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Photon entanglement, either spatially, temporally, or even in terms of its polarization, has become
an increasingly important field of interest in the world of quantum mechanics. The importance
becomes apparent when looking at quantum protocols such as quantum teleportation, commu-
nication, and quantum information. These entangled photons are often generated through a well
known non-linear process known as spontaneous parametric down-conversion (SPDC), where a
high-energy pump beam impinges on a non-linear crystal and generates two lower energy down-
converted entangled photons. The intensity and phase profile of the pump beam influences the
dimension of entanglement that exists between the two generated photons. This pump beam
shape can be altered through the use of optical devices such as spatial light modulators (SLMs)
in order to achieve desired entanglement spectra. This dissertation serves as an introduction
to structured light and photonics with an emphasis on the spatial modes of light and the inter-
section of quantum mechanics with optics. A description concerning the tailoring of the field
of light with spatial light modulators is presented. These SLMs are also useful when measur-
ing some properties related to entangled photons. Some of the quantum measurements that are
discussed here include the spiral bandwidth, Bell measurements, and quantum state tomography
measurements. Lastly, some novel work is presented, where we demonstrate a basis-independent
approach to shaping the pump beam, in order to achieve a desired entanglement spectrum.
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Preface

This thesis is structured for coherence from start to �nish, to allow the skills used in later chapters,

to be introduced and understood in earlier chapters. The aim is to introduce key concepts crucial

to photonics and structured light, but relevant to a quantum optics interpretation. The �rst chap-

ter introduces these structured light concepts and describes the spatial modes of light, as well as

a few basic mathematical formulae related to quantum optics and quantum entanglement.

Since this �eld is dependent on structuring light, a quintessential skill is realizing how one can

physically perform this tailoring of the �eld of light. This is the intention of the second chapter,

to understand how to shape light, with an emphasis on spatial light modulators (SLMs). These

SLMs are useful, not only for shaping light, but to measure some properties related to quantum

optics. Arguably, the most important of these properties is that two photons can be entangled

with one another through a process of spontaneous parametric down-conversion (SPDC). This

is the key focus of the third chapter, using the mathematics introduced in chapter 1, and the

skills of shaping light with SLMs from chapter 2, to entangle photons and take measurements

on these entangled photon states. Some of the measurements highlighted here include the spiral

bandwidth, a Bell measurement (which veri�es the entanglement of the photons), and a quantum

state tomography measurement.

Chapter 4 is an experimental realization of the quantum concepts introduced in chapter 3, with an

emphasis on gaining full control over the different parameters in a quantum optics experiment.

The �nal chapter presents novel work related to controlling the entanglement in an experiment

by shaping the light for a desired outcome.



1

Chapter 1

Quantum mechanics and spatial

modes of light

This chapter aims to familiarize the reader with a few topical concepts pertaining to the thesis as

a whole. A general overview concerning these concepts is presented, with an emphasis on the

related mathematical quantities, if any, which is also speci�ed for relevance. The key takeaways

from this chapter include the following:

• Understanding what is meant by the spatial modes of light and how to de�ne these spatial

modes mathematically,

• knowing how to determine the state of a quantum system, both mixed and pure, using the

density matrix formulation,

• realizing what is meant by entanglement and hence being able to determine whether a sys-

tem is entangled or not, and

• being able to make a measure of the degree of entanglement of a quantum system.

1.1 Schrödinger equation and spatial modes of light

This section guides the reader through the interpretation of the wave equation and the formula-

tion of the paraxial wave equation. The latter is important to �nd the relevant spatial modes of

light.

1.1.1 Schrödinger equation

The Schrödinger equation describes the evolution of the wave function (essentially as a proba-

bility evolution). The Schrödinger equation is formulated as a partial differential equation given

by:
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Y (r, t) = i h̄
¶
¶t

Y (r, t), (1.1)
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), (1.2)

is a vector differential operator,

h̄ =
h

2p
, (1.3)

is a modi�ed version of Planck's constant ( h) known as the reduced Planck's constant, r = ( x, y, z)
is the position vector, V is a time-independent potential that the system is subjected to, and Y (r, t)
is the wave function de�ning the state of the system.

This is the mathematical de�nition for the wave equation which depends on spatial and temporal

coordinates. By performing separation of variables, Y (r, t) = y (r)T(t), the Schrödinger equation

can be simpli�ed to a time-independent form:

"
� h̄2

2m
r 2 + V (r)

#

y (r) = Ey (r). (1.4)

This equation can be seen as a tool used to describe the permitted energy levels of a quantum

system [1]. By using the Hamiltonian operator,

H =
� h̄2

2m
r 2 + V (r), (1.5)

the Schrödinger equation can be written as,

Hy (r) = Ey (r), (1.6)

which now becomes an eigenvalue problem with the Hamiltonian operator operating on the wave

function. Solving this differential Eq. (1.6), returns an eigenstate y (r) with a corresponding eigen-

value E - the energy of the system. There are almost always multiple solutions for this eigenstate

(y n(r)), with its corresponding eigenvalues ( En).

Quantum mechanics is an extensively researched �eld in physics and there have been many dif-

ferent attempts to explain how the mathematical theory of quantum mechanics maps to reality.

The interpretation used in this dissertation is that proposed by Bohr and Heisenberg - the Copen-

hagen interpretation. In this interpretation, the most general wave function describing the state

of a system is said to be described by the superposition of all the possible eigenstates of the eigen-

value problem given in Eq. (1.6) [2]:

y sys = å
n

cny n(r). (1.7)
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In this superposition, each state (y n(r)) is multiplied with a coef�cient (cn) , whose squared norm

(jcn j2) can be interpreted as the probability of �nding an outcome of a particular measurement

[3, 4], for instance by making an energy measurement on the system, one would notice a returned

value of En with a corresponding probability of jcn j2. Each Hermitian operator ( Â = Â†) has its

own corresponding observable that is analogous to measurable quantities in classical mechanics,

such as the momentum or angular momentum of a classical system.

When one considers the wave function jy (r)i to be a �nite-dimensional vector, the Hamiltonian

operator will be a matrix. To determine the eigenvalues with each corresponding probability

would require this Hamiltonian matrix to be diagonalized.

1.1.2 Paraxial wave equation

Consider the electric �eld of an electromagnetic wave to be given by E. The three dimensional

wave equation for this electric �eld , derived from Maxwell's equations [3], is represented by

r 2E(r, t) �
1
c2

¶2E(r, t)
¶t2 = 0, (1.8)

and by utilizing separation of variables with Y (r, t) = E(r)T(t) one �nds:

(r 2 + k2)E(r) = 0, (1.9)

with k2 = � 1
c2T

d2T
dt2

. This is known as the Helmholtz equation [5].

One solution to this Helmholtz equation can be found by choosing the k2 term to be written in

terms of energies as follows,

�
r 2 �

2m(V (r) � E)

h̄2

�
E(r) = 0, (1.10)

where k2 = � 2m(V (r)� E)
h̄2 . This choice of k is possible as it simply reproduces the Schrödinger

wave equation for the Hydrogen atom.

We choose the electric �eld amplitude to take the form of a plane wave equation propagating in

the ẑ-direction, therefore

E(r) = A(r)eikz. (1.11)

There is a very useful approximation that can be applied to the Helmholtz equation, known as the

paraxial approximation, which is related to the slow varying envelope approximation. Through

this approximation, it is assumed that the complex amplitude of the electric �eld ( Y (x, y, z, t))
varies slowly with respect to z. This allows one to neglect higher-order derivative terms of the
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electric �eld, as the variation occurs slowly, hence j ¶2A(r)
¶z2 j << j2ik ¶

¶z A(r)j. Applying this ap-

proximation, and the plane wave equation, to Eq. (1.9) thus ultimately yields the paraxial wave

equation (PWE) [6]:

r 2A(r) + 2ik
¶
¶z

A(r) = 0. (1.12)

The paraxial wave equation can be solved in a number of ways. The solutions to this differential

equation is given in terms of modes, with each mode representing a different energy eigenstate

of the wave. The solutions to this differential equation in elliptical coordinates is given by Ince-

Gaussian (IG) modes, in cylindrical coordinates the solutions are given by Laguerre-Gaussian

(LG) modes, and in cartesian coordinates the solutions are Hermite-Gaussian (HG) modes. The

choice of a cartesian coordinate system would yield spatial pro�les with a cartesian symmetry

and the same goes for choosing a cylindrical or elliptical coordinate system. The spatial pro�les

may look different, but since each coordinate system would yield an orthogonal set of solutions,

one would be able to write the solutions in one coordinate system as the superposition of the

solutions in another coordinate system. For instance one can take the superposition of LG modes

and create an HG mode [7].

1.1.3 Spatial modes of light

As discussed in the previous subsection, there are several solutions to the paraxial wave Eq. (1.12).

The LG and HG modes will be the two modes that are addressed. The �rst set of solutions pre-

sented are the Hermite-Gaussian modes (HGn
m), a complete set of solutions to the paraxial wave

equation that is mathematically determined as follows [8]:
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(1.13)

with:
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.

(1.14)

In these equations x, y, and z are the cartesian coordinates of the system,n and m are positive

integers, Am,n is a constant, l is the wavelength, and R(z) is the radius of curvature of Eq. (1.13)
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