CHAPTER 3 - High Level Design

maintained, listing all track-groups avallable for replacement, A
request involving a track in a group, results in the entire group
being removed from the list. Only after the outstanding requests
to tracks 1In the group have been satisfied, 18 the group placed
at the rear of the queue Groups with dirty sectors cannot be
replaced, but are only a’4¢d to the queue once they have been
written to disk.

A disadvantage of this group-based replacement 18 in its
utilization of cache space. The entire group remains in the cache
for as long as any particular track 1s required, even though many
of these tracks may not be needed. This inefficiency will Dbe
negligible, 1 f the prefetch assumptions (Sect 3.2.6.1) hold. Ar
important side-effect 1s that generally, the larger the group the
longer 1t remains in the cache (provided most of 1ts tracks are
ultimately used). This can be wused to increase the likelthood of
a cache hit for wusers simultaneously using shared disks.

3.2.6.3 Write Strategy

Using the cache, write operations can also be performed at RAM

speed. To do this, write requests coming from clients are
decoupled from the corresponding disk writes - the cache 1is
updated with the new data, but only later s this committed to
disk. This decoupling allows multiple write operations to a

particular pseudo-disk to be accumulated, and for disk writing to
be performed 1in the background.

Incoming data 1s allowed to accumulate in the cache. The dirty
sectors are not written to disk, while 1\t remains likeiy that
there will be further writes to that area of the disk. When these
sectors are finally written to disk, there will be a substantial
reduction in the number of disk accesses compared with 1f they
had been performed as individual writes,

Even 1f a write request arrives for a sector which 18 not already
in the cache, It (s not sent to disk. Instead, a group contiining
this sector 1s felched to cache, anticipating that further writes
to sequential sectors will take place.

Due to the decoupling of disk write operation from write
requests, the point at which data 18 written to disk 18
non-critical with regards to the service as seen by the clients.
Disk writing can therefore be performed as a background task.
This allows uses of the disk (such as fetching data to cache), to
take precedence - writing only being periormed when the disk 1s
free, Although demand for the disk for writing purposes 1is less
immediate, i1t must be performed regularly to release cache space,
since groups with dirty sectors cannot be replaced.

Again, as for prefetching and replacement, the cache write-
strategy 1s group based, Each group must have a bit map recording
the dirty .ectors in each track of the group. A Wwrite queue lists
all groups containing dirty sectors, Accumulation 18 acnieved by
allowing each group I1n this list a time delay from when it was
last  written to, before 1t can be flushed to disk,. Writing 1s
generally performed (s a background task, but forced flushing
takes place 1f there are too many groups in the write-list,

- 340 =



CHAPTER 3 - High Level Design

In summing up, the cache has a pseudo-disk track as 1its Dbasic
data unit, Essentially then, 1t 18 caching multiple pseudo-disks
rather than the server's disk directly. The predominant
characteristic 1s that of being group-based. From the perspective
of the major strategies of prefetching, replacement and writing,
a group or cluster of tracks 18 treated as a single entity,

Many of the decisions, particulariy those of prefetching, rely on
the assumption that the data requirements of users are largely
siquential, This 1n turn requires contiguity both 1in the storage
of files on the pseudo-disks, and 1n the storage of pseudo-disks
on the server's disk. LRU replacement has been used, and the
writing strategy involves accumulation and background flushing.

As far as the cache-size 1s concerned, the larger the cache the

greater 1ts advantages. As an indication of what constitutes a

suitably large cache, consider the following:~
There are 40 client machines, simultaneously using an
average of 2 pseudo-disks each. Assume that for each
pseudo-disk, there are simultaneously & groups of tracks 1in
the cache, and that the average group size 18 4 tracks. The
track-size for the pseudo-disks 1s 4.5 Kbytes. This gives
40 x 2 X 2 X 4 xX 45 := 2.88 MBytes.

Allowing for groups which are not being used, but which have not

yet Dbeen flushed, a desirable size would be 3-4 JMBytes,

3.2.7 File Server Management

The file server must allow additions, alterations and deletions
of wusers and of common software, Part of this entails the
aiteration of the files with user and application information and
the directory disk and requires off-line management. The actual
transtference of software to the server and 1its adaptation to the
system, 1s best performed interactively from a client computer
with the server 1in full operation.

Off-line management 1involves the editing of user and application
records. It should allow new record entries and facilitate the
input and modification of parameter:s, Pseudo-disks assoclated
with new entries are not created during the editing process, but
anly when accessed by a client, Delet .on of entries requires the
deletion from disk of all pseudo-disks associated with the entry.

All  modifications to the file of application records must be
coupled with alterations to the directory file, The two files
contain the same )nformation, but whereas the record file 1is used
by the server and oriented towards finding information given the
application’'s number, the directory file 1s for wuse by the client
to provide the application's number given the textual name.
Informaticn in the directory should be organized to facilitate
this mapping and the hierarchical presentation of the available
Applications.

Since the directory file 18 produced at the file server and 1is

dynamically modifiable, 1t 18 untenable to provide tne file as a
file on a directory disk - this would »equire construction of a

- 341 -



o

CHAPTER 3 - High Level Design

pseudo-disk for each operating system supported, from a detailed
Knowledgye of the file system of that operating system (with
reconstruction after a modification). Instead the file will bhe
provided directly as the directory disk which 18 thus an imprcper
pseudo-disk, and software at the client must obtain the
iniormation through absolute sector accesses.

After an application entry has Dbeen created during off-line
management, and once the server 13 operational, the disks of the
application can be copied from the floppy disk drive of a client
computer (or from a user's private directory). This would be done
by someone with manager status which has read-write access to
all applications software. Some adaptation may be required,
particularly for commercilally obtained software. Firstly, 1f the
application 18 classified as protected, 1t has to be executed
immediately after attachment (cf: section 3.4.2). Thus a file
with a standard name (for all applications) must be created on
the first disk of the application, which when i1nvoKed executes
the application, In addition, configuration may be necessary for
packages which straddle wore than one disk. wWhen the application
I1s mapped 1n, these Ji1sKs are assigned to consecutive drives,
whereas usually with a floppy disk system, floppy disks are
physically swapped within the same drive.

3.3 REQUIREMENTS FOR THE EMULATOR

With the mapping of pseudo-disks to drives subject to dynamic
alteration, 1t 1s imperative that the tracks held in the cache at
the emulator for any particular drive are those of the disk
currently attached to that drive (known at the file server).
However it 1s undesirable that tracks should be deleted from the
cache when a disk 1s removed, since 1f the disk 18 re-attached
tiie tracks will have to be re-transmitted across the network.
Also, tracks should not be held 1in the cache according to the
drives to which they refer, since a disk could be detached and
later re-attached to a different drive,

Instead, tracks held in the cache should contain a unique
number, identitying the pseudo-disk to which they belong. A table
containing the number of the disk currently attached to each
drive, must be maintained and consistertly reflect the file
server's drive-map for this client, when ¢ track 1is required the
table must first be searched for the number of the disk attached
to the reyguired drive, The cache 1s then searched for the
required track of this pseudo-disk.

For each alteration at the file server ot a client's drive-map, a
message must be sent to the emulator for 1t to perform the same
alteration betfore any further 1/0 requests from the client are
processed. This means that any request from the client which may
alter the mapping of the disk drives must be atomic -~ 1.e,
nothing further can proceed until the status response to the
request has been received,

348 =



G

CHAFPTER 3 - High Level Design

Operations requested by the file server, will 1include switching
pseudo-disks in and out of drives, and the deletion of the tracks
0o a particular pseudo-disk frem the cache . Generally, disks are
switched out rather than deleted. However, an explicit cache
delete would Dbe necessary 1f{ a disk were updated by another
client, while 1t was not switched 1in. A user has a separate set
of private disks for each operating system to which he has
access, but these disks share the same 1identifiers (cf section
3.2.3), Thus, 1f a user changes operating systems, his user disks
cannot merely be switched-out, but must be deletcd from the
cache,

34 SCFTWARE REQUIREMENTS AT THE CLIENT

Software which runs on the client machine, 1s needed to make the
t11¢  service available to users. Requirementis 1include the client
int-rface for communicating with and invoking file server
funct.ons, and the uwvser 1interface which presents and abstracts
these functions 1n a user-oriented form. This software has to be
written for each availlable operating system and provided on their
system disks.

J.4.1 The Client Interface

The client interface Nias three levels - those of sector 1input and
output, message communication and the invocation of server
functions. The first level 18 transparent as it 18 already

provided through operating system calls and through emulator
requests to the file server. It requires no extra software at the
client.

The second level provides the mechanisms for exchanging messages
with the file server, as outlined 1n section 2.3.2. A routine
mus. accept a message, copy this 1nto a sector Dbu- fer, and
perform an operating system call to write to the first sector of
track 40. Another must perform an operating system read of the
tirst sector of track 40, and extract and returrn a message.

The third level of the client interface presents an operation
for each function available at the #file server. This operation
constructs the message structure required by the server from 1ts
parameters, sends the message and interprets the response.

3.4.2 The User Interface

Software comprising the wuser interface allows the user to choose
parameters interactively and perform operations provided through
the client 1interface. Curreat requirements are procedures for
the loading of new pseudo-disks and for signing-on as a user.

The signing-on process prompts the user to enter his user number
and passwenrd. It then transmits the request to the server and
when 1t receives the response, displays & sultable message as to
whether access has b:en granted. The 'Signon’ program need only

= 343 -



CHAPTER 3 - High Level Design

be provided for the default operating system, and should execute
immediately after the operating system has 'booted up'. Although
no parameters are required, the ‘'sign-off' operation must also be
made available 1n a user-executable form.

A Loading Program 1s required which allows new applications, user
disks and operating systems to be loaded, or removed. The program
should collect the parameters for the calls (Both a command and a
menu driven interiace should be presented), and provide za
hierarchical presentation of the available applications and
operating systems. To distinguish the applications accessible to
the user, the loader should obtain the |user's access category
from the file server. However, access 1s determined at t(he file
server and need not be enforced by the loader.

To present the user with a comprehensive dircctory service, the
software must have Knowledge of the structure and extract

information from the directory or configuration disk - thic 1is
provided by the file server 1n the first drive following that of
the system disk(s). The directory disk lists the available

pseudo-disks, the operating systems and groups to which they
belong and the type of access allowed for the user'’s
con*iguration. It provides the correspondence between the textual
nanes of pseudo-disks and operating systems presented to the user
and the unique file numbers interpreted at the server. Howaver,
i1t 1s not strictly a pseudo-disk but rather a single data file
at the file server. Thus 1t does not have a file structure, and
must be read via direct sector accesses and not through operating
system file operations.

when a user disk 1s required or disks are being released, the
loader need only collect th: parameters, send the request and
report on the status. However, more 1s required when loading a
new application or operating system. For loading a new operating
system, 1f the request was successful, the program has tc perform
a 're-boot'. A new application may require 1mmediate execution.

In loading a new applicat.on one of the parameters 1is the
load-type, which 1s wused as a protection mechanism. With the
'flat’ load, all that 1s required 1is to send the request and
report on 1ts status. wWith the 1mmediate or protected load, once
a request has be-n successful, the application must be executed
immediately. The code for this must remain co-resident with the
application, and once the application has terminated and control
has returned to the executing code, a request must be sent to the
file server to remove the application,

- 344 -



“ DESIG% USING PROCESS-RESOURCE DECOMPOSITION

Two major non-concurrent jobs are required of the file server -
interactive file serving, and off-line management. Management 1S
concerned with the editing and updating of information on the
users and the availlable applications software, Interactive
serving 18 the primary purpose for the server, involving
collection and processing of requests from nodes.

A data-flow design technique of process-resource decomposition
[Walker, 16), has been used for design and documentation. This

technique 18 briefly introduced in the next section. The
technique 18 then used to present the interactive serving
process, with four successive levels of detail. At each level,

the resources and processes are identified, and each 18 described
at a very abstract level. The method 18 graphical, and process-
resource diagrams for each level have also been collected
together in Appendix A.

The resource descriptions define the behaviour of the resource
and the operators which it presents to processes. Detailed data
descriptions are not given (to prevent redundancy) - these can
be found as part of the coding listings of Appendix B. Process
descriptions define the behaviour and purpose of a process. A
'Pascal-like’ programming descriptive language has been used to
present process activities. A formai statement of ‘’'syntax’' for
this language was not considered necessary.

4.1 THE PROCESS-RESOURCE METHOD

Rentsch predicts that “"object-oriented programming will be in the
1960's, what structured programming was in the {970's" [Booch,
17). Such an approach 1involves first 1isolating the objects 1in a
system, where the concept of an object is a system component upon
which certain actions can be performed The object-oriented
approach seeks to augment traditional functional decomposition
methods (which focused on the abstraction of activities) to
include the abstraction of data.

Booch identifies the limitations of functional development
methods which object-oriented development attempts to address:

- [Effective data abstraction and information hiding

- Exploitation of natural concurrency

= Adaptability to changes in the problem space
He also claims that object-oriented decomposition closely matches
our model of reality, whereas functional decomposition 1§ only
achieved through a transformation of the problem space.

The Frocess/Resource Approach used in the design of the file
server is one such object-oriented Jesign method. Processes
manage the data flow to and from resources, which manage data in
particul.r data aggregates, The concepts of processes and

- q_’ -



CHAPTER 4 - Process-Resource Decoposition

resources are equivalent to those of subsystems and monitors
present 1n the DREAM design philosophy - see (Walker, 16,pp3.4)
for a discussion of similar methods.

A Resource consists of a data aggregate, together with a
collection of operations which can be performed on this data
aggregate. Resources are essentially passive in nature,
responding only to external reguests. A user’'s access to a
resource 1s limited to thesc operations, and thus its internal
structure of data 1is hidden.

Processes are the active entities of the system which manage the
flow of data between resources using the operations provided by
these resources.

The act of design entails the iterative decomposition of the
system 1into processes and resources. At the highest level, a
system consists of a single process with access to external
resources, performing the entire systems activity. This single
process can be decomposed into successive levels of multiple
processes with local resources. The classification of a resource
or process depends on the point of reference. For example from
the point of highest level design the File Server 1s a single
process accessing external rescurces such as the network, whereas
from the point of view of the user the File Server is a resource
which he can access.

With the decomposition of a system into a collection of
independent activities, decisions on whether to serialize the
processes or 1o use true or apparent concurrency must be made.
The mutual exclusivity of access to shared resources is implicit.
Once access has been granted, a requested operation must run to
(rmpletion, Lefore another process can ac.ess the resource. A
criticism of extending the scope of mutua; excluzivily to the
whole resource, 18 that operations would tend to include
instructions which make them well rounded from the point of view
of abstraction, yet are not concerned with the shared data and

thus need not be exclusive [Bishop, 18,pp 6.10). This 18
particularly relevant with true multi-processing systems. With
apparent multi-processing (multi-tasking) systems, the wide

scope of exclusivity 1s not undesirable, provided that processes
cannot be suspended while accessing that resource.

The method is graphical. Detail 1n the symbols 1s limited to the
name of the particular resource or process together with the
operat.ons being performed. Ellipses have been used to represent
resources, rectangles for processes,

Refer 1o [16) fur a detailed description of the Process-Resource
method,

- 42 -



CHAPTER 4 - Process-Resource Decoposition

4.2 INTERACTIVE SERVING - ist LEVEL DECOMPOSITION

At the very highest level, the file server, the network, and

network software at the client': machine, collectively form a
server resource, to which wusers have access. For design of the
File Server however, we consider the highest level as Jjust the
file server element of this service - and 1teg 1interaction with

the network process at 1its own node.

At the highest level then, the file server can be viewed as a
single process managing data flow between the external resources.
Thece external resources are those comprising the network
interface, and represent inputs from and outputs to the
environment (cf Fig 4.2.4). The server receives request messages,
and sector data for requests to update the sectors of a pseudo-
diskK. It must send messages responding tc¢ requests, and the
track data of pseudo-uisks 1in response to track-read requests.

4.21 ST LEVEL: PROCESS BEHAVIOUR

The server dequeues requests, processes them and enqueues a
response. If the request contained sector data (as 1in a request
to write a sector) then the sector entry 1in the sector pool must

be released. Enqueued responses must be monitored, so that
post-processing can be performed on internal resources, once the
responses have been sent by the network process. It has the

following characteristic:

PROCESS: SERVER
BEGIN:
Repeat: Forever
COBEGIN:
*» Dequeue a request from the Network 1input queue «
CASE: » Request 18 to: «
Send Track: » Get required track data
x Construct an output message with
the location of this data «

» Enqueue the output message «

Write Sect: » Copy data from the sector pool to
the required disk location «
¥ Release the sector fjool entry «x

Other: » Do 1internal processing on record for
a node e.g. change user or disks «
» Enqueue an output message «
END: CASE

*» Look at the Network output queue «
IF: » The network no longer requires the message «
THEN: » Update 1interna! esources «
x» Release queue entry «
END: Repeat
END: Server

. g -



CHAPTER 4 - Process-Resource Decomposition

E1G 4.2 - INTERACTIVE SERVING: 1ST LEVEL

/ 1 | Eng.
[ N/ nowuest uove | s | N/N Raupones Queus
\ / INTERACTIVE

Resa Relense
\ Sector Pop) » FILE-RERVING A ———————
| |
Buery-Dons { PROCESS ‘ Aelease
i
‘ \
|
|
|
|
|
3.1 |

Aborevistions Used in Resource Dingrees

N/M = "Natwork'

Eng. ~ ‘Engueus’

Deg. ~ ‘Degueve’

Yerious Ops - ‘wultiple Operetions - Ie Atified ot o lower leve)
1/p Par: = 'lnput Pareneters’

o/0 Par: - 'Qutput Aeresters’

LS T ESTIS

Pesources aneocieted with the of Pesugo-Dinke;

Thess are the Common Intorsation Rwsource, HO-Attacheent Resource &
the Dpenag-Oisks Tablen (both Applicetion Map & Disk Map) . The varjous
ODErations on thewe “eBources are only 10entified 8t the lower levels.



CHAPTER 4 - Process-Resource Decoposition

For completeness, 1t 18 necessary to present the network process
as to how 1t 1is intended to use the shared resounces. The process
must enqueue request messages and 1f the request has trailing
sector data, it must obtain a sector entry from the pool, and add
Its location to the message, It must dequeue response messages
and transmit them followed by track data 1f necessary, and
afterwards mark the response as sent. It has the following
characteristic:

PROCESS: Network
BEGIN:
Repeat: Forever
COBEGIN:
% Receive a request off the network =«
IF: « Request contains sector data «
THEN: » Get an entry from sector pool «
» Copy data to the sector entry «
* Add the Jjocati.n of this entry to the
request message «
*» Enqueue the message on the Network Input Queue «

» Copy entry from the Network output queue «
IF: = The message includes track data «

THEN: » Remove track information from copy «
» Send the message via the network
* Read track data from server's memory «
» Send data via the network «»

ELSE: » Send the message via the network «
» Dequeue the entry from the Network Output Queue -
This marks the entry as sent «

END: Repeat

END: Network

- 45 -



CHAPTER 4 - Process-Resource Decoposition

4.2.2 ST LEVEL: EXTERNAL RESOURCES

The network interface consists of four resources - two involved
with message input/output (requests and responses), and
essentially two with data input/output., Messages are sufficiently
short to handle wholly withi, a queue format However to avoid
the inefficiency of large data relocations, the data cannot be
queued as part of the message.

Arriving sectors cannot be handled 1n a queue, The server
processes more than one node's request at a time, and these will
not be completed in the order of their arrival. Since the sector
data 1s required for the duration of the request (and no copy 1§
made), the sector data Dblocks will be released in a different
order to that of their arrival, Therefore, sectors received from
the network should be placed in a pool of sector space until the
server is ready to copy 1t into 1its cache.

Since disk data 1s to bpe cached, there 1s no specific data output
resource, Instead, the network process 1s given direct access to
positions 1n cache memory (specified 1in the output message). The
network process does not have access to the cache resource as
such (which 1s a complex, local resource of the server), - so it
cannot release data 1n the cache once 1t has completed sending
it For this reason, the message output resource 1is a modified
queue - the network doesn't consume an entry, but marks it as
having been sent, allowing the server to re-look at the message
and perform functions on the cache before the message 18 released
back to the resource.

Since tne resourccs are external, sfome operations are performed
on them by the file server and others by the network process
which links the server machine to the network. This can rcsult in
contention for the resources, No decision can be made at this
level on access resolution, since 1t depends on whether the
implementation 18 in a multi-processor, multi-tagking or single
task enviroaiment,

4.2.21 Network Request Queue

The Network Request Queue 1s a standerd FIFO queue containing
request messages from all nodes, The network process receives
messages and performs the enqueueing operation, and the file
server dequeues requests,

Dataé Description
The data structures include:

RequestsArray: An array of fixed length message entries. The
first byte of a message contains the source node, and the
rest 18 the request,

ReadsPos: A pointer 1o the front entry in the queue.

writesPos: A pointer to the next entry which 18 available for
storing a new message.

Gs$S12e: The current number of messages 1n the queue,

- ‘..6 -



e R

CHAPTER 4 -~ Process-Resource Decoposition

Operators
Initialize: Inttializes all variableg as tor an empty queue,

Enqueue: Copies a message into the next available message
entry, increases the queue si1ze and increments the write
position, (The operation 18 ufed by the network process).
Dequeue: Copies a message from the front entry, decreases the
queue size and increments the read position.

4.2.2.2 Sector Pool

The sector pool provides a temporary store for sector data
arriving off the network, unti. the server can process a request
and write the data to disk - 1.e. 1t helps decouple the network
process from the serve., It consists of a pool of data Dblocks
each the size of a sector in the pseudo-disks, together with an
array recording the location of each data block, and linking free
blocks into a spacelist.

Data Description
The data structures include:

Data Blocks: A number of fixed-size Dblocks of memory. (Each
block should be contiguous, but it 18 not necessary for
separate Dblocks to be contiguous with one another).

SectorsPoolsArray: An array with an entry for each sector data
block. Each entry contains:

= A pointer to the data block.
= A pointer to another item In the array (used to implement
the space list).

SpacesLists$Rock: Points to the first entry in the array, whose
associated data Dblock 1s free,

Opera'ors

Initialize: This creates the data blocks, writes their
locations 1n the array, and Ilinks all entries 1in the sector
pool 1i1nto the space list.

Get-Entry: If the space list 18 not empty, the first entry (s
removed and a pointer to that entry returned to the caller.
(The operation 1s used by the network process),

Release: The specified sector entry 18 1inserted at the front of
the space list.

4.2.2.3 Network Response Queue

The Network Response Queue 18 a queue of fixed length response

messages, awalting transmission to client nodes. It 18 a
modified FIFO queue 1n that the dequeueing operation doesn't
consume an entry. Instead 1t marks the entry as sent and a

separate operation releases the entry for use on the producer
side, This allows the server to re-look at an output message 2nd
perform post-processing on 1its internal resources (specifically
the cache). Therefore, the server process both produces and
releases entries in this queue,

-“'7_



CHAPTER 4

Data Description

- Process-Resource

The data structures 1nclude:
ResponsesArray: An array of fixed
first byte contains the source

indicates whether
rest 1s the respo

the network has
nse message.

ReadsPos: A pointer to the front entry
DonesPos: A pointer to che first entry

the network
writzsPos: A pointer
message.
Qs$Size: The current

GQtysFree: The quant
queue.
Operators
Initialize: Initializes
Enqueue: Coples a
entry, 1increases

increments the

process 1is

write

already
to the next entry
number of messages
ity of free

all variables as
message intc the
the queue size,
position,

length message
node, and the

entries not

Decoposition

entries. The
second Dbyte
transmitted 1t yet. The

in the queue.
in the queue with which

complete,

avaiiable to store 2 new

in the quevu:.
currently 1in “he

for an empty queue.
next available message
decreases QtysFree, and

Dequeue: Copies a message from front entry, marks the entry as
'done' (byte 2), decreases the queue size and increments the
read pos:tion. (The operation 1s used by the network
process).

GQuerysDone: Determines whether the output message at the done
position has already been processed.

Release: Clears the entry at the current done position,
increases Qty$Free, and increments the done position.

4.2.2.4 Data OQutput Resource
As mentioned, there 18 no specific data outrut resource, and

track data must be obtained by he network, directly from the
cache. The network process has direct access to the server's
cache locations, but not to the cache resource as such.
Essentially, the Data Output resource has as 1ts data aggregate
the file server's memory (without a definite structure imposed),
while the only operateors available, are those of reading and
writing to memory. The location to be read 1s obtained from the
message entry 1n the Response Gueue,

-“.8_



CHAPTER 4 - Process-Resource Decoposition

4.3 INTERACTIVE SERVING - 2nd LEVEL DECOMPOSITIGN

Six processes can be 1solated at the second level, The

Initialization Frocess 18 responsible for initializing all the

local resources and 171tiating the other processes. These other

processes operate concurrently, requiring access re:olution for

all resources at this level. They are:

= A Q@Queue Producing process which collects the input requests,
and re-queues them 1in queues for each 1.adividual node.

= Individual-Node Server Processes. Each node has a server
process which receives and responds to 1ts requests, and
Keeps record of the current user and of the disks
connected to drives.

- A Disk-Read Proces. which fetches pseudo-disk tracks from
disk to the cache.

= A Disk-Write Process which writes all ‘’'dirty’ tracks in the
cache to the pseudo-disk tiles,

=~ A Complete-Sends PFProcess which wupdates the cache once a
requested track has been successfully transmitted by the
network.

These processes are \illustrated 1in Figure 4.3 (a-f).

4.34 @ND LEVEL: PROCESS BEHAVIOUR DESCRIP1IONS

4.3.141 Initialization Process (Fig 4.3a)

This process 1initializes the Jlocal and external resources, loads
configuration information and then initiates the concurrent
processes (i.e, all except for the server processes). It has the
following characteristic:

PROCESS: Initialization
BEGIN:
» Initialize external resources «
» Initialize @2nd level resources «
» Read file with configuration information «
» Configure system «
END: Initialization

-4'9_



CHAPTER 4 - Process-Resource Decoposition

4.31.2 Queue-Producing Process (Fig 4.3b)

The Queue Froducing process 15 used to decouple the server tasks
from the network input queue. It removes a request from the inpur
queue and re-queues 1t for a specific node 1in the node-queue:s
resource, Thie ™eans that delays 1in processing one node’s
request, do not "y other nodes. If a request 1is received for a
node, for which ...re 1is currently no serving task, a new serving
task will be created. It has the following characteristic:

PROCESS: Produce Queues

BEGIN:
» Dequeue ' "t message «
» Determ; ich node 1t 1s from (first byte)
IF: » Nod. not yet have 1ts own serving task «
THEN:

» Create new Server task «
x Send NodesNumber «
* Wait unti new server task has received number «
» Enqueue message 1n Node's Queue
END: Produce Gueues

4.3.1.3 Incividual-Node Server Process (Fig 4.3¢)

There 1s an instance of this process for every active node on the
network. Once initiated, it reads the number of the node which it
will serve, and initializes 1internal resources. It then starts
reading requests, processing them, and returning output. It has
the following characteristic:

PROCESS: Individual-Node Server
BEGIN:
Read (NodesNumber)
* Inform Producer process - No.e number has been read «
Repeat: Forever
BEGIN:
Deaueue (Node-Queue)
* Interpret an® process request
¥ Build and =send message 1f required
END:

END: Individual-Node Server

- 440 -



CHAPTER 4 - Process-Resource Decomposition

7~ Resc [ it
" 1n

Net *
Con‘iguration File | 'nnw:z: -y
T e |
Software \ Imes ! INITIALIZATION ik ALl iet levs \
nformation e SEREE Locel MG'I ,
_J ~

—_—

“awcens |

Resources various OGoe. Vatious Ope
SRROCIELE0 With eurces
L atreciaent of - Fo— - Sv 000 te0 w'un
euou-Diexe e dlcacheent
i LR ¥ N
S — e b oo cacns )
W) INCIIALLL T ]
/ oea. & =001
~u e — b s T NCOs durues )
WA enuch i AR
R o t————
wite 7~ N
R e e .y
——’/
. - i——
B) MR L 0N RO EY
= } _-._..__]
LI | H
[pa— — c——————— ‘
| .o
Deg ~froe-a) various @&w Resources
Sl iy 8 eceieted wiih

e eesss R0 SttachBent f
\ HYesuge 01

L S

v J
——_————— | ——
L) | Parfure EeAte
User Intermation VS S BERVER ' AU Cache
moCEss |

“eo 3
|
| ‘ —_ N/ wove
Yarious Ope. | Relsnee
—_— e e |
!
Feten |
T s S |
|
|
|

—— . - - ——

(e) IND! LOUAL-NODE SERVER MRGCESS

- 4.11 -




CHAPTER 4 - Process-Resource Decoposition

4.3.1.4 Disk-Read Process (Fig 4.34d)

The Disk-Read process handles all disk reads of pseudo-disk file
images, required by the cache. It receives a message from the
cache through the Disk-Read Queue. The message will be to read
all pseudo-disk tracks in a group determined by the cache (for
optimizing disk usage). However, after a track has been read, it
1s 1mmediately made available 1n t(he cache, so there 1is no lost
efficiency 1n waiting for the whole group. It has the following
characteristic:

PROCESS: Disk-Read

BEGIN:
Repeat: Forever
BEGIN:
Read (Disk-Read Queue)
» Interpret Message «x
Repeat: + for each track required «
BEGIN:
*» Read the track from the Pseudo-Disk File
image to the location 1in the cache «
*» Mark Track present in the Cache «
END:
END:

END: Disk-Read

4.3.1.9 Disk-Write Process (Fig 4.3e)

The strategy here is to wait until the cache 1s ready with write
information. The process then takes the front entry in th-»
writelist, and determines to which disk 1t belongs. It then steps
through each group entry 1in the cache for that disk, and writes

all dirty sectors to the disk's 1mage file. This shouid Dbe
efficient on the assumption that the pseudo-disk file images are
nearly physically contiguous. It has the following

characteristic:

PROCESS: Disk-Write

BEGIN:
Repeat: Forever
BEGIN:
* Wait until Cache 1s ready for writing «
¥ When ready, use the group number obtain:d from
CachesWL$Ready to obtain the disk number which
must be written «
Repeat: » For each group entry of this disk #
BEGIN:
* Obtain from cache Next Group to be written «
Repeat: » For each track in the group »
Renpeat: » For each sector in the track «
IF: = Sector 1s dirty «
THLN: »Write sector to position 1in filex
END:
END:
END:

= &ie =~



P —

CHAPTER 4 - Process-Resource Decoposition

4.3.1.6 Complete-Sends Process (Fig 4.3¢)

This process does post-processing on the File Server's internal
resources, after the network process has already finished with
the response data,. Specifically this means that for all track
read requests which have been sent, the process will reduce the
quantity of outstanding operations for that track group 1in the
cache. (No other requests require post-processing). Message
entries must then be released back to the Network Response Queue.
It has the following characteristic:

PROCESS: Complete-Sends
BEGIN:
Repeat: Forever
BEGIN:
» Wait until an entry in output queue 1is "done"
IF » Resfponse 1s to a track read request =«
THEN: » Reduce outstanding operations at the
cache for this track group
x Release message entry 1in response queue
END:
END: Complete-Sends

- 443 -



CHAPTER 4 -

Process-Resource Decomposition

ESSES

Deg. ’ Mark-Present
[ Cache ’
DISK-READ \ i
e PROCESS
Reac
Peeu0o-Oisk |
Fiie Imager {
et
o) ciecAenn process
1
/ |
? "
/ LT ite / Peeuno-0isk
| Cache | File »
DISK-WRITE | \\‘_
!
|
PROCESS
/ Next-wite |
Cacne - i
3 |
J
(o) DISK-WRITE PROCESS
r
uery-one r Reduce-Operations ™
N/K ROBDONSN eup | = e TRACK -SENDS Cache
|
: COMPLETION
|
| PROCESS Reloase
|
!

(*) COMPLETE -SENDS PHOCENS

- 4.14



CHAPTER 4 - Process-Resource Decoposition

4.3.2 INTERACTIVE SERVING: LOCAL RESOURCES

Resources 1dentified at the second level are those internal or
local to the first level serving process. They are therefore
Avallable as exterral resources to all processes identified at
this and subsequent levels.

§.3.2.4 Configuration File

This file 1s read at 1initialization, and would contain any
information used to provide flexibility and optimize performance,
by changing run-time characteristics. Currently it would contain
the file number for the default operating system and the file
numbers of the most often used common disks, This saves
processing time on well-used disks, since a user never has to
walt for a disk/application to be opened or closed, and
information 1s never flushed from the cache.

Data Description
The data structure consists of a file whose first entry 1s the

file number for the Default Operating System. The second entry
contains the quantity of files which are to be Kept permanently
open, and 1s followed by a list of file numbers.

Operators
Kead: This operation 1s the basic file-read operation and would

be provided by the operating system.

Edit: The file server requires an off-line editing process
which must provide a facility to edit configuration data.
This has not yet been considered.

4.3.2.2 Node Queues

The HNode Queues Resource contains a queue for each possible node
in the networkK. It decouples the individual server processes from
the network input queue - and therefore from one another. The
total quantity of entries (i.e. pool-size) is fixed, but there is
no limit on the queue length for any particular node.

Data Description

The entries for these queues are drawn from a common pool, and a
single space Jist links the unassigned entries, Data structures
include:

NodesRqsts: A fixed-size pool (array) of request entries. Each
entry contains a message and a pointer to another entry. The
pointer 1s wused to link entries into one of the node queues
or the space list.

NodesGQueues: An array with an entry for eacnh possible node.
Each entry contains an identifier of the node's server
process, and pointers to the first and last request entries
currently 1in  the node's queue,

SpacesList$Rock: A pointer to the first free entry in the pool.

- $.45 -



CHAPTER @ P R D T

Operators
IO TOoo OO0 OO0 OO0 2 OId0d OO0 2 OOOdd ;oOOo;o oOdd
0m COOIIITd TTTT] 11 113 1111 11

EOTOITT-O0-0m A0 RN M OO1ITITd I T OTTT+ 01 o
o111 M 0o O0O§%0 OO 00 OOOrmn 04O 00O OOF0O0070 TOO O
I I R | I 00 OO0 OO Omo OI0d OIOTd

DOTMTTMM+OTIM-00d A OO0 OO0 OO0 OO0 OO0 OO0 OOOOm OO 0 OId

oo M@ oo 00O 0o OO OOo-0Ooo0m 0o OO0 0004 ]
OO OO0 0§40 OO 00T

[EEIRRINEIN] HP-A OO0 OO0 I OOOOMOoa

T HOM DI A T1O0O0 004 I OOTT11T11 (N} O EEEE NN O
MO0 T s O O oo™ OO0 1+-000 2 MO4D OO0
Generally, before the information In files can be accessed, a
connection has to be created to the file and the connection
opened. This resource is intended to supplement functions already
provided in the file server’'s operating system, which relate to

the attachment and opening of files As such It 1Is dependent on
the architecture of the server’'s operating system, and what It
includes therefore depends on the implementation. Its main

purpose is to create a connection to the file and to <create the
file if it does not exist. This could entail creating directories
within the path—-name. When a file is created, it must Dbe given
the characteristics of a ©blank formatted disk in the operating
system m which it is to be |used.

Data Description
The resource performs operations on the Hard Disk(s) of the File

Server machine. Specifically, it must implement the directory
structure chosen for storing pseudo—-disk files on the hard disk
(c/:section  3.2.1). The resource also contains a series of New$
DiskjFiles - a file for each user operating system which is

supported, containing the file 1image for a ©blank formatted disk.

Operators

Attach$Create$Dlr— Creates a Uni. to a directory or creates the
directory if does not exist.

OpenfCreatex*,' ii<. Performs the necessary functions (e.q.

opening) on j file for it to be wus*d by the file server. It
creates the fil» if it does not exist, and copies the file
image for a blank formatted disk, to the new file.

4.3.2.4 Common Software Information

This resource is a database of the available operating systems
and common pseudo—disks. Application entries provide the server
with the mapping between the application file number (known to
the client) and its position on the server’s disk, together with
access and other information. Operating system entries map an
operating system number with an application entry identifying the
software for supporting that operating system.

As discussed (c/"sections 3.2.7, 3.4.2), th.s database ne-«ds to
also be presented to the wuser via software at the client - which
map& application and operating system numbers to textual
descriptions - to aid a «client in requesting software.

- 41b -
















































