
CHAPTER 3 - High Level Design

maintained, listing all track-groups available f o r replacement. A
request involving a track in a group, results in the entire group

being removed from the list. Only after the outstanding requests
to tracks in the g r o U F have been satisfied, is the group placed
at the rear of the queue Groups with dirty sectors cannot be
replaced, but are only JK'If-d to the queue once they have been
written to disk.

A disadvantage of this group-based replacement is in its
utilization of cache space. The entire group remains in the cache

for as long as any particular tr«Jk is required, even though many
of these tracks may not be needed. This Inefficiency will be

negligible, if the prefetch assumptions (Sect 3.2.6.1) hold. Ar

important side-effect is that generally, the largsr the groi'p the
longer it remains in the cache (provided most of its tracks are

ultimat.»ly used). This can be used to increase the likelihood of
a cache hit for users simultaneously using shared disks.

3.?.6.3 Wr'_te S t r a t e g y

Using the cache, write operations can also be performed at RAM

speed. To do this, write requests coming from clients are
decoupled from the corresponding disk writes - the cache is

updated with the new data, but only later is this committed to
disk. This decoupling allows multiple write operations to a

particular pseudo-disk to be accumulated, and for disk writing to
be performed in the background.

Incoming data is allowed to accumulate in the cache. The dirty
sectors are not written to disk, while it remains like/y that
there win be further writes to that area of the disk. When these

sectors are finally written to disk, there will be a substantial
reduction in the number of disk accesses compared with if they

had been performed as individual writes.

Even if a write request arrives for a sector which is not already

in the cache, it is not sent to disk. Instead, a group contnning
this sector is fetched to cache, anticipating that further writes
to sequential sectors will take place.

Due to the decoupling of disk write operation from write
requests, the point at which data is written to disk is

non-cntical with regards to the service as seen by the clients.

Disk writing can therefore be performed as a back g round task.
This allows uses of the disk (such as fetching data to cache), to

take precedence - writing only being performed when the disk is

free. Although demand for the disk for writing purposes is less

immediate, it must be performed regularly to release cache space,
since groups with dirty sectors cannot be replaced.

Again, as for prefetching and replacement, the cache write-
strategy is croup based. Each group must have a bit map recording
the dirty sectors in each track of the group. A write queue lists

all groups containing dirty sectors. Accumulation is achieved by
allowing each group in this list a time delay from when it was
!a*t written to. before it can be flushed to disk. Writing is

generally performed . s a background task, but forced flushing
takes place if there are too many groups in the write-tist.

- 3.10 -

CHAPTER 3 - High Level Design

«>

In summing up, the cache has a pseudo-disk track as its basic

data unit. Essentially then, it is caching multiple pseudo-disks
rather than the server's disk directly. The predominant

characteristic is that of being group-based. Prom the perspective
of the major strategies of prefetching, replacement and writing,
a group or cluster of tracks is treated as a single entity.

Many of the decisions, particularly those of prefetching, rely on

the assumption that the data requirements of users are largely
si quential. This in turn requires contiguity both in the storage
of files on the pseudo-disks, and in the storage of pseudo-disks

on the server's disk. LRU replacement has been used, and the
writing strategy involves accumulation and background flushing.

As far as the cache-size is concerned, the largsr the cache the
greater its advantages. As an indication of what constitutes a
suitably large cache, consider the following:-

There are 4 0 client machines, simultaneously using an

average of 2 pseudo-disks each. Assume that for each

pseudo-disk, there are simultaneously 2 groups of tracks In
the cache, and that the average group size is 4 tracks. The

tracksize for the pseudo-disks is 4.5 Kbytes. This gives
40 x 2 x 2 x 4 x 4.5 S 2.66 MBytes.

Allowing for groups which are not being used, but which have not

yet been flushed, a desirable size would be 3-4 MBytes,

3.2.7 File Server Management

The file server must allow additions, alterations and deletions
of users and of common software. Part of this entails the

alteration of the files with user and application information and
the directory disk and requires off-line management. The actual

transference of software to the server and its adaptation to the

system, is best performed interactively from a client computer
with the server in full opet ation.

Off-line management involves the editing of user and application

records. It should allow new record entries and facilitate the

input and modification of parameter' , Pseudo-disks associated
with new entries are not created during the editing process, but

only when accessed by a client. Delet.on of entries requires the
deletion from d>sk of all pseudo-disks associated with the entry.

All modifications to the file of application records must be
coupled with alterations to the directory file. The two files

contain the same information, but whereas the record file is used
by the server and oriented towards finding information given the

application’s number, the directory file is for use by the client
to provide the application’s number given the textual name.

Information in the directory should be organized to facilitate
this mapping and the hierarchical presentation of the available
a p p l i c a t i o n s .

Since the directory file is produced at the file server and is

dynamically modifiable, it is untenable to provide the file as a
file on a directory disk - this would "equire construction of a

3.11 -

CHAPTER 3 - High Level Design

pseudo-d.r* for each operating system supported, from a detailed
knowled* of the file system of that operating system (with
reconstruction after a modification). Instead the file will be
provided directly as the directory disk which is thus an improper
pseudo-disk, and software at the client must obtain the
information through absolute sector accesses.

A fter an application entry has been created during off-line
management, and once the server 15 operational, the disks of the

application can be copied from the floppy disk drive of a client
computer (or from a user's private directory). This would be done
by someone with manager status which has read-wnte access to
all applications software. Somp adaptation may be required,
particularly for commercially obtained software. Firstly, if the

application is classified as protected, it has to be executed

immediately after attachment (c f : section 3.4.2). Thus a file

with a standard name (for all applications) must be created on
the first disk of the application, which when invoked executes

the application. In addition, configuration may be necessary for
packages which straddle .uore than one disk. When the application

is mapped in, these disks are assigned to consecutive drives,

whereas usually with a floppy disk system, floppy disks are
physically swapped within the same drive.

KEUU1HEMENTS KOH THE E M U L A T O R

With the mapping of pseudo-disks to drives subject to dynamic
alteration, it is imperative that the tracks held in the cache at
the emulator for any particular drive are those of the disk
currently attached to that drive (known at the file server).

However it is undesirable that tracks should bt deleted from the

cache when a disk is removed, since if the disk is re-attached
t/u> track: will have to be re-transmitted across the network.
Also, tracks should not be held in the cache according to the
drives to which they refer, since a disk could be detached and
later re-attached to a different drive.

Instead, tracks held in the cache should contain a unique

number, identifying the pseudo-disk to which they belong. A table

containing the number of the disk currently attached to each
drive, must be maintained and consistently reflect the file
server's drive-map for this client. When i track is required the
table must first be searched for the number of the disk attached

to the required drive. The cache is then searched for the
required track of this pseudo-disk.

For each alteration at the file server 01 a client's dnve-map, a

message must be sent to the emulator for it to perform the same

alteration before any further I /O requests from the client are
processed. This means that any request from the client which may

alter the mapping of the disk drives must be atomic - i.e.

nothing further can proceed until the status response to the
request has been received,

CHAPTER 3 - High Level Design

Operations requested by the file server, will include switching
pseudo-disks in and out of drives, and the deletion of the tracks
o' a particular pseudo-disk frra the cache . Generally, disks are

switched out rather than deleted. However, an explicit cache
delete would be necessary if a disk were updated by another
client, while it was not switched in. A user has a separate set

of private disks for each operating system to which he has
access, but these disks share the same identifiers (cf section

3.P.3). Thus, if a user changes operating systems, his user disks
cannot merely be switched-out, but must be deleted from the

cache.

34 SOFTWARE REQUIREMENTS AT THE CLIENT

Software which runs on the client machine, is needed to make the
t ’ 1* service available to users. Requirements include the client

n, i - r f a c e for communicating with and invoking file server

funct.ons, and the user interface which presents and abstracts
these functions in a user-oriented form. This software has to be

written for each available operating system and provided on their
system disks.

3.4.1 The Client Interface

The client interface *ias three levels - those of sector input and
output, message communication and the invocation of server
functions. The first level is transparent as it is already
provided througn operating system calls and through emulator
requests to the file server. It requires no extra software at the
client.

The second level provides the mechanisms for exchanging messages
with the file server, as outlined in section 2.3.2. A routine

musi. accept a message, copy this into a sector bu fer, and
perform an operating system call to write to the first sector of

track 40. Another must perform an operating system read of the
tirst sector of track 40, and extract and return a message.

The third level of the client interface presents an operation
for each function available at the file server. This operation

constructs the message structure required by the server from its

parameters, send? the message and interprets the response.

3.4.2 The User Interface

Software comprising the user interface allows the user to choose

parameters interactively and perform operations provided through
the client interface. Current requirements are procedures for

the loading of new pseudo-disks and for signing-on as a user.

The signing-on process prompts the user to enter his user number

and password. It then transmits the request to the server and
when it receives the response, displays a suitable message as to

whether access has bjen granted. The 'Signon1 program need only

- 3.13 -

CHAPTER 3 - High Level Design

be provided for the dsfault. operating system, and should execute
immediately after the operating system has ’booted up’. Although

no parameters are required, the ’sign-off’ operation must also be
made available in a user-executable form.

A Loading Program is required which allows new applications, user
disks and operating systems to be loaded, or removed. The program
should collect the parameters for the calls (Both a command and a
menu driven interlace should be presented), and provide i /)

hierarchical presentation of the available applications and
operating systems. To distinguish the applications accessible to
the user, the loader should obtain the user’s access category
from the file server. However, access is determined at the file
server and need not be enforced by the loader.

To present the user with a comprehensive directory service, the
software must have knowledge of the structure and extract

information from the directory or configuration disk - this is
provided by the file server in the first drive following that of
the system disk(s). The directory disk lists the available

pseudo-disks, the operating systems and groups to which they

belong and the type of access allowed for the u s e r ’s

configuration. It provides the correspondence between the textual
nanes of pseudo-disks and operating systems presented to the user

and the unique file numbers interpreted at the server. However,
it is not strictly a pseudo-disk but rather a single data file
at the file server. Thus it does not. have a file structure, and

must be read via direct sector accesses and not through operating
system file operations.

When a user disk is required or disks are being released, the
loader need only collect the parameters, send the request and

report on the status. However, more is required when loading a
new application or operating system. For loading a new operating

system, if the request was successful, the program has to perform
a Te-boot’. A new application may require immediate execution.

In loading a new application one of the parameters is the
load-type, which is used as a protection mechanism. With the

’flat’ load, all that is required is to send the request and
report on its status. With the immediate or protected load, once

a request has be'-n successful, the application must be executed
immediately. The code for this must remain co-resident with the
application, and once the application has terminated and control
has returned to the executing code, a request must be sent to the
file server to remove the application.

- 3.14 -

* DESIHS USIHG PBOCESS-BESOUBCE DECOMPOSITION

Two major non-concurrent Jobs are required of the file server -

interactive file serving, and off-line management. Management is
concerned with the editing and updating of information on the
users and the available applications software . Interactive
serving is the primary purpose for the server, Involving
collection and processing of requests from nodes.

A data-flow

[Walker, 16),
technique is

technique is
process, with

the resources

design technique of process-re source decomposition
has been used for design and documentation. This

briefly introduced in the next section. The

then used to present the interactive serving
four successive levels of detail. At each level,

and processes are identified, and each is described
at a very abstract level. The method is graphical, and process-

resource diagrams for each level have also been collected
together in Appendix A.

The resource descriptions define the behaviour of the resource

and the operators which it presents to processes. Detailed data

descriptions are not given (to prevent redundancy) - these can
be found as part of the coding listings of Appendix B. Process
descriptions define the behaviour and purpose of a process. A

’Pascal-like’ programming descriptive language has been used to
present process activities. A format statement of ’syntax’ for
this language was not considered necessary.

4.1 THE PBOCESS-BESOUBCE METHOD

Rentsch predicts that "object-oriented programming will be in the
1980’s, what structured programming was in the !970's'’ [Booch,
17). Such an approach involves first isolating the objects in a
system, where the concept of an object is a system component upon

which certain actions can be performed The object-oriented

approach seeks to augment traditional functional decomposition
methods (which focused on the abstraction of activities) to
include the abstraction of data.

Booch identifies the limitations of functional development
n’ethods w'uch object-oriented development attempts to address:

Effective data abstraction and inf os-mation hiding
Exploitation of natural concurrency

Adaptability to changes in the problem space

He also claijss that object-oriented decomposition closely matches

our model of reality, whereas functional decomposition is only
achieved through a transformation of the problem space.

The Pro ce ss /R e so ur ce A pp ro a ch used in the design of the file

server is one such object-oriented Jesign method. Processes
manage *he data flow to and from resources, which manage data in

particul . r data aggregates. The concepts of processes and

- 4.1 -

CHAPTER H - Process-Resource Decoposition

resources are equivalent to those of subsystems and monitors
present in the DREAM design philosophy - see [Walker, 16,pp3.1)
for a discussion of similar methods.

A Re so u rce consists of a data aggregate, together with a
collection of operations which can be performed on this data

aggregate . Resources are essentially passive in n a tu r e ,
responding only to externcl requests. A user’s access to a
resource is limited to these1 operations, and thus Its internal
structure of data is hidden.

Processes are the active entities of the system which manage the

flow of data between resources using the operations provided by
these resources.

The act of design entails the iterative decomposition of the
system into processes and resources. At the highest level, a

system consists of a single process with access to external

resources, performing the entire systems activity. This single

process can be decomposed into successive levels of multiple

processes with local resources. The classification of a resource

or process depends on the point of reference. For example from

the point of highest level design the File Server is a single
process accessing external resources such as the network, whereas

from the point of view of the user the File Server is a resource
which he can access.

With the decomposition of a system into a collection of

independent activities, decisions on whether to serialize theindependent activities, decisions on wheth er to serialize the
processes or to use true or apparent concurrency must be made.

The mutual exclusivity of access to shared resources is Implicit.
Once access has been granted, a requested operation must run to

<impletion, before another process can access the resource. A

criticism of extending the scope of mutual exclusivity to the

whole resource, is that operations would tend to include
instructions which make them well rounded from the point of view

of abstraction, yet are not concerned with the shared data and

thus need not be exclusive [Bishop, 18,pp 6.10). This is

particularly relevant with true multi-processing systems. With

apparent multi-processing (multi-tasking) systems, the wide

scope of exclusivity is not undesirable, provided that processes
cannot be suspended while accessing that resource.

The method is graphical. Detail in the symbols is limited to the

name of the particular resource or process together with the

operations being performed. Ellipses have been used to represent
resources, rectangles for processes.

Refer to [16] f*r a detailed description of the Process-Resource
method.

CHAPTER 4 - Process Resource Decoposition

4.2 INTERACTIVE SERVING - 1st LEV EL DECOMPOSITION

At the very highest level, the file server, the network, and

network software at the client'- machine, collectively form a
server resource, to which users hove access, For design of the
File Server however, we consider the highest level as Just the
file server element of this service - and its interaction with
the network process at its own node.

At the highest level then, the file server car. be viewed as a

single process managing data flow between the external resources.
These external resources are those comprising the network
interface, and represent inputs from and outputs to the

environment (cf Fig 4.2.1). The server receives request messages,
and sector data for requests to update the sectors of a pseudo­

disk It must send messages responding to requests, and the
track data of pseudo-cisks in response to track-read requests.

4.2.1 1ST LEVEL: PROCESS BEHAVIOUR

The server dequeues requests, processes

response If the request contained sector

to write a sector) then the sector entry

be released. Enqueued responses must

post-processing can be performed on internal resources,

responses have been sent by the network process. It
following characteristic :

them and enqueues a

data (as in a request

in the sector pool must

be monitored, •o
once
has

that

the
the

PROCESS: SERVER

BEGIN:

Repeat: Forever
COBEGIN:

• Dequeue a request from the
CASE: » Request is to: «

Send Track: «
a

Network input queue »

Get required
Construct an

track data »
output message with

the location of this data «
Enqueue the output message «

Write Sect: « Copy data from the sector pool to

the required disk location »
Release the sector rool entry «

Other:

END: CASE

Do internal processing on record for
a node e.g. change user or disks *

Enqueue an output message «

■ Look at the Network output queue »
IF: » The

THEN: i
•

END: Repeat
END: Server

network no longer requires the message »
Update interna! resources «

Release queue entry »

- 4.3 -

CHAPTER -1 - Process-Resource Decomposition

- i m m c i m . j i j m j n L . j s T levei.

w w m i n i u m o in H M t i r to m u n i i

N/« - N o t»or«1
Ena. - f n a u iu i '
Dag. • 'Q n u o uo '
u n o w t» i - M u l t l tK O o t r i t l t n i . u n t m t « o t ■ l m r l u l l
I /O »«r • • lnojt B i r r w t n ’

o/o u*“ « Output oartltt^«

«L -

W oioireoo B I I 1 I I 1 I I . i t f t n» o t to tnw n t o» ■‘••uoo-O itna:

n « M tno Cooaon ’ n fo f 'M t iof' <**oourco. » - » t t lc t * » M H ..ou-c> (
tno ttoc no a -Q ii» ’ . n l t i loots to o i ic o t lo n Wo I 0 u> w o) Tno . o -io u i
ooo 'o tio no on tnooo ■■■■ircli on* only lo a m if io c *1 tno l o n r lo v o ii

CHAPTER 4 - Proves; Resource Decoposition

For completeness, it is necessary to present the network process

as to how it is intended to use the shared resources. The process
must enqueue request messages and if the request has trailing

sector data, it must obtain a sector entry from the pool, and add
its location to the message. It must dequeue response messages

and transmit them followed by track data if necessary, and
afterwards mark the response as sent. It has the following
c h a r a c t e r i s t i c :

PROCESS: Network
BEGIN:

Repeat: Forever
COBEGIN:

« Receive a request off the network *
IF: * Request contains sector data »

THEN: « Get an entry from sector pool »
• Copy data to the sector entry *

« Add the locati n of this entry to the
request message «

• Enqueue the message on the Network Input Queue »

• Copy entry from the Network output queue »
IF: • The message includes track data «

THEN: • Remove track information from copy »
• Send the message via the network »

« Read track data from server's memory ■
• Send data via the network *

ELSE: « Send the message via the network »
• Dequeue the entry from the Network Output Queue -

This marks the entry as sent «
END: Repeat

END: Network

- 4.5

CHAPTER 4 - Process-Resource Decoposition

4.2.2 1ST LEVEL: EXTERNAL RESOURCES

The network interface consists of four resources - two involved

with message i n p u t / o u t p u t (requests and responses), and
essentially two with data input/output. M e s s a g e s are sufficiently
short to handle wholly withi > a queue format However to avoid
the inefficiency of large data relocations, the data cannot be
queued as part of the message.

Arriving sectors cannot be handled in a queue. The server
processes more than one node's request at a time, ard these will

not be completed in the order of their arrival. Since the sector
data is required for the duration of the request (and no copy is
made), the sector data blockr will be released in a different

order to that of their arrival. Therefore, sectors received from

the network should be placed in a pool of sector space until the
server is ready to copy it into its cache.

Since disk data is to be cached, there is no specific data output

resource. Instead, the network process is given direct access to

positions in cache memory (specified in the output message). The
network process does not have access to the cache resource as

such (which is a complex, local resource of the server), - so it

cannot release data in the cache once it has completed sending
it. For this reason, the message output resource is a modified
queue - the network doesn't consume an entry, but marks it as

having been sent, allowing the server to re-look at the message

and perform functions on the cache before the message is released
back to the resource.

Since tn* resourci a are external, some operations are performed
on them by the file server and others by the network process

which links the server machine to the network. This ca<i risult in
contention for the resources. No decision can be made at this
level on access resolution, since it depends on whether the

implementation is in a multi-processor, multi-tasking or single
task environment.

4.2,2.1 Network Request Queue

The Network Request Queue is a standard FIFO queue containing
request messages from all nodes. The network process receives
messages and performs the enqueuemg operation, and the file
server dequeues requests.

Data Descr iption

The data structures include:

RequesttArray: An array of fixed length message entries. The
first byte of a message contains the source node, and the
rest is the request.

Read*Pos: A pointer to the front entry in the queue.

Write*Pos: A pointer to the next entry which is available for
storing a new message.

QiSue: The current number of messages in the queue.

- 4.6

«

CHAPTER 4 - Process-Resource Decoposition

Operators
Initialize: Initializes all variables as tor an empty queue.
Enqueue: Copies a message into the next available message

entry, increases the queue size and increments the write

position. (The operation is used by the networK process).

Dequeue: Copies a message from the front entry, decreases the
queue size and increment* the read position.

4 2.8.2 Sector Pool

The sector pool provides a temporary store for sector data

« arriving off the network, unti. the server can process a request
and write the data to disk - i.e. it helps decouple the network

process from the serve,'. It consists of a pool of data blocks

each the size of a sector in the pseudo-disks, together with an

array recording the location of each data block, and linking free
blocks into a spacelist.

I> at 4 Desc r l ption

The data structures include:

Data Blocks: A number of fixed-size blocks of memory. (Each
block should be contiguous, but it is not necessary for
separate blocks to be contiguous with one another).

— Sector$Pool>Array: An array with an entry for each sector data
block. Each entry contains:

- A pointer to the data block

- a pointer to another item in the array (used to implement
the space list).

Space»List$Rock: Points to the first entry in the array, whose
associated data block is free.

Operators

Initialize: This creates the data blocks,

locations in the array, and links all entries
pool into the space list.

Get-Entry: If the space list

removed and a pointer to
(The operation is used by

Release: The specified sector

the space list.

writes

in the

their
sector

is not empty, the first entry Is
that entry returned to the caller,
the network process),

entry is inserted at the front of

4.2.2.3 NetworK Response Queue

The Network Response Queue is a queue of fixed length response

messages, awaiting transmission to client nodes. It is a

modified FIFO queue in that the dequeueing operation doesn’t
consume an entry, Instead it marks the entry as sent and a

separate operation releases the entry for use on the producer
side. This allows the server to re-look at an output message ’ nd

perform post-processing on its internal resources (specifically
the cache). Therefore, the server process both produces and
releases entries in this queue.

4.7

CHAPTER 4 - Process-Resource Decoposition

Descr iption
The data structures include:

Response#Array: An array of fixed length message entries. The

first byte contains the source node, and the second byte

indicates whether the network has transmitted it yet. The
rest is the response message.

Read$Pos: A pointer to the front entry in the queue.
Dons$Pos: A pointer to the first entry in the queue with which

thf network process is already complete.
Writ;$Pos: A pointer to the next entry available to «tore t new

message.

Q$Size: The current number of messages in the quet
QtytFree: The quantity of free entries not currently in .he

queue.

operators
Initialize: Initializes all variables as for an empty queue.
Enqueue: Copies a message into the next available message

entry, increases the queue size, decreases Qty$Free, and
increments the write position.

Dequeue: Copies a message from front entry, marks the entry as

’done' (byte 2), decreases the queue size and Increments the

read position. (The operation is used by the network
process).

QueryiDone: Determines whether the output message at the done
position has already been processed.

Release: Clears the entry at the current done position,

increases Qty*Free, and increments the done position.

4.2.2.4 Data Output Resource

As mentioned, there is no specific data outrut resource, and
track data must be obtained by the network, directly from the
cache. The network process has direct access to the server's

cache locations, but not to the cache resource as such.
Essentially, the Data Output resource has as its data aggregate

the file server's memory (without a definite structure imposed),
while the only operators available, are those of reading and

writing to memory. The location to be read is obtained from the
message entry in the Response Queue.

4.3 -

CHAPTER 4 - P'ocess-Resource Decoposition

4.3 INTERACTIVE SERVING - 2nd L E V E L DECOMPOSITION

Six processes can be isolated at the second level, The

In i t ia l izat ion P r o c e s s is responsible for initializing all the
local resources and initiating the other processes. These other
processes operate concurrently, requiring access rcolution for
all resources at this level. They are:

- A Queue Producing process which collects the input requests,
and re-queues them in queues for each individual node.

I ndividual-Node S e r v e r Processes. Each node has a server

process which receives and responds to its requests, and
Keeps record of the current user and of the disks
connected to drives.

A Disk-Read Proces . which fetches pseudo-disk tracks from
disk to the cache.

- A Disk-W rite Process which writes all ’dirty’ tracks in the
cache to the pseudo-disk files.

A Complete-Sends Process which updates the cache once a
requested track has been successfully transmitted by the

network.

These processes are illustrated in Figure 4.3 (a-f).

4.3.1 2ND LEVEL: PROCESS BEHAVIOUR DESCRIPTIONS

4.3 .i.l Initialization Process (Fig 4.3a)

This process initializes the local and external resources, loads

configuration information and then initiates the concurrent
processes (i.e. all except for the server
following characteristic :

processes). It has the

PROCESS: In itialization
BEGIN:

t

■

END:

Initialize external resources »

Initialize 2nd level resources »

Read file with configuration information
Configure system »

Initialization

4.9

CHAPTER 4 - Process Resource Decoposition

4.3.1.2 Queue-Producing Process (Fig 4.3b)

The Queue Producing process is used to decouple the server tasKs
from the network input queue. It removes a request from the inpuT

queue and re-queues it for a specific node in the node-queued

resource. Thl« " earn that delays in processing one node’s
request, do not ■*/ other nodes. If a request is received for a
node, for which «...^re is currently no serving task, a new serving

task will bt created. It has the following characteristic:

PROCESS: Produce Queues
BEGIN:

« Dequeue f "Mt. message «

« Deteron ach node it is from (first byte) «

IF: • Nod. not yet have its own serving task «
THEN:

• Create new Server task »

• Send Node$Number •

» Wait until new server task has received number »
* Enqueue r&essage in Node’s Queue »

END: Produce Queues

4.3.1.3 lnc'ividual-Node Server Process (Fig 4.3c)

There is an instance of this process for every active node on the
network. Once initiated, It reads the number of the node which it

will serve, and initializes internal resources. It then starts
read'ng requests, processing them, and returning output. It has
the following characteristic

PROCESS: Individual-Node Server
BEGIN:

Read (Node$Number)

• Inform Producer process - No_e number has been read »
Repeat: Forever

BEGIN:

Dequeue (Node-Queue)

« Interpret an* process request ■

« Build and send message if required »
END:

END: Indi vidual-Node Server

4.10

CHAPTER 4 - Process-Resource Decomposition

FIG 4 . 3 (a-c) - INTERACTIVE SERVING. 2ND LEVEL PROCESSES

v _

XNJTlAwXZAT jQN

NCtMorn

if** 3tt

K .

■ H M u M I lutul

1*1 IN ", IkL -j »

•m * .

NCM »uf .•*

01 njmi* 1

________ /

Obi * . * / -r t o u c h m o .i* s

u»#*>

•niiuftti Miicittll ■ It"
tn« itt«c>w tt o

HiuM-ClUi

a s m

tea Vtriiui Otv

MOOT

A»t*

• W C O i » %

va*»aua Op *

p n m

*a»«tr*cca• i»cci*t*o «hn
J*.i attacnMnt . »
•‘••joe Oiiu

Met*** i*oo 1

lc xsc t ,OUAi.-MOOf ICTVW **CCUI

- 4 . 1 1 -

CHAPTER 4 - Process-Resource Decoposition

4.3.1.4 D isk-Read Process (Fig 4.3d)

The Disk-Read process handles all disk reads of pseudo-disk file

images, required by the cache. It receives a message from th*
cache through the Disk-Read Queue. The message will be to read

all pseudo-disk tracks in a group determined b> the cache (for

• optimizing disk usage). However, after a track has been read, It
is immediately made available in the cache, so there is no lost
efficiency in waiting for the whole group. It has the following
c h a r a c t e r i s t i c :

PROCESS: Disk-Read
• BEGIN:

Repeat: Forever

BEGIN:

Read (Disk-Read Queue)

« Interpret Message *

Repeat: ► for each track required •
+ BEGIN:

• Read the track from the Pseudo-Disk File

Image to the location in the cache «
« Mark Track present In the Cache «

END:
END:

END: Disk-Read

4.3.1.5 Disk-Write Process (Fig 4.3e)

The strategy here is to wait until the cache is ready with write

information. The process then takes the front entry in t h '
wntelist, and determines to which disk it belongs. It then steps
through each group entry in the cache for that disk,

all d irty sectors to the disk's image file. This

efficient on the assumption that the pseudo-disk file
n e a r l y physically co n tigu o u s . It has the
c h a r a c t e r i s t i c :

and writes

should be
images are

following

PROCESS: Disk-Write
BEGIN:

Repeat: Forever
BEGIN:

• Wait until Cache is ready for writing *
« When ready, use the group number obtain :d from

CacheWLReady to obtain the disk number which
must be written »

Repeat: « For each group entry of this disk »
BEGIN:

• Obtain from cache Next Group to be written *
Repe/it: « For each track in the group »

Repeat- » For each sector in the track «
IF: « Sector is dirty »

TH ,N; * W n t e sector to position in file*
END:

END:
END:

- 4.12 -

CHAPTER 4 - Process-Resource Decoposition

4.3.1.6 Complete-Sends Process (Fig 4.3f)

This process does post-processing on the File Server's internal

resources, after the network process has already finished with
the response data. Specifically this means that for all track
read requests which have been sent, the process will reduce the

quantity of outstanding operations for that track group in the
cach*. (No other requests require post-processing). Message
entries must then be released back to the Network Response Queue.
It has the following characteristic:

PROCESS:

BEGIN:

Repeat:

BEGIN:

Complete-Sends

Forever

» Wait until an entry in output queue is "done”
IF » Response is to a track read request *

THEN: » Reduce outstanding operations at the

cache for this track group »
» Release message entry in

END:
END: Complete-Sends

response queue »

«

- 4.13 -

CHAPTER 4 - Process-Resouree Decomposition

FIG A .3 (d-f) - INTERACTIVE S E R V I M G : 2MD LEVEL PROCESSES

fefua

*ttw0e-0lM
rl.# Util

0«0 MPk-PPMtnt

OIW-flEAO

PROCESS
mao

V

Id) C1K -4EAG PROCESS

V .

r
IH M y ? ■MU

31» h ir:te

PROCESSN titH T ltt

1----------------------------------

r •̂uoo-::tk
Hit lMQ«l

It) OIWHIRITT WCCPH

| N/v Rudo^ i fe«ui] “ -

fc*ry-Oont

TRACK-3EHB

Raouca-ooa-atiorj

COMPLETION

PROCESS U tlllH

Caefw

V __________ X'

N/N Rtioonat Quaua

If) C9HET! -9BOS PMOCESS

- 4 14

CHAPTER 4 - Process-Resource Decoposition

4.3.2 INTERACTIVE SERVING: LOCAL RESOURCES

Resources identified at the second level are those internal or

local to the first level serving process. They arc therefore
available as exterral resources to all processes identified at
this and subsequent levels.

4.3.2.1 Con f ig u ration File

This file is read at initialization, and would contain any
information used to provide flexibility and optimize performance,
by changing run-time characteristics. Currently it would contain

the file number for the default operating system and the file
numbers of the most often used common disks. This saves

processing time on well-used disks, since a user never has to

w-iit for a disk/application to be opened or closed, and
information is never flushed from the cache.

Data Desc r i ption

The data structure consists of a file whose first entry is the
file number for the Default Operating System. The second entry

contains the quantity of files which are to be kept permanently
open, and is followed by a list of file numbers.

Operators

Read: This operation is the basic file-read operation and would
be provided by the operating system.

Edit; The file server requires an off-line editing process
which must provide a facility to edit configuration data.
This has not yet been considered.

4.3.2.2 Node Queues

The Node Queues Resource contains a queue for each possible node
in the network. It decouples the individual server processes from

the network input queue - and therefore from one another. The

total quantity of entries (i.e. pool-si2e) is fixed, but there is
no limit on the queue length for any particular node.

Data Desc ription

The entries for these queues are drawn from a common pool, and a

single space list links the unassigned entries. Data structures
include:

NodetRqsts: A fixed-size pool (array) of request entries. Each
entry contains a message and a pointer to another entry. The

pointer is used to link entries into one of the node queues
or the space list.

NodetQueues: An array with an entry for eacn possible node.

Each entry contains an identifier of the node’s server
process, and pointers to the first and last request entries
currently in the node's queue.

SpacetListtRock: a pointer to the first free entry in the pool.

- 4.15 -

CHAPTER <4 Process-Resource Decoposition

Operators
Initialize: The queues for all nodes are

all entries linked into the space list.

Enqueue-to-Qj: An entry is obtained from the space-llst

inserted at the rear of the queue for the lth-node. The
data item is then copied l.ito this entry.

Dequeue-from-Qj: A data item is extracted from the entry at the
front of the queue for the lth-node, and the entry s
returned to the space-list.

initially empty with

and

given

4.J.2.3 HP-Attachment In ter face

Thv Hard Disk Attachment Interface is a resource providing
functions specifically for dealing with pseudo-disk image files,

Generally, before the information In files can be accessed, a
connection has to be created to the file and the connection

opened. This resource is intended to supplement functions already
provided in the file server’s operating system, which relate to

the attachment and opening of files As such It Is dependent on

the architecture of the server ’s operating system, and what It

includes therefore depends on the implementation. Its main

purpose is to create a connection to the file and to create the

file if it does not exist. This could entail creating directories

within the path-name. When a file is created, it must be given
the characteristics of a blank formatted disk in the operating
system m which it is to be used.

Data Desc r 1 ption

The resource performs operations on the Hard Disk(s) of the File

Server machine. Specifically, it must implement the directory
structure chosen for storing pseudo-disk files on the hard disk
(c/:section 3.2.1). The resource also contains a series of New$

DiskjFiles - a file for each user operating system which is
supported, containing the file image for a blank formatted disk.

Operators

Attach$Create$Dlr- Creates a Uni. to

directory if does not exist.
OpenfCreate* , ' ii<. Performs the

opening) on j file for it to be

creates the fil* if it does not

image for a blank formatted disk,

a directory or creates the

necessary

us*d by the
exist, and

to the new

functions (e.g.

file server. It

copies the file
file.

4.3.2.4 Common Software Inf orma tion

This resource is a database of the available operating systems

and common pseudo-disks. Application entries provide the server
with the mapping between the application file number (known to
the client) and its position on the server’s disk, together with

access and other information. Operating system entries map an

operating system number with an application entry identifying the
software for supporting that operating system.

As discussed (c/^sections 3.2.7, 3.4.2), th.s database ne-«ds to
also be presented to the user via software at the client - which

map& application and operating system numbers to textual
descriptions - to aid a client in requesting software.

- 4.1b -

