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Abstract 

Genotyping arrays have been broadly used to identify signatures of selection with 

genome-wide scans. It has been reported that the markers contained in arrays donôt 

accurately represent the variation in full sequence data, especially in non-European 

populations, and that this may affect the results of selection studies.  The availability of 

whole genome sequence (WGS) data from various African populations has enabled the 

analysis of the extent to which ascertainment bias affects the detection of selection 

signals on this continent.  

Seven commonly used genotyping arrays were represented by creating in silico single 

nucleotide polymorphism (SNP) panels from WGS data of the African Genome Variation 

Project (AGVP) Baganda, Ethiopia and Zulu samples. Four types of selection scans 

(FST, iHS, XP-EHH and Tajimaôs D) were performed on both the array and WGS 

datasets, and the accuracy of selection signals identified from array data was assessed 

in relation to the WGS results.  

It was found that selection scans performed with array data produced a significant 

proportion of false positives and false negative signals. The EHH-based methods were 

least affected by ascertainment bias and  arrays with higher marker density generally 

produced more accurate results. The two arrays ascertained from African populations 

out-performed a more European-based array of similar size.  

Variation in marker density across the genome was found to underlie discrepancies 

between array and WGS selection signals, as genomic regions in array data containing 

fewer markers were less likely to be detected as selection signals. Of the selection 

signals identified from WGS but not array data, most were missed due to insufficient 

SNP density.  

To investigate the extent to which the selection signals from one Southeastern Bantu-

speaking (SEB) group is shared by another SEB group, selection scans on two 

independent SEB groups, namely the Bt20 and AGVP Zulu samples. The overlap in 
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selection signals between the samples was found to be limited, concurring with 

differential KhoeSan gene flow into these groups.  

It was found that various selection scan methods are differentially affected by 

ascertainment bias, and additionally, limited concordance was observed between the 

selection signals identified by different methods. A comparison of selection signals 

between the three AGVP populations revealed high population specificity of signals.    

Regions displaying signatures of selection were annotated for gene names and 

functionality, and both canonical and less well-established selection candidates were 

identified. These included genes associated with infectious diseases, cancer, 

metabolism, pigmentation, neuro-motor functions and high altitude adaptation. 
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1. Introduction 

1.1. Molecular evolution and selection  

The genomic variation of a population changes from one generation to the next, 

resulting in phenotypic transitions over a large timescale. This can take place due to 

neutral effects such as genetic drift, in which the random sampling of the parental 

generationôs genetic variation contributes to the successive generation. Other neutral 

evolutionary influences include demographic effects such as population size changes 

and migrations, which can introduce or remove variation (Bazin et al. 2010). Adaptive 

evolution occurs when genetic variants differentially affect survival in a certain 

environment, causing changes in a populationôs genomic composition. Most mutations in 

functional genomic regions are mildly deleterious, negatively affecting survival, and are 

removed by purifying selection (Bank et al. 2014). Conversely, positive directional 

selection occurs when a genetic variant confers a selective advantage, causing it to 

propagate more rapidly (Orr 2009). As the selected variant ósweepsô to high frequency, a 

detectable pattern of allelic variation is created in the surrounding region: a signature of 

selection (Chen et al. 2010). The availability of whole genome sequence (WGS) and 

high density genotyping array data has enabled genome-wide scans for signatures of 

selection. These patterns are studied to form hypotheses of evolutionary histories and 

identify functional genomic regions.  

1.2. Histories of populations studied   

Selection in Africa is interesting both because of the length of human history on the 

continent and the diversity of its ethnic groups. A debate rages around the origin of 

modern humans, as evidence is continually uncovered. The óSingle African Originô 

theory holds that modern humans originated in Africa around 200 thousand years ago 

(kya) before migrating within and out of Africa to populate the world (Campbell & 

Tishkoff 2010). The contesting óAfrican Multiregionalô model draws on evidence that 

modern human traits evolved in multiple locations within Africa (Henn et al. 2018).  
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The Out of Africa migration 50-100kya involved a bottleneck which reduced genomic 

variation in non-African populations (Campbell et al. 2014). The higher levels of diversity 

both within and between African populations are consistent with the large population 

sizes and substructure maintained throughout their long history on the continent. It 

should be noted that ópopulationô is a loose term which can be defined by genetic, 

geographic or linguistic affiliation, at various levels of similarity.  

1.2.1. Origins, migrations & languages 

The genetic relatedness of populations is loosely correlated with both the similarity of 

their languages and their geographic proximity (Tishkoff et al. 2009; Campbell et al. 

2014; Gomez et al. 2014). The diversity of Africa is reflected by its estimated 2,000 

languages, which can be grouped into four families: KhoeSan, Nilo-Saharan, Niger-

Kordofanian and Afroasiatic (Gomez et al. 2014).  

The Niger-Kordofanian family consists of agro-pastoralists from sub-Saharan Africa. The 

Bantu-speaking branch of this superfamily includes the Zulu- and Luganda- speaking 

groups (Tishkoff et al. 2009; Campbell et al. 2014) which were examined in this study. 

One of the greatest demographic upheavals on the continent occurred 3-5kya when 

waves of Bantu-speaking agropastoralists from the the Grasfields region, located within 

the current-day borderlands of Nigeria and Cameroon migrated throughout sub-Saharan 

Africa, arriving in southern Africa ~1.5kya (Chimusa et al. 2015). Eastern Bantu- 

speaking populations were formed by two admixture events between the western Bantu 

speakers and an Afro-Asiatic speaking population from Ethiopia, occurring 1-1.5kya and 

150-400 years ago (Patin et al. 2017). The Bantu expansion 2-3kya resulted in the 

spread of agriculture and admixture with pre-occurring populations (Beltrame et al. 

2016). Today, a majority (~70%) of southern Africans belong to the Bantu language 

group. The Southeastern Bantu-speaking (SEB) group referred to in this study is a 

diverse collection of populations which have diverged and admixed since the Bantu 

expansions into Southeastern Africa. The Zulu population which is part of the SEB group 

derives about 23% of its ancestry from recent (<1kya) admixture with the KhoeSan, the 

earliest diverging human population (Gronau et al 2011; Veeramah et al. 2011 and 

Schlebusch et al. 2012). 
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The third group of populations represented in this study consists of the Oromo, Amharic, 

Somali and Wolaytta speaking people of Ethiopia. The Amharic language group belongs 

to larger Semitic group, the Oromo and Somali to the Cushitic group, and the Welayta to 

the Omotic group. These languages belong to the Afro-Asiatic super-group, which is 

spoken in northern and eastern Africa. Afro-Asiatic speakers originally ranged from the 

Nile Valley to the Ethiopian highlands, before migrating east, west and north 8-5kya 

(Tishkoff et al. 2009). Back-migrations from Eurasia 2.7- 3.3kya as well as admixture with 

the Khoe-San contributed to the genomic variation of eastern Africans (Pickrell et al. 

2014). The divergence between the populations examined in this study is characterised 

by genome-wide average FST estimates, which were generated by the African Genome 

Variation Project (AGVP) (Gurdasani et al. 2015 supplemental information) 

Table 1.1 FST Estimates from WGS Data Generated by the AGVP Study 

Population Baganda  Zulu Oromo Amhara Somali 

Baganda  0.000           0.008 0.035 0.039 0.035 

Zulu 0.009 0.000 0.041 0.045 0.041 

Oromo 0.025 0.032 0.000 0.000 0.008 

Amhara 0.025 0.032 0.002 0.000 0.009 

Somali 0.037 0.044 0.018 0.017 0.000 

 

African genomes have been shaped by this complex demographic history, together with 

adaptation to a range of environments, climates, diets and pathogen exposures.  

1.2.2.  Previously identified signatures of selection in Africa 

Hundreds of genomic regions displaying signatures of selection have been detected, 

providing insight into historic adaptations. Following the advent of agriculture 10-12kya 

in the Middle East, global human populations underwent growths and migrations 

(Atkinson et al. 2009). These changes drove the spread of infectious diseases, while 

exposing populations to a range of environments and selective pressures (Voight et al. 

2006). These recent changes are reflected in African genomes by the enrichment of 

selected alleles which are at lower frequencies than in non-African genomes (Liu et al. 

2013). Selection on morphological and reproductive features is known to act on a larger 

timescale, while selection on metabolic and immune-related genes occurs in response to 

recent environmental changes (Voight et al. 2006). The strongest selective pressures 
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are expected to produce the clearest genetic signals, and some of the most well-known 

signatures of selection include regions related to immunity and metabolism (Sègurel et 

al. 2017; Vatsiou et al. 2016a). 

Infectious diseases are believed to have been one of the strongest drivers of recent 

human adaptation (Wills & Green 1995; Vatsiou et al. 2016a). Studies of population-

specific variation and signatures of selection have revealed possible causes of 

differences in disease susceptibility between populations, and accounted for the high 

frequencies of some deleterious alleles (Daub et al. 2013). Selection on variants which 

contribute immunity to infectious diseases may have simultaneously caused 

noninfectious diseases to rise to a high frequency (Gomez et al. 2014). Chimusa et al. 

(2015) found that many selection candidates in Southern Africa were associated with 

infectious diseases such as influenza, tuberculosis, and HIV/AIDs and malaria.  

A variety of subsistence strategies have been practiced in African history, including 

hunting and gathering, agriculture, and pastoralism. Dietary changes have presented 

strong selective pressures, and novel dietary adaptations include bitter taste perception, 

iodine metabolism, amylase copy number and lactase persistence (Beltrame et al. 

2016). These adaptations can be reconstructed by examining the characteristic patterns 

of genomic variation which they create. 

1.3. Signatures of selection  

As a selective sweep rapidly increases the prevalence of a selected allele, 

recombination is unable to break up the association with surrounding variants at a 

corresponding pace, leading to hitch-hiking of genomic segments with the selected 

allele. This association between closely located alleles is called linkage disequilibrium 

(LD) and the collection of alleles which occur together due to their proximity constitutes a 

haplotype (Reich et al. 2001; Sabeti et al. 2002). During a selective sweep, neighbouring 

variants óhitchhikeô to high frequencies together with the selected allele. This creates a 

long region of depleted variation, called extended haplotype homozygosity (EHH) 

(Sabeti et al. 2002).  
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New mutations eventually restore diversity, but these are initially present at low 

frequencies. Most novel mutations in functional regions are disadvantageous and are 

quickly removed by negative selection (also called purifying or background selection), 

creating highly conserved sequences. However, when neutral or mildly deleterious 

mutations occur in a region strongly affected by positive selection, they are óhiddenô from 

negative selection (Lewontin & Krauker 1973). This continues until the positively 

selected allele becomes fixed, occurring throughout the population and no longer having 

a relative advantage (Zhai et al. 2009). Thus, an excess of rare variants appears on the 

selected haplotype. This causes a shift in the distribution of allele frequencies, called the 

site frequency spectrum (SFS), away from intermediate frequency alleles (Tajima 1989).  

These effects are specific to the population experiencing a certain selective pressure. As 

populations in different environments experience distinct environmental influences, the 

divergence at selected sites becomes higher than at the genome-wide level. This 

increase in population differentiation can be detected as a signature of selection (Bank 

et al. 2014). Many methods to detect selection have been developed, all of which rely on 

certain characteristics of a sweep, detect selection at various time depths and have 

different assumptions. Creating robust methods to identify selection has proven 

challenging, and selection studies are packaged with a large index of limitations, 

confounders and caveats (Pavlidis et al. 2012; Fagny et al 2014; Vatsiou et al. 2016b).  

1.3.1. Variations of positive selection 

Selection does not always leave such a legible signature, and other modes of selection 

create complex patterns which are less detectable by genome scans (Enard et al. 2014). 

Balancing selection occurs when the heterozygote genotype is favoured. As both alleles 

are maintained in a population, the action of a selective pressure is less noticeable by 

comparison to frequencies of alternate alleles (Schrider & Kern 2017).  

Signatures of selection can also be obscured in the case of a soft selective sweep. 

When selection favours a novel beneficial mutation, the single haplotype on which the 

new variant occurs is driven to a high frequency in a óhard sweepô. However, an 

environmental change can cause a pre-existing variant to gain a selective advantage. 

Since this standing variation occurs on multiple haplotypes backgrounds, a soft sweep 
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produces a less clear signal, which most methods are underpowered to detect (Colonna 

et al. 2014; Vatsiou et al. 2016b). Schrider & Kern (2017) found that 92% of selective 

sweeps are soft, and that this proportion is significantly higher in African populations, as 

is expected since they have more standing variation for selection to act on. This means 

that selection in humans is not mutation-limited, and populations are able to adapt to 

changing conditions more rapidly, without needing to wait for a beneficial mutation to 

occur.  

The stronger a selective pressure, the faster the sweep takes place, and the less time 

there is for recombination to break up the haplotype. Thus, a stronger selective pressure 

will produce a longer region of EHH, which is easier to detect. However, in a larger 

haplotype block it is more difficult to distinguish the causal single nucleotide 

polymorphism (SNP) from hitchhiking variants (Sabeti et al. 2006).   

1.3.2.  Detecting signatures of selection  

Many methods have been developed to detect signatures of selection, and each assigns 

a value of a summary statistic to a genomic window.  Regions which display the 

characteristics of selection are expected to produce the most extreme values of these 

statistics. There are two possible approaches to detect regions with extreme values. The 

first option is to simulate genomic data under the standard neutral population model, 

which characterizes genomic variation in the absence of selection, to serve as a null 

hypothesis (Zhai et al. 2009). Real test data is then compared to provide p values 

indicating the likelihood of selection. The validity of the simulation approach is limited by 

its reliance on correctly specifying historic population parameters, which are not well 

characterized (Nielsen et al. 2005; Pavlidis et al. 2012; Ferrer-Admetlla et al. 2014).  

Alternatively, the outlier approach involves identifying selection candidates as the 

genomic regions with the highest values of a statistic, compared to the genome-wide 

empirical distribution (Manel et al. 2016). The genome is divided into windows of a 

predefined size, and a certain percentage of windows is chosen as an outlier threshold. 

Windows are ranked by their average value for the statistic and those with the most 

extreme scores are identified as outliers in the empirical distribution. The choice of 

window size is also not standard and variations between studies may affect results.  
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An advantage of the outlier approach is that results are more comparable between 

different methods (Ferrer-Admetlla et al. 2014). However, itôs unknown what percentage 

of the genome is truly affected by selection, so outlier thresholds are chosen arbitrarily. 

The outlier approach isnôt a formal significance test and will almost inevitably under- or 

over-estimate the percentage of the genome which is under selection (Granka et al. 

2012; Pavlidis et al. 2012). The proportion of false positive signals is still unknown and 

may be large (Teshima et al. 2006; Pickrell et al. 2009). Since they occupy a proportion 

of the tail of the empirical distribution, the number of false positives reduces the number 

of true positives (Pavlidis et al. 2012). 

A major challenge in identifying variants which are truly under positive selection is to 

distinguish the effects of this form of selection from other processes which produce 

similar changes in allele frequencies. Demographic effects which mimic the effect of 

selection include population expansions, bottlenecks, migrations, admixtures and 

subdivisions, and the proportional effect of various confounders is still unknown (Bank et 

al. 2014; Cadzow et al. 2014; Colonna et al. 2014). The outlier approach assumes that 

demographic effects produce uniform changes in variation throughout the genome, while 

selection produces local effects which stand out against genome-wide patterns (Manel 

et al. 2016). This assumption is generally true, but exceptions to the rule may result in 

many false classifications.  

1.4. Methods to detect selection 

Signatures of selection are characterized by an increase in population differentiation, 

extended haplotype homozygosity, and a shift in the SFS. Many selection statistics have 

been developed, and four were chosen for this study, each of which detects a different 

attribute of selective sweeps.  

1.4.1.  FST 

Wrightôs fixation index (FST) detects geographically localized selection which causes 

high divergence at a given site relative to the distribution across the genome (Colonna et 

al. 2014). FST compares the variance of allele frequencies within and between 

populations by subtracting the heterozygosity in a subpopulation from the heterozygosity 
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in the total population and standardizing by the total heterozygosity (Lewontin & 

Krakauer 1973). In a population without substructure, where allele frequencies are 

evenly spread between individuals, FST equals zero. Conversely, when two populations 

are maximally subdivided and different alleles are fixed in each, the FST value of the 

metapopulation will be 1 (Holsinger & Weir 2009). A local directional selective pressure 

can increase the frequency of a variant in one population but not another, shifting the 

FST value at the selected site closer to 1 (Holsinger & Weir 2009).  

1.4.1.1. FST: Time depth of selection 

FST scans detect selection events 50-75kya, or 2-3 thousand generations ago (Sabeti et 

al. 2006). The method has power to detect selection during the final stages of a sweep, 

when alleles approach fixation and become highly diverged (Vatsiou et al. 2016b). The 

method has been found to have over 98% power to identify selective sweeps under 

multiple simulated conditions (Colonna et al. 2014).   

1.4.1.2. FST: Considerations & confounders 

Results of FST scans are affected by the choice of comparative populations, which is 

often subjective (Duforet-Frobourg et al. 2015). Comparisons of more closely related 

populations will identify recent selection in a smaller geographic range (Pickrell et al. 

2009).  

There is high variability in individual marker scores, even for SNPs which are closely 

located. This is because individual SNPs have distinct genealogies, and can be highly 

diverged due to neutral processes. Single-locus estimates are much noisier than the 

average over a window, so a signature of divergent selection is instead identified as a 

stretch of adjacent SNPs with a high mean FST value (Weir et al. 2005; Manel et al. 

2016).  

This method has reduced power in the presence of hierarchical population structure, 

recent admixture and selection which acts similarly in both populations compared 

(Duforet-Frobourg et al. 2015). Background selection may increase differentiation at a 

locus by removing variation in one population but not in another, and resemble positive 
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selection (Fagny et al. 2014).  FST tests for selection are more vulnerable to false 

negatives than false positives, which is preferable (Manel et al. 2016).  

FST doesnôt indicate which of the two populations compared were affected by positive 

selection. This could have been achieved with a three-way FST method such as Locus-

specific branch lengths LSBL (Shriver et al. 2004), which relies on a third population as 

an outgroup to determine the proportion of differentiation attributed to each population.   

1.4.2.  EHH 

Under neutrality, an allele takes approximately 1 million years to reach a high frequency, 

and during this time the surrounding haplotype will usually be fragmented by 

recombination (Sabeti et al. 2006). Within 30,000 years, recombination will occur at least 

once in a 100 kilobase (kb) region (Sabeti et al. 2006). Therefore, common alleles 

typically arose long ago and occur on short haplotype blocks. However, a selected allele 

rapidly increases in frequency and occurs on a long, homozygous haplotype which is 

inconsistent with neutral expectations (Sabeti et al. 2002; Chen et al. 2010). Alternative 

alleles at the locus occur on a haplotype which resembles genome-wide patterns and 

serve as controls for the local recombination rate (Liu et al 2013). While LD under 

neutral conditions spans less than 0.02 cM, a selected haplotype ranges over 0.25 cM, 

and is detectable against background LD (Sabeti et al. 2002). A selective advantage of 

1% typically produces a stretch of EHH which spans ~600kb (Sabeti et al. 2006). EHH is 

the probability that two randomly sampled chromosomes are homozygous along the 

entire length between a core allele and a certain locus. In other words, it measures the 

extent of recombination as a function of distance from a focal allele, compared to other 

alleles at the core locus (Ferrer-Admetla 2014). EHH values range from 0, indicating that 

all regions carrying the core allele differ, to 1 when the region is homozygous in all 

chromosomes carrying the core allele (Sabeti et al. 2002). The integrated haplotype 

score (iHS) and cross-population extended haplotype homozygosity (XP-EHH) statistics, 

examined in this study, are derived from EHH. 
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1.4.2.1.  EHH: Time depth of selection 

LD begins to break down once the selected allele reaches an intermediate frequency, 

and is negligible by the time it reaches fixation, so EHH-based methods best detect the 

late stage of a sweep (Sabeti et al. 2002; Voight et al. 2006). These methods are 

underpowered to detect recently begun sweeps, or the slow-acting effect of a small 

selection coefficient (Cadzow et al. 2014). The signature is only detectable transiently, 

for about 10,000 years (400 generations) in humans, and only while selection is 

ongoing. Given the selection coefficients typical for humans, most advantageous 

variants that arose since the Bantu dispersals havenôt reached fixation. These recent 

variants are likely to remain polymorphic under the influence of changing environmental 

pressures, so EHH is a suitable approach to detecting selection in the human genome 

(Sabeti et al 2002).  

1.4.2.2.  EHH: Considerations & confounders 

Recombination rates vary throughout the genome, and recombination cold spots may 

mimic selection signals, while recombination hotspots can break up a long range 

haplotype and mask selection (Liu et al. 2013; Macleod et al. 2014). EHH-based 

methods rely on combined linkage-physical maps (Matise et al. 2007), which contain 

information on genetic distances, to prevent fine-scale LD patterns from 

disproportionately affecting estimates at different sites (Sabeti et al. 2006). Such maps 

are created from the data of multiple populations to control for population-specific 

demographic effects and local selection (Sabeti et al. 2007). EHH-based methods will 

have almost no power to detect sweeps which occurred in all populations from which the 

genetic map was constructed (Liu et al. 2013). Since haplotype blocks are shorter in 

Africa, the genetic distance between two SNPs in African genomes is biased towards 

over-estimation, while genetic distance is likely to be under-estimated in European 

populations (Liu et al. 2013). Despite this, EHH-based statistics have highest power in 

African populations. For example, iHS has 78.9% power to detect sweeps in African 

populations, and only 40.98% in Eurasian populations (Pickrell et al. 2009; Fagny et al. 

2014). The statistic is reported to out-perform SFS-based measures (Sabeti et al. 2006) 

while also concurring with SFS detected signals (Voight et al 2006).  
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The effect of LD isnôt masked by purifying selection, but non-equilibrium demographies 

can cause over-estimation of haplotype-based statistics (Pickrell et al. 2009; Fagny et al. 

2014). The method has less power for soft sweeps, but maintains reasonable power if 

the selection coefficient is high (Fagny et al. 2014; Vatsiou et al. 2016b). Although SFS-

based methods are more strongly confounded by demography, Ferrer-Admetlla et al. 

(2014) showed that population size changes also affect haplotype-based methods, in 

both European and African populations. A severe bottleneck can reduce rare variants 

and contribute to false positives in EHH-based selection scans which detect an increase 

in homozygosity (Pavlidis et al. 2012). Admixture may also create a false positive signal 

if an extended haplotype is introduced from another population. Alternatively, migrations 

can introduce variation which dilutes the pattern of homozygosity produced by selection 

(Vatsiou et al. 2016b). Genotype call errors can reduce the sensitivity of EHH-based 

statistics, as the miscalled variants can cause extended haplotypes to erode (Fagny et 

al. 2014).  The iHS and XP-EHH methods introduced below are based on the EHH 

statistic, so the properties discussed above also apply to sections 1.4.2.3 and 1.4.2.4.  

1.4.2.3.  iHS  

The iHS statistic builds on EHH by comparing the EHH of the ancestral and derived 

alleles in a single population. The alternative allele is assumed to be unaffected by 

selection, so serves as a control for background LD structure (Cadzow et al. 2014).  iHS 

is computed by finding the integral of EHH along the chromosome, in both directions 

away from the core SNP, until EHH reaches a value of 0.05, or a distance of 2.5 mega 

base pairs (Mb)  from the core SNP. The use of integrals accounts for both high EHH 

over a short range and moderate EHH over an extensive distance.  iHS is calculated for 

both the ancestral allele (iHSA)  and the derived allele (iHSD) and the unstandardized 

score is the natural logarithm of the ratio of these scores: iHS=ǎn(iHSA/ iHSD) (Liu et al. 

2013).  

Selection most often acts on the derived allele, producing a large negative iHS score, 

but selection on an ancestral allele is also possible, producing a large positive score 

(Sabeti et al. 2006). In order for iHS values to be comparable for SNPs of different allele 

frequencies, the score is normalized with respect to the mean and standard deviation of 

SNPs with a similar allele frequency to the core SNP (Sabeti et al. 2006).  
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An iHS value is calculated for each SNP in a dataset with a minor allele frequency 

(MAF) >5%, considering it the core SNP. Since a selective sweep affects the alleles 

around the target of selection, a collection of closely located SNPs with extreme iHS 

scores will produce a less variable signal than individual SNP scores (Manel et al. 2016). 

Although each class of methods is susceptible to heterogeneity in recombination rates, 

EHH-based methods using a ratio of alternative alleles are most robust, especially under 

the effect of population structure (Sabeti et al. 2006). The use of ratios can also control 

for mutation rate variation and model misspecifications (Ferrer-Admetla et al. 2014). iHS 

is powered to detect sweeps in samples of at least 40 chromosomes (Pickrell et al. 

2009).  

iHS has almost no power to detect a selected allele at low frequencies, but power 

reaches 80-100% at a frequency of 40% (Fagny et al. 2014). The statistic reaches 

maximum power for allele frequencies of 50-80%.  iHS has little power to detect sweeps 

which are approaching or have reached fixation because there are then few alternative 

alleles in the population with which to compare the selected allele (Sabeti et al. 2007; 

Vatsiou et al. 2016a). 

1.4.2.4.  XP-EHH  

XP-EHH is an extension of iHS which takes into account population differentiation. This 

method detects sweeps which have approached or reached fixation in one population, 

while the core SNP remains polymorphic in the comparative population.  (Sabeti et al. 

2007; Vatsiou et al. 2016a). XP-EHH contrasts iHS in two populations by calculating the 

score separately for each, and then finding the ratio of scores.  

EHH is calculated from a core SNP to a given distance away for all chromosomes in 

population A, before the result is integrated and called IA. IB is calculated in the same 

way for population B. XP-EHH is the log of the ratio of the integrated EHH in the two 

populations: XP-EHH= ǎn(IA/IB).  A region with a high density of extreme values 

constitutes evidence of selection, with positive values of the statistic indicating selection 

in population A, and a negative values pointing to selection in population B. As with iHS, 

the genome-wide score distribution is normalized to have a mean of zero and a unit 
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variance (Sabeti et al. 2007). XP-EHH maintains power with sample sizes of at least 20 

chromosomes (Pickrell et al. 2009).  

XP-EHH is a complementary approach to iHS, as inter-population comparisons may 

reveal signals too weak to detect within a population. While iHS detects sweeps at 

intermediate frequencies and loses power as the sweep approaches fixation, XP-EHH 

reaches its maximum power for allele frequencies of 80-100% (Voight et al. 2006; 

Vatsiou et al. 2016a). Neither method has power to detect sweeps at low frequencies 

(<30%). 

1.4.3. Tajimaôs D 

The site frequency spectrum quantifies the derived variants in a genomic region and 

represents the proportion of alleles at various frequencies. As an allele sweeps to 

fixation, the local depletion of variation causes a population-wide shift in the SFS away 

from intermediate-frequency alleles (Lewontin & Krauker 1973; Cadzow et al. 2014). The 

Tajimaôs D statistic measures this shift by comparing the number of pairwise differences 

between individuals to the number of segregating sites, which is equivalent to comparing 

the amount of diversity observed to the diversity expected in the absence of selection 

(Lewontin & Krauker 1973). It is calculated by subtracting Wattersonôs estimator from 

Tajimaôs estimator and dividing the result by the variance between the two estimators 

(Tajima 1989). A selective sweep initially causes a reduction in variation around the 

selected allele, as a single haplotype begins to sweep to fixation. This results in a local 

negative value of D. As the allele reaches fixation, new mutations appear in the 

homogenous background, creating an excess of rare variants. This inflates the number 

of segregating sites, in comparison to the number of pairwise differences and 

contributes to the negative value of D (Braverman et al. 1995).  

1.4.3.1. Tajimaôs D: Time depth of selection  

Tajimaôs D statistic has power to identify selection only during the later stages of a 

sweep and briefly after fixation (Zhai et al. 2009). SFS-based methods have greater 

power to detect older selective events, as they make use of the new mutations which 

accrue over time on the haplotype containing the selected allele (Cadzow et al. 2014). 
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SFS-based methods under-perform compared to EHH-based methods when the 

frequency of the selected allele is below 90%. Above this frequency, SFS-based 

methods have comparable power to EHH-based methods, and reach their maximum 

power when the allele has recently reached fixation (Ferrer-Admetlla et al. 2014).  This 

corresponds to sweeps within the last 250,000 years, or 10,000 generations (Sabeti et 

al., 2006). 

1.4.3.2. Tajimaôs D: Considerations & confounders 

Selection tests based on allele frequency distributions are most susceptible to 

population size changes, which alter the SFS (Tajima 1989; Cadzow et al 2014; Bank et 

al. 2014). Population expansions increase the proportion of rare variants, mimicking a 

selective sweep, while bottlenecks deplete genetic diversity and may mask a signature 

of selection (Nielsen 2005). Known population expansions such as the Bantu expansion 

and population growth of many African populations spurred by agriculturalism (Tishkoff 

et al. 2009; Campbell et al. 2014) might thus have created genomic patterns resembling 

signatures of selection.  

1.5. Population-specificity of selection 

Patterns of variation are known to differ between African and non-African genomes, and 

these differences can impact selection studies. A number of studies have found that 

selection is less prevalent in African than non-African genomes (Voight et al. 2006; 

Coop et al. 2009; Granka et al. 2012; Liu et al. 2013; Colonna et al. 2014). The following 

features specific to African genomes may contribute to distorting genomic signatures of 

selection when selection truly takes place. A higher proportion of soft sweeps has been 

observed in African populations (Schrider & Kern 2017), and this form of selection may 

be missed by methods which primarily detect hard sweeps. Additionally, regions of EHH 

are on average shorter in African populations, and less likely to be detected (Voight et 

al. 2006).  

A number of studies have shown that most signals in Africa are unique to a single 

population, but significant sharing between populations also occurs (Liu et al. 2013; 

Schrider & Kern 2016). Corresponding to this finding, regions with an extreme iHS score 
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in one population, but not in a second generally have a high FST value (Sabeti et al. 

2006). Liu et al. (2013) found that signals tend to be common to populations with shared 

ancestry, and that this occurs due to inheritance of the haplotypes rather than 

convergent evolution.  

1.6. Concordance between selection study results 

There is little agreement between lists of selection candidate genes produced by 

different studies of the same populations, and only a small proportion of selection 

candidates have been replicated (Voight et al. 2006; Hernandez et al. 2007; Oleksyk et 

al. 2010; Fagny et al 2014). For example, Lachance & Tishkoff (2013) noted that there is 

little overlap between the results of two genome-wide selection studies on the Pygmy, 

Hadza and Sandawe populations (Granka et al. 2012; Jarvis et al. 2012). Another meta-

study by Haasl et al. (2016) examined various studies on genetic adaptation to high 

altitude and observed that Bigham et al. (2010) identified the EGLN1 locus as a putative 

target of selection in the Tibetan and Andean populations, while Eichstadt et al. (2014) 

did not. Both reviews, together with others (Kelley et al. 2006; Manel et al. 2016), have 

drawn attention to the population specificity of signatures of selection, as well as 

discordant results from independent studies on a single population. 

This low concordance could be attributed to the use of different methods, which have 

dissimilar statistical properties and are purposed to detect selection at distinct time 

depths or stages of a sweep.  Studies only report their most significant results, and 

differences in the empirical outlier thresholds used may strongly influence results 

(Pavlidis et al. 2012; Fagny et al 2014). Ascertainment bias is another potential source 

of discrepancy in selection studies.  

1.7. Ascertainment bias introduced by SNP genotyping 

arrays 

SNP density and the distribution of markers across the genome can affect the accuracy 

of selection scans. Ascertainment bias can occur when the SNP markers constituting a 

genotyping array are not representative of the full complement of genetic variation 
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across the genome, resulting in parameters deviating from expected values (Nielsen et 

al 2005). This bias is introduced in the two-phase sampling process whereby SNPs 

discovered by resequencing a typically small number of individuals are used to genotype 

a larger sample of individuals (Weir et al. 2005; Albrechtsen et al. 2010). The probability 

of discovering a SNP is directly related to its frequency, so rare alleles are likely to 

remain undiscovered, while SNPs at intermediate frequency will be over-represented 

(Sethupathy & Hannenhalli 2008). Most SNP arrays only represent polymorphisms with 

MAF >5%, and have higher average derived allele frequencies than WGS data (Nielsen 

et al. 2011; Macleod et al. 2014). As a result, the frequency distribution is distorted and 

statistics relying on it are likely to be inaccurate (Granka et al. 2012; Clark et al. 2005). 

The marker SNP density of arrays is uneven across the genome, with various arrays 

either over- or under-representing different regions. 

1.7.1. The effect of ascertainment bias on selection 

summary statistics 

Statistics which detect the distortion in the SFS caused by selection are expected to be 

most strongly affected by ascertainment bias (Chen et al. 2010; Ferrer-Admetlla 2014). 

The increased proportion of common variants in arrays is likely to inflate Tajimaôs D 

measures and mask signatures of selection (Clark et al. 2005; Voight et al 2006). SFS-

based statistics were designed for full-sequence data, but have been used on 

ascertained data with the hope that genomic regions in which the SFS deviates the most 

will be identified nonetheless (Voight et al 2006). The bias towards high-frequency 

alleles was a major concern to studies of the HapMap data, and Sabeti et al. (2006) 

avoided test statistics relying on derived allele frequencies because of this. 

FST is likely to be affected by ascertainment bias since it is a function of the frequency 

spectrum. Population-specific variation generally occurs at lower frequency, so 

ascertained markers will be biased towards low FST values for two populations which are 

both distantly related to the ascertainment populations (Clark et al. 2005; Weir et al. 

2005; Chen et al. 2010). However, markers in LD with the selected variant should be 

highly differentiated, allowing the signal to be detected (Pickrell et al. 2009). Conversely, 

if a distantly related population is compared to the populations in the ascertainment 
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panel, FST is expected to increase (Albrechtsen et al. 2010). The extent to which FST 

measures are affected is determined by the differentiation between the genotyped and 

the ascertainment populations, so FST will be biased especially when the SNP discovery 

sample isnôt ethnically diverse. 

EHH-based methods are expected to be affected minimally by ascertainment, since 

markers occur on the same long haplotype as the selected variant, and should have 

risen to high frequency together with it (Sabeti et al. 2006). However, LD estimates 

might be either increased (Macleod et al. 2014) or decreased by low SNP density (Clark 

et al. 2005; Macleod et al. 2014; Goodwin et al. 2016). Since tag SNPs are chosen 

across the genome to represent haplotype blocks, areas with high LD are likely to be 

more sparsely sampled. Pickrell et al. (2009) analyzed data produced by the Human 

Genome Diversity Panel containing 650,000 common SNPs and found that the array 

has fewer markers in selected regions (as detected in HapMap data) than the genome-

wide average.  The effect of ascertainment bias is exacerbated when SNPs are 

ascertained from a population distantly related to the genotyped population, and 

coalescent simulations have shown that lower LD estimates occur as a result (Chimusa 

et al. 2015). Additionally, the iHS signal-to-noise ratio is lower in WGS data sets than in 

genotyping data sets because extended haplotypes are more rapidly broken in the 

presence of low-frequency variants (Grossman et al. 2013). 

1.7.2.  Correction for ascertainment bias in selection stiudies 

Bias could be diminished by modelling the ascertainment process, but this requires 

knowledge of the SNP discovery protocol used to create the genotyping platform, and 

this information is often unavailable (Ramírez-Soriano & Nielsen 2009; Chen et al. 

2010). The ascertainment process is complex and perhaps impossible to replicate 

(Nielsen et al. 2005; Lachance & Tishkoff 2013; Macleod et al. 2014). For example, the 

Perlegen study removed population identifiers, while the HapMap (International HapMap 

Consortium 2003) ascertainment criteria changed during the study. Clark et al. (2005) 

compared the heterozygosity of HapMap and Perlegen array data and found that the 

metrics differed significantly for the two datasets, even after ascertainment correction. 

They found that the HapMap data had a higher heterozygosity (a higher percentage of 
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common SNPs), and reasoned that the larger size of the Perlegen discovery sample 

would have facilitated identification of rarer alleles. This is expected, since the HapMap 

array was designed to capture common variation, but demonstrates the effect of the 

ascertainment process to skew genome-wide summary statistics. Correction for 

ascertainment relies on accounting for the ancestral constitution of the ascertainment 

sample but most SNP selection procedures rely on data from dbSNP (Sherry et al. 

2001), which was compiled from studies using different sample sizes and unclear ethnic 

distributions (Albrechtsen et al. 2010).  

1.7.3. Ascertainment bias in Africa 

More prevalent alleles are likely to be older and present in multiple populations, so a 

shift in the SFS caused by ascertainment bias may under-represent population 

differentiation. Since there is high divergence among some African populations, different 

groups might poorly represent the diversity of others (Gurdasani et al. 2015). Very rare 

variants may constitute a large proportion of African genomes, underlying the ómissing 

variabilityô that has been observed by numerous studies (Macleod et al. 2014). Since 

diversity varies both within and among populations, bias can be introduced when an 

array is used to genotype individuals from a population other than the one in which the 

markers were ascertained. This is especially problematic in African studies, as most 

arrays are Eurocentric and underrepresent African diversity (Colonna et al. 2014). The 

SFS differs in populations with African ancestry, and a greater proportion of selection 

candidates occur at lower frequencies of 30% or less. The abundance of rarer alleles 

corresponds to a genome-wide reduction in FST, indicating increased genomic diversity 

(Liu et al. 2013). Additionally, due to shorter haplotypes in Africa, a higher density of tag 

SNPs is required to represent African genomes (Chimusa et al. 2015). Some (but not all) 

studies have indicated that selection is less prevalent in African populations (Colonna et 

al. 2014; Granka et al. 2012). This observation may have been confounded by the use 

of Euro-centric genotyping arrays, since ascertainment has been less thorough in 

African populations (Colonna et al. 2014).  

For example, Granka et al. (2012) studied selection in Africa and found that patterns of 

SFS differentiation and haplotype sharing between populations were consistent with 
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neutral expectations, implying that many outliers were false positives. They suggested 

that population history is more causative of allele frequency differentiation than 

selection, since the extent of candidate overlap between populations mirrored genome-

wide patterns produced by population histories. They attributed this partially to 

ascertainment of SNPs from European populations, reasoning that the markers are 

unlikely to be in LD with SNPs which are selected in African populations. 

1.7.4.  Comparing identified selection signals between genotyping 

array and WGS data 

Until recently, selection studies have primarily been performed on array data, and 

investigators have speculated that the density of ascertained SNPs may affect statistics, 

even when ascertained from a closely related population (Sabeti et al. 2006; Granka et 

al. 2012). WGS data has allowed this unbiased characterization of the spectrum of allele 

frequencies in the genome, and has revealed much previously unknown diversity. For 

example,  Phase 1 of the 1000 Genomes Project (1000 Genomes Project Consortium 

2010) provided ten times more information than the HapMap Project (International 

HapMap Consortium 2003; Fagny et al. 2014) and this increase in SNP density is 

expected to improve the power to detect signatures of selection (Fagny et al. 2014). This 

warrants comparative investigation of the results of WGS and genotyping array data. 

Although the availability of WGS data is increasing, the use of array data has continued 

in recent studies, so such a comparison is relevant both in interpreting results of 

previous studies and in the choice of data to use in future studies. 

1.8. Study rationale 

Due to the scarcity of WGS data, genotyping array data has been analyzed by many 

selection studies. Arrays have typically been designed to represent more common 

alleles in association studies, and have been shown to skew population genetic 

summary statistics (Nielsen et al 2005; Albrechtsen et al. 2010). Additionally, arrays are 

known to represent African genomes less effectively than the European populations 

(Colonna et al. 2014; Chimusa et al. 2015), which are over-represented in ascertainment 

samples. A direct comparison of the results of selection scans from different genotyping 



 

20 
 

arrays to results of WGS data has not yet been conducted. Low levels of overlap have 

been reported for different selection studies (Voight et al. 2006; Hernandez et al. 2007; 

Oleksyk et al. 2010; Fagny et al 2014) and multiple variables including ascertainment 

bias may have contributed to differences in results. For example, various selection 

statistics may be differentially affected by reduced SNP density. Additionally, if 

population structure is present, ascertainment bias may be introduced on the level of the 

individuals sampled to represent a population.  

1.8.1.  Aim 

To determine the effect of ascertainment bias and other potential influences on the 

results of selection studies.  

1.8.2.  Objectives 

1. Assess the accuracy with which various genotyping arrays represent whole 

genome sequence data in selection studies and identify the arrays best suited for 

African populations 

2. Examine the effect of SNP density per window on the detection of selection 

signals 

3. Assess the concordance between selection signal results from two independent 

samples of the SEB group 

4. Determine the concordance between the selection signals detected by different 

methods 

5. Quantify the amount of selection signal sharing between populations 

6. Annotate selection candidates with gene names and functional descriptions, and 

highlight novel signals 
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2. Methods 

2.1. Genetic datasets 

This study analyzed publicly accessible WGS and genotyping array data from two 

projects, for which individual identifiers have been anonymized. Firstly, the AGVP 

(Gurdasani et al. 2015) sequenced individuals across sub-Saharan Africa at 3x 

coverage. The sampled populations include the Zulu population from South Africa, the 

Baganda population of Uganda, and four Ethiopian ethnic groups: the Wolayta, Oromo, 

Somali and Amhara. The Ethiopian sub-populations were pooled to increase sample 

size.  

The geographic locations of these populations are shown in Figure 2.1.   

 

Figure 2.1: Map of Africa highlighting the locations of the populations sampled by the AGVP. 

Secondly, the Birth to Twenty (Bt20) is a multidisciplinary, longitudinal study which has 

included genotyping a subset of the Sowetan cohort with the high-density Illumina 

Human Omni 5 genotyping array (May et al. 2013). The population of Soweto, South 
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Africa, constitutes ethnolinguistic groups belonging to the broader group of SEB group. 

The sample subsets are summarized in Table 2.1.  

Table 2.1: Samples included in this study 

Population Country Data type Study Sample size 

South African Black (Zulu-speaking) South Africa WGS AGVP 100 

Baganda Uganda WGS AGVP 100 

Amhara, Oromo, Somali & Wolayta Ethiopia WGS AGVP 72 

South African Black South Africa Illumina HumanOmni 5M 

array 

Bt20 94 

 

2.2. Raw data quality control 

Data was received in the form of Variant Call Format (VCF) files, which had previously 

been filtered to retain only high quality variant calls. Quality control was performed for 

autosomal data with PLINK version 1.9 (Purcell et al. 2007) and VCFtools version 0.1.16 

(Danecek et al. 2011) software. This involved removing indels, as well as multi-allelic 

and duplicate SNPs. Individuals with missingness >2% and SNPs with missingness >1% 

were removed. No MAF cutoff was applied to the input data for FST and Tajima's D. 

Although it is advised to remove low-frequency alleles in low coverage WGS data, these 

selection statistics rely on rare alleles to identify signatures of selection. Conversely, 

EHH-based scans are concerned with alleles which have risen to appreciable frequency, 

so for iHS and XP-EHH, alleles with a frequency <5% were automatically excluded by 

Selscan (Szpiech et al. 2014). As EHH-based scans use genetic distance information to 

control for genomic recombination rate variation, genetic map coordinates were added 

from the Rutgers Combined Linkage-Physical Map (Matise et al. 2007). Phasing was 

performed for the Bt20 data with the 1000 Genomes Phase 3 data (1000 Genomes 

Project Consortium 2012) as a reference, using SHAPEIT2 (Delaneau et al., 2013). The 

AGVP data was previously phased using SHAPEIT2 and standard parameters 

(Gurdasani et al. 2015 supplemental information) with the 1000 Genomes panel (1000 

Genomes Project Consortium 2010) as a reference. 
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2.3. Generation of in silico genotyping data 

The effect of ascertainment bias in selection studies was assessed by comparing the 

results of selection scans from WGS data to those of array data. The WGS data was 

downsized based on the SNP contents of different genotyping arrays, to generate in 

silico genotype data, using VCFtools. Data produced by real genotyping arrays has 

lower genotyping error rates than low coverage WGS data, so the process followed here 

might not perfectly represent real array data (Nielsen et al. 2011). This potential 

discrepancy would be expected to most strongly impact Tajimaôs D, which relies on rare 

alleles to detect selection. The genotyping arrays examined in this study include some of 

the most widely used high-density genome-wide arrays, as well as two which aim to 

represent African diversity. The arrays are summarized in Table 2.2. The Axiom® 

Genome-Wide PanAFR Array Set (PanAFR) was designed to capture the genetic 

variation of the Yoruba population, while the H3Africa Array (H3A) was recently 

designed to capture diversity in numerous populations of sub-Saharan Africa. Many 

marker SNPs of the Illumina Omni 1 and Omni 2.5 arrays are contained in Omni 5, and 

all three arrays were assessed to investigate whether some signals of selection are 

missed when using a less dense panel. The list of SNPs included in these arrays was 

provided by thhe H3Africa array design team.  

Table 2.2: SNP markers (millions) per array, before and after quality control (QC) 

Genotyping Array 

(Simulated) 

Markers pre-QC Markers post-QC 

Affymetrix 6.0 (Affy 6)                          0.90 0.88 

Illumina Omni 1.0 (Omni 1)                                    1.10 0.96 

Mega 2.5 1.40 1.35 

Illumina H3A (H3A)                            2.30 2.07 

Affymetrix PanAFR 

(PanAFR)          

2.20  2.15 

Illumina Omni 2.5 (Omni 

2.5)                      

2.30 2.18 

Illumina Omni 5 (Omni 5)                         4.30 3.67 
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2.4. Methods used to detect selection signals 

Four commonly used scans for signatures of selection were performed on both the WGS 

and simulated genotyping array data.  

Weir and Cockerhamôs FST statistic (Weir & Cockerham 1984) was computed for each 

pair of populations with VCFtools. The input consisted of a VCF file containing both 

populations compared, together with a text file containing individual identifiers per 

population. Tajimaôs D statistic was also obtained using VCFtools. The program requires 

a separate input file for each population, containing standard genotype data in VCF 

format. iHS and XP-EHH scans were performed with Selscan version 1.2.0 (Szpiech 

2014). The program requires phased, biallelic genotype data in VCF format, as well as a 

PLINK formatted map file composed of physical and genetic map information. XP-EHH 

requires a separate input VCF file per population, and the two files must contain 

identical loci. The default Selscan parameters were used, in accordance with Voight et 

al. (2006). Scores were standardized by allele frequencies, using the program norm 

version 1.2.1 provided by GNU GSL. 

A signature of selection is formed by a region of SNPs with extreme values for a 

selection statistic, and single SNP scores are too variable to be considered as signals. 

Thus, scores of all SNPs within a 10kb window were summarized (Manel et al. 2016).  

For FST scans, the mean weighted FST for the region was estimated by VCFtools, 

whereas for EHH-based scans the average of the highest 5 scores in a window was 

considered. Non-overlapping windows were used to facilitate comparison between 

methods, populations and arrays. Windows in the iHS and XP-EHH results were 

retained only if they contained at least 20 SNPs with selections statistic scores for WGS 

data and 10 SNPs for array data. The cut-off was lowered for array data to compensate 

for reduced SNP density. From the results of FST and Tajimaôs D scans, windows were 

discarded if they contained fewer than 10 SNPs per window.  

Selection signals were identified as outliers: windows with the most extreme scores for 

the selection summary statistics. Windows were sorted according to their value for each 

statistic and regions beyond a certain percentile of the score distribution were then 
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isolated.This threshold can be considered the minimum empirical P-value for the 

windows in the score distribution (Teshima et al. 2006).  

A signature of selection usually spans a large region, so adjacent outlying windows are 

likely to be part of the same signal. Therefore, outlying windows separated by a distance 

of 10kb or less were merged using BEDtools version 2.14.3 (Quinlan & Hall 2010) 

before further comparison.  

2.5. The accuracy with which various genotyping arrays 

represent whole genome sequence data in selection 

studies 

The concordance between array and WGS results was assessed by assigning accuracy 

measure classifications to each genomic window. The WGS outliers were considered 

the 'true' results, while the array outliers were labelled as 'positive' results. True positive 

(TP) results were identified as windows which were outliers in the score distributions of 

both array selection scan results and the WGS results. Windows were considered false 

positives (FP) if they were outliers in the results of an array but not the WGS score 

distribution. False negative (FN) windows were those which were outlying in the WGS 

score distribution, but not in the results of an array. Finally, true negative (TN) windows 

were defined as regions which fell below the outlier threshold in both the WGS and array 

results. These classifications are summarized in Table 2.3.  

Table 2.3: Contingency table for the accuracy of selection signals identified from array data with 
various outlier thresholds, in comparison to WGS 1% outliers.  

 WGS top 1% 

outliers 

(selected) 

WGS 99th 

percentile (not 

selected) 

Array top x% outliers 

(selected) 

TP FP 

Array (100-x)th percentile (not 

selected) 

FN TN 
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 Since adjacent outlying windows had been merged, windows were not equally sized 

and could not be compared directly between the WGS and array data by their start 

positions. Instead, the overlap of windows was considered when comparing datasets. 

BEDtools was used to find the various intersections between datasets. The true positive 

rate (TPR) and false positive rate (FPR) for 1% outliers were represented per array in 

bar graphs per population and method. The TPR was computed by dividing the number 

of TP windows by the sum of the TP and FN windows: TPR=TP/(TP+FN). The FPR was 

calculated by dividing the number of false positive windows by the sum of FP and TN 

windows: FPR=FP/(FP+TN). The choice of outlier threshold is somewhat arbitrary, but 

1% is a commonly used cut-off.  

Next, the rank of FN windows within the array score distribution was explored. It was 

assumed that if a WGS outlier was not within the 1% outlier threshold of an array, it 

could occur within a slightly wider outlier threshold. To examine the rank of these FN 

windows in the array score distribution, the outlier threshold for the array results were 

incrementally increased, and windows were classified into accuracy measure categories 

by comparison to the WGS 1% outliers. Various outlier thresholds were defined, ranging 

from 0.5% to 5%, in increments of 0.5%. These results were summarized by calculating 

the true positive rate (TPR) and false positive rate (FPR) for each array at each outlier 

threshold. The TPR and FPR over the range of outlier thresholds were visualized in a 

joint line graph where each array was represented as a line.  

The correlation between the scores of the WGS outliers and the scores of the 

corresponding windows in the array results was examined. To determine the appropriate 

correlation coefficient, normality tests were performed on the score distributions for a 

few of the datasets.  The Anderson-Darling test was performed for the WGS outlier 

score distribution, including only windows represented by the Omni 5 array. This was 

done for all selection summary statistics and populations at significance levels of 1, 2.5, 

5, 10 and 15. The statistic scores and critical values are provided in Supplemental Table 

2. All tested datasets deviated from normality, at all significance levels. This informed 

the choice of a non-parametric test, Kendallôs Tau coefficient (also called Kendallôs rank 

correlation coefficient). This statistics is a measure of the nonlinear relationship, or rank 

correlation between two distributions, on a scale of -1 to 1. For each window in the 

outlying 1% of the WGS score distribution, the WGS score was compared to the array 
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score, regardless of whether the window was an outlier in the array score distribution. A 

value of Kendallôs tau was obtained for each data subset, defined by array, population 

and selection method. All the above statistical tests were implemented with Pythonôs 

SciPy library version 0.19.0.  

To visualize the relationship between the values of the selection test statistics of the 

WGS and array data, the corresponding scores of each window were plotted against 

each other in a scatter plot. The axes were given the same scale to enable comparison 

of WGS and array scores. 

As a final assessment of the performance of array data in selection studies, the 

percentage of array outliers which were true positives was considered. The percentage 

of true positives (TP%) was calculated by dividing the number of true positive windows 

by the total number of outlying windows in the array score distribution: TP% = 

[TP/(TP+FP)]*100. The various arrays have different sizes, and therefore different 

numbers of outlying windows. The TP% can be used to compare arrays of different 

sizes, while comparing the absolute number of TP windows between arrays would not 

be informative.  The TP% of the arrays were plotted in bar graphs with Pythonôs Pandas 

library. Arrays were presented in ascending order of marker density.  

The effect of ascertainment bias on selection studies was further explored by comparing 

the concordance between results of different arrays. Differences in results between 

arrays could be due to either unequal SNP density, or the choice of markers with which 

an array was created. The number of selection signals (1% outliers) shared by various 

combinations of arrays was found with BEDtools. To visualize the size of the 

intersections between the outliers of different arrays, UpSet plots were created with the 

R UpSetR library (Conway et al. 2017). This was done For FST, the Bt20 and Zulu samples 

were each paired with the AVGP for each population and selection scan method. UpSet 

plots display the sizes of intersections, with a group shown by dark circles below the 

plot, and the size of an intersection given by the height of a bar.  
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2.6. The effect of SNP density per window on the detection 

of selection signals 

To assess the relationship between SNP density and accuracy measure classifications, 

SNP density per 10kb window in the array data was examined as a percentage of SNPs 

in the corresponding WGS window. Percentages, rather than absolute SNP counts, 

were considered to control for the variation of SNP density throughout the genome and 

isolate the effect of array SNP density. SNP density distributions were examined per 

accuracy measure category to determine how strongly these classifications are affected 

by SNP density. The distributions were represented with box plots, created with Pythonôs 

Seaborn library version 0.9.0, and the mean, median and standard deviation were 

calculated for each using Pythonôs SciPy library. To determine the significance of the 

difference between the distributions for each pair of accuracy measure classifications, 

the Mann-Whitney U statistic was calculated with SciPy. 

Many windows with less than 10 or 20 scores had been removed from the results, and 

are not represented in these distributions. Therefore the proportion of FN windows which 

were removed due to insufficient SNP density was calculated.  

2.7. The concordance between selection signals identified 

from two independent samples of the Southeastern 

Bantu-speaking group 

To investigate the extent of overlap between signals, three selection scans were 

performed on two independent samples of the SEB group: the Bt20 and AGVP Zulu 

samples. The Bt20 sample was genotyped on the Omni 5 array, so to directly compare 

the AGVP Zulu sample, the SNPs corresponding to the Omni 5 array were extracted 

from the AGVP WGS data. FST, iHS and Tajimaôs D scans were performed with 10kb 

windows. For FST, which compares two populations, the Bt20 and AGVP Zulu samples 

were each paired with the AGVP Baganda and Ethiopian samples. Windows with fewer 

than 10 SNPs were discarded. Signatures of selection were identified as outliers in the 

empirical score distribution by applying three increasingly stringent outlier thresholds: 
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0.1%, 0.05% and 0.01%. Adjacent outlier windows were merged, before the extent of 

the concordance between selection signals of the Bt20 and AGVP Zulu results was 

assessed. Outlying windows which overlap between the two samples were identified 

with BEDtools version 2.27.0 and the percentage of outliers shared by both samples 

was calculated. The probability that two datasets of specified size share a certain 

number of windows was found with the hypergeometric probability formula, using the 

calculator on nemates.org (Lund 2005).  The hypergeometric distribution was here 

parameterized by the total number of windows, the number of outliers and the number of 

outliers shared by the two datasets (Bt20 and AGVP). The representation factor was 

calculated by dividing the number of overlapping windows by the number expected in 

the intersection. A value greater than 1 indicates that the two datasets have more 

windows in common than expected by chance, while a value below 1 indicates less 

overlap than expected. A representation factor value of 1 signifies the null hypothesis 

and would be obtained if the number of overlapping windows matches the expectation 

for two independent datasets. 

2.8. The agreement between the results of different 

methods 

Signals from the four selection scans were compared for the Zulu population or Zulu and 

Ethiopia population pair. Single-population and two-population methods might not be 

directly comparable, since differences could reflect selection on the Ethiopia population. 

Nonetheless, the concordance was examined by finding the number of selection 

candidates which were identified by various combinations of methods and representing 

the signal sharing in an UpSet plot.  

2.9. The amount of signal sharing between populations 

An approach similar to Section 2.8 was employed to investigate the concordance 

between the signals identified in the three populations. The 1% outliers (observed for 

each method) shared between these populations were identified and the number of 

windows in each intersection of populations was represented as an UpSet plot.  
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2.10. Selection candidates which were not identified from 

any array using any selection scan method 

Ascertainment bias was further explored by creating a shortlist of the strongest signals 

which were missed by all arrays. A stringent outlier threshold of 0.01% was applied to 

the results of each selection method, for both the WGS and array data. Results from the 

array data were compared to the WGS results and FN windows were isolated. These 

windows were annotated with gene names from Ensembl GRCh37 (Zerbino et al. 2017). 

Since signals which are identified by multiple methods are more robust, only genes 

which were false negatives for two selection scan methods were retained. Signals 

detected using methods using single-population estimates and inter-population 

estimates were considered separately. The resulting lists of genes consisted of the top 

signals which were false negatives in the results from all arrays.   

2.11.  Functional annotation of selection candidates 

An outlier threshold of 0.05% was applied to isolate candidate regions from the WGS 

results. Of these outliers, only those identified by two methods per population or 

population pair were retained. This shortlist was annotated with gene names, gene 

descriptions phenotype descriptions, and gene ontology (GO) terms retrieved from the 

Ensembl Human Genes (GRCh37.p13) database (Ensembl Genes version 93) using the 

BioMart tool (Smedley et al. 2015). 

The genes for which Ensembl provides both gene descriptions and phenotype 

descriptions were tabulated.  The 50 most common GO terms across all populations and 

methods were identified and listed.  

It was thought that this study might identify selection candidates which have not been 

reported by previous studies. To identify novel selection candidates, the windows in the 

0.05% tail of the WGS results were compared to a modified list of previously identified 

selection candidates was then used for comparison (Choudhury et al. 2017 personal 

communications). The list was created from the dbPSHP dataset (Li et al. 2014) by 

removing genes from studies which listed more than 1,000 entries, since they might 

have used an outlier threshold which was fairly large. Genes were added from 
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publications post-dating 2014, which werenôt included in the dbPSHP dataset. Windows 

of 10Kb which overlap with genes which do not appear in the modified dbPSHP 

database were considered as novel signals.   
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3. Results 

3.1. The accuracy with which various genotyping arrays 

represent whole genome sequence variation in selection 

studies 

The primary research question was to assess the impact of ascertainment bias of the 

SNP markers of commercial arrays on detecting signatures of selection. To evaluate 

this, the results of selection scans performed on array data were compared to the results 

from WGS data. This analysis was conducted for four different methods that are 

commonly used to assess signatures of selection to detect any possible variation in the 

level of accuracy between these methods. Moreover, this analysis was repeated in three 

different populations to verify whether the observed trends are restricted to a single 

population or are consistent across populations. 

3.1.1. True positive rates and false positive rates of 1% outliers 

Firstly, selection signals identified in array and WGS results were compared in terms of 

accuracy measures for each array. The 1% outliers from selection scans performed on 

WGS data were considered ótrueô signals. If the same signals were also observed in the 

outlying 1% of the score distribution from array results, these windows were classified as 

ótrue positiveô. Signals observed as outliers only in array results were considered ófalse 

positiveô. The number of windows within each accuracy category was counted to 

calculate accuracy measures for each array, population, selection summary statistic, 

and outlier threshold (Appendix 2). Figure 3.1 displays the TPR and FPR for all 

populations.  

The FPR values were much lower than the TPR values because the TN category 

(contributing to the denominator in the TPR equation) necessarily contained the largest 

proportion of windows. For all methods, TPR is correlated with the number of markers in 

an array. Although TPR and FPR were analyzed to partially equalize the effect of SNP 

density per array, it was clear that the number of markers strongly influenced the 

accuracy of results.  
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Figure 3.1.1: The true positive rate (TPR) and false positive rate (FPR) of each array at a 1% 

outlier threshold, for the FST method. Arrays are presented in ascending order of the number of 

markers they contain. a. TPR; Baganda and Ethiopia, b. FPR; Baganda and Ethiopia, c. TPR; 

Baganda and Zulu, d. FPR; Baganda and Zulu, e. TPR; Ethiopia and Zulu, f. FPR; Ethiopia and 

Zulu 
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Figure 3.1.2: The true positive rate (TPR) and false positive rate (FPR) of each array at a 1% 

outlier threshold, for the iHS method. Arrays are presented in ascending order of the number of 

markers they contain. a. TPR; Baganda, b. FPR; Baganda, c. TPR; Ethiopia, d. FPR; Ethiopia, e. 

TPR; Zulu, f. FPR; Zulu 
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Figure 3.1.3: The true positive rate (TPR) and false positive rate (FPR) of each array at a 1% 

outlier threshold, for the XP-EHH method. Arrays are presented in ascending order of the 

number of markers they contain. a. TPR; Baganda and Ethiopia, b. FPR; Baganda and Ethiopia, 

c. TPR; Baganda and Zulu, d. FPR; Baganda and Zulu, e. TPR; Ethiopia and Zulu, f. FPR; 

Ethiopia and Zulu 
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Figure 3.1.4: The true positive rate (TPR) and false positive rate (FPR) of each array at a 1% 

outlier threshold, for the Tajimaôs D method. Arrays are presented in ascending order of the 

number of markers they contain. a. TPR; Baganda, b. FPR; Baganda, c. TPR; Ethiopia, d. FPR; 

Ethiopia, e. TPR; Zulu, f. FPR; Zulu 

The results of the FST method (Fig 3.1a) show that the TPR increases with array size. 

The arrays of approximately 1 million SNPs (M) produced TPR values of around 0.005, 

while the 2.5M arrays produced TPR values of around 0.08. The 5M array produced 

TPR values of around 0.25, similar to those of the EHH-based methods. Therefore, 

while the 2.5M arrays performed only 1.5 times better than the 1M array, the 5M array 

delivered almost 3 fold higher accuracy compared to the 2.5M array. 
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Results from the iHS selection scan show that higher TPR values are produced by the 

approximately 2.5M arrays, in comparison to the 1M arrays. However, no pronounced 

difference in TPR was observed for the 5M array (Omni 5), in comparison to the 2.5M 

arrays (Figure 3.1b). This can be explained by the array design, since the 5M array was 

purposed to capture variation at the level of rare variants (MAF<0.05), which were 

removed by the Selscan program prior to the selection scans. Conversely, the content of 

common SNPs (MAF>0.05) is comparable between the Omni 2.5 and Omni 5 arrays. 

Among the 2.5 M arrays, differences in the TPR were observed, with the PanAFR 

showing the highest TRP, followed by H3A and Omni 2.5, across all populations. 

Although differences in FPR between these arrays were less pronounced, Omni 2.5 

showed the highest FPR values across almost all populations.  

A similar trend was also observed for the XP-EHH estimates (Figure 3.1c). The results 

indicated that the two African-based arrays (PanAFR and H3A) are more accurate than 

Omni 2.5, a European-based array of similar size.  

Tajimaôs D had the lowest TPR in comparison to other methods (Figure 3.1d). For 

example, the Affy 6 results for the Zulu data contain only 5 TP windows, leading to a low 

TPR of 2.42x10-3.  Although a trend of linear increase with size was observed, for 

Tajimaôs D, the largest array (Omni 5M) only achieved a TPR value similar to those for 

the smallest arrays with the EHH-based methods.  

The highest TPR among these analyses was 0.45, observed for Omni 5 and the XP-

EHH method for the Baganda and Ethiopian population pair (Appendix 2.4.a).  

Concurrently, the FPR values were highest for the smallest array and lowest for the 

largest array. 

For all arrays and selection scan methodss, the FPR values were much lower than the 

TPR values. This is primarily because the TN category (contributing to the denominator 

in the TPR equation) necessarily contained the largest proportion of windows. For all 

methods, TPR was correlated with the number of markers in an array. Although TPR 

and FPR were analyzed to partially equalize the effect of SNP density per array, it was 

clear that the number of markers strongly influenced the accuracy of results.   
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3.1.2. The positions of WGS 1% outliers in the array score 

distributions 

The accuracy of array results was further explored by examining the spread of WGS 1% 

outliers within a larger tail of the array score distributions. If the FN windows from the 

previous analysis had selection statistic scores which are close to the outlier threshold, 

this would indicate that the array delivering more accurate results than if the FN windows 

occurred towards the opposite tail of the distribution. The analysis was done by 

calculating the TPR and FPR over a range of outlier thresholds for the arrays, in 

comparison to the WGS 1% outliers. Figure 3.2 shows the results for the Zulu population 

and Ethiopia and Zulu pair. Plots for the remaining populations are available in Appendix 

3.  

The metrics plotted are reminiscent of a ROC curve, but these plots deviate from 

conventions by containing values for only the outlier thresholds of interest. As a result, 

the axes have different scales and the TPR and FPR ranges differ for each array. The 

outlier thresholds are not explicitly shown because this is a convention for ROC curves. 

The results show a clear relationship between array size, ascertainment bias of the array 

and the algorithm used for detecting signatures of selection. No MAF filter was applied 

for FST and Tajimaôs D. As a result, the most accurate results were produced by the 

largest array (Omni 5), which contains the largest number of rare alleles. The difference 

between the 2.5M arrays and the 1M arrays was more pronounced with the FST method 

than with Tajimaôs D.  

With the EHH-based methods, the larger arrays produced higher TPR values and lower 

FPR values. The difference between 2.5 M arrays and the 5M array was much more 

notable for the XP-EHH based estimates. Among the three 2.5 M arrays compared, the 

PanAFR performed slightly better in terms of both TRP and FPR. The PanAFR and H3A 

array out-performed the Omni 2.5 array, despite the similar SNP densities of the three 

arrays. This likely reveals the importance of enrichment of African-specific common 

variants for detecting selection signals.  
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Figure 3.2: The change in true positive rate (TPR) and false positive rate (FPR) of each array 

over a range of outlier thresholds between 0.5% and 5.0%, in increments of 0.5%, calculated in 

comparison to the WGS 1% outliers. The thresholds are not explicitly shown because this is a 

convention for ROC curves, on which these graphs are based. The most SNP-dense arrays 

tended to produce the highest TPR values, while with most methods, the smallest arrays 

produced low TPR and FPR values. PanAFR and H3A tended to out-perform Omni 2.5. XP-EHH 

produced the highest TPR values and Tajimaôs D the lowest. a. FST; Ethiopia and Zulu, b. iHS; 

Zulu, c. XP-EHH; Ethiopia and Zulu, d. Tajimaôs D; Zulu 

The results also indicated that Tajimaôs D estimates based on chip data might not be 

very reliable, while the other three methods generated reasonable TPR values which 

were greater than 30% at an FRP of 0.01. 

The gradients of the lines can be used to infer the trade-off between the TPR and FPR, 

with steeper gradients indicating that the increase in TPR is not counter-balanced by an 

increase in FPR. The steepest gradients occur between the lowest outlier thresholds, 

specifically between the 0.05% and 1% thresholds.  
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3.1.3. The percentage of array outliers which are true positives 

To estimate the reliability of selection signals that can be expected with currently 

available genotyping arrays, the percentage of array 1% outliers which were true 

positives (TP%) was calculated by comparison to results from WGS data. Since the 

selection scan results of a smaller array is more likely to contain more FN windows, TPR 

and FPR measures were clearly impacted by the size of the arrays. Thus, this analysis 

may provide better estimates of the accuracy of signals produced from array data.  

Figure 3.3 shows the TP% values for the Zulu population or Ethiopia and Zulu 

population pair. Results for the other populations are provided in Appendix 4 and show 

very similar trends.  

The results for FST showed a clear difference between the trends in the distribution of 

TP% compared to the trends in TPR seen in the previous two analyses. Although the 

TPR of the Affy 6 array was found to be very low, at 1.85x10-2 (Appendix 2.a.), the TP% 

values were the highest achieved with any array. Omni 1 also demonstrated a very high 

TP% compared to other arrays. The highest TP% was 47.54%, for the Affy 6 array, for 

the pairwise FST between the Ethiopia and Zulu samples (Figure 3.3.a). The comparison 

between the TPR and TP% indicate that while the smaller arrays might miss many WGS 

signals, the outliers identified with these arrays were fairly accurate. This also 

corresponded with the low FPR values observed for the smallest arrays.  

The TP% values produced by the EHH-based methods, however, followed the trends 

seen with TPR (Figure 3.1.c). As observed with TPR, the PanAFR and H3A arrays 

produced higher TP% values compared to the similarly sized Omni 2.5 array. The TP% 

values for the three smaller arrays were very low: for example, only 2.43% of the signals 

produced by Affy 6 with XP-EHH were TPs.  

While the ranking of arrays by TP% was similar among different populations for FST, iHS 

and XP-EHH, it differed between populations for the results of Tajimaôs D (Appendix 4). 

Moreover, there was almost no relation between array size and TP%. The Omni 1 array 

was found to produce the highest TP% and clearly out-performed much larger arrays.  
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Figure 3.3.1: The percentages of array outliers which were true positives (TP%). With EHH-

based methods, larger arrays generally had higher TP% values, while with FST and Tajimaôs D, 

some of the smallest arrays produced the highest values. a. FST; Baganda and Ethiopia, b. FST; 

Baganda and Zulu, c. FST; Ethiopia and Zulu, d. iHS; Baganda, e. iHS; Ethiopia, f. iHS;  Zulu. 
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Figure 3.3.2: The percentages of array outliers which were true positives (TP%). With EHH-

based methods, larger arrays generally had higher TP% values, while with FST and Tajimaôs D, 

some of the smallest arrays produced the highest values. a. XP-EHH; Baganda and Ethiopia, b. 

XP-EHH; Baganda and Zulu, c. XP-EHH; Ethiopia and Zulu, d. Tajimaôs D; Baganda, e. Tajimaôs 

D; Ethiopia, f. Tajimaôs D;  Zulu. 

Thus, the markers of the Omni 1 array are a good starting point when ascertaining 

markers for larger arrays. This analysis also revealed that methods based on FST are the 

most accurate for detecting signatures of selection, especially when using smaller 

arrays. The EHH-based methods were found to be accurate only with the larger arrays. 

Therefore, previously reported results based on 1M or smaller arrays might need to be 

reinvestigated. The Tajimaôs D method was again seen to be strongly impacted by the 

representation of genomic regions by the ascertainment of SNP markers.   
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3.1.4. The correlation of array and WGS outlier scores 

The stark contrast between the trends in TPR and TP% revealed that representations of 

accuracy can be strongly swayed by the statistics used. To achieve a more direct 

assessment, the overall correlation between the scores of WGS 1% outliers and the 

corresponding array score was examined. Anderson-Darling tests performed on subsets 

of the data indicated that they werenôt normally distributed (Appendix 5), so the non-

parametric Kendallôs tau test was performed (Table 3.1).  

Kendallôs tau values indicated that the scores for selection statistics of 1% outliers were 

weakly correlated between array and WGS results. The Kendallôs tau values also 

showed no obvious pattern in array performance across populations and selection 

statistics. The correlations were visualized by plotting the selection statistic scores of 

WGS 1% outliers against the scores produced from array data for corresponding 

windows. Plots for Omni 5 (the largest array) for each selection statistic for the Zulu or 

Zulu and Ethiopia pair are given in Figure 3.4. Plots for the other populations, arrays and 

methods are provided in Appendix 6.     
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Table 3.1: Kendallôs Tau values with corresponding p values for the correlation between scores 

of WGS 1% outliers and scores produced from the array data for the same windows. P values 

below 5x10-6 were considered significant to account for multiple testing. Kendallôs tau values for 

the least SNP-dense arrays generally werenôt significant and weak correlations were observed 

for all data subsets. a. FST, b. iHS, c. XP-EHH, d. Tajimaôs D.  

 


















































































