
conditions.

The boundary conditions are the normal fluid velocities 

specified at the elements’ control positions. These, 

like the elements, a n  input to the programme in a clock­

wise direction, thus the first boundary conditions will 

indicate the inlet flow into the pipe, and the last ones 

will dictate the outlet flow. Intermediate ones will 

specify how much fluid is extracted or added through the 

wall of the pipe.

The first results from the finite element programme were 

obtained with uniform velocity profiles at inlet and out­

let to the pipe. The suction or mass addition rates 

were also assumed constant down the pipe, and were evalu­

ated remembering that continuity could not be violated.

A typical example of boundary conditions used is given 

in Fig 4.5.

non porous  

pipe

porous section

*---X---X---U

non porous 

pipe

axis

F ig 4 .5 - Boundary Conditions specified at control positions

For the example given in Fig 4.5 the boundary conditions 

would be input into the programme as follows:

♦V!, +V,, +V,, 0, 0, 0, -V3, -V3, -V,, -V3, 0, 0 , 0 , -V„, -Vw, -Vi,.



The minus signs indicating fluid flowing out of the pipe. 

These are the values of as described in section 3.3. 

Equation (3.5.2) is now solved for the unknown source 

strengths cr . In the computer programme this is done 

using a standard IBM subroutine for the inversion of the 

influence coefficient matrix A, this gives:

0i = (A~1).(Fj) .....................  (4.7.1)

Because potential flow is assumed superposition of solutions 

is possible. One obvious sol tion of the problem is that 

the outlet and inlet flows are identical and there is no 

fluid transferred across the porous surface. This as­

sumes that there is no friction at the pipe surface, but 

this is typical of a potential flow solution. In the 

other extreme it may be assumed that there is no tctal 

flow through the pipe in the axial direction but there is 

either mass addition or extraction through the porous wall. 

These two extremes are shown in Figs 4.6a, b and c.

WJ1TTTT
b.

w m i r r

c.

Fig 4.6 - a) No mass transfer across the wall

b) Pure mass extraction across the porous wall

c) Pure mass addition across the porous wall.



The superposition of a and b or a and c for different 

magnitudes of flow yields a whole range of different 

flow situations from large suction through zero transfer 

to large mass addition. Taking, for example, situation 

a") superimposed directly with situation b),the result 

will be given by the boundary conditions shown in Fig

4.7

Fig 4.7 - Boundary conditions for situations shown in 

Figs 11a and b superimposed.

The resulting boundary conditions imply that a’l the fluid 

flowing down the pipe is extracted through the porous pipe 

and there is no outflow at the pipe exit.

It can be seen that the main problem is reduced to finding 

the solution to the boundary conditions given in Fig n  

b and These two flow fields are in fact ii~)tical,

due to the potential flow nature of thw problem.

Due to the discrete nature in which the boundary conditions 

are specified, it is possible to use any inlet and outlet 

velocity profiles, for example a parabolic profile may be 

used. The mass extraction or addition through the 

porous pipe may also take many forms, more detail is given 

concerning the choice of distribution in section 4.9.

4 . 8  Off Body Calculations

Once the source strengths distributed over each element 

have been calculated the whole flow field is evaluated.



Section 4.4 explain? how the potential and velocities in­

duced by an element at a point J may be calculated. J 

can be situated anywhere inside the pipe and the total 

effect, of all the elements, at J is given by the summation 

of the individual effect of each element. Thus the po­

tential and velocity components at all points inside the 

pipe are calcinated by using exactly the same numerical 

procedures as given in section 4.4. Special care is 

needed on the axis of the pipe, that is where yo = 0 ,0 , 

because the expression (4.4.4) which gives the radial 

velocity becomes singular here. There is no real diffi- 

culty, however, since the problem is axisymmetric there 

can be no radial velocity at y * 0 ,0 , and so the value 

of y is examined in the programme and for yo - 0 ,0 , 

the radial v e l o c i t y  is assigned the value zero.

4.9 Mass transfer distributions through the porous pipe

Section 3.10 discussed the effects of axial pressure grad­

ients on the mass transfer distributions along the porous 

pipe. It was decided to use Darcy's lav in the form 

given by expression (3.10.2) (for the reasons explained 

in section (3.10) to relate the radial velocity at the 

porous surface to the pressure diop across it. To begin 

the iterative procedure to calculate the actual transfer 

distribution along the porous pipe with a given inflow, 

(uniform velocity Vj. , say,) and given outflow (uniform 

velocity VQ ), it is necessary to assume an initial distri­

bution. A constant transfer rate along the pipe is 

assumed and the total flow field is calculated as des­

cribed previously.

In section 3.7 a coefficient of pressure was defined which 

related pressures in the pipe to the pressure at the inlet 

in order to be able to evaluate pressure recovery along



the pipe. To enable comparisons with experimental work 

it is necessary to have information on the pressures 

existing inside the pipe in relation to atmospheric pres­

sure. It was decided to test the programme assuming 

that the static pressure at the inlet was atmospheric 

pressure and tequired suctions were achieved by applying 

a back pressure at the exit to the pipe.

The computer programme calculates the coefficients of 

pressure at all control points on the porous surface, 

for the constant mass transfer rate. With these coef­

ficients of pressure it is possible to modify the trans­

fer rates according to equation (3.10.2), and rerun the 

programme. The only restriction on the mass transfer 

is that continuity is satisfied.

Using equations (3.7.1) and (3.10.2) gives:

2

= k(p-pa) = k(p-pk) = . . . .  (4.9.1)

2

Expression (4.9.1) may be used at every element's con­

trol position on the porous surface. If there are n 

elements defining the surface then there are n expres­

sions of the form:

kp\, Cp, 

v i?___ * Kl-

kpVkCpk,

V  • — i - * 4

v . kpY P|‘»
*n



- so -

therefore:

*2
7,

cPk.

Cpk:

• • • • (4.9.2)

cPk

ki

The total inflow to the pipe is ttR2V^. The total out­

flow (axially) along the pipe is ttR2V o .

The flow leaving through the porous surface must be given 

bv :

* R2 ( W

and this must remain constant.

Fig 4.8 - Shows a velocity distribution along the 

porous surface.



The total integrated effect of a velocity distribution 

such as the one shown in Fig 4.8 is given by:

total outflow * 2ttR.As (V\ + V. + . . . V„ ) . . . (4.9.3)

-T-2 71 n

where As is the length of an element, the integration 

uses a modified form of the trapezoidal rule.

Expression (4.9.3) may be rewritten as:

V „ V*n

total outflow = 2ttRAs (1+y— - + ... y— ) • • • (4.9.4) 

which when using equations (4.9.2) becomes:

CPk, Cpkn

total outflow ■ 2ttRAs V. (1 +7.— 2. + , r--- )

*• 'fki ^

but the total outflow must also equal

* R2(vk - V

and so an expression has been found for :

R (Vk - V )

V. ---------- ------?— fr-...  ..............  (4.9.5)

' CPk, Pkn

in terms of values known from the first computation.

Similarly from expressions (4.9.2), the other velocities 

may be calculated.

This new set of velocities describing the Transfer rates 

across the porous wall are used as boundary conditions 

and the computer programme is re-run. A new set of 

pressures are calculated which in turn give a new set 

of transfer velocities. This iterative process is



continued until equilibrium is reached, that is, when

the pressures and velocities cease to change.

4.10 Calculation of Stream Lines

To be able to visualise the effects of various boundary 

conditions on the porous pipe flow problem it was found 

useful to visualise the flow field by plotting the 

stream lines.

As a datum the axis of the pipe is chosen to represent 

a stream line having the value of stream function 

\f> “ 1,0. The computer programme calculates values of 

velocities in the radial and axial directions at points 

on, or inside, the pipe. Equations (3.8.1) are then 

used to calculate stream functions at these positions. 

Either expression may be used, one involves integration 

in the axial direction and the other in the radial direc­

tion. The integrations are performed usinft the trape­

zoidal rule. Integration in the radial direction is 

chosen as this is the most accurate since less integrations 

are required before the boundary is reached, thus reducing 

truncation errors due to the trapezoidal method.

A check was made on the accuracy of the method by com­

paring it with an integration performed in the axial di­

rection. The results are indicated in the next section.

Once values of stream function have been evaluated, use 

is made of a standard contour plotting programme which 

plots lines of constant stream function (sti in lines). 

Plots obtained for various boundary conditions are given 

in Chapter 6 a typical one is given in section 4.11.

The output from the computer pr>. '?mme also calculates
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the potential at positions on and inside the pipe. These 

are also plotted by the contour programme and the results 

appear in the next section.

4.i1 Typical Results obtained from the Computer Programme

\ full set of results obtained from the computer programme 

for various boundary conditions is given in the appendix. 

This section illustrates the f^ mat used in presenting 

the results and discusses important aspects in relation 

to the method of programming.

It was mentioned in section 4.7 that because superposition 

of flows was possible the main problem was reduced to the 

solution of the boundary conditions given in Fig 4.9.

JPig_4_._9 - Boundary conditions for the solution of the 

basic problem

Using the boundary conditions given in Fig 4.9 the pres­

sure coefficient Cp, calculated by the programme plotted 

against axial distance along the pipe for various radial 

positions, is shown in Fig 4.11. The porous section of 

the pipe is labelled. It can be seen to be uisplaced 

slightly about the centre lint*, this is din to the way



in which the elements were r’c"ined. The programme ;e- 

quires an even number of input points as use is then 

made of the symmetry of the problem thus omitting dupli­

cation of calculations. To enable a porous section ten 

units long the boundary conditions used were as shown in 

Fig 4.10.

centre ! of the 
pt;pe

iia_i .TO - Shows the displacement of the porous section 

to the left to enable a section 10 units long 

to be used.

This displacement about the centre line in no way effects 

the results as can be seen from graphs 4.11 and 4.12.

From Fig 4.11 it is noticed that pressure gradients in 

the radial direction are almost negligible.

Figure 4.12 shows the stream lines calculated for the 

I-oundary conditions given in Fig 4.9. The stream lines 

in fig 4.12(a) were evaluated by integration in the radial 

direction and those in Fig 4.12(b) by integration in the 

axial direction. The two plots appear to be extremely 

similar, any differences are due to the errors introduced 

by the trapezoidal procedure used in the integration, 

which should be more pronounced in Fig 4.12(b).

Figure 4.13(a) and (b) illustrate lines of constant



potential and lines of constant stream function for the 

boundary conditions given in Fig 4.9. The lines of con­

stant potential are calculated directly fron the potential 

flow method; the lines of constant stream function are 

calculated by integration of velocities in the radial di­

rection .

As is expected, from potential flow theory, tne lines in 

the two plcts are orthogonal, which indicates that thr 

method of calculating the 'tream functions is adequate.
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F ig 4.13 h) Lines of constant stream function for the boundary conditions 

given in Fig 4.9



C H A P T E R  5

EXPERIMENTAL APPARATUS & PROCEDURE

5 .1 Introduct ion

The purpose of the experimental work was twofold. Firstly 

it was desirable to have a wide range of results for com­

parison with the theories and experimental work described 

in Chapter 2. Secondly with sufficient experimental 

data a critical appreciation of the theory developed in 

Chapters 3 and 4 could be made.

It was essential that the experimental apparatus be as 

versatile as possible so that a range of data, for com­

parison with previous research in the field, could be

collected. This involved the ability to have laminar

t
or turbulent flow in the porous pipe and a whole range 

of suction and blowing velocities through the porous 

surface.

This chapter discusses the design of the experimental 

apparatus and the measuring techniques employed. A de­

tailed description is given of the experimental procedure 

and any difficulties encountered duri' experimenta­

tion are mentioned.

5.2 The Air Supply

To enable a wide range of data to be collected it was 

necessary to have an air supply which could deliver a



v a r i ^ y  of volume flow rates. The obvious choice was 

a centrifugal far.. When the design of the working sec­

tion was commenced, it was found that to be able to ob­

tain a large range of suction velocities a higher pres­

sure, than was available from a centrifugal fan wa£ 

required. (The design of the working section is described 

in section 5.4) The compressed air supply available 

in the laboratory gave a sufficiently high pressure but 

was unable to deliver air at the required volume flow 

rates. The air would have needed to be filtered before 

it was introduced into the porous specimens as it con­

tained moisture and grease droplets.

The final choice of air supply was a Roots type blower 

made by Howden Godfrey Ltd, driven by a variable speed 

belt type transmission. This was a positive displace­

ment blower which could deliver oil-free air up to a 

pressure of one atmosphere. Its maximum available air 

flow rate at sea level was 1 020,0 m 3/hr at 0,825 bar 

gauge pressure. The delivery end was fitted with a 

pressure relief valve of the spring loaded plate type.

The speed of the blower, and hence air flow rate, could 

be varied by changing the setting of the belt transmis­

sion. On the inlet side to the blower the air was 

cleaned through a foam filter thus eliminating particles 

down to five microns. Also on the inlet side was an 

orifice plate together with pressure tappings and a 

thermocouple to enable direct comparisons between air 

flow rates at the blower and those measured through the 

apparatus.

When in operation, especially under severe loading, the 

air would leave the blower at temperatures ranging from 

60 °C to 90 °C. It was therefore necessary to cool the 

aiv before it reached the working section of the apparatus.


























