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Abstract

The presence of a low-lying dipole strength in neutron-rich nuclei has been established and its location

in the vicinity of the neutron threshold (Sn) has implications in nucleosynthesis and specifically in

neutron-capture reaction rate calculations. Additionally, a correlation of this low-lying dipole strength

with neutron-skin thickness has been discussed. Since its observation, there has been a great deal

of work in an attempt to understand its nature, both theoretically and experimentally. Some of the

characteristics of this low-lying dipole strength include isospin mixing, which allows the use of

different experimental probes to study it. In addition, compared to the IVGDR, the degree to which

the low-lying dipole states are collective is under scrutiny and remains an open question of interest.

This study was aimed at addressing the question of collectivity of these dipole states and one-nucleon

transfer reactions were the chosen probes as they have been shown to be powerful in probing the

single-particle property of nuclei. In particular the (p,d) and (d,p) reactions have been instrumental

in such measurements. To allow the investigation from both neutron addition and removal, the 96Mo

nucleus is particularly attractive as it can be populated via both mechanisms, with the availability of

stable targets as a bonus. In addition, the (d,p) has been successfully used recently used for PDR related

measurements on 120Sn and 208Pb with results alluding to a strong single-particle contribution, hence

conducting the investigation on 96Mo provides access to a different mass region. 97Mo(p,d)96Mo and
95Mo(d,p)96Mo transfer reactions were performed in normal kinematics using the MAGNEX magnetic

spectrometer at INFN-LNS. The 25 MeV/u proton beam and 5 MeV/u deuteron beam from the Tandem

accelerator interacted with the 97Mo and 95Mo targets, respectively. The MAGNEX spectrometer

was utilised to analyse the scattered particles based on their momentum prior to being detected at the

focal-plane. Excitation energy spectra were obtained and angular distributions were computed for

the bound states and the higher excitation energy region of interest (above Ex = 4 MeV). These were

fitted, using the MDA with DWBA calculations considering different single-particle configurations

from a simplistic shell model. Comparing spectra from the two reactions, same excitation energy

regions were populated. The results from the MDA of the (p,d) data, show a strong single-particle

component in the Ex region that was analysed, with one particular configuration that excites 1− states

dominating. The QPM was used for the theoretical interpretation and below 6 MeV, the configuration

((2d 5
2
)+1⊗(1g 9

2
)−1) that populates 2+ states dominates but in the experimental data, this configuration

was found to be suppressed as the momentum matching conditions were optimized for l=1 momentum

transfer. When considering the QPM predictions involving only the sp configurations of momentum

transfer of l=1, 2 and 3, an agreement with the data was found. Extraction of reliable angular

distributions from the (d,p) was not possible thus future (d,pγ) experiments are envisaged.
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Chapter 1

Introduction

1.1 Electric dipole response in nuclei

In nuclear physics, the electric dipole response of nuclei refers to the behaviour of the electric dipole

strength in the nuclear system. It is characterised by the excitation of the electric dipole moment [14].

The extent of the electric dipole response is delineated by the electric dipole strength function, which

is proportional to the squared matrix element of the dipole operator [14]. This electric dipole response

can be measured experimentally through various techniques such as photon scattering, Coulomb

excitation, and nuclear resonance fluorescence (see Ref. [15] and references therein). The energy-

weighted sum rule (EWSR) is a mathematical school of thought used to describe the electric dipole

response as a fundamental property of the excitation spectrum of a quantum system [14]. It relates

the integrated strength of the excitations to the total energy of the system. The EWSR for the electric

dipole response in nuclei, which shows a clear relation between the electric dipole strength function

and the mean-square charge radius of the nucleus, is given by:

∫
σ(E)EdE =

(
π

2

)
e2 < r2 >, (1.1)

where σ(E) is the strength function of the electric dipole response, E is the excitation energy, e is the

elementary charge, and < r2 > is the mean-square charge radius of the nucleus.

The electric dipole response in nuclei has important implications in nuclear astrophysics and nuclear-

structure physics. It is relevant for the understanding of stellar evolution, nucleosynthesis, and the

properties of neutron-rich nuclei [16, 17]. Experimental measurements of the electric dipole response

provide important information on the structure and dynamics of atomic nuclei [18]. The distribution of

the electric dipole strength varies significantly among different nuclei and depends on their atomic

number, neutron/proton ratio, and other factors. In general, the strength is concentrated in a limited

energy region around the giant dipole resonance (GDR) energy, which is typically in the MeV range.

The GDR is a collective oscillation in the nucleus of protons out-of-phase against neutrons that

can be excited by an external electric field [14] and has been observed in nuclei across the nuclear
1
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chart. Overall, the total electric dipole strength is a key parameter for understanding the structure and

behaviour of atomic nuclei, and its measurement and analysis are active areas of research in nuclear

physics. For the purpose of this thesis, the low-lying electric dipole response will be of interest.

1.2 Pygmy dipole resonance (PDR)

With most of the electric dipole strength concentrated in the GDR, an existence of a low-lying dipole

strength below and around the neutron threshold has been established [15, 19, 20]. In its comparison to

the GDR, this low-lying strength has been referred to as the pygmy dipole strength or, as it will be

referred to throughout this thesis without any inference to the nature of this strength, the pygmy dipole

resonance (PDR). So far, it has been observed in neutron-rich nuclei and an increase in strength as the

neutron excess increases has been established, with the effect more prominent for heavy nuclei [21].

Further studies aimed at understanding the nature of this strength have shown an interesting character

of these dipole states, which is termed the PDR splitting, among other characteristics of this electric

dipole response [22].

Experimental and theoretical studies describe the PDR splitting as due to the isospin mixing of these

states, with this behaviour observed below the neutron threshold and not above the neutron threshold.

The consequence of this is that using isoscalar and isovector probes to study this low-lying dipole

strength will provide a better understanding of the character and nature of this strength. Further efforts

from theory and experiment have conceived the interpretation of this strength as an oscillation of an

isospin-saturated core against excess neutron skin, with this interpretation still in dispute. It has also

been interpreted thus far as a concentration of 1− states around the neutron separation energy (Sn) with

the degree of collectivity of these dipole states still under debate. This will be discussed in Chapter 2

as it is the fundamental scientific motivation of this thesis.

Insight into the properties of this low-lying dipole strength is imperative as it has potential application

in nuclear-structure studies and astrophysics. In particular, the applications are around the key points:

• Connection between the PDR and neutron-skin thickness and neutron-star radius,

• The symmetry energy term in the neutron-rich matter equation-of-state (EOS) and

• Effect on nucleosynthesis.

Constraining the neutron-rich matter EOS is currently an interdisciplinary challenge. The neutron-rich

matter EOS is useful in determining the structure equations of neutron stars, which in turn, provide

information on neutron star (NS) radius and mass, which is an active part of compact stellar objects

research. This is important as it provides insight into the behaviour of nuclei in high-density and

extreme conditions such as in supernovae. Due to the discrepancy in the models used thus far, when

extrapolation to extreme environments is made, constraining the EOS from experimental data is



1.2. PYGMY DIPOLE RESONANCE (PDR) 3

important. It was first shown in Ref. [23] (and recently also in Ref. [24]) that the radius of the NS

and the neutron-skin thickness are closely related. Studying the neutron-skin thickness studies can

thus provide a better constraint on the EOS. In Ref. [25], a correlation between the EWSR fraction

exhausted by the PDR and neutron-skin thickness was established along the Sn isotopic chain but was

found not to hold for heavier Sn isotopes. On the contrary, a weak correlation was found in Ref. [26]

and instead a suggestion for a better observable was made, which is the static dipole polarisability (αD)

which has an inverse relationship with the EWSR. Consequently, this inverse relationship enhances

the effect of the PDR on αD compared to the GDR. In Refs. [27, 28], from theoretical studies of

Ni isotopes, a conclusion was made that the low-lying strength and αD are both correlated with the

neutron-skin thickness, with the correlation of the PDR strength and the neutron-skin thickness still

debatable.

With the established applications of understanding the attributes of this low-lying dipole strength,

whose presence in neutron-rich nuclei across the nuclear chart has been established, a good understand-

ing of its character is important. Bracco et al. [15], Savran et al. [20] and Lanza et al. [19] recently

conducted detailed reviews on the PDR, outlining the progress in the experimental and theoretical de-

scriptions of the PDR. A brief presentation of these techniques and their advantages and disadvantages

in the study of the PDR will be made for the purpose of this thesis, and the theoretical models used to

interpret or describe the PDR thus far will be briefly presented.

1.2.1 Experimental evidence of the PDR

A large amount of work has been done experimentally to study the PDR in order to understand its

nature and a summary of the major experimental techniques that have been employed over the past

few decades is presented briefly.

Electromagnetic interaction

Since the first experimental observation of the GDR using real photons, this technique has been

instrumental in the study of the collective motion of nuclei. Owing to its successful use in GDR studies,

this technique has been extended to investigation of the low-lying dipole strength in N > Z nuclei.

The advantage of using real photons is that the electromagnetic response of nuclei can be extracted in

a model-independent approach from experimental observables [15]. Specifically, photon scattering

(γ,γ
′
) or Nuclear Resonance Fluorescence (NRF) is the reaction employed in this technique.

There are two main methods of obtaining real photon beams. One of them is based on the traditional

source of high-energy photons: bremsstrahlung. The bremsstrahlung photons are produced after

electrons impinge on a thick radiator resulting in a continuous energy spectrum of the photon beam.
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The second method takes advantage of the Compton-scattering character of photons. In this case, the

photon beam is produced by low-energy laser photons which Compton back-scatter from relativistic

electrons. This is referred to as Laser Compton Backscattering (LCB) and results in a mono-energetic

photon beam. Both these methods were implemented in the studies of the low-lying dipole strength

and they are powerful tools to separate the magnetic and electric dipole response [15].

NRF experiments have been performed on various nuclei, including deformed heavy nuclei like 156Gd

to study the low-energy part of the PDR [29]. The NRF method has also been used to study the
112,116,120,124Sn isotopic chain to understand the systematics of the PDR [30]. The experiment was

conducted at the γELBE facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) with a maxi-

mum energy of Eγ,max = 9.5 MeV [30]. There are two analysis approaches for measurements obtained

using the NRF-bremsstrahlung method, namely discrete and continuous spectrum analysis. Both these

techniques were employed in the work of Müscher et al. [30] to extract the summed dipole strength.

The photoabsorption cross sections that were extracted from the continuous spectrum analysis were

comparable in magnitude with the results from the inelastic proton scattering for an experiment on the

same nuclei [30]. The dipole strength was found to increase across this isotopic chain including for
120Sn, where it was previously decreasing [15]. The authors attributed this to the continuous spectra

analysis, which allowed recovery of the strength missed in previous studies. This behaviour solidifies

the definition of the PDR as an out-of-phase oscillation of excess neutrons against a saturated N=Z

core. The results of the work by Müscher et al. [30] highlight the improved understanding of the

implications of the dipole strength in EOS and the need for more advanced experimental setups like

the upcoming Extreme Light Infrastructure—Nuclear Physics (ELI-NP) facility for such studies [31].

NRF-tagged photons: In this method the photon beam is also produced via bremsstrahlung. The differ-

ence is that the radiator used in this method is thin compared to the NRF-bremsstrahlung presented

above. With this procedure, the energy of the individual photon in the photon beam energy distribution

can be determined via coincidence measurements of the electron and the reaction induced by the

incident photon [20]. This measured individual photon beam energy is the “tagged” part of the method

and facilities such as the S-DALINAC at TU-Darmstadt provide high-intensity beam with energies in

the range of 5 MeV - 15 MeV [20]. Only a few nuclei have been studied with the NRF-tagged photon

method due to the experimental limitation related to the detection of electrons for the coincidence

measurements, which in turn, imposes a limit on the tagged-photon flux [20].

An experiment on 66Zn was conducted at the HIγS facility of the Triangle Universities Nuclear Labora-

tory at Duke University in Durham, NC, USA [1] and at the γ-ELBE bremsstrahlung facility at HZDR.

The main aim was to investigate the character of the dipole states in 66Zn up to the neutron separation

energy including previously unresolved transitions of this nucleus using both NRF methods presented

above. For the γ-ELBE experiment, the radiator used was a 5 µm thin Nb foil and bremsstrahlung γ

rays released allowed an excitation-energy range between 2 MeV and 12 MeV [32] to be accessed. Four
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Figure 1.1: Gamma-decay spectrum for 66Zn as extracted from the work of Ref. [1]. The magnetic and
electric responses are clearly distinguished with the E1 dominant and spread across the energy-region
in shown. It is in this energy region where the extra strength on the tail of the GDR was observed.

Figure 1.2: The LCB beam profile distribution as used in the work of Ref. [1]. A quasi-monoenergetic
trend can be observed. The different colours (online) correspond to different data sets and thus different
beam energies and profiles.

high-purity Germanium (HPGe) detectors were used to detect the decaying γ rays and a spectrum from

this work is shown in Figure 1.1. The measured intensity of the respective transition to the ground state

was used to determine the energy- and solid-angle-integrated scattering cross section. From the results,

the authors observed an enhancement, with an extra strength on top of the tail of a Lorentz function

in the energy range from about 6 MeV to the neutron-separation energy, attributed to the PDR [1].

Additionally, the authors used the large-scale-shell model (LSSM) calculations to interpret their results.

In addition to the bremsstrahlung, they also utilised the mono-energetic beam. An example of an

LCB beam distribution used in the case of 66Zn is shown in Figure 1.2. The different beam profiles

correspond to different data sets.
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Nuclear interaction

The real and virtual photon methods to populate the low-lying dipole strength provides information

on the integral properties of this strength. If the interest is the nuclear structure behind this low-lying

electric dipole strength, experimental approaches that enhance nuclear interaction must be considered.

Investigation into the character of the low-lying dipole states involves the use of particles, inelastically

scattered off a target nucleus and light nuclei at intermediate incident beam energies. At these energies,

the PDR is preferentially excited in comparison to the isovector giant dipole resonance (IVGDR) [19].

Various types of probes, such as α particles, 17O, and protons, are employed to examine the isospin

characteristics of the excited transition. To detect the scattered beam and measure the γ-decay from

the PDR, experimental setups incorporating magnetic spectrometers and silicon-detector arrays are

utilized [19]. These types of probes have been successfully used in the past on 140Ce [33, 34] and
124Sn [35, 36], for PDR studies.

Recently, it has been used to study the low-lying dipole strength in 90,94Zr [37]. The experiment was

conducted at the Research Centre for Nuclear Physics (RCNP) using the high-resolution Grand Raiden

magnetic spectrometer. The reactions used were (p,p’γ) and (α,α ′γ) at incident beam energies of

80 MeV and 130 MeV, respectively [37]. The γ decay was measured by an array of HPGe detectors

referred to as (CAGRA) [37]. The results suggest an isoscalar and isovector nature of the low-lying

1− states [37] that varies with excitation-energy. In the lower excitation-energy region, a dominant

isoscalar character was observed which alludes to the isospin mixing character of the PDR [37].

Furthermore, the authors highlighted the importance of additional proton scattering data to elucidate

the nature of the low-lying dipole states [37,38]. They also found that the cross section from the (p,p’γ)

reaction was small in comparison to that from (α,α ′γ) with an apparent difference of these spectra

with the one from (γ,γ’) [37]. Systematic studies across the nuclear chart were also suggested by the

author as an approach to better understand the nature of these states [37].

In general, when using these types of probes, through theoretical calculations and comparison with

experimental values, the determination of the E1 strength is achieved by analysing the angular cor-

relation of the outgoing products. The continuous measurement of the angular distribution is made

possible by new-generation γ spectrometers like AGATA [39]. Isoscalar probes are prone to selectively

excite the outer region of the nucleus mainly activate the lower excitation-energy range of the PDR.

Photons, however, primarily populate the high-energy portion [19]. The differences observed between

probes is not attributable to the absence of branching ratios or cascade decays, but rather it is denoted

as isospin-splitting or PDR splitting.

In summary, there is no singular methodology to effectively emphasise all the attributes of the low-

lying dipole response in nuclei that have excess neutrons. The combination of findings obtained

from complementary investigations offers a more lucid depiction of the dipole response. The (p,p’)
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investigation demonstrates a greater occurrence of electric dipole strength higher than 7 MeV in

comparison to photons. The isoscalar component of the PDR, which was studied through the use of α

particles and 17O nuclei, is concentrated within the excitation energy range of 5-7 MeV. Discrepancies

observed between the results of the (p,p’) and (γ,γ ′) experiments may be due to the limited sensitivity

of the NRF measurements towards unresolved ground-state transitions in addition to the contribution

of gamma decay to excited states. The localised isoscalar response when utilising α particles and 17O

nuclei is a universal characteristic of the low-lying dipole strength.

1.2.2 Theoretical evidence of the PDR

Theoretical models have been instrumental in understanding experimental results and also describing

properties of nuclei related to their structure since the emergence of nuclear physics as a separate field.

A large amount of effort has gone into theoretical studies of electric dipole excitations in nuclei [40]. A

recent review by Lanza et al. [19] provides a concise status of the theoretical description of low-lying

dipole states, both from a macroscopic and microscopic view point [19]. In the subsequent sections, a

summary of these approaches will be presented with a focus on those relevant for the PDR.

Macroscopic approach

In the macroscopic approach to nuclear structure, one attempts to simplify the nuclear-many-body

problem by focusing on an appropriate number of chosen macroscopic features [41]. There are two

main methods used in the macroscopic approach of the description of collective motion, namely the

Goldhaber-Teller (GT) [42] liquid-drop and the Steinwidel-Jensen (SJ) [43] hydrodynamics models.

These two models have been used in the theoretical description of the IVGDR, the oldest and well-

studied GR. They were used to calculate the transition density, which is a depiction of how the proton

and neutron densities change as a reflection of the transition of a nucleus from an initial to a final

state [44].

For the GT model, the isovector and isoscalar transition densities are given by Equations 1.2 and 1.3.

δρ
(GT )
IS (r) = δρn +δρp = β1

[
2N
A

r(ρp(r))−
2Z
A

r(ρn(r))

]
, (1.2)

δρ
(GT )
IV (r) = δρn −δρp = β1

[
2N
A

rρp(r)−
2Z
A

r(ρn(r))

]
, (1.3)

From these equations, one can deduce that for N=Z nuclei, the isoscalar term vanishes leaving a pure

isovector character of the GDR, whereas for neutron-rich nuclei, both isoscalar and isovector responses

contribute to the transition density. As a consequence of effectively describing the IVGDR, these

macroscopic methodologies were extended to the PDR.
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In an attempt to describe the neutron-rich nuclei, the classical SJ model was modified to treat a nucleus

as a three-body fluid and using the modified SJ model, two independent dipole modes can exist [19].

This was observed experimentally in the case of 208Pb. This three-body fluid approach, however,

comes with the disadvantage of an increase in the number of parameters for the restoring force [19].

The assumption that the core protons and neutrons are one fluid and the neutron excess is another

fluid combats this problem. This modified classical SJ model describes the PDR as an out-of-phase

oscillatory motion of the core fluid against the excess neutron fluid. This approach was first used

in Ref. [45] where a fair agreement was found with data from various PDR experiments, where the

energy of the PDR was measured for nuclei with few excess neutrons.

In another work of Bastrukov et al. [46], the PDR was interpreted as a soft electric dipole mode

arising due to elastic shear vibrations of a non-rotating flow that is confined in a surface layer of

finite depth [46]. From the analytical equations used in the theoretical calculations, Bastrukov et

al. [46] managed to obtain an expression for the energy of the PDR as E = [31±1]A− 1
3 along with an

expression for the strength [46]. The calculations were then compared with experimental data that

were available and a good agreement was found. This description of the PDR renders it an isoscalar

response to perturbation. However, as much as the macroscopic approach has been proven to be in fair

agreement with experimental observations, it has been shown [19] that to fully describe the character

of the PDR, a microscopic approach is also required.

Microscopic approach

Microscopic approaches in nuclear theory are imperative in describing a nucleus through its single-

particle and collective (phonon) properties [47]. It is, thus, important to choose a microscopic approach

that allows for the interpretation of specific characteristics of the nucleus of interest. The required

microscopic description will depend on the type nucleus being studied and on the excitation-energy

region of interest. The basis of the microscopic approach of the description of the PDR is the mean-field

and energy-density functional (EDF) theories [19]. These theories have been successful in reproducing

the properties of the giant resonances such as the centroid energy, strengths and accounting for the

damping mechanism, which manifests as the width of the giant resonance [19]. In the wake of the

accuracy in reproducing the properties of the giant resonances, these theories were extended to the

description of the PDR.

The Hartree-Fock (HF) method, which is based on the mean field theory, can be used to obtain the

potential generated by the effective nucleon-nucleon interaction [19], which we can refer to as the HF

potential. There are different methods of describing the effective interaction such as the Skyrme [48]

and the Gogny [49]. Determining this potential, or any relevant potential, allows the description of the

ground state as all orbitals in the mean field below the Fermi levels being fully occupied [14] and those

above being completely empty. Thus, if an excitation can occur it will be via promotion of a single

particle from an uncorrelated ground state to an orbit above the Fermi surface, leaving a hole behind.
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The residual interaction (V-U) will result in the 1p-1h states mixing [14]. These calculations are based

on the Tamm-Dancoff approximation (TDA). For 1p-1h excitations built on a correlated ground state

(see Equation 1.5), the calculations are based on the random phase approximation (RPA) (Equation

1.4). The RPA is based on the equation-of-motion method, which comes with the advantage of beyond

1p-1h RPA calculations to include 2p-2h configurations [14]. The solutions of the RPA equations

are a superposition of many particle-hole configurations. If the particle-hole configurations added

coherently then the resulting state will be described as a collective state. The states that are associated

with the collective modes like giant resonances are well described using this RPA approach. Excitation

of the collective states is achieved by applying the isovector and isoscalar operators (Equation 1.9) on

the ground state.

|ν >= Γν |0 > (1.4)

where the ground state |0 > is defined as :

|ν >= Γ̂
†
ν |0 > (1.5)

[Ĥ, Γ̂†
ν ]|0 >= ων Γ̂

†
ν |0 > . (1.6)

This results in an equation of motion expression as given in Equation 1.6, where ων is the state

excitation energy and the operator acting on the correlated ground state is given by:

Γ̂
†
ν =

∣∣∣∣∣∑ph
(Xν

pha†
pah −Y ν

pha†
hap). (1.7)

Xν
ph and Y ν

ph are the RPA amplitudes, whose absolute square gives the probability of finding con-

figurations in the excited state ν [19]. The first term of Equation 1.7 corresponds to excitations as

described within the TDA and the second term to the excitation as described within the RPA. Both these

approaches have been used for PDR studies in the work of Ref. [50]. Baran et al. [50] investigated the

physical conditions that could determine the presence of the PDR in the electric dipole response of

nuclei 68Ni and 132Sn [50]. The EWSR was adopted as a criterion for collectivity of the PDR [50] and

the percentage of the EWSR exhausted within the RPA and the transition strength in the TDA [50] was

determined. These were investigated as a function of the ratio of coupling constants λ1 and λ2, which

correspond to strong and weak coupling, respectively. The behaviour of the PDR and GDR centroid

energies was also determined and their results indicated that the PDR was not affected by the ground

state correlations, whereas there was a significant effect in the case of the GDR. Furthermore, based on

the portion of the EWSR exhausted by the PDR in their formalism, it was rendered collective, which is

a character of this low-lying dipole response that is still under scrutiny and is of interest in this work.

The operator in Equation 1.6 can be either isoscalar or isovector as given by Equations 1.8 and 1.9.

Using these operators, the corresponding transition probability of ground state to the RPA excited state

ν is given by Equation: 1.10:

O
(IV )
1M =

eN
A

Z

∑
p=1

rpY1M(r̂p)−
eZ
A

Z

∑
n=1

rnY1M(r̂n) (1.8)
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O
(IS)
1M =

A

∑
i=1

(r3
i −

5
3
< r2 > ri)Y1M(r̂i) (1.9)

B(Eλ ,0 −→ ν) =

∣∣∣∣∣∑ph
(Xν

ph −Y ν
ph)< p||Oα ||h >

∣∣∣∣∣
2

(1.10)

Using this, one can define the transition density which holds a rich amount of information on the excited

state [19], where the radial part carries information of the excitation, i.e. surface or volume or whether

the excitation is due to a harmonised motion (isoscalar) or dis-harmonised motion (isovector) [19].

The transition density in the RPA has been calculated for 68Ni and the results are shown in Figure

1.3 [19]. For the PDR states in Figure 1.3 a), it is apparent that there is an out-of-phase oscillatory

motion that dominates the surface and an in-phase motion dominating in the volume of the nucleus

unlike in the case of the IVGDR. Another interesting feature of the PDR state transition density is the

apparent contribution of both isoscalar and isovector transitions which introduce an ambiguity in the

isospin of the PDR, and the results correspond to experimental evidence as mentioned in Section 1.2.

The TDA and RPA work well for semi- and closed-shell nuclei. In open-shell nuclei, pairing becomes

important and thus the pairing correlations are non-negligible. The RPA must, therefore, be modified

to better describe open-shell nuclei [14].

Quasi-particle RPA (QRPA)

The Hartree-Fock-Bogoliobouv (HFB) theory can be used to describe the ground-state properties of

open-shell nuclei [19], where this is done using the quasiparticle RPA (QRPA). The HFB-plus-QRPA

has been used in Ref. [51] to investigate the behaviour of the strength function in even Ca, Ni and Sn

isotopes. Various Skyrme effective interactions were used and they found that the low-energy strength

was enhanced for the more neutron-rich isotopes (see Figure 1.4). This is further illustrated in the

transition density as shown in Figure 1.5. The QRPA is not limited to open-shell nuclei, it can also be

employed for closed- and semi-closed-shell nuclei. It has been instrumental in the description of the

PDR even for deformed nuclei [19].

For heavy nuclei, in the GRs, the RPA 1p-1h poorly described the width due to the damping mechanisms

[14] and inclusion of the coupling of 1p-1h coherent states to more complex configurations such as 2p-

2h, 3p-3h, etc, combatted this problem [14]. When 2p-2h excitations are taken into account, this is the

second-RPA (SRPA). There is also the subtracted SRPA (SSRPA), which only differs from the SRPA

in that the static interaction is subtracted from the contribution of more complex configurations [52].

This SSRPA was used in Ref. [3] to investigate the low-lying dipole states in 68Ni and the results

are shown in Figure 1.6, where they are compared to RPA predictions and then to experimental data

in Figure 1.7. The agreement with experiment is fair and compared to the RPA, the SSRPA results

provide a strength that is more distributed and an overall width that is increased compared to the RPA.

Both the isoscalar and isovector dipole strength was determined and the isospin-mixing character of

the PDR was inferred by the authors. However, thus far the experimental data on 68Ni is inconclusive
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Figure 1.3: Transition densities for 68Ni showing the PDR compared to the IVGDR and the ISGDR.
a) The individual proton and neutron densities for the PDR (solid red lines and black dashed lines,
respectively). It can be seen that in the nucleus interior, a similar behaviour of the proton and neutron
densities is observed with the neutron density dominating at the surface. This is further solidified by
the isoscalar and isovector transition densities in panel d). b) Same as a) but for the IVGDR where
there is an apparent out-of-phase motion of the proton and neutron densities, which is line with the
experimental description of the IVGDR, and the isovector and isoscalar transition densities in panel e)
further solidify the nearly pure isovector character of the IVGDR. c) Same as a) but for the ISGDR
where there is an apparent in-phase motion of the proton and neutron densities which is line with the
experimental description of the ISGDR. The isovector and isoscalar transition densities shown in panel
f) further illustrate the nearly pure isoscalar character of this collective mode. This figure was taken
from Ref. [2].

in this regard and this remains one of the open question of the PDR.
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Figure 1.4: Dipole strength calculated for the Ni
isotopes for 1− transitions. Both the iosvector
dashed line and isoscalar (solid line) responses
are indicated. An enhancement in the strength is
observed across all isotopes.

Figure 1.5: Transition density of the 80Ni calcu-
lated using the QRPA for two 1− states. The peak
at the surface is from the neutron indicating the
dominant contribution of the neutron in the sur-
face responses.

1.3 Aim of this study

The focus point of this study is to probe the character of the PDR, in particular the degree of collectivity

of these states. Pickup and stripping direct reactions are the probes of choice for this goal due to

their high-sensitivity for probing single-particle configurations. The 97Mo(p,d)96Mo and its conjugate

reaction 95Mo(d,p)96Mo were used to populate the nucleus of interest, 96Mo. The choice to select

the 96Mo nucleus as the nucleus of interest was determined by its potential to be populated through

both neutron addition and neutron removal using stable target nuclei. The experiment was conducted

at the MAGNEX facility of the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud

(INFN-LNS) in Catania, Italy. The MAGNEX spectrometer was employed to examine the ejected

particles in relation to their momentum prior to their detection at the focal-plane. A brief description

of the direct-reaction theory will comprise the contents of Chapter 2 together with a brief overview

on collectivity with regards to the PDR. The contents of Chapter 3 and Chapter 4 will consist of

the description of the experimental setup, the process of data reduction, and the extraction of the

cross section, respectively. The detail regarding the analysis of the data and the presentation of the

experimental results will be provided in Chapter 5 and Chapter 6, respectively. The composition of

Chapter 7 will encompass the discussion and theoretical interpretation of the results. The last chapter

is dedicated to the conclusion and outlook regarding the use of transfer reactions as a complimentary

probe for PDR studies.
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Figure 1.6: Dipole strength calculated for 68Ni
within the a) the SSRPA and b) the RPA. The
strength is distributed over a wide range for the
SSRPA and concentrated in a few states in the
RPA. It is interesting to note that in the SSRPA,
the strength is pushed down to lower excitation
energies compared to the RPA. The solid line
indicates the position of the neutron-emission
threshold. This figure was take from Ref. [3].

Figure 1.7: a) SSRPA prediction of the dipole
strength for 68Ni compared to b) the photoabsorp-
tion cross section and c) the strength extracted
from the same experimental data. The SSRPA
is in good agreement with data. The solid line
indicates the position of Sn. This figure was taken
from Ref. [3].



Chapter 2

Physics case

The experimental methods and results presented in the previous chapter indicated an E1 response that

occurs at energies lower than the GDR, which is common in most neutron-rich nuclei. It was found to

exhaust a small portion of the dipole EWSR [53]. The experimental and theoretical results provide

reasonable insight into the nature of this response, but alas there are still some open questions. Some of

the open questions are related to the degree of collectivity of these dipole states, which is the character

of interest being investigated in this work. A brief description of collectivity in the context of the PDR

and its current status will be briefly presented. Additionally, the application of transfer reactions for

PDR studies will be discussed. The scattering theory in the context of transfer reactions, including the

optical model and the choice of the type of potential in single-nucleon transfer reactions will also be

briefly presented.

2.1 The question of collectivity

According to Wood et al. [54], nuclear collectivity is, by definition, a many-body phenomenon. Col-

lective modes have been instrumental in the current knowledge of nuclear structure including the bulk

properties of nuclei. Weisskopf [55] introduced the concept of single-particle units for electromagnetic

transitions. These have also been used as a gauge for collectivity in the case of several hundreds of

Weisskopf units and few Weisskopf units are associated with single-particle states [55]. However,

this definition alone is not sufficient to make a solid conclusion on the collectivity of a state. From a

quantum mechanical point of view, collective states are associated with an appreciable exhaustion of

the EWSR. For example in 208Pb the IVGDR exhausts, on average, approximately 70% of the EWSR

depending on the type interaction used in the calculation [56] which is indicative of the collective

nature of the IVGDR states. However, the EWSR has been found to be a non-reliable indicator of

collectivity [56]. For example, it has also been shown that the low-lying quadrupole state (2+) exhausts

about 10% of the EWSR compared to the GQR which exhausts above 60 % and above. Comparison of

the two in terms of the microscopic description, indicates that they are equally collective besides the
15
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quadrupole states exhausting a small amount of the EWSR.

Macroscopic collective models inherently assume collectivity, whereas in the case of the RPA, it

is imperative to provide a definition of collectivity [19]. The coherent superposition of the 1p-1h

configurations serves as an indicative measure of collectivity. Within the context of quantum mechanics,

the term 1p-1h refers to a fundamental process wherein a particle (1p) is excited to a higher energy

level while simultaneously creating a hole (1h) [57]. These excitations are analyzed within theoretical

models such as the RPA to gain insights into the nuclear structure and behavior [57]. By utilizing the

RPA amplitudes introduced in Equation 1.10, it becomes possible to define an amplitude:

Aν
ph = |Xν

ph|
2 −|Y ν

ph|
2, (2.1)

which can be used to estimate the contribution of each 1p-1h configuration to the states ν . Once

the quantity of 1p-1h configurations is established, the determination of the proportion of 1p-1h

configurations that interfere constructively is imperative. This is achieved by calculating the index

D= N∗

Nph
where Nph is the total number of 1p-1h configurations [19] and N∗ is the number of states with

Aν
ph ≥

1
Nph

. However, this approach was deemed to be incomplete as the coherence was not accounted

for. Lanza et al. [58] revised equation 1.10 to include Tph and 2λ that are the multipole transition

strengths related to the 1p-1h configurations. Calculations using Equation 2.2 were performed for
208Pb in the RPA framework and the bph(Eλ ) are shown in Figure 2.1 for three excitation-energy

regions. The isovector and isoscalar responses are shown on the top and bottom panels of Figure

2.1, respectively. For the low-energy the IV response exhibits neither single-particle or collective

behaviour as the partial contributions do not add coherently and this is also further illustrated by the

trend if the cumulative sum (black solid line). A different behaviour is observed for the high excitation

energy region where for the IV response the partial contributions add coherently as illustrated by the

cumulative sum. The isoscalar response exhibits collective behavior for all excitation energy regions.

For the pygmy states in 208Pb shown in Figure 2.2. In the IV response, the 1p-1h configuration exhibits

destructive interference whereas, for the IS response, both proton and neutron 1p-1h configurations

exhibit clear collective behaviour. This has been observed theoretically for other nuclei such as 68Ni

and 132Sn [19].

B(Eλ ) =

∣∣∣∣∣∑ph
bph(Eλ )

∣∣∣∣∣
2

=

∣∣∣∣∣∑ph
(Xν

ph −Y ν
ph)Tph

∣∣∣∣∣
2

(2.2)

Due to the ambiguity associated with the definition of nuclear collectivity, the most effective experi-

mental method to investigate this characteristic of nuclei is determination of spectroscopic factors of

states in the excitation-energy region of the PDR. These spectroscopic factors can then be compared to

theory to allow an interpretation of the experimental results.
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Figure 2.1: Partial contributions bph(Eλ ) plotted against the RPA-calculated number of 1p-1h configu-
rations for dipole states in 208Pb in different excitation-energy regions. The isovector and isoscalar
responses are shown in the top and bottom panels, respectively. The red solid lines are the partial
contributions and the blue line is the cumulative sum. The figure was adapted from Ref. [2].

2.2 Transfer reactions for PDR studies

To understand the single-particle nature of the PDR or the lack thereof, a probe that is highly selective

to single-particle excitation is required. This points us in the direction of transfer reactions owing to

their selectivity for exciting single-particle (hole) states. They have been instrumental in providing

experimental evidence that supports the shell model of the nucleus and provide better insight into the

nuclear structure [59]. This makes single-particle transfer reactions an important tool to probe the

single-particle nature of the PDR. There are different types of transfer reactions, namely, multi-nucleon

and single-nucleon transfer. Examples for the multi-nucleon transfer include (3He, d), (p,t) and (t,p)

where two nucleons are transferred, and for the single-nucleon transfer, the (p,d) and (d,p) reactions

are widely used. The different types of transfer reactions are well documented in literature such as in

Ref. [60] and Ref. [61]. For the purpose of this study, the focus area will be the stripping and pickup

reactions. The (d,p) and (p,d) reactions have been used for nuclear structure studies for a long time

and the former has been used recently for PDR studies in [11, 62].
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Figure 2.2: a) The isovector response amplitude and the all 1p-1h configurations contributions for
pygmy states in 208Pb. These are plotted against the excitation energy of the 1p-1h. The different
panels correspond to calculations using different Skyrme interactions. b) Same as a) but for the
isoscalar response. The figure was adapted from Ref. [2].

2.2.1 Stripping and pickup reactions

A stripping reaction is a one-step transfer reaction, where a nucleon is stripped from the beam and

transferred to a single-particle state. Taking the (d,p) as an example, one can adapt the lens through

which Glendenning views stripping reactions as a deuteron which consists of a proton and a neutron

moving in a nuclear field [63]. The proton within the deuteron will undergo Coulomb repulsion due to

the presence of the target nucleus, while the neutron will be subject to an attractive force towards the

target nucleus, resulting in its capture. A schematic illustration of the physical picture of a stripping

reaction is shown in Figure 2.3.
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Figure 2.3: A schematic representation of how a stripping reaction proceeds. In the diagram, a deuteron
is used as an example. Figure was taken from Ref. [4]

The neutron that is stripped from the deuteron carries finite momentum and it transfers it to the target

nucleus, and the rest of the momentum of the deuteron is carried away by the proton. Considering the

law of conservation of momentum, the amount of momentum that is transferred to the target nucleus

can be deduced from the measured angular momentum of the nucleus of interest. A single-nucleon

pickup reaction is an analogue of the stripping reaction as a nucleon is picked from the target nucleus

leaving a single-hole state. In the (p,d) reaction, the incident proton will pick up a neutron from the

target nucleus leaving a single-hole state. To conserve momentum during the interaction of the proton

with the target nucleus, some momentum is transferred.

This conservation of momentum is based on the selection rules and, drawing from the description in

Ref. [64], a transfer reaction A(a,b)B can be represented as:

a(= b+ x)+A → b+B(= A+ x), (2.3)

where x can be a nucleon or a cluster of nucleons with specific spin s. This nucleon or cluster of

nucleons, which is part of the projectile a, has a certain orbital angular momentum l1, which is relative

to the ejectile b. Its total angular momentum and total nuclear spin Ia will be given by:

j1 = l1 + s, Ia = Ib + j1. (2.4)

Applying the same analogy to the products of the transfer reaction, x will have a particular orbital

angular momentum l2 in the residual nucleus B. Thus, the total angular momentum and total nuclear

spin of B will be given by:

j2 = l2 + s, IB = IA + j2. (2.5)

From the Equations. 2.3-2.5, the transferred angular momenta will be given by:

JBA = IB − IA = j2, Jba = Ib − Ia = j1. (2.6)
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Hence, the amount of total angular momentum transferred clearly depends on the nucleon (or cluster

of nucleons x) total angular momentum. This is related to the ejectile b and its total angular momentum

in B. In Ref. [64], the orbital angular momentum before and after the collision is defined as:

l = j2 − j1. (2.7)

This results in the following allowed values of l:

|l2 − l1| ≤ l ≤ l2 + l1, (2.8)

In terms of parity, the change of parity is given by:

∆π = πAπaπBπb ∆π = (−)l2+l1. (2.9)

where πAπaπBπb are the parities of the target nucleus, projectile, residual nucleus and ejectile, respec-

tively. In accelerator-based experiments, for the (d,p) reaction, a deuteron beam will impinge on a

target nucleus and scatter off the target nucleus. The interaction of the deuteron and the target nucleus

will be via the collision of the nucleons near the Fermi surface [60]. Thus, scattering theory can be

employed in the description and understanding of these neutron-transfer reactions.

2.3 Scattering theory of transfer reactions

In nuclear collisions, the interaction between nuclei can result in excitation to higher energy levels or

transfer of nucleons between the nuclei, leading to different partitions or channels in the system. Since

the nucleus is a complex system, the exact wavefunction that can describe these collisions is unknown.

Hence, theoretical models are usually used to try to understand the behaviour of this complex system.

Hitherto, the shell model has been shown to predict the nuclear structure within a good approximation

with one-step direct reactions providing experimental evidence to support this model. The Hamiltonian

used in the shell model is given by Equation 2.10,

HA =
A

∑
i=1

(Ti +Ui)+∑
i ̸= j

Vi j, (2.10)

where Ti is the kinetic energy operator, Ui =U(ri) the central potential and Vi j, a phenomenological

potential [60]. The central potential, which acts on the single nucleon can be described by a harmonic

oscillator or the Wood-Saxon (WS). Both potentials are similar, with the WS being more realistic

but mathematically complex [60]. The exception is at the boundaries of the potential well. This is

a short-fall when describing nuclear collisions in direct reactions as they are surface interactions,

requiring a different model. In addition, at high energies, when multiple channels are open, accurately

calculating the complete wave function becomes a challenging task, requiring solving the many-body

scattering problem; however, the focus is on attempting the calculation of the necessary parts of the
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wave function for describing the desired direct reactions.

The channels can be classified as the entrance (α) and exit channels (β ). The Hamiltonian of the

entrance channel, which provides the initial state of the system, is given in Equation 2.11:

(E −Hα −Tα)ψα =Vαψα . (2.11)

Assuming no interaction occurred, which will refer to the elastic scattering channel, then Vα = 0 and

the eigenfunctions of Tα are plane waves [60]. As this is related to the internal structure of the nucleus,

projecting onto this channel, one can integrate over the internal coordinates resulting in Equation 2.12:

(Eα −Tα)ψα = (Φα ,Vαψα). (2.12)

The Green’s function is used to find a solution to the equation, and the scenario described involves

initially plane-wave nuclei being scattered, causing spherical waves to emanate from the scattering

site [60]. The most general solution of Equation 2.12 will be given by Equation 2.13.

ψα(rα) = eik
′
α ·r

′
α +

∫
G0

α(rα ,r
′
α)(Φα ,VαΨα)drα . (2.13)

An explicit expression of the Green’s function that describes the physical situation modifies Equation

2.13 from which the elastic scattering amplitude can be extracted as:

fαα(θ) =− mα

2π2

∫
e−ikα ·r(Φα ,VαΨ

(+)
α )dr. (2.14)

Elastic scattering is the simplest type of nuclear scattering experiment, where the number of particles

scattered into a certain solid angle is counted after the collision with the scattering centre. All the other

channels are considered inelastic scattering including the transfer reactions. The wavefunction of the

entrance and exit channels will thus be different. In this case, the scattering amplitude is given by:

fβα(θ) =−
mβ

2π2

∫
e−ikβ ·r(Φβ ,Vβ Ψ

(+)
α )dr, (2.15)

which is also referred to as the transition amplitude from the α to the β channel. In the case of the

(p,d) and (d,p), this will be the transition between the ground state of the target nucleus and the state

populated via the neutron transfer.

2.4 Optical Model

In cyclotron experiments, for the direct mechanism to dominate, high incident-beam energy is required.

This opens other channels in addition to the elastic one, including compound reactions. This in turn

increases the reaction cross section, which has been shown to be related to the transition amplitude [60].

Consequently, this alludes to a reduction in the elastic flux, hence the inelastic scattering is viewed as a

perturbation of the elastic channel. To realistically model the nuclear reactions that occur at these high

bombarding energies, the potential U must be chosen such that it is complex with a negative imaginary
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part. This is because a real potential conserves flux and hence no particles are removed or added to the

system [60]. This potential is referred to as the optical potential [65], initially introduced to describe

elastic scattering [65–68]. It accounts for both the nuclear and Coulomb potential effects on the

scattering process. The Schrödinger equation that includes this potential, (Tα +Yα −Eα)χα(r⃗α), can

be separated into angular and radial parts as the optical potential depends on the separation between

the two nuclei [60]. Hence, the solution to the radial part of the optical Schrödinger’s equation, which

is the partial wave expansion of the wavefunction, is given by:

χ
+
α (k⃗α , r⃗α) =

4π

kαrα
∑
l,m

ileiσl fl(kα ,rα)Y m
l (⃗̂rα)Y ∗m

l ( ⃗̂kα). (2.16)

The form of the Coulomb potential is well documented in literature and is well understood. The

behaviour goes as 1
r indicating a long range dependence. Consequently, scattering also occurs at

exceedingly large distances, potentially leading to an infinite outcome [60]. Consequently, the Coulomb

potential affects both the incident and scattered waves with an asymptotic behaviour of the partial wave

expansion related to it established. Incorporating into Equation 2.16 results in a scattering amplitude

that consists of a pure Coulomb part and a part that is a convolution of the nuclear and Coulomb as

seen in Equation 2.17:

f (θ) = fc(θ)+
1
k ∑

l
(2l +1)ei(2σl+δl)sinδlPl(cosθ). (2.17)

Parametrisation of the optical potential

The nuclear density (ρ), which depends on the distance from the centre of the nucleus,r has been

shown to display a constant behaviour in the interior of the nucleus and a low fall off at r = R [59].

This allows the use of a Fermi distribution as a form of the optical potential. In the optical model

context, this is referred to as the Wood-Saxon potential [68]. Since U must be complex, the widely

used form of the potential is:

U(r) =
V

1+ e(
r−RV

aV
)
+

iW

1+ e(
r−RW

aW
)
, (2.18)

where RW = rW A
1
3 and RV = rV A

1
3 . In the case of charged particles, an extra term VC(r) is added to

the expression with the Coulomb potential given by:

VC(r) =


Z1Z2e2

2RC

[
3−
(

r
RC

)2
]

;r < RC

Z1Z2e2

r ;r > RC

Various global parametrisations of the optical potential for various mass regions across the nuclear

chart, beam energies, probes and different light nuclei as ejectiles, have been described (cf. [66, 69].

The parametrisation approach used in the thesis was from the work of Refs. [12] and [13] with

more details in Chapter 5. In a quantum mechanical framework, the optical potential has a nonlocal

character [60]. This affects the cross section of the direct reactions and this was also corrected for

during the calculations of the theoretical cross section used in this thesis.
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2.4.1 Distorted-Wave Born Approximation (DWBA)

As already established in the previous section, the optical potential provides a realistic nucleon-nucleus

interaction in transfer reactions. Since determining the complete wavefunction is nearly impractical,

approximations must be made in an attempt to obtain a solution of the partial wave expansion of the

wave function. The DWBA is the most useful approximation in direct nuclear theory [60]. It is derived

from the Gell-Mann-Goldberger (GMG) transformation of the transition amplitude by introducing a

solvable auxiliary potential [70].

DWBA transition amplitude

The scattering amplitude in this approximation after the GMG transformation, which is a one-body

solvable problem, is given by:

T DWBA
βα

=
〈

χ
(−)
β

Φβ

∣∣Vβ −Uβ

∣∣Φα χ
(+)
α

〉
(2.19)

This is similar to the first Born Approximation but with physical information such as the relative motion

of the nucleons in the channel α and β due to the overall potential. In summary, the DWBA assumes

that the final channel β is reached via direct mechanism from the entrance channel α . In addition,

the distorted waves χα and χβ carry the physical information. Depending on various experimental

conditions, the optical potential can be adjusted to reproduce the elastic reaction cross section. Once

the potential reproduces the elastic cross section, it is then used to reproduce the transfer reaction cross

section.

When applied to transfer reactions, a consistent pattern has been observed, which is associated with the

angular momentum coupling as determined by the selection rules [60]. These depend on the type of

nuclear reaction. Hence, for a realistic description, these need to be explicitly included in the transition

amplitude. This transition amplitude (cf. Equation 2.19) is then integrated over all the nucleons present

also taking into consideration the summation over spin and isospin. This is mathematically expressed

in Equation 2.20:

Tβα = ∑
ℓs j,mℓmsm j

CJ j
AJB

MAm jMB
CJbsJa

MbmsMa
Cℓs

mℓmsm j

√
ℓ ℓℓBmℓ

ℓs j, (2.20)

where Bmℓ
ℓs j is given by:

Bmℓ
ℓs j =

i−ℓ

√
ℓ̂

∫
χ
(−)∗
β

(
kb,rβ

)
f ∗mℓ
ℓs j

(
rβ ,rα

)
χ
(+)
α (kα ,rα)drαdrβ . (2.21)

Calculation of the DWBA amplitude: (d,p) example

As already established, the DWBA amplitude is an approximation scheme that involves distortion of

the wavefunctions of relative motion in the incident and outgoing channels. To compute the DWBA

amplitude, high computation power is required due to the six-fold integration of the nuclear overlap

function with the distorted waves which depend on the reaction and nuclear description that needs to
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be solved [60]. Different techniques can be used to evaluate this function, which depends on the nature

of the reaction under consideration.

For example, considering the stripping reaction, an important experimental probe for nuclear spec-

troscopy. The reaction can be written as:

d +95 Mo −→ p+96 Mo ≡ p+96 Mo (2.22)

From equation 2.19, in this case, Vβ =Vpn +∑
95
i=1 ≡Vpn +Vp95Mo In Ref. [60], an argument was made

that the interaction between the proton and the target nucleus can be approximated by the one-body

potential Up. This potential depends on the coordinates of the proton and neutron. The introduction of

the fractional parentage expansion (cf. Equation 2.23) of the nuclear wavefunction was shown to sim-

plify the analysis [63]. The values of the coefficients of fractional parentage depend on the structure of

the nuclear wavefunction. The absence of the principal quantum number n in the summation is because

the radial state in question can be obtained from the shell model. In the case of 95Mo(d,p)95Mo, n=2.

For the case of the (d,p) reaction, the fractional parentage was shown by Macfarlane & French [71] to

be of a single-particle parentage:

Φ
MB
JB

(A,rn) = ∑
A′ jl

β jℓ
(
B,A′)A

[
ΦJA(A)φnℓ j (rn)

]MB
JB

. (2.23)

The expression in Equation 2.23 can be simplified depending on the nuclear shell model of the residual

nucleus. For one such case, a nucleus with a closed shell, one neutron outside the closed shell and

distinguishing between protons and neutrons gives:

Tpd
(
JAMAµd → JBMBµp

)
= ∑

ℓ j
CJAJB

MAm jMB
C(1/2)(1/2)(1)

µpµn Cℓ
µd

C(1/2) j
mℓµnm j

× iℓ(2ℓ+1)1/2 Bmℓ
ℓ S1/2

ℓ j (2.24)

The cross section of the neutron transfer is thus given by summing over all the final orientations

produced by the average initial orientations. The expression for the cross section is given by:

dσ

dΩ
=

1
2

mdmp

(2π2)
2

kp

kd

2JB +1
2JA +1 ∑

ℓ jmℓ

Sℓ j
∣∣ Bmℓ

ℓ

∣∣2 , (2.25)

which has two groups of factors. The first is the spectroscopic factor, which carries information about

the properties of the nuclei, and the second factor carries information about the kinematic dependence

through the wavefunction and nuclear overlap [60]. Hence, the term Bm
l factor must be calculated in

order to calculate the cross section. This is mathematically challenging as a six-fold integration is

required. There are however, various mathematical techniques to achieve this. ℓ

Zero-range approximation

The zero-range approximation allows the reduction of the integral to a single radial integral involv-

ing the bound state radial function and the radial function for the distorted waves [60]. This is
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mathematically denoted as :

D(r)≡Vpn(r)φd(r) = D0δ (r), (2.26)

where D0 can be obtained if the deuteron wavefunction is taken as a Hulthen wavefunction [60] or

from the effective-range theory [63]. The validity and the limitation of the zero-range approximation

in the DWBA has been put under scrutiny. It is shown in the works of Refs. [72, 73] that the range of

its validity is limited. As an alternative, a finite-range theory was proposed. This takes into account

the finite-range interaction between the deuteron and the target nucleus [74, 75]. This has shown an

excellent description of the experimental data [76]. In this thesis, the finite-range correction has been.



Chapter 3

Experimental setup

To investigate whether the PDR can be populated via transfer reactions, two types of transfer reactions,

(d,p) and (p,d) on 95Mo and 97Mo targets, respectively, were conducted. Different single-particle con-

figurations can be excited by these two reactions and the reactions relevant for the dipole states in this

work will be discussed in Chapter 5. For the conjugate reactions of interest in this work, the projectile

and the ejectile have one neutron difference and, therefore, an instrument sensitive to isolating isotopes

is required to complement the selectivity of a one-step reaction. Such an instrument is the MAGNEX

spectrometer, which has the large acceptance needed to extract the cross-section angular distribution

and the good mass resolution to separate the ejectiles [8]. The optical characteristics and the principle

of operation of MAGNEX as well as its focal-plane detection (FPD) system will be discussed in this

chapter.

During the experiment, 10 MeV deuteron and 25 MeV proton beams were produced and accelerated

by the Tandem Van de Graaff facility at INFN-LNS with beam currents ranging between 0.9 and 5 nA.

These energies were chosen because it has been found from literature that the selectivity of the transfer

reactions, especially with light ions, is strong at moderate projectile energies [59]. These beams

then impinged on their respective self-supporting targets of areal densities 1.07 mg/cm2 (95Mo)and

0.55 mg/cm2 (97Mo) to yield the nucleus of interest (96Mo). The beamspot size was 2 mm, which

was ensured through the use of a collimator system. A picture of the collimator system and the target

ladder is shown in Figure 3.1. The data were collected for approximately 234 hours. A mylar target

was used to identify the oxygen (16O) and carbon contaminants (12C).

3.1 MAGNEX spectrometer

The MAGNEX spectrometer, shown in Figure 3.2, is a large-acceptance quadrupole-dipole (QD)-type

magnetic spectrometer that is installed at the INFN-LNS in Catania, Italy, shown in Figure 3.3). The

exceptional efficacy of the spectrometer is ascribed to a fusion of conventional magnetic spectrometry

with extensive angular and momentum acceptance [8].
27
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Figure 3.1: Collimator system used during the experiment. The target ladder and its position with
respect to the beam axis are also shown.

Figure 3.2: The view of the MAGNEX spectrometer in experimental vault at INFN-LNS.

3.1.1 Design and setup

The main optical elements of MAGNEX are the quadrupole magnet and the 55o dipole magnet which

are shown in the insert of Figure 3.3. The quadrupole magnet is responsible for the vertical focusing

of the ions, while the dipole magnet is responsible for the dispersion and horizontal focusing. The

horizontal focus is achieved through tilting of the entrance and exit boundaries of the dipole by -18o .

To achieve the most favorable conditions for focus, it is necessary to introduce two arrangements of

surface coils. These coils produce quadrupole and sextupole strengths and are positioned between the

dipole poles and the vacuum vessel [8]. A range of scattering angles (-15o ≤ θopt ≤ 70o) [7] can be
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Figure 3.3: Layout of the INFN-LNS experimental hall. The MAGNEX experimental vault is shown
together with the Tandem that delivered the beam during the experiment. In the top of the figure, a
plane view of MAGNEX is shown. The configuration corresponds to θopt = 4o where the red line
shows the path followed by ejectiles of interest and the blue line indicates the unreacted beam. On the
top right, a zoom into the focal-plane detection system is shown.
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obtained by adjusting the optical axis of the spectrometer. This is achieved by moving the spectrometer

physically along the rail shown in Figure 3.2. During the experiment, θopt was set at 10o,17o and

24o for the (p,d) reaction, and 17o and 24o for the (d,p) reaction. The spectrometer was operated

at full angular acceptance, for the 17o and 24o settings for both reactions, while for θopt = 10o, the

vertical aperture was not changed and the horizontal aperture was reduced by −1o by adjusting the

horizontal slits. MAGNEX can detect ions with magnetic rigidities (Bρ) from 0.2 Tm to 1.8 Tm [8]

which translates to detected-ion energies of 0.2 MeV/u - 40 MeV/u depending on the mass and charge

of the ejectile. An energy and angular resolution of ∆E/E ≈ 1/1000 and ∆θ/θ ≈ 0.2o, respectively,

is achievable at these energies. A summary of the optical characteristics and technical specifications of

MAGNEX is shown in Table 3.1.

Table 3.1: Optical characteristics and technical specifications of MAGNEX [8].

Magnetic rigidity (Tm) 1.8 (maximum)
Solid angle (msr) 50
Horizontal aperture (mrad) -90, +110
Vertical aperture (mrad) -123, +123
Momentum acceptance (%) -0.14, +0.1
Length of Central path (cm) 596
Momentum dispersion (cm/%) 3.68
Momentum resolution at first order 5400
Focal-plane tilted angle (deg) 59.2
Length of focal plane (cm) 92
Height of focal-plane(cm) 20
Dipole maximum field (T) 1.15
Dipole bending angle (deg) 55
Dipole bending radius ρ (m) 1.60
ρmin,ρmax (m) 0.95, 2.35
Pole gap (cm) 18
Entrance and exit pole face rotation (deg) -18
Surface coils maximum value for α and β

at 1.15 T
0.03

Quadrupole maximum field strength (Tm) 5
Quadrupole radius of aperture (cm) 20
Quadrupole effective length (cm) 58
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3.1.2 Spectrometer functionality: Aberrations and track reconstruction

The ability of a magnetic spectrometer to achieve a high resolving power in terms of momentum relies

on its capabilities of ion-optical magnification and momentum dispersion [5]. The understanding of

the functionality of magnetic spectrometers can be enhanced by the concept of ion optics. As shown in

Ref. [5], transfer coefficients can be used to describe the process of a flux of ions traversing one or

more ion-optical elements. Considering a particle that traverses an optical element, as shown in Figure

3.4 [5, 77]. The ultimate position coordinates (x2, y2) of the particle, along with the angle coordinates

(θ2, φ2) signifying the motion’s direction, are contingent upon the particle’s initial position (x1, y1),

the initial angle coordinates (θ , φ ), as well as the ion-optical characteristics of the optical elements. In

general, a phase-space mapping can be employed to depict the particle’s motion [78, 79]:

Figure 3.4: The diagrammatic representation illustrating the framework of coordinates that can be
employed in the depiction of the trajectory of a particle moving through an ion-optical component
employed in the computation of transfer coefficients obtained from Ref. [5].

F : Pi −→ Pf (3.1)

This general phase-space mapping relates the final position coordinates of the particle Pf to the initial

position Pi, where Pf ≡ (xf,θf,yf,φf, lf,δf) and Pi ≡ (xi,θi,yi,φi, li,δi). From ion-optics, the spatial

distribution of the magnetic field allows the definition of the mapping F as:

xf = F1(xi,θi,yi,φi,δi) (3.2)

θf = F2(xi,θi,yi,φi,δi)

yf = F3(xi,θi,yi,φi,δi)

φf = F4(xi,θi,yi,φi,δi)

lf = F5(xi,θi,yi,φi,δi)

δf = δi,

where x,θ ,y,φ , are the horizontal and vertical coordinates in the dispersive and vertical direction of the

ion trajectory, respectively. These are determined with reference to the plane normal to the trajectory
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of the ions. The trajectory length li is deemed constant for thin targets and δ is the deviation from

the reference momentum of the charged particle. It is given by δ = ∆p
p0

, where p0 is the reference

momentum of the charged particle. The quality seen in the last part of Equation 3.2, is relevant for

the description of the principle of conservation of momentum of the charged particle. Transport

equations of large-acceptance spectrometers are well documented in literature, see Refs. [80, 81],

wherein they also show that non-linear terms of the transport equation (aberrations) affect the quality

of the momentum and angular resolution at the focal plane.

To obtain the initial phase-space parameters of the ion trajectory, the mapping F, must be inverted.

Mathematically, this is given by Equation 3.3:

F−1 : Pf −→ Pi. (3.3)

The problem of determining the mathematical solution is simplified by expressing the matrix in

relation to the measured parameters, which may vary based on the magnetic spectrometer’s application.

Applying this to the MAGNEX spectrometer, the set of observed parameters is given by the vector

Of ≡ (xf,θf,yf,φf,xi), with the reconstructed vector is given by Oi ≡ (θi,yi,φi, lf,δ ). The number of

parameters can be further reduced by neglecting the size of xi by assuming the beam is focused on the

target with respective to the dispersive direction, forfeiting the reconstruction of the final path length

of the ion trajectory (lf). This then results in the modified mapping given by:

G−1 : O
′
f −→ O

′
i, (3.4)

where O
′
f ≡ (xf,θf,yf,φf) and O

′
i ≡ (θi,yi,φi,δ ) are the final reduced and reconstructed phase-space

vectors, respectively.

In the context of expanding Equation 3.2 according to Taylor’s theorem, it can be observed that the

high-order terms become significant when the spectrometers have a large acceptance. In the case of

MAGNEX, these high-order aberrations are controlled by manipulating the shape of the magnets.

To further control these high-order aberrations, the focal plane of MAGNEX is tilted with respect

to the central trajectory, so as to compensate for the second-order aberration T126. These hardware

corrections are, however, not satisfactory in minimising the effect of these high-order aberrations, and

so, software correction of these high-order aberrations is required. The design of the magnetic elements

of MAGNEX is of paramount importance to achieve the characteristics listed in 3.2 whilst minimising

the high-order aberrations. In particular the Effective Field Boundaries (EFB) of the entrance and

exit of the dipole magnet [82] must be optimized to reproduce the experimental kinematic conditions.

For the trajectory reconstruction software technique of minimizing aberrations to be effective, an

extensive mapping of the field of all magnetic elements had to be conducted during the installation of

MAGNEX [82].

Obtaining accurate solutions of Equations 3.3 or 3.4 is strongly dependent on the acceptance of the

magnetic spectrometer. To obtain the solutions, the COSY-INFINITY program developed at Michigan
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State University for the purpose of the S800 spectrometer installed there, [8] was employed. This

advanced algorithm is based on the differential algebra formalism [83] and allows calculation of

high-order transport matrices. The recurrence formula shown in Equation 3.5 is used in this procedure:

Mn = n(A−1
1 ⊗ (I −A∗

n ⊗Mn−1)). (3.5)

where =n indicates that the order at which the truncation of the dot product occurs, and An and Mn are

the direct and inverse nth-order matrices, respectively [8]. For this work, a 10th-order transport matrix

was used.

Some of the main ingredients required by COSY-INFINITY are

• Elaborate description of the magnetic field that the ions will traverse,

• Precise knowledge of the geometry and optics of the magnetic spectrometer and [82] and lastly,

• The phase-space vector (O
′
f) at the focal plane must be measured with high accuracy.

It is, thus, important to have a focal-plane detection system with a high position and angular resolution

capability. The ray-reconstruction algorithm has been applied to all the data that were analysed in this

work. The and a detailed description of this procedure will be the subject Chapter 4.

3.2 The focal-plane detection system: Design and setup

Along with accelerators, detectors are instrumental in experimental nuclear physics. Magnetic spec-

trometers can separate particles based on their rigidity and, from ion optics, a good measurement

of the position and angle is required. For a high-performance device like MAGNEX, a focal-plane

detector (FPD) to allow the identification of particles with high position accuracy is required. The

focal-plane detection system of MAGNEX is tilted (θtilt = 59.2o) with reference to the optical axis so

as to minimise high-order chromatic aberrations [8] and consists of two parts: a low-pressure gaseous

region, which is sensitive to energy loss, and a stopping wall of silicon detectors for residual energy

measurements. The gaseous region is a proportional drift chamber composed by six segments with

six independent proportional counters, all of which are position sensitive (see Figure 3.5). Behind the

proportional counters is a stopping wall made up of 57 silicon detectors [6]. The active volume of the

gas region has dimensions of 1360 × 200 × 90 mm3 and the stopping wall has a surface area of 1360

× 200 mm2. A summary of the technical specifications of the MAGNEX FPD system and a detailed

description can be found in Ref. [6].

3.2.1 The position-sensitive region

The position-sensitive region of the detector, consists of a Frisch grid, a cathode plate, an active gas

volume, amplification wires and induction pads. This allows the division of the gas region into three

main sub-regions: the drift region, the multiplication region and the induction region. All of these
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Figure 3.5: Schematic illustration of the a) side view and b) top view of the MAGNEX focal-plane
detector, which was taken from Ref. [6].

elements are enclosed in a vessel made of stainless steel, which has the measurements of 1360 mm ×
200 mm × 90 mm. A mylar window is used to separate the focal-plane low-pressure gas chamber

from the high vacuum region of the spectrometer. The mylar window is 220 mm in height, 960 mm in

width, and its thickness varies depending on the gas pressure. For the experiment of this thesis, the

mylar window used was 6 µm thick.

• The drift region
This is the region between the cathode and the Frisch grid and it defines the active volume. The

region contains pure isobutane (99.95%) that can be set to different pressures within the range

5-100 mbar depending on the experimental requirements. The Frisch grid comprises 10 gold-

plated wires of 50 µm diameter with 5 mm between them. The cathode is an aluminium plate

with a surface area of 1200 × 90 mm2, and a bias voltage ranging between -900 and -1500 V can

be applied [6]. A uniform electric field in the active volume is required for an accurate position

measurement and is achieved by the presence of 41 pairs of guard rings composed of gold-plated

wires around the vessel. The guard rings also function as a shield to avoid interference between

the bias voltage of the active volume and the silicon detectors high voltage [6].

• The multiplication/amplification region
This 20-mm high region is located between the Frisch grid and the plane where the ten gold-

plated tungsten wires are situated [6]. In this region, the ten wires are divided amongst the six
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drift chambers DCi (i =1,...6) (see Figure 3.5) with DC2 and DC5 having one wire and the others

two wires each. These wires have a bias voltage between +500 V to +1300 V.

• The induction region
This region is between the plane on which the drift wires lie and the anode. Six longitudinal

strips and a segmented read-out plane make up the anode, with each strip further segmented into

pads. The drift chambers DC2 and DC5 each have 221 pads and DC1,3,4,6 have 224 pads. For

signal readout purposes, the induction strips (8 mm long, 5.9 mm wide and 0.1 mm apart), are

soldered on an 8 mm-thick printed circuit board. The pads are positioned such that they are at

an angle equal to θtilt. A drawing of the orientation of the pads and their corresponding DCs is

shown in Figure 3.6.

Figure 3.6: Schematic drawing of the segmented anode. The green horizontal lines indicate the
proportional wires of each DC. The spacing is also indicated. It should be noted that the pads are
tilted [6].

The stopping wall

To minimise the amount of material that the ions have to traverse, the stopping wall is placed inside the

low-pressure gas region. The stopping wall comprises of 57 silicon detectors organised in 19 columns.

Only 55 of them were connected during the present experiment. Each detector has dimensions of 50 ×
70 mm2 and the thickness can either be 500 µm or 1000 µm, according to the energy of the traversing

ions that must be stopped. During the experiment for this work, the chosen thickness of the silicon

detectors used was 1000 µm. The orientation of the detectors is such that they are orthogonal to the

spectrometer optical axis to minimise effective energy loss by the ions [6]. To minimise the effect of

the high voltage of the detectors on the gas region, the detectors are positioned at a minimum distance

of 15 mm away.



36 CHAPTER 3. EXPERIMENTAL SETUP

3.2.2 Principle of operation

Post a nuclear reaction occurring in the scattering chamber, the ejectiles traverse the vacuum of the

spectrometer towards the focal-plane detection system. The ejectiles enter the position-sensitive region

through the mylar window as shown in Figure 3.5. The scattered ions (deuterons for the (p,d) reaction

and protons for the (d,p) reaction) ionise the isobutane gas present in the active volume producing

electrons along the track. These electrons then drift towards the Frisch grid under the influence of a

uniform electric field with a constant drift velocity of ≈ 5 cm/µs. Once they reach this region, the

primary electrons are multiplied due to the high electric field from the proportional wires. The signal

generated by the avalanche of the electrons is proportional to the energy lost by the ejectiles in the

gas during the ionisation process. This allows an energy-loss measurements in each DC. Additional

to the signal on the proportional wires, the electrons induce a signal on the segmented anode pads.

From this signal, the horizontal position of the ejectiles on the focal plane can be extracted. After

passing the position-sensitive region, the scattered ions proceed towards the stopping wall of the silicon

detectors. It is in this region of the FPD that the ions deposit their residual energy. The signal from the

55 silicon detectors is not only used for residual energy measurements but also as a trigger signal for

the drift-time measurements [6] .

Readout principle

The signal from the proportional wires for each DCi, created by the avalanche are proportional to

the energy-loss measurement, is shaped and amplified by the charge-sensitive preamplifier with a

sensitivity of 200 mV/MeV . Post preamplification, the signals are sent to 16-channel MEGAMP

modules, where the channels are split between a shaping amplifier and a Constant Fraction Discrim-

inator (CFD). From the shaping amplifier, a spectroscopic output is obtained for the energy-loss

determination and, from the CFD, a logic output is produced that is used as a stop signal for the

drift-time measurement. The induced-charge signal from the anode is shaped and preamplified by

an analog multiplexed read-out system based on GASSIPLEX chips [84]. These are processed by a

100 MS/s Digitiser (CAEN model V1724) [85] controlled by a general-purpose VME board (CAEN

model V1495) [86]. Post processing, the centre of gravity (COG) of the induced-charge distribution

from pads corresponding to each DC is extracted. Taking advantage of the high-accuracy measurement

of the charge, these COGs can be converted to six horizontal positions (Xi, i = 1,2,3,4,5,6). It is from

these measurements that the final horizontal position Xf and angle θf of the ion track can be extracted

(see Chapter 4).

The signals from the stopping silicon wall are sent to charge-sensitive preamplifiers similar to those

used for the proportional wire signal but with lower sensitivity (5 mV/MeV). The output signals

from the preamplifiers are analysed by the MEGAMP modules from which spectroscopic outputs and

CFD outputs are obtained. The spectroscopic signals are sent to the peak-sensing Analog to Digital
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Converter (ADC) to give residual energy (Eresid) of the ions in the stopping wall. This is used in the

particle identification process, which will be discussed in detail in Chapter 4. The CFD signals provide

timing signals where the logic OR is used as the START signal of the drift-time measurements and

trigger for the data acquisition system allowing the setting of the gates of the ADCs. The signal is

also used as a stop signal for the drift-time measurements. This is illustrated in Figure 3.7 where two

consecutive blocks of CFDs are present after the splitter block which represents the MEGAMP module.

The drift-time measurement is achieved by measuring the drift time of the primary electrons by six

standard Time-to-Amplitude Converters (TACs) plus ADC electronic chains. It is from these measure-

ments that we obtain six vertical positions (Yi; i = 1,2,3,4,5,6) from which the vertical position (Yf)

and vertical angle (θf) of the ion track are then extracted. The signals from MAGNEX’s FPD system

require processing and various important information must be extracted. A good network of signal

processing is required and a simplified sketch is shown in Figure 3.7. For a more detailed overview see

Appendix A, in Ref. [7].

Figure 3.7: Simple sketch of the electronics and readout of the signals from the detector [7].
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Table 3.2: MAGNEX and its FPD settings during the experiment for both reactions. For the
95Mo(d,p)96Mo reaction, the data were collected for only two spectrometer settings due to high
background rates for the 10o spectrometer setting.

97Mo(p,d)96Mo*
FPD Setting Spectrometer setting

Angle Bρ (Tm) BQ (T)

Vcathode = +1300 V 10o a 0.8630 a -0.4838
Vwire = -1300 V b 0.8960 b -0.4741
VFF = +500V 17o a 0.8630 a -0.4838
pgas = 49.5 mbar b 0.8551 b -0.4741

24o a 0.8630 a -0.4838
b 0.8503 b -0.4741

95Mo(d,p)96Mo*
FPD Setting Spectrometer setting

Angle Bρ (Tm) BQ (T)

Vcathode = +1300 V
Vwire = -1350 V 17o a 0.5570 a -0.3109
VFF = +500V b 0.4953 b -0.2772
pgas = 49.5 mbar 24o a 0.5570 a -0.3109

b 0.4953 b -0.2772

3.2.3 Spectrometer and FPD settings during the experiment

The magnetic fields of the MAGNEX quadrupole and dipole magnets, were set such that the deuteron

and proton ejectiles were focused on the focal plane for the (p,d) and (d,p) reactions, respectively. The

different MAGNEX settings are summarised in Table 3.2. The gas used in the active volume is 99.95%

pure isobutane and the values of the low pressure used for each reaction are listed in Table 3.2. For

both the (p,d) and (d,p) reactions, two different magnetic rigidity settings were utilised. In the first

setting, labelled ’a’ in Table 3.2, the ground state of 96Mo is in full acceptance whereas in the second

magnetic rigidity setting, labelled b in Table 3.2 the excitation-energy region of the PDR lies within

the momentum acceptance with the g.s not in full acceptance. Additionally, for the (p,d) reaction each

MAGNEX central angle setting had a corresponding magnetic rigidity setting to effectively exclude

the elastic component from the range of momentum acceptance. However, for the (d,p) reaction, as

indicated in Table 3.2, the same magnetic rigidity configuration ’b’ was employed for both MAGNEX

central angle settings, as the associated excitation-energy region was such that the ground state and

elastic components were not within the applicable range. The off-line analysis of the data acquired

will be detailed in Chapter 4.
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Data reduction for the 97Mo(p,d)96Mo and
95Mo(d,p)96Mo reactions

Data reduction, which is a procedure to optimise the data collected during the experiment, will be

the main focus of this chapter. This comprises crucial steps that include meticulous calibration of the

horizontal and vertical position of the scattered particles extracted from the induced charge distribution

and drift-time measurements, respectively. These quantities are important as they are required for the

ray-reconstruction procedure, being the parameters defining the phase-space vector Of ≡ (xf,θf,yf,φf)

in the laboratory frame (spectrometer reference frame). It has been shown that the relationship between

the energy loss (∆E) and the residual energy Eresid (∆E - Eresid) can provide information on the charges

of the detected ions [87]. This technique is based on Bethe’s formula [87]:

∆E ∝
mZ2

E
. (4.1)

If the beam of ejectiles is a cocktail of charged particles of different mass, a correlation of ∆E and

E will enable identification of the Z. This technique, however, is insufficient for an unambiguous

detection of charged particles with same Z but different mass (m). An additional technique thus needs

to be employed and this is based on exploiting the behaviour of a charged particle under a magnetic

field according to the Lorentz force, which relates the magnetic field B, the charge of the particle q and

its momentum p as in Equation 4.11. These techniques combined allow unequivocal selection of all

the reaction channels of interest (deuterons for 97Mo(p,d)96Mo and protons for 95Mo(d,p)96Mo) and

they will be presented in more detail in Section 4.2. Completion of the data reduction procedure allows

extraction of the final phase-space vector Of ≡ (xf,θf,yf,φf). With this information, it is then possible

to construct a transport matrix to correct for the spectrometer aberrations, up to 10th order. Once the

optimal conditions are obtained, the transport matrix is inverted and applied to the full experimental

data set to extract the initial phase-space vector. This vector contains information that is used to extract

the excitation energies and scattering angles of the ejectiles of interest. The procedure, which was

employed for both reactions and all the data sets collected at different MAGNEX angles, is discussed
39
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in detail in the next sections using the θ = 17o data set as an example for both the 97Mo(p,d)96Mo

reaction and the 95Mo(d,p)96Mo reaction.

4.1 Horizontal and vertical position calibration

4.1.1 Horizontal position calibration

The response of the segmented pads for each DC is requires calibration so as to obtain the correct

horizontal positions (Xi , i = 1,2,3,4,5,6) since these are measured from the induced-charge distribu-

tion on the pads. The calibration parameters are obtained using four pulses of different amplitudes (2,

5, 8 and 10 V). These are generated by a pulse generator and they are then sent to the proportional

wires of each DC. This is performed for all four amplitudes with the corresponding charge distribution

histograms being created. To obtain a relative calibration of the channels, a linear fit of the signal

amplitude of each pad versus a reference pad is performed and an example for one DC is shown in

Figure 4.1. Once the correct horizontal positions are obtained, the horizontal position of the track at a

point at the focal plane can be extracted. The calibration procedure is detailed in the next paragraphs.

Figure 4.1: The linear fit of the individual pad response versus a reference pad. It is from this fit that a
relative calibration of the pad response is obtained. Each data point corresponds to the four voltages (2,
5, 8, and 10 V) [7].

4.1.2 Horizontal position calculation algorithm

The induction pads, from which the induced-charge distribution for the horizontal position determi-

nation is obtained, are rotated at an angle equal to θtilt. This implies that multiple pads are excited

simultaneously and different events have considerably different charge-distribution shapes. The effect

depends on the horizontal angle of the track as seen in Figure 4.2. It has been shown that under such

conditions, the commonly used methods to extract a centroid from the induced-charge distribution
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fail [88]. Therefore, in the case of the MAGNEX FPD, a specific technique based on the centre-of-

gravity (COG) method [88] and an event-by-event iterative procedure to set the background thresholds

was developed to obtain the centroid of the induced-charge distribution. This allows the inclusion

of events with a low signal-to-noise ratio. For a more detailed prediction, each pad number n j, is

weighted using the charge induced on it (q j) allowing the calculation of the centroid pad number n as

shown in Equation 4.2:

n =
∑(q j −b)n j

Q̃
(4.2)

Q̃ = ∑(q j −b). (4.3)

Figure 4.2: Top view of a portion of the segmented anode plane. a) an ion track with a horizontal angle
θ f = 47oand the grey shading indicates the pads that are excited. b) Same as a) but for an ion track
with a horizontal angle θ f = 69o. [8]. The light grey shading indicates the cross-talk due to the pads
that are excited by the ion. The resulting charge distribution for each case is shown in the bottom part.
This figure was adapted from Ref. [8].

This is done for the condition q j −b ≥ 0, which implies that, for a pad to be included in the sum, the

charge induced on it is above threshold bias b. It has been shown that a diligent choice of bias level

in the calculation enhances the quality and stability of the measurement [88]. It was also shown in

Ref. [88] that choosing a bias level equal to the total charge measured (b = kQ = k ∑q j ) produced the

best results, which were obtained for values of k between 5×10−3 and 2.5×10−2. These values were

obtained using standard deviation to test the quality of the measurements. This procedure has been

adopted for the MAGNEX data where the standard deviation of the induced-charge distributions (see

Figure 4.3) is defined as in Equation 4.4 (for q j −b ≥ 0):

σ =

√
∑ j(n j −n)2(q j −b)

Q̃
. (4.4)
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Figure 4.3: Induced-charge distribution over DC5. The red line indicates the bias threshold obtained
after the iterative procedure discussed in the text and the centroid is indicated by the thin solid line.Top:
A typical good eventBottom: A typical bad event that will be discarded in the calibration procedure.

If the choice of the threshold bias level is accurate then the value ofs should be1 � s � 5. Thus, as

part of the COG algorithm implemented on the MAGNEX data,s is used as a control parameter in

an iterative approach. Particularly, if the value ofs for an event is outside the limits1 � s � 5, an

increment on the threshold is made in sequential steps which are controlled by the indexi as seen in

Equation 4.5:

bi = ( k+ 0:0002i)Q: (4.5)

This procedure is performed until the value ofs is within the accepted range. Iterations, typically

(smaller than 40) are performed to obtain the correct bias value. The centroid is thus calculated with

high precision, using this algorithm that has been proven to be highly ef�cient (� 97%) [8]. An

example of the charge distribution for two events in this work, one good and one bad is shown in

Figure 4.3. Another condition was added to the described algorithm in order to improve the selection




















































































































































