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ABSTRACT 

 
The issue of how the spatial scale and other aspects of food resources and habitat 

conditions may enable several species of grazing herbivores to coexist while using the 

same grass resources in the same region is of fundamental importance in ecology and 

management of herbivore communities. With this project I aimed at improving the 

understanding of the ecology of the tall-grass grazers assemblage, particularly how the 

spatial scale of resource use influenced resource partitioning between grazers that attain 

different regional density in the same region. Based on theories of patterns of species 

abundance, body size, feeding specialization and competition, I predicted that at all 

spatial scales the low density, smaller, resource specialist sable would be more narrowly 

selective for resources than the high density and generalist grazers buffalo and zebra, 

which I expected to be more broadly tolerant to resources at different spatial scales. I 

found that the grass species most preferred by sable were also preferred by the abundant 

species, but buffalo and zebra grazed a wider range of grass species than sable. Sable 

were narrowly selective for green grass whereas buffalo and zebra grazed grass within a 

wider range of phenological stages, including completely brown grass. The three grazers 

overlapped in habitat features prevailing in foraging areas and, contradicting 

expectations, the breadth of habitat features in areas used did not differ among grazers. 

The low density sable used resources that occurred in restricted areas of the landscape 

during periods of food abundance, but the resources required became sparser as the dry 

season progressed prompting sable to move notably more widely during the late dry 

season. Buffalo and zebra used space more evenly suggesting that resources supporting 

these high density grazers were abundant and widely distributed in the landscape year-

round. The sections of the landscape supporting the low density sable were distinct from 

areas frequently used by high density grazers. Overall, results showed that resource 

partitioning occurred through spatial separation of core grazing areas, despite overlaps at 

lower spatial levels of resource use. The narrow tolerance of resources by sable at the 

grass species and grass features level suggests that the dry season is a more stressful 

period to sable than to more common grazers due to a progressive decrease in the 

availability of resources favoured by sable. This could contribute to explaining why sable 

occur in low density as well as the decline and the lack of recovery by the population. 
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INTRODUCTION 

 

THE NEED FOR THE STUDY 

 

Species richness of natural biological communities and the rarity of species have 

been used widely in the species approach of setting priorities for biodiversity 

conservation (Bibby 1998; Margules and Pressey 2000). The diversity of the large 

herbivores in the Kruger National Park (KNP) is higher than in other protected areas, 

including low density and highly abundant species that coexist. However, the populations 

of sable antelope (Hippotragus niger) and other less common antelope species such as 

roan antelope (Hippotragus equinnus) and tsessebe (Damaliscus lunatus) have registered 

persistent declines since 1987 (Harrington et al. 1999; Grant and van der Walt 2000; 

Owen-Smith and Ogutu 2003). For instance, sable antelope numbers decreased from a 

peak of about 2240 in 1986 to about 550 individuals in 1996. Roan antelope and tsessebe 

experienced more severe decline than sable antelope (Grant and van der Walt 2000). This 

precipitous decline represents a management concern for biodiversity conservation in the 

KNP, because the observed declines are beyond the thresholds of potential concern 

(TPC) established according to population numbers and rate of decline, defined for 

adaptive management of low density antelope species in the KNP (Grant and van der 

Walt 2000). Therefore, there is a risk of these species being lost from the KNP 

biodiversity. 

Harrington et al. (1999), Owen-Smith and Mills (2006) and Owen-Smith and 

Mills (2008) documented that elevated adult mortality due to predation by lion (Panthera 

leo) was the primary cause of the decline of low density antelope species. Harrington et 

al. (1999) and Owen-Smith and Mills (2006) suggested that the abundance of lions 

increased in the main range of low density antelope in the north of the park, following an 

immigration of plains zebra (Equus burchelli) and wildebeest (Connochaetes taurinus) 

during the El Niño-related drought of 1982/3, because water was abundant and widely 

distributed in the form of artificial boreholes supplying drinking troughs to animals. 

African buffalo (Syncerus caffer) became more vulnerable to predation during the 1982/3 

drought, but the population subsequently recovered in northern KNP (KNP Ecological 
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Aerial Survey), also benefiting from the artificial increase in water availability in habitats 

otherwise dry and not suitable for highly water dependent grazers such as buffalo. 

Deterioration of habitat conditions and forage resources associated with the persistence of 

annual rainfall below long term average, decrease in dry season rainfall and increase in 

temperature (Ogutu and Owen-Smith 2003; Owen-Smith and Ogutu 2003) might have 

contributed to the sable decline by reducing the availability of green forage during the dry 

season, which is potentially a period of nutritional stress for herbivores. Malnourished 

animals are weaker and more vulnerable to predation than well nourished animals 

(Owen-Smith and Ogutu 2003). 

In addition to attracting and supporting the build up of the lion population and 

contribute to the sable decline through apparent competition (Holt 1977), zebra and 

buffalo have similar resource requirements to sable because the three grazers prefer to 

graze medium-tall grass (Skinner and Chimimba 2005). Therefore, zebra and buffalo 

could contribute to sable decline through depletion of food resources during the critical 

dry season. Putman (1996) suggested that opposite trends between populations of 

ecologically similar species may indicate competition for resources. However, the co-

existence between the declining sable and the grazers that increased in abundance in 

northern KNP may indicate that resources are partitioned between these species reducing 

potential for competition. 

Resource selection by animals occurs at different hierarchical spatial levels, 

ranging from the selection of geographical ranges to the selection of plant parts within 

feeding stations (Johnson 1980; Senft et al. 1987). However, the hierarchical level of 

resource use at which resource partitioning or competition among grazers effectively 

occurs has not been explicitly investigated. In addition, low density grazers have always 

been excluded from studies of resource partitioning. Therefore, the ecology of low 

density antelope species is poorly understood, specifically the issue of how these species 

coexist along with much more abundant and potentially competing species has not been 

addressed. 

This project was designed as part of an umbrella research project of the Centre for 

African Ecology of the University of the Witwatersrand. The umbrella aim of this project 

was to improve the understanding of the ecology and identify the factors responsible for 



 3 

the declining abundance of rare antelope species in the Kruger National Park. The aim of 

this specific study was to contribute towards a better understanding of resource 

partitioning between low and high density grazers at different spatial scales and thereby 

contribute to the conservation of low density species vulnerable to extirpation. The 

starting objectives of the study were as follows: 

1) To assess diet separation between low density and high density grazers and assess 

diet breadth at the grass species and plant parts levels 

2) To establish a comparative analysis of habitat use between the low density sable 

and the high density, zebra and buffalo 

3) To establish distinctions in space use patterns between the low density, sable and 

the high density grazers, buffalo and zebra 

4) To investigate competitive interactions between sable, buffalo and zebra in the 

use of space  

5) To identify critical periods of the year for sable nutrition  

 

LITERATURE REVIEW 

 

Rare and low density species 

 
Gaston (1997) defines rarity as a restriction in number or geographical 

distribution of a species caused by biological or physical factors; and defines low density 

species as those that occur over large geographic ranges but never abundant. Species are 

at most risk of extinction if they have limited distributions or occur at low local 

abundance (Johnson 1998). According to Rosenzweig and Lomolino (1997), the main 

causes of rarity and/or low density of a species may include species habitat selectivity 

and narrow tolerance, species dependency on habitats that become rare as a result of 

climate change and species vulnerability to competitive interactions or to predation. 

Brown (1984) suggested that low density species use a narrower range of 

resources than high density species, but Seagle and McCracken (1986), Gaston and 

Kunin (1997) and Gregory and Gaston (2000) suggested that low density species might 

use a wide range of resources, but the resources most contributing to supporting the 
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population occur at low abundance or in more restricted areas, whereas high density 

species are supported by locally abundant and widespread resources. Therefore, to 

survive, low-density species need to be superior competitors if these species overlap in 

preferred habitats with high density species, otherwise low density species will be 

excluded from the preferred resources and forced to utilize alternative resources, which 

might lead to species decline and extinction (Rosenzweig and Lomolino 1997). 

Rosenzweig and Lomolino (1997) suggested that rare species might be quite common 

where they are not restricted to a subset of habitats by negative interactions, such as 

competition and predation. 

For plants, Campbell et al. (1991) demonstrated that dominant species 

contributing most to the local plant biomass utilize soil mineral resources over a broad 

scale and tend to be common due to their ability to dominate resource capture. 

Subordinate species contributing less to local plant biomass are resource specialists that 

depend on the precision of exploitation of small patches of soil nutrients between patches 

depleted by dominant plants, and tend to be rare. According to Hodson (1993), common 

butterflies utilize more productive habitats than rare ones and butterflies that use a narrow 

range of food plants tend to be rarer than butterflies that exploit a wider range of food 

plants. 

Temporal and spatial heterogeneity can reduce the average resource utilization by 

superior competitors and can create competition refuges, allowing inferior competitors to 

invade and persist (Atkinson and Shorrocks 1981; Hanski 1981; Hanski 1983). 

Accordingly, the pre-emption of small discrete patches by low density species could 

allow the coexistence between a low density and a competitively superior abundant 

species (Gaston and Kunin 1997). This suggests that heterogeneity and spatial scaling has 

an important role in resource partitioning and coexistence between low density and high 

density species.  
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Spatial scale of resource partitioning among large herbivores 

 
Resource selection by large herbivores occurs at different hierarchical levels, 

including landscape, habitat or vegetation type, feeding patch, feeding station and plant 

level (Senft et al. 1987; Bailey et al. 1996; WallisDeVries et al. 1999). Decisions made 

by animals at these levels influence animal movements and hence the spatial distribution 

of populations (Turchin 1991). Therefore, resource partitioning and competition between 

foraging animals could take place at one or more of these levels of ecological resolution 

(Jarman and Sinclair 1979; Schoener 1986; Owen-Smith 1989). Furthermore, Senft et al. 

(1987), Bailey et al. (1996) and WallisDeVries et al. (1999) argued that, in order to 

select, herbivores must perceive differences among or within these levels so that they can 

discriminate and select among alternatives. The spatial dimension of each level of 

resource selection is influenced by body size and foraging strategy of the herbivore 

(Bailey et al. 1996; Ritchie 2002) and by group size (Fryxell 1991).  

Body size determines the abundance of food resources that a species can perceive 

(Prins and Olff 1998; Ritchie and Olff 1999; Ritchie 2002). Larger herbivores require 

higher food quantity but can tolerate lower nutrient concentrations within their food and 

have greater range of acceptable food species than smaller species, which require less 

quantity of food, hence detect many small food patches, but require higher nutrient 

concentrations within it (Bell 1970; Jarman 1974; Geist 1974; Owen-Smith 1988). Owen-

Smith (1989), Ritchie (2002) and Cromsigt and Olff (2006) stated that ecologically 

similar large herbivores may select the same habitat but differ in the dimension of habitat 

patch selected. Therefore, large herbivores can be limited by the availability in the 

environment of patches large enough to detect (Ritchie and Olff 1999). This results in 

larger herbivores using widespread resources and making little use of sparse resources 

and of resources occurring in small and discrete patches. du Toit and Owen-Smith (1989) 

observed that by feeding in habitats not selected by smaller species, larger species were 

found over a large range of habitats, whereas, smaller selective feeders tended to have 

smaller range of acceptable food items and used fewer available habitats. 

Fryxell (1991) suggested that animals aggregate on habitat patches offering the 

highest quality of food and Ritchie (2002) pointed out that patchy distribution of food 

resources and habitats enhances coexistence through resource partitioning because spatial 
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heterogeneity at different hierarchical levels of resource selection suggests more choices 

available for foraging animals. Accordingly, establishing ecological separation among 

sympatric ungulates depends on the level of resource selection at which resource 

partitioning is evaluated. 

At the broader landscape animals select home ranges, which may differ in size 

and location among herbivore species that differ in body size, among populations of the 

same species occupying areas that differ in the productivity of the available habitat and 

among individuals of the same population under different conditions of food availability 

and predation pressure (McLoughlin and Ferguson 2000). Accordingly, resource 

partitioning among grazers could be through spatial separation governed by differences in 

preferences or in tolerance to resource conditions and security prevailing in different 

sections of the landscape during the seasonal cycle. Within home ranges, the selection of 

vegetation types/habitat types is influenced by the quantity and quality of food resources, 

topography (catena position), proximity to water, proximity to salt licks and predation 

risk (Senft et al. 1987). Bell (1970) found that large herbivores differ in their proportional 

use of different catena positions because different levels of the catena differ in grass 

biomass, phenology and quality (Bell 1970; McNaughton 1985). Catena position also 

influences grazing succession (Vesey-FitzGerald 1960; Bell 1970), whereby larger 

grazers feeding on tall and fibrous grass such as zebra and buffalo move first from the 

nutritious short grass growing on uplands favoured during the wet season to graze the tall 

and fibrous grass prevalent on bottomlands during the dry season, creating separation and 

facilitating access to short grass for grazing by smaller short grass grazers that remain for 

longer periods in the uplands (Bell 1970). Grassland height, grassland species 

composition, woody canopy cover (Jarman and Sinclair 1979; Sinclair 1985; Ben-Shahar 

1995; Owen-Smith 2002) and grass greenness (McNaughton 1985; Sinclair 1985) 

influence resources and/or habitat conditions for large grazers. Therefore, resource 

partitioning could be through distinct habitat preference (Rosenzweig 1991; Johnson et 

al. 2000; Owen-Smith 2002) associated with differences among species in preference for 

these habitat features. 

Within the habitat patches selected, grazing herbivores might be ecologically 

separated by selecting different grass species, grass height or plant parts (Sinclair 1985; 
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Voeten and Prins 1999). For example, in the Hluhluwe-iMfolozi Park, South Africa, 

Kleynhans (unp.) reported that buffalo fed mainly on tall grass patches of mature 

Themeda triandra, while zebra also grazed tall grass but mainly Panicum maximum. 

Among large grazers, feeding specialization is generally revealed by the selective feeding 

on specific plant parts because plant parts differ in their nutritional quality (Bell 1970; 

Owen-Smith 1982; Fryxell 1991). Feeding specialization increases with decreasing body 

size because the high metabolic rate of smaller animals require plant parts with high 

concentration of protein and energy, whereas larger animals tolerate lower concentrations 

of nutrients within their food, hence have a greater range of acceptable plant parts than 

smaller herbivores (Bell 1970; Jarman 1974; Geist 1974; Owen-Smith 1988). Among 

large herbivores of similar body size, relatively narrow mouth grazers such as topi 

(Damaliscus lunatus) (Gordon and Illius 1988) select for green leaves over stems from 

tall grass swards (Duncan 1975; Owen-Smith 1982; Murray 1993; Murray and Brown 

1993), whereas broad-mouthed grazers such as wildebeest (Illius and Gordon 1988) are 

less able to select for grass leaves from stems of tall grass, hence favour short grass (Bell 

1970; Owen-Smith 1989; Murray 1993; Murray and Brown 1993; Arsenault and Owen 

Smith 2008). According to Owen-Smith (1982), ungulates that use their tongue to pull 

grass into the mouth, such as buffalo, are less able to select plant parts from grass tufts 

and ungulates with both upper and lower incisors such as zebra also have difficulties in 

selecting leaves between grass stems.  

 

Competition 

 
Mac Nally (1983) and de Boer and Prins (1990) pointed out that if species overlap 

in resource use and the resource supply is limited, these species might compete for the 

resources. According to Owen-Smith (1989, 2002), among large herbivores competition 

is mainly exploitative through the depletion of grass resources during seasons of food 

limitations. Because decisions on resource use occur at different hierarchical levels, 

competition should occur if ungulates overlap at all levels, i.e. home range, habitats, grass 

species and plant parts. 
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Rosenzweig (1973) suggested that species coexist because they have distinct 

resource preferences. However, differences in resources used by a species in the presence 

versus absence of potential competitors, demonstrated experimentally in rodents, suggest 

that coexisting species might be sharing preference for resources and the divergence in 

resource use might be a result of competition (Rosenzweig 1991).  

Smaller herbivores are expected to be superior competitors to larger herbivores on 

high quality but sparse resources (Prins and Olff 1998; Owen-Smith 2002; Murray and 

Baird 2008), but should be out-competed by larger herbivores when food is abundant but 

of poor quality (Owen-Smith 2002). Non-ruminants are potentially out-competed by 

ruminants if food supply is limited, due to their low digestive efficiency and low food 

retention time in the gut (Illius and Gordon 1992). Gaston and Kunin (1997) suggested 

that low density species are fugitive species with lower competitive abilities than 

abundant species. Hanski (1983) and Wang et al. (2002) added that competitively 

superior locally abundant species can exclude locally rare species from local patches of 

resources. However, aggregation by superior competitors on discrete patches of resources 

enhances coexistence between species with different competitive abilities (Atkinson and 

Shorrocks 1981; Inouye 1999), because aggregation leaves out unoccupied patches that 

are exploited by inferior competitors as competition refuges (Inouye 1999). Accordingly, 

resource partitioning, although it might be a result of competition rather than distinct 

resource preference, results in coexistence among species and could explain the 

abundance and species richness of the African grazers assemblage despite sharing the 

same food resources (Jarman and Sinclair 1979; Prins and Olff 1998; Murray and Baird 

2008).  

Apart from exploitative competition, apparent competition, whereby some prey 

species support the build up of predator numbers, resulting in an increased predation 

pressure on other prey species (Holt 1977), might also influence resource use and spatial 

separation between the prey species sharing the predator. Owen-Smith and Mills (2008) 

documented that shifting from principal to alternative prey species by lions was the prime 

cause of decline of some ungulate populations in the KNP, including sable. Movements 

of ungulates to avoid concentrations of potential competitors and/or principal prey for 
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predators have been documented in East Africa (Sinclair 1985) and in North America 

(Johnson et al. 2000; Stewart et al. 2002; James et al. 2004).  

 

RESEARCH DESIGN 

 
I selected sable antelope to represent the low density grazer and buffalo and zebra 

to represent the high density grazers, based on data across their distribution ranges 

(Chapter 1). Sable antelope is a medium sized ruminant grazer, with a mean adult female 

weight of about 220 kg (Wilson 1968 cited by Owen-Smith 1988). It is a gregarious, 

sedentary species with a typical group size of 15-25 individuals (Estes 1991). Plains 

zebra is a medium sized non-ruminant grazer, with a mean adult female weight of about 

310 kg (Wilson 1968 cited by Owen-Smith 1988; Skinner and Chimimba 2005). Plains 

zebra occur in non-territorial coherent groups of about 6-7 individuals on average, but 

these family groups may aggregate during the dry season to form larger groups (Estes 

1991). Buffalo is a highly gregarious and non-migratory ruminant grazer with herd size 

of up to 2500 individuals (Skinner and Chimimba 2005); but occurring in herds of less 

than 500 individuals on average in the KNP (Winnie et al. 2008) and in neighbouring 

private nature reserves (Funston et al.1994; Ryan et al. 2006). The mean adult female 

buffalo body mass is about 520 kg (Pienaar 1969).  

The three species share the trophic feature of all preferring to graze medium-tall 

grass (Skinner and Chimimba 2005) and have moderate differences in body mass, which 

suggests that the potential for competition among these grazers does exist. However, 

differences in group size and mobility may suggest differences in the spatial scale of 

foraging, which may enable these grazers to co-exist through resource partitioning. The 

other species that could compete for resources with medium-tall grazers is the mixed-

feeder African elephant (Loxodonta africana). However, this species was excluded from 

the study because time would have been a constraint to collect data simultaneously on 

four species with the level of detail covered in this study. 

The study was conducted to the south of the Punda Maria Rest camp in the far 

north-west of the Kruger National Park (KNP), South Africa, within an area comprising 

about 600 km2 (Figure 1). This area was selected for the study because: 1) it is part of the 
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sable core distribution range in the park, 2) there was an increase in the abundance of 

zebra in this region after the 1982/3 drought and although buffalo declined during the 

drought this species remained abundant in this area and 3) the decline of sable in this 

region was more severe than further south in the park. 

Data collection covered a period of 17 months (June 2006 – October 2007). 

However, while data on the use of space by each grazer and on species interactions in the 

use of space were collected through the entire period, collection of field data on habitat 

use, forage selection and nutrition was restricted to the dry seasons of 2006 (June – 

October) and 2007 (May – September) and to the first month of the early wet season of 

both years (November 2006 and October 2007). Fieldwork was limited to dry season and 

early wet season because these are the periods of lowest food quality and quantity during 

the seasonal cycle, respectively. Therefore, competition for food and nutritional 

limitations are more likely to occur during these periods than during any other time of the 

year. 

    
 

THESIS OUTLINE 

 
This thesis has been written in several chapters, each with a format of a draft 

manuscript for publication. Contrary to the traditional thesis format, this format will 

enable a prompt submission of papers for peer review and publication in scientific 

journals, after the submission of the thesis to the University. 

In the introduction I justified the need for the study, presented the aim and 

objectives and reviewed the relevant literature on factors influencing patterns of species 

abundance, and on the influence of the spatial scale of foraging on resource partitioning 

and/or competition among large herbivores. Five main chapters were written, addressing 

resource use and interactions between grazers at different hierarchical spatial scales. 

In chapter 1 I assessed whether resource partitioning between low density and 

high density grazers occurred through differences in diet selection. Accordingly, I 

presented distinctions or similarities between low density and high density grazers in 

tolerance to grass species and grass features, diet overlap and distinctions in diet breadth 

during periods of the dry season that differed in food availability. 
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In chapter 2 I investigated whether low density and high density grazers partition 

resources by using foraging areas with distinct habitat features or that these grazers 

potentially compete for forage resources due to similarities in habitats used. Therefore, I 

presented differences or similarities in habitat features prevailing in foraging areas used 

by sable and by the high density grazers, highlighting the habitat features most influential 

to ecological separation between grazers at the habitat level. 

In chapter 3 I assessed how differences in precision and/or tolerance to forage 

resources at the grass species and grass features level influenced patterns of home range 

use by low density and high density grazers. Accordingly, I presented distinctions in the 

extent and location of the total and core range of the herd of the low density, specialist 

grazer sable and of herds of high density and generalist grazers buffalo and zebra in 

relation to the seasonal changes in availability and distribution of water and forage of 

adequate quantity or quality. I also presented distinctions in the intensity of metabolic use 

of space between grazers that differ in feeding specialization, body size and group size. 

In chapter 4 I investigated whether resource partitioning between low density and 

high density grazers occurred through separation of core grazing areas or whether these 

grazers potentially compete for resources by using overlapping core grazing areas. 

Therefore, results presented in this chapter included separation or overlap in monthly and 

seasonal total and core ranges, spatial displacement of sable from core areas by abundant 

grazers and separation distances between sable and abundant grazers during foraging 

periods of the day. I also assessed whether differences in body size between sable and 

buffalo resulted in grazing facilitation to sable. 

In chapter 5 I assessed whether low forage quality could be a contributory factor 

to the failure of the sable population to recover from the decline. I compared faecal 

nitrogen, phosphorus, sodium and crude fibre on the KNP sable populations with these 

indices of diet quality on populations of sable that are thriving elsewhere as well as with 

faecal concentrations of these nutrients on populations of similarly sized grazers grazing 

under similar conditions in the KNP and elsewhere. 

In the general conclusion, I pointed out the main distinctions between sable, 

buffalo and zebra in resource use at different levels of resource selection that can help 

understand why sable occur in lower density than most other grazers. I summarised and 
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evaluated the findings of this research in relation to expectations based on published 

literature on resource partitioning within guilds and highlighted the importance of scale 

of assessment for a better understanding of resource partitioning and/or competition 

within species assemblages, particularly between species attaining different regional 

densities. I also presented the implications of the research findings for park management.  
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Figure 1. Location of the study area in the KNP and location of the KNP in South Africa 
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CHAPTER ONE 

 

Precision versus tolerance in food niche of low-density and high-density grazers: 

sable antelope, zebra and buffalo 

 

Abstract 

 
The aim of this investigation was to assess diet breadth and diet overlap between the low 

density sable and the high density grazers buffalo and zebra occupying the same 

landscape during the same period. GPS-GSM collars were fitted on females from herds of 

these grazers and feeding sites were located by means of GPS tracking. Grass greenness, 

grass height, number of stems of grazed and ungrazed grass species and the number of 

bites taken from each grass species were recorded in feeding sites used by sable, buffalo 

or zebra during the dry seasons of 2006 and 2007. Distinctions between grazers in grass 

species selection were assessed by comparing the availability and acceptability of grass 

species in feeding sites using loglinear analysis. This analysis was also applied to 

establish the grass features that influenced the acceptability of grass, and hence establish 

tolerance or narrowness to plant parts by each grazer. Diet composition was determined 

as the proportion of bites taken on each grass species by each grazer and as the proportion 

of fragments of each grass species on faecal samples. Diet breadth was estimated using 

the Levins index and diet overlap was assessed using the Pianka’s index. Sable were 

more selective for green and tall grass than buffalo and zebra, which were more tolerant 

for grass features. Sable showed a narrower range of highly accepted grass species than 

buffalo, but sable were less distinct from zebra in their acceptance to grass species. The 

acceptability of grass species by buffalo was more even across grass species than the 

acceptability by sable and zebra.  The diet breadth did not differ among grazers; 4-5 grass 

species made up about 75% of the diet of the three grazers during all seasons. However, 

during periods of severe food limitations the diet of sable became more diverse because 

preferred food species were of limited availability, and the overlap in diet composition 

decreased during this time because the diet of buffalo and zebra remained dominated by 

the most abundant grass species. The overlap in diet composition suggests potential for 

food competition. The narrower selectivity shown by sable suggests that during years 
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with below average rainfall sable might be limited by the shortage of preferred grass 

species and green grass, which could have contributed to the decline or lack of recovery 

by the population. The more generalist feeding at grass species and plant parts levels 

could explain why buffalo and zebra occur at high density in the KNP and elsewhere. 

 

Introduction 

 
Species assemblages are composed by mostly rare species and few common 

species (Kunin and Gaston 1993). Two competing hypotheses explain patterns of species 

abundance within species assemblages, the niche breadth hypothesis (Brown 1984) and 

the niche position or resource availability hypothesis (Gaston and Kunin 1997; Gregory 

and Gaston 2000). According to Brown (1984) low density species are resource 

specialists that depend on a narrow range of resources, whereas abundant species are 

generalist consumers with broader ecological plasticity, and hence able to exploit a wide 

range of resources and environmental conditions. However, according to Gaston and 

Kunin (1997) and Gregory and Gaston (2000), low density species might use a wide 

range of resources, but the resources most contributing to supporting the population occur 

at low abundance or over more restricted areas, whereas abundant species are supported 

by locally abundant and widespread resources. 

Campbell et al. (1991) demonstrated that dominant plant species contributing 

most to the local plant biomass utilize soil mineral resources over a broad scale and tend 

to be common. Subordinate species contributing less to local plant biomass are resource 

specialists that depend on the precision of exploitation of small patches of soil nutrients 

between patches depleted by dominant plants, and tend to be rare.  

 The vegetation in the tropics is heterogeneous in food resources supporting large 

herbivores, because it encompasses different plant forms and plant species with different 

chemical and physical properties (McNaughton 1983). This provides large herbivores 

with an opportunity to select some food types and avoid others. The diversity of food 

niches explains the coexistence among grazers feeding on the same grass resources (Prins 

and Olff 1998; Murray and Baird 2008).  
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The quality and quantity of food resources for large herbivores vary seasonally in 

response to seasonal variation in rainfall (Owen-Smith 1982; O’Reagain 2001). Food 

quality declines with the progress of the dry season due to a progressive reduction in the 

proportion of the more nutritious green leaves in the sward, whereas food quantity 

declines due to consumption of grass by grazers and progressive reduction in grass height 

during this period of grass dormancy (Owen-Smith 1982, 1988). Among large grazers 

feeding specialization decreases with increase in body size and is generally revealed by 

the selective feeding on specific plant parts because plant parts differ in their nutritional 

quality (Bell 1970; Owen-Smith 1982). Accordingly, specialist grazers select leaves in 

preference to stems and green leaves in preference to brown leaves (O’Reagain 2001). 

Ruminants have higher digestive efficiency but are less tolerant to fibre than non-

ruminants of similar body size, which due to their hindgut fermentation tolerate plant 

parts with high fibre content (Bell 1970, 1971; Illius and Gordon 1992). 

Differences between grass species in greenness retention, leaf production and 

quality lead grazing animals to prefer some grass species and neglect others (O’Reagain 

and Mentis 1989). Selective feeding results in a progressive reduction in the standing 

biomass of preferred grass species through the dry season until the first wet season rains 

promote the regrowth of these depleted grass species (Owen-Smith 2002). Foraging 

theory predicts that foraging animals widen their diets to incorporate less favoured food 

types, as the availability of preferred food resources declines towards the end of the dry 

season (Owen-Smith and Novellie 1982; Stephens and Krebs 1986). The widening of the 

diet by grazers could be through widening the range of grass species grazed (O’Reagain 

and Mentis 1989; Macandza et al. 2004), but also through increasing tolerance to brown 

grass, stems or less favoured grass height as the dry season progresses. Owen-Smith 

(2002) argued that hungry herbivores face the dilemma of how to be narrowly selective 

or broadly tolerant when food resources are abundant but most of which is of low 

nutritional quality such as during the late dry season.  

Similarity in preferred food species and plant parts among co-occurring ungulates 

could result in competition during periods of limited food supply such as the dry season 

(Owen-Smith 1989; de Boer and Prins 1990; Prins 2000). Jarman (1971), Holbrook and 

Schmit (1989) and Owen-Smith (1989) suggested that competition could be weak during 
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the dry season if grazers use different alternative food resources when the availability of 

commonly preferred ones is limited. Ritchie (2002) stated that each species of mobile 

animal use some resource not used or less used by potentially competing species. Ritchie 

(2002) added that if that “exclusive resource” is abundant, the species can survive within 

the species assemblage regardless of the intensity of competition on shared resources. 

This reduces the intensity of competition and promotes coexistence and species richness 

of grazer communities (Prins and Olff 1998). However, changes in the range of resources 

used in the presence or absence of potential competitors demonstrated experimentally in 

rodents (Holbrook 1973; Holbrook and Schmitt 1989) suggest that coexisting species 

might be sharing preference for resources and the divergence in resource use might be a 

result of competition (Rosenzweig 1991). 

Across their distribution range, sable antelope (Hippotragus niger, 220 kg) occur 

in lower regional density than most other grazers, including buffalo (Syncerus caffer, 520 

kg) and plains zebra (Equus burchelli, 310 kg) (Figure 1). In the Kruger National Park 

(KNP, ~ 20000 km2), South Africa, the general occurrence of sable at low density was 

accentuated by the precipitous decline that the population of this species suffered after 

1987 (Grant and van der Walt 2000; Owen-Smith and Ogutu 2003; Ogutu and Owen-

Smith 2005). Sable numbers dropped from a peak of 2250 animals (0.11 sable/km2) in 

1987 to about 550 individuals (0.03 sable/km2) in 1996 (Owen-Smith and Ogutu 2003). 

By 2008, sable population in the park was probably less than 450 individuals. However, 

the larger ruminant buffalo and the non-ruminant zebra are more abundant in the park and 

occur in higher densities than sable (25 150 buffaloes, ~1.3 buffalo/km2 and 32 000 

zebras, ~ 1.6 zebra/km2). 

Food resources supporting the low density sable have been investigated by 

Grobler (1981), Parrini (2006) and Magome et al. (2008), whereas Macandza et al. 

(2004) documented buffalo diet during different stages of the dry season and Ben-Shahar 

(1991) and Bodenstein et al. (2000) studied zebra diet. These studies showed similarities 

among these grazers in the botanical composition of the diet and in favouring medium-

tall and green grass for grazing. This suggests potential for food competition during 

periods of the year of limited food availability like the dry season. However, these studies 

were limited at documenting seasonal patterns in the use of food resources by each grazer 
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separately, without assessing the use of these resources by other grazers occupying the 

same regional landscape during the same time. Therefore, the aim of this paper was to 

assess the degree of diet overlap among grazers and to assess the diet breadth of low 

density and high density grazers at the grass species and plant parts level of resource 

selection. I hypothesize that: 

1. Sable, being a low density, smaller ruminant should feed selectively on grass 

retaining a higher proportion of green leaves than the grass grazed by the high 

density larger ruminant buffalo and the non-ruminant zebra, which should be 

generalists at the plant parts level by tolerating a wider range of grass physical 

features, including brown grass  

2. Following the niche position theory, the diet of the low density grazer, sable, 

should be composed by grass species occurring in low local availability, whereas 

the high density grazers, buffalo and zebra, should be supported by locally more 

abundant and widespread grass species 

3. Following the niche breadth theory, the diet breadth of the low density grazer, 

sable, should be narrower than the diet breadth of the high density grazers buffalo 

and zebra  

4. The diet overlap between sable and buffalo or zebra should decline with the 

shrinking availability of commonly favoured grass species as the dry season 

progresses 

 

Methods 

Study area  

 
I conducted this study to the south of Punda Maria Camp (22o68’S, 31o018’E) in 

northern Kruger National Park (KNP), South Africa, within an area of about 600 km2. I 

estimated the extent of the study area by joining the outer herd locations using a 100% 

Minimum Convex Polygon (MCP) in Geographic Information System (GIS) – ArcGIS 

9.1, including locations of all collared herds of the three species during the study period 

(June 2006 – October 2007). The study area was limited by the KNP boundary in the 

west, by the Shisha River in the East, by the Punda Maria Camp in the North and 
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southwards the limit of the study area was between the Mphongolo and the Phugwane 

Rivers. The long term (1960-2007) mean annual rainfall (July-June) at Punda Maria 

Camp was 600 mm. At Shangoni section, to the south-west of Punda Maria, the long term 

mean rainfall was 573 mm; at Woodlands section in the south, the mean annual rainfall 

was 478 mm; whereas at Vlakteplaas in the south-east, the mean annual rainfall was 490 

mm (Gertenbach 1980). During the seasonal cycle July 2005 – June 2006, rainfall in the 

study area was above average. For example, at Punda Maria Camp, rainfall (743 mm) 

was 24% above long term average and at Shangoni (765 mm) it was 34% above average. 

However, between July 2006 and June 2007 rainfall at Punda Maria (419 mm) was 30% 

below average and at Shangoni (284 mm) it was 50% below average. This means that the 

prevailing food and water conditions for herbivores were more favourable in 2006 than in 

2007. About 80% of the rain falls during the wet season that spans from October to 

March. The dry season extends from April or May to September or October. In 2006 wet 

season rains began in early November, whereas in 2007 wet season rains began at the end 

of September (Figure 2). However, during the more severe year of 2007 the study area 

received dry season rainfall during the first week of July, being 2.6 mm at Punda Maria, 

16 mm at Shangoni, 8.5 mm at Woodlands and 9.3 mm at Vlakteplaas. 

Geologically the study area is underlaid by rocks of the Soutpansberg group, 

which consist of fine- to coarse-grained sandstone formations and medium-grained basalt 

formations (Schutte 1986; Venter 1990). There is also a portion of Ecca shale of the 

Karoo system in the east and a portion underlaid by granitic gneiss consisting of coarse 

sandy and loam soils towards the southern limit of the study area (Schutte 1986; Venter 

1990; Joubert 2007). Based on woody vegetation species composition and physiognomy, 

Gertenbach (1983) described four landscape types covering the study area: (1) 

Combretum spp woodland on sandstone and granitic formations, (2) Colophospermum 

mopane woodland on Ecca shale, (3) C. mopane/Acacia nigrescens woodland mostly on 

granitic gneiss and (4) Pterocarpus rotundifolius/Combretum spp woodland on basalts of 

the Soutpansberg group.  

In mid July 2006 a prescribed fire burnt 28% of the study area to the west, but no 

grass regrowth was available until the first wet season rains in early November. In mid 

September 2007, an accidental fire burnt the south east of the study area and grass 
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regrowth became available three weeks later, following rains at the end of September. 

Besides sable, buffalo and zebra, other ungulates feeding on the grass layer included 

grazers such as waterbuck (Kobus ellipsiprymnus) and white rhinoceros (Ceratotherium 

simum) and mixed feeders such as elephant (Loxodonta africana) and impala (Aepyceros 

melampus). The last total area Ecological Aerial Survey (EAS) in Punda Maria was 

conducted in 1993 and indicated that there were 19 sable antelope, 140 buffalos, about 

570 zebra, about 100 elephants, 650 impala, 20 waterbuck and 3 white rhinoceros (KNP 

census data). Despite being relatively abundant and widespread in the study area, during 

the dry season elephant feed mainly on browse (Jarman 1971) and about 50% of the diet 

of impala during the dry season is also browse (Codron et al. 2007). Apart from occurring 

in low numbers, waterbuck and white rhinoceros are restricted to areas near the 

Mphongolo River in the south of the study area. Therefore, the grazing impact of these 

grazers is negligible, with the exception of elephant that can contribute to grass depletion 

when this species feed on grass during the wet season.  

 

Research design 

 
A total of nine Global Positioning System (GPS) - cellular phone (GSM) collars 

obtained from Africa Wildlife Tracking (http://www.awt.co.za) were placed on sable, 

zebra and buffalo at the end of May 2006. Three adult females from two sable herds, four 

adult females from four herds of zebra and two females in one buffalo breeding herd 

were fitted with collars. Collars were fitted on adult females to ensure that the 

movements of the individuals bearing the collar represented the movements of the herds 

because adult females remain within the breeding herds (Estes 1991; Skinner and 

Chimimba 2005), except during the calving period of sable when females move from the 

herd to the hidden calf and vice-versa (Estes and Estes 1974; Skinner and Chimimba 

2005). On a sable herd numbering 13 animals two females were fitted with collars and on 

a smaller herd numbering 5 animals one adult female received a collar. However, the 

three collared females joined in July 2006 and remained together during the duration of 

this study, except for a few weeks during the early wet season when one of the collared 

females separated from the other two females. Therefore, there was only one sable herd 
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in the study area that occasionally split for short periods. In each zebra herd of about 6-7 

animals, one adult female received a collar. In the buffalo herd of approximately 400 

animals, collars were placed on two adult females. The two buffalo females bearing 

collars split in July 2006 between two groups, each assumed to have about 200 animals, 

and stayed apart for the rest of the dry season of 2006 and wet season of 2006/2007.  

In June 2007, four additional collars were fitted, being one on sable, two on zebra 

and one on buffalo. Collars were fitted on female sable and buffalo from the same herds 

that had the collars fitted in May 2006 and on two female zebra from non-collared herds 

with home ranges overlapping with sable range. At the time of deploying these additional 

collars, the sable herd numbered 21 individuals. One zebra herd numbered 13 animals at 

the time of fitting the collar and one had 6 animals. However, the zebra herd of 13 

animals split at the end of June 2007 to remain with 7 individuals. The buffalo collar was 

placed on the herd that had the animal bearing the collar AM152 fitted in May 2006. At 

the time of fitting the collar in June 2007, the buffalo herd numbered about 400 

individuals, suggesting that the two groups of buffalo that were split during the dry 

season of 2006 and wet season of 2006/2007 had joined again. Fitting more collars was 

done to ensure that herd locations were obtained for at least one additional dry season in 

the case of eventual failure of the collars placed on animals in May 2006.  

The GPS of the collar saved the geographical coordinates of the herd and through 

its cellular phone (GSM) component these coordinates were sent by Short Message 

Service (SMS) to a website (http://www.yrless.co.za) from which I downloaded these 

data. I initially scheduled the collars to record the GPS coordinates of the herds every six 

hours, at 2:00, 8:00, 14:00 and 20:00. Observations by Sinclair (1977) and Prins (1996) 

on buffalo, by Parrini (2006) and Magome et al. (2008) on sable and by Beekman and 

Prins (1989) and Robinson (unp.) on zebra suggest that most of the feeding by these 

grazers occur mainly in the morning and late afternoon. Accordingly, during days of 

observation of each herd I adjusted the schedule of the collar to record the GPS 

coordinates of the herd hourly to obtain detailed data on the spatial location of the herds 

during the main potential feeding periods for the animals in the morning (6:00 – 10:00) 

and late afternoon/early evening (16:00-20:00) and to ensure that feeding locations were 

obtained for the assessment of diet selection.  



 27 

Population sizes for the study species within the study area were about 20 sable 

antelope, 200-300 zebras and 400 buffaloes. The populations of sable and buffalo were 

estimated as being equal to the combined sizes of the herds encountered during animal 

captures to deploy collars. At any time during this study 4-6 zebra herds were collared, 

corresponding to about 15-20% of the zebra herds encountered in the study area, whereas 

the remaining 80% of zebra herds that were encountered during field work were not 

collared. The total number of zebra herds, collared and non-collared was 30-40. I 

multiplied the number of herds by herd size of 7 animals, which resulted in a total 

estimate of 200-300 zebras.  

 

Field data collection 

 
I made plant-based feeding observations during the dry seasons of 2006 (June – 

October) and 2007 (May – September) and the early wet season of both years (November 

2006 and October 2007). I conducted the study during these times because these are the 

times of limited food availability for large mammalian herbivores in African savannas 

(Scoones 1995; Owen-Smith 2008) and it is when exploitative competition among 

grazers is more expected. Therefore, result will reveal distinctions or similarities in the 

use of food resource during the critical periods of the year. I considered the critical period 

as ended and stopped feeding observations when the study area had received at least 20 

mm of rainfall and more than 50% of the grass was green. Following these conditions, in 

2006 rainfall began in early November and I collected feeding data until the end of 

November, whereas in 2007 rainfall began at the end of September and I collected data 

until the end of October. Therefore, data collected in November 2006 and October 2007 

reflects food availability and patterns of diet selection during the early wet season period, 

which is of high food quality but low quantity.  

To locate feeding areas I downloaded the GPS locations of areas used by the 

animals and went to these areas using a hand-held GPS unit. I visited sites used by the 

herds the previous day or at least a six hours lag was considered between the use of a 

feeding site by the animals and the recording of the grazing of grass species. This time 

lag ensured that fresh feeding could still be identified while avoiding encounters with the 
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study animals and interference with their movements. I visited areas used by each grazer 

two days each week and recorded feeding on 1-5 feeding sites (Bailey et al. 1996; Owen-

Smith 2002) used by the herd during each morning or afternoon foraging session. Effort 

of data collection was distributed among collared zebra and buffalo herds, data were 

pooled across herds such that inference about diet selection was made at the population 

level (study design 1, Thomas and Taylor 1990). Distributing sampling effort between 

buffalo and collared zebra herds consisted of weekly alternating the herd of these species 

to be tracked for data collection, i.e. feeding observations were scheduled to include all 

the collared herds to obtain an unbiased sample of the diet of each of the study herbivore 

species.  

From the position where the hand-held GPS unit indicated zero distance to the 

animal location at the time when the GPS coordinates were sent, hoof prints (tracks), 

signs of fresh feeding or fresh dung were sought to confirm the recent use of the area by 

the animals. The nearest signs of recent use of the area by the animal were generally 

found within less than 3 m radius from the locations provided by the collars, which 

means that the precision of the GPS location data was often within less than 3 m. 

However, the precision of the hand-held GPS unit that I used to track animals was within 

5 m. Therefore, signs of fresh feeding were sought up to 10 m away from the GPS 

location. Fresh feeding was confirmed through the observation of fresh bites, identified 

by a lighter and brighter colour at the surface of the broken grass leaves and stems than 

old bites. If fresh foot prints or faecal samples of other grazers were present within the 

feeding site, the site was discarded in feeding observations, to ensure that only recent 

feeding by the species that provided the GPS herd location was recorded. 

At the first identified sign of fresh feeding I placed a 0.7 m x 0.7 m quadrat to 

represent a feeding station. According to Novellie (1978) feeding station is the area that a 

foraging animal can harvest food resources without moving its from feet. Additional 

eight quadrats were placed in the surroundings of the central quadrat, being two quadrats 

for each cardinal direction (north, south, east and west) in relation to the central quadrat. 

Quadrats in the same cardinal direction were placed 2 m apart and could be flipped once 

to any side of the quadrat if there were signs of fresh grazing within 0.7 m from a quadrat 

that had no fresh grazing. Flipping quadrats was done to ensure that most feeding by the 
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animals within the feeding site was recorded (i.e. to minimize missing information on 

feeding, but objectively). If signs of fresh grazing were found in less than 5 out of the 9 

quadrats sampled, additional quadrats were evaluated for feeding. These additional 

quadrats were placed only on the diagonals adjacent to quadrats without signs of feeding. 

Only one quadrat was placed at each diagonal and it was placed at the nearest sign of 

fresh grazing from the central quadrat along the diagonal. Therefore, quadrats on the 

diagonals could be in the north-east, north-west, south-east or in the south-west direction 

in relation to the central quadrat.  

 

Plant-based feeding observations and measurements 

To assess grass species acceptance, I recorded each grass species present within 

quadrats as grazed or ungrazed. I followed van Oudtshoorn (1999) for the identification 

and nomenclature of grass species. Grass species that were difficult to identify in the field 

were identified in the Herbarium of the KNP in Skukuza.  

To establish the grass features influencing selection by herbivores, for each grass 

species (grazed or not grazed) within each quadrat, I recorded grass greenness, grass 

height and number of stems. I estimated grass greenness as the proportion of green leaves 

on the plants of each grass species within the quadrat and I classified according to the 

eight-point scale proposed by Walker (1976): 0%, 1-10%, 11-25%, 26-50%, 51-75%, 76-

90%, 91-99%, 100%. I estimated the grass height selected for grazing by each herbivore 

species by measuring the leaf table height of nearby ungrazed plants of the same species. 

This height represented the grass height that influenced the selection of the feeding 

station by the grazer. I classified grass height into four categories: short grass (<10 cm), 

medium (11-20 cm), medium-tall (21-40 cm) and tall (>41 cm). I estimated an average of 

the number of stems per tuft of each grass species within each quadrat and defined three 

categories of steminness: no stems, few stems (1-2) and many stems (≥3).  

To assess the relative contribution of each grass species to the diet of each 

herbivore species, I counted the number of fresh bites taken from each grass species. 

Each bite was equated to the area of grazed grass leaves or stems that can be covered by a 

fist. This area approximates bite dimensions for sable and zebra, as estimated from the 

width of the incisor arcade of 5.66 cm and 5.26 cm, respectively (Gordon and Illius 1988, 
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Murray and Illius 1996), but the area covered by a fist is smaller than the potential 

maximum size of a buffalo bite (incisor breadth of 9.32 cm, Gordon and Illius 1988). I 

also collected composite fresh faecal samples for microhistological analysis of grass 

fragments following Stewart (1967) and Ego et al. (2003). From each composite faecal 

sample I identified 50 grass epidermis fragments by comparing the size and shape of the 

silica bodies, arrangement of cells, form of the stomata and presence or absence of hairs 

on grass fragments from the faecal samples with these structures from a reference 

collection prepared from the most common grass species occurring in the study area. 

  

Data analysis 

 
Seasonal subdivisions: I defined seasons for data analysis based on rainfall 

patterns and on the proportion of green leaves on the grass. For the two years, months 

when more than 50% of feeding sites used by sable had >10% of grass green were 

combined into the early dry season and months with no rainfall and more than 50% of 

feeding sites retaining <10% of grass green were grouped into the late dry season period 

(Chapter 2). Accordingly, I used the following seasons for data analysis: early dry season 

of 2006 (June-July), late dry season of 2006 (August – October), early wet season of 

2006 (November 2006), early dry season of 2007 (May-July), late dry season of 2007 

(August-September) and early wet season of 2007 (October 2007).  

Sampling unit and calculations: I considered that the selection of grass species 

within quadrats that were 2 m apart was not independent, because according to Bailey et 

al. (1996) the acceptance of a particular food item is influenced by feeding events within 

the last few minutes. Separation distances between feeding sites used by the animals 

during successive hours averaged about 200 m for sable and zebra and about 1 km for the 

larger buffalo herds. Thus, I considered that the decision made by the animals to graze or 

not to graze a grass species encountered was an independent event between successive 

feeding sites. Accordingly, following Owen-Smith and Cooper (1987), I calculated site-

based availability for each grass species as the number of feeding sites where the grass 

species was present divided by the total number of feeding sites assessed during each 

season (2006 and 2007 combined). I estimated site-based acceptability of each grass 
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species for each herbivore species by dividing the number of feeding sites where each 

grass species was grazed by the total number of feeding sites where the grass species was 

present. Due to the binomial distribution of acceptance/rejection values, I computed 95% 

binomial confidence limits for proportions. To establish distinctions between grazers in 

the breadth of tolerance of grass species I plotted the frequency distribution of the 

acceptance frequencies of each grazer during each season, with years combined. In the 

analysis of acceptability I only included grass species that were present in at least 10 

feeding sites used by each grazer per season. I did this to secure large sample size and 

reliable comparison of acceptability of grass species between grazers.  

To assess the effect of grass features on site-based acceptability, for each grazer I 

averaged the grass greenness, grass height and number of stems for each grass species 

present in each feeding site during a specific season.  I averaged the midpoints of the 

categories recorded during plant-based feeding observations to obtain the average grass 

greenness, grass height and stemminness for each grass species in each feeding site. I 

then grouped the average greenness, combining grass species with same greenness, into 

the following categories: <5%, 6-10%, 11-20% and >20%. I combined all grass that had 

more than 20% of leaves green because these were less represented. Greenness in feeding 

sites used by sable and zebra during the early dry season was always above 5% and 

during the late dry season only sable found grass with more than 10% of leaves green. I 

used three categories for stemminness: no stems, few stems (1-2 stems) and many stems 

(≥3), but only two categories of grass height (<40 cm and > 40 cm) because grass was 

generally tall. Grass shorter than <20 cm was recorded on feeding sites that were on burnt 

areas during the first month of the early wet season. However, due to small number of 

feeding sites sampled, I excluded the early wet season in the analysis of factors 

influencing the acceptability of grass species. 

To detect differences among grazers in tolerance to grass within different 

categories of grass greenness, I calculated the combined acceptability of grass that was 

within each category of grass greenness for each grazer, regardless of grass species. 

Despite differences in rainfall between the two years, the overall greenness available in 

feeding sites did not differ substantially between same seasons of both years (Chapter 2), 

with most grass species retaining >10% of leaves green during the early dry season, but 
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almost all grass species remaining with <10% of leaves green during the late dry season. 

This lack of difference was primarily because in the drier year of 2007 I started field data 

collection earlier (in May) than in 2006 (in June). In addition, in July 2007 the study area 

received rainfall (see study area description), which increased the proportion of green 

grass in the sward. Therefore, for the comparison of grazers in terms of relative tolerance 

of grass retaining different proportions of green leaves, I combined the data collected 

during the early dry season of 2006 and 2007 and combined data obtained during the late 

dry season of 2006 and 2007. To compare grazers in the monthly proportion of green and 

brown grass incorporated in the diet, I grouped bites taken by each grazer during each 

month into categories of grass greenness and calculated the proportions of bites within 

each category of grass greenness accordingly. To establish distinctions in tolerance to 

grass height and stemminness, I also calculated a combined acceptability of grass that 

was within each category of grass height and stemminess for each grazer per season, also 

combining years. 

I considered each morning or afternoon foraging session as the independent 

sampling unit for the estimation of monthly and seasonal mean dietary contribution of 

each grass species to each grazer. Within each foraging session, I collected feeding data 

in up to 5 feeding sites, each including 9 quadrats. Accordingly, I estimated the dietary 

contribution by dividing the number of bites taken on tufts of each grass species by the 

total number of bites taken by each grazer during the morning or afternoon foraging 

session. The resulting proportions were averaged across foraging sessions to obtain the 

monthly and seasonal diet contribution of each grass species. I also estimated the 

proportional contribution of grass species to the diet by dividing the number of fragments 

of each grass species by the total of 50 grass epidermis fragments identified from each 

composite faecal sample, then averaging the proportions of fragments for each season.  

Following Malmquist et al. (1992) I estimated diet breadth of each grazer during 

each month using the Levins (1968) index of niche breadth: 

           n 

B = 1/∑ pi
2 

           i 

where: 

B – diet breadth 
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pi - proportion of bites taken on tufts of grass species (i) 

n – number of grass species. 

According to Feinsinger et al (1981), this reciprocal of the Simpson diversity 

index, assesses not only the range of resources used, but also the relative frequency with 

which each resource was used, i.e. it is a measure of diet diversity and 

dispersion/evenness. The Simpson index varies between 0 and 1, with values closer to 

zero indicating high diversity and values closer to one indicating low diversity or even 

distributions of observations across species. Therefore, applying the reciprocal of the 

Simpson index suggests that a more diverse diet will have a higher value of B than a less 

diverse diet. A generalist grazer will have a more diverse diet than a narrowly selective 

grazer. 

For the calculation of the index of diet overlap, i.e. overlap in grass species, I used 

Pianka’s niche overlap formula (Pianka 1974):  

           n               n         n 
 Ojk = ∑pij* pik/√ ∑pij

2
 * ∑pik

2 
                                                                                                                   

          i                 i           i 
 

 where: 

pij = proportion of bites by sable (j) recorded in grass species (i) 

pik = proportion of bites by zebra or buffalo (k) recorded in grass species (i) 

 

Only grass species that contributed ≥5% to the diet of sable during each month were 

included in the calculations of this index. Grass species with diet contribution <5% were 

grouped into the category of “other grass species” and were excluded from the analysis of 

diet overlap because these contributed little to diet separation between pairs of grazers. 

The overlap index varies from 0 to 1, overlap = 1 indicates complete diet convergence, 

whereas overlap = 0 indicates complete diet divergence. 

 

Statistical analysis and model selection 

 
Comparison of herbivore species in availability and acceptance of grass species 

To compare the availability of grass species in feeding sites used by sable from 

the availability in feeding sites used by buffalo or zebra, I used a three-way loglinear 
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analysis (Agresti 1990) (herbivore x grass species x presence/absence). To compare the 

acceptance frequency of grass species I also used a three-way loglinear analysis between 

pairs of herbivore species (herbivore x grass species x grazed/not grazed). For these 

comparisons, I included in the analysis only grass species that were present in at least 

30% of the feeding sites sampled during each season, because these grass species were 

the most common for the three grazers during all seasons. I used the likelihood ratio test 

for statistical significance. Therefore, from the three way interaction, I removed the factor 

herbivore and noted the loss in the fit of the model as indicated by the change in the 

likelihood chi-squared statistics. I did this analysis in SYSTAT 11.0 for Windows 

(SYSTAT Software, Inc., USA) at p<0.05. I examined z-scores from the SYSTAT output 

to identify cells of the contingency table that contributed to the lack of fit of the model, 

i.e. to identify the grass species with availability or acceptability that differed 

significantly between grazers.  

To compare the distribution of acceptance values for grass species between 

grazers I used the Kolmogorov-Smirnov (K-S) two sample test between pairs of grazers 

during each season. The frequency distribution of acceptance values should differ 

between a generalist and a specialist grazer. A generalist grazer, i.e. with a broad 

tolerance to grass species should show an even spread of grass species within different 

acceptance categories, whereas specialist grazer should reveal a cluster of highly 

accepted and a cluster of neglected grass species.  

 

Factors influencing the acceptability of grass species 

Grass features likely to influence the acceptability of grass species were recorded 

as categorical predictors of grazing or not grazing each grass species when present in 

feeding sites. Therefore, I applied loglinear analysis to compare the frequencies of 

grazing or not grazing grass that was within each category of grass greenness, grass 

height and number of stems during each season, regardless of grass species. Because 

grass greenness between the two sampled early dry and late dry seasons did not differ 

considerably, I pooled data across early dry and across late dry seasons of 2006 and 2007. 

I did this analysis for each of the grazers separately to establish distinctions between 

grazers in the grass feature influencing the acceptability of the grass during each season. 
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Accordingly, the full model for each grazer was: grass greenness (3 levels) x grass height 

(2 levels) x stemminness (2 levels) x grazed/not grazed. For grass greenness, during the 

early dry season I used the following categories: <10%, 11-20% and >20% whereas 

during the late dry season I used <5% and 6-10%. For zebra the greenness category 6-

10% was less represented and for buffalo this greenness category was absent during the 

late dry season. Therefore, I did not include grass greenness as predictor of acceptability 

of grass species by buffalo or zebra because there was little variation in grass greenness, 

with almost all grass plants present in feeding sites retaining <5% of leaves green during 

the late dry season. Even during the late dry season when grass depletion was expected, 

grass on feeding sites remained generally more than 20 cm tall. Therefore, I used only 

two categories of grass height for the three grazers during all seasons: medium-tall (<40 

cm) and tall grass (>40 cm). For stemminness I also used two categories: few stems (<2 

stems) and many stems (≥3) because the prevailing tall grass had supporting stems and 

grass without stems was less represented. From the full models, I removed factors or 

combination of factors and recorded the likelihood ratio chi-squared and the degrees of 

freedom of the model that hierarchically excluded each factor or combination of factors. I 

did this analysis in SYSTAT 11.0 for Windows (SYSTAT Software, Inc., USA). 

To establish distinctions between herbivore species in features of grass that had 

been grazed, I compared herbivore species in grass greenness, grass height and 

stemminness only of grass tufts that were grazed by each of the herbivore species during 

each season using two-way loglinear analysis between pairs of herbivore species (sable 

vs buffalo and sable vs zebra). The models were: herbivore x grass greenness; herbivore 

x grass height and herbivore x stemminness. From these models, I removed the factor 

herbivore and noted the changes in the likelihood ratio chi-squared.  

I applied Akaike’s Information Criterion (AIC) (Burnham and Anderson 2002) to 

compare the relative weight of support by the data of models assessing the effect of 

different grass features or combinations of grass features on the acceptability of grass by 

each grazer. Following Agresti (1990, pg. 251) and Quinn and Keough (2002, pg. 390-

396) I applied the following formula to calculate AIC from results of loglinear models: 
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AIC = G2-2df, 

 

where, 

G2 - log likelihood ratio chi-squared 

df - degrees of freedom  

 

The model with the lowest value of AIC is the best supported model (Anderson et 

al. 2000), i.e. the model that best explains the acceptability of grass by each grazer. Delta 

AIC (∆ AIC) is a measure of relative strength of support of each model compared to the 

best model and allows ranking the models. It is calculated as the difference in AIC values 

between the best model and each candidate model. Models with larger ∆ AIC have less 

support by the data than models with smaller values of ∆ AIC, but another data set could 

give a different ranking of models through chance sampling effects. If models are almost 

equally supported (∆ AIC <2), the model with the fewest predictors is the best model due 

to its parsimony/simplicity. Relative likelihood indicates the likelihood that the model is 

the best among the whole set of candidate models (Anderson and Burnham 2002; Hobbs 

and Hilborn 2006), it indicates the probability that another data set will rank a particular 

model as the best among a set of candidate models.  

 

Results 

 

Distinctions between grazers in the availability and acceptance of grass species 

 
The overall availability of grass species in feeding sites differed significantly 

between sable and buffalo during both the early dry season (χ2 = 66.32, df=8, p<0.001) 

and the late dry season (χ2 = 80.19, df=7, p<0.001) as well as between sable and zebra 

during the early (χ2 = 111.45, df=7, p<0.001) and late dry season (χ2 = 49.82, df=6, 

p<0.001) (Figure 3a, b). Sable appeared narrower than buffalo and zebra in the grass 

species present in feeding sites, with the commonest grass species such as Urochloa 

mosambicensis, Setaria incrassata, and Themeda triandra being more prevalent in 
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feeding sites used by buffalo or zebra, whereas Digitaria eriantha was more present in 

feeding sites used by sable (Figure 3a, b). 

With the exception of P. maximum, Heteropogon contortus and T. triandra, the 

acceptability of the most frequently encountered grass species by sable was lower than 

the acceptability of these species by buffalo during the early dry season (χ2 = 113.17, 

df=8, p<0.001) and late dry season (χ2 = 431.81, df=10, p<0.001) (Figure 4a). The 

acceptability of grass species also differed between sable and zebra during the early dry 

season (χ2 = 63.04, df=7, p<0.001) and late dry season (χ2 = 166.53, df=9, p<0.001) 

(Figure 4b). While the acceptance of P. maximum and H. contortus by sable was higher 

than by zebra, S. incrassata was more accepted by zebra than by sable. Sable and zebra 

did not differ significantly in the acceptance of U. mosambicensis and D. eriantha during 

the early dry season when grass was still green, but the two grass species became 

neglected by sable as the dry season progressed, while remaining commonly accepted by 

zebra and buffalo. The divergence in the most accepted grass species during the late dry 

season became evident because sable shifted selection in favour of less common grass 

species such as P. deustum, Schmidtia pappophoroides and Ischaemum afrum while the 

most common grass species remained highly accepted by zebra and buffalo (Figure 4a, b, 

Appendix 1).  

Buffalo showed a more uniform acceptability across grass species and a wider 

range of highly accepted grass species than sable (Figure 5). This indicates that buffalo 

had a broader tolerance and generalist feeding at the grass species level, whereas sable 

were narrowly selective for particular grass species. However, sable and zebra were less 

distinct in the range of grass species highly accepted (Figure 5). During the early dry 

season, although sable neglected more grass species than buffalo, the difference in 

tolerance to grass species between sable and buffalo, as assessed by the frequency 

distribution of acceptance values, was not statistically significant (Figure 5; D.N. = 0.4, 

p=0.309, N=20). Out of 10 grass species, sable grazed 6 and buffalo grazed 9 grass 

species in more than 40% of the times when these species were present in feeding sites. 

However, sable became more narrowly selective for grass species than buffalo as 

conditions became harsher towards the end of the dry season, remaining with 6 grass 

species with acceptance >0.4 but increasing the cluster of grass species with acceptance 
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<0.4, while buffalo showed the opposite pattern increasing grass species with acceptance 

>0.4 to 13, out of 15 grass species present in feeding sites (D.N. = 0.412, p=0.06, N=30). 

Zebra appeared intermediate in tolerance to grass species, with 4 grass species showing 

acceptance values >0.4 during the early dry season, but increasing to 8 during the late dry 

season. The breadth of tolerance to grass species did not differ significantly between 

sable and zebra during the early (D.N. = 0.2, p=0.96, N=20) and late dry season (D.N. = 

0.2, p=0.894, N=30).  

 

Distinctions between grazers in grass features influencing the acceptance of grass species 

 
During the early dry season the model assessing the effect of the interaction 

between grass greenness and grass height combined with the effect of the interaction 

between grass height and number of stems was the model most supported by the data in 

explaining the acceptance of grass by sable (best fit model, smallest AIC, Table 1a). 

During the late dry season, the model with four way interaction and the model including 

two three-way interactions (greenness x stems x grazed/not grazed + height x stems x 

grazed/not grazed) were both strongly supported by the data in explaining the acceptance 

of grass by sable (relative likelihood of 0.29 and 1.0, respectively, Table 1a). However, 

due to its simplicity, I consider the model including the two three-way interactions as the 

best model. The models assessing the effect of each grass feature separately were less 

supported by the data than the models including the effect of interactions between 

features. However, among single factors, grass greenness received relatively better 

support from the data in explaining the acceptance of grass by sable than grass height or 

number of stems during the early and late dry season (smaller ∆AIC, Table 1a). Sable 

were positively selective for grass greenness and grass height (Figure 6). The acceptance 

of grass that retained more than 10% of leaves green was higher (>0.7) than the 

acceptance of grass that had less than 5% of leaves green (<0.4). Sable favoured grass 

that was taller than 40 cm and neglected grass that was shorter than this. Sable tolerated 

grass with a wide range of stemminness, revealing no differences in acceptability 

between grass that had different numbers of stems (Figure 6).  
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Buffalo were broader than sable in tolerance of grass features, accepting grass that 

presented a wider range of greenness, height and number of stems during the early and 

late dry seasons (Figure 6). Among models assessing the effect of each grass feature, the 

number of stems was the best predictor of acceptability of the grass by buffalo during the 

early dry season. The acceptability of grass with 1-2 stems (0.93) was higher than the 

acceptability of grass with more than 3 stems (0.72) or with no stems (0.75). Grass height 

showed a week but positive relationship with acceptability, whereas grass greenness 

showed no clear influence on the acceptability of grass by buffalo. However, the overall 

best model included the effect of the interaction between grass greenness and grass height 

combined with the interaction between grass greenness and number of stems, indicating 

that each factor had an effect but also influenced the effect of other factors on the 

acceptance of grass by buffalo (Table 1b).  

For zebra during the early dry season, the model including two three-way 

interactions (greenness x height x grazed/not grazed and greenness x stems x grazed/not 

grazed) was the most supported by the data in explaining the acceptance of grass by zebra 

and during the late dry season, grass height and number of stems as single factors 

explained the acceptance of grass (Table 1c). Grass height and grass greenness were 

positively associated with the acceptance of grass by zebra, but the relationship between 

acceptance and number of stems was negative (Figure 6). 

 

Distinctions between herbivores in tolerance of grass features 

 
Comparisons of grass grazed showed that sable were narrower in the use of grass 

greenness than buffalo (χ2=116.0, df=3, p<0.001) and zebra (χ2=91.6, df=3, p<0.001), 

generally neglecting grass with <10% of green leaves during the early dry season and 

with <5% of green leaves during the late dry season. Buffalo and zebra accepted grass 

within a wider range of grass greenness, including brown grass during both the early and 

late dry seasons (Figure 6). Even during the late dry season, sable still grazed grass that 

retained up to 20% of leaves green, which was not represented in feeding sites used by 

zebra or buffalo. Sable were also narrower than buffalo (χ2=43.96, df=2, p<0.001) and 

zebra (χ2=94.08, df=2, p<0.001) in the grass height grazed, favouring grass taller than 40 



 40 

cm, whereas buffalo and zebra grazed grass of different heights (<40 cm and >40 cm) 

more evenly. However, when shorter grass became available on burnt areas following the 

first wet season rains, no distinction could be made among grazers in acceptance of short 

grass, with the three grazers grazing grass regrowth in the height range of 5 - 10 cm. 

Sable did not differ significantly from buffalo (χ2=0.67, df=2, p=0.715) in tolerance of 

stems, but grazed grass that had many stems than the grass grazed by zebra (χ2=41.48, 

df=2, p<0.001). However, differences between grazers in grazed grass height and number 

of stems could be because grass species neglected by sable during the late dry season 

such as U. mosambicensis and D. eriantha were generally shorter (<40 cm) and less 

stemmy (0-2 stems) than the most favoured ones.  

Sable included a higher proportion of green grass in their diet than buffalo or 

zebra (Figure 7). Grass with more than 25% of leaves green made up about 50% of sable 

diet during the early dry season of 2006, but less than 20% of the diet of buffalo or zebra. 

During the early dry season of 2007 for the three grazers an average of about 40% of the 

diet consisted of grass with more than 25% of leaves green. However, zebra and buffalo 

became more tolerant of brown grass than sable as the dry season progressed. About 90% 

and 60% of the diet of zebra and buffalo, respectively during the critical late dry season 

months of October 2006 and September 2007 consisted of completely brown grass, 

whereas sable remained selective for green grass with only about 40% of bites taken on 

completely brown grass (Figure 7).  

 

Distinctions between grazers in diet breadth 

 
The overall diet breadth index (B) in terms of the range of grass species 

supporting the three grazers did not differ much, with an average index of 4.2 – 5.11 for 

the three grazers during both years (Figure 8). The diet of the three grazers was skewed 

towards few grass species, out of up to 23 grass species eaten by each of the grazers, only 

4-5 grass species made up about 75% of the diet, with each of the remaining grass species 

representing less than 5% of the diet during all seasons (Figure 9a, b, c). The three 

grazers overlapped in the use of P. maximum because this grass species was among the 4-

5 grass species contributing to about 75% of the diet of the three grazers during all 
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seasons, but the grazers were distinct in diet because while 75% of the diet of buffalo and 

zebra consisted of the most common grass species such as U. mosambicensis, S. 

incrassata, D. eriantha and T. triandra during all seasons, the diet of sable was more 

seasonally variable, being dominated by these common grass species plus H. contortus 

during the early dry season and the early wet season, but dominated by relatively less 

common grass species such as I. afrum, S. pappophoroides and P. deustum during the late 

dry season (Figure 9a, b, c).  

Monthly patterns of diet breadth showed that during August and September of the 

less severe year of 2006, the diet of sable was less diverse than during the same period of 

the drier year of 2007. However, zebra showed the opposite trend and buffalo diet 

breadth appeared less affected by the severity of the drought. During times of extreme 

limitations in food quality (October 2006 and September 2007), sable tended to have a 

wider and more even diet than buffalo and zebra by seeking less abundant grass species, 

whereas buffalo or zebra concentrated feeding on the most abundantly available grass 

species and showed a relatively less diverse diet (Figure 8).  

 

Diet overlap 

 
The overlap in the grass species eaten was higher between sable and buffalo than 

between sable and zebra. With the exception of the overlap between sable and zebra 

during the early dry season of 2007, the overlap tended to decrease with the progress of 

the dry season (Figure 10) as sable increased the use of relatively less common grass 

species that contributed little to the diet of buffalo or zebra, such as I. afrum, P. deustum 

or S. pappophoroides. Buffalo and zebra remained supported by locally more abundant 

grass species that were neglected by sable when these grass species retained no green 

leaves, such as U. mosambicensis and S. incrassata, respectively. However, during 

October of the less severe dry season of 2006 sable increased the use of S. incrassata and 

showed the highest diet overlap with zebra. 
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Discussion 

 
The low density sable were more narrowly selective for grass species, grass 

greenness and grass height than the high density grazers, buffalo and zebra, which were 

more broadly tolerant to grass species and grass features. The diversity of grass species 

making up the diet did not differ among grazers, but grass species making up the diet of 

sable were less abundant on feeding sites than the grass species more prevalent in the diet 

of buffalo and zebra. Grass greenness was the grass feature influencing the acceptability 

of grass species by sable during the early and late dry season, but it had relatively weak 

effect on the acceptance of grass by buffalo and zebra, which tolerated brown grass. 

Sable restricted grazing to tall grass, whereas buffalo and zebra grazed grass of a wider 

range of height. The three grazers overlapped in the acceptance of grass species when 

grass was green during the early dry season. However, as grass dried out with the 

progress of the dry season and the availability of commonly favoured grass species 

declined, the low density sable relied on less common grass species that retained green 

leaves while buffalo and zebra remained supported by locally more abundant grass 

species not favoured by sable when brown. 

The narrower selection for green forage and grass species by sable than by buffalo 

or zebra was as expected from the niche breadth theory, which predicts that low density 

species use a narrow range of resources than high density species (Brown 1984). 

However, differences in body size (Geist 1974) and in the morphology and function of 

the digestive system (Gordon and Illius 1988; Illius and Gordon 1992) might also have 

contributed to differences in precision and tolerance in food niche. Being a smaller 

ruminant than buffalo, sable selected for higher quality green leaves to meet the higher 

energy requirement relative to body mass, whereas the larger ruminant buffalo and the 

non-ruminant zebra are less constrained by food quality, hence tolerated forage of a wider 

range of phenological stages to secure the requirement for high absolute intake of forage. 

Despite higher requirements for food quality by sable than by buffalo or zebra, sable also 

accepted tall grass with high number of stems. However, differences or similarities 

between grazers in tolerance for these grass features could have been affected by 

differences between grazers in the acceptance frequency of grass species that attained 
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different heights or number of stems. Sable took bites on grass stems (personal 

observations), but I failed to document the relative frequency of biting stems versus 

selectively feeding on grass leaves from stems of tall grass. Parrini (2006) also 

documented tolerance of stems by sable during the dry season. HeitkÖnig (1993) reported 

that the closely related roan antelope (Hippotragus equinus, 260 kg) consumed forage 

with many stems and hence of poor quality, and suggested an intermediate digestive 

system between ruminants and non-ruminants for roan. This could also explain the 

tolerance of stems by sable. 

Although sable grazed a range of grass species as wide as buffalo and zebra, the 

acceptability of most grass species by sable was lower than by buffalo, suggesting that 

sable were narrowly selective for grass species. However, the tolerance of grass species 

by sable was influenced by the greenness that the grass species retained. This became 

more apparent during the late dry season when sable reduced the number of highly 

accepted grass species when the most widespread grass species retained no green leaves. 

During the late dry season, sable remained selective for tufts of grass species that retained 

green leaves. On the other hand, buffalo and zebra readily accepted a wider range of 

grass species than sable, particularly the grass species most abundant in feeding sites, 

even when most of the grass leaves were brown. This suggests that buffalo and zebra 

relied on grass species securing adequate intake of bulk forage and were generalists in 

grass greenness, tolerating even the most widespread brown leaves. Bell (1970) had 

previously documented zebra reliance on the commonest and most accessible food, 

whereas ruminants most selective for greener grass such as Thomson’s gazelle (Gazella 

thomsoni, 16 kg) depended on sparser food resources during the dry season. Wildebeest 

(Connochates taurinus, 163 kg), which is of similar body size to sable but attain higher 

density (±10 animals/km2) across their distribution range showed broad tolerance of grass 

species (Ben-Shahar 1991) and of grass phenological stages during the dry season 

(Murray and Brown 1993). This suggests that differences in tolerance to food resources 

among large grazers could also be explained by differences in regional density, rather 

than by differences in body mass alone. 

Sable narrower selection for grass species than buffalo and zebra suggests that the 

niche breadth hypothesis (Brown 1984) could explain sable occurrence at low density 
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because the range of grass species favoured by sable is restricted. In addition, the grass 

species that most contributed to the diet of the low density sable during the critical late 

dry season were less common in feeding sites than the grass species that supported the 

high density buffalo and zebra, suggesting that the niche position or resource availability 

hypothesis (Gaston and Kunin 1997; Gregory and Gaston 2000) might also contribute to 

explaining why sable occur in low density. Sable also showed a narrower food niche than 

buffalo and zebra by feeding selectively on green leaves and grass species with many 

stems. The availability of green leaves decreased while the availability of brown leaves 

tolerated by buffalo and zebra increased with the progress of the dry season. Accordingly, 

at the plant parts level, resource breadth and resource availability hypotheses also appear 

to jointly determine the seasonal variability in the quality and quantity of resources 

supporting sable compared to resources used by high density grazers, buffalo and zebra. 

The diet breadth in terms of the range of grass species upon which the grazers 

depended did not differ substantially among grazers. However, while buffalo and zebra 

depended on the most common grass species during different conditions of food 

availability, sable depended on the commonest grass species only during the early dry 

season. During times of the year of limited food quality like the late dry season sable 

sought for patches of less widespread grass species. This suggests that the progressive 

decline in the availability of food influenced the composition of the diet of sable but had 

little influence on the food resources supporting buffalo or zebra. During the late dry 

season of the less severe dry season of 2006 the diet of sable was less diverse than during 

the late dry season of the drier 2007. This indicates that during late dry season of years 

with above average rainfall sable relied on few grass species as the main components of 

the diet, but during the late dry season of drier years the diet of sable was made up by 

many grass species due to limited availability of preferred food species.  

The general decrease in diet overlap with the progress of the dry season that I 

documented in this study suggests that competition for the commonly preferred food 

species resulted in resource partitioning, with different grazers relying on different food 

refuges as the critical late dry season approached, as previously suggested by Jarman 

(1971), Holbrook and Schmit (1989) and Owen-Smith (1989). However, if few options 

for food selection are available to allow diet divergence or if a bridging food species that 
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is used by different grazers remains abundant, the overlap in diet among grazers should 

increase during critical periods. Ego et al (2003) reported high diet overlap between 

wildebeest, kongoni (Alcelaphus buselaphus) and cattle (Bos indicus) during both the wet 

and dry season when preferred forage species were abundantly available year-round. This 

suggests that a high overlap does not necessarily indicate potential for competition, but 

rather that preferred resources are abundant to be shared. Therefore, the increase in 

overlap between sable and zebra at the end of the dry season of the less severe dry season 

could indicate that the grass species that supported both grazers during this period were 

not limiting, hence diet overlap did not result in competition and diet divergence. In 

addition, during the late dry season the home ranges used by sable and zebra were 

separated (Chapter 4), which reduced the potential for food competition despite similarity 

in diet composition. 

This study showed limited partitioning of food resources among grazers, but 

rather overlaps in grass species grazed. Neglecting more grass species, depending on 

grass species occurring in lower availability and selecting for green leaves during the 

limiting dry season suggest that sable were more restricted by the availability of food of 

acceptable quality than buffalo and zebra, which accepted the readily available bulk. This 

suggests that low density grazers have a narrower food niche and a more precise foraging 

at the grass species and grass features level than high density grazers. 
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Table 1a. Model comparison statistics for grass features influencing the acceptability of grass species by sable during the early and 
late dry season 

 
Sable: early dry season 

 
    Models    G

2
 DF AIC ∆ AIC  Akaike weight (wi) Relative likelihood 

Greenness x Height x Stems x grazed/not grazed 180.3 4 172.3 3.1 0.123 0.212 
Greenness x Stems x grazed/not grazed + Height x Stems x grazed/not grazed 201.4 8 185.4 16.2 0.000 0.000 
Greenness x Height x grazed/not grazed + Height x Stems x grazed/not grazed 185.2 8 169.2 0 0.579 1.000 
Greenness x Height x grazed/not grazed + Greenness x Stems x grazed/not grazed 184.5 7 170.53 1.33 0.298 0.514 
Height x Stems x grazed/not grazed 421.9 12 397.9 228.7 0.000 0.000 
Greenness x Height x grazed/not grazed 222.9 10 202.89 33.69 0.000 0.000 
Greenness x Stems x grazed/not grazed 218.5 10 198.5 29.3 0.000 0.000 
Greenness x grazed/not grazed 444.7 10 424.7 255.5 0.000 0.000 
Height x grazed/not grazed 1281.4 12 1257.4 1088.2 0.000 0.000 
Stems x grazed/not grazed 800.0 12 776 606.8 0.000 0.000 

 
Sable: late dry season 

Models G
2
 DF AIC ∆ AIC  Akaike weight (wi) 

Relative 

likelihood 

Greenness x Height x Stems x grazed/not grazed 1046.4 3 1040.4 0 0.733 1.000 
Greenness x Stems x grazed/not grazed + Height x Stems x grazed/not grazed 1052.9 5 1042.9 2.5 0.210 0.287 
Greenness xHeight x grazed/not grazed + Height x Stems x grazed/not grazed 1169.5 5 1159.5 119.1 0.000 0.000 
Greenness x Height x grazed/not grazed + Greenness x Stems x grazed/not grazed 1055.6 5 1045.6 5.2 0.054 0.074 
Height x Stems x grazed/not grazed 1276.8 7 1262.8 222.4 0.000 0.000 
Greenness x Height x grazed/not grazed 1245.2 7 1231.2 190.8 0.000 0.000 
Greenness x Stems x grazed/not grazed 1065.4 7 1051.4 11 0.003 0.004 
Greenness x grazed/not grazed 1113.0 7 1099 58.6 0.000 0.000 
Height x grazed/not grazed 1234.6 7 1220.6 180.2 0.000 0.000 
Stems x grazed/not grazed 1273.0 7 1259 218.6 0.000 0.000 
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Table 1b. Model comparison statistics for grass features influencing the acceptability of grass species by buffalo during the early and 
late dry season 
 

Buffalo: early dry season 

 
Models G

2
 DF AIC ∆ AIC  Akaike weight (wi) Relative likelihood 

Greenness x Height x Stems x grazed/not grazed 111.1 4 103.1 0.4 0.266 0.819 
Greenness x Stems x grazed/not grazed + Height x Stems x grazed/not grazed 120.4 8 104.4 1.7 0.139 0.427 
Greenness xHeight x grazed/not grazed + Height x Stems x grazed/not grazed 119.6 8 103.6 0.9 0.207 0.638 
Greenness x Height x grazed/not grazed + Greenness x Stems x grazed/not grazed 116.7 7 102.7 0 0.325 1.000 
Height x Stems x grazed/not grazed 148.0 12 124 21.3 0.000 0.000 
Greenness x Height x grazed/not grazed 126.0 10 106 3.3 0.062 0.192 
Greenness x Stems x grazed/not grazed 158.8 10 138.8 36.1 0.000 0.000 
Greenness x grazed/not grazed 382.7 10 362.7 260 0.000 0.000 
Height x grazed/not grazed 231.0 12 207 104.3 0.000 0.000 
Stems x grazed/not grazed 199.9 12 175.9 73.2 0.000 0.000 

 
 

Buffalo: late dry season 

Models G
2
 DF AIC ∆ AIC  Akaike weight (wi) Relative likelihood 

Height x Stems x grazed/not grazed 39.0 2 35 0 1.000 1.000 
Height x grazed/not grazed + Stems x grazed/not grazed 235.0 6 223 188 0.000 0.000 
Height x grazed/not grazed 60.3 4 52.3 17.3 0.000 0.000 
Stems x grazed/not grazed 71.9 4 63.9 28.9 0.000 0.000 
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Table 1c. Model comparison statistics for grass features influencing the acceptability of grass species by zebra during the early and 
late dry season 
 

Zebra: early dry season 

 
Models G

2
 DF AIC ∆ AIC  Akaike weight (wi) Relative likelihood 

Greenness x Height x Stems x grazed/not grazed 178.8 4 170.8 1.9 0.196 0.387 
Greenness x Stems x grazed/not grazed + Height x Stems x grazed/not grazed 186.0 8 170 1.1 0.292 0.577 
Greenness xHeight x grazed/not grazed + Height x Stems x grazed/not grazed 198.3 8 182.3 13.4 0.001 0.001 
Greenness x Height x grazed/not grazed + Greenness x Stems x grazed/not grazed 182.9 7 168.9 0 0.506 1.000 
Height x Stems x grazed/not grazed 202.6 12 178.6 9.7 0.004 0.008 
Greenness x Height x grazed/not grazed 201.7 10 181.7 12.8 0.001 0.002 
Greenness x Stems x grazed/not grazed 207.5 10 187.5 18.6 0.000 0.000 
Greenness x grazed/not grazed 227.4 10 207.4 38.5 0.000 0.000 
Height x grazed/not grazed 249.0 12 225 56.1 0.000 0.000 
Stems x grazed/not grazed 241.6 12 217.6 48.7 0.000 0.000 

 
 

Zebra: early dry season 

Models G
2
 DF AIC ∆ AIC  Akaike weight (wi) Relative likelihood 

Height x Stems x grazed/not grazed 357.9 2 353.9 4.2 0.048 0.122 
Height x grazed/not grazed + Stems x grazed/not grazed 361.7 6 349.7 0 0.395 1.000 
Height x grazed/not grazed 358.4 4 350.4 0.7 0.278 0.705 
Stems x grazed/not grazed 358.4 4 350.4 0.7 0.278 0.705 
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2007. Source of data: South African Weather Services 
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Availability: sable vs buffalo EDS
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Availability: sable vs buffalo LDS
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Figure 3a. Comparative availability of grass species on feeding sites used by sable and buffalo during the early dry season (EDS) and 
late dry season (LDS) of 2006 and 2007 combined. Dashed diagonal line represents the points of equal availability of grass species 
between grazers. Pm - Panicum maximum, Pd - P. deustum, Pc - P. coloratum, Um - Urochloa mosambicensis, Uo - U. Oligotricha, 
De - Digitaria eriantha, Tt - Themeda triandra, Set - Setaria incrassata, Hc - Heteropogon contortus, Er - Eragrostis rigidior, Es - E. 

superba, Esp - Eragrostis sp, Cc - Cenchrus ciliaris, Sch - Schmidtia pappophoroides, Bo - Bothriochloa spp, Bn - Brachiaria 
nigropedata, Ia - Ischaemum afrum, Cp - Cymbopogon plurinodis, Ac - Aristida congesta, Cv - Chloris virgata and Pp - Perotis 
patens. 
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Figure 3b. Comparative availability of grass species on feeding sites used by sable and zebra during the early dry season (EDS) and 

late dry season (LDS) of 2006 and 2007 combined. Dashed diagonal line represents the points of equal availability of grass species 

between grazers. Acronyms are listed in Figure 3a. 
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Acceptability: sable vs buffalo EDS
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Acceptability: sable vs buffalo LDS
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Figure 4a. Comparative acceptability of grass species by sable and buffalo during the early dry season (EDS) and late dry season 

(LDS) of 2006 and 2007 combined. Dashed diagonal line represents the points of equal acceptability of grass species between grazers. 

Acronyms are listed in Figure 3a. 
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Acceptability: sable vs zebra EDS
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Figure 4b. Comparative acceptability of grass species by sable and zebra during the early dry season (EDS) and late dry season (LDS) 

of 2006 and 2007 combined. Dashed diagonal line represents the points of equal acceptability of grass species between grazers. 

Acronyms are listed in Figure 3a. 
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Frequency distribution of acceptability: Sable EDS
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Frequency distribution of acceptability: Zebra EDS
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Figure 5. Frequency distribution of acceptability of grass species by sable during the early dry season (EDS) and late dry season 

(LDS) of 2006 and 2007 combined. 
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Acceptability vs grass greenness: EDS
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Acceptability vs grass height: EDS
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Acceptability  vs number of stems: EDS
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Figure 6. Comparative tolerance to grass greenness, grass height and number of stems between sable, buffalo and zebra during the 

early dry season (EDS) and late dry season (LDS) of 2006 and 2007 combined. Bars denote 95% binomial confidence intervals. 

Numbers on bars indicate sample size (number of feeding sites with grass species amalgamated). 
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Bites on green vs brown grass: sable 2006
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Bites on green vs brown grass: sable 2007
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Bites on green vs brown grass: buffalo 2006
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Bites on green vs brown grass: buffalo 2007
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Bites on green vs brown grass: zebra 2006
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Bites on green vs brown grass: zebra 2007
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Figure 7. Monthly changes in the proportion of bites taken on grass within different categories of grass greenness during the dry 
season of 2006 and 2007 (N= number of bites). 
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Figure 8. Monthly variations in diet breadth index (B) of low density sable and high density grazers, buffalo and zebra, during 2006 
and 2007 
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Figure 9a. Diet contribution of grass species during the early and late dry season of 2006, assessed as the percentage of bites taken on 
each grass species 
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Figure 9b. Diet contribution of grass species during the early and late dry season of 2007, assessed as the percentage of bites taken on 
each grass species 
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Figure 9c. Diet contribution of grass species during the transition period to the wet season of 2006 and 2007, assessed as the 
percentage of bites taken on each grass species 
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Figure 10. Monthly variations in the index of overlap on grass species eaten between sable and buffalo and between sable and zebra 

during the dry season of 2006 (a) and 2007 (b) 
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CHAPTER TWO  

 

Comparative habitat use by low density versus high density grazers 

 

Abstract 

 

Distinctions in habitat use between the low density sable and the high density buffalo and 

zebra were investigated in northern Kruger National Park during the dry seasons of 2006 

and 2007. GPS-GSM collars were deployed on females from herds of these grazers and 

foraging areas used by the herds were located by means of GPS tracking. Habitat features 

such as catena position, grass greenness, grassland height and woody vegetation cover 

were recorded on each foraging area. Data were pooled across herds of the same species, 

to make inference about habitat use at the population level. The prevalence of habitat 

features was compared between foraging areas used by sable and foraging areas used by 

buffalo or zebra using log-linear models. The habitat features or their combinations that 

best distinguished foraging areas used by sable from those used by buffalo or zebra were 

determined using Akaike’s Information Criterion. Sable foraged in areas retaining 

greener grass than buffalo and zebra. Sable overlapped with zebra by foraging on 

uplands, but were distinct from buffalo which foraged mainly on bottomlands and 

midslopes. Sable and buffalo overlapped by foraging mainly on open woodlands, 

whereas zebra tolerated a wider range of woody vegetation cover, by using more evenly 

open woodlands and treeless grasslands. The three grazers overlapped in the use of tall 

grass grasslands, although zebra were more broadly tolerant of grassland height than 

sable and buffalo, by also foraging in areas with short grass. Results suggest that sable 

were narrower than buffalo and zebra in grass greenness, but were similar to buffalo and 

zebra in other habitat features prevailing on foraging areas. This limited ecological 

separation at the habitat level suggests that there is potential for competition for food 

during periods of limited food supply if these grazers use overlapping home ranges.  
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Introduction 

 

The acquisition of resources for survival, growth and reproduction of foraging 

animals depends on the habitat used, i.e. on the set of physical environmental conditions 

and resources surrounding the animal (Johnson 1980; Hall et al. 1997; Garshelis 2000; 

Morrison 2001) and on the breadth of habitat conditions used (Feinsinger et al. 1981; 

Smith 1982). In addition, habitat breadth provides insights into the animal’s potential 

distribution range (Brändle and Brandl 2001; Morrison 2001; Morrison et al. 2006), such 

that species with broad habitat tolerance are potentially more widely distributed than 

species using a narrower diversity of habitats.  

Habitat features for large herbivores include resources such as food and water, 

conditions such as shelter and shade; and safety from predators (Owen-Smith 2002). The 

use of a narrow range of habitat features reflects specialization or marginality, which is 

one measure of niche breadth (Calenge et al. 2005). Habitat specialization may limit the 

potential of species to use spatially and temporally variable resources, conditions and 

security. Brown (1984) and Rosenzweig and Lomolino (1997) argued that habitat 

specialization leads to both local and regional rarity of species. However, Seagle and 

McCraken (1986) and Gaston and Kunin (1997) demonstrated that specialization on 

abundant resources or widely distributed habitats can result in high abundance of a 

species. du Toit and Owen-Smith (1989) observed differences in habitat use and in 

habitat breadth among African browsers, with smaller species such as steenbok 

(Raphicerus campestris, 11 kg) using a narrower range of habitats than larger browsers 

such as kudu (Tragelaphus strepsiceros, 180 kg) and giraffe (Giraffa camelopardalis, 

800 kg), which exploited a wider range of habitats, including habitats patches neglected 

by the smaller browser. Following the Jarman (1968 in Jarman 1974) and Bell (1970) 

principle, du Toit and Owen-Smith (1989) proposed that the more even use of a broader 

range of habitats by kudu and giraffe was because larger animals tolerate a wide range of 

food items, including low quality and food items of large size neglected by the smaller 

animal. Among African grazers, Fritz et al. (1996) observed that the larger-sized cattle 

(Bos taurus and B. indicus) used a wider range of habitat types than the smaller animal, 

impala (Aepyceros melampus). 
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Habitat use is a hierarchical process (Senft et al. 1987), scaling spatially from the 

selection of geographical range (first order habitat selection), selection of broad 

vegetation types across the landscape when establishing home ranges (second order 

habitat selection), selection of habitats within the home range (third order selection), 

selection of feeding areas within habitats to selection of food items within feeding areas 

(fourth order selection) (Johnson 1980). Following the limiting similarity theory for 

species coexistence (MacArthur and Levins 1967), Rosenzweig (1981) stated that species 

using the same landscape differ in the use of one or more habitat features, because 

differential habitat use reduces the potential for competition. Therefore, similarities or 

differences in habitat selection among co-occurring ungulates, hence potential for 

competition or for stable coexistence through habitat partitioning should take place at 

those hierarchical levels of habitat selection.  

Grassland height, catena position, woody canopy cover, grassland species 

composition (Jarman and Sinclair 1979; Sinclair 1985; Ben-Shahar 1995; Owen-Smith 

2002) and grass greenness (McNaughton 1985; Sinclair 1985) influence forage resources 

and habitat conditions for large grazers. Therefore, distinct habitat preference 

(Rosenzweig 1991; Johnson et al. 2000; Owen-Smith 2002) among grazers could be 

through differences among species in preference for these habitat features. Green grass 

leaves have higher concentration of protein, minerals and soluble carbohydrates than 

brown leaves (Bell 1970; Owen-Smith 1982). Accordingly, during the dry season grazers 

should select foraging areas where the highly nutritious green grass prevails (O’Reagain 

2001). Food intake rate increases with grass height because with increasing grass height, 

bite size increases as animals apprehend a bigger volume of herbage through increased 

bite depth (Illius and Gordon 1990; Laca et al. 1992; O’Reagain 2001). Thus, during the 

dry season when forage quantity declines due to the absence of regrowth, large grazers 

should concentrate foraging on patches of tall grass offering high intake rates 

(Wilmshurst et al. 1999).  

Catena position influences soil moisture availability, so that lower levels of the 

catena such as bottomlands, which contain more clay than uplands (Scholes 1990; 

Scoones 1995), retain soil moisture sustaining the availability of green grass and higher 

grass biomass than upper levels of the catena (Bell 1970; McNaughton 1985; Scoones 
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1995). Therefore, during the dry season grazers should concentrate foraging on 

bottomlands potentially retaining greener grass than uplands as documented by Bell 

(1970) for grazers in the Serengeti, by Estes and Estes (1974), Magome (1991) and 

Parrini (2006) for sable antelope (Hippotragus niger) and by Funston et al. (1994) for 

African buffalo (Syncerus caffer). 

Woody vegetation cover influences the quantity and quality of food resources, 

shelter and shade from extreme weather conditions and security from predation. Certain 

highly rated forage species such as Panicum maximum grow beneath trees and shrubs 

(van Oudtshoorn 1999). Shade also reduces the rate of soil moisture loss from 

evaporation (Scholes 1990). Therefore, grass growing beneath trees potentially remains 

green for longer than grass in the surrounding more open areas; hence grazers should 

prefer foraging underneath trees. Shrubs might compete with grass for soil nutrients and 

water, resulting in low grass biomass in areas of thick bush (Smit et al. 1999). Therefore, 

grazers should avoid foraging in areas of high shrub cover. In African savannas shade is 

an important habitat condition to reduce heat load during the hot late dry season, 

particularly for animals with dark coat like sable and buffalo. Therefore, the need for 

refuge from adverse weather is another determinant of habitat use by ungulates (Duncan 

1983; Owen-Smith 1988). 

Habitat use by large herbivores is partly influenced by the spatial and temporal 

variation in the quantity and quality of forage and by water availability (Duncan 1983; 

Owen-Smith 1988; Bowyer et al. 1998; Winnie et al. 2008). However, apart from 

differences in food preference among grazers and differences in the availability of 

preferred food among habitats, differences in predation risk among habitats as well as 

differences in anti-predator behaviour (Jarman 1974; Sinclair and Arcese 1995; Bowyer 

et al. 1998) and social system (Duncan 1983) might contribute in explaining differential 

habitat use among ungulate species. Aggregation also reduces the risk of predation 

through simple dilution or by increased probability of detecting predators (Fryxell 1995). 

Accordingly, species that occur in large herds and that are able to fight against predators 

through group attack such as buffalo (Prins and Iason 1989; Prins 1996) may use a wide 

range of habitats, including habitats with relatively higher predation risk such as thick 

bush (Elliot et al. 1977; van Orsdol 1984). Ungulates that run away to escape predators 
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such as plains zebra (Equus burchelli, Estes 1991) should select for open habitats with 

good visibility for rapid detection of predators and should avoid thick bush providing 

cover for stalking predators (Elliot et al. 1977; van Orsdol 1984; Owen-Smith 2002), 

whereas species such as sable, not documented to successfully fight against large 

predators, should avoid being detected by predators by using habitats providing adequate 

woody cover for concealment.  

Ruminants require higher quality forage than non-ruminants of similar body mass 

(Illius and Gordon 1992). Smaller herbivores require higher quality forage than larger 

herbivores (Bell 1970; Jarman 1974; Owen-Smith 1988). Sharing space with conspecifics 

results in rapid attrition of food resources within habitat patches (Owen-Smith 1988), but 

the high mobility of animals in large herds allows animals to use spatially variable 

resources, whereas sedentary species use resources occurring in small areas (Ritchie 

2002). Animals occurring in smaller groups are able to use high quality food resources 

occurring in small habitat patches not detected or neglected by larger herds (Fryxell 

1991). Therefore, following allometric relations of body mass and group size as well as 

gut morphology and function, smaller ruminants occurring in smaller herds should select 

for the combination of habitat features that ensure the acquisition of the required higher 

quality food resources, whereas larger ruminants occurring in larger herds and hindgut 

fermenters should use habitat feature more evenly. 

Sable is a low density ruminant with a mean adult female weight of about 220 kg 

(Wilson 1968 cited by Owen-Smith 1988), occurring in herds of 15-25 individuals (Estes 

1991). Zebra is a high density non-ruminant, with a mean adult female weight of about 

310 kg (Wilson 1968 cited by Owen-Smith 1988; Skinner and Chimimba 2005) occurring 

in social units averaging 6-7 animals. Buffalo is a high density large ruminant (520 kg; 

Pienaar 1969), highly mobile and gregarious, in Punda Maria occurring in herds of about 

200 - 400 animals. The low density and smaller ruminant, sable, was more precise in 

feeding on grass species retaining green leaves into the dry season, whereas buffalo and 

zebra showed broader tolerance to food resources at the grass species and grass features 

level (Chapter 1). There was overlap in the botanical composition of the diet between the 

low density sable and the high density grazers, raising potential for food competition. 

However, differential habitat preference might reduce potential for food competition 
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during periods of limited food supply such as the dry season. To establish the habitat 

features ecologically separating these co-occurring species during the critical dry season, 

I investigated similarities and/or differences in habitat features prevailing on sites used by 

sable, zebra and buffalo during periods of the day when these herbivores were expected 

to be foraging. I hypothesized that: 

1. Sable should be a habitat specialist and narrower in habitat use than buffalo and 

zebra, by precisely foraging in habitat patches with green grass during the dry 

season, whereas zebra and buffalo should be more tolerant to the widely available 

brown grass 

2. Sable should restrict foraging to areas with high woody vegetation cover and 

bottomlands where grass potentially remains green for longer during the dry 

season, whereas buffalo and zebra would forage in habitats with a broader range 

of woody vegetation cover and catena positions  

 

Methods 

Study area 

 
I conducted this study to the south of Punda Maria Camp (22o68’S, 31o018’E) in 

northern Kruger National Park (KNP), South Africa, within an area of about 600 km2.  

During the seasonal cycle July 2005- June 2006 rainfall was about 20-35% above the 

long term average recorded in 4 neighbouring weather stations at Punda Maria, Shangoni, 

Woodlands and Vlakteplaas. However, between July 2006 and June 2007 rainfall was 

about 30-50% below the long term average (see Chapter 1 for details). Rainfall is highly 

seasonal, falling mainly between October and March, while the period between April and 

September is generally dry. However, in July of the drier year of 2007, the study area 

received 9 mm of rainfall (average across the 4 weather stations). 

Gertenbach (1983) described four landscape types covering the study area based 

on woody vegetation species composition and physiognomy, namely the Punda Maria 

sandveld on sandstone of the Soutpansberg group (Schutte 1986; Venter 1990), 

characterized by mixed Combretum spp woodland in the north-west of the study area; 

Colophospermum mopane woodland on Ecca shale in the north-east consisting generally 
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of dense tall  mopane trees (>10 m); Pterocarpus rotundifolius/Combretum spp woodland 

on basalts of the Soutpansberg group covering the south-west, dominated by sparse small 

trees and shrubs; and C.mopane/Acacia nigrescens woodland mostly on granitic gneiss, 

consisting of medium sized trees covering the south of the study area. Perennial sources 

of drinking water were pools along the Mphongolo River in the south and a gravel pit in 

the south-west of the study area, opened in 1962. Water sources available only during the 

wet season and early dry season (until August in 2006, but only until May in the drier 

2007) included few streams and many ephemeral pans widely distributed in the study 

area.  

Study design 

 
In May 2006 and June 2007, Global Positioning System (GPS) - cellular phone 

(GSM) collars were placed on sable, zebra and buffalo located south of Punda Maria 

Camp (see Chapter 1 for details). I initially scheduled the collars to record the GPS 

coordinates of the herds every six hours, at 2:00, 8:00, 14:00 and 20:00. However, during 

days of observation of each herd I adjusted the schedule of the collar to record the GPS 

coordinates of the herd hourly to obtain detailed data on the spatial location of the herds 

during the main potential foraging periods for the animals in the morning (6:00 – 10:00) 

and late afternoon/early evening (16:00-20:00) (Chapter 1) and to ensure that foraging 

areas were obtained for the assessment of habitat features prevailing in these areas. I 

applied study design 1 (Thomas and Taylor 1990), whereby I amalgamated data from 

different herds of the same herbivore species and made inference about habitat use at the 

population level. The entire sable and buffalo regional populations were included in this 

study, whereas the zebra population was represented by 4-6 collared herds corresponding 

to about 15-20% of the population. 

 

Field data collection 

 
Habitat selection was assessed at two levels, namely the selection of habitats at 

the broad level of landscapes distinguished by Gertenbach (1983) and the selection of 

habitat features on foraging areas within these landscapes.  
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I collected field data on habitat use by sable, zebra and buffalo during the dry 

seasons of 2006 (June–October) and 2007 (May-September). The study was conducted 

during the dry season because this is the period of limited food availability for large 

mammalian herbivores (Scoones 1995). Therefore, in this study I identified the habitat 

features prevailing on areas with resources supporting the populations of the three 

herbivores species during the limiting period of the year. To establish differences in 

habitat use between sable and buffalo or zebra, I used a modification of the site attribute 

design (Garshelis 2000), whereby the resource conditions and characteristics of the 

physical environment of feeding sites used by sable were not compared with available 

unused sites as commonly done (Thomas and Taylor 1990), but rather contrasted with 

habitat attributes that prevailed on feeding sites used by buffalo or zebra. Therefore, 

habitat features not used by any of these three species during the sampling period were 

ignored. I focused on measurements of habitat attributes on sites used by each species 

during foraging periods, assuming that during these periods habitat use was most 

influenced by forage distribution than by any other factor. Habitat features used by the 

animals during non-foraging periods were excluded from sampling. By means of GPS 

tracking, I visited sites used by each species during two days each week, recording 

habitat variables on 1-5 foraging areas used by the herd during each morning or afternoon 

foraging session. While use of habitat by the sable herd represented the use of habitat by 

the sable population because only one sable herd occurred in the study area, effort of data 

collection was distributed among collared zebra and buffalo herds to ensure that the 

collected data represented patterns of habitat use by the populations of these species. 

Distributing sampling effort between buffalo and collared zebra herds consisted of 

weekly alternating the herd of these species to be tracked for data collection.  

In the surrounding of each herd location I recorded the following data to describe 

the prevailing resource conditions and characteristics of the physical environment: 

• Topography or catena position: the position of the herd on the catena was 

classified and recorded as bottomland, midslope or upland; 

• Woody canopy cover: woody cover was estimated as the proportion of the 

foraging area shaded or covered by tree (height ≥2.5m) or shrub (height <2.5m). 

Estimates were made within a 25 m radius from the GPS location of the herd 
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using the procedure outlined by Walker (1976). The percentage cover was 

grouped into the following classes: 0; 1-10; 11-25; 26-50; 51-75. Higher values of 

woody cover were not represented in foraging areas. 

• The height of the top canopy cover within a 25 m radius was estimated and 

grouped into the following height categories: short trees (height ≤5 m); medium 

trees (6-10 m) and tall trees (>10 m). 

• Grassland height: it was determined by the predominant grass height within a 25 

m radius. Grass height was estimated and grasslands were categorized as short 

grass grassland (≤10 cm), medium (11-20 cm), medium-tall (21-40 cm), tall (41-

80 cm) and very tall grass grassland (>80 cm).  

• Grass greenness of the foraging area was estimated as the proportion of green 

leaves available in the sward within 25 m radius and classified according to the 

eight-point scale proposed by (Walker 1976): 0%, 1-10%, 11-25%, 26-50%, 51-

75%, 76-90%, 91-90%, 100%.  

 

Data analysis 

 
Landscape selection: for the assessment of landscape selection, following 

Aebischer et al. (1993), I estimated the availability of each landscape in the study area as 

the proportion of the study area covered by each landscape. I estimated the total and core 

range of each herbivore species as the 95% and 50% adaptive kernel probability isopleths 

(Worton 1989; Seaman and Powell 1996); respectively, using locations of herds of each 

herbivore species between June 2006 and September 2007 (see Chapter 3 for details 

about kernel home range estimations). Following Johnson (1980) I assessed the 

preference for landscapes as the proportion of the total and core distribution range of the 

population of each herbivore species that was covered by each landscape relative to the 

availability of each landscape in the study area. I did this analysis in ArcGIS 9.1. 

(Environmental Systems Research Institute Inc, USA). 

Sampling unit: I considered that habitat conditions in foraging areas during 

successive hours were not independent. Separation distances between successive hourly 

foraging locations of sable and zebra were generally less than 200 m, but up to about 1 
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km for the larger buffalo herds. A resting period between the morning and afternoon 

foraging sessions might have ensured independence between the foraging sessions, such 

that the area chosen by the herd to forage in the afternoon was likely to be independent of 

where the herd foraged in the preceding morning. Accordingly, I considered each 

morning or afternoon foraging session as an independent sampling unit for habitat 

features. I calculated the midpoint of the categories of habitat features on foraging areas 

used by the herd during different hours of the same morning or afternoon and then I 

averaged the midpoints to obtain the average habitat characteristics of the area used by 

the herd during the foraging session for each of the habitat feature. During the dry season 

most of the grass was brown. Thus, I used only Walker’s (1976) four lowest grass 

greenness categories to detect small differences in greenness that can be influential in the 

selection of foraging areas by grazers during the dry season. Accordingly, for the analysis 

of prevalence of habitat features in foraging areas, I used the following categories: 0%, 1-

10%, 11-25% and >25%. For each herbivore species, I combined all feeding areas where 

more than 25% of grass was green because these were less represented. I categorized tree 

and shrub cover into three broad categories of open (0-10%), mainly open (11-25%) and 

mainly closed (>25%). Tree height, grassland height and catena position remained with 

the categories applied during field data collection. 

 Seasonal subdivisions: I subdivided the data into the following stages of the dry 

season: early dry season of 2006 (June-July), late dry season of 2006 (August – October), 

early dry season of 2007 (May-July), and late dry season of 2007 (August-September). I 

defined these periods based on rainfall patterns and on the proportion of foraging areas 

retaining green grass. Months when more than 50% of foraging areas used by sable had 

>10% of green grass were combined into the early dry season, whereas months with no 

rainfall and more than 50% of foraging areas retaining <10% of green grass were grouped 

into the late dry season period. Early dry season and late dry season of 2006 and 2007 

covered different calendar months because rainfall patterns were different between the 

two years. For instance, while in 2006 October was a late dry season month because 

rainfall only began in November, in 2007 October was an early wet season month 

because rainfall began at the end of September. In addition, in 2006 I started field data 

collection in June but in 2007 I started in May.  
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Habitat conditions in core vs peripheral range: Differential use of space might 

reflect spatial differences in resources (Marzluff et al. 2004), but also in predation risk 

(Bowyer et al. 1998). To relate the frequency of use of a specific section of the range to 

spatially variable habitat features, I estimated the core area (50% kernel isopleths) and the 

total area (95% kernel isopleths) used by sable, buffalo and the sampled zebra herds 

during the period of field data collection. Using the selection function in ArcGIS 9.1, 

from all foraging areas that I collected data for each herbivore species, I identified and 

separated the foraging areas that were within the core range from the foraging areas that 

were in the peripheral range. This was done to compare the habitat conditions that 

prevailed on sable core range with those of zebra or buffalo core range, and to compare 

habitat features of core areas and those of peripheral range for each herbivore species. I 

expected resources and habitat conditions to differ between core and peripheral range 

because concentrated use of a core range indicates preference for resources and 

conditions occurring in that area. These conditions might differ from conditions 

prevailing on the peripheral range, which is used only occasionally or during excursions 

outside core range, particularly as an adaptive response of foraging animals to the 

shrinking abundance of resources within the core range as the dry season progresses. Out 

of 99 sable foraging areas that I sampled between June and October 2006, 59 (60%) were 

within the core area occupied during the dry season, covering 6.0 km2 and the remaining 

40 foraging areas were in the peripheral range. Only 29 (38%) of the 76 foraging areas 

used by zebra that I sampled were within the core section of the range (11.5 km2), 

whereas 46 (79%) of the 58 sampled foraging areas used by buffalo were within the core 

area covering 77 km2. Between May and September 2007, 35 (52%) of sampled sable 

foraging areas were within 11.9 km2 of core area, 27 (46.5%) of zebra foraging areas and 

25 (65.8%) of buffalo foraging areas were within the core area of 16.7 km2 and 65.0 km2, 

respectively. Hence samples represented core and peripheral range roughly in proportion 

to their relative use. 
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Statistical analysis and model selection 

Habitat features were the predictor variables whereas the count of foraging 

sessions within each category of habitat feature was the response variable. Count data do 

not generate a normal frequency distribution, but rather a Poisson distribution (Agresti 

1990; Quinn and Keough 2002). Therefore, I applied Generalized Linear Models (GLM), 

which do not require normality in the distribution of the data. Because both predictor and 

response variable were categorical, I applied log-linear models, which based on observed 

cell counts, model the expected cell frequencies using the log link and a Poisson error 

term to obtain the log-likelihood, which is a measure of the fit of the model (Agresti 

1990; Quinn and Keough 2002).  

Differences in habitat features between the core and the peripheral range used by 

each species might confound the differentiation of herbivore species in habitat use, 

particularly if the proportions of sightings on core vs peripheral range differ greatly 

between species. To account for this potential confounding factor, prior to species 

comparisons, for each herbivore species I assessed whether habitat features differed 

significantly between range sections (core and peripheral range). I did this exploratory 

analysis using two-way log-linear analysis for each herbivore species separately. Each 

model included range section (factor 1) and each of the habitat features (grass greenness, 

grassland height, catena position and tree cover) as the second factor. 

To establish distinctions between sable and buffalo or zebra in the habitat features 

prevailing on foraging areas used, I performed pair-wise loglinear models, whereby sable 

were compared with buffalo or zebra in the prevalence of each habitat variable or 

combination of habitat variables in foraging areas. Differences between stages of the dry 

season in rainfall, hence in forage and habitat conditions might confound the 

differentiation of herbivore species in habitat use. Therefore, the stage of the dry season 

was included as an additional factor in the model. Accordingly, I started off with a 

saturated model including the following factors, each with two levels: herbivore (sable 

and buffalo or zebra), season (early and late dry season), grass greenness (<10% and 

>10% of grass green), catena position (upland and non-upland = midslope and 

bottomland), grassland height (<40 cm and >40 cm) and tree cover (<10% and >10% tree 

cover). I only included tree cover to represent woody vegetation structure in the final 
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model because using either tree cover, shrub cover or tree canopy height yielded similar 

results regarding the influence of woody vegetation cover in species differentiation in 

habitat use. Grassland height showed no influence in distinguishing foraging areas used 

by sable from the foraging areas used by buffalo. Therefore, I excluded grassland height 

in the full model for the comparison between sable and buffalo. However, for the 

comparison between sable and zebra, I included grassland height in the full model in 

place of catena position, which showed no influence in the distinction in habitat use 

between sable and zebra. From each pair-wise comparison, i.e. sable vs buffalo and sable 

vs zebra, I left out of the model the habitat feature that had the lowest influence in the 

overall fit of the model. This reduced the complexity of the contingency table, ensured 

larger cell counts and made the model simpler and easier to interpret.  

From the saturated model, I removed each factor or interactions between two, 

three or four of the factors and noted the likelihood ratio chi-square (G2) and the degrees 

of freedom of the model without the removed factor or interaction of factors (Quinn and 

Keough 2002), i.e. the likelihood ratio chi-square and degrees of freedom of the model 

with all the remaining factors and interactions. By removing individual factors and 

different interaction of factors I produced a set of candidate models with different 

combinations of factors potentially explaining the differences in habitat use between 

sable and buffalo or zebra. I performed log linear analysis using SYSTAT 11.0 for 

Windows (SYSTAT Software, Inc., USA). 

I compared the relative weight of support by the data of models assessing the 

effect of different combinations of habitat features in distinguishing foraging areas used 

by sable from areas used by buffalo or zebra using Akaike’s Information Criterion (AIC) 

(Burnham and Anderson 2002). Following Agresti (1990, pg. 251) and Quinn and 

Keough (2002, pg. 390-396) I applied the following formula to calculate AIC from 

results of loglinear models: 

 

AIC = G2-2df, 

where: 

G2 - deviance of each model or log likelihood ratio chi-squared 

df - degrees of freedom  
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Results 

Habitat selection at the broad landscape level 

 
For the establishment of home range sable selected for the mixed Combretum 

woodland and for the Colophospermum mopane woodland. The proportion of the core 

range covered by Combretum woodland and the proportion of the total range covered by 

C. mopane woodland were more than double of their relative availability in the study area 

(Table 1). Zebra showed preference for the less wooded Pterocarpus 

rotundifolius/Combretum spp woodland, with about 50% of core and total range being 

covered by this landscape, which occupied only 15% of the study area. Sable and zebra 

appeared to avoid the C.mopane/Acacia nigrescens woodland at both total and core 

range. On the other hand, buffalo were broad in landscape occupation, revealing no 

preference for specific landscape. The proportions of buffalo total and core range covered 

by different landscapes approximated the relative availability of these landscapes in the 

study area. 

 

Distinctions in habitat conditions between the core and the peripheral range 

 
Grass was greener in the sable core range than in the peripheral range. Overall, 

about 40% of foraging areas within the core section of the range occupied during the dry 

season retained >10% of grass green, whereas only about 20% of foraging areas had 

>10% of grass green in the peripheral range. Although sable generally foraged on 

uplands, within core range about 15% of foraging areas were in bottomland along a 

drainage line, whereas outside core range only 1% of foraging areas were on bottomland. 

The prevalence of other habitat features did not differ between sable core range and 

peripheral range. For buffalo and zebra, the habitat features prevailing on foraging areas 

did not differ between the core and the peripheral range. Therefore, for the comparison 

between herbivore species in habitat use I included all the foraging area data regardless of 

differences in the frequency of use of different sections of the home range.  
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Comparative habitat use between species 

 
Sable vs buffalo 

The model assessing the effect of grass greenness alone and the model assessing 

the effect of grass greenness and stage of the dry season were almost equally supported 

by the data as the best explanatory models of differences in habitat use between sable and 

buffalo (∆AIC <0.3 and relative likelihood of 0.88 – 1.0, Table 2). Owing to its 

simplicity, I consider the model including grass greenness alone as the best model. Sable 

generally foraged in areas retaining greener grass than buffalo. During the early dry 

season of both 2006 and 2007, about 80% of foraging areas used by sable retained >10% 

of green grass and during the late dry season of both years in about 15% of foraging areas 

used by sable grass remained with >10% of grass green (Figure 1). Less than 20% of 

foraging areas used by buffalo had >10% of grass green, except during the early dry 

season of 2007 when buffalo appeared to use areas with greener grass than sable. During 

this period, although for both species about 70% of foraging areas retained >10% of grass 

green, about 50% of foraging areas used by buffalo retained >25% of grass green 

whereas only about 20% of foraging areas used by sable had >25% of grass green (Figure 

1).  

The model incorporating catena position alone also contributed to explaining 

distinctions between foraging areas used by sable and by buffalo (∆AIC < 3, Table 2), 

with a likelihood of 28% the effect of catena alone in distinguishing habitats used by 

sable and buffalo cannot be discounted. However, adding catena to greenness did not 

improve the fit of the model, indicating that the effect of catena was weaker than the 

effect of greenness in distinguishing herbivore species. Overall, about 70% of foraging 

areas used by sable were on uplands, whereas about 60% of foraging areas used by 

buffalo were on bottomlands and midslopes (Figure 2). The stage of the dry season also 

influenced distinctions between sable and buffalo in the catena position of habitats used 

(likelihood of 32%). Whereas sable remained generally on uplands during most of the dry 

season, buffalo shifted from uplands and midslopes used during the early dry season to 

bottomlands towards the end of the dry season (Figure 2).  

Tree cover alone did not contribute to the fit of the model, with a likelihood of 3% 

the effect of tree cover can be discounted in the ecological separation between sable and 
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buffalo at the habitat level. The effect of tree cover in distinguishing areas used by sable 

and by buffalo depended on grass greenness (likelihood of 32%). Overall, about 70% of 

foraging areas used by both species had >10% cover of shrubs and medium-tall trees (6-

10 m) (Figure 3, 4 and 5). However, while during the less severe year of 2006, for both 

species around 50% of foraging areas were in open areas with <10% tree and shrub 

cover, in the drier 2007 about 60% of foraging areas used by both species were in more 

wooded areas, with >10% tree and shrub cover (Figure 3, 4 and 5). Grass taller than 40 

cm prevailed in about 75% of foraging areas used by both species during all seasons 

sampled (Figure 6).  

 

Sable vs zebra 

The full model including the effects of grass greenness, tree cover, grassland 

height and stage of the dry season and the model assessing the effect of the interaction 

between tree cover and grass greenness received similar support from the data in 

distinguishing foraging areas used by sable from foraging areas used by zebra (∆AIC 

<1.0 and relative likelihood of 0.69 - 1.0   Table 3). The support for the full model 

indicates that each of these habitat features had an effect in distinguishing foraging areas 

used by both grazers, but also each habitat feature influenced the effect of other features. 

The exclusion of any of these predictors from the model reduced substantially the fit of 

the model. However, due to its simplicity I considered the model including only tree 

cover and grass greenness as the best model. Among single habitat features tree cover 

was the most distinct feature between foraging areas used by sable and by zebra (relative 

likelihood of 7%, Table 3). Overall, about 70% of foraging areas used by sable were in 

wooded areas with >10% cover of shrubs and medium-tall trees (6-10 m). Although zebra 

foraged in areas with a wider range of tree cover than sable, about 50% of foraging areas 

were in open areas with <10% of tree cover and a wide range of tree canopy height 

(Figure 3, 4 and 5). The contribution of the interaction between tree cover and grass 

greenness indicates that the effect of tree cover depended on grass greenness. The more 

wooded areas used by sable retained greener grass (>10% of grass green) than the more 

open habitats used by zebra. In about 60% of foraging areas used by zebra grass was 

predominantly brown (<10% of grass green), except during the early dry season of 2007 
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when about 50% of foraging areas had >10% of grass green (Figure 1). Sable used a 

narrow range of grassland height, with grass taller than 40 cm prevailing in about 75% of 

foraging areas, whereas for zebra grass taller than 40 cm prevailed in about 50% of 

foraging areas and in about 20% of foraging areas grass was shorter than 20 cm (Figure 

6). However, the model assessing the effect of grass height alone was not supported by 

the data in explaining ecological separation between sable and zebra at the habitat level 

(Table 3). For both species approximately 70% of foraging areas were in upland regions 

of the landscape (Figure 2).  

 

Discussion 

 
In this paper I predicted that sable, being a smaller ruminant, occurring in smaller 

herds and attaining lower regional density, would use a narrow range of habitats by 

restricting foraging to areas retaining green grass. Accordingly, I expected sable to 

restrict foraging to areas with habitat features that might contribute to the retention of 

green grass, such as wooded/shaded areas and bottomlands. I predicted that buffalo, 

being a larger ruminant occurring in larger herds and the non-ruminant zebra would 

forage on the widely available brown grass and use foraging areas with a wider range of 

catena positions and woody vegetation cover than sable. 

Results showed that sable were distinct from both buffalo and zebra by using 

areas retaining greener grass. Sable were also distinct from buffalo by using foraging 

areas on uplands whereas buffalo foraged mostly on bottomlands and midslopes. Sable 

were different from zebra by using areas with higher woody cover than the areas used by 

zebra, but overlapped with buffalo in woody vegetation cover prevailing on foraging 

areas. Sable and zebra overlapped on the use of foraging areas on uplands. Sable were 

narrower than both buffalo and zebra in grass greenness and narrower than zebra in 

grassland height and in woody vegetation cover prevailing in areas used for foraging. 

Buffalo were broader than sable and zebra in the range of landscape types occupied. 

The use of woodlands with about 25% woody vegetation cover by sable had also 

been previously documented by Estes and Estes (1974) in the Luando Integral Nature 

Reserve in Angola, by Wilson and Hirst (1977) in the Hans Merensky Nature Reserve in 
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the lowveld of South Africa and in the Matetsi area of Zimbabwe and by Parrini (2006) in 

the Kgaswane Mountain Reserve, South Africa. However, Estes and Estes (1974), 

Sekulic (1981) and Parrini (2006) also reported use of treeless grasslands during the dry 

season, whereas Magome (1991) documented that sable neglected treeless grasslands. 

The findings of this and previous research suggest that sable use foraging areas with a 

wide range of woody vegetation cover and that what constitutes preferred habitat as well 

as the range of habitats used by sable vary between study areas that differ in the 

physiognomy of the vegetation. Results from this study are also similar to the findings by 

Funston et al. (1994) and Ryan et al. (2006) that buffalo selected for open woodlands and 

made relatively little use of treeless areas in the Sabi Sand Nature Reserve and Klaserie 

Private Nature Reserve, respectively. However, other studies (Taylor 1989; Prins 1996) 

showed buffalo dependency on floodplain grasslands with plentifully available green 

grass during the dry season and use of wooded savannas on the uplands only when the 

floodplains were inundated during the wet season. Therefore, findings from previous 

studies on habitat use by sable and buffalo, although conducted in distinct areas, show 

similarity in woody vegetation cover prevailing in areas used by these grazers, which I 

also documented using herds of these species occupying the same broad landscape during 

the same time. The use of a broad range of habitat types by zebra, from treeless short and 

tall grasslands to woodlands had also been documented by Davidson (2002) in north-

eastern KNP. However, Smuts (1975) reported that zebra favoured grasslands and 

avoided woodlands. Tolerance of zebra for a wide range of food resources (Smuts 1975) 

could explain the high variability in grassland height and woody vegetation cover on 

foraging areas used by zebra during this study. 

Contrary to findings of previous studies (Estes and Estes 1974; Magome 1991; 

Parrini 2006) that during the dry season sable use bottomlands due to retention of green 

grass in these regions of the catena,, sable remained on uplands through the dry season. 

Henley (2005) also in the Punda Maria area observed sable more frequently on uplands 

during the dry seasons of 2002 and 2003. The difference in the seasonal patterns of 

catena position in foraging areas used by sable between this and previous studies could be 

because in the Luando Integral Nature Reserve (Estes and Estes 1974), Pilannesberg 

National Park (Magome 1991) and Kgaswane Mountain Reserve (Parrini 2006), 
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bottomlands were generally vleis and swamps retaining soil moisture and green grass 

year-round. These habitats do not occur in Punda Maria where bottomlands are in the 

form of river banks and seasonal drainage lines. The banks of the single river running in 

the study area were used by buffalo as core range through the late dry season (Chapter 4), 

hence grass was probably depleted by frequent grazing by buffalo. Similar to previous 

studies (Jarman and Sinclair 1979; Funston et al. 1994; Macandza et al. 2004 and Bowers 

2006), I documented an increasing use of midslopes and bottomlands by buffalo with the 

advance of the dry season. Funston et al. (1994) suggested that the retention of high 

biomass of favoured grass species such as P. maximum and proximity to water were the 

habitat variables influencing the concentration of buffalo on bottomlands during the dry 

season. Therefore, the likely depleted grass resources on bottomlands by frequent buffalo 

grazing, and perhaps avoidance of predation risk in areas with high concentration of 

buffalo could explain why sable did not concentrate foraging on bottomlands during the 

dry season of 2006 and 2007. 

When sable and buffalo used an environment with similar resources and habitat 

conditions, such as between June and August of 2006, grass on foraging areas used by 

sable was greener than in areas used by buffalo, which tolerated the abundantly available 

brown grass. This finding was expected because smaller herbivores have higher energy 

requirements relative to body mass, hence select for higher quality forage than larger 

herbivores, which require higher absolute quantity but tolerate poor quality food (Bell 

1970; Jarman 1974; Owen-Smith 1988). However, this difference in greenness of the 

grass prevailing on foraging areas does not necessarily indicate a difference between 

species; it could be a result of differences in group size between the two species. Fryxell 

(1991) suggested that animals occurring in smaller groups are able to forage on small 

patches of resources not used by animals occurring in larger group sizes. Sinclair (1977) 

and Jarman and Sinclair (1979) documented that small groups of male buffalo used small 

habitat patches along drainage lines retaining greener grass than areas used by larger 

breeding herds. During the dry season, brown grass is more widely distributed than green 

grass, which becomes progressively sparser and restricted to areas retaining soil moisture 

(Bell 1970). Therefore, although all grazing herbivores prefer to feed on green grass due 

to its higher nutritional value than brown grass (Bell 1970; Owen-Smith 1982), with 
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decrease in the availability of green grass as the dry season advances, large herbivores 

should broaden their tolerance to grass phenology and forage on areas with 

predominantly brown grass. Reliance on discrete patches of green grass by sable suggests 

dependency on a narrow range of resources and hence limited ability to cope with the 

shrinking availability of green forage with the advance of the dry season.  

The greener grass recorded on foraging areas used by buffalo than by sable during 

the early dry season of the more severe year of 2007 could be explained by spatial 

separation between sable and buffalo during this period. While sable used upland regions 

of the landscape as did during the dry season of 2006, buffalo shifted from uplands used 

during the wet season to bottomlands and midslopes early in the dry season (in April). 

Bottomlands generally retain more green leaves into the dry season due to higher clay 

content on the soil and hence higher retention of soil moisture than soils on uplands. The 

shift in range location by buffalo from uplands to bottomlands and midslopes could be 

because beyond April 2007 drinking water on uplands was limited to scattered small 

pans, unable to sustain the drinking needs of individuals from the large buffalo herd, until 

the wet season rains started at the end of September. Besides differences in catena 

position, the Punda Maria weather station, which was the nearest to sable home range 

during the early dry season, received less rainfall (2.6 mm) than the nearest weather 

stations to buffalo range (16 mm of rainfall at Shangoni and 8.5 mm at Woodlands 

weather station) during the first week of July 2007. Therefore, the combination of higher 

clay content on the lower levels of the catena and the relatively higher rainfall received in 

the buffalo range might have contributed to a higher proportion of green grass within 

buffalo than within sable range during the early dry season of 2007. Although zebra 

tolerated a wider range of grassland heights than sable and buffalo by also foraging on 

areas with shorter grass, the three herbivore species overlapped in the use of foraging 

areas where tall grass prevailed. Among short grass grazers, Arsenault and Owen-Smith 

(2008) also documented overlap in the prevailing grassland height on foraging areas. 

Overall, results showed no clear separation between sable and buffalo or zebra, 

but rather similarities in the habitat features prevailing on foraging areas, although 

buffalo used more bottomlands and zebra used more open areas than sable. Therefore, 
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when using overlapping ranges during periods of limited food availability such as the dry 

season, the three grazers might compete for food resources. 
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Table 1. Proportions of different landscapes within total ranges (95%) and core ranges (50%) of sable herd, both buffalo herds and 
collared zebra herds combined compared to the proportional availability of the landscapes in the study area 
 
                                                                                              Sable                          Zebra                                Buffalo 
 Availability  95% 50% 95% 50% 95% 50% 
Mixed Combretum spp woodland 12 26 82 26 14 13 22 
C. mopane woodland 20 55 18 18 24 24 20 
P.rotundifolius/Combretum woodland 15 12 0 48 62 22 20 
C.mopane/A. nigrescens woodland 53 7 0 8 0 41 38 
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Table 1. Comparison of models incorporating different factors or interaction of factors in the distinctions in habitat use between sable 
and buffalo 

Models G
2
 DF AIC ∆ AIC Akaike weight (wi) Relative likelihood 

Herbivore x season x greenness x tree cover x catena  34.78 10 14.78 7.29 0.01 0.03 
 Herbivore x catena x tree cover 51.1 14 23.1 15.61 0.00 0.00 
Herbivore x greenness x tree cover 37.78 14 9.78 2.29 0.11 0.32 
Herbivore x season x tree cover  45.16 14 17.16 9.67 0.00 0.01 
Herbivore x season x catena 37.77 14 9.77 2.28 0.11 0.32 
Herbivore x catena x greenness 42.24 14 14.24 6.75 0.01 0.03 
Herbivore x season x greenness 35.75 14 7.75 0.26 0.30 0.88 
Herbivore x greenness + Herbivore x catena + Herbivore x tree cover 56.06 18 20.06 12.57 0.00 0.00 
Herbivore x catena 40.03 15 10.03 2.54 0.10 0.28 
Herbivore x greenness 37.49 15 7.49 0 0.35 1.00 
Herbivore x tree cover 47.33 16 15.33 7.84 0.01 0.02 
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Table 2. Comparison of models incorporating different factors or interaction of factors in the distinctions in habitat use between sable 

and zebra 

 G
2
 DF AIC ∆ AIC Akaike weight (wi) Relative likelihood 

Herbivore x season x greenness x tree cover x grassland height 140.9 10 120.9 0 0.44 1.00 
Herbivore x grassland height x tree cover 160.44 14 132.44 11.54 0.00 0.00 
Herbivore x greenness x tree cover 149.63 14 121.63 0.73 0.31 0.69 
Herbivore x season x tree cover  151.71 14 123.71 2.81 0.11 0.25 
Herbivore x season x grassland height 152.54 14 124.54 3.64 0.07 0.16 
Herbivore x grassland height x greenness 153.67 14 125.67 4.77 0.04 0.09 
Herbivore x season x greenness 164.98 14 136.98 16.08 0.00 0.00 
Herb. x greenness + Herb. x grassland height + Herb. x tree cover 184.14 18 148.14 27.24 0.00 0.00 
Herbivore x grassland height 161.09 15 131.09 10.19 0.00 0.01 
Herbivore x greenness 174.47 15 144.47 23.57 0.00 0.00 
Herbivore x tree cover 156.24 15 126.24 5.34 0.03 0.07 
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Grass greenness on foraging areas: EDS 2006
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Grass greenness on foraging areas: EDS 2007
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Figure 1. Comparison of herbivore species in grass greenness prevailing in foraging areas used during the early dry season (EDS) and 
late dry season (LDS) of 2006 and 2007 
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Catena position on foraging areas: EDS 2006
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Catena position on foraging areas: EDS 2007
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Figure 2. Comparison of catena position on foraging areas used by sable, buffalo and zebra during the early dry season (EDS) and late 
dry season (LDS) of 2006 and 2007 
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Tree cover on foraging areas: EDS 2006
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Tree cover on foraging areas: EDS 2007
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Figure 3. Comparison of tree cover prevailing in foraging areas used by sable, buffalo and zebra during the early dry season (EDS) 
and late dry season (LDS) of 2006 and 2007 
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Shrub cover on foraging areas: EDS 2006
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Figure 4. Comparison of shrub cover prevailing in foraging areas used by sable, buffalo and zebra during the early dry season (EDS) 
and late dry season (LDS) of 2006 and 2007 
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Tree canopy height on foraging areas: EDS 2006
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Tree canopy height on foraging areas: EDS 2007
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Figure 5. Comparison of tree canopy height prevailing in foraging areas used by sable, buffalo and zebra during the early dry season 
(EDS) and late dry season (LDS) of 2006 and 2007 
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Grassland height on foraging areas: EDS 2006
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Grassland height on foraging areas: EDS 2007
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Figure 6. Comparison of grassland height prevailing in foraging areas used by sable, buffalo and zebra during the early dry season 
(EDS) and late dry season (LDS) of 2006 and 2007 
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Monthly changes in grass greenness on sable foraging areas 

2006

0%

20%

40%

60%

80%

100%

June

(N=14)

July (N=26)Aug (N=31) Sept

(N=17)

Oct (N=11)

Month

P
e
rc

e
n

ta
g

e
 o

f 
s
it

e
s

0

1

2

3

4

5

6

7

R
a
in

fa
ll

 (
m

m
)

0% 1-10% 11-25% >25% Rainfall

Monthly changes in grass greenness on sable foraging areas 

2007

0%

20%

40%

60%

80%

100%

May (N=11) June

(N=14)

July (N=12) August

(N=16)

Sept

(N=14)

Month

P
e
rc

e
n

ta
g

e
 o

f 
s
it

e
s

0

2

4

6

8

10

12

14

16

18

R
a
in

fa
ll

 (
m

m
)

0% 1-10% 11-25% >25% Rainfall

 

Monthly changes in grass greenness on buffalo foraging areas 
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Monthly changes in grass greenness on zebra foraging areas 
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Figure 7. Monthly rainfall and changes in the percentage of foraging areas retaining green grass for sable, buffalo and zebra during the 
dry season of 2006 and 2007 
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CHAPTER THREE 

 

Precision in home range use by low density versus high density grazers 

 

Abstract 

 

This investigation aimed at establishing distinctions in patterns of home range use 

between grazers that differ in regional density, body size, group size and feeding 

specialization. GPS-GSM collars were fitted on females within a sable herd, representing 

a low density, smaller and specialist grazer, and on females within buffalo and zebra 

herds, representing high density and generalist grazers, in northern Kruger National Park. 

Home ranges were estimated for different herds of these grazers during distinct periods of 

food availability using kernel methods. The relationship between the metabolic use 

intensity and the home range increments for successive kernel contours was assessed as a 

measure of the flow of energy from forage to herbivore biomass. During the wet season 

when food and water were abundant the sable herd showed intense use of a small section 

of the range, whereas zebra and buffalo used home ranges more evenly. However, when 

resources were limiting during a severe dry season, the sable herd became less precise in 

the use of the range, moved more widely and the intensity of metabolic use of space 

became lower than by buffalo and most zebra herds. Sable and buffalo herds increased 

range size from the wet to the dry season, but the magnitude of the increase was greater 

for sable than for buffalo, while zebra herds reduced range sizes as the dry season 

progressed. Results show that during the wet season forage resources from smaller areas 

provided the necessary energy for the specialist grazer. However, the dry season was a 

stressful period for sable, with wider movements reflecting search for specific resources 

that became sparser with the advance of the season. Generalist grazers appeared less 

stressed by the seasonal changes in forage availability, suggesting that they were 

supported by abundant and widely distributed resources.  
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Introduction 

 
The distinction of rare from common species has been based on local population 

size, resource selectivity and geographical distribution of the species (Gaston 1997). 

Patterns of home range use by mobile animals have been neglected in the concept of 

rarity and commonness. The seasonal availability and spatial distribution of resources 

supporting the population should determine how precisely or evenly a species use space 

to satisfy resource requirements. However, the seasonal changes in the availability of 

food resources for grazers are influenced by the breadth of tolerance to these resources, 

which differs among grazers attaining different regional densities (Chapter 1). In 

heterogeneous landscapes, grazers that depend on resources that occur in specific sections 

of the landscape or those that require less quantity of food should show a narrow 

distribution of utilization of space suggestive of a more precise use of space for foraging, 

whereas grazers that depend on widely distributed resources or those that have higher 

absolute intake requirements should reveal an even distribution of density of animal 

locations across the landscape.   

In general, the determinants of home range size vary with the level of biological 

organization (McLoughlin and Ferguson 2000). Body size determines differences 

between species in range size; habitat productivity determines differences in range size 

between populations of the same species; whereas food availability, patchiness in the 

environment and predation are the factors influencing home range size and patterns of its 

utilization by individuals within a population (McLoughlin and Ferguson 2000). Home 

range size increases with increasing body mass because larger animals require higher 

food quantity than smaller animals (McNab 1963; Owen-Smith 1988) and tend to be 

generalist feeders (Bell 1970). Within populations of the same species, home range sizes 

should increase with decrease in food density towards the end of the dry season. 

However, if sections of the landscape retain key resources for the population during the 

critical late dry season, such as drainage lines retaining green forage (Scoones 1995; 

Knoop and Owen-Smith 2006), foraging animals might concentrate use of space on these 

smaller areas during the dry season than during periods when food is widely distributed. 

Herbivore aggregation patterns also influence the spatial scale of patch use 

(Fryxell 1991), because the energetic requirements of the herd are dependent on group 
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size due to its direct influence on the metabolic biomass (Owen-Smith 1988). Therefore, 

herbivore species occurring in larger group sizes should use larger home ranges than 

similarly sized species occurring in smaller social groups. Harestad and Bunnell (1979), 

Jetz et al. (2004) and Anderson et al. (2005) maintained that animals use the smallest area 

that contains the resources required by the animals during the specified time period. 

Therefore, during periods of abundance of the favoured food, low density, smaller 

resource specialist herbivores such as sable antelope (Hippotragus niger, 220 kg) should 

use relatively smaller home ranges than the larger generalist grazers like African buffalo 

(Syncerus caffer, 520 kg). This is because when the density of food is high selective 

feeding allows energetic requirements to be met in a small area. However, during periods 

of food limitation, resources for specialist herbivores become sparser (Chapter 1) 

prompting these species to move over relatively wider home ranges than the generalist 

consumers that can exploit the readily available food of low quality.  

According to Owen-Smith (1988), from the allometry of home range size and 

metabolic requirements, the extent of an individual home range is equal to 1.07M
0.83. The 

population mean mass per individual (M) is 165 kg for sable, which is three-quarters of 

adult female body mass (Owen-Smith 2008). Based on the above allometric relationship, 

the home range of a sable of 165 kg (0.74 km2) should be about half a buffalo (M=390 

kg) range (1.5 km2) and 75% of a plains zebra (Equus burchelli) (M=232 kg) home range 

(0.98 km2). However, the extent of the total area covered by the herd will be a function of 

herd size. Thus, multiplying the range extent per individual by herd sizes in my study 

area, the home range of the sable herd (20 animals) should be about 15 km2, 

approximately 5% of the home range of the buffalo herd (200 animals, 300 km2) and 

about double of the home range of zebra herds (7 animals, 7 km2).  

In this paper I investigated how narrow selection of forage resources by the 

smaller and low density sable influenced seasonal space use patterns, compared with 

buffalo and zebra, which were much more abundant and showed broader tolerance to 

food resources. I tested the following hypotheses: 

1. Sable should depend on resources that occur in more restricted areas, hence be 

more precise at locating resource-rich patches and their core range should consist 

of smaller discrete patches than zebra or buffalo core ranges; 



 114 

2. Sable, being a low density and specialist consumer should be more precise in 

foraging during periods of food abundance, i.e. resource requirements of the herd 

should be met in a smaller area than buffalo and zebra. However, during periods 

of resource limitation sable specialization on resources that become sparser with 

the progress of the dry season should result in wider movements and spread use 

over a larger home range than zebra, a similar sized generalist feeder;  

3. Being larger and occurring in larger herd size, buffalo should use a larger home 

range than sable and zebra 

4. Feeding selectively on plant parts of high quality, sable should be more efficient 

in obtaining the energy from the forage in the places selectively utilized than 

zebra or buffalo. Therefore, the intensity of metabolic use of space by sable 

within core range should be higher than by zebra and buffalo, i.e. core areas 

should support more sable biomass than buffalo or zebra.  

 

Methods 

Study area 

 
I conducted this study to the south of Punda Maria Camp (22o68’S, 31o018’E) in 

northern KNP, South Africa, within an area of about 600 km2. Between July 2005 and 

June 2006 rainfall (743 mm) was above the long term average of 600 mm, but during the 

seasonal cycle July 2006 – June 2007 rainfall (419 mm) was lower than the long term 

average (see Chapter 1 for details). Geologically the study area is underlaid largely by 

sandstone substrates, but also by basalts of the Soutpansberg group, Ecca shale of the 

Karoo system and granitic gneiss (Schutte 1986; Venter 1990; Joubert 2007). Broadly, 

two main woodland types can be distinguished in the study area based on the dominant 

tree species, namely the mixed Combretum spp woodland on the sections of the study 

area underlaid by sandstone and granitic formations, and Colophospermum mopane 

woodland or shrubland on basalt of the Soutpansberg group and Ecca shale (Gertenbach 

1983; Venter 1990) (see Chapter 1 and 2 for details).  

Perennial sources of drinking water were pools along the Mphongolo River in the 

south and a gravel pit in the south-west of the study area, opened in 1962. Five boreholes 
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were established in the study area between 1963 and 1970 to supply drinking troughs for 

animals. Two of these boreholes were closed around 1992. Two boreholes remained open 

until July 2006, one in the north-west and one around the center of the study area. The 

fifth borehole in the south-west supplied water to animals until February 2007. Water 

sources available only during the wet season and early dry season (until August in 2006, 

but only until May in the drier 2007) included few streams and many ephemeral pans 

widely distributed in the study area.  

 

Study design and data collection 

 
Three adult females from two sable herds, four adult females from four herds of 

zebra and two females in one buffalo breeding herd were fitted with GPS-GSM collars. 

Additional collars were placed on animals within herds of these species in June 2007, 

being one on sable, two on zebra and one on buffalo (see Chapter 1 for details). Using the 

GPS tracking technology I remotely collected herd location data without influencing 

animal movements by human presence. I scheduled the collars to record and send the 

GPS coordinates of the herds every six hours. GPS herd locations were obtained for 8:00 

AM and 8:00 PM assumed to represent the feeding periods, and for 2:00 AM and 2:00 

PM assumed to represent the resting periods. To confirm the activity of the animals 

during these periods, I visited the sites used by the animals during the 8:00 AM and 8:00 

PM and observed signs of fresh feeding on most of these sites (Chapter 1), which means 

that animals were commonly feeding during these times, or that the animals had been 

feeding on these sites during earlier hours. Therefore, I considered the 8:00 AM and 8:00 

PM herd locations as representing the areas used by the animals during the morning and 

evening foraging spells. To save the power of the battery and extend the period of collar 

functionality, I set the schedule of collars AM142 and AM147 fitted on zebra and collar 

AM150 fitted on buffalo to record one GPS herd location per day during September and 

October 2006. Unfortunately these collars did not deliver data for longer periods than the 

collars delivering data every six hours, but rather there was a loss of opportunity to obtain 

detailed location data from these collars during that period.  
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Using this schedule collars representing the three herbivore species delivered data 

for more than one annual cycle. Of the nine collars placed on animals in May 2006, collar 

AM143 placed on sable, collars AM141 and AM142 fitted on zebra and collar AM152 

fitted on buffalo delivered data beyond September 2007, collar AM147 fitted on zebra 

provided data up to July 2007, collar AM145 also on zebra worked only until September 

2006 and collar AM150 fitted on buffalo stopped sending data in March 2007 (Appendix 

4). All collars fitted in June 2007 provided data through the late dry season of 2007. All 

sable females bearing collars were in the same herd during the study duration, except a 

few weeks during the early wet season when the herd had split. Therefore, only data from 

the collar that lasted longest (AM143) were used to assess space use by the sable herd, 

whereas data obtained from five collars fitted on zebra and two collars fitted on buffalo 

were used for the analysis. For the estimation of precision in foraging I included in the 

analysis only herd locations during the prime foraging periods of morning (8:00 AM) and 

early evening (8:00 PM). Geographical coordinates of herd locations were projected into 

WGS 1984 UTM zone 36S datum before home range analysis. 

Sable movements at the end of the dry season of 2006 and 2007 were influenced 

by the availability of water resources, which were restricted to pools along the 

Mphongolo River. Sable journeys to water occurred generally every 2-3 days in the early 

morning and occasionally in the late afternoon. Distance to water was about 7–8 km from 

the normal range. When journeys to water started in the morning (around 5:00AM) the 

sable herd could be back to normal range in the afternoon (around 5:00PM) and when 

journey started around 4:00PM the herd was back to normal range around 10:00PM. 

Journeys to water sources were also observed for zebra AM141 during the late dry season 

of 2007. During the late dry season of 2006, zebra AM141 did not depend on the water 

from the river because a borehole was open within the normal range of this zebra herd. 

For the estimation of precision in foraging, I excluded all herd locations that fell in a 

narrow strip of herd locations revealing a corridor normally used by the animals during 

southwards movements from the main range to the river, for the months of October 2006 

for sable and August-September 2007 for both sable and zebra AM141, because these 

movements were influenced by water rather than by forage requirements. No herd 

locations were excluded in the analysis of precision of foraging within the home range by 
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buffalo and the other zebra herds because at the end of the dry season the home ranges of 

these herds were close to water sources. Therefore, no distinctions could be readily made 

between the movements to water and those during foraging activity.  

 

Data analysis 

 
Home range estimates 

The relative frequency of use of space by animals can be evaluated using 

utilization distribution contours, which indicate an animal’s probability of occurrence at 

each point in space during a specified time period (van Winkler 1975; White and Garrott 

1990; Powell 2000; Marzluff et al. 2001). To estimate utilization distributions I used 

adaptive kernel density estimates (Worton 1989) using the Animal Movement Extension 

(Hooge and Eichenlaub 1997) in ArcGIS 9.1. (Environmental Systems Research Institute 

Inc, USA). Kernel methods estimate different intensities of space use by creating 

isopleths containing a certain probability of animal occurrence based on the distribution 

of density of animal observations suggestive of the frequency of use of an area, and 

identify multiple areas of intense use (centers of activity) within the home range (Worton 

1989; Seaman and Powell 1996).  

In kernel analysis, the smoothing parameter h controls the search radius or the 

distance over which a data point influences the grid intersections and therefore the 

density estimate at that point (Silverman 1986; Worton 1995; Gitzen et al. 2005). Small 

smoothing parameters reveal more detailed patterns of home range use, but leave out 

locations that are far apart from the others, particularly the outermost locations. This 

could result in a type II error in home range estimates. Large smoothing parameters tend 

to connect all local patches into a single surface, give a coarse estimate, and reveal the 

general shape of the utilization distribution but obscure fine details of the utilization of 

space (Silverman 1986; Worton 1995; Seaman and Powell 1996; Powell 2000).  Large 

smoothing values tend to produce a type I error in range estimates by extending home 

ranges to include areas not used by the animals. I selected h using least-squares-cross 

validation (lscv) because this method selects h that results in the minimum type I and 

type II error in the estimation of utilization distribution, thus it is the recommended 
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bandwidth selection method to analyze ecological data (Seaman and Powell 1996; 

Seaman et al. 1999).  

In fixed kernel h remains constant for all data points, whereas adaptive kernel 

estimates local h values that depend on the local density of data points (Silverman 1986; 

Gitzen et al. 2005). I selected adaptive kernel as the smoothing application for the data 

because it performs well in estimating probability density plots for partially clumped data 

(Silverman 1986). Buffalo showed more even distribution of location data, which suggest 

that fixed kernel would also be appropriate to smooth the data (Silverman 1986). 

However, to make the results comparable, I used adaptive kernel to analyze data obtained 

from the three herbivore species. An alternative to the adaptive kernel method could be 

the use of the nearest-neighbor convex hull method (Getz and Wilmer 2004). However, 

Chirima (in prep.) found similar results in the extent and boundaries of utilization 

distributions estimated by both methods, when the distribution of herd locations did not 

show large gaps of non-use between clumps of location data. Within the seasonal 

subdivisions that I defined for data analysis, locations data of sable, zebra and buffalo 

showed no gaps of non-use between clumps of location data; hence I expected similar 

results from the two methods. In addition, the nearest-neighbor convex hull method is 

computationally tedious because it lacks an objective way of selecting the parameters for 

home range estimation. 

To reveal differences in the intensity of use of different parts of the home range, I 

estimated 2-dimensional utilization distribution by plotting adaptive kernel probability 

contours enclosing 25%, 50%, 75% and 95% of the home range estimate. The scale of the 

maps showing the contours was kept constant across temporal scales and across species 

to allow a visual comparison of the size and location of the home range. The 25% 

isopleths represent the centre of activity, the 50% isopleths represented the core range 

and the 95% probability isopleths represented the total home range, excluding the 

excursions and exploratory movements outside home range (White and Garrott 1990; 

Powell 2000). To reveal details in area increments for successive kernel probability 

isopleths, I further plotted the isopleths covering 10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80%, 90% and 100% of the utilization distribution. Areas covered by the contours were 

estimated using Hawth’s Tools in ArcGIS 9.1.  
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Seasonal subdivisions  

I conducted this study for a period of 16 months, from June 2006 to September 

2007. To identify distinctions in home range location and movement lengths over the 

course of the study period, I estimated overlap between monthly sable ranges and 

calculated animal movement lengths (diel displacement) between successive 8:00AM 

locations for all the collared animals. This was done to guide the delineation of temporal 

scales for the analysis of precision in home range use. Overlapping monthly home ranges 

were amalgamated within the same period. In October 2006, and in August 2007 sable 

shifted home range location during the month, which resulted in sable using two distinct 

home ranges in the same month. For these cases, during the analysis of home range 

anatomy, data from dates of the month before range shift were analyzed with data from 

the previous months and data from dates after range shift were analyzed with data from 

the following month. 

To evaluate the effect of resource surfeit or limitation on the precision of 

foraging, I focused the seasonal comparisons on distinct periods along the seasonal 

gradient of declining rainfall and associated decline in food availability from the wet 

season to the end of the dry season. Accordingly, the benign period was defined to span 

from January to April 2007 because during this period, the sable herd and buffalo herds 

showed overlapping monthly home ranges and the shortest diel movements of the year, 

suggesting that water and food resources were plentiful. April is the beginning of the dry 

season in the lowveld of South Africa, however this month was grouped with the late wet 

season months due to the carry-over effect of rain on food availability. The second period 

for analysis spanned from May to July 2007, this period was considered as a transitional 

period of intermediate food availability. During this early dry season period, the focal 

species of this study, sable, remained within the late wet season range but increased diel 

movements lengths, meaning that although water and food conditions were not bad to 

prompt sable to shift home range location, to drink water, sable needed to increase 

movements lengths as water became progressively restricted in distribution. Another 

period of intermediate food availability was the early dry season of 2006 (June-August), 

but this period could not be compared to earlier periods of 2006 in terms of sable 

movements and home range location because this was the initial period of the study. The 
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third period was the late dry season, generally the time of the year when water, food 

quantity and quality are limiting factors. This was restricted to the period from 5 October 

– 8 November 2006 and from 19 August - September 2007 because during these periods 

sable shifted to a range separated from the range used during earlier periods. Time 

periods for the three species were defined on the basis of sable movements and range 

shifts, to ensure a comparison of ranging patterns among species under similar 

environmental conditions. Defining time periods on the basis of distinctions between 

short and long movements as well as shifts in home range location was biologically 

justifiable as it reflected behavioral responses of animals to the seasonally changing 

environment.  

 

Assessing precision in home range use 

Precision in home range use was assessed by plotting the incremental change in 

kernel probability against area. The number of animal locations per unit area is an 

indication of the frequency of use of the area (Worton 1989; Seaman and Powell 1996). 

Therefore, high kernel probability densities for small areas of the range indicates 

precision in home range use, i.e. that the herd satisfied resource needs in a small home 

range during the specified period, whereas animal locations evenly distributed suggest an 

imprecise use of the home range.  

Precision in foraging was also assessed by the relationship between the metabolic 

use intensity and successive increments in the home range used. The metabolic use 

intensity is a measure of the flow of energy from forage resources to herbivore biomass. 

To account for differences in individual body mass due to differences in age classes 

among individuals within the herds, following Owen-Smith (2008) I estimated the mean 

body mass for each herbivore species as three-quarters of adult female body mass. 

Therefore, I used the following mean body masses: 165 kg, 232 kg and 390 kg for sable, 

zebra and buffalo, respectively. I transformed the individual biomass to metabolic 

biomass by raising mean body mass to the power 0.75 (Owen-Smith 1988). To obtain the 

herd metabolic biomass, I multiplied the individual metabolic mass by mean herd sizes, 

which were 20, 7 and 200 individuals for sable, zebra and buffalo, respectively. Area 

increments were estimated as the difference between the areas covered by successive 
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10% kernel isopleths. Metabolic use intensity was estimated by dividing 10% of the 

metabolic biomass by the home range increment between successive 10% kernel 

isopleths. The metabolic use intensity was plotted against each increment in home range 

size, such that high metabolic use intensity indicate high number of grazing days in small 

areas, which reflects precision in foraging. 

As a further indication of precision in space use, I calculated the number and size 

of discrete patches contributing to 50% kernel contour, such that smaller and more 

numerous distinct patches indicate precision at locating and exploiting patches with the 

required resources for the herd, whereas a small number of large patches reveal even use 

of space for foraging. I overlaid the monthly 50% core range with the shapefile of the 

study area using ET Geowizards in ArcGIS 9.1. This allowed me to count and estimate 

the size of individual patches contributing to the core range. Each discrete patch used by 

each collared herd was considered as an independent observation for statistical analysis. 

Data for collared herds of the three herbivore species revealed a low number of distinct 

patches used for foraging during the late dry season period (≤ 3 patches). Therefore, I 

restricted the statistical comparison of the size of patches contributing to core range to the 

wet season period (January – April). Buffalo used 2-3 large patches as core range during 

both the wet and the dry season, a sample which is too small for statistical comparisons. 

Therefore, I excluded buffalo in the statistical testing of differences in the size of used 

patches. I performed the Kruskal-Wallis test to compare the median size of patches used 

by sable and zebra.  

 

Results 

Comparative seasonal range extent among species 

 
The annual home ranges of sable and zebra were larger than the expected from the 

allometric scaling of home range size with body mass (1.07M
0.83) and herd size (15 km2 

for sable and 7.0 km2 for zebra), whereas buffalo annual range extent was similar to the 

range extent expected from empirical patterns based on allometry (302 km2) (Table 1). 

During the late wet season period of food abundance (January – April 2007), both the 

total and core ranges used by the sable herd were about half of the ranges used by two out 



 122 

of three zebra herds that provided data during that period and about 65% of the total and 

core range of the third zebra herd (Table 1). The total and core ranges of the sable herd 

were about 8% of buffalo total and core ranges, respectively, which is higher than 5% 

predicted from empirical patterns based on allometric scaling considering body mass and 

group size. The total and core ranges of zebra herds during the late wet season 

corresponded to approximately 12 – 20% of buffalo ranges, which is also above the 2% 

expected from allometry (Table 1). During the early dry season (May – July 2007) and 

the late dry season period (August – September 2007) of the more severe year, the sable 

herd moved over a wider total and core ranges than did zebra herds AM141, AM142 and 

AM280. For example, the total and core ranges of the sable herd more than doubled those 

of zebra AM141 and AM280 during the late dry season. Sable used smaller total and core 

ranges than zebra AM147 and AM277 during the early and late dry season of 2007, 

respectively (Table 1). 

On a monthly basis, sable core range (Figure 2) and total range (Figure 3) 

remained smaller than the home ranges of all zebra herds during the late wet season 

months from January to April 2007. During the early wet season months of November 

and December 2006 and early dry season months from May to July 2007, sable used 

smaller home ranges than zebra AM142 and AM147 but larger home ranges than zebra 

AM141, whereas during the late dry season months from August to October 2006 and 

August to September 2007, the monthly range used by the sable herd was larger than the 

range used by zebra herds, except zebra AM147.  

Sable and buffalo herds increased the extent of the total and core ranges from the 

wet to the late dry season, whereas zebra herds AM141 and AM142 reduced range sizes 

(Table 1). However, the magnitude of the dry-wet-dry season change in home range 

extent was greater for the sable herd than for buffalo and zebra herds. For instance, the 

sable herd increased home range size to more than double from the late wet season to the 

late dry season of 2007, buffalo increased range by about 20%, zebra AM141 reduced 

home range to almost half and zebra AM142 reduced range size by about 17% during the 

same period. Zebra AM147 expanded the wet season range by about three times during 

the early dry season period (Table 1). 
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Although both sable and buffalo herds moved more widely during the late dry 

season than during the wet season period, distinctions in the seasonal spatial behavior 

were observed between the two species. The sable herd expanded the wet season range 

during the early dry season and used a separate late dry season range, whereas the buffalo 

herd used separate wet and early dry season ranges, but expanded the early dry season 

range towards the end of the dry season. Contrary to sable and buffalo that revealed 

seasonal range shifts, the zebra herds used the same range year-round (Figure 1a,b,c,d,e). 

 

Patchiness of home range use 

 
The sable herd used 9 distinct patches and the zebra herds used 6-8 patches as part 

of the core range during the wet season. During the late dry season sable used 1-2 patches 

and zebra used 1-3 patches in the core area (Figure 1a,b,c,d,e). The median patch size 

contributing to sable core range during the wet season was smaller (0.08 km2, N=9), but 

not statistically different from the median patch size contributing to the core range of 

zebra AM141 (0.15 km2, N=8) and zebra AM142 (0.51 km2, N=8) (Kruskal-Wallis test 

statistic, H =3.5, df=2, p=0.17). For both species the patches used as core range were 

smaller but more numerous during the late wet season than during the late dry season. 

Patches contributing to sable late dry season core range were larger (3.3 km2) than the 

patches used by zebra AM141 (1.45 km2), but of similar size to the mean patch size 

contributing to the core range of zebra AM142 (2.9 km2). There was no influence of the 

seasonal fluctuations in food availability in the patchiness of buffalo range, with the 

number of patches contributing to buffalo core range varying between one and three 

during both the wet and dry season (Figure 1a,b,c,d,e). 

 

Concentration of use within the home range 

 
During the late wet season of 2007 and during the early dry season of the less 

severe 2006 the area covered by each kernel probability contour was smaller for sable 

than for zebra and buffalo. This resulted in a steeper curve of the relationship between 

range extent and kernel probability isopleths (Figure 4). The smaller increments in range 
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size for successive kernel increments for sable than for zebra and buffalo show 

concentrated use of space by sable and that forage resources from smaller areas provided 

the necessary energy for the sable herd, as revealed by the higher metabolic use intensity 

of space by sable than by buffalo and zebra (Figure 5). This also shows that the sable 

herd spent more days grazing in smaller areas than the zebra and buffalo herds. The lower 

metabolic use intensity for buffalo and zebra indicates that the energy flow from forage to 

buffalo and zebra herd biomass was lower, which suggests that buffalo and zebra 

tolerated forage of low quality; hence the herds required forage from larger areas to 

satisfy their energy needs (Figure 5).  

During the mild early dry season of 2007, the metabolic use intensity was similar 

between herds of different grazers. However, during the more severe late dry season of 

2007, the area covered by each kernel probability contour was larger for the sable herd 

than for the zebra herds. This resulted in a less steep curve of the relationship between 

kernel probability contour and range extent for sable than for most zebra herds (Figure 4). 

Larger area increments by sable show that during the late dry season the available forage 

provided little energy to sable, therefore the herd needed to increase the area used for 

foraging to satisfy energy requirements. Buffalo and zebra herd AM141 showed higher 

concentration of space use than the sable herd during this time of the year as indicated by 

the more intense metabolic use of space. However, during the late dry season of 2006, 

although sable used a larger total home range than zebra AM141, within the core range 

the energy flow from the available forage to the sable herd was higher than to the zebra 

herd (Figure 5). The metabolic use intensity by the buffalo herd was higher than by the 

zebra herds during all periods defined for data analysis, but higher than by sable only 

during the dry season of 2007. 
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Discussion 

 
This paper addressed the relationship between patterns of species abundance and 

the patterns of home range use between ecologically similar species that attain different 

regional densities, within the large grazer assemblage. The overall prediction was that 

sable, representing the low density species would be more precise in using intensively 

smaller patches for foraging than the high density species buffalo and zebra.  

Using the extent of the core range as the indicator of precision of foraging, the 

findings of this study suggest that the sable herd used smaller core range than the zebra 

herds during the late wet season, which is a period of forage abundance. The sable herd 

satisfied their metabolic requirements in a smaller proportion of the landscape than the 

area supporting each zebra herd. However, towards the end of the dry season, a period 

when food was in short supply, the sable herd spread its use of space over a wider core 

and total range than the zebra herds, indicating a progressively less precise foraging by 

sable with the advance of the dry season.  

The second indicator of precision in foraging was the number and size of distinct 

patches contributing to the core range. This measure revealed a similar number of 

discrete patches for sable and the zebra herds. However, owing to smaller range size used 

by sable, the patches were also smaller for sable than for zebra during periods of resource 

abundance. Therefore, the patterns of patchiness in home range use revealed by the herds 

of these species do not necessarily suggest differences in precision. However, considering 

that zebra occur in smaller group sizes and hence are of lower herd biomass than the 

sable herd, this result might indicate that the sable herd was more precise at exploiting 

resources occurring in smaller patches.  

Buffalo covered a much larger core and total home range than both zebra and 

sable. However, the comparison of range area among species is confounded by 

differences in body size and herd size, such that buffalo was expected to use a larger 

home range than zebra and sable because home range size scales allometrically with body 

size and also with herd size (McNab 1963; Owen-Smith 1988). Therefore, large and 

gregarious species like buffalo tend to use evenly large areas for foraging due to the 

combined effect of higher absolute intake requirements for large animals and the sharing 



 126 

of space with companions (Owen-Smith 1988). Buffalo used larger and less numerous 

patches than sable and zebra, suggesting that buffalo were more even in patch use than 

sable and zebra.  

There is limited research literature relating patterns of home range use to patterns 

of species abundance and niche relations within species assemblages. This prevents 

comparison between this and previous studies. In this study, I related home range use 

patterns to resource availability by delineating the temporal scales for data analysis on the 

basis of rainfall, the primary driver of primary productivity (Walker 1993) and on animal 

movements and shifts in home range location, which reveal changes in forage conditions 

over the seasonal cycle (Owen-Smith and Cain 2007). Differences in the methodological 

approach between this study and previous research on home range use also prevent direct 

comparison of results. However, over the annual cycle the sable herd used a larger total 

home range (39.1 km2) than previously documented elsewhere (10-24 km2 in the Shimba 

Hills, Sekulic 1981; 27.3 km2 in the Pilannesberg National Park, Magome 1991; 19.1 km2 

in Kgaswane Mountain Reserve, Parrini 2006), but about 60% of the total range and 45% 

of the core range of a similarly sized sable herd (AM1) in the central KNP also estimated 

using kernel methods (Owen-Smith and Cain 2007). The annual buffalo home range from 

this study (298 km2 for 200 individuals) was similar to the estimations by Ryan et al. 

(2006) in the Klaserie Private Nature Reserve, South Africa (240 km2 for 224 

individuals), to estimations by Bowers et al. (2007) in the granite landscape of central 

KNP (292 km2 for 244 individuals), but larger than the home range in the basalt 

landscape of central KNP (152 km2 for 643 animals, Bowers et al. 2007) and than the 

year-round buffalo home range in the Sabi Sand Nature Reserve (120 km2 for 248 

individuals, Funston et al.1994). My findings suggest smaller home ranges (32-51 km2) 

for the zebra herds than previous studies conducted in northern KNP, reporting a mean 

annual home range size of about 130 km2 (Smuts 1975). However, the merit of this 

comparison is constrained by differences in methods used because Smuts (1975) used 

Minimum Convex Polygon (MCP), which tends to produce larger home ranges than the 

kernel probability estimates, by simply joining the outer herd locations (Kernohan et al., 

2001).  
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Following the resource availability hypotheses (Gaston and Kunin 1997; Gregory 

and Gaston 2000), low density species depend on resources that occur in restricted areas. 

In agreement with this theory and confirming my expectations, the sable herd was more 

precise in using smaller home ranges and smaller patches of resources during the wet 

season than the herds of high density grazers. However, due to seasonal variations in 

resource availability, this pattern was not consistently observed throughout the year. 

According to Harestad and Bunnell (1979), animals use smaller home ranges when 

resources are abundant and larger home ranges when the density of resources is low. 

Therefore, home ranges should be large enough to contain the resources required by the 

animals (Harestad and Bunnell 1979; McLoughlin and Ferguson 2000), but small enough 

to allow familiarity with the area and reduction of travel and predation costs associated 

with movements over a large and non-familiar area (McLoughlin and Ferguson 2000; 

Borger et al. 2008). According to Kjellander et al. (2004), resource attrition results in 

range expansion to satisfy resource requirements of the individuals in the herd. When 

resources were plentifully available, such as during the late wet season, sable restricted 

their movements to a small area of concentrated use, suggesting that the sable herd 

obtained the required resources in a more restricted area than the zebra and buffalo herds. 

However, during the late dry season, the sable herd became less precise in home range 

use than zebra, as indicated by the spread of use over a larger area and lower metabolic 

use intensity than the zebra herds. This switch in precision from higher to lower precision 

in home range use by sable than by zebra suggests that resource limitations became more 

severe for sable than for zebra as the dry season progressed. From this differential impact 

of shrinking resource conditions on the spatial behavioral response of sable and zebra, I 

suggest that specializations on resources that became rarer and more discretely 

distributed in the landscape (Chapter 1), prompted sable to move widely in search for 

these specific resources, whereas the broad tolerance to food resources allowed zebra to 

consume the readily available food resources during the late dry season, as also 

previously documented by Bell (1970). This shows that differences in the breadth of food 

niche influence distinctions in patterns of space use among large grazers. 

The higher metabolic use intensity of space shown by sable during the wet season 

indicates higher local flow of energy from forage to sable than to zebra and buffalo 
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within the patches exploited, which means that sable were more efficient in selectively 

feeding on plant parts with high concentration of energy. On the other hand, generalist 

grazers obtain diets of relatively high fibre and low energy content than specialist grazers 

prompting herds of these species to move over wider areas to satisfy their energy 

requirements. However, during the late dry season, sable specialization on progressively 

sparser energy-rich plant parts such as green leaves, resulted in less concentrated use of 

space as sable needed to move widely to find suitable patches, whereas generalists 

feeders able to digest the poor quality brown grass leaves and stems, obtained the energy 

from the readily available forage and showed more concentrated use of space than the 

specialist sable. Results on the intensity of metabolic use of space might have been 

affected by overlaps between home ranges of zebra and buffalo herds or by short term 

congregations between herds of these species.  

The home range extent of sable and buffalo increased with the decline in the 

availability of food from the wet to the end of the dry season. Increasing home range size 

as a response to increasing sparseness in the distribution of food resources has also been 

reported for sable (Parrini 2006; Owen-Smith and Cain 2007), buffalo (Funston et 

al.1994; Ryan et al. 2006) and white rhinoceros (Ceratotherium simum, Owen-Smith 

1988). However, although the sable and buffalo herds used larger ranges during the dry 

season than during the wet season, the extent of the seasonal changes in range extent was 

greater for sable than for buffalo. This means that the energy flow from the forage 

resources prevailing in the core area of sable during the late dry season was lower than 

the energy flowing from forage to buffalo. Conversely, most zebra herds contracted the 

wet season range during the late dry season. If during periods of food limitations the 

energy gains obtained from increasing home range in search for food are less than the 

costs of range expansion, home range size may decrease with decreases in food 

availability. Contraction of range size with the advance of periods of limited resource 

supply has also been documented for kudu (Tragelaphus strepsiceros, Owen-Smith 1979) 

and for roe deer (Capreolus capreolus; Tufto et al. 1996; Said et al. 2005; Borger et al. 

2006).  

Sable use of space was concentrated in smaller distinct patches than zebra and 

buffalo core ranges during the late wet season. Generally, during the wet season forage is 
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abundant and of high quality. Thus, the distribution of adequate food for grazers is 

continuous, which should result in a continuum use of space by grazing herbivores 

(Johnson et al. 2002). Results from this study revealed continuity in the use of space for 

foraging by buffalo but not by sable and zebra. During the dry season localized resource 

depletion due to grazing make the environment more heterogeneous in terms of the 

distribution of food resources. Therefore, during this limiting period foraging activity 

might become restricted to key resource areas (Scoones 1995; Knoop and Owen-Smith 

2006) that were less exploited when food was abundant and widely available. 

Alternatively, foraging animals might move more widely procuring for sparser resources. 

I observed that the sable herd used separate wet and the late dry season ranges, and that 

during the wet season sable used more numerous and smaller patches than during the late 

dry season when the sable herd foraged on fewer but larger patches not used during the 

preceding period of food abundance. Diet assessments revealed that sable were more 

selective for green grass leaves than zebra and buffalo (Chapter 1), thus wider 

movements by sable during the late dry season might be associated with increasing 

sparseness of these dietary components and to a lack of key resource areas. On the other 

hand, the zebra herds did not show separation between the wet and the late dry season 

range, suggesting that resource levels for the more generalist consumer zebra remained 

satisfactory at the end of the dry season.  

Although depletion of preferred food might have contributed to range shift by the 

sable herd, water restrictions appeared to be the primary factor that determined the 

location of the late dry season sable range, which was towards the south-east of the study 

area, about 7 km to the existing water source at that time of the year. The influence of 

water source on the location of the late dry season buffalo and zebra range was more 

evident than for sable, with both buffalo and zebra herds establishing home ranges closer 

to water than the sable herd. Therefore, for water dependent species in environments 

where water is a limiting resource, the use of space by foraging animals is also influenced 

by water needs, such that range extent depends by both the availability and distribution of 

food and water (McLoughlin and Ferguson 2000), particularly during the late dry season 

when water distribution is most limiting than forage.  
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The two sable herds that existed in the study area from 2001 to 2003 (Henley 

2005) joined to form one sable herd in the study area; hence there could be no 

competition for space between sable herds. This means more available choices of the 

landscape region for home range location, expansion and/or seasonal shifts by the sable 

herd, because home ranges of different sable herds rarely overlap (Sekulic 1981), 

whereas a high number of zebra herds resulted in overlapping seasonal ranges.  

The seasonal patterns of space use for foraging presented in this paper reveal that 

the low density sable met their resource requirements in restricted areas of the landscape 

during periods of resource abundance. The resources required by low density species 

became of low local abundance and more dispersed towards the end of the critical dry 

season. On the other hand, the populations of high density, zebra and buffalo, appeared to 

be supported by readily available forage resources. 
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Table 1. Adaptive kernel total (95%) and core (50%) home range estimates (km2) for the sable herd, different buffalo and zebra herds 

during different seasons. 

    Sable AM143     Buffalo AM152    

 Annual EDS 06 LDS 06 LWS 07 EDS 07 LDS 07 Annual EDS 06 LDS 06 LWS 07 EDS 07 LDS 07 

95% kernel 39.1 14.3 38.3 15.2 28.0 40.0 298.0 173.6 298.8 185.2 189.7 219.7 

50% kernel 6.0 1.96 4.7 2.4 4.7 5.4 65.5 34.8 60.9 29.2 36.5 30.2 

Proportion of 

core range 

0.15 0.14 0.12 0.16 0.17 0.14 0.21 0.20 0.20 0.16 0.19 0.14 

 

    Zebra AM141     Zebra AM142   

 Annual EDS 06 LDS 06 LWS 07 EDS 07 LDS 07 Annual EDS06 LWS 07 EDS 07 LDS 07 

95% kernel 32.1 26.9 18.4 23.2 18.6 13.3 74.4 31.5 41.3 33.1 34.3 

50% kernel 4.5 3.1 3.2 3.6 3.1 2.6 11.2 5.9 5.4 4.2 5.8 

Proportion of 

core range 

0.14 0.12 0.17 0.16 0.17 0.20 0.15 0.19 0.13 0.13 0.17 

 

   Zebra AM147  Buffalo AM150  Buffalo AM278 Zebra AM277 Zebra AM280 

 Annual EDS 06 LWS 07 EDS 07 EDS 06 LWS 07 LDS 07 LDS 07 LDS 07 

95% kernel 51.4 49.8 32.8 95.3 336.3 125.8 137.0 122.8 15.1 

50% kernel 7.8 7.0 3.6 15.2 82.2 22.4 21.3 17.2 2.4 

Prop. of core range 0.15 0.14 0.11 0.16 0.24 0.18 0.16 0.14 0.16 

EDS 06 – Early dry season (June – August 2006); LDS 06 – late dry season (5th October – 8th November 2006); LWS 07 – late wet 

season (January – April 2007); EDS 07 – early dry season (May – July 2007); LDS 07 – late dry season 2007 (19th August – 

September 2007) 
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SABLE AM143 

Early dry season 2006                                       Late dry season 2006   

(hlscv=0.08, N=178 locations)                            (hlscv=0.25, N=57 locations)           

 

  Late wet season 2007                                            Early dry season 2007 

 (hlscv=0.08, N=220 locations)                                 (hlscv=0.2, N=164 locations) 

                 

Late dry season 2007                  

(hlscv=0.19, N=62 locations)      
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Figure 1a. Distribution of the intensity of space use for foraging by the sable antelope 

herd AM143 during different seasons. Contours indicate adaptive kernel probability 

density estimates: 25% (dark full line), 50% (dark dashed line), 75% (narrow dashed line) 

and 95% (narrow full line). 
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BUFFALO AM152 

 
Early dry season 2006                                           Late dry season 2006              

(hlscv=0.12, N=174 locations)                                (hlscv=0.25, N=69 locations) 

 

Late wet season 2007                                              Early dry season 2007 

(hlscv=0.2, N=200 locations)                                    (hlscv=0.19, N=180 locations) 
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Late dry season 2007 

(hlscv=0.26, N=82 locations) 

 

Figure 1b. Distribution of the intensity of space use for foraging by the buffalo herd 

AM152 during different seasons. Contours indicate adaptive kernel probability density 

estimates: 25% (dark full line), 50% (dark dashed line), 75% (narrow dashed line) and 

95% (narrow full line). 
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ZEBRA AM141 

Early dry season 2006                               Late dry season 2006 

(hlscv=0.11, N=179 locations)                       (hlscv=0.48, N=66 locations) 

 

Late wet season 2007                                      Early dry season 2007 

(hlscv=0.08, N=203 locations)                          (hlscv=0.12, N=164 locations) 
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Late dry season of 2007 

(hlscv=0.26, N=63 locations) 

 

Figure 1c. Distribution of the intensity of space use for foraging by the zebra herd 

AM141 during different seasons. Contours indicate adaptive kernel probability density 

estimates: 25% (dark full line), 50% (dark dashed line), 75% (narrow dashed line) and 

95% (narrow full line). 
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ZEBRA AM142 

Early dry season 2006                                         Late wet season 2007 

(hlscv=0.11, N=178 locations)                              (hlscv=0.1, N=211 locations) 

 

Early dry season 2007                                           Late dry season 2007 

(hlscv=0.12, N=180 locations)                                 (hlscv=0.29, N=82 locations) 

 

Figure 1d. Distribution of the intensity of space use for foraging by the zebra herd 

AM142 during different seasons. Contours indicate adaptive kernel probability density 

estimates: 25% (dark full line), 50% (dark dashed line), 75% (narrow dashed line) and 

95% (narrow full line). 
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ZEBRA AM 147 

Early dry season 2006                                     Late wet season 2007 

(hlscv=0.17, N=180 locations)                           (hlscv=0.24, N=131 locations) 

 

Early dry season 2007 

(hlscv=0.24, N=131 locations) 

 

Figure 1e. Distribution of the intensity of space use for foraging by the zebra herd 

AM147 during the wet season and early dry season. Contours indicate adaptive kernel 

probability density estimates: 25% (dark full line), 50% (dark dashed line), 75% (narrow 

dashed line) and 95% (narrow full line).  
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Figure 2. Monthly variations in the extent of the core range for the sable, buffalo and 

zebra herds. 
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Figure 3. Monthly variations in extent of the total home range of sable, buffalo and zebra 

herds. 
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Early dry season: June - August 2006
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Late dry season: 5 October - 8 November 2006
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Late wet season: January - April 2007
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Early dry season: May July 2007

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Home range area (km
2
)

%
 k

e
rn

e
l Buffalo152

Zebra147

Zebra142

Sable143

Zebra141

 

 



 147 

Late dry season: 19August - September2007

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Home range area (km
2
)

%
 k

e
rn

e
l

Buffalo152

Zebra277

Zebra142

Sable143

Zebra141

Zebra280

Buffalo278

 

Figure 4. Comparative precision of foraging among herds of the three herbivore species during different periods of the year. 
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Early dry season: June - August 2006
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Late dry season: 5 Oct - 8Nov 2006
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Late wet season: January - April 2007
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Late dry season: 19 August - September 2007
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Figure 5. Metabolic use intensity within areas associated with each 10% increment in probability of use. 
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CHAPTER FOUR 

 

Competitive relationships and the decline of a low density grazer in the Kruger 

National Park 

 

Abstract 

 
The aim of this study was to establish whether competitive interactions in the use of 

space between sable and ecologically similar but more abundant grazers might have 

contributed to the sable decline in the Kruger National Park. GPS-GSM collars were 

fitted on females from sable, buffalo and zebra herds occupying the same region during 

the same time. I amalgamated herd location data from collars placed on different herds to 

estimate the distribution range of the population of each species during distinct periods of 

food and water availability. Distribution ranges were computed using kernel methods and 

proportional area overlap between ranges was estimated. Spatial displacement was 

assessed as a shift in the location of sable core range following an influx of buffalo into 

the core range. Grazing facilitation was assessed as the grazing by sable on areas grazed 

by buffalo 15 and 30 days before. Movement responses of sable to buffalo or zebra 

proximity were assessed by comparing the diel displacement of sable following close 

encounters (<1 km) with buffalo or zebra with the median sable diel displacement for 

each month. During the wet season of food abundance the total sable range was almost 

completely included within buffalo range, but the core ranges were largely distinct and 

during the dry season the total and core range of both grazers were completely separated. 

Range overlap between sable and zebra was partial during both seasons. Sable moved 

away from areas that were being heavily grazed by buffalo and did not return to graze on 

these areas within 15 to 30 days, which shows that buffalo created no grazing facilitation 

of sable. Sable were frequently more than 1 km from buffalo and zebra, but appeared not 

to move away when buffalo and zebra were closer. This study showed that buffalo 

potentially limited the use of space and resources therein by sable and that when water 

and food resources were limiting during the dry season sable and buffalo occupied 

distinct section of the landscape.  
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Introduction 

 
While there is detailed theory about the genetic, demographic and environmental 

factors likely to result in the extinction of small populations, there is lack of 

generalizations about the causes of decline of populations (Caughley 1994). The 

challenge is to distinguish climatic influences affecting habitat suitability from biotic 

interactions restricting populations. More specifically, resource limitations due to 

competition might contribute to the decline in the abundance of a species. Mac Nally 

(1983) and de Boer and Prins (1990) stated that for competition to occur there must be a 

combination of overlap in resource use and limited resource supply.  

Potential competitors can coexist if resources supporting the populations of these 

species vary spatially and temporally (Atkinson and Shorrocks 1981; Hanski 1981; 

Hanski 1983; Wang et al. 2002) because environmental fluctuations and disturbance 

create spatial and temporal niche opportunities (Chesson and Huntly 1997). Aggregation 

by superior competitors on discrete patches of resources enhances coexistence between 

species with different competitive abilities (Atkinson and Shorrocks 1981; Inouye 1999), 

because it leaves out unoccupied patches that are exploited by inferior competitors as 

competition refuges (Inouye 1999). Hanski (1981) suggested that inferior competitors 

survive if across the landscape there are areas of concentrated use and areas of infrequent 

use by superior competitors. In addition, change in resource conditions over time and 

space alters the competitive advantage among species (Atkinson and Shorrocks 1981), 

such that no species is consistently a superior competitor across time and space.  

Gaston and Kunin (1997) argued that low density species are fugitive species with 

lower competitive abilities than abundant species. Hanski (1983) and Wang et al. (2002) 

added that competitively superior locally abundant species can exclude locally rare 

species from patches of resources. Therefore, when low density and high density species 

overlap in their utilization of space, resource gains by low density species could be 

reduced due to competitive exploitation and exclusion by high density species. 

Rosenzweig and Lomolino (1997) proposed that competitive inferiority is a potential 

cause of species rarity. Accordingly, low density species should avoid sharing space with 

trophically similar much more abundant and competitively superior species, particularly 

during seasons of limited food availability. 
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Smaller herbivores are expected to be superior competitors than larger herbivores 

on high quality but sparse resources (Prins and Olff 1998; Owen-Smith 2002), but should 

be out-competed by larger herbivores when food is abundant but of poor quality (Owen-

Smith 2002). The potential for competition among large mammalian grazers is greatest 

during the dry season, when food quantity and quality decline (Owen-Smith 1989; Prins 

2000). It could also be reduced if potentially competing species rely on different 

resources during this time (Jarman 1971; Holbrook and Schmit 1989; Owen-Smith 1989).  

Sinclair (1985) reported that along with interspecific competition, predation 

contributed to the spatial separation between wildebeest (Connochates taurinus) and 

plains zebra (Equus burchelli) in the Serengeti-Mara ecosystem. According to Hanski 

(1981) and Sinclair (1985), predators congregate in areas of the landscape where prey 

abundance is highest. James et al. (2004) reported that spatial separation of caribou 

(Rangifer tarandus caribou) from an alternative prey for wolves (Canis lupus), the moose 

(Alces alces), reduced predation pressure on caribou because elevated moose density 

caused a numerical response in wolves, which would increase the incidental predation on 

caribou and contribute to its decline.   

Within the Kruger National Park (KNP) a progressive decline of low density 

grazers such as sable antelope (Hippotragus niger), roan antelope (Hippotragus 

equinnus) and tsessebe (Damaliscus lunatus) has occurred since 1987 (Grant and van der 

Walt 2000; Owen-Smith and Ogutu 2003). The decline of roan was preceded by an influx 

of zebra into the roan range in the northern basalt plains of the KNP following the 1982/3 

El Niño-related drought, raising competition for grazing as a potential cause of the roan 

decline. However, Harrington et al. (1999) identified increased adult mortality due to 

predation by lion (Panthera leo) as the most likely cause of the decline of roan. Apparent 

competition (Holt 1977) mediated by an increase in the abundance of principal prey 

species for lion was implicated as prime cause of population decline by other ungulate 

populations including sable (Owen-Smith and Mills 2006; Owen-Smith and Mills 2008). 

Sable, buffalo and zebra are all medium-tall grass grazers (Skinner and Chimimba 

2005), raising the potential for exploitative competition. Sable and buffalo are both 

ruminants, thus the outcome of exploitative competition between these species should 

depend on population density (Holbrook 1973; Hanski 1983; Gaston and Kunin 1997) 
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and body mass ratio (Prins and Olff 1998). However, larger grazers such as buffalo (520 

kg, Pienaar 1969) might provide grazing facilitation to smaller grazers like sable (220 kg, 

Wilson 1968 cited by Owen-Smith 1988), through a grazing succession. The larger 

grazer, tolerating poorer quality food could graze the tall and fibrous grass facilitating 

access to short and tender grass for grazing by the smaller grazer requiring higher 

concentration of protein and energy in the forage (Vesey-FitzGerald 1960; Bell 1970). 

Zebra are non-ruminants and hence should theoretically be out-competed by ruminants, 

which are more efficient in using sparse food (Illius and Gordon 1992), but high local 

densities of non-ruminants could potentially exclude low density ruminants from specific 

habitats. In addition to similarity in resource requirements, sable, zebra and buffalo share 

a common predator, the lion. Therefore, in areas of high abundance of buffalo and zebra, 

apparent competition (Holt 1977; Holt et al. 1994) caused by a numerical response of 

lions to high availability of principal prey species as well as competition for food, could 

jointly contribute to the decline of sable. 

To establish whether competitive interactions between sable and buffalo or zebra 

over long time scales might have contributed to sable decline, I investigated seasonal, 

monthly and daily patterns of species interactions in the use of space. I hypothesized that: 

1. Sable, being a low density and declining species, should concentrate use of space 

on the sections of the landscape infrequently used by buffalo and zebra to reduce 

competition for resources and/or the predation risk associated with high 

concentration of buffalo and zebra 

2. Sable should exhibit short term avoidance by moving away from buffalo and 

zebra proximity to reduce predation risk 

3. There should be grazing succession, whereby the smaller grazer sable will benefit 

by grazing in areas previously grazed by buffalo  
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Methods 

Study area 

 
I conducted this study to the south of Punda Maria Camp (22o68’S, 31o018’E) in 

northern Kruger National Park (KNP), South Africa, within an area of about 600 km2. 

This area was selected for the study because the decline of sable was more severe in 

Punda Maria than further south in the park (Henley 2005). During the 2005-2006 rainfall 

year the study area received higher rainfall (743 mm) than the long term mean rainfall of 

600 mm, but 2006-2007 was a drier rainfall year (419 mm). The wet season spans 

normally from October to March and more than 80% of the annual rainfall falls during 

this period, whereas the dry season spans from April to September, generally with little or 

with no rainfall (see Chapter 1 for details). 

The vegetation is mainly characterized by mixed Combretum spp woodland on 

sandstone and granite substrates and Colophospermum mopane woodland or shrubland 

on basalt of the Soutpansberg group and Ecca shale (Gertenbach 1983; Venter 1990). 

Drinking water for animals was abundant and widely distributed in the study area during 

the wet season and early dry season in the form of streams and many ephemeral pans. 

However, between August 2006 and the first wet season rains in early November 2006 

and between May 2007 and the first wet season rains at the end of September 2007, 

drinking water was restricted to pools along the Mphongolo River in the south and to a 

gravel pit in the south-west of the study area.  

 

Study design and data collection 

 
I conducted this study between June 2006 and September 2007, a period that 

covered two dry seasons and one wet season. Three adult females from two groups of 

sable, four adult females from four herds of zebra and two females from one buffalo herd 

located south of Punda Maria Camp were fitted with GPS-GSM collars in May 2006. In 

July 2006, the two sable herds joined to form one single herd, whereas the buffalo herd 

split to form two herds. In June 2007 additional collars were fitted, being one on sable, 

two on zebra and one on buffalo. Collars were fitted on female sable and buffalo from the 
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same herd that had the collars fitted in May 2006, and on two female zebra from 

additional herds within sable range. Except during the calving period of sable (Estes and 

Estes 1974; Skinner and Chimimba 2005), females remain within the breeding herds. 

Therefore, the movements of the collared females are regarded as representing the 

movements of the herds.  

The single sable herd and the two buffalo herds included in this study represented 

the entire populations of 20 and 400 animals of these species in the study area, 

respectively, whereas 4-6 collared zebra herds included in this study corresponded to 

about 15-20% of the total zebra population of 200-300 animals. The last total area 

Ecological Aerial Survey (EAS) in Punda Maria was conducted in 1993 and indicated 

that there were 19 sable antelope, 140 buffalos and about 570 zebra (KNP census data). 

This indicates that there was an increase in buffalo numbers and a decrease in zebra 

numbers between 1993 and 2006, while the sable population remained stable.  

I scheduled the collars to record the GPS coordinates of the herds routinely every 

six hours, at 2:00, 8:00, 14:00 and 20:00. However, during days of observation of each 

herd I adjusted the schedule of the collar to record the GPS coordinates of the herd 

hourly. I visited the sites used by the herds of each herbivore species during the morning 

(6:00 – 10:00) and late afternoon/early evening (16:00-20:00) foraging period (Chapter 

1). At each site used by each species I recorded the presence or absence of dung of the 

other two species, as an indication of previous use of the site by potential competitors or 

facilitators. Based on feeding observations (Chapter 1), I considered the 8:00 and 20:00 

herd locations as representing the areas used by the herds during the morning and evening 

foraging sessions, respectively. 

 

Data analysis 

 
Estimation of seasonal distribution ranges 

To estimate seasonal utilization distributions of herds making up populations I 

used adaptive kernel density estimates (Worton 1989) using the Animal Movement 

Extension (Hooge and Eichenlaub 1997) in ArcGIS 9.1. (Environmental Systems 
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Research Institute Inc, USA). I selected the smoothing parameter h using least-squares-

cross validation (lscv) (see Chapter 3 for details).  

For the estimation of distribution range of sable, zebra and buffalo populations 

between June 2006 and September 2007, for each species I amalgamated data obtained 

from all the collars that delivered data during the specified period in analysis, except 

during times when collared females of the same species were in the same herd. The two 

buffalo females stayed apart during the duration of this study, except during the first two 

weeks of June and December 2006 when the two herds had joined. All collared zebra 

herds stayed consistently separated. GPS coordinates were projected into WGS 1984 

UTM zone 36S datum before the analysis of distribution ranges. I estimated the total 

range and the core range of the population as the kernel probability isopleths enclosing 

95% and 50% of the locations of herds, respectively (White and Garrott 1990). Areas 

covered by the contours were estimated using Hawth’s Tools in ArcGIS 9.1.  

 

Overlap in the utilization distribution 

Due to the difficulty of measuring the intensity of inter-specific competition in 

observational studies (Putman 1996; Stewart et al. 2002), the extent of spatial overlap in 

habitat occupation has been suggested as a measure of the potential for competition 

(Schoener 1983; Putman 1996; Arlettaz et al. 1997). The proportional overlap between 

distribution ranges of populations and/or home ranges of two individuals is a measure of 

spatial interaction between populations or between animals, respectively (Doncaster 

1990; White and Garrot 1990; Kernohan et al. 2001). Doncaster (1990), Kernohan et al. 

(2001), Millspaugh et al. (2004) and Fieberg and Kochanny (2005), suggested that 

differential use of space within range boundaries should be taken into account in the 

analysis of space use sharing because animals might use largely overlapping ranges but 

the core areas might be distinct. 

To identify distinctions in distribution range over the course of the study period, I 

estimated overlap between monthly sable ranges. Overlapping monthly ranges indicated 

that sable used the same range during that period, whereas non-overlapping monthly 

ranges indicated that sable shifted range between months. In October 2006 and in August 

2007 sable moved into a distinct range during the month. For these cases, data from dates 
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of the month before range shift were analyzed with data of the previous months and data 

from dates after range shift were analyzed with data of the following months. Using this 

procedure, I identified five distinct periods of sable distribution, namely the early dry 

season of 2006 spanning from June to August 2006, the late dry season of 2006 from 5th 

October to 8th November, the late wet season period spanning from January to April 

2007, the early dry season period covering the period from May to July 2007 and the late 

dry season period of 2007 extending from 19th August to 30th September. The indicated 

dates such as 5th October and 8th November 2006 and 19th August 2007 were the dates 

when sable moved from one range to another, separating ranges used by the herd during 

the same month, i.e. during the first week of November 2006 sable used a separate range 

from the range used after the 8th of November. The period between 1st and 18th August 

2007 was excluded from the analysis because during this period the sable herd had 

moved from the range used in July, but the range used during this period was separated 

from the range used from 19th August. Therefore, I considered 1st-18th August as a 

transition period between the early dry season range (May - July) and the late dry season 

(19th August - 30th September). The range used by sable in September 2006 was also a 

transitional range between the early dry season and the late dry season range. Therefore, 

September 2006 was also omitted from the analysis.  

While sable and buffalo data represented the distribution of the total populations 

during the periods in analysis, zebra data represented a sample of the population and 

there was variation in the number of zebra herds that provided data during different 

periods. For instance, data were obtained from four collared zebra herds between June 

and August 2006, from three zebra herds during the periods 5th October - 8th November 

2006 and January - April 2007, from five zebra herds between May and July 2007 and 

from four collared zebra herds between 19th August and 30th September 2007. I estimated 

total ranges and core areas of sable, buffalo and sampled zebra populations and measured 

percentage overlap between the total ranges and between the core areas of these local 

populations during these periods. Core areas represent the areas of the landscape most 

frequently used by the animals within populations. Therefore, overlap on these areas 

could provide an indication of the potential for competition for space and harvestable 

resources therein, whereas distinct core areas might reveal sections of the landscape that 
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most contribute in resources supporting the populations of each species. However, 

competitive exclusion from specific habitats might also result in distinct ranges 

(Rosenzweig 1981), which makes it not clear whether spatial separation between 

potential competitors is caused by competitive exclusion or simply by distinct habitat 

preference, unless a removal experiment is undertaken (Holbrook 1973; Holbrook and 

Schmitt 1989). To obtain a more detailed temporal variation in the partitioning of space 

among species I estimated monthly core ranges of each population and assessed monthly 

proportional core area overlap.  

To measure spatial separation or overlap on total and core ranges I overlaid the 

total range and core ranges of sable with those of buffalo and the sampled zebra 

populations during different periods and during different months using ET Geowizards in 

ArcGIS 9.1. The shared area was defined as the intercept between two ranges. Areas 

covered by the two ranges as well as the extent of the shared range were estimated using 

Hawth’s Tools in ArcGIS 9.1. Following White and Garrot (1990) and Kernohan et al. 

(2001), I measured space use sharing as the percentage overlap between two ranges. This 

was calculated by dividing the extent of the shared range between sable and buffalo or 

between sable and zebra by the extent of sable range, either the total or the core range, 

using the following formula:  

 

HR sable, buffalo= 100
,

X
Asable

buffaloAsable
 

where; 

HRsable, buffalo is the percentage of sable range shared with buffalo; Asable, buffalo is the extent 

of the range shared between sable and buffalo and Asable is the extent of sable range. 

 

Spatial displacement of sable 

I assessed spatial displacement of sable by buffalo or zebra as a shift in the 

location of sable monthly core range following an overlap of sable core range with 

buffalo and zebra monthly core range. To establish that sable core range in a previous 

month was occupied by buffalo or zebra during the present month, I estimated the 

percentage overlap between sable core range the previous month and buffalo or zebra 

core range during the month that followed.  
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Assessing grazing facilitation 

To assess the potential benefit to sable by buffalo grazing the tall, low quality 

grass and opening space for the regrowth of high quality grass (Vesey-FitzGerald 1960; 

Bell 1970), I examined whether sable grazed on areas previously grazed by buffalo. This 

was done by calculating the distances between sable locations during the morning 

foraging spell (8:00) to the locations grazed by buffalo 15 days and 30 days before. I did 

the analysis for these two time scales because 3 weeks is a lag long enough for the grass 

to respond to rainfall (Bell 1970) and hence recover from grazing. Therefore, this 

analysis would reveal whether there is a grazing succession whereby sable graze in areas 

previously grazed by buffalo. This analysis was restricted to the wet season when both 

sable and buffalo used largely overlapping ranges and grazed grass was renewing in 

response to rainfall. I also calculated the proportion of sable, buffalo or zebra feeding 

sites that had been or had not been previously used by the other two species, as indicated 

by the presence or absence of their dung. 

 

Separation distances between grazers 

To establish patterns of separation distances between sable and potential 

competitors as well as between buffalo herds and among zebra herds, I calculated the 

distance between the locations of the sable herd at 8:00 and the locations of each buffalo 

and zebra herds also collected at 8:00 of the same day. The distance between herd 

locations were estimated using Hawth’s Tools in ArcGIS 9.1. To assess the effect of 

seasonal contrasts in rainfall and hence on food and water availability on the spacing 

between herds, I divided the separation distances into the dry season covering the periods 

June - October 2006 and May – September 2007 and the wet season spanning from 

November 2006 to April 2007. I grouped the separation distances between herds in 

distance categories of 1 km and estimated the proportion of simultaneous locations 

between herds that were within each distance category for each season. To compare the 

relative proximity of sable to zebra and to buffalo, I calculated the frequency distribution 

of separation distance during months of high overlap on core ranges between sable and 

buffalo or zebra and computed binomial confidence intervals for the proportion of 

simultaneous herd locations within each category of separation distance.  
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Sable short term movement responses to buffalo and zebra 

To establish sable short term movement responses to buffalo or zebra proximity, I 

restricted the analysis to the buffalo and zebra herds with ranges that overlapped with 

sable range and to the months when such range overlap was observed, because only herds 

with overlapping ranges can get close to each other and cause sable short term movement 

response. The exploratory analysis indicated monthly core range overlap between the 

sable herd and buffalo herds AM150 and AM152 in July 2006, December 2006 and 

March 2007 and between sable and zebra herds AM277 and AM280 in July 2007. In July 

2006, the total home range of the sable herd was nearly enclosed within the total range of 

zebra herd AM142 and these two herds used adjoining core ranges, thus sable could 

potentially get close in proximity to this zebra herd. For these months, I estimated 

separation distances between sable herd locations and buffalo or zebra herd locations 

collected simultaneously at 8:00. I estimated sable diel AM displacement as the distance 

between the 8:00 herd locations of successive days. To establish whether sable move 

away or did not respond to buffalo or zebra proximity, I compared sable diel 

displacement when sable were less than 1 km from buffalo or zebra a day before with the 

median sable diel displacement recorded for the month.  

 

Results 

Seasonal total and core range location and overlap 

 
The sable herd, representing the sable population, concentrated its use of space in 

the north-west of the study area during the early dry season of both 2006 and 2007 and 

during the wet season of 2007, but shifted to the south-east from late August to the end of 

the dry season of both years (Figure 1). The two buffalo herds constituting the buffalo 

population covered a more extensive area than that occupied by sable or collared zebra 

herds (Table 1) but concentrated use of space on the upland regions of the landscape in 

the north of the study area during the wet season and shifted range to concentrate along 

the Mphongolo River from April to the end of the dry season of 2007. However, in 2006 

the buffalo herds only moved from uplands to River banks in August. The sample of six 
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zebra herds concentrated their use of space in the western half of the study area year-

round (Figure 1).  

During the wet season the total range of the sable population was almost 

completely included within buffalo range, but only overlapped partially with the range of 

the zebra herds that were collared. However, only 11% of the small sable core range 

overlapped with the larger buffalo core range (Table 2). The range of the sampled zebra 

population was likewise almost enclosed within the range of buffalo, but only about 8% 

of the core area of the collared zebra herds overlapped with buffalo core range. Thus, 

during the late wet season, despite the generally shared range, the areas most intensively 

used by the herds of the three species were largely distinct. During the early dry season in 

2007 there was no overlap between sable and buffalo core range, but there was an 

increase in overlap between sable range and the range of collared zebra herds (Table 2). 

Towards the end of the dry season in 2007, sable and some collared zebra herds shifted 

range southwards closer to pools along the Mphongolo River. However, despite the 

common dependency on the water from the river, sable dry season core range was about 

6-8 km from the core range of the two buffalo herds, and only a partial overlap in total 

range was observed (Figure 1). Some collared zebra established core ranges close to the 

River and hence overlapped with buffalo, whereas other remained on the upland regions 

of the landscape, drinking water in a drainage line in the proximity of the Punda Maria 

camp. 

 

Monthly core area overlap 

 
The core area of the sable herd overlapped with buffalo core areas used during 

certain early dry season and wet season months. For instance, in July 2006 sable core 

range was completely enclosed within buffalo core range when buffalo were still on 

uplands in the north of the study area, but the proportional overlap on core areas declined 

later, such that herds constituting the populations of the two species used completely 

distinct core ranges after August 2006. Following the early rains in November 2006, 

buffalo shifted range from the river banks used during the late dry season to the uplands, 

increasing the overlap with sable core range during certain wet season months. In 



 162 

December 2006 and March 2007, about 20% and 40% of monthly core ranges of sable 

were also used as core range by the buffalo herds, respectively (Figure 2). When water 

became a limiting resource in the upland regions during the early dry season of 2007, 

buffalo shifted range southwards close to the Mphongolo River, the overlap on sable core 

area declined to zero and remained so during the rest of the dry season (Figure 2). The 

sable herd used a separate core range from the core range of the zebra herds that were 

collared in May 2006. However, when two additional collars were fitted on zebra herds 

found within the sable range, about 60% of the sable core range in July 2007 was part of 

the core range of the sampled zebra herds, particularly of the two zebra herds that were 

collared in June 2007 (Figure 2).  

 

Spatial displacement of sable 

 
The sable herd shifted the location of its monthly core range to a distinct core 

range when the area used as core range the preceding month was occupied by buffalo as 

monthly core area. For instance, in August 2006 when buffalo used as core range about 

65% of the area that had been used by sable as core range in July 2006, the sable 

population moved to a different core range that was about 3.5 km from their core area 

used in July. Shift of sable core range following an influx of buffalo was also observed in 

November 2006 and February 2007. More than 50% of the area used by sable as core 

area in November 2006 and February 2007 was used by buffalo as core area in December 

2006 and March 2007, respectively. In December and March sable moved to core ranges 

that overlapped less than 40% with core ranges used in November and February, 

respectively. I found no evidence of displacement of sable by zebra from the monthly 

core area used.  

 

Grazing facilitation 

 
Only 2% of sable locations during the wet season were close (<1 km) to areas 

grazed by buffalo 15 and 30 days before (Figure 3). About 35% of sable range in January 

2007 had been used as core grazing area by buffalo in December 2006, but the proportion 
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of sable grazing locations <1 km from areas previously grazed by buffalo remained at 

around 2%. The three grazers used feeding areas that were spatially separated. Only 

about 10% of feeding sites used by sable (N=427) during the dry season of 2006 and 

2007 had been previously used by buffalo or zebra. About 5% of feeding sites used by 

buffalo (N=263) and zebra (N=314) had old zebra and buffalo dung, respectively. Less 

than 1% of feeding sites used by each of the three grazers had been recently used by the 

other two grazers, as indicated by the presence of fresh dung (still moist). 

 

Separation distance between grazers 

 
The sable herd was rarely within less than 1 km from a buffalo or collared zebra 

herd both during the wet and dry seasons. Zebra herds were also generally more than 1 

km from each other (Figure 4 and 5). Buffalo herds were more often <1 km to each other 

than to sable or zebra herds. During months of high overlap on core ranges with buffalo, 

the sable herd remained distant from buffalo, with only 5% and 13% of simultaneous 

herd locations within 1 km and 2 km separation distance, respectively. But when 

overlapping core range with zebra, about 15% and 50% of simultaneous locations 

between sable and collared zebra herds were within 1 km and 2 km separation distance, 

respectively. Therefore, sable were more often closer to collared zebra herds than to 

buffalo herds (Figure 6). 

 

Short term movement responses 

 
Sable were generally more than 3 km away from buffalo and more than 1.5 km 

away from zebra, even during months of high overlap on core ranges (Table 3). From 

June 2006 to September 2007, the closest separation distance between sable and buffalo 

was about 330 m. Separation distances shorter than 1 km were only recorded in 10 

simultaneous locations, i.e. 10 days. Of these 10 occasions, in three (30%) sable diel 

displacement a day later was greater than the monthly median sable diel displacement 

(Table 3) but on the remaining seven close encounters, nor sable or buffalo moved away. 

Separation distances of less than 1 km between sable and zebra herds were found in 24 
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simultaneous locations (days) during this study. In three of these occasions, sable and 

zebra were foraging together (separation distance of less than 100 m). During months of 

high overlap on core ranges such as July 2007, sable stayed within 1 km from zebra for 

four consecutive days. In addition to the findings revealed by the GPS collar data, I 

observed sable foraging alongside zebra but did not observe sable and buffalo foraging 

together.  

 

Discussion 

 
Sable range was almost completely encompassed within buffalo range during 

periods of water and food abundance such as the late wet season, but both grazers used 

completely distinct ranges when these resources were most limiting in the late the dry 

season. Although during the late wet season sable and buffalo overlapped in their total 

range, their core ranges were largely distinct. Results also showed that sable shifted the 

location of their monthly core range after a high proportion of this core range overlapped 

with buffalo, which suggests spatial displacement of sable by buffalo. Sable did not graze 

on areas heavily grazed by buffalo 15 to 30 days before, which shows that buffalo created 

no grazing facilitation of sable. Daily simultaneous herd locations showed that herds of 

these grazers remained spatially separated, rarely within 1 km separation distance, even 

collared herds of the same species. This is unusual for zebra because zebra family groups 

have been reported to occasionally aggregate during the dry season to form larger groups 

(Smuts 1975). Sable were most of the times well separated from buffalo and/or zebra 

even during months of high core area overlap, but showed weak evidence of short term 

avoidance of close encounters with buffalo and no avoidance of zebra. 

Previous studies of spatial and temporal interactions among sympatric African 

ungulates at the level of detail covered in this study are not available because the GPS 

tracking technology allowing the collection of simultaneous locations of animals in time 

and space is a new tool in wildlife research in Africa. However, Sinclair (1985) using 

direct observations of grazers in the Serengeti-Mara ecosystem, documented that during 

the dry season zebra avoided close proximity of wildebeest, but during periods of food 

abundance when competition was unlikely, zebra stayed close to wildebeest to reduce 
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predation risk. When both prey species were available on woodlands, lions switched 

predation pressure from zebra to wildebeest. In North America, Johnson et al. (2000) and 

Stewart et al. (2002) using VHF telemetry reported movements by mule deer (Odocoileus 

hemionus) to avoid areas frequently used by elk (Cervus elaphus). They suggested that it 

could be a mechanism to reduce interspecific competition. Stewart et al. (2002) also 

documented shifts in the habitat used by mule deer and elk following the introduction or 

removal of cattle (Bos taurus) in the study area, suggesting that cattle competitively 

displaced mule deer and elk from preferred habitats. Cooper et al. (in press) used GPS 

collars and calculated separation distances between simultaneous herd locations between 

white-tailed deer (Odocoileus virginianus) and cattle and found that white-tailed deer 

moved away from close proximity to cattle and avoided grazing in areas of concentrated 

grazing by cattle. 

Exploitative competition might occur among grazers overlapping in the utilization 

of space during any time of the year, but it is more pronounced during the dry season 

(Owen-Smith 1989). The overall wet season core areas of sable and buffalo were largely 

distinct. The overlap between sable and buffalo core areas during certain wet season 

months and the displacement of sable by buffalo from the monthly core areas indicates 

that distinct habitat preference does not explain spatial separation of the overall wet 

season core range. Sable used monthly core ranges of about 1-6 km2 (average 2.8 km2) 

during the wet season (Figure 2). If a great proportion of this small core range was used 

by buffalo herds as core grazing area during the same month, grass depletion could have 

occurred which might have prompted sable to shift range to areas temporarily not 

exploited by buffalo. Even during the months when sable core range was completely 

within buffalo core range such as July 2006, at small temporal scales like a day sable 

were generally more than 3 km away from buffalo. Close encounters, i.e. separation 

distance less than 1km, occurred only on 3% of all simultaneous observations of collared 

herds and lasted only 1-2 days. Heavy grazing combined with trampling grass by buffalo 

herds could have resulted in reduced forage availability to sable, which might have 

caused departure of sable from areas that were being used by buffalo. However, close 

encounters between sable and buffalo had short duration (1-2 days), which might also 

suggest that in addition to the likely localized resource depletion, other mechanisms 
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might have contributed in explaining the large separation distances. Holt et al. (1994) 

pointed out that over short timescales predator aggregate on patches with abundant prey. 

Owen-Smith and Mills (2008) documented that shifting from principal to alternative prey 

species by lions was the prime cause of decline of some ungulate populations in the KNP. 

James et al. (2004) also reported that spatial separation from abundant prey species for 

wolves, such as the moose, was an antipredator strategy of a low density and declining 

species, the caribou, and reduced their mortality from predation. Accordingly, sable 

might have avoided grazing in areas of concentrated use by buffalo to reduce predation 

risk. However, abundant prey over long time periods result in increased predator 

population (Holt et al. 1994), which has long term negative impact on the populations of 

alternative prey species.  

Sable moved away in response to the influx of buffalo into their monthly core 

range and did not return within 15 to 30 days to graze the grass that regenerated 

following heavy grazing by buffalo. Prins and Olff (1998) suggested that for facilitation 

to occur there must be some “optimal” difference in body mass between grazers; 

otherwise there will be no grazing facilitation. In the Serengeti, Bell (1970) documented a 

grazing succession in order of decreasing body mass along a catena gradient, with zebra 

(219 kg) grazing first the coarse tall grass on the bottomlands and providing grazing 

facilitation to wildebeest (163 kg), which in turn benefited Thomson’s gazelle (Gazella 

thomsoni, 16 kg) that grazed later in the succession. The body mass ratio (Prins and Olff 

1998; Owen-Smith 2002) between the two ruminants where the smaller (Thomson’s 

gazelle) benefited from grazing by the larger (wildebeest) is about 10.2. In Uganda, 

Eltringham (1974) reported facilitation between hippopotamus (Hippopotamus 

amphibius, 2330 kg) and buffalo, body mass ratio of 4.48, but buffalo were out-competed 

at high hippopotamus density. Therefore, the difference in body mass between buffalo 

(520 kg, Pienaar 1969) and sable (220 kg, Wilson 1968 cited by Owen-Smith 1988) in 

the KNP, yielding a body mass ratio of 2.3, although adequate for species co-occurrence 

(Prins and Olff 1998), it is perhaps too small for sable to benefit from buffalo grazing. 

Thus, buffalo had a negative impact on sable by competitively displacing sable from core 

grazing areas and not creating grazing conditions beneficial to sable. 
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Large separation distances between herds, including between herds of the same 

species, indicate an absence of nutrient hotspots in the study area that would attract the 

congregation of animals to graze high quality grass, during both the wet season when 

grass resources renew from grazing in response to rains and during the dry season when 

concentration of animals might occur in bottomlands retaining soil moisture that sustains 

grass regrowth (McNaughton 1985). While during the wet season green grass was widely 

available, there were no areas notably retaining green grass during the dry season. This 

could explain why animals did not congregate during grazing periods, except when grass 

regrowth was available on burnt areas during the early wet season. 

During the early dry season of the wetter 2006 and during the late wet season of 

2007 when water was widely distributed in the landscape, sable total range was enclosed 

within buffalo total range. However, during the early dry season of 2007 when water on 

the uplands became restricted to small pans and streams, buffalo herds shifted range to 

the bottomland regions near large and several pools along the Mphongolo River to satisfy 

their drinking needs, whereas sable and zebra remained in the uplands until late August 

when herds of these species also moved southwards closer to the River. Smaller 

herbivores are expected to be superior competitors than larger herbivores due to their 

ability to survive on sparse food of high quality (Prins and Olff 1998). However, under 

severe dry season conditions that prevailed when I conducted this study most of the 

available food was of low quality in the form of completely brown grass. Therefore, the 

larger grazer, buffalo, tolerating the widely abundant brown grass were likely to out-

compete sable, which were more selective for sparse green leaves (Chapter 1). 

Accordingly, range shifts by buffalo from uplands to bottomlands might have created a 

relief for sable from potential competition with buffalo for the scarce water and for the 

progressively diminishing favoured grass species and green grass.  

During the late dry season sable range was largely separated from the range of 

buffalo and collared zebra herds, though the three grazers used ranges closer to the water 

restricted to pools along the Mphongolo River during this time of the year. Aggregation 

of buffalo and zebra near water in the south-west of the study area left other parts of the 

landscape temporarily unused by these abundant species. This might have created a 

seasonal variation in the spatial predation risk, and sable might have reduced risk of 
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predation by establishing the late dry season core area in areas less used by these staple 

preys for lions. The cost of avoiding concentrations of buffalo and zebra included 

undertaking journeys of more than 7 km to and from drinking water every 2-4 days, 

which reduced foraging time, increased energy expenditures and the risk of encountering 

an ambush predator on the way to and from water.  

 Results also show little overlap between sable and zebra core ranges during all 

seasons. However, this could be because in May 2006 I only sampled 4 zebra herds (15-

20% of the population). When additional collars were fitted on zebra in June 2007, there 

was an increase in proportional core area overlap between sable and zebra in July 2007. I 

found no range shift by sable following high overlap on core range with zebra. This could 

be because zebra occur in small family groups and are widely distributed in the study 

area, which creates no opportunity for the sable herd to shift home range to areas 

temporarily not used by zebra. The collared zebra herds concentrated use of space in the 

south-west of the study area, an area which is out of the current sable distribution range.  

This spatial separation could be explained by distinct habitat preference, because this is 

an open area with about 10% of woody vegetation cover, while sable used more wooded 

habitats (Chapter 2). In addition, the south-west of the study area have a gravel pit which 

is a permanent water source where both buffalo and zebra drunk frequently. Thus, the 

lack of use of this section by sable may also indicate avoidance of the concentrations of 

these species.  

The seasonal, monthly and daily interactions showed that the low density sable 

consistently avoided areas of frequent use by buffalo, which indicates that buffalo had 

negative impacts on the use of space and resources therein by sable as well as by 

potentially increasing predation pressure. This finding supports the theory that low 

density species avoid competition by ecologically similar more abundant species (Gaston 

and Kunin 1997). However, the confirmation of resource competition or apparent 

competition can only be achieved by reducing the density of buffalo and zebra to the 

population densities prior to sable decline and subsequently monitor patterns of space use 

and population dynamics of sable antelope. The closure of artificial boreholes will likely 

contribute to the decline of the local abundance of buffalo and zebra. 
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Table 1. Extent (km2) of total ranges (95%) and core ranges (50%) of sable herd, both buffalo herds and collared zebra herds 

combined during different seasons  

 
   Sable     Zebra     Buffalo   

 EDS 06 LDS 06 LWS 07 EDS 07 LDS 07 EDS 06 LDS 06 LWS 07 EDS 07 LDS 07 EDS 06 LDS 06 LWS 07 EDS 07 LDS 07 

Total range 14.3 38.3 15.2 28.0 40.0 94.5 58.0 58.4 78.5 138.7 269.0 254.0 175.0 235.0 247.3 

Core range 1.96 4.7 2.4 4.7 5.4 14.9 9.4 8.1 12.8 16.2 63.4 48.1 38.3 42.0 45.6 

EDS 06 – Early dry season (June – August 2006) 

LDS 06 – late dry season (5th October – 8th November 2006) 

LWS 07 – late wet season (January – April 2007) 

EDS 07 – early dry season (May – July 2007) 

LDS 07 – late dry season 2007 (19th August – September 2007) 
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Table 2. Proportional (%) overlap of total and core ranges of sable herd with the total and core ranges of buffalo and zebra herds 

   Zebra     Buffalo   

 EDS 06 LDS 06 LWS 07 EDS 07 LDS 07 EDS 06 LDS 06 LWS 07 EDS 07 LDS 07 

Total range 47 6.7 10.9 59.3 54.3 99.8 22.7 85.9 24.3 2.4 

Core range 24 0.0 0.0 17.9 0.0 46 0.0 10.8 0.0 0.0 
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Table 3. Median separation distance (km) between sable, buffalo and collared zebra herds during months of high overlap on core 

ranges 

Month Separation distance (km) from  
sable 

 buffalo                        collared zebra 
July 2006 3.3                                  1.4 
December 2006 3.5                              
March 2007 3.7                              
July 2007                                        2.5 
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Early dry season 2006         Late dry season 2006       Late wet season 2007       Early dry season 2007     Late dry season 2007 

Legend

ZEBRA

50%

95%

SABLE

50%

95%

BUFFALO

50%

95%  

Figure 1. Seasonal total (95%) and core (50%) distribution ranges of the sable herd, both buffalo herds and sampled zebra herds in the 

study area. 
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Figure 2. Changes in proportional overlap between monthly core range of sable and the 

core range of buffalo and collared sample of zebra herds  
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sable vs buffalo 15 days before during the wet season: 

N=246 herd locations
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Figure 3. Frequency distribution of separation distances between sable foraging areas and buffalo foraging areas 15 and 30 days before 

during the wet season (November 2006 – April 2007) 
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sable vs buffalo herds: N=444 herd locations
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sable vs zebra herds: N=922 herd locations
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between 2 buffalo herds: N=183 herd locations
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between various zebra herds: N=1191 herd locations
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Figure 4. Frequency distribution of separation distances between sable and buffalo or collared zebra herds during the dry seasons of 

2006 and 2007 
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sable vs buffalo herds: N=274 herd locations
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sable vs zebra herds: N=457 herd locations
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between 2 buffalo herds: N=123 herd locations
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between various zebra herds: N=411 herd locations
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Figure 5. Frequency distribution of separation distances between sable and buffalo or collared zebra herds during the wet season of 

2006/7 
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Figure 6. Frequency distribution of separation distances during months of overlap on core 

range between sable and collared zebra herds (July 2006 and July 2007) and between 

sable and buffalo (July 2006, December 2006 and March 2007). Vertical lines indicate 

95% binomial confidence intervals. 
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CHAPTER FIVE 

 

Faecal nutritional indicators and the population trend of sable antelope 

 

V.A. Macandza and E. Le Roux 

Abstract 

 
In the Kruger National Park (KNP), sable antelope have failed to recover from their 

drastic decline experienced after 1987. This investigation aimed at establishing whether 

forage quality is limiting the recovery of sable. We collected fresh faecal samples of 

sable from Punda Maria (annual rainfall of 600 mm) and Pretoriuskop (annual rainfall of 

730 mm), and compared with buffalo and zebra, which have maintained high abundance 

at Punda Maria. The samples were collected during the dry season of 2006 and 2007. 

Faecal samples were analyzed for nitrogen, phosphorus, sodium and crude fibre. Faecal 

crude protein and phosphorus levels for sable were similar to buffalo but were higher 

than the recorded for the non-ruminant zebra. Faecal crude protein for sable through the 

dry season months varied around the approximation of minimum faecal concentrations 

for maintenance (7%), and was lower than faecal crude protein recorded for sable 

populations elsewhere. Nevertheless, it was not that different from faecal crude protein 

levels recorded for wildebeest, which are thriving in the KNP. This suggests that 

nutritional limitations might indirectly be restricting sable recovery, through reduction in 

areas occupied by sable that retain high forage quality. 
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Introduction 

 
Populations of large herbivores may be limited by top-down processes such as 

predation as well as by bottom-up processes such as nutrient availability (Sinclair 2002; 

Sinclair and Krebs 2003). While predation by large carnivores such as lion (Panthera leo) 

limits populations by causing mortality of adult individuals (Owen-Smith and Mills 2006, 

2008), nutritional limitations due to poor supply of protein, energy or minerals from the 

forage may restrict recruitment by reducing the birth rates and/or the survival of offspring 

(Gaillard et al. 1998; Mduma et al. 1999). Malnutrition may increase the vulnerability of 

adult individuals to predation because when food is limited in safer habitats herbivores 

might forage in habitats with higher predation risk and be killed by predators before they 

actually die from starvation (Sinclair and Arcese 1995). In addition, malnourished 

animals are weaker and easier to catch by predators than well nourished animals (Owen-

Smith and Ogutu 2003). Sinclair and Arcese (1995) and Mduma et al. (1999) documented 

that in the Serengeti-Mara ecosystem wildebeest (Connochaetes taurinus) dying from 

predation were in better body condition (measured using bone marrow fat) than 

individuals dying from non-predation causes, including starvation. This suggests that if 

predation limits populations, the remaining individuals should not reveal nutritional 

deficiencies, whereas animals remaining from a population that is limited by food 

shortages should reveal malnutrition. 

The quality of the forage is determined by the proportion of cell wall fibre relative 

to cell contents and by the concentrations of protein, soluble carbohydrates and minerals 

in the cell content (Bell 1970; Owen-Smith 1982, 2002). The soluble carbohydrates and 

the digestible fraction of the cell wall determine the potential nutritional yield in the form 

of metabolizable energy to be obtained from the forage, but fibre also reduces the rate of 

the digestion process, which restricts the rate at which energy and nutrients become 

available to the animal, particularly to ruminants (Owen-Smith 2002; Murray and Baird 

2008). Free-ranging herbivores are confronted by the nutritional bottleneck during the dry 

season when the proportion of the nutritious green leaves decreases and most of the 

remaining forage is of low digestibility due to high fibre content (Owen-Smith 1982). 

Fryxell (1987) suggested that losses in body condition and increase in mortality rates in 
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white-eared kob (Kobus kob leucotis) during the dry season of drier years were caused by 

low quality of the forage available. Mduma et al. (1999) documented that density 

dependent food limitations during periods of drought regulated the population of the 

migratory wildebeest by increasing adult and calf mortality. Mduma et al. (1999) and 

Owen-Smith (2008) suggested that apart from poor forage quality during the dry season, 

food limitations for large herbivores could also be through limited quantity of standing 

biomass due to depletion of grass biomass by heavy grazing, particularly during dry 

seasons of years with below average rainfall.  

Faecal nitrogen (N) in grazers is positively correlated with dietary protein (Mould 

and Robbins 1981; Irwin et al. 1993; Wrench at al. 1997), dietary dry matter digestibility 

(Leslie and Starkey 1985, Irwin et al. 1993; Grant et al. 1995), dry matter intake (Irwin et 

al. 1993) and animal body condition (Grant et al. 1995). Therefore, faecal N is a useful 

measure of cell contents to monitor diet quality and establish critical times of the year for 

herbivore nutrition (Hodgman et al. 1996). Leslie and Starkey (1985) and Irwin et al. 

(1993) suggested that the faecal nutritional indicators of free-ranging herbivores reveal 

the quality of resources provided by the habitats to the animals, and hence could also be 

used to monitor forage quality in relation to animal requirements.  

Sinclair (1977) calibrated the following regression equation derived from trials 

with zebu cattle by Bredon at el. (1963) cited by Sinclair (1977), to estimate dietary crude 

protein from faecal crude protein for buffalo: DP% = 1.677 FP% – 6.93, where DP is 

dietary crude protein and FP is faecal crude protein and suggested that the minimum 

dietary protein for body maintenance is 5% because buffalo lost body weight when 

consuming diets with lower levels of protein. Minson (1971) cited by Grant et al. (1995), 

Kinyamario and Macharia (1992) and van Hooven (2002) also proposed a minimum 

dietary crude protein concentration of 5% for ruminants to maintain body weight, but 

Prins (1996) proposed a higher value of 6.2%. Following the above equation, 5% dietary 

crude protein corresponds to 7% faecal crude protein as the minimum for maintenance. 

However, the actual requirements of crude protein should differ among ungulate species 

that differ in body size and/or in the physiology of the digestive system. 

Smaller ungulates require higher concentrations of nutrients in their food than 

larger ungulates (Bell 1970; Jarman 1974; Geist 1974). Accordingly, faecal crude protein 
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of smaller ungulates should be higher than faecal crude protein of larger ungulates. 

Ruminants have higher digestive efficiency but are less tolerant of fibre than non-

ruminants of similar body size, which due to their hindgut fermentation tolerate plant 

parts with high fibre content (Bell 1970, 1971; Illius and Gordon 1992). According to 

Duncan el al. (1990), Illius and Gordon (1992) and Menard et al. (2002), hindgut 

fermenters extract more nutrients from forage with high fibre content than ruminants. 

This is because hindgut fermenters digest protein in the stomach before the passage of the 

forage for fermentation in the hindgut (Bell 1971). Therefore, faecal crude protein should 

be higher for ruminants than for non-ruminants.   

Apart from N, minerals such as phosphorus (P) and sodium (Na) are also critical 

for herbivore nutrition (Robbins 1993). These are the two most deficient minerals in 

natural pasture, with concentrations generally below the requirements of herbivores 

(Belovsky and Jordan 1981; van Soest 1994; McDowell 1985; McNaughton 1990). 

McNaughton (1988, 1990) suggested that the concentration of limiting minerals may 

indicate the habitats most preferred by grazing animals. In the Serengeti National Park, 

Tanzania, P and Na concentrations in the grass were higher in grazing hotspots than in 

less frequently grazed areas (McNaughton 1988). Estes and Estes (1974), McNaughton 

(1988) and Eksteen and Bornman (1990) reported that termite mounds have higher 

concentrations of minerals such as Na, P, Calcium (Ca), Potassium (K) and Magnesium 

(Mg) than the surrounding areas. Therefore, grazers tend to favour grass growing in the 

proximity of termite mounds in order to increase the intake of these minerals 

(McNaughton 1988). In northern Angola, Estes and Estes (1974) observed sable antelope 

(Hippotragus niger) eating mineral-rich soil at the base of termite mounds. Wilson and 

Hirst (1977) also reported geophagia and osteophagia by sable in the Loskop Dam Nature 

Reserve, South Africa, reflecting deficiencies in Ca and P. Faecal Na concentration is a 

potential indicator of the concentration of Na in the diet (Belovsky and Jordan 1981). van 

Soest (1994) and McDowell (1985) indicated that the minimum required concentration of 

Na in the diet is 0.05% - 0.18% (0.5 – 1.8 kg-1DM). However, the relationship between 

faecal and dietary Na concentration has not been quantitatively established. Dietary P is 

positively correlated with faecal P (Leslie and Starkey 1985; Wrench at al. 1997) and 
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Wrench et al. (1997) suggested that the minimum faecal P for maintenance of grazers is 

0.2% (2 g kg-1DM). 

The sable population of the KNP declined after 1987 (Grant and van der Walt 

2000; Owen-Smith and Ogutu 2003), but at the time of this study the population had 

stabilized. Predation by lions was apparently the primary cause of the decline of sable in 

the park (Owen-Smith and Mills 2006, 2008). However, changes in habitat conditions 

associated with prolonged or more severe droughts might also have contributed to the 

sable decline and currently restrict recovery by limiting the quality or abundance of the 

forage available to sable. Therefore, the aim of this study was to establish critical periods 

of the year for the nutrition of sable, comparing faecal indices of diet quality between 

sable and a larger ruminant buffalo and a non-ruminant of similar size zebra, which were 

numerically more abundant than sable. Faecal indices of diet quality for sable were also 

compared with sable and similarly-sized ruminants from elsewhere, relative to the 

population status of these species. We predicted that:  

1. if the KNP sable population was limited by food quality, during the dry season 

faecal crude protein should be lower than faecal crude protein concentrations for 

populations of sable from elsewhere and for similarly-sized grazers that are 

thriving in the KNP 

2. Sable should forage in proximities of termite mounds more often than buffalo and 

zebra, to compensate for the negative mineral balance by feeding on mineral-rich 

grass 

3. Sable, being a smaller ruminant and more narrowly selective for green grass 

should show higher faecal crude protein concentration than the larger ruminant 

buffalo and the non-ruminant zebra, which require higher absolute quantity of 

food and tolerate brown grass and diet with high fibre content 
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Methods 

Study area  

 
We conducted this study to the south of Punda Maria Camp (22o68’S, 31o018’E) 

in northern Kruger National Park (KNP) and in the vicinity of Pretoriuskop (25o09’S, 

31o16’E) in the south of the park. During the seasonal cycle July 2005 – June 2006 

rainfall at Punda Maria was 24% above long term (1960-2007) average of 600 mm, 

whereas between July 2006 and June 2007 rainfall was 34% below the long term average 

(Chapter 1). The long term mean rainfall at Pretoriuskop (737 mm) is higher than at 

Punda Maria. During the seasonal cycle July 2005 – June 2006 the total rainfall at 

Pretoriuskop was 934 mm and during July 2006 – June 2007 rainfall was about 600 mm, 

which was 27% above and 18% below the long term average, respectively. About 80% of 

the rain falls during the wet season that spans from October to March. The dry season 

extends from April or May to September or October. In 2006 wet season rains began in 

early November, whereas in 2007 wet season rains began at the end of September.  

At Punda Maria the woody vegetation is dominated by Combretum spp woodland 

on sandstone and granite formations and Colophospermum mopane woodland or 

shrubland on basalts of the Soutpansberg group and Ecca shale. At Pretoriuskop the 

vegetation is predominantly Combretum spp – Terminalia sericea woodland on granite 

substrate (Gertenbach 1983; Venter 1990). In mid July 2006 a prescribed fire burnt 28% 

of the Punda Maria study area, but no grass regrowth was available until the first wet 

season rains in early November. In mid September 2007, an accidental fire burnt the 

south east of Punda Maria and grass regrowth became available three weeks later, 

following rains at the end of September. However, when grass regrowth was available on 

burnt areas, green grass was also available in unburnt areas. Therefore, during the early 

wet season of 2007 (October 2007) sable, zebra and buffalo grazed both in unburnt and in 

burnt areas. About 90% of the Pretoriuskop study area was accidentally burnt in early 

August 2007 and remained with no grass regrowth until the end of September.  
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Study design and data collection 

 
We fitted GPS-GSM collars on sable, zebra and buffalo located south of Punda 

Maria (see Chapter 1 for details). In Pretoriuskop only sable herds were collared. Data 

collection covered the dry seasons of 2006 (June – October) and 2007 (May – September) 

and the early wet season of 2007 (October 2007). Sable faecal indices of diet quality were 

compared between two regions of the park that differ in rainfall. Faecal indicators of 

nutritional status of zebra and buffalo were compared only with the sable foraging under 

the same conditions at Punda Maria. We conducted the study during the dry season 

because this is the period of lowest food quality and hence is the period when nutritional 

deficiencies are likely to be more pronounced, whereas we included the early wet season 

in the study because the new growth of the grass following the early wet season rains has 

the highest concentrations of crude protein, although the quantity is still limiting. 

Therefore, result will reveal the quality of the diet obtained by the three grazers during 

distinct periods of food quantity and quality.  

Using GPS tracking we visited sites used by herds of each herbivore species two 

days each week during their potential feeding periods in the morning (6:00 – 10:00) and 

late afternoon/early evening (16:00-20:00) (Sinclair 1977; Beekman and Prins 1989; 

Prins 1996; Parrini 2006; Magome et al. 2008). At each site we recorded the presence or 

absence of termite mounds within a 25 m radius. We visited sites used by the herds 

within the last 24 hours to ensure that we obtained fresh faecal samples, which were still 

moist. We collected one composite fresh faecal sample per day and considered a day as 

the independent sampling unit. We also collected faecal samples encountered 

occasionally, dropped by animals from herds that were not collared, provided that the 

samples were fresh. We made faecal samples composite by mixing dung from different 

dung piles per day, assuming that distinct dung piles were dropped by different animals 

within the herd or by animals from different herds. Amalgamating faecal samples 

obtained from different herds of the same herbivore species allow inference about diet 

quality to be made at population level. We neglected faecal samples with signs of dung 

beetle activity or faecal samples that received heavy rain, because dung beetles increase 

faecal N and rains decrease both faecal N and P (Wrench et al. 1996). We air-dried the 

faecal samples in the field during two-three days in shade and stored the samples in paper 
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bags. We further oven-dried the faecal samples at 60oC during 24 h prior to nutritional 

analysis in March 2007 (for the faecal samples collected between June and October 2006) 

and in March 2008 (for the faecal samples collected between May and October 2007). 

We divided the faecal samples into months and seasons to describe monthly and 

seasonal patterns in indices of diet quality. For data collected at Punda Maria, we used 

the following seasons: early dry season (June – July 2006 and May – July 2007), late dry 

season (August-October 2006 and August-September 2007) and first month of the early 

wet season (October 2007), whereas we used the following season for data collected at 

Pretoriuskop: early dry season (May-June 2007), late dry season of 2006 (August-

September 2006), late dry season of 2007 (July 2007), burnt period without grass 

regrowth (August-September 2007), early wet season of 2006 (October-November) and 

early wet season when grass regrowth was available to sable (October 2007). No data 

were collected at Pretoriuskop during the early dry season of 2006.  These seasonal 

subdivisions were based on seasonal changes in the proportion of grass that retained 

green leaves (Chapter 1 and 2). Therefore, these seasons potentially reflect distinct 

periods of food quality for grazers, as evaluated by the prevalence of green grass. We 

used different seasons for the Punda Maria and the Pretoriuskop study area because grass 

greenness and the seasonal changes in the prevailing grass greenness were different 

between the two study areas. Late dry seasons of 2006 and 2007 could not be combined 

for Pretoriuskop because years were different in terms of factors influencing grass 

greenness such as rainfall and occurrence of fire. 

 

Nutrient analysis 

 

The faecal samples were analyzed for nitrogen using a nitrogen analyzer and 

expressed as a percentage of the dry matter (DM). Faecal concentrations of phosphorus 

and sodium were determined using the Inductively Coupled Plasma-Optical Emission 

Spectroscopy (ICP-OES) method (Jarvis et al. 1992) and expressed as % of DM and mg 

kg -1 DM, respectively. Faecal nitrogen, phosphorus and sodium were analyzed by the 

BEMLAB (Pty) Ltd. in Cape Town, South Africa. Crude fibre was analyzed using the 

standard digestion method (AOAC 1984) by the Agricultural Research Council – Irene, 
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Pretoria and also expressed as % of DM. Following van Soest (1994) we calculated 

faecal crude protein (CP) by multiplying the nitrogen content of the faeces by a factor of 

6.25. Faecal samples collected in 2006 were only analyzed for N and P, whereas samples 

collected in 2007 were analyzed for N, P, Na and crude fibre. The samples collected 

during the dry season of 2006 and 2007 were analyzed for N, P and Na by the BEMLAB 

as two separate batches, i.e. batch of 2006 and batch of 2007, whereas samples collected 

in 2007 were analyzed for fibre as one batch. Grouping samples in few batches for 

chemical analysis reduced bias in comparisons of nutrient concentrations that might be 

caused by likely differences between batches in chemical results.  

We collected sable and zebra faecal samples by hand but directly to paper bags, 

hence with minimal handling to avoid contamination of samples by Na from the fingers. 

Due to the soft texture of buffalo faecal samples, we used a wood stick to collect the 

samples from the dung pies to paper bags. This eliminated the risk of Na contamination. 

 

Statistical analysis 

 
Each day was the replicate for the statistical analysis. We applied two-factor 

analysis of variance (factor 1: herbivore species and factor 2: season) to establish 

distinctions between herbivores and the influence of the stage of the dry season on 

differences between herbivores in the faecal concentrations of each nutrient and crude 

fibre. We also used two-factor analysis of variance to compare nutrient concentrations on 

sable faecal samples between regions (Punda Maria and Pretoriuskop) and seasons. Prior 

to statistical analysis, concentrations of nitrogen, phosphorus and crude fibre were arcsine 

transformed to approximate the data to normal distribution (Quinn and Keough 2002). 

We used Tukey post-hoc test for multiple comparisons to identify significant differences 

at 95% significance level (p<0.05). We did not analyze statistically data collected during 

the early wet season because the sample size was small (N = 8 faecal samples for each 

herbivore species). We applied a pairwise chi-squared test to test for differences in the 

proportion of feeding sites that had termite mounds between sable and buffalo or zebra. 

The statistical analysis was done using STATISTICA 6.0 software.  
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Results 

 
At Punda Maria faecal crude protein was significantly higher for the ruminants 

sable and buffalo than for the non-ruminant zebra throughout the dry season (Figure 1; 

Table 1a; F=4.22, df=2, p=0.015), but sable and buffalo did not differ significantly in 

faecal crude protein levels (Tukey post-hoc test: p>0.05). The mean faecal crude protein 

for sable of Punda Maria (8.12±0.14%) was significantly higher than the mean faecal 

crude protein for sable of Pretoriuskop during the early dry season of 2007 (7.1±0.59%). 

During the late dry season faecal crude protein levels for sable from Punda Maria 

(7.2±0.09%) were lower than for sable from Pretoriuskop in 2006 (8.4±0.28%), but 

higher than for sable from Pretoriuskop in 2007 (6.3±0.32%). For the three grazers faecal 

crude protein levels dropped between the early and the late dry season months when grass 

became predominantly brown, but the seasonal decrease was significant only for sable, 

dropping from 8.12±0.14% to 7.2±0.09% (Tukey post-hoc test: p<0.001) (Figure 1, Table 

1a). At Punda Maria during the sampled first month of the early wet season (October 

2007), when the three grazers grazed on burnt as well as on unburnt areas after the rains, 

the faecal crude protein increased sharply to reach 10.7±0.85% for sable, 9.3±0.63% for 

buffalo and 11.2±0.52% for zebra, reflecting the availability of green and young grass 

leaves. At Pretoriuskop during October 2007, when sable grazed only on grass regrowth 

post-burn, faecal crude protein increased to 15.5±0.51%, which was more than double of 

the levels of faecal crude protein recorded during the late dry season.  

Faecal phosphorus (P) was higher for sable and buffalo than for zebra (F=71.1, 

df=2, p<0.001), but sable and buffalo did not differ significantly in the levels of faecal P 

(Figure 2; Table 1a). Faecal P did not differ significantly between sable at Punda Maria 

and Pretoriuskop (F=2.47, df=1, p=0.118). At Punda Maria, for the three grazers faecal P 

increased by more than 50% between the late dry season when grass was completely 

brown and the early wet season when grass regrowth post rains was widely available. The 

increase in faecal P from late dry season to early wet season was more pronounced at 

Pretoriuskop when sable fed on grass regrowth post burns (Table 1a, b). 

Sodium (Na) concentrations in the faeces were significantly lower for sable than 

for buffalo and zebra (F=39.8, df=2, p<0.001, Table 1a), suggesting that Na 

concentration in the diet consumed or water drunk by sable were lower than the intake of 
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Na by buffalo or zebra. Unlike faecal crude protein and faecal phosphorus, faecal sodium 

levels appeared not influenced by the seasonal variation in grass phenology (Figure 3). 

The percentage of crude fibre in the faecal samples of sable (22.01±0.48%) and 

buffalo (21.78±0.49%) showed no significant difference during the early dry season 

(Tukey post-hoc test: p=0.999) and late dry season (sable: 21.82±0.45% and buffalo: 

23.88±0.57%; Tukey post-hoc test: p= 0.206). The non-ruminant zebra showed higher 

faecal crude fibre (27.55±0.69%) than the ruminants buffalo and sable (F=43.91, df=2, 

p<0.001), suggesting that zebra consumed forage with higher fibre content than sable and 

buffalo (Figure 4, Table 1a). During the late dry season the crude fibre was lower on 

faecal samples of sable from Punda Maria than from Pretoriuskop (Table 1a, b, F=5.7, 

df=1, p=0.02), but during the early dry season faecal crude fibre did not differ 

significantly between sable populations of the two regions.   

The overall prevalence of termite mounds in feeding sites used by sable was 

significantly lower than in feeding sites used by zebra (χ2=16.0, df=1, p<0.001) and 

buffalo (χ2=8.39, df=1, p<0.001) (Figure 5). 

 

Discussion 

 
The limitation of this study is that requirements for nutrients for each of the 

grazers studied are not specifically established. This limits, at some extent, the 

understanding of the implications of the faecal indices of diet quality reported here for 

animal nutrition. However, during the dry season and early wet season sable and buffalo 

showed levels of faecal crude protein marginally higher than the coarse approximations 

of minimum levels for ungulates to maintain body mass, but zebra showed lower 

concentrations that these estimates except during the early wet season. While for sable 

faecal P remained above the minimum level for maintenance, the concentrations of P on 

the faeces of buffalo and zebra dropped during the late dry season. Faeces of sable were 

poorer in sodium than the faeces of both buffalo and zebra.  

The faecal crude protein concentrations for sable during the dry season 

documented in this study were generally higher than the average faecal CP of 7% for 

sable during the dry season reported by Codron et al. (2007) in the Pretoriuskop area of 
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the KNP. In the Punda Maria area, Henley (2005) reported faecal CP of as low as 5.4% 

during a severe dry season of 2002. The faecal CP of the KNP sable population appeared 

lower than the faecal CP of sable populations that did not decline in other regions of 

South Africa (Figure 6). For example, Magome et al. (2008) in the Pilanesberg Game 

Reserve (PGR) reported dry season faecal crude protein generally above 8%. In the 

Kgaswane Mountain Reserve (KMR), Parrini and Owen-Smith (submitted) also reported 

faecal CP >8% when sable grazed on burnt areas, but dropping to 7.4% when re-growth 

post-burns was not available. Differences in nutritional status between the KNP sable 

population with that of the KMR seem to be in part due to differences in the time of the 

year when burns are implemented. In the KMR fire is applied as a management tool 

during the early dry season, which makes the more nutritious green flush available to 

sable during periods of the year that would otherwise be of nutritional stress. On the other 

hand in Punda Maria and Pretoriuskop in 2006 and 2007, burns occurred during the late 

dry season when there was not enough soil moisture to support grass regrowth. However, 

when regrowth post-burns became available to sable after the rains, diet quality improved 

considerably, with faecal crude protein levels increasing to more than double of the levels 

recorded during the most limiting late dry season.  

The dry season levels of faecal crude protein documented for sable in this study 

were similar to the 7.5% documented for the similarly-sized wildebeest (Grant et al. 

2000), which were thriving in the KNP as well as with wildebeest of the Mkuzi Game 

Reserve (Edwards 1991). They were higher than the results obtained by Knoop (2004) 

and Codron et al. (2007, 2009) for roan antelope (Hippotragus equinus) (5.1 – 6.25% 

CP), which declined severely in the northern basalt plains of the KNP and fail to recover 

and also higher than the roan population of the Nylsvley Nature Reserve (6.9% CP) 

(DÖrgeloh et al. (1998), which was thriving (Figure 6). 

Contrary to the expectation of a negative relationship between body mass and 

crude protein concentration (Bell 1970; Jarman 1974; Geist 1974), during the dry season 

faecal crude protein levels did not differ significantly between sable and buffalo. Codron 

et al. (2007) had previously reported higher faecal crude protein for buffalo (8.8%) than 

for sable in the KNP (7%). HeitkÖnig (1993) observed that roan have shorter retention 

time of forage in the gut and higher tolerance to dietary fibre than cattle and suggested 
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that the mechanism of forage digestion in roan could be intermediate between ruminants 

and non-ruminants. If this is also true for the closely related sable, it could explain the 

lack of significant differences in faecal crude protein between sable and buffalo, despite 

sable being smaller. Faecal nitrogen includes metabolic faecal nitrogen, i.e. microbial 

cells, mucus and eroded cells of the gastrointestinal tract, particularly if the diet has high 

content of the costly digestible fibre (Robbins 1993). According to Arman et al. (1975 

cited in Leslie and Starkey 1985) smaller ruminants produce relatively more metabolic 

faecal nitrogen than larger ruminants. Faecal crude protein concentrations obtained in this 

study did not support this theory, unless sable consumed a diet with lower nitrogen 

concentration than the diet consumed by buffalo.  

That ruminants have higher faecal crude protein levels than non-ruminants had 

been previously found (Edwards 1991; Grant et al. 2000; Codron et al. 2007). Codron et 

al. (2007) reported lower faecal CP for zebra (7.5%) than for buffalo during the dry 

season. In the Mkuzi Game Reserve, Edwards (1991) reported dry season faecal crude 

protein of 7% for zebra, which was lower than 8.2% recorded for wildebeest under the 

same grazing conditions. Lower faecal crude protein levels for zebra (5%) than for 

wildebeest (7.5%) during the dry season were also obtained by Grant et al. (2000). In the 

Timbavati region of South Africa, Bodenstein et al. (1990) documented that zebra and 

wildebeest grazing in the same fenced area consumed diets that did not differ 

significantly in crude protein content. On the other hand, faecal crude fibre was higher for 

zebra than for the ruminants. Edwards (1991) also documented faecal crude fibre higher 

for zebra (33.26%) than for wildebeest (24.34%). These findings show that free ranging 

zebra consumed diet poorer in crude protein and richer in crude fibre than similarly sized 

ruminants. 

Faecal crude protein levels documented for buffalo in this study were lower than 

the findings by Codron et al. (2007) who reported average faecal CP levels of as high as 

8.8% in the northern basalt plains of the KNP during the dry season, but did not differ 

from the results obtained by Sinclair (1977) and Grant et al. (2000) who reported dry 

season levels of faecal CP ranging between 5.6 and 7.5%, despite potential differences in 

the severity of drought during the periods of data collection. The mean faecal CP 

obtained for zebra in this study was lower than the findings by Codron et al. (2007) in the 
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northern basalt plains of the KNP (7.5%) and by Edwards (1991) in the Mkuzi Game 

Reserve (7%). However, results of this study were not different from the results obtained 

for zebra by Grant et al. (2000).  

Faecal concentrations of P for sable did not differ from results obtained for sable 

of the KMR (Parrini and Owen-Smith, submitted) or for roan of the Nylsvley Nature 

Reserve (DÖrgeloh et al. (1998). Faecal P for zebra and buffalo also did not differ 

significantly between this study and the findings by Grant et al. (2000), with both studies 

documenting faecal levels of P varying between 1.2 and 1.96 g kg -1 DM for zebra and 

between 1.5 – 2.8 g kg -1 DM for buffalo throughout the dry season. Higher faecal P for 

ruminants than for non-ruminants reported in this study had also been previously 

documented by Grant et al. (2000), comparing buffalo, wildebeest and zebra. The lower 

faecal P for zebra could be because in non-ruminants faecal P is more diluted by the high 

content of fibre. There is paucity of data on faecal Na concentrations for African 

ungulates, but the levels of faecal Na documented for sable appeared higher than Na 

concentrations in faecal samples of roan from different regions of South Africa (DÖrgeloh 

et al. (1998). The more frequent use of feeding areas with termite mounds by zebra and 

buffalo than by sable indicates that zebra and buffalo use parts of the landscape with high 

concentrations of soil nutrients, particularly minerals. This might explain the higher 

levels of faecal Na for buffalo and zebra than for sable. 

Sable faecal crude protein levels were similar to those found for populations of 

species that are thriving in the KNP such as the similarly-sized wildebeest and the larger 

buffalo. However, were lower than faecal crude protein concentrations on sable 

populations that are thriving elsewhere. This suggests that nutritional limitations might 

indirectly be restricting sable recovery, through reduction in areas occupied by sable that 

retain high forage quality. 
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Table 1a. Seasonal changes in the mean concentrations of faecal indicators of diet quality for sable, buffalo and zebra in Punda Maria 

 Sable Buffalo Zebra 

Nutrient/Season E.D.S.  L.D.S.  E.W.S.  E.D.S.  L.D.S.  E.W.S.  E.D.S.  L.D.S.  E.W.S.  

Crude protein 

(%DM) 

8.12±0.14 

N=50 

7.2±0.09 

N=53 

10.65±0.85 

N=8 

7.84±0.31 

N=28 

7.70±0.08 

N=41 

9.27±0.63 

N=8 

6.20±0.19 

N=49 

5.83±0.07 

N=45 

11.23±0.52 

N=9 

Phosphorus (g kg-1 

DM) 

2.54±0.07 

N=50 

2.27±0.06 

N=53 

3.53±0.35 

N=8 

2.27±0.08 

N=28 

2.1±0.06 

N=41 

3.14±0.38 

N=8 

1.85±0.08 

N=49 

1.45±0.05 

N=45 

4.58±0.45 

N=9 

Sodium (g kg-1 DM) 0.78±0.07 

N=27 

0.76±0.14 

N=19 

0.64±0.13 

N=8 

1.94±0.16 

N=16 

2.26±0.21 

N=15 

2.54±0.43 

N=8 

1.55±0.16 

N=27 

1.57±0.14 

N=23 

1.70±0.27 

N=9 

Crude fibre (%DM) 22.0±0.48 

N=27 

21.82±0.45 

N=19 

18.47±0.93 

N=8 

21.78±0.49 

N=16 

23.88±0.57 

N=15 

19.30±1.04 

N=8 

25.89±0.57 

N=27 

27.55±0.69 

N=23 

20.19±0.89 

N=9 

E.D.S. – early dry season (June-July 2006 and May-July 2007) 

L.D.S. – late dry season (August-October 2006 and August – September 2007) 

E.W.S. – early wet season (October 2007) 
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Table 1b. Seasonal changes in the mean concentrations of faecal indicators of diet quality for sable in Pretoriuskop 

Nutrient/Season E.D.S. 2007 L.D.S. 2006 L.D.S. 2007 Burns without regrowth 

2007 

E.W.S. 2006 Burns with 

regrowth 2007 

Crude protein 

(%DM) 

7.1±0.59 (N=23) 8.4±0.28 (N=34) 6.3±0.32 (N=16) 6.08±0.14 (N=24) 9.5±0.56 (N=12) 15.50±0.51 

(N=9) 

Phosphorus (g kg-1 

DM) 

2.4±0.07 (N=23) 2.3±0.07 (N=34) 2.1±0.07 (N=16) 2.20±0.04 (N=24) 2.9±0.34 (N=12) 6.54±0.44 (N=9) 

Crude fibre (%DM) 22.7±0.27 (N=33) ------- 23.42±0.27 

(N=16) 

24.36±0.30 (N=34)              ----- 19.15±1.76 

(N=9) 

E.D.S. – early dry season 2007 (May-June) 

L.D.S. – late dry season (August-September 2006 and July 2007) 

Burns without regrowth – August-September 2007) 

E.W.S. – early wet season 2006 (October-November) 

Burns with regrowth – October 2007 
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Figure 1. Monthly changes in faecal crude protein concentration for sable from Punda 

Maria (PM) and Pretoriuskop (PK), buffalo and zebra during the dry season of 2006 and 

2007 
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Figure 2. Monthly changes in faecal phosphorus concentrations for sable from Punda 

Maria (PM) and Pretoriuskop (PK), buffalo and zebra during the dry season of 2006 and 

2007 
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Figure 3. Monthly changes in faecal sodium for sable from Punda Maria (PM), buffalo 

and zebra during the dry season and early wet season 
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Figure 4. Monthly changes in faecal crude fibre for sable from Punda Maria (PM) and 

Pretoriuskop (PK), buffalo and zebra during the dry season and early wet season 
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Figure 5. Comparative use of feeding sites with termite mounds nearby (<25 m) between 

sable, buffalo and zebra during the dry season 
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Mean dry season faecal CP levels on rare and common 

grazers in the KNP and elsewhere
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Figure 6. Mean dry season faecal crude protein levels recorded for sable antelope and 
other grazers in different regions of South Africa (this study, Grant et al. 2000; Parrini 
and Owen-Smith, submitted; Codron et al. 2007; Magome et al. 2008 and Codron et al. 
2009) 
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CONCLUSION AND MANAGEMENT IMPLICATIONS 

 

 

Conclusion 

 
In the context of contributing to the identification of factors responsible for the 

decline or for the lack of recovery by the sable population in the KNP, this research 

project was designed with the broad aim of improving the understanding of resource 

partitioning between low and high density grazers at different hierarchical levels of 

resource selection. The specific objectives included: 1) to assess diet separation between 

low density and high density grazers and assess diet breadth at the grass species and plant 

parts levels, 2) to establish a comparative analysis of habitat use between sable, zebra and 

buffalo, 3) to establish distinctions in space use patterns between the low density grazer, 

sable and the high density grazers, buffalo and zebra, 4) to investigate competitive 

interactions between sable, buffalo and zebra in the use of space and 5) to identify critical 

periods of the year for sable nutrition.  

The key questions addressed in this study are: 1) what do sable do differently in 

terms of resource use at different hierarchical levels that could contribute to their 

occurrence at lower abundance than other grazers occupying the same broad landscape? 

and 2) at what hierarchical level resource partitioning occurs to explain the coexistence 

among grazers or at what level of resource use sable might be limited by competition to 

remain at low density while ecologically similar grazers attain higher densities? 

Sympatric grazers are likely to compete for food resource if not separated at the 

grass species and grass features level. Previous studies showed that grazing herbivores 

differ in preferred grass height for grazing (Bell 1970), but overlap on grass species eaten 

(Jarman and Sinclair 1979). However, sable, buffalo and zebra are all regarded as grazers 

that prefer to graze medium-tall grass (Skinner and Chimimba 2005). Arsenault and 

Owen-Smith (2008) found overlap on grazed grass height among short grass grazers. 

This suggests that differences in grass height alone should not be adequate to ecologically 

separate grazers with similar preferences in grass height for grazing. Based on the niche 

breadth theory (Brown 1984) and resource availability theory (Gaston and Kunin 1997; 

Gregory and Gaston 2000) as explanatory mechanism of rarity and commonness within 
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species assemblages and on the suggestion that competition among grazers decreases 

during the dry season through the use of different alternative resources (Jarman 1971; 

Holbrook and Schmit 1989 and Owen-Smith 1989), in Chapter 1 I investigated the degree 

of diet overlap among herbivore species and assessed the breadth of the food niche of 

each herbivore species at the grass species and grass features levels. 

The key findings of Chapter 1 were: 

1. The low density grazer showed narrow tolerance to grass species and grass 

features, grazing frequently a few grass species that were tall and retained green 

grass during the dry season, whereas high density grazers were generalists 

feeders, grazing more grass species and tolerating a wide range of grass 

phenological stages, including completely brown grass. Accordingly, the breadth 

in acceptance to grass resources could explain the differences in density attained 

by different grazers occupying the same landscape.  

2. The overlap in acceptance of grass species as well as in diet composition 

decreased from early to late dry season. During the late dry season of severe food 

limitations the diet of low density grazer sable became more diverse and 

dominated by grass species that occurred in lower availability than the grass 

species that supported the populations of high density grazers. This suggests that 

the density attained by each grazer is at some extent determined by the abundance 

of the grass species most contributing to the diet during critical periods. 

3. Results showed high overlap between low density and high density grazers at the 

grass species and grass features levels. However, the narrower food niche of sable 

than buffalo and zebra at both levels indicates that sable are vulnerable to 

competition from more common grazers. Sable are also more vulnerable to the 

shrinking availability of food resources as the dry season advances than abundant 

grazers with broader tolerances to grass resources. 

 

In Chapter 2 I investigated whether resource partitioning and coexistence 

occurred because the grazers were ecologically separated by using different habitat types 

as previously suggested (Lamprey 1963; Jarman and Sinclair 1979). It has been 

suggested that low density species use a narrow range of habitats than abundant species 
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(Brown 1984; Rosenzweig and Lomolino 1997) or use habitats of limited availability 

(Seagle and McCraken 1986; Gaston and Kunin 1997), whereas body size theory 

suggests that smaller herbivores require higher quality food than larger herbivores (Bell 

1970; Jarman 1974). Based on these foundations, I hypothesized that the low density and 

smaller sable will be a habitat specialist and be more precise in habitat use than buffalo 

and zebra, by restricting foraging to habitat patches retaining green grass during the dry 

season such as bottomlands and areas with high woody vegetation cover, whereas zebra 

and buffalo will be more tolerant of the widely available brown grass, hence forage in 

habitats with a broader range of woody vegetation cover and catena positions. 

The habitats used by each grazer reported in this study had been reported 

previously (Estes and Estes 1974; Smuts 1975; Magome 1991; Funston et al. 1994; 

Davidson 2002; Ryan et al. 2006; Parrini 2006). However, the novel contribution of this 

study is that low density and high density grazers do not differ in the range of habitat 

features prevailing on areas used. Sable showed similarities with buffalo or zebra in the 

range of woody vegetation cover, catena position and grassland height prevailing on 

foraging areas. This finding suggests that differences between grazers in regional density 

are not explained by differences in habitat breadth on foraging areas. At the broader 

landscape, sable and zebra appeared more narrowly selective than buffalo, which showed 

no preference for specific landscape type. The limitation of this Chapter was the lack of 

data on relative availability of different habitat structures in the study area. This 

prevented an assessment of potential differences in habitat selection between low density 

and high density grazers. 

In Chapter 3 I assessed distinctions in patterns of home range use between low 

density and high density grazers. The use of space by large herbivores is partly 

influenced by the quantity and quality of food. However, how much food is perceived 

and used is determined by feeding specialization (Bell 1970), body size (Bell 1970; Prins 

and Olff 1998; Ritchie and Olff 1999), group size (Fryxell 1995) and digestive system 

(Illius and Gordon 1992). Based on the relationships between resource specialization and 

patterns of species abundance (Brown 1984; Rosenzweig and Lomolino 1997) and on the 

influence of body size and group size on the metabolic requirements of the herd (Owen-

Smith 1988), hence on resources needed to meet the needs of animals in herds, I 
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hypothesized that: 1) the core grazing areas for the low density sable should consist of 

smaller discrete patches than the core areas used by buffalo or zebra; 2) during the wet 

season of food  abundance the resource requirements of the herd of the specialist 

herbivore sable will be met in a smaller area than buffalo and zebra. However, during the 

critical dry season resources for sable will become sparser; hence sable will move widely 

and spread use over a larger home range than the similarly sized generalist feeder zebra; 

3) feeding selectively on plant parts of high quality, sable are more efficient in obtaining 

the energy from the forage than the generalist grazers zebra and buffalo. Therefore, the 

intensity of metabolic use of space by sable will be higher than by zebra and buffalo.  

The results of Chapter 3 showed the following previously undocumented 

information: 

1. During the wet season when food and water were abundant, the sable herd 

showed intense use of a small section of the range and higher flow of energy from 

forage to herbivore biomass than buffalo and zebra, which used home range more 

evenly. However, when resources required by sable were limiting during a severe 

dry season, the sable herd became less precise in the use of the range and the 

intensity of metabolic use of space by sable became lower than by buffalo and 

zebra herds. 

2.  Although sable and buffalo herds increased range size from the wet to the dry 

season as expected from previous studies (Funston et al. 1994; Ryan et al. 2006; 

Owen-Smith and Cain 2007), the magnitude of the increase in range size was 

greater for sable than for buffalo, while space use by zebra appeared not 

influenced by seasonal variations in resources and habitat conditions. This shows 

that the dry season was a more stressful period for sable than for other grazers, 

with wider movements reflecting search for specific resources that became sparser 

with the advance of the season. The generalist grazers, buffalo and zebra, 

appeared less stressed by the seasonal changes in resources, suggesting that they 

were supported by resources that were abundant and widespread during different 

stages of the dry season.  
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In Chapter 4 I investigated competitive interactions between low density and high 

density grazers in the use of space. Because low density species have lower competitive 

ability than high density species (Hanski 1983; Gaston and Kunin 1997), less common 

prey species are proportionally more affected by apparent competition than abundant 

species (Owen-Smith and Mills 2008) and differences in body size influence the degree 

of competition or facilitation among co-existing grazers (Vesey-FitzGerald 1960; Bell 

1970; Prins and Olff 1998), I predicted that: 1) the low density and declining species 

sable, will concentrate use of space on the sections of the landscape infrequently used by 

buffalo and zebra to reduce competition for resources and/or predation risk, and 2) being 

smaller, sable will benefit from grazing by the larger grazer buffalo.  

In this chapter the main finding is that: 

1. Core grazing areas for the low density sable were separated from areas of 

concentrated grazing by high density grazers. The low density sable vacated areas 

that were being heavily grazed by buffalo. Sable did not benefit from grazing by 

buffalo, suggesting that difference in body size between the two grazers is too 

small for facilitation to occur. The avoidance by sable of areas grazed by buffalo 

and the absence of facilitation, suggest that over the long term buffalo might have 

contributed to the sable decline. What remained unclear is whether the mechanism 

that governed spatial separation was avoidance of competition, predation or both.  

 

The failure of the sable population to recover from the decline despite 

superabundance of food resources for a small population suggests that the quality of the 

diet obtained during critical periods of the year could be low; otherwise the factors 

limiting population recovery are not related to food resources. In Chapter 5, using faecal 

indicators of diet quality, I investigated whether nutritional limitations might be 

restricting population recovery. Based on findings from previous studies addressing 

factors regulating populations of free ranging herbivores (eg. Sinclair and Arcese 1995; 

Mduma et al. 1999), I hypothesized that if the KNP sable population was limited by food 

quality, during the dry season faecal crude protein should be below the levels of faecal 

crude protein for sable populations that are thriving elsewhere and than faecal protein 
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levels for grazers that are numerically more abundant in the KNP, including buffalo and 

zebra. 

Results showed that faecal crude protein levels on sable of the KNP varied around 

the crudely estimated minimum levels for maintenance, but were lower than levels for 

sable populations that are thriving elsewhere, and similar to levels for the larger ruminant 

buffalo and to faecal protein levels for the similarly-sized wildebeest population, which is 

numerically more abundant in the KNP. This suggests that nutritional limitations might 

indirectly be restricting sable recovery, through reduction in areas occupied by sable that 

retain high forage quality. 

 

Overall, this study showed that the dry season was a more stressful period to sable 

than to the more common grazers. Sable showed larger seasonal variation in home range, 

more drastic changes in diet composition between seasons and more severe decline in 

faecal indices of diet quality than buffalo and zebra as the dry season progressed. These 

findings on sable spatial, foraging and nutritional ecology indicate that sable are 

potentially more restricted than other grazers in number and distribution by the seasonal 

and spatial variations in the prevalence of critical resources. Results showed overlap and 

potential for competition between grazers at small spatial scales of resource use such as 

habitat types, grass species and grass features, particularly between sable and buffalo. 

Resource partitioning was apparent through use of distinct sections of the landscape as 

core grazing areas. Nevertheless, the spatial separation documented in this study appears 

to be a result of avoidance of competition and/or predation risk. Home ranges used by 

sable did not differ from those used by buffalo in the prevailing habitat features, which 

suggests that the spatial separation reported in this study was not a result of distinct 

habitat preference. However, extensive areas that were occupied by sable, buffalo and 

zebra prior to the sable decline currently represent gaps of non-use by sable, but remain 

with high concentrations of buffalo and zebra. This might suggest that apart from 

potential avoidance of competitors and predators by sable, some fundamental elements of 

the habitat might have changed over time, probably due to the persistent dry conditions, 

reducing the suitability of the habitats for sable while remaining suitable for grazers with 

broader tolerances to food resources. 
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Management implications 

 

According to the KNP hierarchy objectives, the management for system integrity and 

maintenance of biodiversity should take precedence over species management (Braack 

1997). However, according do the threatened biota objective (Braack 1997), the 

extinction of species should be prevented by allocating resources to particular species that 

are under some threat category globally or regionally. The factors limiting the sable 

population in the KNP appear to be the deterioration of habitat conditions and forage 

resources associated with the persistence of annual rainfall below long term average and 

decrease in dry season rainfall (Ogutu and Owen-Smith 2003; Owen-Smith and Ogutu 

2003). These climatic conditions reduce the availability of green forage during the dry 

season and potentially the biomass of food species favoured by sable such as P.maximum, 

T. triandra and H.contortus. The resulting poor nutrition weakens herbivores and 

increases their vulnerability to predation (Owen-Smith and Ogutu 2003). The high degree 

of food specialization at the grass features and grass species level documented in this 

study limits at a great extent the range of interventions that can be taken to improve 

conditions for sable and ensure long-term conservation of this species under high 

variability in rainfall associated with climate change. However, sable have survived 

through many droughts in the past and recovering during years with above average 

rainfall (Owen-Smith and Ogutu 2003). Therefore, the current lack of recovery suggests 

that some fundamental element of the habitat might have changed, preventing sable 

population size from increasing during years with high rainfall. Inter-specific interactions 

through competition or apparent competition could also be playing a role in the lack of 

recovery. Sable appeared to occupy areas of the landscape that were less frequently used 

by buffalo or zebra. Accordingly, I suggest that management should be directed at 

reducing the overlap in core distribution range between sable and the more common 

grazers. Therefore: 

• The closure of artificial water points, including dams, within the core sable range 

is a management action that will reduce the local abundance of water dependent 

grazers, thereby reduce potential for competition for resources and predation 

pressure to sable through apparent competition. Besides creating regions with low 
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predation risk where sable could survive, this strategic closure of water points will 

reduce grazing pressure and prevent further habitat deterioration during periods of 

drought. Sable will cope with limited water availability resulting from the closure 

of artificial water points because they are less water dependent than other grazers 

like buffalo, remaining without drinking for about 3 days when water is not 

available within the core range during the late dry season (Owen-Smith and Cain 

2007), although not very different from zebra, which appear to potentially remain 

about 2 days without drinking (Cain and Owen-Smith, in prep.).   

• Burning of the vegetation during the late dry season generally increases the 

severity of food limitations for grazers by removing most of the grass biomass 

during a period without rainfall and with the remaining soil moisture not enough 

to sustain grass regrowth. As a consequence of lack of grass regrowth, sable, 

buffalo and zebra did not use burnt areas before the first wet season rains 

promoted grass regrowth. Accordingly, burns of sable core range should be 

avoided during the late dry season. Grass regrowth on areas burnt during the early 

dry season has been reported to reduce nutritional deficiencies in sable during 

critical periods (Parrini and Owen-Smith, submitted). However, when I conducted 

this study (2006 and 2007), in Punda Maria there were no areas burnt during the 

early dry season to assess the availability of grass regrowth as well as the relative 

use of these areas by grazers. 

• Information on calf production and survival need to be collected from sable herds 

across the park. This data will indicate the availability of forage resources of 

adequate quality for reproduction and survival of offspring. 
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APPENDICES 

Appendix 1.  Availability and acceptability of grass species on feeding sites during different seasons 
 

Sable: early dry season (N=161 feeding sites)
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Sable: late dry season (N=233 feeding sites)
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Buffalo: early dry season (N=97 feeding sites)
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Buffalo: late dry season (N=118)
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Zebra: early dry season (N=120 feeding sites)
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Zebra: late dry season (N=148 feeding sites)
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Appendix 2. Acceptability of grass species by sable, buffalo and zebra in relation to the proportion of green leaves retained by each 

grass species during the early and late dry season of 2006 and 2007. Vertical lines indicate 95% binomial confidence intervals. 

Sable: early dry season of 2006
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Sable: late dry season of 2006
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Sable: early dry season of 2007
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 Sable: late dry season of 2007
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Buffalo: early dry season of 2006
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Buffalo: late dry season of 2006
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Buffalo: early dry season of 2007
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Buffalo: late dry season of 2007
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Zebra: early dry season of 2006
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Zebra: late dry season of 2006
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Zebra: early dry season of 2007
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Zebra: late dry season of 2007
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Appendix 3a. Diet contribution of grass species to the diet (mean ± SE) during dry season of 2006, estimated as the proportion of 

epidermis fragments of each grass species on faecal samples 

Early dry season - 2006 Late dry season - 2006 
        

 Sable (N=20) Buffalo (N=13)  Zebra (N=19)  Sable (N=29) Buffalo (N=23) Zebra (N=24) 
Panicum maximum 0.22±0.03 0.24±0.03 0.14±0.02  0.24±0.03 0.28±0.03 0.14±0.02 

Heteropogon contortus 0.25±0.03 0.03±0.008 0.03±0.01  0.03±0.007 0.004±0.002 0.02±0.004 

Digitaria eriantha 0.10±0.01 0.09±0.01 0.09±0.03  0.02±0.004 0.11±0.01 0.16±0.02 

Urochloa mosambicensis 0.10±0.006 0.18±0.03 0.08±0.02  0.004±0.002 0.20±0.03 0.18±0.02 

Setaria incrassata     0.14 ±0.01 0.14±0.03 0.46±0.04  0.26±0.03 0.17±0.03 0.37±0.05 

Themeda triandra 0.10±0.01 0.11±0.02 0.09±0.02  0.02±0.005 0.06±0.009 0.06±0.008 

Brachiaria nigropedata 0.03±0.007 0.009±0.004 0.05±0.02  0.006±0.002 0.02±0.004 0.02±0.006 

Ischaemum afrum 0.02±0.007 0.00 0.01±0.004  0.20±0.03 0.00 0.00 

Cenchrus ciliaris 0.01±0.003 0.16±0.03 0.02±0.006  0.00 0.04±0.006 0.03±0.008 

Schmidtia pappophoroides -  0.00  0.00 0.00 0.00 

Panicum deustum -  0.01±0.004  0.15±0.02 0.02±0.006 0.00 

Chloris virgata     0.01±0.002 0.04±0.008 0.00 

Dicots 0.01±0.005 0.02±0.004 0.01±0.007  0.03±0.006          0.04±0.006            0.02±0.003 
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Appendix 3b. Diet contribution of grass species to the diet (mean ± SE) during dry season of 2007, estimated as the proportion of 

epidermis fragments of each grass species on faecal samples 

Early dry season - 2007 Late dry season - 2007 
        

 Sable (N=27) Buffalo (N=26)  Zebra (N=26)  Sable (N=14) Buffalo (N=17) Zebra (N=17) 
Panicum maximum 0.30±0.02 0.17±0.02 0.14±0.01  0.19±0.02 0.24±0.03 0.14±0.02 

Themeda triandra 0.19±0.02 0.14±0.02 0.09±0.02  0.18±0.04 0.07±0.02 0.06±0.009 

Urochloa mosambicensis 0.11±0.01 0.24±0.03 0.08±0.02  0.03±0.01 0.26±0.04 0.18±0.02 

Digitaria eriantha 0.06±0.005 0.09±0.01 0.09±0.03  0.03±0.01 0.08±0.02 0.16±0.02 

Ischaemum afrum 0.08±0.02 0.00 0.01±0.004  0.007±0.004 0.00 0.00 

Heteropogon contortus 0.05±0.007 0.05±0.01 0.03±0.01  0.02±0.008 0.02±0.004 0.02±0.004 

Setaria incrassata 0.16±0.01 0.22±0.03 0.46±0.04  0.32±0.03 0.14±0.03 0.38±0.05 

Panicum deustum 0.005±0.003 0.00 0.01±0.01  0.03±0.01 0.00 0.00 

Brachiaria nigropedata 0.002±0.002 0.007±0.002 0.05±0.02  0.01±0.006 0.003±0.002 0.02±0.006 

Cenchrus ciliaris 0.003±0.001 0.07±0.02 0.02±0.006  0.003±0.003 0.16±0.03 0.03±0.008 

Schmidtia pappophoroides 0.002±0.001 0.00 0.00  0.16±0.03 0.00 0.00 

Dicots 0.03±0.004 0.006±0.003 0.01±0.001  0.03±0.008 0.04±0.007 0.02±0.003 
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Appendix 4. Performance of GPS-GSM collars fitted on animals in Punda Maria in 2006 

and 2007  

 

Species Collar ID Placement Status Duration (months) 

Sable AM 143 22/05/2006 Last signal 18/12/07 19 months 

Sable AM 146 23/05/2006 Animal died on the 11/02/07 8 months 

Sable AM 149 23/05/2006 Last signal 15/07/07 14 months 

Sable AM 279 18/06/2007 Last signal 09/01/08 6 months 

Buffalo AM 150 23/05/2006 Last signal 11/03/07 9 months 

Buffalo AM 152 23/05/2006 Still functioning 08/04/09 > 34 months 

Buffalo AM278 18/06/2007 Last signal 14/11/07 5 months 

Zebra AM 141 23/05/2006 Last signal 29/09/07 16 months 

Zebra AM 142 23/05/2006 Last signal 6/11/08 17 months 

Zebra AM 145 22/05/2006 Last signal 16/09/06 3 months 

Zebra AM 147 22/05/2006 Last signal 07/07/07 14 months 

Zebra AM 277 18/06/2007 Still functioning 08/04/09 > 21 months 

Zebra AM 280 18/06/2007 Last signal 15/03/08 9 months 

 
 


