performance of the pmgra.m

g Evalnatmn of expenments A number of expenments were perf f‘ned to eval-
A ua.te the measure and to evalnate e measurement Of'\”éoncurrency in CCS. Thete

. experiments will be thscussed in more detail in thegection below. The ontcome was
that the measure m does not meet the criteria for evalua.tmm\eneclally with respect

to compatibility with npert}lzﬁrs and applicability to real sitlla.tmns, that a better *

Meastre Mpeyw cant e defined and that the measurement of concu¥rency in CCS is

possible.

6.3 Cunc.p ) *r"as | o

3

A

In the fallowmg the concluslons of the research will be presented and explained

1. In the evaluation presented in Chapter 5, it vnfés shown that there are faws'in -

the ineasure m. This I8 demonstrated clearly in the experiments:

- square both p° and y. Because of the equational structure of the mea- -
sufe and the fact that 1s° tends to be relatively small, this results in the -

W hen t% agents are conca.tena.tetl in parallel, the effect is essentially to

sq&‘a,ring of the measure and since m is defined on [0, 1], m* < m. There-

fore'the amonnt of measured concurrency decreases which is contrary to -
expe('ta,tmn. Similarly, the nse of the Prefix operator does not prowde :

" the eipected vesults, although the use of Before the second sec[uei\tla.l

_ 'aperatqr does result in the expeeted decrease in concurrency. Therefore.

the mes\pm‘e, in general, does not fulfil the criterion of compa.txb'd.lty with

Dperator? By applying the measure to CCS, it was pussnble tiq confirm

1 B . T
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' prublematm Although thie message-passing formalisma that was used qriginally
to define the measure was modlﬁed it was doze in a consistént way and hence -
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&

%

Charron-Boa results concermng compatibility wigk 0pe;a,*‘prs and to

show analytftally why these results occur, Ak discufised epsl er, compat- -

ibitity with operators is an important criterion b /" angé CCS yliows for

- abstraction from detail. w %
¢ The resulis of the dxmug phxlosopher expenment showed th t&ﬁh@gg’

the measure in a real situstion does niot allow, clear co panscn of alge- -

" rithms, The measures calenlated fall into-a very sl subset of [0, 15,
~ in the range of 2 X 10~% to 5 x 102 which raises issues about the in-

_térpretation of the measure, and the validity of comparison. The size of

the values returned by the measure can be explained by the fact that p°
dominates the measute 1. '

e In the dining ph.ll((gopher expenment, it was shown that as the size .09;" ' :

the experiment mm@sed the measire decreased, which indicates tham 1t

‘was not measuring the actual concurrency in the agents. F
. . . I {;;

Do these experiments show that the approach that was used to apply the

megsure to CCS was ﬁawed‘? ‘No, they show that Charron-Bost's measures,

*the argument for the motivation of the measure was successflly a.pphed to

‘the new formallsm

The anomalies presented a.bove, can be explalned as follows: for reasonable.

-sized systems, the resulting measure will be very small; and p° the numbes of -

cuts in a totally conicnrrent computation dominates the value of the measure

_ for a given computation. Hence, it can be claimed that although the justiﬁ-:

cation for the measure is correct, the algebraic expression used ta define the

" measure is 1] beha.Ved. : o : - @

. the value of Myey, 28 in the case of the parallel operators.

3

A new messure Myey using Iogarlthms was proposed and eva.rlia.ted Tt was,,
shows that this measure was more compa.tlble ‘with the four opera.tors, al-
though In the case of the parallel operators the measute is not always compat-

. . e S )
ible. It was slswn that Miyew refdrned larger, more reasonable values than m. -

However, for certain computations, it was still possible for log u° to domina.ta

. ‘ .‘ . . ‘.J:!
Tho algorithm used to caleulate y was exponentlal ifi the unmbs.\ . }prqcesses,
aithongh it was possible to calculate the measute for the dining philosophers

"
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algorithms, an example of applying the measure in a real situation. It has
been suggested that the problem is inherenily Intractable. This issue requires
“urther research. '

E

4. The measure was successfully applied to a subset of CCS that included finite
confluent agents. This shows that the measurement of concurrency in CCS is
feasible and therefors dther fneaaures can be applied to CCS and evaluated.
The understanding of concurroncy that is provided by CCS allowed for the

“gvalnation of m and will allow for the further development of a tuol for the
measﬁrg!&mt of concurrency which will aid the theoretical investigation of ©
concurreficy. Becaus®of the abstraction provided by CCS, compatibility with”

»  operators Is an important issue in any measure of concurrency for CCS; it is
desifable to be able to understand the effects on the »smount of concurrency
when x':ampi;nentsl are interchanged or variables are instantiated.

* 5. The fact that it was possible to apply the concurrencj} measure to CCS and

' .t‘e\ra.lu'a.te it in terms of the criteria gleaned ._fl"’gm the litera.t:ure means that this
approach can be applied to other measures and can be used in the definition

of new measores. The redefined formalism, CCS, the Concurrency Measure o
ment Tdcl and the criteria provide 2 methodology for evalua.ting';-gerféifr?"i‘én:—?:? \
measures in & manner that has been absent in previous presentations of cori~

L3

CUSTRNCY IMeasnres. _ v ¥
. ] - .‘-';}\_
K

6.4 Further research

6.4.1 Improving the measure based on consistent cuts

Az it was shown that the menstye had undesaable properties, an area of further
 research would be to use the motivation give'n for the measure m—the fact that the' ,
number of consistent ruts is ra@ted to how tolerant the computation is to being
stopped-—and attempt the deﬁn}i:ion of a hetter measure based on consistent cuts.

A suggestion was advanced in Chapter 5 using logarithms to define the measure
Tinew; however, it did not solve all the problems associated with m. -

¥
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‘ 6 4.2 Further investigation of the a!gorﬂ:hm to count consxstent
cuts

// i

' gﬂrrently the algorithm used to calcula.te p is exponential 1 the sumber of pro-

cesses. Further investigation is reqlured to determine if there exists an efficient
. algonthm to solve the problem or whether the problem is intractable. Some gug-
gestions were presented in Chapter 4. Another sug’gest.ion involves that of gpace
complexity. Fidge {32} has noted that 37, <ign T integers are tequired to store
the vector cleck informatiork It is possible to count consiiiteﬁt cuts without using
véctors clocks. The partial ortiering of events describes a directed acyclic graph and
the consistent cut counting problem can-be rephrased in terms of the number of
'su_l_:gﬁ-a.phs't&here'are which have the property that if vertex v is in the subgraph,
every vériex on every path from the root to v is also in the gubgraph,

6.4.3 Comparison of measures app},ied to CCS

\A number'of measuses have been defined i Jﬂtzhe franiemﬂ: that Charron-Bost used.
These include w [14], p [15)], B [32] and « [55] all of which were deseribed in Chapter
2. These méasnres can also be translated into the new forcialism with the necessary
. research to ensure they remain consistent and can be motivated, Hence they can
also be’ applied to CCS, and the (‘oncurrency Measurement Tool can be modified
to eplculate these measures, This modification should be minor as the program
alrea-dy embodies the redefined theoretical basis. For the measures 8 and a, linear
logical clocks need %o be added, and for a a second type of vector clock is required— -
the modification to the program for these is not large, The measure w is related
strongly to m and its calcnlation skould be posszble in the existing program; pis
more complex as it does not nse vector clocks and therefore the implementation
requires more investigation. This is discussed in more detail in Cﬁ‘apter 4.

Similar experiments can be performed to thosa done in this reseaxch and the
results can be used to compare different measures. This work is important as such
comparisons have not | .Eviuu;;ly heen reported In the literature.

6.4.4 A measure based ohl linear extensioné

Charron-Bost [14] suggesta a measyre using linear extensxons of the partial ordering
of events, but rejects it because tﬁere is no fast a.lgonthm to count Enear exten-
sions. Pruesse and Ruskey [54] have recently prehented an algorithm for generation
of linear extensions that runs in constant amortized time. A genera.tir;ﬁ algorithm
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is said to Tin in constant amortized time if it runs in time O(N) where N is the
number of objects generated. In the worat case, this algorit_hm is exponential since
the number of lingar%}temions is exponential. However, it has been shown that it
is practical for certain examples, This algorithm could he used o investigate a con- |
carrency measure based ‘on linear-extensions, as it seems as good as the algorithms
for counting consistent cuts. |

" The approach taken in this algorithm revolves a.round genera.ting each extension
- by permuting adjacent elements of the previous extension, Another area for further
research is to investigate whether this techniquewt:a.n be applied to the counting of
consistent cute, to obtain u constant nmortized time algorithm. In boh of these
cases, this research will be fruitfel only if it can be determined that there are in-
teresting suhclasses of the partlal orders (computations) for which the algonthms
become tractable. '

6.4.5 Extension of the measure to algorithms

In this resenrch, » messure for an algorithr was detertined from the'mini;num
and maximum of the values of the measures of its computations. Another a,pproaa.h
would be io sletermine weights Wy, ..., Wy that conld be apphed to the measures nf
the computations Cy,...,Cy for an algorithm A as follows:

- ] .
m{4) = Y wim{C;).
ol =1

These weights could be determined from tﬂe probabilities assigned to actions as
discussed by Purushothaman and Subrahmanyam {58]. This work involves assigning
probabilities to T actions in agents of the form 1, . B + 7, Py where py + pg = 1.
This determines the probabilities of different actions occurring. These probabilities
can be added to the derivation tree of the agent and the result would be a decision _
tree from which the prohability of each cumpﬁtati_on can be determined.

.o
8.4.6 Extensiori of the message-passing' formalism "
In Section 3.6.1, the issue of nondeterminism was discussed and it was shown that the
message-passing formalism cannot adequately deal with the nondeterminiom caused
by the Summation operator, or by the possibility of communication permitted by
the Composition operator in the ahsence of Restriction.

One extension to include the former type of nondeterm:msm is suggested a8
follows and a similar approach counld be taken for the Iatter Jpe. This suggestion is
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to describe the processes that a prdcess P; does cause and the pmceéses that it may

cause. This relation could then be redefined to map from the set of processes
to the powerset of prosesses and thus capture the nondeterminism. For example,
consider the ageht wb.(c.d.0] {e.f.0 + g h.0)) with- Py = ab, Py = cd, Ps = ef and

© Py = gh, then Py {Pg {Ps, P4}} This indicates that P; causes Py, and P, causes

.one of P3 and P,

A different approach involves finding a topology in which the space-time dia-
grams can be embedded go that the cuncept of nondetermlmsm can be added to
the message passing formalista,

© 6:4.7 ‘Transition graphs of CCS a.genté '

In Section 3.4.5 on caléillaﬁingc the number of consistent cuts, It was suggested that
the derivation gra.ph of an agent could be used. A resulf that has not yet been
proved or {hspmve(l is that:

The number of consistent outs in the computation of a given confluent
CCS ageat is equal o the rmmber of nodes in the transition graph of
that CCS agent.

K this result is shown to hold, it would then be poseible to investigate an algorithm

. based on creating this gteph and counting the nodes,
For a rigorons proof, it needs to be shown that there is a buec ion from the set of

" nodes in the transition graph to the set of consistent cuts (or vice versa), Transition

graphs have not been investigated in this research and therefore this proof is beyond
the scope of this report, _ ' |

Ax informal justification can be explmned as follows: A consistent cut represets
a ‘consistent’ state of a computation or in other words, a state where all events that
precede an event in the cut are also in the cut. Since communication determiines
the precedence between events in different processes, a consistent cut takes this

___eemmunication structure into account. Therefore jt is not pussible to have a com-

munjcation eveni withont its partner and all events that preceded the partner,
the cut. On the other hand, a node in a transition graph represents the agent ina

particular state. The actions which label the directed edges of the graph correspond *

to events; and the actions that occur on the preceding edges of the graph must
represent those in the cut, since the agent at a node contains the information a.bout S
what can ha.ppen i the future and nothing else.
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6.4.8 . Extension of the méasum of concufrency on CCS a

- Another area for future resea.rch is tha extension of the measure to the whole of

CCS

and exrlnrleé:

S
ol

The subset currently supported includes

' Nil, Prefix, finite Summation, Compos;tmn, Restriction and Relabeliing

oy

infinite Summation and Constant (or Recursion),

However the Concurrency Méasutremenﬁ Tool &ges not deal dirertly with Stmmation

or Relabelling-—agents for input can consist on!y of Nil, Prefix, Composition and-

Restriction.
Areas for extension mclude-

[

i

o

The Concurrency Meagurement Tool can be extemltnd to handle agents that
inclide finite Summation and Rela.belling, explicitly, without some form of
preprocesmng by the user. Currently it is necessary to appTy Relabellings and
decompose the agent into the different computations caused by the occurrence
of Summation before using the Concurrency Measurement Tool, then from the

values for each computation, the maximui and minfnum values for the agent

are obtained, This proposed extension would automa = the ‘work involved,
allowing the user to input an agent to the Concurrency Measurement Tool
and receive t}ge maximum and minimum valuea as output. However, this

extension will hicrease the cost of ‘computing the measure considerably.
el
The meagure counld }s% extended to deal with the whole of CCS, This wouald

involve defining a measure on infiniée agents. One approach wonld be to deter- |
‘mine the measure at specific stages during an infinite computation and from

these values calctﬂate a final measure for the mﬁnﬁe computation, This could
" be done by conmdering the stages of the partml wmputafmn as finite and ap-
plying a-measire defined for finite computations to obtain these.values. T'wo

basic approaches can be used to obtain the final values from the intermediate

values; averaging across all intermediate values obtained, or viewing the inter-

)

“mediate values as a sequence that converge;%to' a final value, with conditions

0 ensure convergence,

AN

&
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6.49 Application of copcurrency measures to other formalisms

In this research, the focus has been on measuring concurrenéy fu CCS. There are
other algebraic calculi of processes in the literature for expressing concurrency, and
some of them will be discussed briefly here:

. Bergstra, and Klop’s ACP (Algebra of Communicating Processes) [6} and Hen-

nessy’s ATP (Algebraic Theory of Processes) [41] have similarities with CCS at
the syntactic and operational level, although different congruences are defined
at the semaﬂtic level, Each caleulus has some operators that are urique, and
therefore to apply a.ny meastires defined in the message—passing formalism, it
s necessary to decide how these operators will be ma.pped into the message-
passing formalista. The issuea of differences in expressive power nust also be
" addressed for tjmse ca.li:u.h A similar argument as uzed in Section 2.5 can be
used fo Justafy the“a.pphca.tmn of one of the measures from the message—passmg
formalism. '

. __‘,i

. Melje [8] and Synchronous CCS (8C. ) [50] are two synchronous process cal-
culi that are similar. In a synchronﬁus calcults, processes proceed in lockstep,
and the assumption that fiothing ia kzmwu about the relative speeds of the

processes does not hold. As auggested\m Section 2. 5, these caleuli would be

- more a.pphn.a.b,}e to the measures of conq;lrrenty based dn formal languages,
becausa actions oceut in leckstep and traitmtlons are represented by multiseta
of labels. ’ : g

» COSY [48] is"an alpebraic a.ppmﬁ;hh to Petri nets. Paths which represent
re_soui*cés, and processes are the components that make up a COSY program.
Processes act independently except where thay are vestricted by paths. To

. apply & measura from those defined in the message- passing formalism, It is
necessary to detefmine how to man COSY paths and processes in the message-
passing formalism, and to cnnsuler issues that relate to the expressive power

of the two formahsms, and it appears that this wmﬂ& be more complex than -

~ the sojution found in this reseaxch.

» Hoare’s CSP (Communicating Sequential Processes) [11], is defined in terms
of a denotational semantics, although it is sometimes informally described
operationally. It is not immediately obvious how a mea.ame of concurrf-z:cy'

could he applied 1o CSP processea, a//ml hence this would appear to require &
different approach. :

ju
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6.4.10 Part:al ordermg semantics for CGS

As discuased in Chapter 2, there is a debate about whether mn‘lv 14 a:rf CONCUTTENCY
ehould display interleaved semantics or semantics based on' mtu wncurrency The ..
vector clocks described in this research could be added to CCS io give a partial order-
ing semantics in a similar way to the wor® of Degano et al [27]. In this research, CCS
was mapped into the message-passing ‘formalism, However, for a partial ordering
semantics it would be néceséa.ry to add, in some sense, the clocks that define the pa;*-
tial ordeting in the mesL ge-passing formalism to CCS. The methadology presented.
here distingnishes between agents that are ohservationally congruent; however, the'
methodology doéy: ‘deal with the semantic properties of an agent, but rather with
properties that are uefined by the syntax and the transitional riles of CCS.

The general approach to provxdmg CCS with a ‘partial ordering semantics can
be described as follows: 7 ff I'

. redeﬁne *he synjax of the explessxons in the language,
. I‘edaﬁne the [bnera‘rional sema.ntlcs in terms of a new ttansition relation,

“» provide a ae- mvalence under ihe redefined expresstons. Genera.]ly the
Expansmn Law will not hold under this new eqmvalence.

Tlua isa magor area. 2 of research and’ requiires a new a.ppmach to the work preﬁented
here, '

6.5 | Coaclusion |

The abm of the research was to investigate the measurement of concurrency in CCS.
This aim was achieved by applying the measure m to CCS agents, and if the process
of accomplishing this, criteria {or evaluating measures of concurrency were drawn
from the literature, the message-passing formalism was redefined to enable the map-
ping of CCS agents to if, a software tool was developed to calenlate the measuze,
the measure m was shown by gvaluation against the criteria to be problematic and
a MEW Measure Mpey Wos defined which was shown to be befter than m. The e
defined formalism, CCS, the Concurrenay Measurement Tt add the evaluation
criteria together form a methodalogy that'permitted the evaluation of m, and this
'I'nethodology can be applied in the evaluation of other measures, .
Wlmu il 123 of concurrency are defined in the literature it s necessary that

..'l-.. [, ST TS [ I . T SUL. LN . VRN, [N N [ . | . S, h [ TR
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A. An overview of CCS

In this appenilik, a hrief overview of Milner’s Calculus for Communicating Systems
(CCS) {50, 51] is given, The aim of this presentation is twofold; first to review of
CCS, and second to sot the notation used in this research report, This is in no way
a full pmsentatmn of CCS and the re'uler that has no experience of the subject s
refarred to Miluer’s book Communication and C’oncurrency [50}. The last section -
in this a.ppemlix p:esents conftuence which is used in the research report

Al T-he- -basic language 3

The language is defined in terms of expressmna, actlons and an action relation wluch
combined form u Labelled 'I‘mnsitmn System.

A 1.1 Sjmtax and nota'?ion
. l . b . .
Let A be an infinite set of names 6,5, ¢, ..., and A be the set of co-names &,5,,..

withZ=a. £ = AU Ais the lLet of labels, £ and 2 will range over £, and K, L wﬂl
range over L. Deflne I = {£|'4 § L}. 7 is a distinguished action such that v ¢ £;
called the silent or perfect action. Let Aet = £ U {7}, with @, # ranging over Act

A relabelling function f : £ ~ £ is a fanction such that f(') fO). i -
extended to Aet by defining f(+) = 7. |

Also asgume a countable set ¥ of proces;. variables X,¥,.... An a.rbitrary {pos- .
sx'b]y infinite) indexing set will he denoted by I. The set; E of process expressicns
E, F M fche smallest-set including A’ and the fqllow}ng expressions:

» ak, a:Preib: (a € Aet),

o YierE a Stupma.tion (when [ = @, the sum_ma.tion'is. written a3 0 and repre-
sents the agent that éan perform no action),

' Q'Eg | By, a Gomimsit:ion,
. E\ L,. a Restriction (rcuL),

o E[f], a Relabelling (f a relahelling function),
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p fix;{X; = E;'| i € I}, = Recursion (§ & I) (or alternatively AY P, a

Constant, \\hera P &P, the set of agents which are defined '*I:u be expregsions

“==ihat contain ‘no free variables. ‘This characterisation of . recursmn will be used |
in the sequel because of its more preseuta.hle form )

_ Let ﬂ(E) denote the synta.ctxc sort of the agent E [50 p- 52] A sort of ap agent E
is a subset of £ containjng all the actions that E and its derivatives may petform

' A 1.2 Operatmnal semantics

" The opera.tmnal semantics of CCS are defined in terms of a Labelled Transition
System, (£, Act, {5] @ € Act}), where the c@la.tmn -~ are decﬁned to be the smallest
relation satisfying the follawmg yules:

ﬁt e
4¢ _a.Ei‘L E
Sun B SE sen
um; - - .
i Eie_{ Ef: .2;_ Ej J . - a .

o,
Comy __'.E._-;-‘E.———
) E|F~E|F
- g2 gl
- Comy -WEQE .
FIESF|E
p4E Fip
E|\FSE\|F

Com3

EXE :
R T ——TTTT— !'—
® prZmg (WFFD

ESE

Rel ————
B[ B

P p .

def
Con =y (A= f)
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Examples Cons1der the follow:ng agents
e a0+ 0 can perform the action @ or the action @.

. 'a.ﬂ | 4.0 can perform the actions ¢ then &, or the acticns @ then a, or the
perfect action 7.

# {¢.0]@.0)\a can only perform the perfeci action 7.

- A.2 ' Strong congruence, observational equivalence and
observatiogal' congruence
Strong congruence

Strong congruence ~ g deﬁned a8 follows

Deﬁmtmn 3 P~ Q sﬁ, far all a € Act,

(z) %eneuer P — P! then, for some Q’ Q v Q' and P" Q' :
(i) Whenever @ = Q' then, for some P, PP and P ~@Q.

Because [sim iz 3 congruerica it is substitutive under all operators, namely if
Py ~ Py, then a.Py ~ 0.Py, L +Q ~ P2+Q' PG~ F|Q AL~ F\L,
By[f] ~ B[f); and it is also substitutive under recursive definition. s

To define observational equivalenca ¢, a few definitions are required.

Definition 4 Let? =o' ..ay € Act*. Then

() SEs.. ‘
) 1 E ﬁ* is the result of mmomng all v’y fmm 1
() SE S8 )" (D) B (S

Note tha.t 7 = g, the empty sequence, and So= ()M

Deﬁmt:on 5 PrQiff, foralise {.‘,"‘

(:) Whenever P £ P them, for some Q' Q= Q and P’ = Q'
(i) Whenever @ 3 Q' then, for some P!, P& P and P' = @',
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However, # is not a congruence, therofore the forther definition of observational
congruence or equality is required. '

Definition 6 P = Q iff, for all o'e Act,

(i) Whenever P & pr then, far some QLo Q’ and P’ ~ Q- |
(it) Whenever Q £ Q' then, for some P!, P 2 P! and P’ 2 Q"

The following rewult gives the relationship between the three squivalences.
‘Propositiond P~Q=>P=Q= P~Q.
Finally, the full form of the expansion law is given in the next proposition,

' _.Prbposition § LetFo= (PLALL | BalfaD\L, with N 2 1. Then

P~ o {f@BLA | P el aDNE ]
A3 P, f.(d)i'L_Uf} - A
EIDREAL IPf[fe]I APUSH - [ 2al DAL
B P'E’P:‘sPJ f:('ol) fa(fz),1<1}

" . )
o,

Example Th&tfollowing agents are squated by the Expansmn Law
aﬂ|bﬂ~mb0+ba0

.\\
L

A.3 .D_eterm:i_nism and confluence

_ Strung and weak determinacy can be defined as follows:

W

Deflpition 7 P 45 stmng!y determinale if, for every derivative Q of P and for all

@ € Act, whenever Q3 Q and Q3 Q" then Q’ Q.

Definition 8 P is {weakly) determinate if, for every demv}(twe Q of P and for all
8 € £*, wheneve~ @ 3 Q' and @ S Q" then @' ~ Q"

~ The concept behind determinacy is predicta.hility. I an ebiperiment is performed
on 5 determinate system, the same result or behaviour shonld be obtained each
time that experiment .js performed. It would be desirable to have a set’ of rules
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: ;'F fj . - s

/ 1
OO § o Foogt :
. \ g )
<

~  Figure A.1; The confluent agent 0.0 I.b;(c.ol 4.0} [50, p. 238].

that allow determinate systems to be constructed from deter‘:hinate coinponents
However, there is no constrained form of Composition that is determinate and allows

commumcataon Therefore conﬂuence, a stronger fcrm of determinacy, has beea
ptopoaach - 0 i \ N - iy
. k b ; f Eh : §,:“ J . [

Deﬁmtlon 9 rfs, the e:iuu# of'r over s, is deﬁned as folfowa .

&£

drfs) ife gE:s_
'r.](sfﬂ)' ife€s.

| efs
(r))s

&

Definition 10 P is confluent iff, for all »,s E"'i'.“, tﬁe_ Jollowing diagram can be
completed
P N 1
T~
A .’ .

The idea behmd confluence is that when performmg a.n expenment d:ﬂ‘erent a,‘.tmn,s
may occur on different orders however the final result will be the same, or more . .
concisely stated—the oceurrence of one action will not preclade the possihility of ~
another. In Figure A.1, an example of a confluent agent is given

~ The following results describe which syntactm forms are conﬂuent, aml which

operators preserve confluence.

o
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‘Proposition 6 If P is confluent, ‘then so are the fo_llowing.". woo L ° -

T W
. o

(i} 0,a.P and P\L ) §
i)  Pf], provided thet f i¥ injective on L(P).

‘Definition 11 For oy,...,a, § Act,n 2 0, the Confluent Sum (e | ... | an )P is
deﬁned recurs {}‘F/’;{ as fal!mm ' -
f) P &laf P .

| {3 __'Q Di(:(n

O -

_. . a,-;'_._'; 1_:?“1 . a;,,,_},p_ (n> 0)

Propasitidn-’.%fi .If Pis -canﬂuent tken 80°i5Y a foeel a,,,).P. | 1 L

= _— .

Deﬂmtmn 12 For L C L'. tfse' ’Restrzctad C‘omposst:on is deﬁned tra Ty
A .
B lo P2 = | PzJ\E o
SN o e
and it ss mlled @ Confluent. Lampnsn‘.wn if E(Pz) N ﬂ(Pz) -\\9 and E(Pl) m:(Pg) €«
FATE A I e . |
o | P o N
Proposltmn 8 Let P1 and P2 f/e mnﬁaem. T fsen if Pl ir, Pp is g Coﬂﬂuent C’om—
posman it i3 canﬁuent : m.%\

Proposltmn 9 Let P, end all Constants upon whick it depends be\deﬁned usmg ~
only G, one-lo-one Relabei!mg, t‘onﬁucnt Sum, Restriction, Conﬁuent“ﬁamposztwn;__:_
and Constants. Then P i canﬁuent ' ;

.}.’}
T fa
o o .
5] » 8
1. "‘;\ .
; o [
" ;
v J}\ .
\I .. R
v )
f../)
Cr "



B,;. Pyoofs

i

In /ﬁns sppendix, pmofs of proposltmns and theorems from Chapter 3 will _kpm»
saﬂt q _ _ | ’
:' Pmposition 10 = is a partinl order :

" Prooft 'To show that <’ is a partial order, it must be }jhown that <’ iz reflexive,
_ transitive anpd a.ntxsymmemc relation. To recap, <4’ is equal to thqtranmtive closure
of (< u '

Reﬂexmty “This follows from Equa.!ity

2, Trammtmty This fo]lom fl om rhe fact tha.t -<’ is deﬁneo. to be the transitive
~ closure, : ' '

- R Ahtisymmetry:' Given (& <’ BIA(D %' @), there are four cases to be considered.

o,

(a) (n%b)h(ﬁmm)::»(a=b) | |
) a=b)A(b<a)=(a=t) - o

(@) @=hA=0a)=(a=?) | |

(d) (e <b)A(b < o). This case cannot ocour becanse of the definition of <.

N

fedd

a

Proposition 11 X is a partial order
Prooft = is defined to be the transitive closure of (< U =) with the additional
rule that

Va,be E(Pla - b=>a=b . 77

As can be seen from the previous proof, this is a partial erder, - -~ - O
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Prcposrtmn 12 (Pmmsztmn 3) The cut € defi ned by Ec and a‘ for eachi € MN\E,
. o
C'- U {rEE(R)I:%u,}- U (la,). ' \
| ieN\Ec L iEN\Ee -

is & consistent cut if and only if
Sup(Tj, en ‘Tﬂ') - (Tl[l.], ey Tﬂ[ﬂ]).

Proof: :

Note that in the following proof it is not necessary to cdhsidep individuaﬁjr the
cases F; ~+ Pj, P; — P and the case where neither is caused by the other, since
this is capturedin the relation <. '

=% : Assume that C defined by E¢ and o; for i g N \Eg is a consistent cat,
‘namely Va € C,be E(P) (b 2 a=be&C). It must be shown that

Sup(Th, ooy To) = (T[], Tl
& Yie{l,...,n} &% T3] = Tifi]
@ Vi,j € {Ls...,n} Tyli] < THfl

. For any 4 and j, there are four possible cases to consider:
1. 4,5 € Be : theny Ty{i] = Tif4] = 0 so the condition holds.
2. {¢ By and § € Eg : then Ty[i] = 0 < T3],

3. i € Eg and j ¢ Bp ¢ hence Tj[i] > 0, therefore there e':;cist_s » communication
event from B, § € E(FP) such that b 2 a5 and b ¢ C since F; does not
contribute any events to C. This contradicts the fact that ' is a consistent
cut, so this case cannot ald. |

4. 5,4 € Eo .consider_ ¢; and .ﬂf_-j. They can be related to each other in the
following ways:

(a) a; co a; : From Proposition 2, this implies @(a;)[i] < ©(a;)[i], hence
T;li] < Tili} by the definition of T, so the required condition hotds.

(bya; =% i : This implies that ©(a;} < O(a:) & O(a;)li] £ O(a)i] &

Til] < Lif3). _ -

(e} a; < 8y Therefore O(a;) < O(a;) @-O(a;)i] < O(a;)il. Then from™

Proposition 1, | ({ eV ] <| ({ a;% |- Now sinte < is a total order on

E(P), (1 4% € (| ¢;);. Therefore 3b € E(P), such that b & ({ a;); but
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e

b g {§ 2, therefore & ﬁ C,but b % gy, Whl(:]l coutra.dlcts the deﬁnitmn L

of the cot €, and so. thxs case canmot hold,

~ Bo 1t has been shown that in all cases satisfying the dennmon of a cons;atent o
'_ cut, the required conditions hold

<= : Assuime the following holds for C, a cut defined by .Eg and a; fori ¢ ,N \Ec

sup(T;, oTn)= (T1[1],- yTa[n))
& Vie {1,. ,,,n} max T_,[i] T}
RS V&,jE{l ,n} T[z]<T[zj

It st be shown that C is a mnmstent cut namely Va. é C‘ be E(‘P) (b <a =>

b € C). Suppose the converse, 3 a € C,b € E(P) such that b< @ and b ¢C. There™

are two cases to congider: |

Labe E(Pg) (i € N\Ec): « & C and « € E(P;) implies a € (| a;); which
implies that ¢ < ag, but & < ¢ so by transitivity b < o; whick implies that
Be (1 i) by definition and hence b € C. Contradiction.

2. g E(P;),b€ E(P)(i,j € N\Eg,i#j): 6 & C and a € E(P;) implies that
a € (| a); and a = a, Also bg C and b € E(P;) nnphes b ¢ (L a;); and
adh |
Since a; 25, (| ai). C (l b); amd @(a‘)[t] < O(b)[4] from Propos1t1011 1
Alsob=a,a=a; =b ajy 80 O(b) < (g(u_.,) and O(b)[¢] < O(a;}[i].
Therefore O(«; i) < ©(a;){i] and by the definition of ﬂ,TJ, T[] < T3]3} since
R J eN \Eg Hence 34,7 € {1,...,n} such that T}[$] < T;[i}. Contradiction.

EN

Therefore it ha,s been proved that C is & consistent cut. -~ 0



C. Agents for the dmmg phllosophers

pro blem

g

In this'appemlix, the agents nsed & Eﬁpeﬁmenta G and H in Section 5.2 are pre-

df; - -

e -

e 2 pinlosop

( t.gfl.gf,.e.t;'&fg.o[ philosopher, - | -

Ga: 4 philns‘dphera, odd-~even sq}dfipn

‘get room ticket .

-gented. The a_\.\ctions are abbreviations for the following: J
t - think
‘e : - eal
gf; - get the ith fork

drop the #th fork

LA

. _drop room ticket

5, odd-even snlutmn

| tgfglfpedfiNf2.0 | philosapher,
Efl i Ex .df 0% Lg _ fQJ'-IE{\
Bfy.d _?2 a0 fOI‘kg \m
) \{g‘lr dflsgfsa dfﬁ} : / R

o)

N

( tgfpgfuedfidfad|  philosopher | |
tafygfpe.dfydfz0 | " philosopher, ‘ : | i
t.gl'g.gfy.e.df3.df5.0 | : philozophery - i ' ' '
t.gfa.gfgedfz.dfy0 | ph.llosopher.,
gfydfpgfydfi0] - forky
gl Ao grp dfz0 | forkg
gly. dfz.glq.dfa0.| - forks
ol gl dis0 " fork,

) \{gfh dfhgfz. d{2s gf:h d;hgfq; dfd]’
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G:s% 6 phil;gqphersg. odd-even _sdlutian :

( tafygfoedfndled] " philosophet,

togfy.gfy.e.dfy.dfa0 | “philosopher,
t.gfq.glq.e.dfz.dfa0 ] e . philosophers
talfsalfoedfadfs0 ] | * philosopher,
o t.gfy.pf.0.df5.df 4.0 | : - R '1h31950phér5
B f.s._tgfsngfe egly81q0 | o I . PIIHO&OPhefe
- ey dfvgly.00.0 | ' L tork,
- ghpdfag, 40| - . forks
- gfy.df.gts. dfgﬂ | : o forka
R P e X S o - forky
g s.df 5.l 31—'5 0 ] h o . ¢ forkg
ookl dle0 ¥ T dotks

) \{S‘fudfhgfz;dfngfa:fffasgﬂhdfmgfmdfalgfmdfﬁ}

Gyt 2 phxlasophers,'mom-ticket solution o

This exaniple i more'compl'ek because of the introduction of 1oozﬁi't;icl{ets and re-
N quires the calcnlation of the measure for two different possible runs of the agent
(There-are more runs, but these rela.te to permutations on tiie order of processes)
The firge a.gent involving only two philosophers has only one possible run because :
of the E.mstence of uuﬂ? bne ronm-l‘lcket X :

( tgtgfl .glp.e. df;.dfa dt.0 | ’ philosophe'rl

t.gt.gfy.80-e. df'; dfy.dt.0 |  philogopher, "
gl dfa.gfy.df7.0 | fork; - _
3T, B, 4T | forky D

- gh.dtEt.dt.o : - . Taom - tickets
) \{gt‘dt gfhdfl:gfmdf.!} ' '

Ly
i
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| Gst 4 -pﬁlosoﬁhgrs,'room-ticket solution.

This sitwation now involves a number of different computations for the same agent.
This occurg,. because any one of three 'roor'n_ft_ickets can generate a new copy of itself
to let the friu_rth- philo_saphe.r into the room. The agent is described first, and then
the two different computations are given. The same applies to Experiments H; and
Hp, althangh only The agents for those experiments are given in this appendix. o

 The ‘agent
N t.g‘t@i‘i.‘gﬁ.e.dﬁ.dfg.dt.o | ~ philosopher,
tﬁt.gfz.gfl_,e.dfg.dfl.dt.o | - - ph}lasopherg. .
t.gt.gfyglye.dizadiz.dt.0 | L philosophery -
. t.gtalyglyedfydfsd60 | philosopher,
. 51‘313 1.;}_{1.0 l oo ' {orky .
: E 2.&?2.32 df2.0 | ’ . _ forky K
Hg.afg..ag-?fmz.ﬁ i forks ) _
_. Ef‘i.a?.;.g’?‘;.-&?g.ﬂ b d _ forky” : R
Edi(gidto4e) | room - néketa
FLaL(Eds )| T -
FLALEdE0 ¢ 0)

) \{gt dt gfnfffngfzqdfzagfaa dfs,gf4,df4]-

3



( tgtgfl gf43df1 df4 de.g I

"The first computation

: . ’ i
(- tgtafyalpediydfidt0 | s
t.pt.gfaafy e dfadfi di0 |
t.gt. gfs gf‘z e. dfy.dfy.dt.0 !
| tgtgtsgly.e.dfydfsdto |
gfi dr, gf1 dfl o]
" gfg.dfg.gfg.dfg.ﬂ- | o
gl 4.0l 4.6,.014.0) .
ghdtgidto | r
Cghato | R
gidio
) \{St dt, thdfhgfmdfz,gfa;dfa,gf«df4}

The secund computatmn ( N

t.gt.gfygf e.dfs.dfy.dt.0 |
t.gt.gfs.gfy.e.df3.df5.d6.0 |
tgt.gly gfge.dfs.df3.d0.0 |
gf . dfz.gfy df1.0 |
gl dT2.815.d12.0 |
gfy.df7.8F,.dT5.0 |
£ I 4.g1,.dE4.0 |
gt.dt.gl.dt.o |
g.dt B dt.0}

) \‘{gts dts gflr dfhgfz: dfy, gfa: df31§f43 dfd}

‘philosapher,

philosopher,
philosaphers
philosopher,

» _.fﬂ-l'kj. _

fOl’kz
forks
forky -

room — tickets

* philosopher,
' -philasopher;

philosophery
philosopher,
fark,
forkg

forks . |

fork,
room - tickets

- APPENDIX C. AGENTS FOR THE DINING PHILOSOPHERS PROBLEM 125

Z;
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Hy: 4 phil r_-snphers, odd—even solutmn, 2 eal; 2 thmk

A kfgfi gf4 e, df’1 df4.0 [ - philosopher;
t.t.glyglpeedfidfz0 b . philosopher,
t.iglgfpeedfsdi;.0 |~ philosophery
t.t.-gfa.gque.dfg.df.q.0 { .- philosopher,
A S R
é?g.HTg.E?z.E?g.ﬂ — © forky

gl dls. 850130 | © L forks -
gl dlaglydis0 - forky

\{gfls df]_., gf:z, dfzsgfa‘ df31gf4s df&l}

Hat 4 phllosophers, udd-even solution, 4 eat, 4 thmk_
( t.t.;.t.gfl.gf‘,..e.e.e.e.dfl.fff.;.ﬂ | philosophery -

t.t.t.t.gly.gfpeeeedfy df20 | philosophery
. t.t.’t.t.gfa.gfg.e.g.é.e.dfg.dfg.ﬂ| _ phﬂosophera

LE bt gfy. g 0.0.000df3.df .0 | - philosopher,

gly.dfy gl df1.0 | ) forky
ETGLS | ok

gladiagfadfsd | - forks

gEy Aty dfa0 : forky

) \lgfy, dfy, gy, dfs, 555, dfa, 2Fy, dfa}

H3: 4 philosophers, odd-even solution, 8 eat, 8 think

( Gbbtttttglygleeeeeeeddfy.dfa.0 | philosopher;
.ttt b gl g 00.00.0.0.0.0.df.df 2.0 | philosopher,
t.ttt b bt gl glh.0.e.0.0.0.0.0.06.0f5.d2.0 | philosophery
(RARRRARNIN:) | 4.e.e.e.e.e.e.e.e,df3 df4.0 | philosopher,
Tyl .37, 0710 | | forky
gy dlyghydfa0 | | forks ™
gly.df3.8T5.d3.0 | ' forka

gl Sf.; df,.0 ' forky’

) \{sfl.dfl,sfz,dfz,gra, dfs,gfq,dm S

B ;
i e
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)" \{gt, dt, gf11dfs, gl dfz, &fs dfa,gn, dn}

o Ha- 4 phxloaophers, room-ehcket solutmn, 4 eat, 4 thmk
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