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Abstract

Matrix models feature prominently when studying string theory. In this project

we extend well known single matrix model results to two matrix models. The

two matrix model is represented using polar coordinates and then used to com-

pute the kinetic piece of the quantum mechanical Hamiltonian operator of two,

space indexed, hermitian matrices with a radially invariant potential. As an

extension of these matrix polar coordinates, we determine the form(s) of the

Laplacian(s) that act on invariant states. The radially dependent Hamiltonian

operator is shown to be equivalent to a system of non interacting (2+1) dimen-

sional fermions. Further on, we consider the integral of the two matrix model

in polar coordinates to show the standard solution which emulates the Wigner

distribution in the free case, when g2
YM = 0. Also in the large N limit we

find that the polar coordinate matrix model, when solved using perturbation

theory, agrees with the well known result of perturbation theory up to order

λ, where λ is the ’t Hooft coupling constant.
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Chapter 1

Introduction

The relationship between large N gauge theories and string theory has given

birth to numerous ideas in Physics of which the AdS/CFT correspondence is

the most well known. The breakthrough was the insight by ’t Hooft [1] who

realized that large N gauge theories are related to strings, and it was this

insight that eventually contributed to the development of “Gauge-Gravity”

dualities.

The gauge theory description is applicable in the investigation of the high

energy behavior of strong interactions, but its application becomes limited

when investigating low energy phenomena such as confinement and chiral sym-

metry. The study of strong interactions (Quantum Chromodynamics) con-

tains, within its theory, an effective coupling constant that becomes large

at large distances where perturbation theory is not applicable. To investi-

gate the low energy dynamics where perturbation theory is not applicable,

’t Hooft proposed the use of the 1/N expansion where N is the number of

quark colours/parameter of SU(N) for large N . The study of QCD in the

1/N expansion results in planar diagrams which can be topologically mapped

to Feynman diagrams in perturbation theory. The SU(N) gauge theory can be

considered as a matrix model of N ×N unitary matrices since the gauge fields

appear in the adjoint representation of the group. The leading contribution to

any correlator comes from planar diagrams.

Matrix models first appeared in the study of nuclear physics, when studying
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CHAPTER 1. INTRODUCTION 2

energy levels of atomic nuclei, and statistical physics. The single hermitian

matrix model was the first and simplest model to be solved by [2] in the large

N limit i.e. the planar limit. The authors of [2] used this single matrix model

to obtain the combinatorics of planar diagrams and the ground state energy of

a one dimensional oscillator with a φ4 interaction. For the quantum mechanical

Hamiltonian, the authors of [2] showed that a fermionic picture emerges.

The single matrix model is also used in the formulation of string theory in

two dimensions [4], when considered in the double scaling limit. Generaliza-

tions can be made to map higher matrix models to string theory [4] but this

includes the risk of a tachyon appearing in the theory.

The study of the large N limit of multi-matrix models is of great interest.

For instance, multi-matrix models have been used in defining M theory [7]

and in the context of the AdS/CFT correspondence, they are an ingredient in

deriving correlators of supergravity and 1/2 BPS states incorporating super-

symmetry and conformal invariance [8]. The plane-wave matrix theory derived

from the N = 4 Super Yang-Mills (SYM) is another well known matrix model

related to the dilation operator [9]. Recently, matrix models have been studied

in the context of a possible mechanism for the “emergence of gravity” [5] [6].

The main purpose of this project is to study matrix models in matrix valued

polar coordinates, with further motivation provided at the end of the second

chapter. The dissertation is structured as follows: Chapter two introduces the

background and some of the key ideas in string theory. In the third Chapter, we

review the single hermitian matrix model, and some of its properties. After the

two matrix model has been introduced in terms of polar coordinates, Chapter

four is dedicated to computing the Hamiltonian operator and Laplacian using

two parameterizations that we define, referred to as parameterization I and

II. In Chapter five we introduce invariant states and describe the form of the

Laplacian when acting on invariant states. Further on the fermionisation of

the two matrix model is shown in Chapter six. In Chapter seven we obtain a

solution for the two matrix model when studied in the absence of interactions.

We also show the results of the two matrix model that agree with perturbation
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theory in the large N limit. Lastly, Chapter eight concludes the work done in

our project and questions that need to be investigated in future research.



Chapter 2

Gauge/Gravity duality

2.1 String Theory: An Overview

The objective of string theory is to unify all the known four fundamental

forces of nature into a single consistent mathematical framework, hence being

termed the theory of everything. This objective also means that string theory

should be able to unify quantum mechanics with general relativity to obtain

the theory of quantum gravity.

String theory, a theory whose elementary particles consists of “strings”,

was a theory that was originally proposed to capture and describe the physics

of strongly interacting particles, namely mesons and hadrons. These particles,

were to be interpreted as variations of the oscillation spectrum of a string,

making string theory a probable description for the dual resonance model,

which is a model that describes the strongly interacting hadrons and mesons.

Due to various limitations (attempts to use relativistic strings to describe

hadrons), an alternative description of strong interactions was adopted, and

that description was Quantum Chromodynamics (QCD). QCD is a renormal-

izable quantum field theory of the gauge group SU(3) of the Yang-Mills and

is also an asymptotically free theory, which means that the effective coupling

constant of the theory decreases as the energy increases, but QCD becomes

strongly coupled at low energies. It was later realized that these dual reso-

nance models are more effective for a different purpose, that is, they were later
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CHAPTER 2. GAUGE/GRAVITY DUALITY 5

realized to be quantum theories of relativistic vibrating fundamental strings.

The fundamental strings of string theory have dynamics described either by

the Nambu-Goto or Polyakov action. These actions describe how relativistic

strings propagate through spacetime and further describe the string’s kinetic

energy and tension in the absence of interactions.

String theorists postulate that the types of particles observed in nature,

which are also observed from the mass spectrum of the respective string, should

emerge from the string’s oscillation modes. In string theory, there can be either

open strings or closed strings. A closed string, which is topologically identical

to a circle with no end points, can include in its spectrum of particles, a

graviton (spin 2 messenger particle). The open string, with two end points,

is topologically equivalent to a segment of a line, includes in its spectrum

of particles a photon (spin 1 messenger particle). The appearance of closed

strings is a natural consequence, since by joining two end points of an open

string you can form a closed string, and these strings, open and closed, interact

by joining and splitting. As candidates for the unification of all of the four

fundamental forces of nature, these strings have typical length of order Planck

length lp approximated as

lp =

√

~G

c3
∼= 1.61624× 10−35m,

where the Planck’s constant ~ = 6.58211899 × 10−16eVs, Newtons gravi-

tational constant G ≈ 6.6748 × 10−11m3kg−1s−2 and the speed of light c ≈
3.0× 108m.s−1.

Thus far, (from what has been written above), we have referred numerous

times to the relativistic string. Before we introduce the idea of the relativistic

string, it is best we first describe the non relativistic string, which will allow

the subtle properties of the relativistic string to be more appreciable. This

explanation is mostly deduced from the work of [11].

If we consider a stretched non relativistic string in the (x, y) plane, then

this would be a string that can display both longitudinal and transverse modes

of oscillation. In our case, we require our non relativistic string to adhere to
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the following conditions: the x-coordinate of the string does not change in

time and its transverse oscillations are along the y-coordinate. These non

relativistic strings can have the following adjustable parameters: the tension

T0 and the mass per unit length µ0. When stretched, the tension of the non

relativistic string experiences a change that is so small that it is assumed to

be approximately constant. The mass of this non relativistic string does not

change during stretching. If this string is stretched to a length ǫ then its total

mass is M0 = µ0ǫ and the change in energy is the work done to stretch the

string, that is E0 = T0ǫ. If it is assumed that at any point along the static non

relativistic string experiencing small oscillations ∂y/∂x, that

∂y

∂x
≪ 1

when a small piece is stretched from x to x + dx and at a certain time t,

its transverse oscillations are y(t, x) at x and y(t, x+ dx) at x+ dx, then this

string will experience a net force, this means that the tension on the string

also changes. Thus the net vertical force is approximately

dFnet ∼= T0
∂2y

∂x2
dx.

The total mass of the stretched string is dm = µ0dx, so using Newtons

second law, it follows that

T0
∂2y

∂x2
dx = µ0dx

∂2y

∂t2
,

and naturally, cancelling dx on both sides of the equation we find

T0
∂2y

∂x2
= µ0

∂2y

∂t2
. (2.1.1)

When equation (2.1.1) above is compared to the standard wave equation

∂2y

∂x2
=

1

v2
0

∂2y

∂t2
, (2.1.2)

and where v0 is the velocity of the transverse waves, the following equiva-

lence, between equations (2.1.1) and (2.1.2), can be made
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v0 =
√

T0/µ0 (2.1.3)

⇒ T0 = v2
0µ0. (2.1.4)

Equation (2.1.4) above is true for the case of the static (no motion along

the x-axis) non relativistic stretched string. The velocity of the transverse

waves v0 is related to the the tension T0 and the mass per unit length µ0.

So in essence, the non relativistic string can be described as having a tension

when stretched and its mass does not change during stretching.

The strings of string theory are more fundamental than the above men-

tioned classical non relativistic strings. In string theory, relativistic strings are

what defines the theory. These relativistic strings are fundamental in them-

selves, that is, they are not made up of smaller constituent particles. When

these relativistic strings vibrate, they only display transverse modes of oscil-

lation and not longitudinal modes [11]. The action of our relativistic string is

given by the previously mentioned Nambu-Goto string action, which is written

below as

SN.G = −T0

c

∫ τf

τi

dτ

∫ σ1

0

dσ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 (2.1.5)

= −T0

c

∫

dτdσ
√−γ,

where γ = det(γαβ) such that γαβ is the induced metric on the world-sheet

swept out by the string.

The variables appearing in equation (2.1.5) represent particular dynamics

of the string and we proceed to give their meaning. When a relativistic point

particle moves in spacetime, it maps out a world line, but a string oscillating

in spacetime traces out a two dimensional surface known as a “worldsheet”.

The Nambu-Goto string action (appearing above) computes the area of the

string’s worldsheet. The worldsheet swept out by the relativistic string is

parameterized by the coordinates (σ1 ≡ τ, σ2 ≡ σ). The string’s worldsheet is
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embedded in the target spacetime where Xµ for µ = 0, 1, 2, ....., D − 1, gives

the string’s path in spacetime i.e. it is the string’s coordinate. The parameter

τ is related to the time on the string and the parameter σ is related to the

positions along the string. Also, the following identifications are made

Ẋµ ≡ ∂Xµ

∂τ
, Xµ′ ≡ ∂Xµ

∂σ
.

The second line in equation (2.1.5) is the Nambu-Goto string action ex-

pressed in a reparameterization invariant form, whose derivation is explained

more formally in [11].

The potential for a static (no kinetic energy) open stretched relativistic

string of length q is V = T0q [11]. Thus as you do work to pull the string,

you give the string energy,that is , pulling the string creates rest energy or rest

mass. The rest mass per unit length of the relativistic string is µ0, so it can

be shown that

T0 = µ0c
2 =

V

q
⇒ µ0 =

T0

c2
. (2.1.6)

From the equation (2.1.6) above, the tension of the string remains constant

but the mass of the string experiences a change either due to a change in the

string’s length or due to excitations of the vibrational modes of the string.

We can compare equations (2.1.4) where the tension T0 of the non relativistic

string was proportional to the square of the velocity of the transverse waves

i.e. v2
0, and equation (2.1.6) which is the tension for the relativistic string,

where the transverse velocity has been replaced by the speed of light c2.

Another crucial parameter, related to the tension T0, that is worth men-

tioning is the slope parameter α′ or the Regge slope, which we will later see

emerge in one of the most crucial mathematical constructs in string theory:

the AdS/CFT correspondence.

To illustrate how α′ comes about, an example from [11] is used. If a straight

rigidly rotating open string on the (x, y) plane is considered, then the angular

momentum J of the relativistic string is related to its energy E as
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J = (α′
~)E2. (2.1.7)

The dimensions of α′ are the inverse of energy squared. This Regge slope

can be related to the previously mentioned string tension T0. For the open

string considered above, the following can be deduced

J =

(
1

2πT0c

)

E2. (2.1.8)

From equations (2.1.7) and (2.1.8), it follows that

α′
~ =

1

2πT0c
⇒ T0 =

1

2πα′~c
. (2.1.9)

When the tension of the string is known, its length can be obtained using

the Regge slope with the following equation

ls = ~c
√
α′, (2.1.10)

where ls is known as the characteristic string length.

From all that has been explained so far, we can deduce that the non rel-

ativistic string is a classical string that has distinguishing properties from

the relativistic string. The relativistic string features more prominently in

string theory but unfortunately it is not the bread and butter of string theory.

Bosonic String Theory (BST) is formulated using relativistic strings, but at

best BST is a toy model because of its limited capabilities to describe nature

as we observe it i.e. BST is only limited to the description of bosons. Below

we explain some of the problems of BST and introduce an alternative theory

that is considered as a possibility to be a candidate of the theory of everything.

The reparameterization invariant Nambu-Goto action is an action of the

relativistic BST. Some of the limitations that render BST as an unsuitable

candidate toward becoming the theory of everything are:

(i) BST only predicts the existence of bosons, messenger particles in nature,

contrary to our physical observations which include fermions. As an example,

some of the quantum states of BST that represent particle states have particles
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such as the photon and the graviton.

(ii) BST is a theory that contains/predicts a particle whose speed exceeds

that of the photon and has an imaginary mass. This particle is known as the

“tachyon”, and renders the theory unstable.

(iii) This is a theory that is consistent in 26-spacetime dimensions and not in

the (3 + 1)-dimensional universe that we observe.

(iv) Unphysical particle states known as “ghost’s” are predicted in BST, but

these are absent in 26-spacetime dimensions where the theory is consistent.

With all these unfortunate negatives for BST, an alternative direction was

taken for the pursuit of the theory of everything that will unite general rela-

tivity with quantum mechanics. This led to the Superstring theory.

Super(symmetric)string theory is a relativistic string theory that incor-

porates supersymmertry and fermions in its formulation. Fermions are the

particles that make up the matter that we observe in nature. Supersymmetry

is a symmetry that relates bosons to fermions, and unites matter with the

forces of nature. In a theory with supersymmetry, bosons and fermions are

grouped into multiplets of equal mass.

There are five types of superstring theories: open type I and closed type I,

closed type IIA, closed type IIB, and the heterotic string which is separated

into two groups, the group with symmetry SO(32) and the group with E8×E8

symmetry. At first sight, these superstring theories were considered to be

distinct, but it was only realized later that they are an underlying elementary

description of a more fundamental theory, known as M- theory, where the M

is yet to be defined. Surprisingly M-theory is not a string theory, it is a theory

whose mathematical composition is that of membranes i.e. 2-branes and 5-

branes and not D-branes. These five superstring theories are related to each

other through mathematical transformations known as dualities. Dualities are

types of symmetries that bring about a relationship between theories that have

different descriptions in separate systems but illustrate the same physics. For

example, duality symmetries that relate theories in large and small distance

scales are known as T-dualities and those that relate the theories in the strong
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and weak coupling are known as S-dualities. By combining the T-duality and

the S-duality, this gives the U-duality, which is the symmetry of M theory.

D-Branes

Open strings have boundary conditions at their end points. When the end

point of the open string is fixed , this boundary condition is referred to as a

Dirichlet boundary condition. These Dirichlet boundary conditions are appli-

cable to spatial extensions only. Alternatively another boundary condition is

the one that does not require any constraints to be imposed on the string’s end

point. This means that the string’s end point can move in any direction, in

this case the boundary condition is referred to as Neuman boundary condition.

The objects that the end points of a string are attached to are determined

by the motion of the string’s end point in space and these objects are known as

membranes or more commonly, branes. The formulation [12] [13] of mathemat-

ical objects known as “Dirichlet-branes” or D-branes, alternatively “Dirichlet

p-branes” or Dp-branes, was a paramount conceptualization that permitted

further developments of string theory. String theory describes Dp-branes as

(p+1)-dimensional spacetime hypersurfaces where strings can attach [14]. The

D in Dp-brane [12] represents boundary conditions that arise as a result of the

string end-points that are attached to a physical object and the p represents

the number of spatial dimensions of the brane. A closed string, which has no

endpoints, moving in the bulk, can touch a Dp-brane and then open up to

become an open string. Thus the Dp-brane [12] [15] can be viewed as a source

for closed strings and this phenomenon is related to the “T-duality”.

If a string is stretched between two points, then the objects that are at-

tached to the string end points are considered to be D0-branes. When the

string end points are allowed to be confined vertically along the “y- axis”,

not permitting horizontal motion, then the end points of the string are said

to be attached to a D1-brane. Boundary conditions that are extended over a

membrane give a D2-brane. The D3-brane, a membrane of higher dimensional

spatial extension, can also be obtained by describing the motion of the string’s
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end points.

Dp-branes have computable properties like energy density, volume [12] and

other interesting quantities. At first, before the D-branes, p-branes [12] [13]

[15] were classical solutions to supergravity, which is a low energy limit of

(type IIB) string theory. A more complete description of these p-branes was

obtained by defining Dp-branes and this was proposed by Polchinski [13] [15].

Below we give a more physical short description on how Dp-branes appear in

string theory.

A conformal field theory [12] [14], is a theory that is invariant under con-

formal transformations on a (1 + 1)-dimensional string worldsheet and defines

a particular superstring theory. This conformal field theory contains within it

bosonic fields Xµ which define the coordinates of the string in 10-dimensional

spacetime. Using supersymmetry, these bosonic fields can be related to their

fermionic partners ψµ also in the 10-dimensional spacetime. The boundary

[14] conditions on the bosonic fields Xµ, can either be Neuman boundary con-

ditions or the Dirichlet boundary conditions. Each bosonic field has distinct

boundary conditions. With the Neumann boundary conditions, the open string

end points can move freely in (9 − p) dimensions. The Dp-brane arises when

(9 − p) of the fields have Dirichlet boundary conditions, giving rise to string

end points that are constrained to lie on a p-dimensional hypersurface and this

hypersurface being the Dp-brane [13].

For the fermion fields [14] on an string, different boundary conditions can

also be considered. In this case, the open string boundary conditions cor-

respond to integer and half integer modes that are referred to as Ramond

(denoted R) and Neveu-Schwarz (denoted NS) boundary conditions. For the

closed string, there can be the periodic and anti-periodic boundary conditions

corresponding to the left and right moving fermions. This gives rise to four

distinct sectors for the closed string, which are: NS-NS, R-R, NS-R and R-NS

[14].

All the five superstring theories that were previously mentioned can each

be described by a different assembly of Dp-branes, each collection specified by
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different Dirichlet boundary conditions on the end points of a string. The

[14] type IIA(IIB) superstring theories have Dp-branes with even(odd) p-

dimensions. Also with each superstring theory there is a fundamental string

and a Neveu-Schwarz(NS)-five brane. The Dp-branes of one type of super-

string theory can be related to the Dp-brane of another type of superstring

theory through duality transformations and with the sufficient dualities this

further suggest’s non-uniqueness of the branes, in that the branes of one (su-

perstring) theory can be mapped to the branes of another (superstring) theory

and further mapped to a string.

By stacking N parallel Dp-branes [12], N2 different open strings emerge.

These N2 different open strings [12] arise because of the different branes the

end points of the open strings can be attached too. The N2 is the dimensions of

the adjoint representation of the gauge group U(N) that gives the maximally

supersymmetric U(N) gauge theory on the worldvolume of the Dp-brane. The

expectation values of the scalar fields determine the relative separations of

the parallel Dp-branes in (9 − p) transverse directions. So Dp-branes can

be described in terms of a U(N) supersymmetric gauge theory on its world

volume. When the expectation values of the scalar fields vanish and N is taken

to be large ( N → ∞ ), the N -stacked parallel Dp-branes become a heavy

object and it is this heavy object that is a source for closed strings, whose

description contains gravity [12]. In simpler terms, the open strings living on

the Dp-brane (gauge theory) become gravitational sources (⇒ closed strings

living in the bulk), this phenomena couples a gauge theory to a description of

gravity, and is considered as a type of duality. Hence the term “Gauge-gravity”

duality.

The most renowned example [16] of a gauge-gravity duality is a stack of

D3-branes which can be described using either the open string description or

the closed string description. In the low energy limit of this stack of the D3-

branes, one can consider the limit where ls → 0, where we had previously

defined ls as the string length. In this limit, the open string description of the

D3-branes is reduced to an N = 4 Super Yang-Mills theory (Superconformal
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field theory) and the closed string description of the D3-branes reduces to a

(super) string theory on AdS5 × S5 with a gravitational description.

Large N Gauge Theories

It is only natural that we proceed to link large N gauge theories to string the-

ories, because to describe strong interactions, string theory was the original

candidate but a gauge theory (QCD) proved to be more suitable, which left

the question: Is there a relationship between string theory and gauge theory?

Gauge theories proved to be sound when studying the high-energy behavior

of strong interactions, but not so at low energies [15]. At these low energies,

phenomena such as chiral symmetry breaking and confinement exist and gauge

theory is not an appropriate tool to characterize the physics of such phenom-

ena. Could there be a theory that has a duality description such that, at one

limit the theory is strongly coupled and equivalently at the other limit the

theory is weakly coupled and vice versa? Does QCD have a dual description,

that is, can we find two related theories that describe QCD from different lim-

its, the strong and the weak limit, with these two theories related by duality

transformations? Physicist’s have been hinting that string theory could be a

dual description of QCD [15].

In a paper published by ’t Hooft [1], the author proposed that a gauge

theory that has gauge group U(N) representing quarks that have a colour

index which runs from one to N , should be considered in the large N limit with

g2
YMN = λ held fixed , where λ is known as the ’t Hooft’s coupling constant.

The dimensionless coupling constant gYM of the theory can be adjusted to be

weakly coupled (gYM ≪ 1 ) or be strongly coupled (gYM ≫ 1 ) and N is an

integer number which serves as a parameter of the theory from the gauge group

U(N). When the above large N limit gauge theory proposed by ’t Hooft is

considered in the strong coupling limit (λ≫ 1), it suggests a theory of strings.

These large N gauge theories can be shown to be equivalent to string theory

[15].

By attempting to part quark and anti-quark pairs [15] [1], which are objects
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of QCD, flux tubes or Wilson lines are formed between these quark anti-quark

pairs and these flux tubes are considered to be strings. This means that the

large N gauge theory could be described by strings. Below a very schematic

overview is given, obtained from [15], to indicate a relationship between gauge

theory and string theory.

A correspondence between a theory of strings and a U(N) gauge theory

can be manifested in the large N limit through a perturbative expansion of

the U(N) gauge theory. A schematic Lagrangian is first considered

L ∼ tr (dΦidΦj) + gYMc
ijktr (ΦiΦjΦk) + g2

YMd
ijkltr (ΦiΦjΦkΦl) , (2.1.11)

whose interactions are SU(N) invariant.

The above schematic Lagrangian is for some arbitrary field Φa
i , whose upper

index a is in the adjoint representation of SU(N) and i represents the type of

field that is being considered. If the field is a quark, then i would be the flavor

index. By assuming that the Lagrangian above has fields whose three point

vertices are proportional to gYM and four-point vertices proportional to g2
YM ,

the fields can then be rescaled by the following [1]

Φi ≡
1

gYM
Ψi. (2.1.12)

Thus the Lagrangian in equation (2.1.11) becomes (for cijk, dijkl ≡ con-

stants)

L ∼ 1

g2
YM

[
tr (dΨidΨi) + cijktr (ΨiΨjΨk) + dijkltr (ΨiΨjΨkΨl)

]
. (2.1.13)

In the large N gauge theory, fields that carry double indices are known as

the matrix valued adjoint fields Φa [15]. These adjoint fields can be represented

as a product of fundamental and anti-fundamental fields Φi
j. The double index

notation on Φi
j reproduce the double lines of the ribbon graphs of largeN gauge

theories, whilst the Feynman diagrams which are obtained from the theory of

equation (2.1.11) can also be represented using double line notation from these

adjoint fields. Correlators of SU(N) will take the following form
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〈
Φi
jΦ

k
l

〉
∝
(

δilδ
j
k −

1

N
δijδ

k
l

)

. (2.1.14)

The Kronecker delta terms are the ones that contribute to the planar dia-

grams whilst the terms that are sub-leading in N i.e. 1/N are the terms that

are neglected because they are non-planar. From the Lagrangian of equation

(2.1.11), the respective Feynman diagrams may be viewed as a particular sim-

plicial decomposition of a surface with V vertices, E propagators and F loops.

A planar diagram, a diagram with V vertices, E propagators and F loops, is

associated with a coefficient proportional to the following

NV−E+FλE−V = NχλE−V χ = V − E + F, (2.1.15)

where χ is the Euler characteristic of the surface that is associated with

the respective diagram. The Euler characteristic describes the topology of the

surface, thus for closed oriented surfaces we get

χ = 2− 2g, (2.1.16)

where g is the genus (the number of handles) on the topological surface.

As an example, a sphere would have genus zero, a doughnut would have genus

one etc. In the case of planar diagrams, their genus is zero.

In the large N limit, the topological expansion of the planar diagrams may

be written as a double expansion of the following form

Z =
∞∑

g=0

N2−2gfg (λ) , (2.1.17)

where fg is some polynomial. The Feynman loop diagrams of string theory

are given by the following loop expansion

Z =
∑

g=0

g2g−2
s Zg. (2.1.18)

Equations (2.1.17) and (2.1.18) are comparable since the string coupling

constant, gs, is related to the rank N of the gauge group by
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gs ≡
1

N
. (2.1.19)

The above schematic illustration from [15] does indicate that the Feynman

diagrams can be topologically mapped to planar diagrams of the large N gauge

theory, and also by reconciling the parameters of string theory and those of

gauge theory, a strong-weak duality correspondence in the expansion formulas

of both the string theory, equation (2.1.18), and the gauge theory, equation

(2.1.17), is manifest.

2.2 The AdS/CFT Correspondence

The gauge-gravity duality provides a concrete example of how a theory of

strings can be related to gauge theories as proposed by ’t Hooft [1]. The

AdS/CFT correspondence [16][17], sometimes referred to as the gauge/gravity

duality, is also a duality theory that relates theories with gravity in d-dimensions

and those without gravity in (d-1)-dimensions. The best known example of

the AdS/CFT correspondence was conjectured by Juan Maldacena.

Maldacena [16] starts with type IIB string theory and considers a stack of

D3 branes separated by a distance r in the decoupling limit

ά→ 0 U ≡ r

ά
,

where U is held fixed, r is defined as the separation distance of N parallel

D3 branes and ά was first introduced in equation (2.1.7). The type IIB string

theory becomes weakly coupled in this limit, leading to supergravity solutions

when λ = g2
YMN ≫ 1.

Thus, Maldacena proposes that in the near extremal black D3 brane solu-

tion in the decoupling limit of the large N (N →∞) limit, the D = 4, N = 4

U(N) SYM theory has in its Hilbert space the states of type IIB supergrav-

ity on AdS5 × S5. This means that type IIB supergravity contains gravitons

propagating on AdS5 × S5. This led Maldacena to conjecture that “Type IIB
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string theory on AdS5×S5 plus some appropriate boundary conditions is dual

to D = 4, N = 4 Super Yang-Mills theory”.

The above conjecture is also a manifestation of the strong-weak coupling

nature of the duality. The N = 4 Supersymmetric Yang-Mills theory is a con-

formally invariant gauge theory that lives in lower dimensions with respect to

the type IIB string theory found on AdS5 × S5. In the AdS/CFT correspon-

dence the parameters of the strings in AdS can be matched to those of the

N = 4 SYM theory that lives on the boundary of the AdS. The string theory

living on the AdS5 × S5 spacetime background has the following parameters

[15] [16] [17] : gs ≡ dimensionless string coupling constant, ls ≡ string length

that determines the size of the fluctuations of the string world sheet and R ≡
curvature radius of AdS5 × S5. On the boundary of AdS5 × S5 where the

four dimensional N = 4 SYM theory lives, we can identify the following pa-

rameters: N ≡ rank of the gauge group U(N), gYM ≡ dimensionless coupling

constant. Thus the following identifications are made

gs = g2
YM ,

(
R

ls

)4

= 4πg2
YMN = 4πλ. (2.2.1)

In equation (2.2.1) above we see that if we take λ→∞, which corresponds

to the strong coupling limit of the D = 4, N = 4 SYM theory, the radius

of the AdS5 × S5 correspondingly becomes large. In this limit, the weakly

coupled type IIB string theory becomes supergravity states with the usual GR

type interactions. When the effective coupling g2
YMN = λ becomes large the

perturbative calculations cannot be trusted in the Yang-Mills theory [16], but

the computations on the supergravity side on AdS5 × S5 can be trusted as

R→∞. The possibility of extending this duality from supergravity states to

the “stringy” states was discussed in [18] by considering type IIB string theory

in a maximally supersymmetric plane-wave background which has been shown

to be dual to N = 4 large N U(N) Super Yang-Mills gauge theory in (3 + 1)-

dimensional Minkowski spacetime. This extension will be delved into at a later

stage.
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2.3 Holography

Holography [19] is an idea that is deeply linked with string theory and the

AdS/CFT correspondence. It is known that for a black hole, the entropy is

proportional to the area of its event horizon as a consequence of black hole

thermodynamics. But this type of relation is not restricted to black holes, it is

a property of any quantum theory of gravity, that is, holography asserts that

any quantum theory of gravity is completely equivalent to a quantum field

theory in fewer dimensions.

Black holes are thermodynamical systems with temperature T and entropy

S where the entropy is also equivalent to the degrees of freedom of the black

hole. The entropy and temperature of a black hole are defined by

S =
A

4G
, T =

κ

2π
,

where A is the area of the event horizon, G is the Newtonian constant and

κ is the surface gravity.

Principally, the holographic principle relates the information of the black

hole and all the constituents that fall within it and requires that the informa-

tion that fell within the black hole be described by the surface fluctuations of

the event horizon. This principle was proposed to solve the information para-

dox which basically says that the description of the low-dimensional surface

oscillations of the gravitational event horizon will describe the information of

the higher dimensional thermodynamical body like a black hole.

In general, the concept of holography [17] [19] is applicable also when grav-

ity in d-dimensions is related to a local field theory in (d − 1) dimensions.

In particular this can be interpreted to mean that quantum gravity in five-

dimensions can be rendered to be equivalent to the local field theory of the

(3 + 1)-dimensional Minkowski space.

Holography is an idea [20] [21] that is not only limited to black holes.

Further evidence for Maldacena’s conjecture is when symmetry groups are

considered in both strong and weak coupling limits of the correspondence.
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The isometry groups of the anti de Sitter space in (d + 1)-dimensions is the

same as the conformal symmetry group in d-dimensions [12]. A more specific

example is the isometry [12] group of AdS5, SO(2, 4) which matches the con-

formal symmetry group of the gauge theory in (3 + 1) dimensional Minkowski

space. Further, [12] the isometries of S5 which form SU(4) ∼ SO(6) are the

R-symmetries of N = 4 SYM that rotate the six Higgs fields into each other

[16]. In the N = 4 SYM theory, there appears an R-symmetry which is iden-

tical to the latter isometry of S5. As previously mentioned, when including

supersymmetry in a theory it implies the inclusion of a fermionic description

of the theory. The appearance of the fermionic generators of the string theory

means that the AdS5 × S5 background has a complete isometry supergroup

which is SU(2, 2|4), and this isometry supergroup is equivalent to the N = 4

superconformal symmetry [12]. This spells [12] out a duality, and such duali-

ties are also referred to as holographic since a string theory in AdSd+1 defined

in (d+1) dimensions is equivalent to a quantum field theory that lives in lower

d-dimensions, the CFTd.

2.4 A Short Description Of The Anti de Sitter

(AdS) Space

The de Sitter and anti de Sitter spaces represent solutions that are obtained

from solving pure gravity equations that have a corresponding cosmological

constant [22]. The de Sitter, Anti de Sitter and flat spaces are maximally

symmetric, that is, they have the largest possible isometry group allowed. The

authors of [22] consider the following action of pure gravity

S = −s 1

16πGD

∫

dD
√

|g| (R + Λ). (2.4.1)

In the above action of pure gravity given by equation (2.4.1), the first term

s can either be s = 1 or s = −1. When s = 1, it means that computations were

performed using a Minkowski metric gµν whose first entry on the main diagonal
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is a positive and the rest of the entries are negative. Alternatively, s = 1

corresponds to a Euclidean metric. When we have s = −1, the Minkowski

metric has a matrix whose first entry on the main diagonal is negative and

the rest of the terms on the main diagonal are positive. Factors appearing in

the above action for pure gravity are: Λ ≡ cosmological constant, R ≡ scalar

curvature, GD ≡ Newtonian constant in D-dimensions and g ≡ determinant

of a spacetime metric. For the above action of pure gravity, the Einstein

equations [22] of motions in General relativity are shown to be

Rµν =
Λ

(2−D)
gµν . (2.4.2)

Above in equation (2.4.2), the de Sitter space corresponds to a positive

cosmological constant Λ > 0, and the anti de Sitter space corresponds to

negative cosmological constant, Λ < 0. There are many ways to represent

the AdS space [22] [23], using various parameterizations. This being said, the

AdS space can be constructed using Poincarè coordinates. We are going to

embed the AdS space in a higher dimensional flat space. Consider [24] [25] the

five-dimensional anti de Sitter (AdS5) manifold embedded on a six-dimensional

Euclidean space, then by intersecting the (AdS5) with hyperplanes defined by

X4 +X5 = en,

the Poincarè coordinates are introduced on AdS5, where each slice of the

intersecting hyperplanes is represented by Πn which is a copy of Minkowski

spacetime.

The coordinates of the AdS5 can be considered to be Poincarè coordinates

because the points that lie on each slice Πn can be parameterized by the

(3 + 1) dimensional Minkowskian coordinates, by rescaling them using en on

the hyperplane. The metric of the embedding space has the following form

ds2 =
[
(dX0)

2 − (dX1)
2 − (dX2)

2 − (dX3)
2 − (dX4)

2 + (dX5)
2
]
.

The AdS metric is obtained by computing the induced metric on the surface
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(X0)
2 + (X5)

2 − (X1)
2 − (X2)

2 − (X3)
2 − (X4)

2 = R2 (2.4.3)

where R is the radius of curvature of the AdS space.

After rescaling it with the coordinates on the hyperplanes, using the (3+1)

Minkowskian coordinates, the metric takes the following form:

ds2 = R2
(
e2n
(
(dx0)

2 − (dx1)
2 − (dx2)

2 − (dx3)
2
)
− dn2

)
,

where R is a constant radius of the five-dimensional anti de Sitter space.

Since each copy of the hyperplane Πn of AdS5 is a copy of (3+1) Minkowski

spacetime, rescaling the points of the hyperplane by e2n introduces the

(v, x0, x1, x2, x3) coordinates on AdS5, which are Poincarè coordinates. When

we consider the n→∞ limit, this takes us to the boundary of the anti de Sitter

space, which is at space like infinity. The boundary of the anti de Sitter space

can be thought of as a (3 + 1)-dimensional Minkowskian spacetime, where the

conformal theory lives, making the metric

ds2 ∝
(
(dx0)

2 − (dx1)
2 − (dx2)

2 − (dx3)
2
)
.

This purely illustrates that maps can be defined between the string theory

states that are defined on the bulk and the conformally invariant operators of

the dual field theory that are defined on the Minkowski space, which is the

boundary of the bulk.

2.5 The BMN Limit

We now return to Maldacena’s conjecture and how the supergravity modes can

be extended to the “stringy” states. The authors of [18] propose an AdS/CFT

correspondence between the D = 4, N = 4 Supersymmetric Yang-Mills theory

and type IIB string theory living in the plane-wave background which is a

Penrose limit of the AdS5 × S5. To start, the metric of the AdS5 × S5 space,

which is defined as
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ds2 = R2
[

−dt2 cosh2 ρ+ sinh2 ρdΩ2
3 + dρ2 + dψ2 cos2 θ + dθ2 + sin2 θdΩ′2

3

]

(2.5.1)

is considered.

The above metric in equation (2.5.1) [18][26][27] of AdS5×S5 is written in

terms of the global coordinates of the AdS space, for a particle moving along

the ψ direction and sitting at ρ = 0 and θ = 0. By introducing light-cone

coordinates x̃± = 1
2
(t± ψ) and performing a rescaling by introducing x±, r, y

in the scaling limit R, the following is defined

x+ = x̃+

µ
x− = µR2x̃− ρ = r

R
θ = y

R
R→∞,

where R is the radius of the AdS space.

In the R→∞ limit [18], which is defined as the Penrose limit, the metric

of the AdS5 × S5, becomes the metric of the plane-wave background which is

given by

ds2 = −4dx+dx− − µ2~z2dx+2
+ d~z2, (2.5.2)

where µ is the mass parameter [26] that maintains the canonical length

dimensions for the rescaled coordinates. By taking µ→ 0 in the above metric,

the (3 + 1)-dimensional Minkowski metric is recovered which corresponds to

the strong coupling limit on the gauge theory side of the duality. Also in the

Penrose limit, [18] obtains

2p− = ∆− J 2p+ =
∆ + J

R2
, (2.5.3)

where p− and p+ are the conjugate momenta of x±. The parameter E,

(E = i∂t), in the global coordinates t of the AdS space is identified with the

scaling dimension ∆ of the Super Yang-Mills operator. The angular momentum

J , (J = −i∂ψ), also in global coordinates ψ of the AdS space corresponds to

the charge of a U(1) subgroup of the SO(2) R-symmetry group of the N = 4

Super Yang-Mills. In the AdS space, states that have non-zero momentum p+
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and R →∞ in the light cone coordinate transformation are states with large

angular momentum in the global coordinates of the AdS space such that

J ∼ R2 ∼ N1/2. (2.5.4)

In the Penrose limit, when N →∞ with gYM held fixed, in addition to this,

J2/N and the conformal dimension ∆−J are also held fixed, this corresponds

to the BMN limit. On the gauge theory side, only states projected from the

BMN limit are considered to construct a duality with the closed strings of

type IIB string theory living in the plane-wave geometry of AdS5 × S5. The

closed strings which have harmonic oscillator modes n = 0, when excited, give

the spectrum of massless supergravity modes propagating about the plane-

wave geometry, these are the same supergravity modes that were observed in

the conjecture of [16]. The operator tr
(
ZJ
)

[18] [26] [27], defined as a chiral

primary operator, is a single trace operator that is associated with ∆− J = 0,

J is taken to be an SO(2) generator that rotates the plane defined by the two

scalars φ5 and φ6 and Z is defined by

Z ≡ φ5 + iφ6,

with the trace taken over N colour indices [18]. The ∆ − J = 0 states

correspond to the supergravity states obtained by [16] in the low energy limit

of type IIB string theory. The normalized chiral operator, with dimension

J at weak coupling, is dual to the vacuum state in the light cone gauge.

Below in equation (2.5.5) is a correspondence for the ground state (non-excited)

supergravity mode with the n = 0 closed string oscillator modes on the string

theory side

∗(Gauge theory side) ∗ 1√
JNJ/2

tr
(
ZJ
)
←→ |0, p+〉lc ∗ (String theory side) ∗ .

(2.5.5)

In equation (2.5.5) above, we see an AdS/CFT correspondence (at weak

coupling) between the single trace states of SYM theory on R × S3, which is
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a gauge theory or a spectrum of dimensions of single trace operators of the

theory on R4, dual to a vacuum state in the light cone gauge which represents

the pp-wave limit. The strings in the above plane-wave/gauge correspondence

in equation (2.5.5) are a particular description of a mode of the ten-dimensional

(ground state) supergravity in a particular wave function [18]. The operator

tr
(
ZJ
)

is the only one that has conformal dimension ∆ − J = 0. Thus to

generate the rest of the massless supergravity modes, the operator φr is inserted

into tr
(
ZJ
)
, for r = 1, 2, 3, 4

1

NJ/2+1/2
tr
(
φrZJ

)
. (2.5.6)

The above state in equation (2.5.6) is normalized in the planar limit (N →
∞) and φ is a scalar that is neutral under the rotations of J . The zero mo-

mentum oscillators ai0 with i = 1, 2, 3, ...., 8 and Sb0 with b = 1, 2, 3, ...., 8 act

on the light cone vacuum state |0, p+〉lc. These two actions give the rest of

the massless supergravity modes on the string theory side. The i and b super-

scripts count the fermionic operators which constitute the sixteen component

gaugino χ. An example of a plane-wave/gauge duality with ∆ − J = 1, is

defined below for a state with two excitations [18]

1

NJ/2+1

1√
J

J∑

l=1

tr
(
φrZ lψbJ=1/2Z

J−l
)
←→ a†k0 S

†b
0 |0, p+〉l.c, (2.5.7)

where ψbJ=1/2 is one of eight fermionic operators of the sixteen component

gaugino χ which have J = 1/2, the other eight have J = −1/2.

Operators given by the trace of Z, with the scalar fields inserted in the

trace can be associated with planar diagrams [18], in which the scalar fields

are contracted and operators which resulted from the insertion of fields with

∆ − J = 1 and the planar diagrams that are associated to these fields give

rise to (1 + 1)-dimensional fields for each oscillator mode of the closed string

at weak ’t Hooft coupling. When λ 6= 0, the fields acquire mass, making them

heavier, thus the operators that are associated with these fields have large

conformal dimensions. An example of a correspondence involving a “stringy”
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state, when ∆−J = 2 for non-supergravity modes, which means we have non-

zero oscillator modes (n 6= 0) acting on the light cone Hamiltonian is given

as

1√
J

J∑

l=1

1

NJ/2+1
tr
(
φ3Z lφ4ZJ−l

)
e

2πinl
J ←→ a†8n a

†7
−n|0, p+〉l.c.. (2.5.8)

The stringy state appears on the left hand of the above equation. The

above correspondence in equation (2.5.8) was shown by [18] for a certain limit

of type IIB string states living on the plane-wave geometry to be dual to a

particular sector of states of the D = 4, N = 4 U(N) SYM on the gauge side

by defining the BMN limit. The [9] gauge theory that is dual to the type IIB

plane-wave superstring theory is argued through the principle of holography

[28] to be an effective quantum mechanical one-dimensional plane-wave matrix

model that arises from the Kaluza-Klein reduction of the D = 4, N = 4 Super

Yang-Mills on R× S3.

2.6 Plane Wave Matrix Theory

Reference [9] illustrates a self-contained and consistent framework to infer

plain-wave matrix theory, showing that by performing a Kaluza-Klein trun-

cation on the D = 4, N = 4 Super Yang-Mills theory on R× S3, a consistent

definition of plane-wave matrix theory can be obtained. Also by the appli-

cation of perturbation theory, it is further shown in [9], that the one-loop

anomalous dimension of pure scalar operators (which is equivalent to the first

order energy shift of states of the plane-wave matrix model) is reproduced in

the perturbative extension plane-wave matrix theory.

To derive the plane-wave matrix model, the authors of [9] first perform a

dimensional reduction by taking N = 1 Supersymmetric Yang-Mills in ten-

dimensions on a six torus and then dimensionally reducing it to D = 4, N = 4

Supersymmetric Yang Mills. The fields of the D = 4, N = 4 Superconformal

Yang-Mills theory consists of a vector field Aµ, six real scalar fields φi as well
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as four Weyl spinors λαA, in the adjoint representation of the gauge group.

The fields (all four dimensional) are expressed in spherical harmonics on S3 in

the Coulomb gauge ∇aA
a. The spherical harmonics on S3 come in irreducible

representations (mL,mR) of the SO(4) ∼= SU(2)L ⊗ SU(2)R isometry group.

The mode expansions of the fields are inserted into the action of D = 4,

N = 4 SYM. The action is integrated over the field on which the harmonic

expansion is being performed to give a one-dimensional theory with an infinite

number of fields, whose mass spectrum is investigated. After using special

properties of the spherical harmonics, [9] obtains a mass spectrum which is

given in figure 1 on page 7 of [9], that represents a particle spectrum of D = 4,

N = 4 Super Yang-Mills on R × S3. This mass spectrum is the Kaluza-Klein

mass tower. Various states in the Kaluza-Klein tower may be reached by

acting on the states of the tower using two super-charges QL and QR. The

supercharge QL takes you to the upper left and QR to the upper right of the

Kaluza-Klein mass tower. The entire Kaluza-Klein mass tower is viewed as a

single irreducible representation of the superconformal theory.

From the mass tower spectrum, [9] considers the lowest lying supermul-

tiplet (1,1,6) + (2,1,4) + (3,1,1) which corresponds to 1
2
BPS states, the

second lowest lying supermultiplet corresponds to 1
4
BPS states etc. The trun-

cation performed on the tower of Kaluza-Klein modes is restricted to the lowest

lying supermultiplet. States appearing in this particle spectrum are labeled

by SU(2)L ⊗ SU(2)R ⊗ SU(4) representations, which represent modes of the

spectrum. From the particle spectrum, the plane wave-matrix theory one di-

mensional Lagrangian L is derived by truncating the infinitely large spectrum

of the Kaluza-Klein state modes down to the lowest lying supermultiplet. The

one dimensional Lagrangian is given by the following equation
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L = tr

(
1

2
(DtXI)

2 − 1

2

(m

6

)2

X2
a −

1

2

(m

6

)2

X2
i

)

+ tr

(
m

3
iεabcXaXbXc +

1

4
[XI ;XJ ]

2

)

− tr
(

2iθ†Dtθ +
m

2
θ†θ − 2θ†σa [Xa; θ] + θ†iσ2ρi [Xi; θ

∗]
)

− tr
(
θT iσ2ρ2

i [Xi; θ]
)
. (2.6.1)

For the one-dimensional Lagrangian in equation (2.6.1) above, the variables

appear as follows: XI ≡ one-dimensional bosonic hermitian N × N matrix,

θ ≡ one-dimensional fermionic hermitian N×N matrix, Dt ≡ covariant deriva-

tive with respect to time t, σa ≡ usual Pauli matrices, ρi ≡ Clebsch-Gordon

coefficients, m ≡ mass parameter of the plane-wave matrix model, and the

spatial indices a, b, c ≡ 1, 2, 3. The indices I and J count the elements of

a particular representation, taking the values from one to the dimension of

the representation. In the Lagrangian above, J, I = 1, ...9 (transverse SO(9)

index).

The mass parameter m of the plane-wave matrix model theory is defined

by m = 6
R

where R is the radius of the three sphere. When deriving the one

dimensional Lagrangian, the relation between m and gYM is shown to be

(m

3

)3

=
32π2

g2
YM

. (2.6.2)

The D = 4, N = 4 Super Yang-Mills on R × S3 has been thus linked to

the plane-wave matrix model theory using supersymmetry and by truncating

Kaluza-Klein modes on the mass tower spectrum. The authors of [9] further

show that through perturbation theory, the one-loop effective vertex, that

determines the first order energy shift of states in the plane-wave matrix model

is equivalent to the one-loop dilatation operator of D = 4, N = 4 Super Yang-

Mills [29]. The equivalence [9] of the one-loop effective vertex and one-loop

dilatation operator relates a field theory of D = 4, N = 4 Super Yang-Mills

on R × S3 to a matrix quantum mechanics (the plane-wave matrix model

theory). This relation between the scaling dimensions of Super Yang Mills
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operators on R4 and the corresponding states in the plane-wave matrix theory

is a consequence of the state operator map of conformal field theory. The

equivalence of the scaling dimensions shown by [9] was proved for protected

multiplets which exist in both the gauge theory and the plane-wave matrix

theory in the SO(6) sector. The protected multiplets of the gauge theory

are chiral primary operators and those of the plane-wave matrix theory are

energy states, the former being represented by pure multi-scalar operators with

vanishing anomalous dimensions and the latter is represented by symmetric

traceless excitations.

The result [9] [30] that equates the one-loop effective vertex of the plane

wave matrix theory to the one-loop contribution of the dilatation operator

implies that the D = 4, N = 4 Super Yang-Mills theory can be integrable.

Thus, the one-loop dilatation operator of D = 4, N = 4 Super Yang-Mills

in the large N limit can be considered as the Hamiltonian (the one used to

obtain the one-loop effective vertex of the plane-wave matrix theory) of an

integrable SO(6) spin chain model, and this view suggests the integrability of

the D = 4, N = 4 Super Yang-Mills theory. The integrability of large N plane

wave matrix theory is shown in [30] where the Hamiltonian of the plane wave

matrix theory is considered with all fields being N × N traceless hermitian

matrices from the gauge group SU(N). Integrability [30] means that there

exists a conserved charge U(Λ) in the theory such that

U(Λ) =
∞∑

k=1

ΛkU2k, (2.6.3)

where

Λ := G2N G :=
gYM
4π

, (2.6.4)

and this charge commutes with the dilatation operator of D = 4, N = 4

SYM. Integrability implies an infinite number of conserved charges, one for

each degree of freedom in the theory.

By performing perturbation theory on the plane-wave matrix theory Hamil-
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tonian, the energy operator is obtained up to three loop order. In [9], the two-

loop dilatation operator on N = 4 Super Yang-Mills could not be shown to

agree with the two-loop effective vertex of the plane-wave matrix theory, but

this is corrected in [30] by renormalizing the plane-wave matrix theory mass

parameter m for M = m
3

such that

1

M3
=
g2
YM

32π2

(

1 +
7

32π2
g2
YMN −

11

252π4
g4
YMN

2 +O(g6
YM)

)

, (2.6.5)

obtained from the path integral of higher Kaluza-Klein modes of the gauge

theory on S3.

As mentioned in [9], and as it is evidenced in equation (2.6.1), the six scalar

fields that appear in the derivation of the plane-wave matrix theory generally

couple through a Yang-Mills coupling constant as

−g2
YM

∑

i<j

[Xi, Xj]
2 , (2.6.6)

where Xi and Xj are two of the six scalar fields of [9]. These scalar fields

can be considered as the Higgs fields or matrix valued coordinates observed in

[31], who shows matrix models maps in the context of the AdS/CFT corre-

spondence.

In general, the Higgs [1] [7] [9] of these matrix models always couple through

a Yang-Mills interaction. Clearly the study of matrix models with this type of

interaction, equation (2.6.6), is important in the understanding of the

AdS/CFT correspondence. Of particular relevance is the emergence of geo-

metric degrees of freedom from Matrix valued theories. In [6], it is proposed

that this could be understood in terms of matrices which become mutually

commuting in the strong coupling limit.

The work contained in this project is mainly based on the two matrix

model. In the work of [31], the two matrix model is treated asymmetrically

in following sense: one of the matrices, which generates the large N planar

background, is treated in the coordinate basis and the other matrix, which is

decomposed into “impurity operators”, is treated in a creation/annihilation
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basis. The asymmetric treatment of these two matrices within the frame of

reference of 1/2 BPS states, and the dual free harmonic Hamiltonian with the

former matrix being the holomorphic component of a complex matrix, results

in a mapping between a collective density description of the dynamics of this

matrix and the droplet description of the LLM droplet metric [33] obtained in

[31]. Further examples of the asymmetrical treatment of the two matrix model

are shown in [34] [36] [40].

In our project, a different approach is taken. The quantum mechanics

of two hermitian matrices X1 and X2, with spatial indices (1, 2) are treated

symmetrically by rewriting them as matrix valued polar coordinates which will

hopefully make the transition from matrices to geometry easier to trace.



Chapter 3

Matrix Valued Polar

Coordinates and a Review of

the Single Matrix Model

3.1 Background and Motivation

In this dissertation, I will concentrate on the matrix model of two hermitian

matrices. There are many reasons why systems of two hermitian matrices

are of interest. For instance, the zero dimensional integral of two matrices

coupled by Yang-Mills interaction was used in [6] to study the distribution of

the density of eigenvalues, and to discuss a possible emergent geometry in this

context.

In [33] and [35], it was also shown that a BMN type spectrum can be

obtained by considering the Hamiltonian of two hermitian matrices in a su-

persymmetric background. In [38], a study of a non-symmetric Hamiltonian

model of two matrices was undertaken.

In [30], [33], [35] and [38], the treatment of the two matrices is antisym-

metric in the sense that one generating a large N background, is treated in

position space “exactly”, and the other is treated in a creation/annihilation

basis, with the idea of adding impurities to the large N background of the

other. The motivation for this project is to introduce a more symmetric de-

32
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scription of two matrix models which reflect the expected global space time

symmetries and to observe what type of dynamics will evolve by treating the

two matrix model symmetrically.

3.2 Introducing Matrix Polar Coordinates

In this project we will study the kinetic piece of the Hamiltonian and the path

integral of the two matrix valued (hermitian) coordinates.

We define the non-commuting matrix coordinates

X1 ≡ (X1)ij X2 ≡ (X2)ij. (3.2.1)

X1 and X2 are two of the six N × N hermitian bosonic matrices/Higgs

scalars which are obtained in the dimensional reduction of the N = 1 SYM,

from D = 10 to N = 4, D = 4 dimensions [9]. X1 and X2 can also define a

plane on the bosonic sector of N = 4 SYM on S3×R [34], and these matrices

can be grouped to define a complex scalar field

Z = X1 + iX2. (3.2.2)

We introduce the indices in equation (3.2.1) to indicate the matrix nature

of X1 and X2, where i and j represent entries in the matrix such that i, j =

1, 2, ......, N .

For ordinary (commuting) cartesian coordinates x1 and x2, it is well known

that one can introduce complex coordinates

z = x1 + ix2 = reiθ (3.2.3)

z∗ = x1 − ix2 = re−iθ, (3.2.4)

where r and θ are the standard real polar coordinates such that

x1 = r cos θ x2 = r sin θ. (3.2.5)
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How far can one take this analogy in the case of the non-commuting matrix

coordinates X1 and X2? We define a complex matrix as

Z = X1 + iX2 = RU, (3.2.6)

where R is a hermitian N × N matrix and U is a N × N unitary matrix.

We write the matrix Z as shown in equation (3.2.6) because the right hand

side takes a form that embodies the matrix polar coordinate nature of Z which

is analogous to the real polar coordinates of equation (2.2.3) and (2.2.4). This

is not to say that X1 and X2 can be written explicitly in terms of sin θ and

cos θ and we cannot map U → eiθ and R→ r, this would be mapping N ×N
matrices to real numbers, which is incorrect. Of course, to be explicit U 6=
eiθ because our work assumes that the unitary matrix U is some arbitrary

“angular” piece of Z and R is the radial part of Z. The first observation is

that this parameterization correctly preserves the number of degrees of freedom

as both R and U have N2 independent real degrees of freedom, and therefore

Z has 2N2 independent degrees of freedom.

Since

Z = RU Z† = U †R (3.2.7)

then

2X1 = (Z + Z†) = RU + U †R (3.2.8)

2iX2 = Z − Z† = RU − U †R, (3.2.9)

and one needs to consistently make sure not to commute R and U . In this

dissertation, we will want to obtain the Hamiltonian for the two matrices by

diagonalizing the hermitian “ radial matrix ” R.

We will ask ourselves if the properties/dynamics computed for the single

matrix can be generalized to a larger number of matrices. In this dissertation

we answer this by calculating similar features as the single matrix model for
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the parameterized two matrix structure, Z = RU . It may be nice to do larger

number of matrices, this is a goal we will pursue in future research. Before we

proceed, we will revise the single hermitian matrix.

3.3 Reviewing The Single Hermitian Matrix

In this section we compute some properties of the single matrix model of an

N × N hermitian matrix M . These properties will be a crucial guideline in

sections that follow because from them, we will be able to deduce certain

general properties for models with a higher number of matrices i.e. the two

matrix model in polar coordinates. Objectives are as follows:

(1) Calculate the infinitesimal line element dM for the single matrix picture

M .

(2) From (1), determine the Laplacian ∇2
S.M for the single matrix picture.

(3) Introduce the fermionisation picture of the single matrix.

(4) Compute the conjugate momentum Pij = ∂/∂Mji.

To accomplish our goals, we first start by considering a Hamiltonian that

represents the dynamics of a single hermitian matrix. This Hamiltonian takes

the following form

Ĥ = −1

2
tr

(
∂

∂M

∂

∂M

)

+ tr (K(M))

= −1

2

∑

i,j

∂

∂Mij

∂

∂Mji

+ tr (K(M))

= −1

2
∇2
S.M + tr (K(M)) .

where the indices i and j are the matrix indices that run from 1 to the size of

the matrix, in this caseN . Later on we will construct an eigenvalue/Schödinger

equation using the Hamiltonian above. The N × N unitary matrices V and

V † are introduced such that V, V † ∈ U(N) [43]. These unitary matrices are

helpful because they are the angular variables that diagonalize M into a matrix

with N eigenvalues and N2 −N angular degrees of freedom, allowing it to be

shown in a form proportional to the eigenvalue matrix of M , such that
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M = V †rV.

The term r, in the equation above, is an N × N diagonal matrix whose

entries are the eigenvalues of M , r = diag(r1, r2, ...., rN ). If the potential

tr (K(M)) is invariant under the similarity transformation (SU(N) rotations),

M → U †MU (3.3.1)

then the potential depends only on the eigenvalues of M . This similarity

transformation, a global SU(N) gauge symmetry, is important because when

it is identified with a local symmetry within a matrix model, then this identi-

fication ensures us that, had we computed physical observables in our theory,

for instance correlators, then these would be invariant when treated under this

similarity transformation.

Since the matrix M is hermitian i.e. ⇒M = M †, it follows that ⇒ dM =

dM †. We also have that r is hermitian i.e. r = r∗ (matrix with real entries).

We now proceed to compute the variation dM from which the Laplacian

can be obtained. For the analogue of the line element dM in terms of matrices

we find

dM = dV †rV + V †drV + V †rdV (3.3.2)

= V †
(
V dV †r + dr + rdV V †

)
V.

Above, in equation (3.3.2), we introduce the definition: dS = dV V †. The

differential dS is a N×N anti-hermitian traceless matrix that is identified with

the angular degrees of freedom of the variation, with the following condition:

dS = −dS†. To see this, we take note of the following property:

dS = dV V † = −V dV † = −dS†, (3.3.3)

where dS† = V dV † and we note the property V dV † = −dV V †.
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When we use the definition of the anti-hermitian differential dS in dM , it

follows that

dM = V †
(
V dV †r + dr + rdV V †

)
V (3.3.4)

= V †
(
−dV V †r + dr + rdV V †

)
V

= V †
(
dr + rdV V † − dV V †r

)
V

= V † (dr + [r, dS])V.

So in summary, for the variation dM , we find that

dM = V † (dr + [r, dS])V. (3.3.5)

Now that the first objective has been accomplished, we now need to put the

structures that are going to be needed to compute the Laplacian of the single

matrix model, ∇2
S.M , in place. To start off, we need to determine the square

of the line element ds2 in the matrix language. The square of the infinitesimal

line element ds2 can be similarly represented in the matrix language to be

tr
(
dM2

)
≡ ds2 = gµνdx

µdxν . (3.3.6)

The metric tensor gµν , which features prominently in the definition of the

Laplacian, will enable us to compute the Jacobian under change of variables

from matrices to eigenvalues and unitary matrices.

To calculate the the square of the line element in terms of matrices, we

need dM and we also need

dM † = V †
(
dr +

[
dS†, r

])
V (3.3.7)

= V † (dr + [r, dS])V

= dM,

then tr (dM2) can be expressed in terms of commutators as
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tr
(
dM2

)
= tr

(
dMdM †

)
(3.3.8)

= tr
(
V † (dr + [r, dS])V V † (dr + [r, dS])V

)

= tr
(
(dr)2 + 2dr[r, dS] + ([r, dS])2

)

= tr
(
(dr)2 + [r, dS]2

)
.

Below, in equation (3.3.9) is an identity that uses the cyclicity of the trace

with the matrices A,B,C,

tr ([A,B]C) = tr ([B,C]A) = tr ([C,A]B) . (3.3.9)

We used the above identity in equation (3.3.8) as follows

tr (dr [r, dS]) = tr (dS [dr, r]) = 0, (3.3.10)

since

[dr, r] = 0, (3.3.11)

to get rid of the middle term in the second line of equation (3.3.8).

Thus in component form, equation (3.3.8) becomes

tr
(
dM2

)
=

∑

i

(
dM2

)

ii
(3.3.12)

= tr
(
(dr)2)+ tr

(
[r, dS]2

)

=
∑

i

(d(r)i)
2 −

∑

i,j

(dS)ij (dS)ji ((r)i − (r)j)
2 .

To take into account the entire degrees of freedom of the trace of the square

of the variation, we need to include the complex conjugates of the differentials,

it follows that
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tr
(
dM2

)
=

∑

i

(d(r)i)
2 −

∑

i,j

(dS)ij (dS)ji ((r)i − (r)j)
2 (3.3.13)

=
∑

i

(d(r)i)
2 +

∑

i6=j

(dS)ij
(
dS∗

ij

)
((r)i − (r)j)

2

=
∑

i

(d(r)i)
2 +

1

2

∑

i6=j

((r)i − (r)j)
2
{

(dS∗)ij (dS)ij

}

+
1

2

∑

i6=j

((r)i − (r)j)
2
{

(dS)ij (dS∗)ij

}

=
∑

i

(d(r)i)
2 +

∑

i>j

((r)i − (r)j)
2
{

(dS∗)ij (dS)ij

}

+
∑

i>j

((r)i − (r)j)
2
{

(dS)ij (dS∗)ij

}

= gµνdX
µdXν .

The complex conjugates of dS changes the positions of the indices, this

means that

dSij = −dS∗
ji. (3.3.14)

Taking the complex conjugate of dS means taking the complex conjugate of

each element inside the matrix. From equation (3.3.14) we could equivalently

have

∂

∂Sij
= − ∂

∂S∗
ji

. (3.3.15)

The angular degrees of freedom appearing in the fourth line of equation

(3.3.13) can be rewritten in terms of the generators of SU(N) which involve

the diagonal generators of the Cartan subalgebra [4].

From the last line of equation (3.3.13) the metric tensor gµν is identified as

gµν =








1 0 0

0 (ri − rj)2 0

0 0 (ri − rj)2







, (3.3.16)

for µ, ν = 0, 1, 2 which specify
(
dr, dSij, dS

∗
ij

)
.
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So naturally from this we can compute the determinant of the metric tensor

in order for us to calculate the Laplacian for the single matrix model, and we

find

det gµν =
∏

i<j

(ri − rj)4, (3.3.17)

and the inverse of gµν , which we call gνµ is

gνµ =








1 0 0

0 1
(ri−rj)2

0

0 0 1
(ri−rj)2







. (3.3.18)

Also what is required to compute ∇2
S.M is the factor G, which is given by

G =
√

det gµν =
∏

i<j

(ri − rj)2 = ∆2, (3.3.19)

where

∆ =
∏

i<j

(ri − rj), (3.3.20)

is the usual Vandermonde determinant and G is the Jacobian under change

of variables M → (V, r).

Now using the definition of the Laplacian and the terms computed in equa-

tions (3.3.18) and (3.3.19) in equation (3.3.21)

∇2 =
1

√
det gµν

∂

∂Xν
gνµ
√

det gµν
∂

∂Xµ
, (3.3.21)

the Laplacian for the single matrix model denoted by ∇2
S.M , is given by
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∇2
S.M =

1
√

det gµν

∂

∂Xµ

√

det gµνg
µν ∂

∂Xν
(3.3.22)

=
1

∏

i<j(ri − rj)2

∂

∂ri

[
∏

i<j

(ri − rj)2

]

∂

∂ri

+
1

∏

i<j(ri − rj)2

∂

∂Sij

[
∏

i<j

(ri − rj)2
∑

i>j

1

(ri − rj)2

]

∂

∂S∗
ij

+
1

∏

i<j(ri − rj)2

∂

∂S∗
ij

[
∏

i<j

(ri − rj)2
∑

i>j

1

(ri − rj)2

]

∂

∂Sij

=
1

∏

i<j(ri − rj)2

∂

∂ri

[
∏

i<j

(ri − rj)2

]

∂

∂ri

− 2
∏

i<j(ri − rj)2

∂

∂Sij

[
∏

i<j

(ri − rj)2
∑

i>j

1

(ri − rj)2

]

∂

∂Sji

=
1

∆2

∂

∂ri

[
∆2
] ∂

∂ri
−
∑

i6=j

1

(ri − rj)2

∂

∂Sij

∂

∂Sji
.

Using the Laplacian in equation (3.3.22) our Hamiltonian operator now

takes the following form

Ĥ = −1

2
∇2
S.M + tr (K(M)) (3.3.23)

= −1

2

1

∆2

∂

∂ri

[
∆2
] ∂

∂ri
−
∑

i6=j

1

(ri − rj)2

∂

∂Sij

∂

∂Sji
+ tr (K(M)) .

The first term in last line of equation (3.3.23) is the kinetic term that de-

pends on the eigenvalues ri of the hermitian matrix M . The second term in

equation (3.3.23) is the “angular” component of the kinetic term that pre-

serves the angular degrees of freedom and represents the nonsinglet SU(N)

angular momentum degrees of freedom [42] of the Hamiltonian operator. The

“angular” component of the kinetic term are the generators of left rotations,

these will be seen later in equations (4.1.31) and (4.1.32) for the two matrix

model. The constraints are such that, when this angular component of the

kinetic term acts on ground state wavefunctions in the singlet sector of the

SU(N) representation, we must get zero. These singlet wavefunctions Φ will



CHAPTER 3. MATRIX VALUED POLAR COORDINATES AND A REVIEW OF THE SINGLE

be independent of the angular variables V and V † and should be symmetric

wavefunctions of the eigenvalues ri of M . So this means that we are reduced to

solving the ground state energy of the Hamiltonian operator for a symmetric

singlet wavefunction

ĤΦ = EΦ. (3.3.24)

Now that we have shown the variation dM and derived ∇2
S.M , we can

proceed to introduce the fermion picture in the section that follows.

3.4 Reviewing The Fermionic Framework Of

The Single Matrix

Our third objective is to introduce the free fermion picture for the single matrix

model, which is what we proceed to do in this section. To start off, we use the

analogy to the Schrödinger equation for some spectrum of eigenvalues E 1

(

1

∆2

∑

i

∂

∂ri
∆2 ∂

∂ri

)

Φ = 2EΦ. (3.4.1)

Above in equation (3.4.1), Φ is a symmetric wavefunction that depends

on the eigenvalues ri of M and is invariant under the transformation Φ →
Φ
(
UMU †

)
.

We can define the following wave function that also depends on the eigen-

values ri of M ,

Ψ(ri) = ∆(ri)Φ(ri). (3.4.2)

Equation (3.4.2) is an anti-symmetric function, because the right hand side

is a product of a symmetric function and the Vandermonde determinant, which

is antisymmetric under exchange of any two eigenvalues.

1The potential term is trivial for this discussion, provided it only depends on the eigen-

values.
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The function Φ is now rewritten in terms of Ψ and ∆ in equation (3.4.1)

to get the equation (3.4.3) below

− 1

∆2

∑

i

∂

∂ri
∆2 ∂

∂ri

Ψ

∆
= − 1

∆2

(
∑

i

∂

∂ri
∆2 ∂

∂ri

1

∆

)

Ψ = 2E
Ψ

∆
,

⇒ −
(

1

∆

∑

i

∂

∂ri
∆

)(

∆
∂

∂ri

1

∆

)

Ψ = 2EΨ. (3.4.3)

To simplify equation (3.4.3), we apply the following identity,

1

∆

∂

∂ri
∆ =

∂

∂ri
ln ∆ =

∂

∂ri

∑

i<k

ln(rj − rk) (3.4.4)

=
∑

k>i

1

ri − rk
−
∑

j<i

1

rj − ri
=
∑

k 6=i

1

ri − rk

⇒ 1

∆

∂

∂ri
∆ =

∑

k 6=i

1

ri − rk

So in total we have the identity

1

∆

(
∂

∂ri
∆

)

=
∂ ln ∆

∂ri
=
∑

k 6=i

1

(ri − rk)
(3.4.5)

and

∆

(
∂

∂ri

1

∆

)

= − ∆

∆2

∂∆

∂ri
= − 1

∆

∂∆

∂ri
= − ∂

∂ri
ln ∆ (3.4.6)

= −
∑

j 6=i

1

ri − rj
.

Then using equation (3.4.5) and (3.4.6) we can derive the following result
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∑

i

(
1

∆

∂

∂ri
∆

)(

∆
∂

∂ri

1

∆

)

=
∑

i

(

∂

∂ri
+
∑

k 6=i

1

ri − rk

)(

∂

∂ri
−
∑

j 6=i

1

ri − rj

)

=
∑

i

∂2

∂r2
i

+
∑

i6=j

1

(ri − rj)2
−
∑

i6=j

1

(ri − rj)
∂

∂ri
+
∑

k

1

ri − rk
∂

∂ri

−
∑

i

∑

j 6=i,k 6=i

1

(ri − rk)
1

(ri − rj)

=
∑

i

∂2

∂r2
i

−
∑

i6=k 6=j

1

(ri − rk)
1

(ri − rj)
.

So far we can conclude that

(

1

∆

∑

i

∂

∂ri
∆

)(

∆
∂

∂ri

1

∆

)

=
∑

i

∂2

∂r2
i

−
∑

i6=k 6=j

1

(ri − rk)
1

(ri − rj)
. (3.4.7)

On the right hand side of equation (3.4.7) above, the second term has

indices that satisfy the condition i 6= j 6= k. As a result it can be shown to

vanish choosing any three distinct eigenvalues, say r1, r2, r3.

∑

i6=k,i6=j

1

(ri − rk)
1

(ri − rj)
=

1

(r1 − r2)(r1 − r3)

+
1

(r2 − r1)(r2 − r3)
+

1

(r3 − r1)(r3 − r2)

=
1

(r1 − r2)

(
1

(r1 − r3)
− 1

(r2 − r3)

)

+
1

(r1 − r2)(r1 − r3)

=
1

(r1 − r2)

(
r2 − r3 − r1 + r3
(r1 − r3)(r3 − r3)

)

+
1

(r3 − r1)(r3 − r2)

=
1

(r1 − r2)
(r1 − r2)

(r1 − r3)(r2 − r3)
+

1

(r3 − r1)(r3 − r2)

= − 1

(r1 − r2)
(r1 − r2)

(r1 − r3)(r2 − r3)
+

1

(r3 − r1)(r3 − r2)
= − 1

(r1 − r3)(r2 − r3)
+

1

(r3 − r1)(r3 − r2)
= 0.

Then this means that
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−
(

1

∆

∑

i

∂

∂ri
∆

)(

∆
∂

∂ri

1

∆

)

Ψ =
∑

i

∂2

∂r2
i

Ψ = 2EΨ. (3.4.8)

Now we have reduced the eigenvalue problem to solving

(
N∑

i

χi

)

Ψ(ri) = EΨ(ri) (3.4.9)

where

χi = −1

2

∂2

∂r2
i

+ tr (K(ri)) . (3.4.10)

What does the result in equation (3.4.9) mean? On the left hand side of

equation (3.4.9), the operator χi acting on the wavefunction Ψ(ri) is a sum of

single-particle non-relativistic Hamiltonians. Our eigenvalue problem has now

been reduced to solving a fermion problem with N degrees of freedom. This

ground state of free non-relativistic fermions move in the potential tr (K(ri)).

The result derived in equation (3.4.9) is a well known result also obtained by

the authors of [2] [4].

3.5 The Conjugate Momentum For The Single

Matrix

The objective for this section of the work is to obtain the conjugate momentum

Pij = ∂/∂Mji found in the Hamiltonian operator Ĥ. We first define the

following commutator

[Pji,Mab] = δjbδai (3.5.1)

where Pji, the conjugate momentum of Mab, is given by

Pji =
∂

∂Mij

.

We write the matrix Mab in component form as follows:
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Mab =
∑

α

V †
aαrαVαb.

The expression of the conjugate momentum Pji is defined using partial

differential equations as

Pji =
∂

∂Mij

=
∑

kγ

∂Vkγ
∂Mij

∂

∂Vkγ
+
∑

k

∂rk
∂Mij

∂

∂rk
(3.5.2)

for i, j, k, γ = 1, 2, . . . , N .

The terms

∂Vkγ
∂Mij

∂rk
∂Mij

are to be considered as coefficients in the partial differential equation of

the conjugate momentum. To solve for these coefficients, we consider dM in

equation (3.3.5) written in terms of indices

dMij =
∑

kq

V †
ik (dr + [r, dS])kq Vqj (3.5.3)

=
∑

kq

V †
ikVqjδqkdrk +

∑

kq

V †
ikVqjdSkq(rk − rq),

this is rewritten as

VaidMijV
†
jb =

∑

kq

VaiV
†
ikδqkdrkVqjV

†
jb +

∑

kq

VaiV
†
ikdSkq (rk − rq)VqjV †

jb

= δakδqbδqkdrk +
∑

kq

δakδqbdSkq (rk − rq) (3.5.4)

= δbadra + dSab (ra − rb) .

We now consider two different cases for the equation dMij in equation

(3.5.4): case(I) is when a = b and case(II) is when a 6= b. For case I, we find

that the equation for dMij allows us to obtain the coefficient

∂rk
∂Mij

=
∑

k

V †
ikVkj, (3.5.5)
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and for case (II), the equation for dMij allows us to obtain the second

coefficient

∂Vkγ
∂Mij

=
∑

k 6=q

V †
jqVqγ

rk − rq
Vki. (3.5.6)

Using equations (3.5.5) and (3.5.6) in equation (3.5.2) the complete expres-

sion of the conjugate momentum becomes

Pji =
∂

∂Mij

=
∑

γ

∑

k 6=q

V †
jqVqγ

rk − rq
Vki

∂

∂Vkγ
+
∑

k

V †
ikVkj

∂

∂rk
. (3.5.7)

By defining the conjugate momentum as we did above, we can verify the

commutator in equation (3.5.1).

Now that the framework is in place, the question follows: how far can

we extend the analogy to a matrix model with more than a single matrix?

This question we answer in the chapter that follows using a model with two

matrices.



Chapter 4

The Laplacians For The Two

Matrix Model

4.1 The Hamiltonian And The Laplacian: Pa-

rameterization I

Because of the double index structure of the matrix degrees of freedom that we

consider, we try to identify suitable parameterizations of the complex matrix

coordinate Z in equation (3.2.6) which result in a diagonal metric in the matrix

indices A ≡ (ij). This will enable us to obtain the corresponding Laplacian

operator, whose definition is given by equation (3.3.21).

The objectives for this part of the project are as follows:

( 1 ) Compute the infinitesimal line element dZ for the complex matrix coor-

dinate.

(2) Obtain the two matrix model Laplacian ∇2
I in polar coordinates using

parameterization I.

In all of these parameterizations, R will be diagonalized. This is because

ultimately it is hoped that an effective theory in terms of the density of eigen-

values of the radial coordinate is obtained. We will describe two such param-

eterizations, which we will denote by parameterization I and II.

We begin by performing an angular parameterization of R, such that:

48
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R = V †rV, (4.1.1)

where r is the N × N diagonal matrix of the eigenvalues of R and V, V †

are unitary N ×N non-hermitian matrices which are the angular variables of

R. From the above notation, we can re-write the matrix Z as follows:

Z = RU =
(
V †rV

)
U = V †rV U. (4.1.2)

Parameterization I, considered in this section allows us to retain the vari-

ables r, V and U . The matrix coordinates are defined up to V → DV ,

V † → V †D† for the diagonal matrix D, thus preserving the number of de-

grees of freedom of the system.

The first step is to calculate the analogue to square of the line element

ds2 = gµνdx
µdxν , (4.1.3)

using our newly defined matrix spherical coordinate Z. The analogy of the

square of the line element in our matrix coordinate is represented by

tr
(
dZ†dZ

)
= ηµνdX

µ
I dXν

I (4.1.4)

≡ ds2,

where dXI are the matrix differential variables that are obtained using

parameterization I and ηµν is the metric tensor in our two matrix model for

parameterization I.

To start of, we compute dZ, the distance along Z by taking the infinitesimal

differential of Z

dZ = d
(
V †r (V U)

)
(4.1.5)

=
(
dV †rV U + V †drV U + V †rdV U + V †rV dU

)

= V †
(
V dV †r + dr + rdV V † + rV dU

(
U †V †

))
V U.
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From the equation above we used the unitarity property of the matrices U ,

UabU
†
bc = δac, and the property

V dV † = −dV V †. (4.1.6)

Thus, using the two properties above in the expression for dZ and regroup-

ing terms, we obtain:

dZ = V †
(
dr + rdV V † − dV V †r + rV dUU †V †

)
V U (4.1.7)

= V †
(
dr +

[
r, dV V †

]
+ rV dUU †V †

)
V U.

Using a similar approach to obtain dZ, we compute dZ†, and this is shown

to be

dZ† = U †V †
(
dr +

[
r, dV V †

]
− V UdU †V †r

)
V. (4.1.8)

The expressions dZ and dZ† suggest that we introduce the anti-hermitian,

Lie-algebra differential matrices:

dS = dV V † = −dS† dX = V dUU †V † = −dX†. (4.1.9)

Thus, the expressions for dZ and dZ† can now be written as

dZ = V † (dr + [r, dS] + rdX)V U (4.1.10)

and

dZ† = U †V † (dr + [r, dS]− dXr)V. (4.1.11)

Equations (4.1.10) and (4.1.11) fulfill the first objective for this section.

We now proceed to our second objective.

With the expressions for dZ and dZ†, we obtain the analogue of the square

of the line element in the language of our spherical coordinates
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tr
(
dZ†dZ

)
= tr ((dr + [r, dS]− dXr) (dr + [r, dS] + rdX))(4.1.12)

tr
(
dZ†dZ

)
= tr

(
dr2 + dr[r, dS] + drrdX + [r, dS]dr

)
(4.1.13)

+ tr
(
[r, dS]2 + [r, dS]rdX − dXrdr − dXr[r, dS]− dXr2dX

)
.

As before, since [dr, r] = 0, and using the property of equation (3.3.9) it

follows that

tr (dr [r, dS]) = tr (dS [dr, r]) = 0. (4.1.14)

Therefore

tr
(
dZ†dZ

)
= tr

(
dr2 + [r, dS] [r, dS] + [r, dS] [r, dX]− r2 (dX)2) .

In component form

tr
(
dZ†dZ

)
=

∑

i

(dri)
2 +

∑

ij

[r, dS]ij [r, dS]ji +
∑

ij

[r, dS]ij [r, dX]ji

−
∑

ij

r2
i dXijdXji. (4.1.15)

In equation (4.1.15) above, we see commutators that mix radial and angular

degrees of freedom as observed for the single matrix model. The last term is

also a product of anti-hermitian traceless matrices. The terms with angular

degrees of freedom, just like the single matrix model, can also be rewritten in

terms of SU(N) generators.

It is important that the equation (4.1.15) above be written in component

form because this will allow us to obtain the entries in the matrix of the metric

tensor ηµν such that the coefficients of the product of the differentials, dXIdXI ,

will be entries to the matrix of the metric tensor ηµν . Thus it follows that
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tr
(
dZ†dZ

)
=

∑

i

(dri)
2 −

∑

ij

(ri − rj)2 dSijdSji (4.1.16)

− 1

2

∑

ij

(ri − rj)2 {dSijdXji + dXijdSji}

− 1

2

∑

ij

(
r2
i + r2

j

)
dXijdXji.

In equation (4.1.16) above, commutators are written in terms of the eigen-

values as follows:

[r, dS]ij = (rdS)ij − (dSr)ij = ridSij − dSijrj = (ri − rj)dSij. (4.1.17)

In a similar fashion as above

[r, dS]ji = (rj − ri)dSji = −(ri − rj)dSji (4.1.18)

and

[r, dX]ji = (rj − ri)dXji. (4.1.19)

We separate equation (4.1.16) into i = j and i 6= j terms, and using the

anti-hermiticity of dX and dS, tr
(
dZ†dZ

)
becomes

tr
(
dZ†dZ

)
=
∑

i

{
(dri)

2 + (ri)
2 dXiidX

∗
ii

}
(4.1.20)

+
∑

i6=j

{

(ri − rj)2 dSijdS
∗
ij +

1

2
(ri − rj)2 [dSijdX

∗
ij + dXijdS

∗
ij

]
}

+
∑

i6=j

{
1

2

(
r2
i + r2

j

)
dXijdX

∗
ij

}

or equivalently
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tr
(
dZ†dZ

)
=

∑

i

{
(dri)

2 + (ri)
2 dXiidX

∗
ii

}
(4.1.21)

+
∑

i<j

{
2 (ri − rj)2 dSijdS

∗
ij + (ri − rj)2 [dSijdX

∗
ij + dXijdS

∗
ij

]}

+
∑

i<j

{(
r2
i + r2

j

)
dXijdX

∗
ij

}
.

We remember that we drew the analogy: tr
(
dZ†dZ

)
≡ ds2. Equation

(4.1.21) can now be rewritten as in equation (4.1.4) with the following differ-

ential variables:
(

dri, dXii, dSij(i<j), dXij(i<j), dS
∗
ij(i<j), dX

∗
ij(i<j)

)

.

Due to the nature of tr
(
dZ†dZ

)
, it has terms that have complex conjugates

and we need to consider the entire degrees of freedom of the system. From

equation (4.1.21), the matrix of metric tensor ηµν of tr
(
dZ†dZ

)
in equation

(4.1.4) is thus:

















1 0 0 0 0 0

0 r2
i 0 0 0 0

0 0 (ri − rj)2 1
2
(ri − rj)2 0 0

0 0 1
2
(ri − rj)2 1

2
(r2
i + r2

j ) 0 0

0 0 0 0 (ri − rj)2 1
2
(ri − rj)2

0 0 0 0 1
2
(ri − rj)2 1

2
(r2
i + r2

j )

















. (4.1.22)

Using the above matrix in equation (4.1.22), we compute its determinant

in order for us to obtain the expression for the Laplacian ∇2
I using parameter-

ization I. The determinant of the matrix ηµν is then:

det ηµν =
∏

i

(r2
i )
∏

i<j

{
1

2
(r2
i + r2

j )(ri − rj)2 − 1

4
(ri − rj)2(ri − rj)2

}2

.

(4.1.23)

After some algebra, the expression above takes the form

det ηµν =
∏

i

r2
i

(
∏

i<j

1

4
(r2
i − r2

j )
2

)2

. (4.1.24)
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We now introduce new notation ∆2
MR such that

∆2
MR =

1

4

∏

i<j

(r2
i − r2

j )
2. (4.1.25)

Equation (4.1.24) is rewritten using our new notation, equation (4.1.25),

to become

det ηµν =
∏

i

r2
i (∆

2
MR)2. (4.1.26)

From equation (4.1.26), the following can be noted: ∆2
MR takes a form

that resembles the square of the Vandermonde determinant that we saw previ-

ously in equation (3.3.20) for the single matrix model. The eigenvalues, when

compared to those of equation (3.3.20), are now replaced by r2
i instead of be-

ing ri. This is interesting as it points to similarities with the single matrix

model. When working with matrices, the Vandermonde determinant appears

naturally.

From the definition of the Laplacian, we compute the variable G, which

represents a Jacobian obtained under change of variables, from JdZdZ† →
drdSdX:

G =
√

det ηµν =
∏

k

rk∆
2
MR, (4.1.27)

noticeably G also depends on the the eigenvalues of R only.

The inverse of the matrix ηµν i.e. ηνµ takes the following form

















1 0 0 0 0 0

0 1
r2i

0 0 0 0

0 0
4(r2i +r2j )

(ri−rj)2(ri+rj)2
−2

(ri+rj)2
0 0

0 0 −2
(ri+rj)2

4
(ri+rj)2

0 0

0 0 0 0
4(r2i +r2j )

(ri−rj)2(ri+rj)2
−2

(ri+rj)2

0 0 0 0 −2
(ri+rj)2

4
(ri+rj)2

















. (4.1.28)
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Thus using the definition of the Laplacian in equation (3.3.21), the defini-

tion in equation (4.1.27) and the inverse matrix ηνµ the Laplacian in the polar

coordinates of the two matrix model is

∇2
I =

1
∏

k rk

1

∆2
MR

∂

∂ri

[
∏

k

rk∆
2
MR

]

∂

∂ri
+

∂

∂XA
gAB

∂

∂XB
(A 6= B)

=
1

∏

k ri

1

∆2
MR

{

∂

∂ri

∏

k

rk

}

∆2
MR

∂

∂ri
+

1
∏

k rk

1

∆2
MR

∏

k

rk

{
∂

∂ri
∆2
MR

}
∂

∂ri

+

∏

k rk∆
2
MR

∏

k rk∆
2
MR

∂

∂ri

∂

∂ri
+

∂

∂XA
gAB

∂

∂XB
(A 6= B)

=
1

∏

k rk

{

∂

∂ri

∏

k

rk

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

+
∂

∂XA
gAB

∂

∂XB
(A 6= B). (4.1.29)

With more detail, below we include all the terms that have A 6= B to get

the following

∇2
I =

1
∏

k rk

{

∂

∂ri

∏

k

rk

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

+

{
1

r2
i

∂

∂Xii

∂

∂X∗
ii

}

+
∑

i6=j

2(r2
i + r2

j )

(r2
i − r2

j )
2

∂

∂Sij

∂

∂S∗
ij

(4.1.30)

−
∑

i6=j

2

(ri + rj)2

{
∂

∂Sij

∂

∂X∗
ij

+
∂

∂Xij

∂

∂S∗
ij

}

+
∑

i6=j

4

(ri + rj)2

∂

∂Xij

∂

∂X∗
ij

.

In principle, what can be observed is that the Laplacian in equation (4.1.30)

has, in the first line, radial operators and in the second and third lines are the

operators with angular degrees of freedom. As in the case for the single matrix

Laplacian, they do not mix. The two matrix model has more degrees of freedom

than the single matrix model, this would explain why we see much more terms

in the Laplacian of equation (4.1.30). Matrix models constructed using more

than two matrices would result in more complicated Laplacians, and this could

be explored in future research.

In equation (4.1.30), the partial differentials
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E
(S)
ji =

∂

∂Sij
=
∑

b

Vjb
∂

∂Vib
(4.1.31)

and

E
(X)
ji =

∂

∂Xij

=
∑

γ

∑

α

∑

θ

V †
γiVjθUθα

∂

∂Uγα
(4.1.32)

are identified with the SU(N) generators of left rotations.

In total, the Laplacian is thus

∇2
I =

∑

i

1

ri

∂

∂ri
+ 16

∑

i<j

(
ri − rj
r2
i − r2

j

)
∂

∂ri
+

∂

∂ri

∂

∂ri
(4.1.33)

+

{
1

r2
i

∂

∂Xii

∂

∂X∗
ii

}

+
∑

i6=j

2(r2
i + r2

j )

(r2
i − r2

j )

∂

∂Sij

∂

∂S∗
ij

−
∑

i6=j

2

(ri + rj)2

{
∂

∂Sij

∂

∂X∗
ij

+
∂

∂Xij

∂

∂S∗
ij

}

+
∑

i6=j

4

(ri + rj)2

∂

∂Xij

∂

∂X∗
ij

.

Now we can define the Hamiltonian operator using our new parameteriza-

tion as follows

ĤI = −1

2

∂

∂Zij

∂

∂Zji
+ tr (K(Z)) (4.1.34)

= −1

2
∇2
I + tr (K(Z)) .

We observe a consistent uniformity that is from the Laplacian of the single

matrix model in the last line of equation (3.3.22) to the Laplacian in equation

(4.1.33) which is: the Hamiltonian operator in equation (4.1.34) will have

an isolated kinetic piece whose operators are in terms of the eigenvalues ri

and it will also have an angular dependent kinetic piece. There are no terms

that appear to mix radial and angular dependent operators. Due to the form

that the Hamiltonian operator takes in equation (4.1.34) as a result equation

(4.1.33), it means that if we decide to construct the Schrödinger equation

ĤIζsymm = Eζsymm, (4.1.35)
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the problem in equation (4.1.35) will be reduced to solving an eigenvalue

problem for some symmetric function ζsymm. We will now proceed to introduce

the second parameterization in the section that follows.

4.2 The Hamiltonian And The Laplacian: Pa-

rameterization II

Now that we have seen the form of the Laplacian in equation (4.1.34) that

was derived using parameterization I, where the variables V and U were pre-

served, we now compute the Laplacian using parameterization II, which is our

objective in this section. For parameterization II, we start as before with

Z = RU. (4.2.1)

After the angular re-parameterization of R, R = V †rV

we obtain

Z = RU =
(
V †rV

)
U = V †r (V U) ≡ V †rW. (4.2.2)

Noticeably, we have introduced a new variable W = V U into the matrix

valued polar coordinate Z. In terms of this second parameterization, we again

compute dZ and dZ†. We start with dZ, which is

dZ = dV †rW + V †drW + V †rdW (4.2.3)

= V †
(
dr + V dV †r + rdWW †

)
W

⇒ dZ = V †
(
dr − dV V †r + rdWW †

)
W.

Again, by introducing dS, and defining the new quantity dT = dWW †,

which is also an anti-hermitian differential, equation (4.2.3) becomes

dZ = V † (dr + rdT − dSr)W. (4.2.4)
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Using a similar approach to obtain equation (4.2.4), we calculate dZ† for

Z† = W †rV to get

dZ† = dW †rV +W †drV +W †rdV (4.2.5)

= W †
(
dr +WdW †r + rdV V †

)
V.

The definitions dS and dT are introduced into the last line of equation

(4.2.5) to obtain

dZ† = W † (dr + rdS − dTr)V. (4.2.6)

In equation (4.2.6) above, we have again used the properties of the anti-

hermitian differentials

dT = dWW † = −WdW † = −dT † (4.2.7)

dS = dV V † = −V dV † = −dS†. (4.2.8)

We now consider the following definitions :

dY + =
1√
2

(dT + dS) dY − =
1√
2

(dT − dS) , (4.2.9)

where dY + and dY − are introduced to diagonalize the Laplacian calculated

previously in equation (4.1.34), using parameterization I.

The above expressions in equation (4.2.9) are inverted to give

dT =
1√
2

(
dY + + dY −

)
dS =

1√
2

(
dY + − dY −

)
. (4.2.10)

The new variables introduced in equation (4.2.10) are used to rewrite dZ

and dZ†, thus for our newly defined expressions we get

dZ = V †

(

dr +
1√
2

[
r, dY +

]
+

1√
2

{
r, dY −

}
)

W (4.2.11)
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and of course

dZ† = W †

(

dr +
1√
2

[
r, dY +

]
− 1√

2

{
r, dY −

}
)

V †. (4.2.12)

Proceeding as previously shown for the parameterization I, we would like

to compute the analogy of the square of the line element

tr
(
dZ†dZ

)
≡ ds2 = gγαdx

γdxα

≡ G(AB)dX
A
IIdX

B
II .

using parameterization II. The terms dXII are the matrix variables for

this parameterization. It then follows that tr
(
dZ†dZ

)
is the product

tr

(

V †

(

dr +
1√
2

[
r, dY +

]
− 1√

2

{
r, dY −

}
)

WW †

(

dr +
1√
2

[
r; dY +

]
+

1√
2

{
r, dY −

}
)

V

)

.

(4.2.13)

We multiply out the brackets,

⇒ tr
(
dZ†dZ

)
= tr

(
dr2
)
+

1

2
tr
([
r, dY +

] [
r, dY +

])
− 1

2
tr
({
r, dY −

}{
r, dY −

})

(4.2.14)

The above form of tr
(
dZ†dZ

)
in equation (4.2.14) can be obtained in

component form for terms that have i = j and those that have i 6= j such that

tr
(
dZ†dZ

)
=

∑

i

(dri)
2 + 2

∑

i

(ri)
2 dY −

ii

(
dY −

)∗

ii
(4.2.15)

+
1

2

∑

i6=j

(ri − rj)2 dY +
ij

(
dY +

)∗

ij
+

1

2

∑

i6=j

(ri + rj)
2 dY −

ij

(
dY −

)∗

ij
.

We consider a similar approach used for parameterization I, when comput-

ing the Laplacian for parameterization II. Using equation (4.2.15), the matrix

of the metric tensor G(AB) is thus given by
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















1 0 0 0 0 0

0 2r2
i 0 0 0 0

0 0 1
2
(ri − rj)2 0 0 0

0 0 0 1
2
(ri + rj)

2 0 0

0 0 0 0 1
2
(ri − rj)2 0

0 0 0 0 0 1
2
(ri + rj)

2

















. (4.2.16)

Simply enough, the determinant of the matrix in equation (4.2.16) above

is given by the product of the elements on the main diagonal and it is

detG(AB) = 2
∏

i

r2
i

1

16

∏

i<j

(ri − rj)2(ri + rj)
2(ri − rj)2(ri + rj)

2

= 2
∏

k

r2
k

(
∆2
MR

)2
. (4.2.17)

To use the definition of the Laplacian, we further define

G =
√

detG(AB) =

√

2
∏

k

r2
k (∆2

MR)
2

=
√

2
∏

k

rk∆
2
MR. (4.2.18)

Equation (4.2.19) is exactly the same as equation (4.1.28) up to a factor of
√

2.

Again using the elementary definition of the inverse of the matrix, the

matrix of the inverse metric tensor G(BA) is thus


















1 0 0 0 0 0

0 1
2r2i

0 0 0 0

0 0 2
(ri−rj)

2 0 0 0

0 0 0 2
(ri+rj)

2 0 0

0 0 0 0 2
(ri−rj)

2 0

0 0 0 0 0 2
(ri+rj)

2


















. (4.2.19)

We again compute the Laplacian using information from our metric GBA

that takes all the degrees of freedom into account, we then get
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∇2
II =

1
√

detG(AB)

∂

∂XA

√

detG(AB)G
AB ∂

∂XB
(4.2.20)

∇2
II =

1√
2
∏

k rk∆
2
MR

∂

∂ri

[
√

2
∏

k

rk∆
2
MR

]

∂

∂ri
(4.2.21)

+
1√

2
∏

k rk∆
2
MR

∂

∂Y −
ii

√
2
∏

k

rk∆
2
MR

1

2r2
i

∂

∂(Y −)∗ii

+
1√

2
∏

k rk∆
2
MR

∂

∂Y +
ij

√
2
∏

k

rk∆
2
MR

2

(ri − rj)2

∂

∂(Y +)∗ij

+
1√

2
∏

k rk∆
2
MR

∂

∂Y −
ij

√
2
∏

k

rk∆
2
MR

2

(ri + rj)2

∂

∂(Y −)∗ij
.

After differentiating and canceling terms the Laplacian above in equation

(4.2.22) takes the final form

∇2
II =

1
∏

k rk

{

∂

∂ri

∏

k

rk

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

+
∑

i

1

2ri

∂

∂Y −
ii

∂

∂(Y −)∗ii
+
∑

i6=j

2

(ri − rj)2

∂

∂Y +
ij

∂

∂(Y +)∗ij

+
∑

i6=j

2

(ri + rj)2

∂

∂Y −
ij

∂

∂(Y −)∗ij
. (4.2.22)

If we observe and compare equations (4.2.22), (4.1.33) and the last line

of equation (3.3.22), the operators that depend on the eigenvalues ri appear

consistently in all three frameworks. In addition to this, the operator terms

that show angular variable dependence are isolated and do not mix with those

operators that have radial dependence. Due to the form taken by the Lapla-

cian in equation (4.2.22), we can also use the same argument as that of the

Laplacian derived in the previous section using parameterization I to moti-

vate how the fermionic picture can be introduced if the Laplacian in equation

(4.2.22) becomes the kinetic piece of some Hamiltonian operator.
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4.3 The Generator Of O(2) Rotations

We now proceed to tackle our next objective, which is to calculate the angu-

lar momentum i.e. the generator of O(2) rotations using the already defined

matrix valued polar coordinates Z and Z†.

The definition of the angular momentum operator L̂ in terms of the her-

mitian matrices X1, X2 and their momentum conjugates, ∂/∂X1 and ∂/∂X2,

is given by

L̂ =
1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X1

)

(4.3.1)

=
1

i

{
∑

ab

(X1)ab

(
∂

∂X2

)

ab

−
∑

ab

(X2)ab

(
∂

∂X1

)

ab

}

.

The partial equations in equation (4.3.1) are re-written as follows:

(
∂

∂X1

)

ab

=
∑

ij

∂Zij
(∂X1)ab

∂

∂Zij
+
∑

ij

∂Z†
ij

(∂X1)ab

∂

∂Z†
ij

(4.3.2)

and

(
∂

∂X2

)

ab

=
∑

ij

∂Zij
(∂X2)ab

∂

∂Zij
+
∑

ij

∂Z†
ij

(∂X2)ab

∂

∂Z†
ij

. (4.3.3)

The next natural step is to determine the coefficients

∂Zij
(∂X1)ab

∂Z†
ij

(∂X1)ab

∂Zij
(∂X2)ab

∂Z†
ij

(∂X2)ab
(4.3.4)

in the partial differential equations of equations (4.3.2) and (4.3.3), but

these are solved in the appendix B. To solve equation (4.3.4), the hermitian

matrices X1 and X2 are written in terms of the polar coordinates Z and Z† as

Z = X1 + iX2 Z† = X1 − iX2. (4.3.5)

Reorganizing the terms above in equation (4.3.5), we write the equations

in terms of X1 and X2
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X1 =
1

2

(
Z + Z†

)
X2 =

1

2i

(
Z − Z†

)
. (4.3.6)

Equation (4.3.6) is used to solve for the coefficients in equation (4.3.4), this

would then permit us to rewrite the definition of the angular momentum in

terms of the polar coordinates as follows

1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X2

)

=
∑

ab

(Z)ab
∂

∂ (Z)ab
−
∑

ab

(Z†
ab)

∂

∂ (Z†)ab
. (4.3.7)

Using partial differential equations, in equation (4.3.7), we define the fol-

lowing:

∂

∂Zab
=
∑

i

∂ri
∂Zab

∂

∂ri
+
∑

i6=j

∂Y +
ij

∂Zab

∂

∂Y +
ij

+
∑

i6=j

∂Y −
ij

∂Zab

∂

∂Y −
ij

(4.3.8)

and

∂

∂Z†
ab

=
∑

i

∂ri

∂Z†
ab

∂

∂ri
+
∑

i6=j

∂Y +
ij

∂Z†
ab

∂

∂Y +
ij

+
∑

i6=j

∂Y −
ij

∂Z†
ab

∂

∂Y −
ij

. (4.3.9)

In equation (4.3.8), we would now want to determine the following coeffi-

cients

∂ri
∂Zab

∂Y +
ij

∂Zab

∂Y −
ij

∂Zab
. (4.3.10)

Looking at equation (4.3.9), we also determine its coefficients.

To calculate the coefficients of equations (4.3.8) and (4.3.9), we use the ex-

pressions of dZ and dZ† obtained in the previous section for parameterization

II, and these were shown to be

dZ = V †

(

dr +
1√
2

[
r, dY +

]
+

1√
2

{
r, dY −

}
)

W, (4.3.11)

dZ† = W †

(

dr +
1√
2

[
r, dY +

]
− 1√

2

{
r, dY −

}
)

V. (4.3.12)
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After some algebra (shown in appendix B) and using equations (4.3.11)

and (4.3.12), the coefficients in equations (4.3.8) and (4.3.9) are shown to be

∂ri
∂Zab

=
∑

i

ViaW
†
bi

∂ri

∂Z†
ab

=
∑

i

WiaV
†
bi, (4.3.13)

∂Y +
ij

∂Zab
=
√

2
∑

i6=j

ViaW
†
bj

(ri − rj)
∂Y +

ij

∂Z†
ab

=
√

2
∑

i6=j

WiaV
†
bj

(ri − rj)
, (4.3.14)

∂Y −
ij

∂Zab
=
√

2
∑

i6=j

ViaW
†
bj

(ri + rj)

∂Y −
ij

∂Z†
ab

= −
√

2
∑

i6=j

WiaV
†
bj

(ri + rj)
, (4.3.15)

∂Y −
ii

∂Zab
=

1√
2

∑

i

ViaW
†
bj

(ri)

∂Y −
ii

∂Z†
ab

=
−1√

2

∑

i

WiaV
†
bj

(ri)
. (4.3.16)

Equations (4.3.13), (4.3.14), (4.3.15) and (4.3.16) are substituted back into

equations (4.3.8) and (4.3.9) to obtain the complete expressions for ∂/∂Zab

and ∂/∂Z†
ab. The following equations are obtained

∂

∂Zab
=
∑

i

ViaW
†
bi

∂

∂ri
+
√

2
∑

i6=j

ViaW
†
bj

(ri − rj)
∂

∂Y +
ij

+
√

2
∑

ij

ViaW
†
bj

(ri + rj)

∂

∂Y −
ij

(4.3.17)

and

∂

∂Z†
ab

=
∑

i

WiaV
†
bi

∂

∂ri
+
√

2
∑

i6=j

WiaV
†
bj

(ri − rj)
∂

∂
(
Y +
ij

) −
√

2
∑

ij

WiaV
†
bj

(ri + rj)

∂

∂
(
Y −
ij

) .

(4.3.18)

The expressions ∂/∂Zab and ∂/∂Z†
ab, in equation (4.3.17) and (4.3.18), are

used in equation (4.3.7) to obtain the full expression of the angular momentum,

which is given by

L̂ =
1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X2

)

=
√

2
∑

i

∂

∂Y −
ii

, (4.3.19)

where L̂ is the angular momentum or equivalently the generator of U(1) ∼
SO(2) rotations.
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L̂ is an N × N matrix operator with entries on the main diagonal that

depend on the variables that we saw in the Laplacian of the second param-

eterization in equation (4.2.22). We would have hoped to see terms that are

proportional to the square of the angular momentum, with both diagonal and

off-diagonal entries in the matrix, appearing in equation (4.2.22). When one

considers the case of the Laplacian operator in ordinary spherical coordinates,

for ~ = 1, one can see the square of the angular momentum operator inside

the equation of the Laplacian operator. This would mean that the Laplacian

in ordinary spherical coordinates would be partitioned into a radially depen-

dent piece and the part with the square of the angular momentum operator

multiplied by some radial factor. We would have hoped to see a similar con-

struct in our Laplacian from parameterization II after computing the angular

momentum operator using our matrix polar coordinates. This is not the case,

as the angular part of the Laplacian is associated with U(N) “rotations”.



Chapter 5

Gauge Invariant States

5.1 Form of the Laplacians acting on Invariant

States

We now wish to consider the action of the Laplacians, equations (4.1.30) and

(4.2.22), arrived at in the previous chapters, when acting on the states that

depend on the matrix variables

Q = V UV †, (5.1.1)

Q† = V U †V † (5.1.2)

and the eigenvalue r.

First it would be best to explain where this variable comes from.

We remind ourselves that for a diagonalized hermitian matrix R = V †rV

and the unitary matrix U , the matrix Z = RU with its conjugate Z† were

defined as

Z = V †rV U Z† = U †V †rV. (5.1.3)

Consider states constructed from the trace of the matrices Z and Z†, in

equation (5.1.3) above

66
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tr (Z) = tr
(
V †rV U

)
= tr

(
UV †rV

)
= tr

(
V UV †r

)
= tr (Qr) (5.1.4)

and similarly for the conjugate Z†

tr
(
Z†
)

= tr
(
U †V †rV

)
= tr

(
V U †V †r

)
= tr

(
Q†r

)
. (5.1.5)

Equations (5.1.4) and (5.1.5) signal the first appearance of Q and Q†

through the use of the cyclic property of the trace and these states will be

referred to as “invariant states”.

In this project, the Laplacians are going to act on functions constructed

as a product of Z and Z† terms under the trace, and these functions will

consequently be proportional to either Q or Q†. That is the reason why we

would prefer changing the current representation of variables that appear in

the Laplacians in parameterization I and II to variables in equations (5.1.4)

and (5.1.5). Functions on which our Laplacians will act on could take any of

the following probable forms

tr (ZZ) = tr
(
V †rV UV †rV U

)
= tr

(
V UV †rV UV †r

)
= tr (QrQr)

and similarly for conjugate Z†,

tr
(
Z†Z†

)
= tr

(
U †V †rV U †V †rV

)
= tr

(
V U †V †rV U †V †r

)
= tr

(
Q†rQ†r

)
.

We could further have

tr
(
Z4
)

= tr (QrQrQrQr)

and

tr
(
(Z†)4

)
= tr

(
Q†rQ†rQ†rQ†r

)
.
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The above two expressions can be generalized to order n of product of Z

or Z† terms as follows,

tr (Zn) = tr (QrQr.....Qr) (5.1.6)

and

tr
(
(Z†)n

)
= tr

(
Q†rQ†r......Q†r

)
. (5.1.7)

In equation (5.1.6), the product Qr appears n-times, corresponding to the

order of Z in the trace, the same rule is true for the conjugate Z†.

We now would naturally ask ourselves if there are products in the trace

that mix the Q and Q† terms. An example of such a state is the invariant

“quartic” state. Some examples of general invariant states are given below

tr
(
ZZ†

)
= tr

(
r2
)

tr
(
ZZ†Z

)
= tr

(
Qr3

)
tr
(
Z†ZZ†

)
= tr

(
Q†r3

)
,

tr
(
ZZZ†ZZ†ZZZ

)
= tr

(
QrQr5QrQr

)
tr
(
Z†Z†ZZ†Z†Z

)
= tr

(
r3Q†r3Q†

)
,

tr
(
ZZ†ZZ†ZZ†

)
= tr

(
r6
)

tr
(
ZZZZ†ZZ

)
= tr

(
QrQrQr3Qr

)
.

We can also construct “quartic” invariant state as follows:

Z2 = V †rQrQV and (Z†)2 = V †Q†rQ†rV, (5.1.8)

thus using the trace, the quartic state is

tr
(
Z2(Z†)2

)
= tr

(
V †rQrQV V †Q†rQ†rV

)
(5.1.9)

= tr
(
rQrQQ†rQ†r

)

= tr
(
r2Qr2Q†

)
.
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The above invariant states represent the type of objects that can be con-

structed for our Laplacian to act on using both parameterizations I and II.

So from the brief discussion above, the following deductions can be made:

(i) Q is a variable inherent inside the “wavefunctions”, this forces us to rewrite

the Laplacians so as to operate on these newly formulated wavefunctions

(ii) for these “wavefunctions” or invariant sates, we can get invariant states

that mix Q and Q† terms and

(iii) depending on the order of Z or Z† appearing in the trace, we get different

orders of r appearing at different positions inside the trace.

Now that we have introduced and established where the variable Q comes

from, why the variable Q is important and why were these the objects which

motivated the change in representation of the Laplacians, we proceed to rewrite

the Laplacian from parameterization I in terms of the new variables. It is best

to pick up where we left off, the Laplacian from parameterization I was shown

to be

∇2
I =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

+
∑

i

{
1

r2
i

∂

∂Xii

∂

∂X∗
ii

}

+ 2
∑

i6=j

(r2
i + r2

j )

(r2
i − r2

j )
2

∂

∂Sij

∂

∂S∗
ij

− 2

(ri + rj)2

{
∂

∂Sij

∂

∂X∗
ij

+
∂

∂Xij

∂

∂S∗
ij

}

+
4

(ri + rj)2

∂

∂Xij

∂

∂X∗
ij

.

Using the anti-hermitian property of the differentials, it follows that

dX∗
ji = −dXij ⇒

∂

∂X∗
ji

= − ∂

∂Xij

, (5.1.10)

so our Laplacian changes signs as above to become

∇2
I =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

−
{

1

r2
i

∂

∂Xii

∂

∂Xii

}

− 2(r2
i + r2

j )

(r2
i − r2

j )

∂

∂Sij

∂

∂Sji

+
2

(ri + rj)2

{
∂

∂Sij

∂

∂Xji

+
∂

∂Xij

∂

∂Sji

}

− 4

(ri + rj)2

∂

∂Xij

∂

∂Xji

.
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We first define dP = dQQ† and also define

∂

∂Sij
=
∑

α,β

∂Qαβ

∂Sij

∂

∂Qαβ

∂

∂Xij

=
∑

α,β

∂Qαβ

∂Xij

∂

∂Qαβ

. (5.1.11)

From equation (5.1.11) above, we need to calculate the coefficients

∂Qαβ/∂Sij and ∂Qαβ/∂Xij. We thus proceed as follows

dQαβ = d(V UV †)αβ (5.1.12)

= (dV UV † + V dUV † + V UdV †)αβ

=
∑

k,q

dVαβUkqV
†
qβ +

∑

k′,q′

Vαk′dUk′q′V
†
q′β +

∑

a,b

UabdV
†
bβ.

In the line that follows we use the property of unitary matrices such that
∑

b VabV
†
bc = δac, we then get

dQαβ =
∑

kq

(dV V †V )αkUkqV
†
qβ +

∑

k′,q′

Vαk′dUk′q′V
†
q′β (5.1.13)

+
∑

a,b

VαaUab(V
†V dV †)bβ

=
∑

a′,k,q

(dV V †)αa′Va′kUkqV
†
qβ +

∑

k′,q′

Vαk′dUk′q′V
†
q′β

−
∑

a,b

VαaUab(V
†dV V †)bβ

=
∑

a′,k,q

(dS)αa′Va′kUkqV
†
qβ +

∑

k′q′

Vαk′dUk′q′V
†
q′β

−
∑

e,a,b

VαaUabV
†
bedSeβ.

In the first line of equation (5.1.13) we use the anti-hermiticity of the

differentials such that dV V † = −V dV †. Using known definitions, the above

equation can be compactly expressed by utilizing some of the summations as

dQαβ =
∑

a′

(dS)αa′(V UV
†)a′β +

∑

k′,q′

Vαk′dUk′q′V
†
q′β −

∑

e

(V UV †)αe(dS)eβ

=
∑

a′

(dS)αa′(Q)a′β +
∑

k′,q′

Vαk′dUk′q′V
†
q′β −

∑

e

(Q)αe(dS)eβ. (5.1.14)
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Equation (5.1.14) looks promising because we see the differential dS ap-

pearing which we consider to be an old variable, multiplied by the new variable

Q, this clearly signals that we are heading in the right direction. In equation

(5.1.14), we introduce the inverse of dSij to obtain the following property

∂Sa′b′

∂Sab
= δa′aδbb′ . (5.1.15)

It then follows that from equation (5.1.14) we can deduce

∂Qαβ

∂Sij
=

∑

a′

∂Sαa′

∂Sij
Qa′β +

∑

k′,q′

Vak′
∂Uk′q′

∂Sij
V †
q′β −

∑

e

Qαe
∂Seβ
∂Sij

=
∑

a′

δαiδja′Qa′β −
∑

e

δeiδjβQαe

⇒ ∂Qαβ

∂Sij
= δαiQjβ − δjβQαi. (5.1.16)

Using equation (5.1.16), we can now solve for ∂/∂Sij, and this gives

∂

∂Sij
=

∑

αβ

∂Qαβ

∂Sij

∂

∂Qαβ

=
∑

α,β

(δαiQjβ − δjβQαi)
∂

∂Qαβ

(5.1.17)

=
∑

αβ

δαiQjβ
∂

∂Qαβ

∂

∂Qαβ

−
∑

αβ

δjβQαi
∂

∂Qαβ

=
∑

β

Qjβ
∂

∂Qiβ

−
∑

α

Qαi
∂

∂Qαj

.

So, in total we have

∂

∂Sij
=
∑

β

Qjβ
∂

∂Qiβ

−
∑

α

Qαi
∂

∂Qαj

. (5.1.18)

We now continue to find the coefficient for ∂/∂Xij, so continuing from

equation (5.1.14), we have
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dQαβ =
∑

a′

(dS)αa′(Q)a′β +
∑

k′,q′

Vαk′dUk′q′V
†
q′β −

∑

e

(Q)αe(dS)eβ

=
∑

a′

(dS)αa′(Q)a′β +
∑

k′,q′

Vαk′(dUU
†V †V U)k′q′V

†
q′β

−
∑

e

(Q)αe(dS)eβ (5.1.19)

=
∑

a′

(dS)αa′(Q)a′β +
∑

η

(V dUU †V †)αη(V UV
†)ηβ

−
∑

e

(Q)αe(dS)eβ

⇒ dQαβ =
∑

a′

(dS)αa′(Q)a′β +
∑

η

dXαηQηβ −
∑

e

(Q)αe(dS)eβ.

For the middle term in the second line of equation (5.1.19), we again used

the unitarity identity of matrices such that U †V †V U = 1 and the usual defi-

nition of dX. Similarly, we divide by the inverse of the differential dX, from

the last line of equation (5.1.19) we obtain the following

∂Qαβ

∂Xij

=
∑

α

∂Sαa′

∂Xij

Qa′β +
∑

η

∂Xαη

∂Xij

Qηβ −
∑

e

∂Seβ
∂Xij

(5.1.20)

=
∑

η

δαiδjηQηβ,

⇒ ∂Qαβ

∂Xij

= δαiQjβ.

The first line of equation (5.1.20) uses the fact that

∂Sαa′

∂Xij

=
∂Seβ
∂Xij

= 0 and
∂Xαη

∂Xij

= δαiδjη. (5.1.21)

It then follows that from the definition in equation (5.1.11) we have that

∂

∂Xij

=
∑

α,β

∂Qαβ

∂Xij

∂

∂Qαβ

=
∑

α,β

δαiQjβ
∂

∂Qαβ

=
∑

β

Qjβ
∂

∂Qiβ

. (5.1.22)

When the indices i and j are swapped around, the following equations can

also be derived
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∂

∂Sji
=
∑

β

Qiβ
∂

∂Qjβ

−
∑

α

Qαj
∂

∂Qαi

and
∂

∂Xji

=
∑

β

Qiβ
∂

∂Qjβ

. (5.1.23)

We can now introduce the new notation into our Laplacian from parame-

terization I using equations (5.1.18), (5.1.22) and (5.1.23) to get the following

new expression

∇2
I =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

− 1

r2
i

∑

β

Qiβ
∂

∂Qiβ

∑

α

Qiα
∂

∂Qiα

− 2(r2
i + r2

j )

(r2
i − r2

j )
2

(
∑

β

Qjβ
∂

∂Qiβ

−
∑

β

Qβi
∂

∂Qβj

)

×
(
∑

α

Qiα
∂

∂Qjα

−
∑

α

Qαj
∂

∂Qαi

)

+
2

(ri + rj)2

(
∑

β

Qjβ
∂

∂Qiβ

−
∑

α

Qβi
∂

∂Qβj

)
∑

α

Qiα
∂

∂Qjα

+
2

(ri + rj)2

∑

β

Qjβ
∂

∂Qiβ

(
∑

α

Qiα
∂

∂Qjα

−
∑

α

Qαj
∂

∂Qαi

)

− 4

(ri + rj)2

∑

β

Qjβ
∂

∂Qiβ

∑

α

Qiα
∂

∂Qiα

. (5.1.24)

In equation (5.1.24), we multiply out all the brackets and regroup the terms

to get
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∇2
I =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri
(5.1.25)

− 1

r2
i

∑

β

Qiβ
∂

∂Qiβ

∑

α

Qiα
∂

∂Qiα

−
∑

i6=j

2(r2
i + r2

j )

(r2
i + r2

j )

(
∑

α,β

Qjβ
∂

∂Qiβ

Qiα
∂

∂Qjα

−
∑

α,β

Qjβ
∂

∂Qiβ

Qαj
∂

∂Qαi

)

+
∑

i6=j

2(r2
i + r2

j )

(r2
i + r2

j )

(
∑

α,β

Qβi
∂

∂Qβj

Qiα
∂

∂Qjα

−
∑

α,β

Qβi
∂

∂Qβj

Qαj
∂

∂Qαi

)

+
∑

i6=j

2

(ri + rj)2

(
∑

α,β

Qjβ
∂

∂Qiβ

Qiα
∂

∂Qjα

−
∑

α,β

Qβi
∂

∂Qβj

Qiα
∂

∂Qjα

)

+
∑

i6=j

2

(ri + rj)2

(
∑

α,β

Qjβ
∂

∂Qiβ

Qiα
∂

∂Qjα

−
∑

α,β

Qjβ
∂

∂Qiβ

Qαj
∂

∂Qαi

)

−
∑

i6=j

4

(ri + rj)2

∑

α,β

Qjβ
∂

∂Qiβ

Qiα
∂

∂Qjα

.

The terms appearing in the Laplacian given in equation (5.1.25) are re-

grouped according to their coefficients, then equation (5.1.25) becomes

∇2
I =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

− 1

r2
i

∑

β,i

Qiβ
∂

∂Qiβ

∑

α

Qiα
∂

∂Qiα

+
∑

i6=j

(−2(r2
i + r2

j )

(r2
i − r2

j )
2

+
2

(ri + rj)2
+

2

(ri + rj)2
− 4

(ri + rj)2

)

×

∑

α,β

Qjβ
∂

∂Qiβ

Qiα
∂

∂Qjα

(5.1.26)

+
∑

i6=j

(
2(r2

i + r2
j )

(r2
i − r2

j )
2
− 2

(ri + rj)2

)
∑

α,β

Qjβ
∂

∂Qiβ

Qαj
∂

∂Qαi

+
∑

i6=j

(
2(r2

i + r2
j )

(r2
i − r2

j )
2
− 2

(ri + rj)2

)
∑

α,β

Qβi
∂

∂Qβj

Qiα
∂

∂Qjα

−
∑

i6=j

2(r2
i + r2

j )

(r2
i − r2

j )
2

∑

α,β

Qβi
∂

∂Qβj

Qαj
∂

∂Qαi

.

We know introduce the following new notation 2 to make the representation

2We could have introduced these generators at an earlier stage. This would have resulted
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easier

EL
ji ≡

∑

b

Qjb
∂

∂Qib

ER
ji ≡ Qai

∂

∂Qaj

. (5.1.27)

Equation (5.1.27) is the generator of left and right SU(N) rotations. So

now our Laplacian from parameterization I in the new variables takes its final

form to become

∇2
I =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri
− 1

r2
i

EL
iiE

L
ii

−
∑

i6=j

2(r2
i + r2

j )

(r2
i − r2

j )
2
EL
jiE

L
ij +

∑

i6=j

4rirj
(r2
i − r2

j )

(
EL
jiE

R
ji + ER

ijE
L
ij

)

−
∑

i6=j

2(r2
i + r2

j )

(r2
i − r2

j )

(
ER
ijE

R
ji − EL

jiEij
)
. (5.1.28)

This procedure is also performed for the parameterization II in which the

Laplacian was shown to be

∇2
II =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

+
1

2ri

∂

∂Y −
ii

∂

∂(Y −)∗ii
+

2

(ri − rj)2

∂

∂Y +
ij

∂

∂(Y +)∗ij

+
2

(ri + rj)2

∂

∂Y −
ij

∂

∂(Y −)∗ij
. (5.1.29)

We need to start again from the definition of Q. In parameterization II

we had earlier introduced the variable W = V U , this means that we can now

rewrite Q as

Q = V UV † = WV †, (5.1.30)

and then we can write

in a simple form of the derivation with the new variables from a notational point of view.
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dQ = dWV † +WdV † = dW (W †W )V † +W (V †V )dV †

= (dWW †)(WV †) + (WV †)(V dV †)

= (dWW †)(WV †)− (WV †)(dV V †)

⇒ dQ = dTQ−QdS. (5.1.31)

Again in equation (5.1.31), we used the fact that dT = dWW †, which was

only defined for parameterization II earlier on. We use the definitions from

equation (4.2.10) to rewrite the last line of equation (5.1.31) to get

dQ =
1√
2
(dY + + dY −)Q− 1√

2
Q(dY + − dY −) (5.1.32)

=
1√
2
(dY +Q−QdY +) +

1√
2
(dY −Q+QdY −).

Inserting the indices in equation (5.1.32) we get

⇒ dQab =
1√
2

(
∑

c

dY +
acQcb −

∑

c

QacdY
+
cb

)

+
1√
2

(
∑

c

dY −
acQcb +

∑

c

QacdY
−
cb

)

.

We again use the method that was applied in the previous section, that is,

we introduce the inverse of dY + and dY − to get the following

∂Qab

∂Y +
ij

=
1√
2

(
∑

c

(

∂Y +
ac

∂Y +
ij

)

Qcb −
∑

c

Qac

(

∂Y +
cb

∂Y +
ij

))

(5.1.33)

and

∂Qab

∂Y −
ij

=
1√
2

(
∑

c

(

∂Y −
ac

∂Y −
ij

)

Qcb +
∑

c

Qac

(

∂Y −
cb

∂Y −
ij

))

. (5.1.34)

Equations (5.1.33) and (5.1.34) use the same property, which is

∂Y
+/−
γθ

∂Y
+/−
γ′θ′

= δγγ′δθ′θ
∂Y

+/−
γθ

∂Y
−/+
γ′θ′

= 0. (5.1.35)
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If we use the definitions of equation (5.1.33) in equations (5.1.34) and

(5.1.35) it then follows that

∂Qab

∂Y +
ij

=
1√
2

(
∑

c

δaiδjcQcb −
∑

c

Qacδciδjb

)

=
1√
2

(δaiQjb −Qaiδjb) (5.1.36)

and

∂Qab

∂Y +
ij

=
1√
2

(
∑

c

δaiδjcQcb −
∑

c

Qacδciδjb

)

=
1√
2

(δaiQjb −Qaiδjb) .

(5.1.37)

With this information, equations (5.1.36) and (5.1.37), we can rewrite the

Laplacian from the second parameterization using our new variable Q. From

this Laplacian we only consider terms that have i < j
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∇2
II:i<j =

∑

i6=j

2

(ri + rj)2

∂

∂Y −
ij

∂

(∂Y −
ij )∗

+
∑

i6=j

2

(ri + rj)2

∂

∂Y +
ij

∂

(∂Y +
ij )∗

= −
∑

i6=j

2

(ri + rj)2

∂

∂Y −
ij

∂

∂Y −
ji

−
∑

i6=j

2

(ri − rj)2

∂

∂Y +
ij

∂

∂Y +
ji

= −
∑

i6=j

2

(ri + rj)2

∑

a,b

∂Qab

∂Y −
ij

∂

∂Qab

∑

c,d

∂Qcd

∂Y −
ji

∂

∂Qcd

−
∑

i6=j

2

(ri − rj)2

∑

a,b

∂Qab

∂Y +
ij

∂

∂Qab

∑

c,d

∂Qcd

∂Y +
ji

∂

∂Qcd

= −
∑

i6=j

2

(ri + rj)2

∑

a,b

1√
2

(δaiQjb +Qaiδjb)×

∂

∂Qab

∑

c,d

1√
2

(δcjQid +Qcjδdi)
∂

∂Qcd

−
∑

i6=j

2

(ri − rj)2

∑

a,b

1√
2

(δaiQjb −Qaiδjb)×

∂

∂Qab

∑

c,d

1√
2

(δcjQid −Qcjδid)
∂

∂Qcd

= −
∑

i6=j

1

(ri + r2)2

(
∑

b

Qjb
∂

∂Qib

+
∑

a

Qai
∂

∂Qaj

)

×
(
∑

d

Qid
∂

∂Qjd

+
∑

c

Qcj
∂

∂Qci

)

−
∑

i6=j

1

(ri − r2)2

(
∑

b

Qjb
∂

∂Qib

−
∑

a

Qai
∂

∂Qaj

)

×
(
∑

d

Qid
∂

∂Qjd

−
∑

c

Qcj
∂

∂Qci

)

= −
∑

i6=j

1

(ri + r2)2

(
∑

a

Qja
∂

∂Qia

+
∑

a

Qai
∂

∂Qaj

)

×
(
∑

b

Qib
∂

∂Qjb

+
∑

b

Qbj
∂

∂Qbi

)

−
∑

i6=j

1

(ri − r2)2

(
∑

a

Qja
∂

∂Qia

−
∑

a

Qai
∂

∂Qaj

)

×
(
∑

b

Qib
∂

∂Qjb

−
∑

b

Qbj
∂

∂Qbi

)

. (5.1.38)

In equation (5.1.38), after multiplying out terms and regrouping we get the
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following

∇2
II:i<j = −

∑

i6=j

(
1

(ri + rj)2
+

1

(ri − rj)2

)
∑

a

∑

b

Qja
∂

∂Qia

Qib
∂

∂Qjb

−
∑

i6=j

(
1

(ri + rj)2
+

1

(ri − rj)2

)
∑

a

∑

b

Qai
∂

∂Qaj

Qbj
∂

∂Qbi

−
∑

i6=j

(
1

(ri + rj)2
− 1

(ri − rj)2

)
∑

a

∑

b

Qja
∂

∂Qia

Qbj
∂

∂Qbi

(5.1.39)

−
∑

i6=j

(
1

(ri + rj)2
− 1

(ri − rj)2

)
∑

a

∑

b

Qai
∂

∂Qaj

Qib
∂

∂Qjb

.

In equation (5.1.39) we can include all the other terms i.e. terms that have

i = j, but first there is the pure imaginary term that we would prefer to specify

in a similar fashion as the other terms that involve the variable Q, that is

1

2r2

∂

∂Y −
ii

∂

∂Y −
ii

=
1

4

1

r2

(
∑

a

Qai
∂

∂Qaj

+
∑

b

Qjb
∂

∂Qib

)

×
(
∑

b

Qjb
∂

∂Qib

+
∑

a

Qai
∂

∂Qaj

)

. (5.1.40)

Again at this point we prefer to introduce a more compact notation to

represent the left, EL, and right, ER multiplication of the variables given in

equation (5.1.27). From all the above information and using all our calculations

for the terms that have i = j and those that have i 6= j and making the

required substitution, the complete expression for our Laplacian in the second

parameterization is thus
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∇2
II =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri
(5.1.41)

− 1

2r2
i

∂

∂Y −
ii

∂

∂Y −
ii

− 2

(ri − rj)2

∂

∂Y +
ij

∂

∂Y +
ji

− 2

(ri + rj)2

∂

∂Y −
ij

∂

∂Y −
ji

=
1

∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

− 1

4r2
i

(ER
ii + EL

ii)(E
R
ii + EL

ii)

−
∑

i6=j

(
1

(ri + rj)2
+

1

(ri − rj)2

)
{
EL
jiE

L
ij + ER

ijE
R
ij

}

−
∑

i6=j

(
1

(ri + rj)2
− 1

(ri − rj)2

)
{
EL
jiE

R
ji + ER

ijE
R
ij

}

∇2
II =

1
∏

i ri

{

∂

∂ri

∏

i

ri

}

∂

∂ri
+

1

∆2
MR

{
∂

∂ri
∆2
MR

}
∂

∂ri
+

∂

∂ri

∂

∂ri

− 1

4r2
i

(ER
ii + EL

ii)(E
R
ii + EL

ii)

−
∑

i6=j

{
2(r2

i + r2
j )

(r2
i − r2

j )
2
(EL

ijE
L
ji + ER

ijE
R
ji)−

4rirj
(r2
i − r2

j )
2

(
EL
ijE

R
ji + ER

ijE
L
ji

)
}

.

From the Laplacian of equation (4.1.30) obtained using parameterization I

we see that ∂/∂Sii is absent, so in terms of our new invariant states we would

require

0 =
∂

∂Sii
= EL

ii − ER
ii ⇒ EL

ii = ER
ii . (5.1.42)

Similarly in equation (5.1.29) we see that ∂/∂Y +
ii is absent, this enforces

the condition

0 =
∂

∂Y +
ii

=
1√
2
(EL

ii − ER
ii )⇒ EL

ii = ER
ii . (5.1.43)

When the condition in equation (5.1.42) is used in equation (5.1.38) and

the condition in equation (5.1.43) is used in equation (5.1.41), we find that

∇2
I = ∇2

II . (5.1.44)
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Section 5.1 served to illustrate the importance of introducing the new vari-

ables and how these arise naturally. In both our Laplacians represented in

the new variables, Q and Q†, we saw their natural forms being preserved: the

Laplacians were separated into their radial and angular parts and no mixing

of operators occurred. We could have extended the new variables to rewriting

the angular momentum L̂, but this would not have contributed crucially to

our project. Questions of what type of physical objects would emerge had our

Laplacians from equation (5.1.44) acted on the newly defined invariant states

would be saved for future research.



Chapter 6

Polar Matrix Coordinates:

Fermionisation

6.1 Fermionic Picture

We notice that the Laplacians from equations (5.1.28) and (5.1.41) both have

an identical radial piece, that only depends on the eigenvalues of R. This

means that changing parameterizations only affects the angular piece of the

Laplacians and the radial piece is independent of this change. The objective of

this section is to observe how fermionisation manifests itself for our chosen two

matrix model by considering the radial piece of both Laplacians. The radial

part of the Laplacians is

∇2
radial =

1

∆2
MR(r2

i )

1
∏

k rk

∑

i

∂

∂ri
(
∏

k

rk)∆
2
MR(r2

i )
∂

∂ri
(6.1.1)

=
1

∆2
MR

∑

i

1

ri

∂

∂ri
ri∆

2
MR(r2

i )
∂

∂ri
.

In the second line of equation (6.1.1), we introduce the variable ρi = r2
i ,

then we find

∇2
radial =

4

∆2(ρi)

∑

i

∂

∂ρi
ρi∆

2(ρi)
∂

∂ρi
, (6.1.2)

since

82
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∆2(ρi) = ∆2
MR(r2

i ). (6.1.3)

Equation (6.1.3) was previously observed to be the modified Vandermonde

determinant given by equation (4.1.25).

To start off, we consider the following equation

4

∆(ρi)

∑

i

∂

∂ρi
∆(ρi)ρi∆(ρi)

∂

∂ρi

1

∆(ρi)
= (6.1.4)

4
∑

i

(
1

∆(ρi)

∂

∂ρi
∆(ρi)

)

ρi

(

∆(ρi)
∂

∂ρi

1

∆(ρi)

)

= 4
∑

i

(

∂

∂ρi
+
∑

k 6=i

1

ρi − ρk

)

ρi

(

∂

∂ρi
−
∑

j 6=i

1

ρi − ρj

)

= 4

{
∑

i

(

∂

∂ρi
ρi

∂

∂ρi
−
∑

j 6=i

1

ρi − ρj
+
∑

j 6=i

ρi
(ρi − ρj)2

)}

+ 4
∑

i

(
∑

k 6=i

1

ρi − ρk
ρi

∂

∂ρi
− ρi

∑

j 6=i

1

ρi − ρj
ρi

∂

∂ρi

)

− 4
∑

i

(
∑

j 6=i,k 6=i

ρi
ρi − ρk

1

ρi − ρj

)

.

To simplify equation (6.1.4) we note that

∑

i6=j

1

ρi − ρj
= 0, (6.1.5)

this then leaves us with

4

∆(ρi)

∑

i

∂

∂ρi
∆(ρi)ρi∆(ρi)

∂

∂ρi

1

∆(ρi)
= (6.1.6)

4

{
∑

i

∂

∂ρi
ρi

∂

∂ρi
+
∑

i6=j

ρi
(ρi − ρj)2

−
∑

j 6=i6=k

ρi
(ρi − ρj)(ρi − ρk)

}

.

We now want to show in equation (6.1.6) that the difference of the second

and third term is effectively zero. We note that

∑

i6=j

ρi
(ρi − ρj)2

−
∑

i6=j 6=k

ρi
(ρi − ρk)(ρi − ρj)

=
∑

i6=j 6=k

ρi
(ρi − ρk)(ρi − ρj)

. (6.1.7)
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Equation (6.1.7) can be shown to vanish identically by considering any

three eigenvalues ρ1, ρ2, ρ3. We have

ρ1

(ρ1 − ρ2)(ρ1 − ρ3)
+

ρ2

(ρ2 − ρ1)(ρ2 − ρ3)
+

ρ3

(ρ3 − ρ1)(ρ3 − ρ2)
= (6.1.8)

1

(ρ1 − ρ2)

(
ρ1

(ρ1 − ρ3)
− ρ2

(ρ2 − ρ3)

)

+
ρ3

(ρ3 − ρ1)(ρ3 − ρ2)
=

1

(ρ1 − ρ2)

(
ρ1ρ2 − ρ1ρ3 − ρ2ρ1 + ρ2ρ3

(ρ3 − ρ1)(ρ3 − ρ2)

)

+
ρ3

(ρ3 − ρ1)(ρ3 − ρ2)
=

1

(ρ1 − ρ2)

ρ3(ρ2 − ρ1)

(ρ1 − ρ3)(ρ2 − ρ3)
+

ρ3

(ρ1 − ρ3)(ρ2 − ρ3)
=

− ρ3

(ρ1 − ρ3)(ρ2 − ρ3)
+

ρ3

(ρ1 − ρ3)(ρ2 − ρ3)
= 0

For the symmetric wavefunction φ the following can be deduced

4

∆2(ρi)

∑

i

∂

∂ρi
ρi∆

2(ρi)
∂

∂ρi
φ = Eφ (6.1.9)

⇒ −4

(
∑

i

ξi

)

Ψ = EΨ,

where

ξi =
∂

∂ρi
ρi

∂

∂ρi
+ tr (K(ρi)) . (6.1.10)

The second line of equation (6.1.9) is true if

Ψ ≡ ∆(ρi)φ, (6.1.11)

where ∆(ρi) is the Vandermonde determinant and φ is a one dimensional

symmetric wavefunction that depends on the eigenvalues of R.

The framework used in the fermionisation picture for the polar coordinate

Z is a framework that is analogous to the single matrix model fermion pic-

ture. Using equation (6.1.11) to rewrite equation (6.1.8) gives us equation

(6.1.4). The wavefunction Ψ, which was obtained by construct, is antisym-

metric and only depends on the eigenvalues ri. For the eigenvalue problem
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in equation (6.1.10), we see ξi which represents N Hamiltonians for free non-

relativistic fermions moving in the potentialK(ri). Thus equation (6.1.9) is the

Schödinger equation for N non-interacting 2 + 1 dimensional non-relativistic

fermions.

This means that for our project we were also able to construct a fermion

picture using the polar coordinate Z. The next natural question would be:

Can the fermionisation picture be extended to matrix models with more than

two matrices and how would the ground state energies differ?



Chapter 7

The Integral In Polar

Coordinates

7.1 Computing The Two Matrix Model Inte-

gral

In this chapter we discuss the path integral of the two hermitian matrices in

terms of our polar parameterization.

The case of the two matrix model has been considered by the authors of

[3], who study correlators and the free energy at both the strong and weak

coupling limits. This work uses an auxiliary field in a supersymmetric setting

to obtain a determinant expression in terms of

φ =
1√
2

(X3 + iX4) , (7.1.1)

where X3 and X4 are two of the four bosonic matrices.

The result of [3] is used by [6] to study local emergent geometry. The au-

thors of [6] consider a two hermitian matrix model where one of the matrices

is integrated out exactly. The local emergent geometry in [6] is due to the

eigenvalue distribution density of one of the matrices. The eigenvalue density

function, determined by the saddle point equations in the large N limit (strong

coupling limit), is considered in the continuum limit. The authors of [6] estab-

86
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lish that in the strong coupling limit, the two-matrix model can be interpreted

as emergent two dimensional geometry and further show the commuting and

non-commuting properties of the hermitian matrices at strong coupling. At

strong coupling, this eigenvalue density function maps out a hemisphere distri-

bution which is interpreted as an emergent local geometry of the two-matrix

model. The authors of [6] have argued that matrix models with more than

two matrices i.e. bosonic and fermionic matrix models, show no emergent lo-

cal geometry. When the authors of [6] include supersymmetry in the matrix

models (matrix models with more than two matrices), it is argued that the

emergence of geometry does not appear convincingly and that this geometry

is not clearly defined.

Using our definition of the radial matrix coordinates, our objective for this

section would be to compute the saddle point equation, and make comments

on the two matrix model at the weak coupling limit as this would allow us to

make comments about our method used to represent the matrix model.

We start by defining the integral of the two matrix model, using our newly

defined matrix polar coordinates. The integral is

B =

∫

dZdZ†e
−ω2

2
tr(ZZ†)−g2Y M tr

(

[Z,Z†]
2
)

(7.1.2)

where Z = RU and naturally Z† = U †R, as previously defined, U is the

unitary matrix and R is an hermitian matrix.

Substituting our definitions into the integral, we get

B =

∫

dZdZ†e−
ω2

2
tr(R2)−2g2Y M tr(R4)+2g2Y M tr(R2UR2U†) ≡

∫

dZdZ†e−V (Z,Z†).

(7.1.3)

The potential in the integral above is

V (Z,Z†) =
ω2

2
tr
(
R2
)

+ 2g2
YMtr

(
R4
)
− 2g2

YMtr
(
R2UR2U †

)
.

The expression tr
(
dZdZ†

)
, was previously shown to be proportional with

the variables dS, dr and dX also tr
(
dZdZ†

)
was defined as the square of the
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line element. It then naturally follows that

B =

∫

drdSdX
∏

i

ri∆
2
MRe

(

−ω2

2
tr(R2)−2g2Y M tr(R4)+2g2Y M tr(R2UR2U†)

)

=
1

4

∫

drdSdX
∏

i

ri
∏

i<j

(r2
i − r2

j )
2 ×

e

(

−ω2

2
tr(R2)−2g2Y M tr(R4)+2g2Y M tr(R2UR2U†)

)

, (7.1.4)

where dS = dV V † and dX = V dUU †V † and we can see the Jacobian J

which is the Vandermonde determinant multiplied by a product of eigenvalues

ri

J =
∏

i

ri∆
2
MR.

We proceed further to substitute the definitions of dr, dS and dX into

equation (7.1.4), we then get

B =
1

4

∫

dr(dV V †)(V dUU †V †)
∏

i

ri
∏

i<j

(r2
i − r2

j )
2

× e

(

−ω2

2
tr(R2)−2g2Y M tr(R4)+2g2Y M tr(R2UR2U†)

)

. (7.1.5)

In equation (7.1.5), the measure is invariant under the action of matrices

in the adjoint representation, such that

V (dUU †)V † −→ dUU †, (7.1.6)

which then gives

B =
1

4

∫

dr(dV V †)(dUU †)
∏

i

ri
∏

i<j

(r2
i − r2

j )
2e

(

−ω2

2
tr(R2)−2g2Y M tr(R4)+2g2Y M tr(R2UR2U†)

)

.

Again in equation (7.1.5), the integral is invariant in the measure such that

dUU † −→ dU. (7.1.7)
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The invariance of the measure above in equation (7.1.7) is explained below:

dFab = dUadU
†
db = U †

dbdUad =
(

U †
dbδac

)

dUcd = Mab,cddUcd

where

Mab,cd ≡ δacU
†
db. (7.1.8)

Mab,cd is an N2 × N2 matrix whose entries are the U † matrices on the

main diagonal and zero everywhere else. Under the change of variables in

equation (7.1.7), the Jacobian det(∂F/∂U †) is a diagonal matrix whose entries

are a product of U † matrices. Since U † is a unitary matrix, it means that the

Jacobian is one.

The integral B now takes the following form

B =
1

4

∫

dr(dV V †)
∏

i

ri
∏

i<j

(r2
i − r2

j )
2e

(

−ω2

2
tr(R2)

)

×
∫

dUU †e(g
2
Y M tr((R2−UR2U†)2))

=
1

4

∫

dr(dV V †)
∏

i

ri
∏

i<j

(r2
i − r2

j )
2e

(

−ω2

2
tr(R2)

)

×
∫

dUe(g
2
Y M tr((R2−UR2U†)2))

=
const

4g2
YM

∫

dr(dV )
∏

i

ri
∏

i<j

(r2
i − r2

j )
2e

(

−ω2

2
tr(r2)

)

×

det
(

e(g
2
Y M (r2i −r

2
j )2)
)
[
∏

i<j

(r2
i − r2

j )

](−2)

. (7.1.9)

In the second line equation (7.1.9), up to a constant factor, we see the

Harish Chandra-Itzykson Zuber integral [41] where dU is the normalized Haar

measure on the unitary group U(N),

∫

dUe(g
2
Y M tr(R2−UR2U†)2) = det

(

e(g
2
Y M (r2i −r

2
j )2)
)
[
∏

i<j

(r2
i − r2

j )

](−2)

. (7.1.10)
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The last line of equation (7.1.9) shows the differential dV which does not

depend on any of the other variables, thus it can be integrated out, to give

unity i.e.

∫

dV = 1,

and for the const factor we have

const = (g2
YM)−N(N−1)/2

N−1∏

1

p!. (7.1.11)

The final form of the two matrix integral in polar coordinates thus becomes

B =
const

16g2
YM

∫

dr
∏

i

rie
−ω2

2
tr(r2)+ln det

(

e
g2
Y M

(r2
i −r2

j )2
)

. (7.1.12)

7.2 The Free Case

For the free case, we set the coupling constant g2
YM = 0, thus equation (7.1.2)

becomes

B =

∫

dZdZ†e−tr(ZZ†). (7.2.1)

When solved, the integral B, in equation (7.2.1), in this free limit becomes

B =
1

4

∫

dr
∏

i

ri
∏

i<j

(r2
i − r2

j )
2e−

ω2

2
tr(r2). (7.2.2)

We set ρi = r2
i , this implies that

B =
1

8

∫
∏

i

dρi
∏

i<j

(ρi − ρj)2e−
ω2

2

∑

i ρi . (7.2.3)

Equation (7.2.3) is rewritten in a form that will allow us to compute the

saddle point equation such that

B =
1

8

∫
∏

i

dρie
∑

i6=j ln(ρi−ρj)−
1
2
ω2
∑

i ρi . (7.2.4)
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The above result is used to compute the saddle point equation, which is

given by 3

∂

∂ρk

(
∑

i6=j

ln(ρi − ρj)2 − 1

2
ω2
∑

i

ρi

)

= 0. (7.2.5)

Proceeding from equation (7.2.5) above we get

∑

i6=i

∂

∂ρk
ln(ρi − ρj)−

1

2
ω2
∑

i

∂

∂ρk
ρi = 0

∑

i6=j

(
1

ρi − ρj

(
∂ρi
∂ρk
− ∂ρj
∂ρk

))

− 1

2
ω2
∑

i

∂ρi
∂ρk

= 0

∑

i6=j

(
1

ρi − ρj
(δik − δjk)

)

− 1

2
ω2
∑

i

δik = 0

∑

k 6=j

1

ρk − ρj
+
∑

k 6=j

1

ρk − ρj
− 1

2
ω2 = 0.

Therefore

ω2 = 4
∑

k

1

ρk − ρj
, (7.2.6)

summing over all k except k = j only. For now we will not comment on

the result of equation (7.2.6), we will return to it later. Instead, we will first

discuss a particular solution of the single matrix model briefly in order for us

to understand the significance of equation (7.2.6).

The standard free single matrix model is a model that gives the Wigner

distribution, a solution that we are also interested in. For the single matrix

we have the following

A =

∫

dXe−
1
2
ω2tr(X2) =

∫

dλi
∏

i<j

(λi − λj)2e−
1
2
ω2
∑

i λ
2
i . (7.2.7)

Equation (7.2.7) is rewritten as

A =

∫

dλie
∑

i6=j ln(λi−λj)−
1
2
ω2
∑

i λ
2
i . (7.2.8)

3The large N scaling can be explicitly included by rescaling ρi → Nρi and
∑

i
→ N

∑

i



CHAPTER 7. THE INTEGRAL IN POLAR COORDINATES 92

The first logarithm appearing in exponential term of equation (7.2.8) is the

Vandermonde determinant that arises when digonalising X. The saddle point

equation for the single matrix model in equation (7.2.8) is

∂

∂λk

(
∑

i<j

ln(λi − λj)−
1

2
ω2
∑

i

λ2
i

)

= 0 (7.2.9)

∑

i6=j

∂

∂λk
ln(λi − λj)−

1

2
ω2
∑

i

∂λ2
i

∂λk
= 0. (7.2.10)

Equation (7.2.10) becomes

2
∑

j 6=k

1

λk − λj
= ω2λk. (7.2.11)

In equation (7.2.11) the standard solution, taken in the large N limit gives

the Wigner distribution [34] [40], and this solution is given by

∫

dy
φ(y)

x− y =
ω2

2
x. (7.2.12)

We seem to see the emergence of a similar type of solution for equation

(7.2.6) in our work. Previously we obtained the following equation for the

saddle point equation (7.2.6)

2
∑

j 6=k

1

ρk − ρj
=

1

2
ω2. (7.2.13)

If we go back to our old notation, to rewrite the above expression, we get

2
∑

j 6=k

1

r2
k − r2

j

=
1

2
ω2. (7.2.14)

We then multiply rk on either side of the equation to obtain

2
∑

j 6=k

rk
r2
k − r2

j

=
1

2
ω2rk. (7.2.15)

Previously we defined ρi = r2
i , this then enforces the requirement that

ρi > 0 for ±ri. From equation (7.2.15), we can rewrite the left hand side as

follows



CHAPTER 7. THE INTEGRAL IN POLAR COORDINATES 93

2rk
r2
k − r2

j

=
(rk + rj) + (rk − rj)
(rk − rj)(rk + rj)

=
1

rk − rj
+

1

rk + rj
. (7.2.16)

So from equation (7.2.16) above we have

2
∑

j 6=k

rk
r2
k − r2

j

=
∑

j 6=k

(
1

rk − rj
+

1

rk + rj

)

=
1

2
ω2rk, (7.2.17)

which is true for rj > 0 and rj < 0, we can define

∑

rj

1

rk − rj
=

1

2
ω2rk, (7.2.18)

for rk 6= rj.

The above form of equation (7.2.18) resembles the solution for the single

matrix model in equation(7.2.11), which gave the Wigner distribution. Equa-

tion (7.2.18) is true for rj > 0 and rj < 0 and is thus seen to be an extension

of the solution seen for the single matrix model. Due the condition ρi > 0, this

requires that our solution in equation (7.2.18) include both positive and neg-

ative eigenvalues and this inclusion of entire spectrum of eigenvalues is what

makes our solution unique from that of the single matrix model.

7.3 Two Matrices: Perturbation Theory

We now continue to explore perturbation theory in our (polar coordinate)

matrix model. The objective of this section is to show that the matrix model

that we have defined agrees in the large N limit with standard perturbation

theory.

To start off, we consider equation (7.1.9) in our work, where in the second

line we saw the integral over unitary matrices which we denote by ζ:

ζ =

∫

dUe−2g2Y M tr(R2UR2U†). (7.3.1)

Equation (7.3.1) is identical to the expression of equation (3.2) of [41],

which is
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I(M1,M2) =

∫

dUexp[βtr
(
M1UM2U

†
)
]. (7.3.2)

If Λ1 is the diagonal matrix of eigenvalues obtained when diagonalizing the

hermitian matrix M1 and Λ2 is the diagonal matrix of eigenvalues obtained

when diagonalizing the hermitian matrix M2 then [41] shows the following

equivalence:

∫

dUexp

[

− 1

2t
tr
(
Λ1 − UΛ2U

†
)2
]

= tN(N−1)/2

1∏

N

p!×

det[exp− (1/2t)(λ1,i − λ2,j)
2]

∆(Λ1)∆(Λ2)

= β−N(N−1)/2

N−1∏

1

p!
det(eβλ1,iλ2,j)

∆(Λ1)∆(Λ2)

= I(M1,M2). (7.3.3)

On the right hand side of equation (7.3.3), above λ1,i and λ2,j are elements

of the matrices Λ1 and Λ2. In the second line of equation (7.3.3), β is a coupling

constant and so is t.

In [41], the expansion of ln [I(M1,M2)] is considered in the large N limit,

and the eigenvalues of each of the matrices M1 and M2 are to be rescaled by
√
N . Let Λ1 =

√
Na and Λ2 =

√
Nb with Λ1 and Λ2 being diagonal matrices

of order unity, the authors of [41] consider the following expansion

X(Λ1,Λ2, β) = lim
N→∞

1

N2
ln
[

I(
√
Na,
√
Nb)

]

(7.3.4)

= lim
N→∞

1

N2
ln

[∫

dUeNβtr(Λ1UΛ2U†)
]

.

The quantity X(Λ1,Λ2, β) is expressed as a power series expansion in β as

X(Λ1,Λ2, β) =
∞∑

1

βk

k
Xk(Λ1,Λ2), (7.3.5)

where Xk(Λ1,Λ2) = Xk(Λ2,Λ1) is a symmetric function of ai and bi homo-

geneous of degree k. For our work we need to consider the first order expansion
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(k = 1) such that4

X(Λ1,Λ2, gYM) = βXk=1 = β〈Λ1〉〈Λ2〉 (7.3.6)

where

〈Λp
1〉 ≡

1

N
tr (Λp

2) (7.3.7)

and similarly

〈Λp
2〉 ≡

1

N
tr (Λp

2) . (7.3.8)

Below we are going to make clear why and how the work/calculation of

[41] is required and utilized in our project.

We start off from the second line of equation (7.1.9)

B =
1

16

∫

dr(dV V †)
∏

i

ri
∏

i<j

(r2
i − r2

j )
2e

(

−ω2

2
tr(R2)

)

×
∫

dUe(g
2
Y M tr((R2−UR2U†)2))

=
1

16

∫

dr
∏

i

ri
∏

i<j

(r2
i − r2

j )
2e−

ω2

2
tr(r2)+2g2Y M tr(r4) ×

∫

dUe−2g2Y M tr(Ur2U†r2)

=
1

16

∫

dr
∏

i

ri
∏

i<j

(r2
i − r2

j )
2e−

ω2

2
tr(r2)+2g2Y M tr(r4) × ζ (7.3.9)

In the last line of equation (7.3.9), the integral over unitary matrices ζ is

identical to equation (3.2) of [41], for β = −2gYM . We rescale the eigenvalues r

such that ri →
√
Nri and introduce a new variable r2

i = ρi. Equation (7.3.9) is

then taken in the large N limit, with ζ being identical to equation (7.3.4) when

taken in the large N limit. So it follows that equation (7.3.9) now becomes

4The expansion for higher orders for k can be seen in TABLE II. The coefficients Xk(A,B)

in [41] on page 417.
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B =
1

32

∫

dρi
∏

i<j

(ρ2
i − ρ2

j)
2e−

ω2

2
tr(ρ)+2g2Y M tr(ρ2)eln[ζ] (7.3.10)

=
1

32

∫

dρie
∑

i6=j ln |ρi−ρj |−
ω2

2

∑

i ρi+2g2Y M

∑

i ρ
2
i eln ζ

=
1

32

∫

dρie
∑

i6=j ln |ρi−ρj |−
ω2

2

∑

i ρi+2g2Y M

∑

i ρ
2
i +X(r2,r2,β)

where

X(r2, r2, β) = lim
N→∞

1

N2
ln[ζ] (7.3.11)

= lim
N→∞

1

N2
ln

[∫

dUe−2g2Y MN2tr(Ur2U†r2)
]

.

We can see that equation (7.3.11) in our work is identical to equation (3.23)

from [41]. We now want to consider the first order expansion of equation

(7.3.11) which is the same equation (3.24) of [41], and this gives

X(r2, r2, β) = βXk=1(r
2, r2) (7.3.12)

=
β

N2
tr
(
r2
)
tr
(
r2
)

=
β

N2

(
∑

i

ρi

)2

.

From equation (7.3.10), we now have

B =
1

32

∫

dρie
−Seff , (7.3.13)

where the effective action Seff given by

Seff = −
∑

i6=j

ln |ρi − ρj|+
ω2

2

∑

i

ρi − 2g2
YMN

∑

i

ρ2
i − 2g2

YM

(
∑

i

ρi

)2

.

(7.3.14)

From the equation (7.3.14) above, the saddle point equation for the effective

action is
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∂Seff
∂ρi

=
∑

i6=j

2

ρi − ρj
− 1

2
ω2 − 4λρi + 4λ

∑

k

ρk = 0 (7.3.15)

⇒
∑

j 6=i

2

ρi − ρj
=
ω2

2
+ λρi − 4λ

(
∑

k

ρk

)

⇒
∑

j 6=i

2

r2
i − r2

j

=
ω2

2
+ λr2

i − 4λ (ω2) ,

where ω2 =
∑

k ρk =
∑

k r
2
k and we have also introduced the t’Hooft cou-

pling constant λ = g2
YMN . The last line of equation (7.3.15) is an equation of

eigenvalues that gives the stationary condition.

Equation (7.3.15) may be solved in the large N limit but more impor-

tantly we can extend the definition of the density of eigenvalue η(x) to include

negative eigenvalues. In the free case given by equation (7.2.17), we see the

extension of the eigenvalues which can also be written for equation (7.3.15).

This allows us to introduce the density eigenvalues η(x) =
∑

i δ(r−ri) with the

condition η(−x) = η(x). As it is standard we introduce an analytic function

F (z) for the last line of equation (7.3.15)

F (z) =

∫

dy
η(y)

z − y . (7.3.16)

In the Free case of the previous section, two important results 5 emerge:

the normalization of the eigenvalue density function

∫ ∞

−∞

dyη(y) = 2 (7.3.17)

and

∫ ∞

−∞

dyy2η(y) = 2ω2. (7.3.18)

For a more general formula for equations (7.3.17) and (7.3.18) 6, the fol-

lowing equation is true

5Clarity on the derivation of the proceeding results will be given in the appendix C.
6See appendix C for the derivation.
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2
∑

i

r2p
i =

∫ ∞

−∞

dyy2pη(y). (7.3.19)

In equation (7.3.19), we see that we recover equation (7.3.17) for p = 0

and we recover equation (7.3.18) for p = 1. The generalization to higher order

factors can be obtained and these become the coefficients in the expansion of

equation (7.3.16). The analytic function F (z) can be written as an expansion

whose coefficient is 1/zn for n = 1, 2, 3, ... outside some finite support (−a, a),
such that

F (z) =

∫ a

−a

dy
η(y)

z − y =
1

z

∫ a

−a

dy
η(y)

1− y/z (7.3.20)

=
1

z

∫ a

−a

dyη(y) +
1

z2

∫ a

−a

dyyη(y) +
1

z3

∫ a

−a

dy2yη(y) + ...

=
2

z
+

2ω2

z3
+ ...

The analytic function F (z) can also be written as a function that satisfies

certain properties 7, allowing it to be constructed uniquely as

F (z) =

(
1

2
ω2 − 4λω2

)

z + 4λz3 −
(
4λz2 + d

)√
z2 − a2. (7.3.21)

By defining ω̄ = ω2 − 8λω2, an expansion is also performed on equation

(7.3.21), and the coefficients of 1/z, 1/z3 etc are equated with those of equation

(7.3.20), in turn, this allows us to solve for the unknown constants a and d in

equation (7.3.21) and the following equations are obtained 8

d =
1

2
ω̄2 + 2a2λ, (7.3.22)

2 =
1

2
a4λ+

1

2
a2d (7.3.23)

and

7These properties are given for the single matrix model in [2]. We have generalized these

properties to the two matrix model.
8See appendix C for derivation.
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2ω2 =
1

4
a6λ+

1

8
a4d. (7.3.24)

Using algebra, and computing up to order λ, the following result can be

obtained

ω2 =
2

ω2
− 32

ω6
λ. (7.3.25)

The result in equation (7.3.25) is the perturbative weak coupling expansion

for the two point correlator 〈tr
(
ZZ†

)
〉 up to order λ which can be derived

from the integral B in equation (7.1.2), using standard Feynman diagram

perturbation expansion for the two point function 〈tr (X2
1 )〉. We can deduce

that our matrix valued spherical coordinates agrees (as illustrated above) with

the the correct results of perturbation theory. It would be interesting to explore

higher order correction of λ using perturbation theory on our matrix model

with spherical polar coordinates and the strong coupling regime.



Chapter 8

Conclusion

In this dissertation we introduced matrix valued polar coordinates in the de-

scription of matrix models of two hermitian matrices and described properties

of this parameterization in the context of quantum mechanical and path inte-

gral systems.

After the introductory chapter and a review of some of the properties of

the single matrix model, Chapter four introduces the matrix valued polar co-

ordinate. The Laplacian operator appearing in the kinetic energy term of the

Hamiltonian has been obtained explicitly for two parameterizations which are

described in this chapter. For both parameterizations, the Laplacians consists

of a piece involving the eigenvalues of the “radial” matrix plus an angular part.

The form of these Laplacians on gauge invariant states was described in

Chapter five, and were unique. For potentials that depend only on the radial

eigenvalues, it was established in Chapter six that the corresponding Hamilto-

nian has a description in terms of higher dimensional (2 + 1) fermions. This

generalizes the well known fermionic picture of the single matrix model.

In chapter seven we studied the integral of the two matrix model in polar

coordinates. When the free case (g2
YM = 0) of the integral was considered,

its solution in the large N limit gave the standard Wigner distribution. We

showed that the integral of the two matrix model gives the correct result of

perturbation theory in the weak coupling expansion, equation (7.3.25), up to

order λ. When looking at the result of equation (7.3.25), in the future we

100
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would like to do computations to higher orders of λ and see how consistent the

result is with perturbation theory and to also investigate the strong coupling

limit using our two matrix model in polar coordinates.

We found that the questions tackled in this project compelled us to ask

further questions that might be of interest for future research. Some of the

questions are as follows:

(1) Can we generalize the two matrix model, without any coupling between

the angular and radial terms, to a more interesting three matrix model, which

is QCD, to compute rich dynamics of the model.

(2) With the three and higher dimensional matrix models, can we still speak

of “fermionisation”, if this is so, this might hint in the direction of quantum

gravity.

(3) With higher matrix models, is perturbation theory still a viable tool

to obtain higher orders of λ, or would we need a new mathematical model to

answer more complex questions? The higher the number matrices in a model,

the complexity of computations also increases.

Numerous questions, as a result of the work done in this project, still need

to be investigated. This project opens up a possible new approach to the study

of matrix models and the rich discoveries that have yet to be made in string

theory.



Appendix A

The Single Hermitian Matrix

A.1 Laplacian In Real Coordinates

The Laplacian for 2-dimensional real cartesian coordinates (x, y) is

∇2 =
∂2

∂x2
+

∂2

∂y2
. (A.1.1)

If we define polar coordinates x = r cos θ and y = r sin θ, then the Laplacian

in polar coordinates becomes

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2
. (A.1.2)

Even in real coordinates the Laplacian is separated into radial and angular

parts.

A.2 Single Matrix Model: Conjugate Momen-

tum

In this appendix we explain, in detail, how the equations (3.5.5) and (3.5.6)

were derived. Below we show how to compute the co-efficients

∂(r)k
∂Mij

=
∑

k

V †
ikVkj (A.2.1)
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for case I whose matrix elements lie on the main diagonal and for case II

whose matrix elements are off-diagonal

∂Vkγ
∂Mij

=
∑

k 6=q

V †
jqVqγVki

(r)k − (r)q
. (A.2.2)

The conjugate momentum in partial equations was previously defined as

Pji =
∂

∂Mij

=
∑

kγ

∂Vkγ
∂Mij

∂

∂Vkγ
+
∑

k

∂(r)k
∂Mij

∂

∂(r)k
. (A.2.3)

To compute the co-efficients in equation (A.2.3) we start with the definition

of with dM

dMij =
{
V † (dr + [r, dS])V

}

ij
(A.2.4)

=
∑

k,q

V †
ik (dr + [r, dS])kq Vqj

=
∑

kq

V †
ikVqj (δqk(dr)k + [r, dS]kq) .

Previously we had shown how to compute commutators with index vari-

ables, thus [r, dS]kq = ((r)k − (r)q) dSkq, with this, equation (A.2.4) becomes

dMij =
∑

kq

V †
ikVqjδqk(r)k +

∑

kq

V †
ikVqjdSkq ((r)k − (r)q) . (A.2.5)

To solve for the co-efficients in equation (A.2.3), we consider equation

(A.2.5) for the first case: q = k

⇒ dMij =
∑

kq

V †
ikVqj(dr)k =

∑

k

V †
ik(dr)kVkj, (A.2.6)

it then follows that the first co-efficient is given by

∂(r)k
∂Mij

=
∑

k

V †
ikVkj. (A.2.7)

We know proceed to case II in equation (A.2.5): q 6= k
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⇒ dMij =
∑

kq

V †
ikVqjdSkq ((r)k − (r)q) . (A.2.8)

In equation (A.2.8) we use dS = dV V †, which was defined earlier on, we

then get

dMij =
∑

kq

V †
ikVqj(dV V

†)kq ((r)k − (r)q) (A.2.9)

=
∑

γkq

V †
ikVqjdVkγV

†
γq ((r)k − (r)q.) .

Thus, it naturally follows that

∂Vkγ
∂Mij

=
∑

k 6=q

VkiV
†
jqVqγ

((r)k − (r)q)
. (A.2.10)

This completes our expression for the conjugate momentum, with the co-

efficients calculated in equations (A.2.7) and (A.2.10), the conjugate momen-

tum is given by

Pji =
∂

∂Mij

=
∑

γ

∑

k 6=q

{

V †
jqVqγVki

(r)k − (r)q

}

∂

∂Vkγ
+
∑

k

{

V †
ikVkj

} ∂

∂(r)k
, (A.2.11)

which satisfies equation equation (3.5.7).

In the calculation that follows we prove the statement

∂Mab

∂Mij

= δaiδjb. (A.2.12)

First we define

Mab =
(
V †rV

)

ab
=
∑

α

V †
aαrαVαb. (A.2.13)

Using the definition of the conjugate momentum it follows that

∂Mab

∂Mij

=

(
∑

γ

∑

k 6=q

{

V †
jqVqγVki

(r)k − (r)q

}

∂

∂Vkγ
+
∑

k

{

V †
ikVkj

} ∂

∂(r)k

)
∑

α

V †
aαrαVαb.

(A.2.14)
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∂Mab

∂Mij

=

(
∑

α

∑

γ

∑

k 6=q

{

V †
jqVqγVki

(r)k − (r)q

}

∂V †
aα

∂Vkγ
λαVαb

)

(A.2.15)

+

(
∑

α

∑

γ

∑

k 6=q

{

V †
jqVqγVki

(r)k − (r)q

}

V †
aαrα

∂Vαb
∂Vkγ

)

+
∑

α

∑

k

{

V †
ikVkj

}

V †
aα

∂rα
∂rk

Vαb.

We make use of the following definitions:

∂V †
aα

∂Vkγ
= −V †

akV
†
γα

∂Vαb
∂Vkγ

= δαkδγb
∂rα
∂rk

= δαk, (A.2.16)

we then obtain

∂Mab

∂Mij

=
∑

α

∑

γk

∑

k 6=q

V †
jqVqγVki

(rk − rq)
V †
aαrαδαkδγb (A.2.17)

−
∑

α

∑

γk

∑

k 6=q

V †
jqVqγVki

(rk − rq)
V †
akV

†
γαrαVαb

+
∑

α

∑

k

V †
ikVkjV

†
aαδkαVαb.

We sum over the Kronecker delta functions to obtain a change of variables

in the expression above, this then gives

∂Mab

∂Mij

=
∑

k 6=q

V †
jqVqbVkiV

†
akrk

(rk − rq)
−
∑

k 6=q

V †
jqVqbVkiV

†
akrq

(rk − rq)
+
∑

k

V †
ikVkjV

†
akVkb (A.2.18)

∂Mab

∂Mij

=
∑

k 6=q

V †
jqVqbV

†
akVki +

∑

k

V †
ikVkjV

†
akVkb. (A.2.19)

The first term above in equation (A.2.19) is separated into a summation

that has k = q and k 6= q. Due to the restriction when calculating the co-

efficients, we are only interested in terms that have k 6= q and we subtract

those that have k = q. This then gives the equation
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∂Mab

∂Mij

= (
∑

k

V †
akVki)(

∑

q

V †
jqVqb)

︸ ︷︷ ︸

k 6=q

−
∑

k

V †
jkVkbV

†
akVki

︸ ︷︷ ︸
∑

k=q

+
∑

k

VkiV
†
jkV

†
akVkb,

(A.2.20)

⇒ ∂Mab

∂Mij

= δaiδjb. (A.2.21)



Appendix B

The Algebra of

Parameterization II

B.1 The Conjugate Momentum in Polar Co-

ordinates

Below we show how to construct the conjugate momentum for the two matrix

model using our polar coordinates. We first start of with the partial differential

equations to ∂/∂Zab given by

∂

∂Zab
=
∑

i

∂ri
∂Zab

∂

∂ri
+
∑

i6=j

∂Y +
ij

∂Zab

∂

∂Y +
ij

+
∑

i6=j

∂Y −
ij

∂Zab

∂

∂Y −
ij

, (B.1.1)

and also define ∂/∂Z†
ab as

∂

∂Z†
ab

=
∑

i

∂ri

∂Z†
ab

∂

∂ri
+
∑

i6=j

∂Y +
ij

∂Z†
ab

∂

∂Y +
ij

+
∑

i6=j

∂Y −
ij

∂Z†
ab

∂

∂Y −
ij

. (B.1.2)

A starting point for us is to use the previously defined equations for dZ

and dZ†, which are

dZ = V †

(

dr +
1√
2

[
r, dY +

]
+

1√
2

{
r, dY −

}
)

W (B.1.3)
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dZ† = W †

(

dr +
1√
2

[
r, dY +

]
− 1√

2

{
r, dY −

}
)

V. (B.1.4)

We rewrite equations (B.1.3) and (B.1.4) as

V dZY † =

(

dr +
1√
2

[
r, dY +

]
+

1√
2

{
r, dY −

}
)

(B.1.5)

WdZ†V † =

(

dr +
1√
2

[
r, dY +

]
− 1√

2

{
r, dY −

}
)

. (B.1.6)

Equations (B.1.5) and (B.1.6) are summed to give

∑

ij

(V dZW †)ij + (Y dZ†V †)ij = 2
∑

ij

δjidri +
√

2
∑

i<j

[r, dY +]ij (B.1.7)

∑

ab

∑

ij

ViadZabW
†
bj +

∑

ab

∑

ij

WiadZ
†
abV

†
bj = 2

∑

ij

δjidri +
√

2(ri − rj)dY +
ij .

Just like in the first parameterization, we consider the case where i = j in

the second line of equation (B.1.7) above, and when i = j, it follows that

∑

ab

∑

i

ViadZabW
†
bi +

∑

ab

∑

i

WiadZ
†
abV

†
bi = 2

∑

ij

δiidri. (B.1.8)

Equation (B.1.8) then gives us our first set of coefficients, which are

∂ri
∂Zab

=
∑

i

ViaW
†
bi

∂ri

∂Z†
ab

=
∑

i

WiaV
†
bi. (B.1.9)

Again using the second line of equation (B.1.7), when we consider the case

when i 6= j, the following equation comes about

∑

ij

∑

ab

ViadZabW
†
bj +

∑

ij

∑

ab

WiadZ
†
abV

†
bj =
√

2
∑

i<j

(ri − rj)dY +
ij . (B.1.10)

From equation (B.1.10) above, the following coefficient are deduced

∂Y +
ij

∂Zab
=
√

2
∑

i<j

ViaW
†
bj

(ri − rj)
∂Y +

ij

∂Z†
ab

=
√

2
∑

i<j

WiaV
†
bj

(ri − rj)
. (B.1.11)
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To obtain the rest of the coefficients, we now subtract our two previous

equations, that is we subtract (B.1.6) from (B.1.5) to obtain the new equation

expressed with indices

∑

ij

(V dZW †)ij −
∑

ij

(WdZV †)ij =
√

2
∑

ij

{dr, dY −}ij (B.1.12)

∑

ab

∑

ij

ViadZabW
†
bj −

∑

ij

∑

ab

WiadZ
†
abVbj =

√
2
∑

ij

(ri + rj)dY
−
ij .

From the second line of equation (B.1.12) above, we again consider the case

where i = j, and in this instance we get the following equation

∑

i

∑

ab

ViadZabW
†
bi −

∑

i

∑

ab

WiadZ
†
abVbj = 2

√
2ridY

−
ij , (B.1.13)

and the coefficients are defined as

∂Y −
ii

∂Zab
=

1√
2

∑

i

ViaW
†
bi

ri

∂Y −
ii

∂Z†
ab

= − 1√
2

∑

i

YiaV
†
bi

ri
. (B.1.14)

Now, when we consider the instance when i 6= j in equation (B.1.12), this

gives the equation

∑

ab

∑

ij

ViadZabW
†
bj −

∑

ij

∑

ab

WiadZ
†
abV

bj =
√

2
∑

ij

(ri + rj)dY
−
ij . (B.1.15)

The coefficients obtained from equation (B.1.15) above are

∂Y −
ij

∂Zab
=
√

2
∑

ij

ViaW
†
bj

(ri + rj)

∂Y −
ij

∂Z†
ab

= −
√

2
∑

ij

WiaV
†
bj

(ri + rj)
. (B.1.16)

With these coefficients being defined, a more complete form of the conjugate

momentum ∂/∂Zab in equation (B.1.1) and ∂/∂Z†
ab in equation (B.1.2) is

∂

∂Zab
=
∑

i

ViaW
†
bi

∂

∂ri
+
√

2
∑

i6=j

ViaW
†
bj

(ri − rj)
∂

∂Y +
ij

+
√

2
∑

ij

ViaW
†
bj

(ri + rj)

∂

∂W−
ij

(B.1.17)
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and

∂

∂Z†
ab

=
∑

i

WiaV
†
bi

∂

∂ri
+
√

2
∑

i6=j

WiaV
†
bj

(ri − rj)
∂

∂
(
Y +
ij

) −
√

2
∑

ij

WiaV
†
bj

(ri + rj)

∂

∂
(
Y −
ij

) .

(B.1.18)

B.2 Deriving the angular momentum

In this section of the appendix the objective is to show how the angular mo-

mentum i.e. the generator of U(1) ∼ SO(2) rotations in equation (4.3.19) was

calculated. The angular momentum had already been defined, and is given by

the equation

L̂ ≡ 1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X1

)

, (B.2.1)

such that

1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X1

)

=
∑

ab

(X1)ab

(
∂

∂X2

)

ab

−
∑

ab

(X2)ab

(
∂

∂X1

)

ab

.

(B.2.2)

Above, in equation (B.2.2), we solve the following

(
∂

∂X1

)

ab

=
∑

ij

∂Zij
(∂X1)ab

∂

∂Zij
+
∑

ij

∂Z†
ij

(∂X1)ab

∂

∂Z†
ij

(B.2.3)

and

(
∂

∂X2

)

ab

=
∑

ij

∂Zij
(∂X2)ab

∂

∂Zij
+
∑

ij

∂Z†
ij

(∂X2)ab

∂

∂Z†
ij

, (B.2.4)

using

(Z)ij = (X1)ij + i(X)ij (Z†)ij = (X1)ij − i(X2)ij. (B.2.5)

Equation (B.2.5) can be re-written in terms of the matrices X1 and X2 as
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(X1)ij =
1

2

(
(Z)ij + (Z†)ij

)
(X2)ij =

1

2i

(
(Z)ij − (Z†)ij

)
. (B.2.6)

Through elementary differentiation with respect to (X1)ij and (X2)ij, in

the equation (B.2.6), the following coefficients are obtained

∂(Z)ij
∂(X1)ab

= δaiδbj
∂(Z†)ij
∂(X1)ab

= δaiδbj (B.2.7)

and

∂(Z)ij
∂(X2)ab

= iδiaδbj
∂(Z†)ij
∂(X2)ab

= −iδaiδbj. (B.2.8)

These coefficients computed in equation (B.2.7) and (B.2.8) are then re-

substitute back into equations (B.2.3) and (B.2.4), and this gives

(
∂

∂X1

)

ab

=
∑

ij

∂Zij
(∂X1)ab

∂

∂Zij
+
∑

ij

∂Z†
ij

(∂X1)ab

∂

∂Z†
ij

=
∑

ij

δaiδbj
∂

∂(Z)ij
+
∑

ij

δaiδbj
∂

∂(Z†)ij

⇒
(

∂

∂X1

)

ab

=
∂

∂(Z)ab
+

∂

∂(Z†)ab
(B.2.9)

and

(
∂

∂X2

)

ab

=
∑

ij

∂Zij
(∂X2)ab

∂

∂Zij
+
∑

ij

∂Z†
ij

(∂X2)ab

∂

∂Z†
ij

= i
∑

ij

δiaδbj
∂

∂(Z)ij
− i
∑

ij

δaiδbj
∂

∂(Z†)ij

⇒ ∂

∂(X2)ab
= i

(
∂

∂(Z)ab
− ∂

∂(Z†)ab

)

. (B.2.10)

We can know proceed to represent the angular momentum in terms of the

non-hermitian matrix Z as follows

L̂ =
1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X1

)

=
1

i

∑

ab

{

(X1)ab
∂

∂(X2)ab
− (X2)ab

∂

∂(X1)ab

}

(B.2.11)
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L̂ =
1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X1

)

(B.2.12)

=
1

i

∑

ab

1

2
(Z + Z†)ab i

(
∂

∂(Z)ab
− ∂

∂(Z†)ab

)

− 1

i

∑

ab

1

2i
(Z − Z†)ab

(
∂

∂(Z)ab
+

∂

∂(Z†)ab

)

After some algebra and reorganizing some terms we get

L̂ =
1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X1

)

=
∑

ab

(Z)ab
∂

∂(Z)ab
−
∑

ab

(Z†)ab
∂

∂(Z†)ab
.

(B.2.13)

Using all the information that has been calculated thus far, we can obtain

the expression of the angular momentum in equation (B.2.1) explicitly in terms

of the variables that were defined when calculating the Laplacian. We first

define the non-hermitian N ×N matrix Z using indices as

(Z)ab =
(
V †rW

)

ab
=
∑

p

W †
aprpVpb(Z

†)ab = (W †rV )ab =
∑

p

W †
aprpVpb

(B.2.14)

∂/∂(Z)ab and ∂/∂(Z†)ab have already been calculated previously. The an-

gular momentum is computed to be

L̂ =
1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X1

)

(B.2.15)

=
∑

ab

(Z)ab
∂

∂(Z)ab
−
∑

ab

(Z†)ab
∂

∂(Z†)ab

=
∑

ab

∑

p

V †
aprpWpb

(
∑

i

ViaW
†
bi

∂

∂ri
+
√

2
∑

i<j

ViaW
†
bj

(ri − rj)
∂

∂Y +
ij

)

+
√

2
∑

ij

∑

ab

∑

p

V †
aprpWpb

(

ViaW
†
bj

(ri + rj)

∂

∂Y −
ij

)

−
∑

ab

∑

p

W †
aprpVpb

(
∑

i

WiaV
†
bi

∂

∂ri
+
√

2
∑

i<j

WiaV
†
bj

(ri − rj)
∂

∂Y +
ij

)

−
√

2
∑

ij

∑

ab

∑

p

W †
aprpVpb

(

WiaV
†
bj

(ri + rj)

∂

∂Y −
ij

)
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⇒ L̂ =
1

i
tr

(

X1
∂

∂X2

−X2
∂

∂X1

)

(B.2.16)

=
∑

p

∑

i

(
∑

a

ViaV
†
ap)rp(

∑

b

WpbW
bi)

∂

∂ri

+
√

2
∑

i<j

∑

p

(
∑

a

ViaV
†
ap)(
∑

b

WpbW
†
bj)

rp
(ri − rj)

∂

∂Y +
ij

+
√

2
∑

ij

∑

p

(
∑

a

ViaV
†
ap)(
∑

b

WpbW
†
bj)

rp
(ri + rj)

∂

∂Y −
ij

−
∑

p

∑

i

(
∑

a

WiaW
†
ap)(
∑

b

VpbV
†
bi)rp

∂

∂ri

−
√

2
∑

i<j

∑

p

(
∑

a

WiaW
†
ap)(
∑

b

VpbV
†
bj)

rp
(ri − rj)

∂

∂Y +
ij

+
√

2
∑

ij

∑

p

(
∑

a

WiaW
†
ap)(
∑

b

VpbV
†
bj)

rp
(ri + rj)

∂

∂Y −
ij

In equation (B.2.16), angular terms that appear in the brackets sum out to

become Kronecker delta functions. An example of the summation would be

(
∑

a

ViaV
†
ap)(
∑

b

WpbW
†
bi) = (δip)(δpi). (B.2.17)

So, to move forward a step further, the expression of the angular momen-

tum, thus becomes

L̂ =
∑

i

∑

p

δipδpirp
∂

∂ri
+
√

2
∑

i<j

∑

p

δipδpj
rp

(ri − rj)
∂

∂Y +
ij

(B.2.18)

+
√

2
∑

ij

∑

p

δipδpj
rp

(ri + rj)

∂

∂Y −
ij

−
∑

i

∑

p

δipδpirp
∂

∂ri

−
√

2
∑

i<j

∑

p

δipδpj
rp

(ri − rj)
∂

∂Y +
ij

+
√

2
∑

ij

∑

p

δipδpj
rp

(ri + rj)

∂

∂Y −
ij

.

Terms naturally cancel out above in equation (B.2.18), and what remains

is

L̂ = 2
√

2
∑

ij

∑

p

δipδpj
rp

(ri + rj)

∂

∂Y −
ij

. (B.2.19)
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In equation (B.2.19) above we sum out the p index, by doing this all p

indices become i i.e. p→ i,

L̂ = 2
√

2
∑

ij

δij
ri

(ri + rj)

∂

∂Y −
ij

. (B.2.20)

We perform a summation in equation (B.2.20) for all i and j indices in-

cluding i = j, this in turn gives the final form of the angular momentum

L̂ =
√

2
∑

i

∂

∂Y −
ii

. (B.2.21)

Equation (B.2.21) is the generator of U(1) ∼ SO(2) rotations.

B.3 The Commutator In Polar Coordinates

In this section we would like to show how the commutator

[Pba, Zγβ] = δγaδbβ (B.3.1)

is computed, because if the above commutator is true then the expres-

sion for the conjugate momentum Pba is also true. We define the conjugate

momentum in terms of our polar coordinate Z as

Pba =
∂

∂Zab
. (B.3.2)

We start of with the definition of the conjugate momentum in terms of

partial equations

∂

∂Zab
=
∑

i

ViaW
†
bi

∂

∂ri
+
√

2
∑

i6=j

ViaW
†
bj

(ri − rj)
∂

∂Y +
ij

+
√

2
∑

ij

ViaW
†
bj

(ri + rj)

∂

∂W−
ij

.

(B.3.3)

We introduce indices on Z as

Zγβ =
∑

m

V †
γmrmWmβ, (B.3.4)
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and we also define the following partials

∂

∂Y +
ij

=
1√
2

(
∂

∂Tij
+

∂

∂Sij

)
∂

∂Y −
ij

=
1√
2

(
∂

∂Tij
− ∂

∂Sij

)

. (B.3.5)

Using the definition dT = dWW † we have

∂

∂Tij
=
∑

k′

Wjk′
∂

∂Wik′
. (B.3.6)

Similarly, using dS = dV V †, we find

∂

∂Sij
= −

∑

k

V †
ki

∂

∂V †
kj

. (B.3.7)

Equations (B.3.5), (B.3.6) and (B.3.7) are substituted into equation (B.3.3)

to give

∂

∂Zab
=

∑

i

ViaW
†
bi

∂

∂ri
+
∑

i<j

ViaW
†
bj

(ri − rj)
∑

k′

Wjk′
∂

∂Wik′
(B.3.8)

+
∑

ij

ViaW
†
bj

(ri + rj)

∑

k′

Wjk′
∂

∂Wik′
−
∑

i<j

ViaW
†
bj

(ri − rj)
∑

k

V †
ki

∂

∂V †
kj

+
∑

ij

ViaW
†
bj

(ri + rj)

∑

k

V †
ki

∂

∂V †
kj

.

We allow this operator in equation (B.3.8) to act on the the previously

defined matrix Zγβ from equation (B.3.4), it then follows that

∂Zγβ
∂Zab

=
∑

i

∑

m

ViaW
†
biV

†
γm

∂rm
∂ri

Wmβ

+
∑

i<j

∑

m

∑

k′

ViaW
†
bj

(ri − rj)
Wjk′V

†
γmrm

∂Wmβ

∂Wik′

+
∑

ij

∑

k′

∑

m

ViaW
†
bj

(ri + rj)
Wjk′V

†
γmrm

∂Wmβ

∂Wik′

−
∑

i<j

∑

k

∑

m

ViaW
†
bj

(ri − rj)
V †
ki

∂V †
γm

∂V †
kj

rmWmβ

+
∑

ij

∑

k

∑

m

ViaW
†
bj

(ri + rj)
V †
ki

∂V †
γm

∂V †
kj

rmWmβ. (B.3.9)
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In equation (B.3.9) we use the following identities

∂rm
∂ri

= δmi
∂Wmβ

∂Wik′
= δmiδk′β

∂V †
γm

∂V †
kj

= δγkδjm. (B.3.10)

Equation (B.3.9) now becomes

∂Zγβ
∂Zab

=
∑

i

∑

m

ViaW
†
biV

†
γmδmiWmβ (B.3.11)

+
∑

i<j

∑

m

∑

k′

ViaW
†
bj

(ri − rj)
Wjk′V

†
γmrmδmiδk′β

+
∑

ij

∑

m

∑

k′

ViaW
†
bj

(ri + rj)
Wjk′V

†
γmrmδmiδk′β

−
∑

i<j

∑

m

∑

k

ViaW
†
bj

(ri − rj)
V †
kiδγkδjmrmWmβ

+
∑

ij

∑

m

∑

k

ViaW
†
bj

(ri + rj)
V †
kiδγkδjmrmWmβ.

In equation (B.3.11) above we sum out the Kronecker delta functions, this

results in some of the terms changing their indices, so we get

∂Zγβ
∂Zab

=
∑

i

∑

m

ViaW
†
biV

†
γmδmiWmβ +

∑

i<j

∑

m

∑

k′

ViaW
†
bj

(ri − rj)
Wjk′V

†
γmrmδmiδk′β

+
∑

ij

∑

k′

∑

m

ViaW
†
bj

(ri + rj)
Wjk′V

†
γmrmδmiδk′β

−
∑

i<j

∑

k

∑

m

ViaW
†
bj

(ri − rj)
V †
kiδγkδjmrmWmβ

+
∑

ij

∑

k

∑

m

ViaW
†
bj

(ri + rj)
V †
kiδγkδjmrmWmβ. (B.3.12)

Equation (B.3.12) implies the following

∂Zγβ
∂Zab

=
∑

i

ViaW
†
biV

†
γiWiβ +

∑

i<j

ViaW
†
bj

(ri − rj)
WjβV

†
γiri +

∑

i<j

ViaW
†
bj

ri + rj
WjβV

†
γiri

−
∑

i<j

ViaW
†
bj

ri − rj
V †
γirjWjβ +

∑

ij

ViaW
†
bj

ri + rj
WjβV

γiri. (B.3.13)
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In equation (B.3.13), after canceling the common factors that appear in

the denominator and the numerator for all terms except for the first term we

then get

∂Zγβ
∂Zab

=
∑

i

ViaW
†
biV

†
γiWiβ +

∑

i<j

ViaW
†
bjWjβV

†
γ +

∑

i

∑

j

ViaW
†
bjWjβV

†
γi.

(B.3.14)

It is only the middle term that is of major importance as it comes with

a restriction. For the middle term, we sum over all i and j indices except

terms that have i = j, as this will allow an infinity factor appearing within

our calculation, so then we get

∂Zγβ
∂Zab

=
∑

i

ViaW
†
biV

†
γiWiβ +

(
∑

i

V †
γiVia

)(
∑

j

W †
bjWjβ

)

(B.3.15)

−
∑

i

ViaW
†
biWiβV

†
γi +

(
∑

i

V †
γiVia

)(
∑

j

W †
bjWjβ

)

=⇒ ∂Zγβ
∂Zab

= 2

(
∑

i

V †
γiVia

)(
∑

j

W †
bjWjβ

)

. (B.3.16)

Contracting out the indices, the final form of equation (B.3.16) becomes

∂Zγβ
∂Zab

= 2δγaδbβ, (B.3.17)

satisfying our previous definition of the commutator of the conjugate mo-

mentum (except for the factor 2 appearing in the front of the right hand side).



Appendix C

Perturbation for two matrix

model

In this appendix we will explain how to derive the general formula of equation

(7.3.19) which is a generalization of equation (7.3.17) and equation (7.3.18).

In the free case (section 7.2) we showed an extension of the of eigenvalues

such that φ(r) = φ(−r). For some finite support we have

∫ a

−a

φ(y)

r2 − y2
=

∫ a

0

2φ(y)

r2 − y2
=

1

2
ω2, (C.0.1)

which is the solution to equation (7.2.6). Let ρ̀ = y2 and dρ̀ = 2ydy, so

this implies that

∫ a2

0

dρ̀
Φ(ρ̀)

ρ− ρ̀ =
1

2
ω2 (C.0.2)

=

∫ a2

0

2ydy
Φ(y2)

ρ− y2
.

When we refer back to equation (C.0.1), we find that φ(y) ≡ 2yΦ(y2) and

φ(
√
ρ) ≡ 2

√
ρΦ(ρ). We can then define the following function

Φ(ρ) =
∑

i

δ(ρ− ρi), (C.0.3)

then for ρ = y2 and dρ = 2ydy
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∑

i

r2p
i =

∫ ∞

0

Φ(ρ)ρpdρ (C.0.4)

=

∫ ∞

0

2yΦ(y2)y2pdy

=

∫ ∞

0

(
2yΦ(y2)

)
y2pdy

=

∫ ∞

0

φ(y)y2pdy

=
1

2

∫ ∞

−∞

φ(y)y2pdy.

So in total this gives

2
∑

i

r2p
i =

∫ ∞

−∞

φ(y)y2pdy. (C.0.5)

Equation (C.0.5) is the generalized derivation of equation (7.3.19).

We now wish to explain how the the equations (7.3.22), (7.3.23) and (7.3.24)

were obtained. We start off with the analytic function of equation (7.3.21)

F (z) =

(
1

2
ω2 − 4λω2

)

z + 4λz3 −
(
4λz2 + d

)√
z2 − a2 (C.0.6)

=

(
1

2
ω2 − 4λω2

)

z + 4λz3 −
(
4λz3 + dz

)
√

1− a2

z2
.

A binomial expansion is performed on the the square root term appearing

in equation (C.0.6) above such that

√

1− a2

z2
= 1− 1

2

a2

z2
+

1

2

1

2

−1

2

a4

z4
+

1

3!

1

2

−1

2

−3

2

−a6

z6
+ ..... (C.0.7)

Equation (C.0.7) is substituted back into equation (C.0.6), and in total the

following is obtained
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F (z) =
1

2
ω̄2z + 2a2λz − dz +

1

2
a4λ

1

z
+

1

2
a2d

1

z
(C.0.8)

+
1

4
a6λ

1

z3
+

1

8
a4d

1

z3

=

(
1

2
ω̄2 + 2a2λ− d

)

z +

(
1

2
a4λ+

1

2
a2d

)
1

z

+

(
1

4
a6λ+

1

8
a4d

)
1

z3
.

We will know compare and equate the coefficients of z, 1/z and 1/z3 from

the last line of equation (7.3.20) and those from the last line equation (C.0.8)

and what we find is the following

(
1

2
ω̄2 + 2a2λ− d

)

= 0, (C.0.9)

(
1

2
a4λ+

1

2
a2d

)

= 2, (C.0.10)

and

(
1

4
a6λ+

1

8
a4d

)

= 2ω2 (C.0.11)

where ω2 =
∑

i r
2
i .

The constant d is made the subject of equation (C.0.9) and is substituted

into equations (C.0.10) and (C.0.11), and the following equations are obtained

6a4λ+ a2ω̄2 − 8 = 0 (C.0.12)

or

6a4λ+ aω2 − 8a2λω2 − 8 = 0 (C.0.13)

and

8a6λ+ a2
(
a2ω̄2

)
= 32ω2 (C.0.14)

or
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8a6λ+ a4ω2 − 8λω2a
4 = 32ω2. (C.0.15)

for ω̄ = ω2 − 8λω2. From equation (C.0.12), we see that

a2ω̄2 = 8− 6λa4, (C.0.16)

when equation (C.0.16) above is substituted in equation (C.0.14), the fol-

lowing is derived

16ω2 = a6λ+ 4a2. (C.0.17)

With the equations (C.0.13) and (C.0.14), the following quartic equation

is also derived

8a4λ+ 2a2ω2 − a8λ2 − 16 = 0. (C.0.18)

The roots of the above quartic equation are approximated to the first order

in λ such that

a2 =
8

ω2
+ Aλ+O(λ2), (C.0.19)

and terms that have order of λ greater than 1 are neglected. To solve for

the constant A we use equation (C.0.18) up to order λ, which is our quartic

equation and with this we get

0 = 8λ
82

ω4
+ 2ω2

(
8

ω2
+ Aλ

)

− 16 (C.0.20)

0 = 83 λ

ω4
+ 16 + 2ω2Aλ− 16

=⇒ A = −824

ω6
.

Now that we know the constant A, we continue to compute the result of

perturbation theory using equation (C.0.17), to get the following
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ω2 =
1

4
a2 +

1

16
λa6 (C.0.21)

=
1

4

(
8

ω2
− 824

ω6
λ

)

+
1

16
λ

83

ω6

=⇒ ω2 =
2

ω2
− 82

2

λ

ω6

=
2

ω2
− 32

ω6
λ.

In the last line of equation (C.0.21) we see the results of perturbation theory

up to order λ.

Below we will answer why the result (C.0.21) is important and what does

this result mean. We first start with a perturbative calculation for the corre-

lator of X2
1 , that is

〈X1X1〉 =

∫

dX1

∫

dX1tr
(
X2

1

)
e−V (X1,X2) (C.0.22)

where

V (X1, X2) =
ω2

2
tr
(
X2

1

)
+
ω2

2
tr
(
X2

2

)
− 4tr

(
[X1, X2]

2
)

(C.0.23)

=
ω2

2
tr
(
X2

1

)
+
ω2

2
tr
(
X2

2

)
− 8g2

YMtr (X1X2X1X2)

− tr
(
X2

1

)
tr
(
X2

2

)
.

It can be shown that for the two point correlator in equation (C.0.22) it is

true that

〈tr
(
X2

1

)
〉 =

(
−8g2

YM

)
2

(
1

ω2

)3

N3 (C.0.24)

= −16

ω6
λ.

Using perturbation theory, the planar diagrams, leading in N , with a single

vertex arises from the term

e−8g2Y M tr(X2
1X

2
2), (C.0.25)
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and the non-planar diagrams that are sub leading in N would emerge from

the expression

e−8g2Y M tr(X1X2X1X2). (C.0.26)

In the first line equation (C.0.24) the first term, (−8g2
YM), is due to the

single vertex of the planar diagram, the second factor is the symmetry factor.

The factor (1/ω2)
3

is due to the three propagators that can be constructed

from a Feynman diagram with a single vertex. The last factor N3 comes from

the three closed loops that are formed from a planar diagram with a single

vertex. To see the result that agrees with the our calculation in equation

(C.0.21), we consider the sum of the correlators of X2
1 and X2

2 such that

〈tr
(
ZZ†

)
〉 ≡ tr

(
X2

1

)
+ tr

(
X2

2

)
= −32

ω6
λ. (C.0.27)

The above result in equation (C.0.27) is true for Z = X1 + iX2 ≡ RU .

Equation (C.0.27), which appears in the standard perturbation theory for the

weak coupling expansion is the same as equation (7.3.25) whose results was

obtained using the two matrix model in spherical coordinates.
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