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ABSTRACT  

Relationships between occurrence of a species and features of habitats occupied are 

central to establish factors that influence its distribution.  Within large protected areas 

extinction processes may cause retractions of species distributions to areas that are 

still suitable or to locations least affected by a negative influence.  The aim of the 

project was to identify factors that influence the suitability of areas where sable 

antelope occur.  Climate and geographic barriers have overriding influences over 

biotic factors to identify regions that lie outside a species range.  Abiotic factors (e.g. 

geology and rainfall) indicate places with environmental conditions that allow a 

species to persist (spatial extent of a fundamental niche).  However, biotic interactions 

can constrain occupation to a limited proportion of those conditions (subset of 

fundamental niche).  I used aerial census data (1977-93) in Kruger National Park to: 

(1) model distribution patterns commonly exhibited by large ungulate species with the 

objective of identifying methods most suitable for assessing different aspects of 

species distributions;  (2)  assess how distribution patterns of 12 antelope species have 

apparently changed since around 1960 and how these changes may be related to sable 

distribution shifts or abundance decline;  (3) assess whether a climate effect could 

have caused contractions of range and abundance of sable and other rare antelopes and 

(4) identify features that restricted a widespread distribution of sable in KNP using 

logistic regression models.  

In chapter 2, I compared and contrasted performance of LoCoH and kernel 

methods for constructing distributions for species exhibiting (i) wide and continuous 

distributions with a few gaps, (ii) broad distribution with local concentrations and 

absences, (iii) linear distribution pattern associated with rivers, and (iv) a patchy 

distribution pattern.  The methods have valuable capabilities for assessing different 

objectives of species distributions.  The type of spatial distribution exhibited by a 

species influences the performance of these methods.  This contrasts generalizations 

from home range studies that suggest superiority of one method over the other.  The 

LoCoH method tends not to include areas where a species was not recorded.  In 

contrast, kernel method exhibited the opposite bias.  However, their differences were 

not large enough to lead to a diverse interpretation of range extents or occupancy 

patterns.  Automatic procedures of choosing h appeared not adequate for mapping 

distribution patterns of species that occur in patches where outlines of outer 
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boundaries are not clearly defined or for those species exhibiting clumped occurrences 

in places and widespread occurrences elsewhere.  A different h value may be 

necessary for each section of such a distribution with fixed kernel method.  This is 

achieved by dividing a study area into separate sections and mapping the ranges 

independently.  The LoCoH is suitable for indicating gaps and/or fine-scale range 

shifts.  However, LoCoH method may have to be applied with caution for species 

exhibiting continuous distributions because there is a possibility of emphasizing 

unimportant gaps.   

Despite the fact that distribution patterns around 1960 were vaguely complied, 

it appeared that common species have increased occupation of northern half of KNP 

and several species (impala, buffalo, wildebeest, warthog, and waterbuck) have been 

sighted during dry season (1980-1993) in areas indicated around 1960 as wet season 

range.  The 1980-1993 distribution of impala, warthog, and waterbuck appeared more 

widespread away from rivers than around 1960.  Distributions of sable, tsessebe, 

eland, and roan contracted in northern half and in central region of KNP.  Fences that 

blocked migrations of wildebeest and zebra outside the park to the west of central 

KNP appeared associated with distributional changes of herbivores in this area.  

Augmenting surface waterpoints was a key influence in expansions of distributions of 

common species into northern half of KNP and for occurrences of some species 

during dry season in areas previously used during wet season.  The contractions of 

distributions of rarer antelopes occurred concurrently with expansions of common 

species into northern half of KNP where rare antelopes mainly occur.  The above 

suggests that some areas of northern half of KNP may have become less suitable to 

rare antelopes.   

Despite that the exact influence of climate on rarer antelopes could not be 

established, distribution pattern changes were characteristic of an influence consistent 

with that of climate.  Range contractions were evident for all three species (sable, roan 

and Tsessebe), associated with local herd extirpations, especially following the severe 

1991/2 drought.  Herds of sable, roan, or tsessebe that occurred in isolated locations 

disappeared and ranges contracted even in the relatively wetter southern section of the 

park.  Sable herds persisted in discrete patches after a widespread contraction of their 

formerly contiguous range in northern section.   

Sable prevalence was highest on nutrient poor granite and sandstone rather 

than nutrient rich basalt and gabbro.  Distances from perennial water sources did not 
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have overriding influences on where sable herds occurred.  Sable prevalence was 

higher in mopane savanna woodland and sour bushveld than shrubland, dense bush 

savanna, or grassland with few trees.  Sable herds were prevalent in localities that 

exhibited relatively low predation risk and low effects of competition from abundant 

grazers, implying that at the edge of a range, interactions involving biotic factors 

appear more important than searching for areas which potentially have more forage 

resources.  Predation risk appeared more influential to sable distribution than 

competition.  Findings showed that biotic factors strongly modify effects of abiotic 

factors on where rare and sedentary species establish.  
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CHAPTER 1 

Introduction 
AIMS AND OBJECTIVES 

Broad Aim 

The main aim of the project was to identify factors that influenced habitat suitability 

for sable antelope.  

The starting objectives were 

1. To identify environmental features associated with the historical sable 

distribution in Kruger National Park. 

2. To identify environmental features associated with the recent distribution of 

sable.  

3. To identify environmental features associated with variation in presence of 

sable within their recent distribution range. 

4. From this basis, to develop a habitat suitability model for sable for the Kruger 

National Park.  

5. To test the model by applying it to data for sable distribution and habitat 

features in Hwange National Park

 

The study was designed as part of a research programme undertaken by the 

Centre for African Ecology at the University of the Witwatersrand.  The aim of the 

programme was to understand the ecology of the rare antelope species that are 

declining in the Kruger National Park (KNP).   

Initially, the research plan consisted of two major phases; i) developing a 

habitat suitability model for Kruger National Park and ii) testing the model using sable 

distribution data for Hwange National Park, Zimbabwe.  The original plan was later 

modified because of time constraints.  Objective number 5 was put on hold and 

objective number 1 was changed to: ―to establish recent changes to historical 

distributions of large ungulate species in the KNP‖.  The focus of the new objective 

was (a) to assess whether perceived contractions of distribution and abundance had 

occurred only to sable antelope, and to document distribution patterns of other large 

ungulate species in KNP reliably as a basis for assessing future changes, and b) to 

assess if changes in distribution patterns of common species and changes in sable 

antelope distribution and abundance were associated.  Another two objectives were 
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incorporated into the study; first, to compare performances of Local convex hull and 

kernel methods in estimating large scale distribution ranges across KNP using species 

that exhibited different spatial patterns of occurrences.  The motivation for this new 

objective was that obtaining information on how a probability of occupation of an area 

changes over time could be important in addressing concerns on range shifts and/or 

species losses in most conservation areas.  The latter is important because it helps 

distinguish concentration areas from marginal sections within occupied regions and 

helps identifying localities where a species is likely to disappear.  The second new 

objective was ―to establish if climate influences were implicated in the perceived 

shifts in distributions and declines in abundances of sable and other rare antelopes in 

KNP‖.  The motivation for this objective was that since KNP is at the edge of the 

geographic distribution of sable in Africa then climate change effects could be 

implicated in their population decline.    

 

THE NEED FOR THE STUDY 

 

Sable antelope (Hippotragus niger) numbers have progressively declined in 

parts of Southern Africa.  Since 1986, abundance of sable in KNP dropped from 2 240 

individuals in 1987 to an estimated 550 in 1995.  Tsessebe counts that peaked at 1 163 

in 1986 had dropped to an estimated 250 animals by 1995.  During the same period, 

roan that numbered about 450 animals in 1986 dropped to an estimated 25 free-

ranging animals by 1995 (Grant et al. 2002, Ogutu & Owen-Smith 2003, Owen-Smith 

& Ogutu 2003).  Evidence from previous studies implicated an increase in abundance 

of lion, coupled with shifts in prey selection as being responsible for the downturn in 

population trend of these species after 1987 (Harrington et al. 1999, Owen-Smith & 

Mills 2006, 2008).  Underlying this was expanded surface water availability through 

the provision of artificial waterpoints.  A drought in 1991/2 may have additionally 

contributed to decline of these species through limiting availability of forage resources 

(Ogutu & Owen-Smith 2003).  Such stressful conditions could be associated with 

increased susceptibility of ungulates to predation (Ogutu & Owen-Smith 2005, Owen-

Smith et al. 2005).  Some artificial waterpoints have been closed since 1993, but 

populations of the rarer antelope have not recovered (Grant and van der Walt 2000).  

Surveys in the KNP show that kudu (Tragelaphus strepsiceros) and waterbuck (Kobus 
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ellipsiprymnus) that declined during periods of low rainfall (Owen-Smith & Ogutu 

2003) have recovered.   

  The sable antelope constitutes an interesting model species because it occurs 

more commonly in wetter regions of Africa, but is at the southern edge of its 

distribution in KNP (Skinner & Chimimba 2005), the species forms sedentary and 

cohesive breeding herds (Estes 1991).  Sable antelope exhibits a patchy distribution in 

KNP (Pienaar 1963).  This provides an opportunity to distinguish factors such as 

resources or biotic influences that are associated with areas the species occupy, or 

factors that could exclude occupation of certain areas within the park.  The present 

study covers a period when sable numbers were declining in the park; hence, it 

contributes to exploring potential causal mechanisms.   

 

 

LITERATURE REVIEW 

 

 

Sable distribution in Africa 

 

There are three subspecies of sable in Africa: Hippotragus niger niger, H. n. 

roosevelti and H. n. variani.  The subspecies H. n. roosevelti and H. n. variani occur 

in Kenya and Angola respectively.  The subspecies H. n. niger exhibits the largest 

distribution occurring in Zimbabwe, Botswana, South Africa, Zambia, Mozambique, 

and Malawi (Stuart & Stuart 2000, Skinner & Chimimba 2005).  The Crocodile River 

forming KNP’s southern boundary was the historical southern limit in sable 

distribution, while south eastern Kenya was the limit in the north (Wilson & Hirst 

1977).  The sable western limit extended from Botswana into regions of Angola 

(Wilson & Hirst 1977).  The giant sable (H. n. variani) was limited to the area 

between the Cuanza and Londo Rivers in Angola (Wilson & Hirst 1977).    

 

Landscape and habitat selection 

 

Gertenbach (1983) defined a landscape as an area that exhibit a specific 

geomorphology, climate, soil, and vegetation pattern together with associated fauna.  

Landscapes are composed of mosaics containing inter-linked patches of different 

shapes and sizes (Garshelis 2000, Wiens 1985).  A patch is an area that differs from 

neighbouring areas (Wiens 1985).  The above defines a patch as a discrete and 
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homogenous entity, but in reality, such patches are rarely encountered.  Instead, 

natural landscapes contain mosaics of patches within patches over broad scales (Wiens 

1985, Garshelis 2000).  Thus, mosaics of patches reflect spatial heterogeneity, and 

changes in the pattern and process over time reflect temporal heterogeneity of the 

system (Pickett et al. 2003).  Processes determining heterogeneity include different 

plant and animal species occurring over time, foraging behaviour, predator-prey 

interactions, dispersal, nutrient dynamics, and disturbances (Belsky 1995).  The above 

processes have two important and implicit properties of landscapes: namely 

heterogeneity and scale (Garshelis 2000).  Thus, issues of habitat selection in a 

heterogeneous environment require sensitivity to spatial and temporal scale.   

In semi-arid environments, selection of a habitat and its utilization by grazers 

(Western 1975) and cattle (Scoones 1995) is primarily dependent on location relative 

to water.  Different habitat choices result in animals being non-randomly distributed in 

space (Dugatkin 2004).  Habitat is an area with a combination of resources (such as 

food, water, etc) and environmental conditions (temperature, precipitation, presence or 

absence of predators) that enables occupancy and use by individuals of a given species 

or population and allows those individuals to survive and reproduce successfully 

(Morris et al. 1992).  The patterns of habitat distribution can be seen as a consequence 

of decisions by animals in selecting a place in which to live or feed perhaps during 

unfavourable times.  These decisions can be based on biological factors such as 

predation, location of mates etc, or be based on environmental factors such as food or 

availability of water etc.   

Suitable areas are those that afford conditions necessary for maintaining a 

viable population.  Some places support more individuals of the same species than 

areas that are marginally suitable.  The preference for an area can change seasonally in 

relation to seasonal availability of food plants.  For example, an area with palatable 

deciduous species for browsers may not be preferred in the dry season when plant 

species lose their leaves but become preferred during the growing season (Owen-

Smith & Cooper 1987).    

Studies of factors influencing habitat selection and resource use arrive at 

different conclusions at different scales of analysis (Johnson 1980).  This is because 

habitat selection is a hierarchical process (Senft et al.1987, Bailey et al. 1996).  From 

a broader scale, an animal occurs in a range but then makes decisions as to which 
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habitat to occupy and when to use it at much finer and narrower scales (Rosenzweig 

1985, Senft et al. 1987).   

 As habitat selection occurs in a hierarchical fashion, a number of orders of 

selection have been assigned (Senft et al. 1987, Bailey et al.1996, Owen-Smith 2002).  

The fifth order is the procurement of food items (Bailey et al.1996, Owen-Smith 

2002).  The fourth order pertains to a feeding station.  For example, food at a feeding 

station could be an extended herbaceous sward (Bailey et al. 1996).  The distribution 

of feeding stations within a locality forms a patch, which constitutes the third order of 

selection (Senft et al. 1987).  A patch is defined as a cluster of feeding stations 

different from its surroundings and other clusters in appearance, and size (Bailey et al. 

1996).  Patches require search time and assessment of risks before occupation.  The 

second level is the home range, which encompasses various patches.  Animal 

activities can last for several months, years or a lifetime in a home range.  The 

geographic region (first order of selection) is the broadest scale and species 

occurrences at this level are influenced by the climatic conditions under which a 

species can persist (Johnson 1980).  Thus, at this very broad scale, certain regions lie 

outside a particular species range.   

Habitat choice models have been produced to explain how animals distribute 

themselves in space and time with respect to resources in the environment 

(Rosenzweig 1985, Morris 1991).  The Ideal Free Distribution (IFD) is a density-

dependent habitat selection model (Rosenzweig 1991).  The IFD assumes that 

individuals select a habitat in relation to fitness (i.e. reproductive success) (Morris 

1989, Pulliam & Danielson 1991) and assumes that fitness is a function of density.  In 

this model, species distribute individuals proportionately as regards to resources that 

can be obtained from the habitats (Rosenzweig 1991)  

 The despotic model incorporates species interactions such as monopolization 

of resources through dominance and/or territorial behaviour, and exclusion of other 

individuals from exploiting resources, thus relegating these less dominant individuals 

to less suitable habitats (Rosenzweig 1985).  Pulliam (1988) documented that animals 

in different habitat types exhibited differences in reproductive success.  Therefore, 

habitats that offer better reproduction and survival chances are occupied by more 

individuals compared with those that offer lower reproduction and survival chances.  

Thus, a proportion of individuals may occur in a ―source‖ habitat (i.e. one that over a 

long period presents no net change in population size but exports its surplus of 
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individuals to sink habitats) (Pulliam 1988).  A ―sink‖ habitat is where within-habitat 

reproduction is insufficient to balance local mortality.  Nevertheless, populations may 

persist in such marginal habitats, their numbers being locally maintained by 

immigration from source areas (Pulliam1988, Morris 1991).   

In a source-sink situation, individuals occupying better habitats achieve higher 

fitness through interactions such as dominance and exclusion.  In the source, through 

increased density and competition, animals redistribute themselves among the 

remaining habitats.  However, the IFD model assumes that gains are experienced 

immediately as resources are exploited (Owen-Smith 2002).  The model assumes that 

food renewal is continuous and so no depletion occurs.  Neither assumption is close to 

the real situation for herbivores where the effects and consequences of competition 

may not be immediately felt (Owen-Smith 2002).  For herbivores, competition results 

from resource exploitation and its effects are not experienced immediately but at a 

later stage when less food remains as a result of feeding by competitors.  In semi-arid 

areas, effects of resource depression on habitat choice may not be that important 

during the wet season as compared with the dry season (Owen-Smith 2002).  Thus, 

habitat distribution models have to accommodate resource variability for herbivores in 

semi-arid areas of Africa.  The models should incorporate different mosaics of 

resources and related benefits of exploiting heterogeneous food types such as a) high-

quality and quick growing foods in wet season, b) reserve resource sustaining 

herbivores during early dry season, and c) poor-quality, high bulk foods serving as a 

buffer during late dry season.  Therefore, depletion of resources is selective and 

habitats vary in the value of food they offer at different stages in the seasonal cycle as 

well as in productive potential.  Furthermore, density of animals could be a misleading 

indicator of habitat suitability.  An increase in predation risk may cause animals to 

crowd in safe areas although those areas may not be suitable.  Besides, simple 

comparisons of densities between two areas may not produce information on whether 

it is a sink or a source habitat (Pulliam 1988).  Other habitat selection models consider 

areas most frequently occupied by animals as representing ―high quality‖ habitats or 

contributing more to fitness (Garshelis 2000, McLoughlin et al. 2002, Osborne et al. 

2001).  However, in certain circumstances areas with large herbivore concentrations 

may attract presence of predators, thus increasing the risks of mortality (Brown et al. 

1999).  Therefore, simply identifying habitats with high herbivore densities and 

considering them as suitable may be misleading.   
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Vegetation structure, season, and resource components that bridged critical 

periods were central in a habitat suitability model for greater kudu (Tragelaphus 

strepsiceros) (Owen-Smith 2002).  The model identified the important contribution by 

previously less preferred food resources in the wet season through buffering animals 

during critical times of the dry season.  Thus, resource preference and selection is 

dependent upon time of year and abundance of other resources.  These less preferred 

resources sustain herbivore population levels.   

 

Resource selection function models 

 

These models are increasingly becoming important in conservation because 

they allow quantitative characterization of resource use, estimate occurrence of 

animals by habitat type (Boyce et al. 2002) between large and small scales in a form 

conducive for management purposes (Boyce & McDonald 1999).    

Resource selection models developed for habitat selection by moose (Alces 

alces) (Neu et al. 1974, Erickson et al. 1998) and for pronghorn antelope (Antilocapra 

americana) (Ryder 1983 cited in Manly et al. 2002) and a habitat suitability index 

developed for moose (Dettki et al. 2003) have demonstrated the potential offered by 

these tools.  Habitat selection was influenced by seasonal shifts in food species 

composition and availability.   

Boyce et al. (2003) documented seasonal differences in habitat selection by 

elk.  Summer habitat selection was determined by nutrient content of the food 

(quality) and vegetation species composition.  Species richness or quality of the 

resource was not important during winter periods.  Snow depth influenced habitat 

choice in winter.  Elk selected habitats with little accumulation of snow.  This model 

identified that management by burning benefited elk in summer but reduced use of the 

same habitats in winter as burnt areas were avoided.   

Ecological Niche Factor Analysis (Hirzel et al. 2002) has also been used to 

assess habitat suitability for ibex (Capra ibex nubiana).  Hirzel et al. (2002) reported 

that ibex selected high altitudes, steep and rocky slope habitats.  The model identified 

habitats close to human activities and dense forest habitats as marginal for ibex.  

However, the model did not satisfactorily explain why some suitable and quality 

habitats were not selected.  Another concern with ENFA techniques is that they can 

only handle linear relationships (Hirzel et al. 2002).  In ecology there are very few 
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linear relationships.  Habitat selection by an ungulate is certainly affected by several 

factors, which may show non-linear influences and at times the same factors present 

interactions amongst themselves.    

Remotely sensed NDVI (Normalized Difference Vegetation Index) has been 

used in landscape vegetation classifications being based on similarities of reflected 

radiation of the phenological attributes of vegetation (Nemani & Running 1997).  

NDVI is derived from the red: near infrared reflectance ratio [NDVI = (NIR – RED)/ 

(NIR + RED)] (Pettorelli et al. 2005), where NIR and RED are values of near-infrared 

and red light respectively as reflected by vegetation and picked up by satellite sensors.  

NDVI has yielded positive correlations with vegetation biomass and shown spatial and 

temporal distribution of vegetation communities (Pettorelli et al. 2005).  The NDVI 

can be used for quantitative characterization of green biomass (Oesterheld et al.1998).  

The latter is possible since green vegetation can be spectrally distinguished from 

senescent vegetation, soil and rock by chlorophyll’s absorption of red wavelengths 

and by high reflectance of near-infrared (NIR) wavelengths due to leaf and canopy 

structure (Wessman et al. 1997).  Remotely sensed NDVI data sets are available from 

the Advanced Very High Resolution Radiometer (AVHRR) onboard the National 

Oceanic and Atmospheric Administration (NOAA) polar satellites (Kerr & Ostrovsky 

2003).  

High NDVI values are typically associated with green vegetation such as 

closed canopy woodland or a continuous layer of green grass and low NDVI values 

are generally associated with non-continuous vegetation cover, sparse shrub cover, dry 

grass or exposed bare soil (Oesterheld et al. 1998, van Bommel et al. 2006).  

Enhanced Vegetation Index (EVI) is incorporated in Moderate Resolution Imaging 

Spectroradiometer (MODIS) and provides better quality and much higher spatial 

resolution (up to 250 m), while also matching AVHRR’s almost-daily global 

coverage.  In other words, MODIS will provide images over a given pixel of land just 

as often as AVHRR, but in much finer detail, hence this data can be applied for 

monitoring canopy type, canopy structural variations, and architecture (Nemani & 

Running 1997, Pettorelli et al. 2005, Oesterheld et al. 1998).  A temporal analysis of 

NDVI values can provide information on the effects of a delayed or an early start of 

the growing season to vegetation abundance.  This provides clues to the expected 

performance of herbivore populations in relation to available food (Pettorelli et al. 
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2005).  NDVI values were correlated with reindeer calf condition in spring and used to 

predict calf winter survival (Pettorelli et al. 2005).   

Griffith et al. (2002) cited in Pettorelli et al. (2005) showed that caribou 

(Rangifer tarandus) selected annual calving areas with higher rates of vegetation 

greening.  The above studies show the potential of NDVI values to become better 

predictors of herbivore biomass than annual rainfall.  This is because satellite 

information has greater coverage for each area than rainfall data.  Rainfall and other 

field data are challenging to use for predicting regional changes because such data are 

generally collected at small spatial and temporal scales, and vary in their reliability in 

different places.  

 

Herbivore habitat selection in Africa 

 

Catenas present soil sequences that are associated with different plant 

communities from uplands to bottomlands (Belsky 1995).  This topography has effects 

on water availability for plants and determines the proportion of green leaf that 

remains in the sward through the dry season (Owen-Smith 2002).  Bell (1971) found 

that buffalo, zebra, wildebeest (Connochaetes taurinus), topi (Damalicus lunatus), and 

Thomson’s gazelle (Gazella thomsonii) selected habitats on high ground in the wet 

season where nutritious short grass dominated.  With the progression of the dry season 

the herbivores selected habitats towards the bottom of the catena where tall and 

medium grasses of poor quality prevailed.  This habitat selection down the catena 

occurred in a determined sequence with bigger sized herbivores going first (Duncan 

1975).  Bell (1971) referred to this as ―grazing succession‖.  

 Dry season is critical for herbivores in Africa and they have to adapt their 

habitat choices or feeding strategies to cope with the limited forage (Scoones 1995) 

and limited drinking water availability.  Scoones (1995) termed cattle feeding areas 

used during the dry season as ―Key resource areas‖.  Thus, in seasonal systems 

herbivores are limited by their ability to survive the dry season when most plants are 

dormant (Illius & O’Connor 2000).  Dry season water availability influences habitat 

selection in seasonal savannas because it contributes to the retention of green 

vegetation.  Western (1975) described herbivores as either ―water-dependent or water-

independent‖ depending on their distributions in relation to distance from permanent 

water sources.  Water-independent species are mainly browsers that rely on high water 
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content in their diet and grazers are mostly water-dependent since they have to 

frequently drink water.   

The same patterns were also reported by Lamprey (1963) who observed zebra, 

wildebeest, hartebeest (Alcelaphus buselaphus cokii) using areas close to water 

sources, but impala (Aepyceros melampus), oryx (Oryx besia callotis), and Grant’s 

gazelle remaining in habitats without free water for long periods.  Animals used wider 

home ranges in the wet season because they were not restricted by localized 

distribution of water (Western 1975).  However, with pools drying out in the dry 

season grazers shifted back into areas within 4 km distances of permanent water but 

browsers showed little change in biomass or densities with distance from water.  

Similar patterns were documented by Ayeni (1975) for Tsavo National Park, Kenya 

and Redfern et al. (2003) for KNP, South Africa.  Ayeni (1975) documented 

herbivores remaining within 5 km of water sources throughout the dry period.   

Landscapes in KNP are on soils originating from varied geological substrates 

(Gertenbach 1983, Venter et al. 2003) and vegetation structure and composition 

changes with respect to these broad soil types.  Generally, the main substrates are 

granite, basalt, gabbro, karoo sediments, ecca shales, rhyolite, and sandstone.  Basalt 

gives origin to clay soils and sandy soils originate from granite.  Clays hold water 

molecules strongly in contrast with sandy soils where water infiltrates the soils and 

remains available longer to plants (Scholes & Walker 1993).   

 In Kyle National Park, Zimbabwe, Ferrar and Walker (1974) observed that 

duiker selected woodland areas while tsessebe, warthog, and wildebeest used open 

areas with short grass.  Impala, sable, zebra, and kudu selected for sparsely wooded 

and shrubland with tall grass.  Herbivore ranges overlapped during use of green 

vegetation after burns.  

 

Predation 

 

Predation risks are related to habitat structure and have been reported to 

influence ungulate spatial distributions (Kie 1999).  Mule deer (Odocoileus hemionus) 

and black-tailed deer (O. h. columbianus) avoided good feeding areas that occurred 

away from hiding and escape cover when mountain lions (Felis concolor) were within 

their range (Kie 1999).  Sinclair (1977) reported that wildebeest herds avoided places 

surrounded by thick vegetation, which might conceal predators when approaching a 
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river.  Ungulates can reduce risk of predation by aggregating in open areas with 

increased visibility, and group sizes increase with predator abundance (Durant 1998, 

Kie 1999).  It is not easy for a predator to approach a bigger group of ungulates 

without being detected (Sinclair 1977).  

    Studies on carnivores in KNP (Mills & Funston 2003) confirmed that lions were 

less successful in open areas and with larger groups of herbivores.  Changes in 

vegetation structure caused by high rainfall (1972-1977) resulted in wildebeest and 

zebra making use of medium-height or tall grass for longer periods and consequently 

influenced their vulnerability to predation (Smuts 1978).   

 Artificial perennial water points keep animals resident in an area and thus 

predation risk may increase.  If predators do not follow migratory herds, such 

herbivores become unavailable to those predators during part of the year.  This may 

limit the number of predators and thus prey can escape predator regulation (Fryxell 

and Sinclair 1988).    

Interactions between predation, resources, and habitat use may arise, with 

resource deficiencies causing animals to move into more risky areas, and predation 

risk causing them to crowd into depleted areas (Lingle 2002).  Herbivores with similar 

food, environmental and resource requirements may end up selecting different habitats 

because they differ in their susceptibilities to predation (Lingle 2002).   

 

 

Sable habitat selection 

 

Sable herds in Kenya selected habitats on edges of forests with tall grass and 

sparse tree canopy cover (Sekulic 1981).  Sekulic (1981) observed three factors 

influencing sable habitat choice; 1- grass height (sable showed preference for 

medium-tall grass), 2- density of trees and bushes (sable preferred open areas with 

sparsely distributed trees and bushes), 3- plateau or hills (sable used mid-slopes 

frequently).  Sable herds did not use thick woodland areas and avoided upland slopes 

during the dry season.  The avoidance of slopes and selection for valley habitats by 

sable in the dry season was ascribed to green leaf still available in valleys.      

Stevenson-Hamilton (1947) indicated that sable preferred areas interspersed 

with thickets for shade and open valleys for grazing.  Joubert (1974) documented a 

home range of 20 – 40 km
2
 for sable in KNP (cited in Harrington et al. 1999).  
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Another home range estimate of 44 km
2
 was reported in Pilanesberg National Park, 

South Africa (Magome 1991).  Movement of sable outside their home range into areas 

that have recently been burned to take advantage of new green flushes of food have 

been documented (Magome, 1991, Sekulic 1981).  Sable showed seasonal habitat 

selection in Angola (Estes & Estes 1974).  Wet season habitats included the miombo 

(Brachystegia) woodlands and the ecotone between woodlands and grasslands with 

grass species containing higher nutrients contents.  In the dry season sable selected for 

green marshes.   

In Pilanesberg National Park, South Africa, Magome (1991) observed that 

sable avoided open savannas and secondary grasslands.  At the same time, those 

avoided habitats were selected by wildebeest, white rhino, hartebeest, and zebra.  

Hence, this separation partially reduced competition between sable and these other 

ungulates.  Avoidance of open grasslands is consistent with observations by Grobler 

(1974), and Wilson and Hirst (1977).  However, selection for more open grassland by 

sable in Kenya was attributed to absence of their favoured open woodland in the area 

(Sekulic 1978).  In Pilanesberg National Park, sable used slopes in the wet season and 

bottomlands during dry season (Magome 1991).  Bottomlands were avoided possibly 

due to tall grass stands with high stem to leaf ratio during the growing season.  Sable 

females selected for valley savanna thickets and valley habitats during the calving 

period (February-March).  Possibly this choice was influenced by the need for cover 

from the long grass to hide calves (Magome 1991).  Thus, calving influenced this 

habitat choice.  There was no selection for any vegetation type in the dry season since 

sable randomly used the valley savannas and thickets.  Sable still continued to use the 

hill slopes during the dry season and this partially separated them from other grazers, 

except for zebra and hartebeest, which used the hill slopes towards the end of the dry 

season.  Magome (1991) reported a feeding preference by sable for grass height 

between 100 mm and 300 mm.  

 In Kgaswane Mountain Reserve, South Africa sable were reported to be 

selecting open woodland areas in the early and mid dry season and vlei grassland at 

the end of the dry season (Parrini 2006).  In this area, Parrini reported that sable 

selected grasses that were green and with less stems.  Sable avoided short grass (<100 

mm) and tended to take more medium to tall grass (100 - 200 mm) but without 

avoiding tall grass (> 400 mm).  
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Competition 

 

According to Ecological Aerial Surveys (EAS) of KNP (1980-1993) and 

Redfern et al. (2006), zebra, impala, wildebeest, and buffalo are abundant and widely 

distributed across the park including northern section of the park where sable mainly 

occur.  Zebra selected for medium to tall grass heights in Serengeti (Bell 1971).  Zebra 

used both uplands and bottomlands but made more use of bottomlands in dry season 

on a game ranch in Northern Province of South Africa (Gureja & Owen-Smith 2002).  

Preference for bottomlands in dry season by buffalo has also been reported (Sinclair 

1977, Macandza et al. 2004).  Buffalo have been reported to use tall riverine grass in 

East Africa although actual measurements are not available (Sinclair 1977).  Thus, 

competition may occur for grass heights and space on the landscape.  In Matopos, 

Zimbabwe, Grobler (1981) observed that impala and wildebeest grazing kept grass 

heights below 40 mm, a fact he suggested excluded sable from using the same 

patches.  Estes and Estes (1974) noted that impala and wildebeest shared range with 

sable in Angola suggesting a possibility that the species could compete for some 

resources.  Competitive effects among these species may be important during the dry 

season when resources are sparsely available, and less abundant (Owen-Smith 2002) 

and animals may expand their diets to include less formerly preferred resources.   

 

Thesis Structure 

 

 This thesis has been written in a style whereby the majority of the chapters 

have been written as individual papers.  Each chapter (except Introduction and 

Conclusion) contains an Abstract, Introduction, Methods, Discussion, and References.  

As a result of adopting this style, there is some degree of repetition between chapters 

(i.e. study area, data source, and references).  Different time segments from the period 

1977-2007 were selected for assessing the specific objectives outlined in different 

chapters of this thesis.  Broadly, consideration of which time segment to use for 

assessing which particular objective was depended upon (a) the EAS survey coverage, 

(b) time when extreme events such as droughts occurred, (c) time of initial rare 

antelope decline, and (d) time of changes in distribution patterns of abundant species.  

For example, I used the period 1980-1993 for investigating potential methods that 

could be applied to asses large scale distribution patterns and used the same period for 
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documenting changes within distribution patterns of all 12 species because EAS 

surveys covered all sections of KNP during that time.  The complete survey coverage 

offered an opportunity to identify all habitats occupied by a particular ungulate.  I used 

the period 1977-1997 for assessing rare antelopes range contractions and for 

documenting factors that restricted a widespread distribution of sable antelope because 

the focus here was a) to characterize features associated with all areas that sable 

occupied and b) to note all areas where sable and other rare antelope had lost ranges.  

It would have been not accurate to consider locations where sable were sighted after 

1993 as not part of their range.  Thus, the main focus here was to use all records of 

where sable herds were sighted regardless of whether EAS covered the whole park or 

no for reliable inferences on range losses and identifying where sable do not occur.  

Changes in distribution of certain herbivore species after 1984 were associated with 

contraction of sable abundance and distribution after 1988, hence I assed competition 

and predation effects up to 1984.  This period offered an opportunity to investigate 

what factors limited distribution of sable antelope before the population declined.   

The general plan was to submit each chapter to peer reviewed journals as they 

were finished.  Two chapters: 2 and 4 have already been circulated out to some 

colleagues for comments.  Please note that chapter 4 has been co-authored by Norman 

Owen-Smith, Valerio Macandza, and Elizabeth Le Roux with the aim of publication.  

Valerio Macandza and Elizabeth Le Roux supplied data for sable herds collared at 

Punda Maria and Pretorius Kop respectively.  I analysed all the data and wrote the 

drafts.  Valerio and Elizabeth suggested comments on how to improve those drafts.  

Professor Owen-Smith contributed to the final draft helping editing and tightening the 

overall story.  Roughly, my contribution is about 55-60% in the co-authored paper.   

Despite a widespread use of the concept of ―distribution range‖ and concerns 

on reducing rates of species loss amongst conservationists, there was no study that 

clearly outlined how variation in probability of a species occurrence within occupied 

landscapes was determined.  There was no indication on how concentration areas 

(core ranges) might be distinguished from other sections of a range.  I concluded that 

whilst the concept of ―distribution range‖ is fundamental in ecology, uncertainty in its 

estimation is primarily associated with data scarcity, poor data quality, and limited 

abilities to depict actual areas of occupancy.  Thus, generally, all parts of a landscape 

where individuals have been sighted are assumed suitable for the species.  However, 

in reality this is not the case because gaps exist within occupied ranges (Getz et al. 
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2007).  Two concepts are critical in describing and quantifying distribution ranges, 

first, the area within the outermost limits to occurrence of a species (i.e. potential 

range), and second, the areas over which the species is actually found (i.e. actual 

occupied) (Gaston 2003).  

 In chapter 2, different methods (LoCoH algorithm and kernel) were examined 

with the aim of finding an appropriate method that could be applied to address some 

of the mentioned methodological challenges encountered during studying large scale 

distributions.  Real and long term data of animal herd locations were used to compare 

and contrast performances of the two methods at estimating distribution ranges for 

species of various spatial patterns.  Performances of the two methods were compared 

with that of the commonly used tile/grid based approach.  This chapter was 

fundamental in providing a base to the other chapters because it suggested which 

method was appropriate for each of the various objectives set out in this thesis.     

Next, chapter 3 provides an example of a purpose for which the fixed kernel 

method might be preferable over the LoCoH algorithm.  The chapter addresses the 

objective concerning establishing recent changes to historical distributions of large 

ungulates in KNP.  Because fixed kernel method was unlikely to underestimate 

distribution range extents (i.e. is not sensitive to gaps, and minimizes type I errors 

with spatially sparse data, with small sample sizes and/or with data that present lower 

spatial accuracies), it was appropriate for documenting all areas where a species could 

possibly have occurred from 1980-1993.  The fixed kernel method was thus 

appropriate to reveal changes in distributions when recent patterns were compared 

with estimates of around 1960 when non rigorous scientific methods of data collection 

were employed.  Distribution patterns of large herbivores in KNP were examined in 

relation to landscapes favoured and avoided as a basis for assessing future changes.  In 

addition, chapter 3 examined changes in proportional distribution of each species in 

the four census regions in KNP (1980-1993).   

Chapter 4 provides an example of a purpose for when the LoCoH algorithm 

(i.e. both sensitive to gaps and less influenced by outliers) could be preferred over 

kernel method.  Chapter 4 addresses the objective concerning establishing if climate 

influences were implicated in the perceived shifts of sable or other rare antelope 

distributions.  In this chapter, mechanisms contributing to rare antelope population 

decreases were explored further by assessing changes in distribution patterns 

associated with them.  The purpose was to reliably examine fine scale changes of 
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occupancy including changes in extents of areas occupied by individual herds.  The 

analysis was based on two sources of data: (a) aerial censuses of large herbivores 

carried out annually from 1977 to 1997, and (b) sizes of areas occupied by surviving 

herds of sable antelope tracked in two regions between 2001 and 2007.  Changes to 

annual calf recruitment and herd sizes were also examined.  The expectation was that, 

if habitat deterioration as a consequence of lowered rainfall was the main influence, 

range contraction would be greater in the drier northern section of KNP than in the 

wetter south-western region.  However, if effects other than rainfall were the main 

influence, then contractions of range, herd sizes, and recruitment would be patchy 

because such influences would unlikely be evenly spread in the park.   

   Chapter 5 addresses two objectives concerned with identifying environmental 

features associated with recent sable distribution and variation of sable presence 

within their recent distribution.  Chapter 5 provided an example of the purpose for 

when the tile based approach is the preferred choice over kernel or LoCoH methods.  

The purpose for which the tile based approach could be preferable over kernel or 

LoCoH methods is for example when the objective is to assess factors influencing 

occupation, change in occupation or lack of occupation of specified areas plus when 

there is a need to maintain the sizes of those areas constant over time (e.g. perhaps 

size of home ranges).  A tile size scale can easily be maintained constant across the 

whole park and over time.  The latter allows an opportunity to apply rigorous 

statistical tests to the data.  The aim was to determine which factors restricted a wider 

distribution of sable in KNP.  Tile sizes that approximate sable home range estimates 

were maintained across KNP.  Competition and predation effects were estimated in 

each of those tiles across the 20 000 km
2 

of KNP.  A proxy for competition using 

biomass of species (impala, wildebeest, buffalo, and zebra) was developed.  A proxy 

of predation risk was developed using prey available for lions.  Vegetation and 

geological zones distinguished by Gertenbach (1983) and Venter (1990) were used to 

distinguish specific vegetation attributes in those tiles.  Geographical positions of 

herds and herd sizes were obtained from EAS surveys of larger animal species (1978–

1983) in KNP.  Park-wide aerial surveys (1978-1988) were used to distinguish 25 km
2
 

tiles occupied by sable herds from unoccupied regions.  Logistic regression models 

were fitted to estimate the probability of presences/absence of sable herds as a 

function of the biotic and abiotic factors.   
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 Chapter 6 (conclusion and recommendations) is an overview of all the findings 

and links each chapter in the bigger picture of sable ecology and distribution patterns 

in KNP.  The chapter pointed out main differences between distribution of sable and 

that of abundant grazers in response to effects of competition, predation, rainfall, and 

distribution of waterpoints, and how these could help understand why sable are rare 

and why they exhibit a restricted distribution in Kruger Park.  Areas that still need 

further research were noted.  Consideration was also given to what this study has 

achieved in terms of sable management and conservation.    

 There are four appendices, which cover (i) details of methods, (ii) figures from 

the methods chapter (2) that illustrate several issues on performance of each 

technique, (iii) summary of simplified landscape and land type categories based on 

Gertenbach (1983) and Venter (1990), and (iv) a table of prey species considered in 

developing the predation proxy, prey body mass, a weighting factor in terms of how 

much each prey species contributes to lion diet.  
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CHAPTER 2 

Comparison of kernel density and local convex hull 
methods for assessing distribution ranges of large 
mammalian herbivores using aerial survey data  

 

ABSTRACT 
 

Distribution ranges and factors limiting them remain scantily documented for most 

protected areas partly because of lack of methods that indicate variation in presence 

and gaps where the species is absent.  The aim was to compare and contrast 

performance of LoCoH and kernel methods in representing distribution patterns for 

different objectives.  The chosen species exhibited; (i) a wide and continuous 

distribution with few gaps (impala), (ii) a broad distribution with local concentrations 

and absences (wildebeest), (iii) linear pattern associated with rivers (waterbuck), and 

(iv) a patchy pattern (sable).  I used animal herd locations recorded during aerial 

surveys in Kruger Park (1980-1993).  The methods are suitable for assessing different 

purposes with species distributions.  The LoCoH method tends not to extend outer 

limits of ranges to areas where a species was not recorded.  The kernel method 

exhibits the opposite tendency.  However, performances of these methods do not lead 

to different interpretations of occupancy patterns and range extents.  Performance of a 

method is also influenced by type of spatial patterns.  I recommended both LoCoH 

and kernel methods for representing occupation patterns of species presenting 

continuous distributions, and linear patterns.  I recommended the LoCoH for patchy 

distribution patterns and for identifying gaps or shifts of distributions.  I  found that 

the band-width (h) obtained for the kernel method through cross-validation was not 

optimal in the case where regional abundance was widely disparate, and hence had be 

adjusted subjectively.  Despite some subjectivity in the choice of the optimal values 

for the parameters k and  for the LoCoH method, it seems generally superior when 

the sample of location records for mapping distributions is sufficiently large and 

organisms are readily visible, so that gaps and sharp boundaries in the mapped 

distribution become meaningful.   
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Introduction    


Physical barriers such as rivers (Heller 1918, Gaston 1990) and forage resource 

availability (Caughley et al. 1988, Quinn et al. 1997) may limit species distributions.  

Climate has influences through affecting local conditions under which a population 

can persist (Caughley et al. 1988).  Predation or competition can exclude species from 

areas that otherwise could maintain a population (Soberón and Peterson 2005).  

Assessment of distribution patterns is of value because it provides a basis for detecting 

shifts in range caused by climate change effects (Parmesan et al. 1999) and indicates 

species that might be experiencing range losses.  Species that occur at lower 

abundance and experience shrinkage of range are more likely to be at higher risk of 

extinction than widely distributed and abundant species (Pimm et al. 1995).  To clarify 

factors restricting a species distribution, it is crucial to assess variation in presence and 

gaps where absent within a distribution using a hierarchical framework (Johnston 

1980, Gaston 1991).  This includes, first, distinguishing a 1
st
 order range (i.e. 

geographic extent of occurrence) that encompasses all sightings of a species, and then 

a 2
nd

 order range, which is a subset of the geographic extent of occurrence because it 

exclude gaps that may be unsuitable habitat or not yet colonised (Gaston 1991).  A 

focus on 1
st
 order range obscures local contractions in actual areas of occupancy and 

local declines in abundance within this range (Channel & Lomolino 2000, Gaston 

1991).  The 2
nd

 order range indicates areas where conditions are suitable for a species 

(Manly et al. 2002).  Challenges from recent global warming effects call attention to a 

need for conservationists to establish shifts in occupancy as a response to climate 

change or other factors.  Rosenzweig and Lomolino (1997) suggested that climate 

change effects could reduce extent or distribution of certain forage resource types 

while expanding others.  Should climate change reduce the distribution of forage 

resources that support species that exhibit restricted distributions, then the latter may 

easily become threatened.   

Uncertainty in estimating distribution ranges is primarily associated with data 

scarcity, poor data quality (Boyce & Pearce 2006), and limited abilities to depict 

actual areas of occupancy.  The 1
st
 order range assumes that distribution of a species is 

continuous within its extreme sightings, but, in actuality discontinuities and gaps exist 

(Getz & Wilmers 2004) and distributions can shift through time (Caughley et al. 
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1988).  Outliers represented by animals wandering outside their usual range might 

exaggerate the range extent. 

Two approaches developed for home range analysis could be applied to 

distribution ranges: 1) an analysis that delineates the outside limits to occurrence 

(Aebischer & Robertson 1993), and 2) an analysis that yields differences in density of 

occupation within the outer boundaries (Getz & Wilmers 2004).  Commonly 

distribution ranges are constructed applying a tile/grid based approach that shows 

densities of occupation and extreme limits to a species range (White & Garrott 1990).  

Kernel smoothing method (Hemson et al. 2005) and local convex hull or LoCoH 

family of algorithms (Getz et al. 2007) show outside boundaries of location records 

and construct isopleths that join areas which exhibit same probability of use by an 

individual animal or herd.  The kernel method uses a smoothing parameter h that 

controls the search radius or the distance over which a data point influences the grid 

intersections and therefore the density estimate at that point (Silverman 1986, Worton 

1995).  The LoCoH method constructs local hulls from a user-specified number of 

nearest points to each location in a data set.  The fixed k-LoCoH constructs polygons 

to a subset of data localized in space, and is a generalization of the minimum convex 

polygon approach (Getz & Wilmers 2004).  Comparisons of performances of LoCoH 

and kernel methods have been limited to home range usage (Dunn & Gipson 1977, 

Seaman & Powell 1996, White, Saunders & Harris 1996, Millspaugh et al. 2000, Getz 

& Wilmers 2004).  

Capabilities to reduce type I (exclusion of areas where species really occurred) 

and type II (inclusion of areas where species did not occur) errors are desired in a 

method to improve reliability of distribution range estimations.  It is not likely that any 

method can be equally good in reducing both type I and II errors.  The LoCoH method 

appears to minimize type II errors (Getz et al. 2007) but could be prone to type I 

errors, whilst the kernel method appears to show the opposite bias (Worton 1989, 

Blundel et al. 2001).  Therefore, the LoCoH method should better represent fine scale 

structure in distributions caused by topographic discrepancies within landscapes for 

example by features such as cliffs or rivers (Getz & Wilmers 2004), whilst the kernel 

method should better represent distributions of highly mobile or migratory species.  

In this article, I compare and contrast the performance of two alternative 

approaches, the LoCoH algorithm, and the kernel method, to estimate distribution 

ranges of four ungulate species that exhibited different spatial patterns.  These species 
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were chosen to represent (1) a wide and continuous distribution with few gaps (impala 

Aepyceros melampus), (2) a fairly broad distribution with local concentrations and 

absences (wildebeest Connochaetes taurinus), (3) linear pattern associated with rivers 

(waterbuck Kobus ellipsiprymnus), and (4) a patchy pattern of distribution (sable 

Hippotragus niger).  I compare performance of the LoCoH and the kernel methods 

with the tile based approach that is widely used for mapping species distributions.  I 

compared and contrasted the techniques based on five criteria:  

1. Ability to represent local differences in occupation. 

2. Ability to identify gaps within range i.e. areas where the species was not 

present. 

3. Not unduly influenced by outliers (type II errors) and propensity for type I 

errors). 

4. Ability to handle distribution ranges of particular shapes. 

5. Extent of potential bias in estimating range extents 

I expected the LoCoH method to be superior in showing fine-scale variation in 

patterns of occupancy, and better represent local discontinuities in distributions (Getz 

et al. 2007).  I expected adaptive the kernel method to less precisely define outer range 

edges, and to represent fine-scale variation in occupancy better than its fixed kernel 

counterpart (Kernohan et al. 2001, Gitzen, Millspaugh & Kernohan 2006).  The fixed 

kernel method was expected to better delineate outer edges of the distribution ranges, 

and less precisely define fine-scale discontinuities in occupancy patterns than its 

adaptive counterpart.   

  The LoCoH algorithms might be applied for fine-grain evaluation of shifts in 

distributions caused perhaps by increased effects from predation or competition, and 

climatic change effects.  Kernel methods might be appropriate for assessing the extent 

of distribution particularly with lower survey intensities and/or with aerial survey data 

that have spatial inaccuracies (i.e. > several hundred meters).   

Getz and Wilmers (2004) illustrated that kernel method failed to indicate gaps that 

represented unused areas in generated ―donut‖ distributions.  Such gaps may be 

consistent with e.g. areas where a change from forest to grassland or a change in 

geology type creates a discontinuity within a species distribution.  This implies that 

kernel method could overestimate range area for the patchily distributed sable through 

inclusion of gaps where the species might be absent.  Kernel method fundamentally 

assumes that underlying distributions lack sharp boundaries between used and unused 
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areas (Getz & Wilmers 2004, Millspaugh et al. 2006).  Thus, the method could 

overestimate total range area for wildebeest that exhibit a broad distribution but with 

gaps in places.  The kernel method did not precisely mark the outline of circular 

boundaries that surrounded simulated home range patterns (Getz & Wilmers 2004).  

Thus, this method may also overestimate waterbuck total range extent area through 

extending range margin well beyond where the species was sighted.  LoCoH method 

could potentially be less biased with estimates of total range area extents occupied by 

sable, waterbuck, and wildebeest because it is sensitive to non-occurrence gaps.  The 

LoCoH method could underestimate range extent for the continuously distributed 

impala because it may reveal gaps that may not be important or that could be spurious.  

The tile based approach should produce the largest range estimates with all species 

because it is crude for defining boundaries or gaps. 

 

Study Area  

 

The following is a brief description of Kruger National Park (KNP); further 

details are in Venter et al. (2003).  Kruger National Park covers nearly 20 000 km
2
 

and is broadly divided into granite-derived soils in the west and basaltic clays in the 

east (Fig. 1).  The vegetation is predominantly wooded savanna with knob thorn 

(Acacia nigrescens) predominating on basalt substrates and Combretum spp. and 

Terminalia spp. species on granites in the southern half.  Mopane (Colophospermum 

mopane) predominates in the northern half of the park.  On average, the elevation is 

300 m.  Annual rainfall decreases from 750 mm in the south-west to 400 mm in the 

north-east. 

 

Methods  
 

KNP Census data collection 

Ecological aerial surveys covering almost the entire park for large animal 

species were conducted annually from 1980 to 1993 (Joubert 1983, Viljoen & Retief 

1994).  Surveys were done using a fixed-wing aircraft in parallel strips 800 m apart.  

Sighting probabilities were estimated to be 80-90% for species that were easily seen 

from the air such as wildebeest, but 50-60% for less visible species (e.g. waterbuck 

and impala)  (Redfern et al. 2002).  The surveys were done during the dry season 
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(May-August) (Joubert 1983, Viljoen 1989) when visibility was considered best.  

Prior to 1987, herd locations were recorded directly by hand onto a 1:100 000 scale 

topographical maps and from these maps; the locations were transferred to a 

computerized grid system of 2 × 2 km
2
 squares (Joubert 1983).  In the post-1987 

period, a palmtop computer coupled with a GPS unit was used to record coordinates of 

the position of each herd (Joubert 2007).  Therefore, positional accuracies would be 

uncertain up to ± 2 km prior to 1987 and within 0.8 km post-87 (Viljoen & Retief 

1994). 

 

Data analysis 
 

One location for per herd annually was used for this analysis because herd 

locations represent distribution of the breeding segment.  The spatial position of one 

herd was independent from the position of another herd during the same survey.  

Solitary animals were excluded from the analysis because they included lone adult 

males distributed beyond breeding range.  The distribution range extent was defined as 

the area that encompassed 0.99 (impala or wildebeest) or 0.95 (sable or waterbuck) of 

the probability density of herd locations by species with LoCoH and kernel methods.  

However, the distribution range extent encompassed all areas with herd location 

records for tile method.  I did not apply 0.95 to abundant species because 4 092 (4% of 

102 299) impala location points were greater than the sable total sample size (N = 3 

182 locations).  Hence, I judged that 0.95 would lead to underestimating area of 

occurrence for impala.  However, for less abundant sable or waterbuck a 0.99 level 

stretched the range margin widely beyond where the species was sighted, hence I 

opted for a 0.95 level.   

I applied 0.75 probability level estimated from all locations by species to 

represent concentration areas, instead of 0.50 that is commonly used for home range 

core areas.  This was because the 0.50 level yielded highly fragmented concentration 

areas for buffalo in north-west (i.e. known buffalo concentration area) and for 

wildebeest in central-east region on basalt (i.e. known wildebeest concentration area).  

In addition, the 0.50 probability level marked distinct concentration areas separated by 

distances < 2 km.  Because breeding buffalo commonly occur as large herds that roam 

widely (Sinclair 1977), such patterns may be misleading.  I applied a procedure 

outlined by Powell (2000) to decide on the 0.75 probability level as appropriate to 
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represent concentration areas.  The procedure has three steps; i) calculate several 

distribution range areas using probability levels from 0.1, 0.2, 0.3, up to 1.0 (100%).  

ii) Plot a graph of these range areas vs. the respective probability levels.  If occurrence 

is random, then this graph of range area vs. probability level is a straight line drawn 

from 100% range area to 0 percent probability of occurrence.  However, if occurrence 

is non random, the graph sags below the line of random occurrence (Powell 2000).  iii) 

A line drawn perpendicular from the x-axis to a point on the sagging curve (i.e. to a 

point located furthest away from the straight line of random occurrence) indicates the 

probability level for core area (Powell 2000).   

It was not possible to process 102 229 impala data points all at once because of 

limited processing capacity of my computer.  Therefore, I divided KNP into two 

halves, and estimated the distribution ranges independently.  I later merged the two 

distribution range estimates in Arc Map 9.1 (GIS) for displaying on a single map 

(Price 2004).  However, estimating distribution ranges separately in two halves of the 

park necessitated that interpretation of patterns be done independently for each half 

because the probabilities of herd occurrences were calculated based on two different 

regional abundance levels.  The above mainly leads to biases on where concentration 

areas may be marked particularly for the section of the park that has fewer location 

points, which are used to estimate the distribution range. 

 

Point distribution 

 

I plotted locations (latitude-longitude) of species on maps to get the observed 

point distributions in Arc Map.  Annual shape files were created for each species then 

merged using the ET-Geowizard to make ―queries‖ easier with tile techniques in 

subsequent stages (Price 2004).  Point distribution maps of these original data were 

included for comparisons with the distribution ranges estimated from the same points.   

 

Tile method 

 

Two tile scales, (5 × 5 and 10 × 10 km) were applied.  The 10 × 10 km tile size 

was chosen to allow comparisons with previous studies elsewhere on species 

distributions (Parmesan et al. 1999) and on herbivore assemblages in KNP (Redfern et 

al. 2006).  A minimum tile scale size of 5 × 5 km was based on home range size 
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estimates reported for sable (Joubert 1974, Sekulic 1981, Estes 1991), a focal species 

in this study, hence allowing comparisons with subsequent chapters in the thesis.  

Shape files were created separately for each tile scale using ET-Geowizard (Price 

2004).  Each shape file was overlaid onto the map of KNP, and then clipped to fit park 

boundaries.  Relative herd densities for each species were determined by overlaying 

the tile shape file on herd positions.  First, I identified and coded in a different colour 

tiles with zero records.  Then I calculated species herd densities per tile in each of the 

remaining tiles.  I used the densities per tile to construct frequency distribution plots 

for each species.  I divided the frequency distribution into 3 natural clusters depending 

on the density levels (i.e. low, medium, and high).  I assigned to all tiles within the 

same density cluster one colour code.  Thus, I produced a map showing four density 

related colours (zero, low, medium, and high).  I calculated sizes of areas covered by 

each of the above categories in GIS using Hawth’s Tools for each species (Beyer 

2004).  

 

Kernel methods  

 

I applied the kernel method as an extension to Arc Map 9.1 (Rodgers et al. 

2005) using least–squares cross-validation (LSCV) techniques in estimating the 

smoothing parameter h (Silverman 1986, Worton 1989).  The smoothing parameter 

controlled how continuous a range could be (Worton, 1989).  Small h values reveal 

fine-scale gaps but produce ranges that appear more disjointed; larger values obscure 

those details and yield more continuous range patterns.  The fixed kernel method 

maintains the same value of h for all points.  The adaptive kernel method allows h to 

vary such that areas with low concentration of locations have a higher h values than 

areas with high concentration of locations, and are thus smoothed more (Silverman 

1986, Worton 1989). 

A shape file of herd locations for each species was loaded onto the Home 

Range Extension Spatial Analyst Tool to estimate the distribution range (Rodgers et 

al. 2005).  The kernel method extended distribution ranges beyond KNP fence 

boundaries and ranges had to be clipped to fit park boundaries.  The fixed kernel 

method with least-squares cross-validation procedures proved problematic for 

wildebeest distribution pattern.  The method yielded a higher h (0.0540) value 

compared to the one produced with adaptive kernel method (0.0196).  For other three 
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species considered here, the smoothing parameters from both methods were about the 

same value.  That bigger h value appeared to be associated with extending 

concentration areas of wildebeest in north-west to areas where densities of wildebeest 

were known to be low.  Additionally, the bigger h obscured the sparse distribution 

pattern exhibited in the area.  The next step was to investigate whether problems noted 

with wildebeest distribution were due to technical details of the method design or due 

to h effects.  Thus, user defined procedures available in Arc Map were used to model 

distribution of wildebeest applying an h value equal to the one applied with adaptive 

kernel and then comparing all the range outputs.  The latter attempt yielded a 

fragmented range pattern for central KNP (known continuous range for wildebeest) 

and yielded extensive core range areas in the Far north, where only about 10% of 

wildebeest occur.  I then chose several h values manually and used each of them to 

estimate wildebeest range area.  Then I plotted a graph of range area against the value 

of h used to produce it.  At first, an increase in h leads to huge increases in area of 

range.  I started with smaller values of h and gradually increased them until the curve 

of area vs. h was stable (i.e. minor change in areas).  This technique follows a 

procedure proposed by Getz & Wilmers (2004) to calculate a minimum spurious hole 

covering value (see details under Local Convex Hull Algorithm).  Then, I calculated 

the average smoothing parameter (h = 0.0264) of values around the point when the 

area stabilized and used that value with a user defined option available in Arc Map 

with the kernel method.     

 

Local Convex Hull Algorithms 

  

A shape file of animal herd locations was loaded onto the LoCoH home range 

spatial analyst tool in Arc Map 9.1 for distribution range estimations (Ryan et al. 

2006).  Local hulls were constructed from a user-specified number of nearest points to 

each location in the data set that were either fixed at k (k-LoCoH) or constrained such 

that the sum of their distances to the root point was less than or equal to a (a-LoCoH).  

The fixed k-LoCoH applies a generalized approach of the minimum convex polygon 

by constructing isopleths to a localized subset of data (Getz & Wilmers 2004).  Local 

hulls were constructed for each point and selected neighbouring points, and the union 

of these hulls moving up from the smallest were used to construct isopleths (Getz et 

al. 2007).  In the case of k-LoCoH, the minimum number of points required for 



 50 

constructing a hull is 3 while the largest is the sample size itself.  For a-LoCoH, 

initially I fixed the value of k (minimum number of points used to construct a 

polygon) at 3, and the value of a (distance from the root point) at 1 m.  I then plotted 

the area of the estimated distribution range versus increasing values of a to find the 

point where the area began to level off (the minimum spurious hole covering or 

MSHC value of a, Getz et al. 2007).  With a fixed at this value, I then varied k to find 

its MSHC value.  Thereafter I used these joint values of a and k to construct the final 

distribution ranges.  Hulls are joined from smallest to largest into isopleths.  Values of 

k or a that are too large produce ranges that do not indicate small gaps within a range 

where the species was not recorded, and thus appear influenced by outliers.  

Conversely, small values of k and a may exclude areas that are part of a range.  Each 

isopleth encompasses a determined proportion of the statistical distribution of 

locations-for example, the 100 % isopleth covered all the distribution.  A general 

guiding principle is that a lower isopleth e.g. 0.50 marks sections of a range that are 

used more compared to a higher isopleth e.g. 0.95.   

 

Extent of potential bias in estimating range extents   

 

To assess extent of potential bias in each method I generated a 1 000 range 

extent values applying sampling with replacements techniques (Manly 1994) available 

in R-software from four values of range extents per species obtained from two variants 

of kernel method and two variants of LoCoH method.  I excluded range extents 

estimated by applying the tile method because these encompassed all areas where a 

species was recorded, and thus potentially included outlying locations.  I calculated a 

grand mean for each set of a 1 000 values of range extents per species.  Then I 

calculated 99% confidence intervals around their means.  I considered that if a range 

estimate obtained from each method was outside the 99% confidence interval then that 

could potentially underestimate or overestimate range extent leading to a biased 

interpretation of distribution patterns, and thus did not recommend the method to be 

applied for that specific pattern.  The difference between each range estimate and the 

grand mean was expressed as a percentage to show how different were the range 

estimates obtained by each method. 
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Results 
 

1 Impala 

Impala (N = 102 229 herd locations) showed a continuous distribution of dense 

points in south, central and north-west, and a few gaps in eastern Kruger (Fig. 2a).   

     

1.1Tile method 

Tiles showed high densities in south and central regions compared to generally 

lower to medium densities in northern half (Fig. 2b).  Tiles depicted a completely 

continuous range in the entire southern half and showed one section of northern half to 

the east where impala did not occur (Fig. 2b) 

 

1.2 Kernel method 

Estimating distribution ranges separately in two halves of KNP required that 

interpretation of range patterns in one half be independent of patterns in the other half.  

The above approach revealed several high concentration areas in northern half of KNP 

(Figs. 2c-d).  Kernel method indicated that impala continuously occupied western 

KNP with exception of south-west that exhibited gaps.  Both variants of kernel 

method produced identical patterns of local occupancy (Fig. 2c).  Kernel method 

showed concentration areas as linear patterns associated with rivers in northern half, 

but concentration areas were widespread in southern half of KNP.  Gaps within impala 

distribution were indicated in eastern KNP.  However, the extreme south-east and 

extreme central-east of KNP were indicated as concentration areas for impala.   

 

1.3 Local convex hull method  

The LoCoH method produced patterns of local occupancy that were largely 

similar to those by kernel method.  However, gaps indicated in north-east, south-west 

and central-west of the park appeared bigger than those mapped with kernel method 

(Fig.  2d).  The LoCoH mapped a discontinuous impala distribution in far north-east 

of KNP contrary to the pattern indicated with kernel method for that area.   
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2 Wildebeest 

Wildebeest (N = 11 630 locations) occurred densely through central Kruger 

Park but density of points was lower in south, north, and far north.  Sparse locations 

occurred in south-west and far north-west of the park (Fig. 3a).    

 

2.1 Kernel  

 Both variants of kernel method depicted high occurrences of wildebeest herds 

in central region of KNP (Fig. 3c).  After manually setting h to (h = 0.0264) (closest 

patterns to those for LoCoH and adaptive kernel), the fixed kernel method still did not 

reveal gaps in contrast to patterns shown with adaptive kernel method within the 

sparsely occupied south and northern regions of KNP.  The smoothing parameter 

applied with adaptive kernel method indicated a discontinuous wildebeest range in 

those south-west and north-western areas of KNP.  Both variants of kernel method 

produced identical patterns in central region where wildebeest was continuously 

distributed (Figs. 3c, d).   

      

2.2 LoCoH 

 The northern half and south-western sections of wildebeest range as indicated 

by LoCoH method appeared narrower compared with representations of same sections 

using kernel method (Fig. 3b-d).  The LoCoH method produced a range pattern that 

was nearly identical to the one produced by adaptive kernel method.   

 

3 Waterbuck 

Waterbuck (N = 5 868 locations) showed linear concentrations along perennial 

rivers as well as seasonal rivers in central and northern half of KNP (Fig. 4a).   

 

3.1 Kernel 

Both variants of kernel method produced almost identical waterbuck patterns 

applying identical h values.  Kernel method appeared to extend waterbuck range a bit 

further away from perennial rivers in central-east and south-western KNP (Fig. 4a).   

 

3.2 LoCoH 

The LoCoH method produced distribution ranges that appeared generally 

similar to those shown by kernel methods (Fig. 4e, f).  Range pattern from adaptive a-
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LoCoH appeared slightly narrower and discontinuous in central-east region of KNP 

compared to those from kernel method (Fig. 4e, f).   

 

4 Sable antelope 

Sable antelope (N = 3 182 points) showed locally concentrated locations in 

western KNP.  Sable occurred on few isolated locations in north-east and in central-

east of the park (Fig. 5a).   

 

4.1 Kernel 

Both variants of the kernel method produced almost identical sable distribution 

patterns (Figs 5c, d).  The kernel method showed that concentration areas of sable 

occurred in western KNP. 

 

4.2 LoCoH 

The LoCoH method and kernel produced almost identical range estimates for 

sable in the southern half of KNP (Fig. 5d).  However, the LoCoH method showed 

more discontinuity and bigger gaps in sable distribution than represented with kernel 

method in north-west and far north-west of KNP.  In central-west, LoCoH method 

depicted three distinct locations occupied by sable whilst kernel method showed one 

continuous sable area.  In northern half of KNP, the kernel method indicated a broader 

sable range than was shown with the LoCoH method (Fig. 5a-d). 

 

5 Extent of potential bias in estimating range extents   

The average 1
st
 order range (0.99 isopleth) estimated for impala was 15 379 

km
2
.  Range estimate values from the fixed LoCoH and fixed kernel methods were 

within the 99% confidence interval (14 516.25 to 16 320.5 km
2
) (Table 1).  Range 

estimates from a-LoCoH method were outside the lower limit of the confidence 

interval, whilst range estimates by adaptive kernel method showed the opposite bias 

(i.e. outside the upper limit).  The above pattern was consistent for waterbuck and 

sable antelope 1
st
 order range estimates (Table 3-4).  The average 1

st
 order range (0.95 

isopleth) estimate for waterbuck was 6 742 km
2
.  The confidence interval for 

waterbuck was from 4 336.25 to 8 859.5 km
2
.  The average range estimate for sable 

antelope (0.95 isopleth) was 6 853 km
2
.  The confidence interval for sable antelope 

was 5 086 to 8 518.5 km
2
.  The average 1

st
 order range estimate (0.99 isopleth) for 
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wildebeest was 12 340 km
2
.  All range estimates by kernel and LoCoH methods were 

within the calculated confidence interval for wildebeest (11 342.25 to 14 530 km
2
) 

(Table 2).  Largest differences between the calculated grand means and range 

estimates for all methods were observed with waterbuck and sable (Table 5).  The 

adaptive LoCoH consistently produced the narrowest ranges for all species and the 

adaptive kernel method showed the opposite bias.  The least differences between the 

grand mean and 1
st
 order range estimates for all methods were with impala range.   

 

Discussion   
 

Findings presented here confirmed that the LoCoH approach is more revealing 

of unoccupied regions within a distribution range than kernel methods.  However, 

finer details of an occupancy pattern can potentially be revealed using kernel methods 

by reducing the value of the bandwidth h below the estimate obtained using least 

cross-validation techniques.  The adaptive kernel method was most misleading 

through extending the distribution range much widely beyond the location points.  

Second-order distributions based on home range occupation can be expected to have 

more abrupt limits than the utilization patterns within home ranges with diffuse 

boundaries for which the method was designed.  The superiority of LoCoH over 

kernel methods became greater for the two species showing patchily or linearly 

restricted ranges within the study area.  The a-LoCoH method based on a variable 

sphere for joining points seemed better than k-LoCoH based on joining a fixed number 

of points, because the latter tended to merge the regions spanned by sparse points in 

outlying locations.  The latter variant was also more prone to omitting outliers 

constituted by relatively few points.  Findings presented here about the relative merits 

of these variants confirm conclusions of Getz et al. (2007) with respect to home range 

estimation. 

Important aspects emergent in this study are; first, the purpose for which a method 

should be used is important when considering choices of which method to apply for 

assessing large scale animal distribution patterns.  This is in contrast to current 

knowledge that suggests superiority or otherwise of certain methods for assessing all 

aspects of range use by animals (Powell et al. 2000, Getz & Wilmers 2004, Gitzen et 

al. 2006, Millspaugh et al. 2006).  Second, the type of spatial pattern exhibited by a 

study species influence the success of any of the methods for whatever purpose.  
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Despite that, differences in estimates of range extent between methods resulted in up 

to two-fold differences in population density estimates within the occupied range.  

Nevertheless, the expected relationship between range extent and ecological density 

within this range was consistently shown for the four ungulate species.   

In this study, little attention was given to issues of spatial accuracy of herd 

locations upon which the distribution ranges were estimated.  However, indications 

are that the latter appeared to influence the choice of which method to use.  Findings 

here indicated that no method is good for all purposes.  For documenting differences 

in range occupancy patterns, tradeoffs between minimizing type I vs. type II errors 

have to be considered before the choice of which method to apply.  The kernel method 

consistently indicated larger 1
st
 order range extents for all distributions in this study 

than the LoCoH approach.  The latter suggests the LoCoH approach offers a better 

likelihood of minimizing type I error than the kernel method.  However, differences in 

distribution patterns mapped for all the four species were generally slight and 

considered not to affect interpretation of occupancy patterns, with wildebeest patterns 

in northern KNP being the only exception.  In that area, the kernel method appeared 

influenced by perhaps effects of selecting a big smoothing parameter or effects of 

outlying wildebeest points.  The kernel approach indicated a widespread range for 

wildebeest suggesting continuous occupation of the area (see Table 5 for percentage 

differences).  In contrast, the LoCoH method represented a disrupted distribution for 

the same location points.  It is not clear whether outliers pulled outer boundaries of the 

range into areas where the species was not recorded.  Several attempts to apply a 

smaller value of h with fixed kernel method improved on revealing where gaps could 

potentially occur in this section of the park.  However, a small h value depicted a 

fragmented wildebeest distribution pattern in central region (a known area of 

continuous wildebeest occurrences).  Thus, a trade-off between a small vs. big value 

of bandwidth improves depicting patterns only in a one section of wildebeest range 

and not across the whole range.  Thus, wildebeest distribution patterns shown here 

may somehow support Silverman (1986), Worton (1989) and Seaman et al. (1999) 

who documented that the adaptive kernel method better represented fine-scale 

variation in home range use than its fixed kernel counterpart.  However, distributions 

depicted for the other species presented here are clearly consistent with observations 

by Borger et al. (2006), who documented that both adaptive kernel and fixed kernel 

method were equally unbiased in mapping home range use for roe deer (Capreolus 
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capreolus) and kestrels (Falco tinnuculus).  Therefore, it appears that the fixed kernel 

method has to be applied with some caution for ―complex spatial patterns‖ (i.e. 

species exhibiting continuous occupation of one section of a range but sparse 

occurrences elsewhere).  Such complex patterns appear to require that bandwidth h be 

adjusted independently for each section through perhaps dividing a study area into two 

separate sections and then mapping the range independently.     

For the purpose of identifying gaps within a species distribution that may occur 

over time, the LoCoH method appears superior, providing sampling is sufficiently 

complete, with the a-LoCoH variant appearing better than k-LoCoH for this purpose.  

Thus, the LoCoH approach can reliably be used to reveal where population centres are 

isolated or fragmented.  Kernel methods may prove sufficiently reliable simply for 

documenting and comparing current occupied areas, especially if allowance has to be 

made for incomplete location records.  However, although they reliably indicate 

multimodal concentrations of use within the occupied range, this feature is less 

meaningful for distribution ranges than for utilization patterns within home ranges.  

The fixed kernel variant should be preferred, because accommodating an adaptive 

kernel spreads the probability distribution unduly far beyond the true occupancy by 

home ranges.  However, indications suggest that the LoCoH method may have to be 

applied with some caution for species such as impala that are continuously distributed 

because there is a possibility of emphasizing perhaps unimportant gaps.     

  The decision to use 99% isopleths to delineate the ranges of impala and 

wildebeest, but 95% isopleths for waterbuck and sable antelope, may seem somewhat 

arbitrary.  It was based on the recognition that omitting 5% of impala herds would 

amount to overlooking a number of herds exceeding the total number of sable herds 

recorded in the park.  For the two abundant species, the 99% range size estimates 

remained below that provided by amalgamating occupied tiles, and thus not unduly 

biased, but for the less abundant species, this was not the case.  Range size estimates 

provided by the LoCoH variants using the 99% isopleths can be judged accurate 

providing location records are sufficient such that few presences are likely to be 

unrecorded, a condition met in this study.  Kernel methods become more reliable as 

location records diminish such that gaps in locations become questionable indications 

of species absence.  Except for the most abundant species, impala, the difference in 

range extent obtained using 95% versus 99% isopleths was quite substantial, 

indicating that some attention is needed to deciding which demarcation is most 
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meaningful.  The LoCoH approach generally yielded smaller estimates for the same 

isopleths than kernel method, through emphasising gaps.  The core of the distribution 

range demarcated using the 75% isopleth seemed more meaningful than a 50% 

isopleths would have been, but we did not explore this issue further.   

Getz et al. (2007) showed that the LoCoH algorithm is sensitive to gaps, thus fixed 

LoCoH method should be preferred ahead of the fixed kernel method if data has high 

spatial accuracy otherwise gaps that may be unimportant or that may be spurious 

could be emphasized.  The fixed kernel method reportedly does well with lower 

survey intensities for home range use analysis (fewer than 50 location points) (Borger 

et al. 2006).  Thus, accordingly, fixed kernel method could be preferred with lower 

survey intensity.  If the main concern is reducing type II error, patterns presented here 

indicate the LoCoH algorithm should be recommended.  All range estimates for 

distributions considered here using LoCoH method were at the lower end of the 

confidence intervals (i.e. near the lower limit).  Indications are that both variants of 

LoCoH method and only the fixed kernel method can be recommended for the 

purpose of estimating range extents.  However, in this study I highly recommended 

that a-LoCoH be considered for this purpose because it consistently produced least 

range estimates for all distributions assessed here.  This is important because it implies 

that if there were any change noted in extent of occupied areas, then one would be 

more confident by using a-LoCoH than the other methods to conclude that a real 

change occurred.  The kernel method would likely obscure changes that may be 

important  

A change from LSCV to hREF techniques of choosing the smoothing parameter 

with the kernel approach appeared not appropriate because the latter did not show fine 

scale variation of presences, concentration areas, or gaps for all the species considered 

here (see Appendix for hREF).  As already indicated, both kernel and LoCoH 

approaches do not lead to generally divergent interpretations of distribution patterns.  

Both approaches produced almost identical range patterns for species that exhibited 

continuous distribution patterns (e.g. impala), clear distinct patches (e.g. sable in 

southern half of KNP) and those exhibiting linear occurrence patterns.  For the above 

patterns, variants of kernel method applied same value of h.  In central region that 

exhibits a continuous occupation of wildebeest, both kernel and LoCoH methods 

represented identical patterns.  The patchy pattern of sable occurrence was less distinct 
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in northern half of KNP with estimates from kernel method.  The above just confirms 

that when the concern is to reduce type I error, kernel approach should be the choice.   

Studies have reported that the fixed kernel method could be better (Powell et al. 

2000, Gitzen et al. 2006, Millspaugh et al. 2006) or in cases worse (Worton 1989, 

Seaman et al. 1999) than the adaptive kernel.  Getz and Wilmers (2004) and Getz et 

al. (2007) showed that the LoCoH algorithm was better than the kernel method for 

constructing home ranges.  Emerging in this study is that both LoCoH and kernel 

methods have different capabilities with different issues regarding assessing range 

occupation by animals.  Some methods are better recommended with patchy 

distributions whilst others perform well with a wide range of spatial patterns.  

Therefore, reported generalizations in literature in support or not of a method were not 

surprising, because conclusions were based on different purposes, which were 

analysed.  Because the LoCoH method can reveal gaps with all distribution patterns 

considered here it is recommended for assessing shifts or disruptions of distributions.  

The above supports observations by Getz and Wilmers (2004) that showed that kernel 

method failed to represent holes with their small-scale home range use simulations.   

As recognised by others, problems arise when choosing the optimal value for 

the bandwidth h when using kernel smoothing (Seaman et al. 1999, Gitzen & 

Millspaugh 2003, Citizen et al. 2006, Getz et al. 2007).  In this situation, this problem 

emerged for wildebeest.  Wide regional disparities in their presence led to smoothing 

that was deemed excessive in the range core using a fixed kernel, while an adaptive 

kernel spread the mapped distribution far too widely in the more sparsely occupied 

region.  Hence a compromise was devised manually.  Ad-hoc methods and user-

defined choices of smoothing parameters to improve the performance of kernel 

method for complex patterns have been advocated (Hemson et al. 2005).  A basic 

problem with the LoCoH method is that optimal values for the parameters are derived 

somewhat subjectively, but this did not prove to be a problem for the purposes of this 

study.  Usually there were two to three suitable MSHC values for k and a that produce 

similar location of gaps, similar variation in presence and similar distribution shapes 

that differ slightly in range area sizes.   

Studies that compared and contrasted these methods for estimating extent of 

areas covered by location points for any species are not available at the scale 

considered in this paper.  Powell et al. (2000) reported that fixed kernel method better 

represented outer boundaries of a home range and based on that the method should be 
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in a better position to be applied for this purpose.  Results presented here suggest that 

adaptive kernel method has a propensity to overestimate range extents than the fixed 

kernel method, but the overall difference appeared not large enough to affect 

interpretation of the outcome (Table 5).  The range estimates of adaptive kernel 

consistently fell outside the confidence interval for all species (i.e. towards the upper 

limit).  The LoCoH method consistently showed smaller range size extents than kernel 

method, suggesting that it could be prone to type I error.  For example, LoCoH 

method showed a sable area south-west of northern region of KNP as disconnected 

from the rest of areas occupied by sable in this region.  Kernel methods showed a 

connected range for the same area.  It is clear that increased sensitivity to gaps may as 

well lead to LoCoH method picking up gaps that may well be spurious within 

distributions and consequently lead to a smaller range extent estimates for species that 

roam widely such as buffalo.  In this study, it is suspected that real gaps do exist 

within sable range.  However, interpretations of those gaps with large-scale 

distribution range examinations need caution because our data was collected during 

dry seasons, and generally before midday (Joubert 1983).  Such regular sampling 

might coincide with certain routine activities for example drinking, and that could bias 

core range locations.    

Although ―distribution range‖ is a fundamental ecological concept, there is 

surprisingly little documentation on how best it is measured.  This study was the first 

to apply methods developed for small-scale home range assessments to large-scale 

distributions across an entire protected area.  Hence the recommendation is that a-

LoCoH should be preferred for studies addressing changes in occupation patterns 

within geographic ranges, provided a sufficient coverage of records is available to 

reliably identify gaps.  In other circumstances, the fixed kernel method should be 

adequate, and its ability to reveal gaps can be enhanced by reducing the bandwidth 

parameter manually to produce a finer resolution.  However, findings for wildebeest 

suggested that different bandwidths might be appropriate in different regions within 

the distribution range differing in herd occupancy, and not only around the margins.  

Borger et al. (2006) found that the fixed kernel method performed well for assessing 

the home range extent even when there were fewer than 50 location points, and this 

finding may be extended to the geographic range.  The adaptive kernel method does 

not seem appropriate for demarcating second-order ranges defined by home range 

occupation patterns with limits that may be somewhat abrupt.  However, these 
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conclusions are specific to large mammals that are sufficiently conspicuous for 

location records to be a reliable measure of presence.  For identifying gaps and shift in 

areas occupied by individual herds that might have occurred over time, the LoCoH 

approach reduces levels of uncertainty on whether noted changes are real or not.  The 

study illustrated that understanding of distribution patterns can be improved with 

respect to estimating the relative change in probability of occupation of an area.  The 

latter is important for improvements on management and conservation of species 

because it allows identification of areas that can be prioritized for managing of target 

species (Sagarin et al. 2006).  Future applications that could additionally improve on 

management and conservation of species would be carrying out studies to identify 

which resources can be related to changes in probability of occurrence and linking 

patterns of distributions and abundance to vital rates of birth, and death.   
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FIGURE CAPTIONS 

 

 

FIG. 1.  Kruger National Park (KNP) showing four census regions, Far-north, North, 

Central, and South divided by major rivers.   

 

FIG. 2 (a) Impala original data are illustrated for the cases (b) Tile 5 × 5 km (c) Fixed 

kernel h = 0.0222,  (d) Fixed LoCoH k =26 

 

FIG. 3 (a) Wildebeest original data are illustrated for the cases (b) Fixed kernel h = 

0.0265, (c) Adaptive kernel h = 0.0169, (d) Adaptive LoCoH a = 38000; k = 3   

 

FIG. 4 (a) waterbuck original data are illustrated for the cases (b) Adaptive kernel h = 

0.0264 (c) Fixed LoCoH k = 24, (d) Adaptive LoCoH a = 29000; k = 3  

 

FIG. 5 (a) sable original data are illustrated for the cases (b) Fixed kernel h = 0.0279, 

(c) Adaptive LoCoH a = 35700; k = 3 
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Table 1 Distribution range estimates (km
2
) for impala herd locations (n = 102 229) 

 

 Fixed 

LoCoH 

Adaptive 

LoCoH 

Fixed 

Kernel 

Adaptive 

Kernel  

Tile  

5 × 5 

Tile  

10 × 10 

Area of low 

occurrence 

- - - - 4 041 1 646 

Area of medium 

occurrence 

- - - - 2 922 4 298 

Core areas   - - - - 10 510 12 337 

Core areas  

0.75  

7 170 6 462 7 770 7 656 - - 

General Range 

0.95 

14 351 12 860 13 557 14 329   

General Range 

0.99  

14 808 14 419 15 698 16 528   

Range extent  

1.0 (all points) 

17 129 17 034 19 019 19 231 17 473 18 281 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 68 

 

Table 2 Distribution range estimates (km
2
) for wildebeest herd locations (n = 11 630)  

 

 Fixed 

LoCoH 

Adaptive 

LoCoH 

Fixed 

Kernel 

Adaptive 

Kernel  

Tile  

5 × 5 

Tile  

10 × 10 

Area of low 

occurrence  

- - - - 6 525 2 936 

Area of medium 

occurrence 

- - - - 4 733 4 744 

Core areas   - - - - 4 171 9 637 

Core areas  

0.75 

3 890 4 015 6 724 4 051 - - 

General Range 

0.95 

9 473 8 303 10 735 11 122   

General Range 

0.99 

12 397 11 316 14 530 11 421   

Range extent 1.0 

(all points) 

 

15 378 13 439 19 105 17 944 15 430 17 318 
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Table 3 Distribution range estimates (km
2
) for waterbuck herd locations (n = 5 868)  

 

 Fixed 

LoCoH 

Adaptive 

LoCoH 

Fixed 

Kernel 

Adaptive 

Kernel  

Tile  

5 × 5 

Tile  

10 × 10 

 

Area of low 

occurrence  

- -  - 3 644 4 510 

Area of medium 

occurrence 

- -  - 3 808 5 257 

 Core areas   - -  - 3 807 6 047 

Core areas  

0.75  

2 151 2 077 4 295 3 328 - - 

General Range 

0.95 

5 699 3 882 8 459 8 993   

General Range 

0.99 

7 445 5 680 11 913 12 722   

Range extent  

1.0 (all points) 

 

11 820 7 194 17 257 16 020 11 259 15 814 
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Table 4 Distribution range estimates (km
2
) for sable herd locations (n = 3 182)  

 

 Fixed 

LoCoH 

Adaptive 

LoCoH 

Fixed 

Kernel 

Adaptive 

Kernel  

Tile  

5 × 5 

Tile  

10 × 10 

Area of low 

occurrence 

- - - - 2 354 2 354 

Area of medium 

occurrence 

- - - - 2 181 3 625 

 Core areas   - - - - 2 816 4 227 

Core areas  

0.75 

2 161 2 595 4 073 4 095 - - 

General Range 

0.95 

6 137 4 738 7 947 8 709   

General Range 

0.99 

7 223 6 609 10 561 12 498   

Range extent 1.0 

(all points) 

 

10 799 7 281 15 767 15 761 7 352 11 775 
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Table 5 Differences between the 1
st
 order ranges estimated using each method from the 

grand mean (expressed as a percent)  

 

Species Fixed 

LoCoH 

Adaptive 

LoCoH 

Fixed 

Kernel 

Adaptive 

Kernel  

     

Impala -3.7 -6 +2 +7 

Wildebeest +0.46 -8 +17 -7 

Waterbuck   -15 -42 +25 +33 

Sable -10 -30 +15 +27 
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Figure.  1 
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Figure. 2 

 a.   Data   impala                                                            b. Tile 5 × 5                                                                                                                                            

    

 

c. Fixed kernel h = 0.0222                                             d. Fixed k LoCoH k = 26    
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Figure.  3 

 

 3 a. Data Wildebeest                                                b Wildebeest Fixed kernel h = 0.0265                                                                               

                             

 

c. Adaptive Kernel h = 0.0197                                       d. Adaptive LoCoH: a = 38000, k = 3                           
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Figure. 4 

4.  a.  Data waterbuck                                                         b. Adaptive kernel h = 0.0244  

                                                            

 

c. Fixed k LoCoH k = 24                                                d. Adaptive LoCoH a = 29 000; k = 3   
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Figure. 5 

5. a Data sable                                                                          b. Fixed kernel h = 0.0279                                                                           

       

 

c. Adaptive LoCoH a = 35700; k = 3                                                    
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CHAPTER 3 

Recent distribution of large ungulates in the Kruger 
National Park from ecological aerial survey data 
 

ABSTRACT 
 

Spatial locations of resources and a suitable climate appear to set broad limits on 

extent of distributions of large ungulate species.  Effects of competitors, predators, and 

parasites can limit occupation to sections of a potential range.  Increasing concerns on 

conservation of species under climate change requires documenting current 

distribution patterns as a basis for assessing range shifts.  I applied the fixed kernel 

method to construct recent distribution ranges of 12 large ungulate species using 

geographical positions of animal herds recorded during aerial surveys conducted 

during dry seasons (1980-1993).  I compared recent patterns to those mapped crudely 

around 1960.  I also assessed changes in proportional distribution of each species in 

four census regions for periods 1979-1983, 1984-1988, and 1989-1993.  Buffalo, 

zebra, kudu, and warthog were continuously distributed throughout KNP.  Impala 

were absent from some localized areas in eastern granites.  Wildebeest were absent 

from sections in western granites.  Giraffe were continuously distributed in southern 

half of KNP but were absent in some places in northern half.  Waterbuck were 

associated with rivers across KNP.  Sable were more prevalent on western granite, but 

occurred on distinct patches on basalt areas to the east.  Roan and tsessebe occurred 

mainly throughout north-eastern and far north-eastern basalt areas but occurred on 

isolated areas in north-west.  Eland occurred through most of far north, were not 

recorded in some places in northern region and were largely absent in southern KNP.  

Comparison of recent patterns with those around 1960 indicate (i) an increase in 

occupation of northern half by common species i.e. impala, zebra, buffalo, wildebeest, 

warthog and giraffe.  (ii) Zebra, warthog, buffalo, waterbuck, and wildebeest occurred 

during dry season in areas indicated around 1960 as wet season range.  (iii) 

Distributions of rarer grazers contracted in northern half of KNP and in central-

western region.  Management effects that included blocking migration outside the 

park by fencing and augmentation of waterpoints appeared associated with changes in 

distributions of these species.   
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Introduction   
 

Distributions of species are affected by physical barriers, climate and by spatial 

distribution of resources they are able to exploit (Grinnell 1917, Hirzel & Le Lay 

2008).  Factors such as competitors, predators, and parasites may further constrain 

occurrences within these broad limits (Grinnell 1917, Hirzel & Le Lay 2008).  With 

increasing concern for conservation of species under climate change scenarios, it is 

important to document current distribution patterns as a basis for assessing range 

shifts, and thus provide information for management purposes (Lawton 1993).  

Recently, studies on climate change effects have highlighted impacts that include 

shifts in distributions for birds (Thomas & Lennon 1999), insects, (Parmesan et al. 

1999), amphibians (Pounds et al. 1999), and a mammalian carnivore (Walther et al 

2002).  Therefore, distribution patterns could provide insights on how effects of 

climatic changes might influence range occupation (Gaston 1990) and provide a basis 

for identifying factors that could impact negatively on persistence of species (Brown 

et al. 1997).   

In Kruger National Park (KNP), Pienaar (1963) mapped distribution patterns 

for the larger ungulate species.  These serve as the basis for assessing subsequent 

distribution patterns to identify changes in distributions.  Factors that could have 

contributed to changes in distribution patterns of these large ungulates included (i) 

fencing of the KNP, particularly the southern and western boundaries, which were 

completed in 1961 (Pienaar 1982 cited in Whyte & Joubert 1988, Joubert 2007), (ii) 

provision of 50 dams, and 300 boreholes and troughs fed by windmills between 1930s 

and 1980s aimed at reducing effects of droughts and to ensure a reliable network of 

surface water all year round (Joubert 2007, Smit et al. 2007), (iii) cessation of culling 

involving wildebeest, zebra, and impala that ended in early 1970s, and of buffalo and 

elephant ending in 1993 (Joubert 2007), (iv) two severe drought episodes in 1982/3 

and 1991/2 (Walker et al. 1987), and (v) doubling in elephant abundance from an 

estimated 1 186 in 1962 to around 2 374 in 1964.  By 1968, there were over 7000 

elephants in the park (Whyte et al. 1999).   

In this article, I established recent distribution ranges of twelve large ungulate 

species in KNP, using geographical positions of animal herds recorded during aerial 

surveys (May–August) from 1980 to 1993, and compared these with previous 

distributions as presented by Pienaar (1963).  Information on animal locations and 
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distributions reported by Pienaar was obtained through rangers’ diaries and reports, 

monthly road strip counts (1956-61) and two aerial counts targeted at elephant and 

buffalo in central KNP (1960 and 1962) (Joubert 2007).  Pienaar (1963) produced a 

map that showed dry and wet season range for each species.  My aims were 1) to 

document distribution patterns for the period 1980-1993 reliably as a basis for 

assessing future changes, 2) note how distribution patterns have apparently changed 

since around 1960, and 3) relate distribution patterns to landscapes favoured and 

avoided.   

 

Methods  
 

1.1 Study Area  

Kruger National Park is nearly 20 000 km
2 

in extent and located in the eastern 

lowveld region of South Africa.  Detailed descriptions of climate, vegetation, and 

geology are outlined elsewhere (Gertenbach 1983, Venter et al. 2003, du Toit et al. 

2003).  Briefly, precipitation decreases in a north-south gradient, with annual rainfall 

averaging about 750 mm in the south-west and around 400 mm in north-east (Venter 

et al. 2003).  In the southern half, knob thorn (Acacia nigrescens) and marula 

(Sclerocarya birrea) predominate on basalt substrates, and Combretum spp. and 

Terminalia spp. species predominate on granites.  Mopane (Colophospermum 

mopane) predominates on both granitic and basaltic substrates in the northern half. 

 

1.2 Data source  

I assessed recent distribution patterns using Ecological Aerial Survey (EAS) 

data (1980-1993).  Detailed descriptions of the EAS survey procedure have been 

documented extensively (see Joubert 1983, Viljoen & Retief 1994, Joubert 2007).  I 

excluded an area north of Punda Maria from this analysis because it was irregularly 

surveyed (Viljoen 1992).  The mountainous corner of south-western Kruger was a 

difficult terrain to survey, and data from this section might not be reliable (Viljoen 

1992).  Positional accuracy of locating animal herds from the air was within 2 km 

prior to 1987 when locations were recorded directly by hand on to topographical maps 

and latter computerized using a grid system of 2 × 2 km
2
 squares (Joubert 1983).  

Positional accuracy improved to within 0.8 km after 1987 when a palmtop computer 
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coupled with a GPS unit was used to capture coordinates of the position of each herd 

(Viljoen & Retief 1994, Joubert 2007). 

 

Data analysis 
 

1.3.1 Distribution range estimates  

I applied the fixed kernel method (Silverman 1986) in constructing distribution 

ranges with least-squares cross-validation procedures to choose the smoothing 

parameter (h) (Gitzen et al. 2006, Horne & Garton 2006).  The smoothing parameter is 

the bandwidth or the width of a kernel constructed over a reference location point 

(chapter 2).  I did not use the adaptive kernel method because it attaches some level of 

uncertainty to range edges by applying a bigger smoothing parameter (h) for locations 

at the edge (Kernohan et al. 2001, Gitzen et al. 2006).  However, the fixed kernel 

method selecting the value for h from least-squares cross-validation procedures 

proved problematic for distribution pattern of wildebeest (see chapter 2 for details).  

Briefly, least squares cross validation yielded a higher h value compared to the one 

produced with adaptive kernel method, a situation which did not occur with the other 

11 species whereby smoothing parameters from both methods were nearly of the same 

value (chapter 2).  To choose the final smoothing parameter for wildebeest patterns I 

plotted a graph of range area against value of a smoothing parameter (Powell 2000).  I 

gradually increased values of h until the curve of area vs. h was stable, and I used the 

average (h = 0.0264) of the values around the point when the area stabilized (chapter 

2).     

I excluded solitary animals from my analysis because they included lone adult 

males that may be dispersed outside breeding ranges.  I used 0.95 probability kernel to 

estimate range extents for the less abundant waterbuck, sable, eland, tsessebe, and 

roan, but used 0.99 probability levels for the abundant buffalo, kudu, zebra, warthog 

(Phacochoerus aethiopicus), impala (Aepyceros melampus), wildebeest, and giraffe.  I 

represented concentration areas (core sections) consistently by 0.75 probability kernel 

(see chapter 2 for details).  I created shape files of positions of herds recorded during 

aerial surveys in Arc Map 9.1.  I loaded a shape file of locations of herds for each 

species onto the Home Range Extension Spatial Analyst Tool (Rodgers et al. 2005) 

and constructed distribution ranges.  I did not have sufficient computing power to 

compute all impala positions (N = 102 229) in one batch and therefore I divided KNP 
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into two halves to estimate that distribution range.  The two separate analyses were 

later merged in GIS for displaying a complete impala range on one map, but isopleths 

refer to different abundance levels in these two sections of the park, and thus cannot 

be compared.     

 

1.3.2 Analysis of favoured or avoided landscapes   

 Kruger National Park is divided into fifteen ecological zones that are based on 

general landscapes features (Gertenbach 1983).  I reduced the 15 to 9 entities to 

represent habitat types in this study (Fig. 1).  I merged (a) the predominantly mopane 

areas (mopane and bushwillow savanna and tree mopane savanna) to form the mopane 

woodland, (b) knob thorn and marula savanna and stunted knob thorn savanna to form 

the knob thorn-marula parkland and (c) Pretorius Kop sourveld and Malelane 

mountain bushveld to form the sour bushveld.  Smaller landscapes including Olifants 

rugged veld, sandveld and thorn veld were grouped into a new category, others.  I 

estimated relative availability of each landscape by calculating the area a particular 

landscape covered in KNP then dividing that by total area of the park.  I used the ET 

Geowizard tool in Arc Map to determine records of animal sightings per species in 

0.95 or 0.99 probability isopleths within each landscape type.  To determine whether a 

landscape type was occupied in proportion to its availability, avoided or preferred, I 

assessed proportion of animal records in an isopleth per landscape in relation to 

proportion of total records in the whole park.  I indicated strongly favoured habitats if 

the proportion of occupation was twice or more than the proportional availability, and 

avoidance if the proportion of records was less than 0.5 of the proportion available.  I 

did not apply statistical tests for comparisons of current distribution ranges with 

ranges depicted in the 1960s because Pienaar’s maps were vaguely complied and thus 

may not be scientifically rigorous to form a basis for inferring distributional changes.  

Furthermore, the very large sample sizes for most species spanning the period (1980-

1993) may most likely show significant relationships anyway.   

 

1.3.3 Changes in proportional distribution in various regions 

I assessed changes in the proportional distribution of each species in each of 

the four census regions for the period 1979-1993 when aerial censuses covered most 

of the park except for a small section in centre of the southern region of KNP which 

was not covered in 1979.  Kruger National Park has four regions south, central, north 
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and far northern region which are separated by rivers.  I subdivided the period (1979-

1993) into three periods consisting of 5 years each: (a) 1979-1983 (representing pre-

1982/3 drought), (b) 1984-1988 (representing period prior to decline of rare antelopes 

abundances and prior to a second drought (1992/3), and (c) 1989-1993 (after 

abundance decline had started and a period that included a second drought in 1992/3).  

I calculated an average of animals sighted for each 5 year period in each region, but 

divided by 4 years in southern region where records were not available for 1979.  I 

plotted proportion of animal records in each region in relation to total records in the 

whole park during a specific time period.   

 

Results 
 

1. Impala  

The concentration areas for impala must be interpreted independently in each 

half of KNP as distribution patterns in the two halves were analyzed separately.  

Impala were notably absent from some localized areas of the eastern half of KNP 

(north-east of central region and most sections of north-east region except near 

Shingwedzi River) (Fig. 2a).  Concentration areas of impala were associated with 

seasonal and perennial rivers on western granite areas in northern half, but more 

widespread away from rivers in the southern half.  Concentration areas of impala were 

not represented in south-western KNP.  The proportion of impala was approximately 

two times more in central and southern KNP than in northern sections (Fig. 3a).  The 

proportion of impala occurring in northern region increased from an estimated 0.164 

during 1979-1983 to about 0.187 during 1989-1993 and the proportion occurring in far 

north increased from 0.063 to 0.094, but declined largely in southern region of KNP 

during the same period. 

 Impala favoured thorn thickets near Sabie and Crocodile rivers, and thorn 

thickets on karoo sediments of central region (Table 1).     

 

1.2 Zebra 

Zebra distribution was continuous across KNP apart from a gap in a section in 

central-north of southern region near the Sabie River where zebra were not recorded.  

Concentrations of zebra were mainly in western granite areas in northern half of KNP, 

but occurred mostly in basalt areas in the southern half.  However, concentrations of 
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zebra occurred in granite areas in the extreme south-west of KNP.  Proportion of zebra 

increased in far north from an estimated 14% during 1979-1983 to about 20% during 

1989-1993 (Fig. 3b).  In contrast, 34% and 10% of the proportion of zebra occurred in 

north and southern regions in 1979-1983 but decreased to 10% and 7% respectively 

during in 1989-1993.  

Zebra did not show strong preference for any particular landscape, but tended 

to avoid thorn thickets along Sabie River and the sour bushveld around Pretorius Kop 

(Table 1).   

 

1.3 Buffalo 

Buffalo were distributed throughout KNP but concentrations during dry 

seasons were associated with seasonal and perennial rivers mainly in the western half 

of KNP on granitic substrates (Fig. 3a).  The proportion of buffalo relative to total 

population size in northern region increased from an estimated 26% to 34% and 13% 

to 15% in southern region between 1979-1983 and 1989-1993 (Fig. 3c).  The 

proportion of buffalo occurring in far north and central regions declined from 30% to 

23% and from 30% to 27% respectively relative to other regions of KNP during same 

period.    

Buffalo showed no strong preference for any particular landscape, but avoided 

thorn thickets near Sabie River, sour bushveld around Pretorius Kop, and mountain 

bushveld on rhyolite (Table 1)  

 

1.4 Wildebeest  

Wildebeest were highly concentrated in central region where > 70% of the 

population occurred (Fig. 2d).  Other local dry season concentration areas were on 

basalt in far north-east and south-eastern KNP.  Gaps occurred in a section in central-

north areas of southern region near Sabie River and along Crocodile River where 

wildebeest were not recorded.  Gaps also occurred in north-west of KNP on granite.  

Proportion of wildebeest increased in far north from 8% during 1979-1983 to 10% 

during 1989-1993 and from 68% to 74% in central region during this period.  

Proportion of total wildebeest showed a decrease of similar magnitude per region in 

south (11% to 7%) and northern (12% to 8%) regions during this period (Fig. 3d).     
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Wildebeest strongly favoured knob thorn and marula parkland on basalt in 

central region (Table 1).  Wildebeest avoided mopane woodlands, sour bushveld, and 

thorn thickets near Sabie and Crocodile rivers (Table 1).    

 

1.5 Kudu  

Kudu occurred continuously across nearly the whole park and concentration 

areas were indicated throughout most of central and southern regions (Fig. 2b).  The 

proportion of kudu in southern region increased from about 22% in 1979-1983 to 

about 30% in 1989-1993 and the proportion in central region increased from 38% to 

41% during the same period.  The proportion of kudu declined 26% to 18% north 

(0.26 to 0.18) and from 13% to 11% in far north respectively during the same period.     

Kudu favoured mountain bushveld in eastern KNP, but did not avoid any particular 

landscape (Table 1).  

 

1. 6 Giraffe 

Giraffe range covered all the southern half of KNP.  Concentrations of giraffe 

occurred in central region extending into southern region to the east (Fig. 2g).  Giraffe 

were not recorded in parts of both granite and basalt areas of northern region, but from 

granite areas of the far north region.  Proportion of giraffe doubled in far north from 

27% in 1979-1983 to 54% in 1989-1993 periods and decreased from 63% to 61% in 

central region.  The proportion of giraffe in southern region decreased by about the 

same magnitude as was the central region.   

Giraffe favoured the knob thorn and marula parkland in central region and mountain 

bushveld (Table 1).  Giraffe avoided sour bushveld around Pretorius Kop and mopane 

shrubveld in north and far north sections of KNP (Fig. 2e).   

 

 1.7 Waterbuck   

Waterbuck distribution was associated with perennial and seasonal rivers (Fig. 

2h).  Concentrations occurred along Olifants and Letaba rivers, and on seasonal rivers 

in central-east.  The proportion of waterbuck in central region increased from 37% to 

46% and from 11% to 14% in far north regions between the periods 1979-1983 and 

1989-1993 (Fig. 4h).  The proportion of waterbuck in the north region decreased from 

41% to 28% during the same periods.   
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Waterbuck favoured mountain bushveld in eastern Kruger, but showed no avoidance 

of any landscape (Table 1).   

 

1.8 Warthog  

Warthog were distributed throughout most of KNP with concentrations across 

the central region, south-east, and in granite areas of south-central and west of 

northern half of KNP (Fig. 2g).  Proportion of warthog in the north region increased 

from 22% to 25% and increased from 7% to 11% in far north region between the 

periods 1979-1983 and 1989-1993 (Fig. 3g).  Proportion of warthog in south declined 

from about 28% to 20% during the same periods.  

Warthog favoured knob thorn and marula parkland in central region and did not 

appear to avoid any particular landscape (Table 1).    

  

1.9 Sable antelope 

Sable distribution was continuous in most of the western granite section of the 

north and far north and extended out to basalt areas in far north-east, but distribution 

was patchy in the southern half, and sable mostly occurred on granite (Fig. 2i).  

Concentrations of sable occurred in the north-west, south-west plus localized areas 

west of the central region (Fig. 3i).  The proportion of sable increased from 30% to 

37% and from 13% to 16% in far north and central regions between 1979-1983 and 

1989-1993 (Fig. 3i).  However, the proportion of sable decreased from 32% to 24% in 

northern region during the same period.   

Sable favoured mopane woodland in north-west and sour bushveld around 

Pretorius Kop in south-west.  Sable avoided knob thorn and marula parkland in 

eastern parts of the central region and the mountain bushveld of eastern Kruger (Table 

1).    

 

1.1.0 Tsessebe  

Tsessebe were continuously distributed through north-eastern basalt areas, but 

their occurrence was isolated in north-west (Fig. 3k).  Tsessebe occurred on isolated 

patches in central region and north-east of southern KNP.  The proportions of tsessebe 

showed little change, declining from 55% to 52% in far north but increasing in south 

region from 3% to 5% between 1979-9183 and 1989-1993.  
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Tsessebe strongly favoured mopane shrubveld in north-eastern basalt areas 

(Table 1).     

  

1.1.1 Eland                                                   

Eland occurred through most of the far north, but distribution was patchy in 

northern region.  Eland were absent from southern KNP except for the south-west 

where some eland were introduced (Fig. 2j).  The proportion of eland in far north 

increased from 51% to 59% between 1979-1983 and 1989-1993 (Fig. 3j). The 

proportion of eland declined in the north from 48% to 37% during the same periods.  

Eland favoured mopane woodlands and mopane shrubveld (Table 1).    

 

1.1.2 Roan antelope 

Roan showed a patchy distribution, with most concentrated in the eastern 

region of the North and Far North sections, plus isolated patches occupied by single 

herds in the western region of the northern part of KNP and in the south-west (Fig. 3l).  

Those recorded in the east of the Central section were introduced there.  Roan 

concentrated especially in mopane shrubland (Table 1), and isolated herds in the west 

tended to be associated with gabbro intrusions into this predominantly granitic region.  

The roan antelope population declined equally through all sections of KNP after 1986 

(Figs. 6l).  However, the proportion of roan in central region increased from 0.0 to 0.3 

but declined from 60% to 56% in far north region during the same period. 

Roan strongly favoured mopane shrubveld in north-eastern Kruger (Table 1).   

 

Discussion   
 

 

This paper established that amongst the six common species, buffalo and zebra 

occurred throughout KNP.  Impala distribution exhibited gaps in a few localized areas 

on basalt in eastern KNP whilst wildebeest were not recorded in some places on 

granite to the north-west.  Amongst common browsers, kudu occurred throughout 

KNP, and giraffe occurred throughout southern half, but were absent in some places in 

northern half.  Of the two ―intermediate species‖ (abundance level somewhere 

between the common and rare species), waterbuck were associated with rivers in all 

four regions and warthog were distributed throughout KNP.  Amongst the four rarer 
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antelopes, sable antelope were more prevalent on western granite, but occurred on 

distinct patches on basalt areas in the east of KNP.  Roan and tsessebe occurred 

mainly in areas on basalt in north-eastern and far north-eastern KNP.  Eland occurred 

through most of far north, were not recorded in parts of northern region and were 

largely absent in southern KNP.   

Assessment of changes in proportional distribution indicated two contrasting 

patterns amongst the different species.  First, an initial (1979-1983 to 1984-1988) 

upward trend of population sizes for all species (except buffalo) which was 

characterized by evident increases in proportions of their numbers in northern half 

relative to southern half of the park.  Second, a decline of all species (except 

wildebeest and zebra) after 1988, which was again associated with shifts in regional 

proportions of these populations.  Between 1979-1983 and 1989-1993, the common 

species i.e. impala, zebra, buffalo, wildebeest, giraffe, and warthog all increased 

proportionately in northern half of KNP relative to the southern half.  In contrast, 

proportions of rarer antelopes, kudu, and waterbuck decreased in northern half of KNP 

relative to the southern half.  Changes in proportional distribution of common species 

appeared less associated with specific vegetation characteristics.  Instead, the 

proportional changes and the expansions of distributions of common species appeared 

closely linked to lower abundances of these species in the northern half of KNP 

relative to the southern half.  This suggests that perhaps proportional changes were 

somehow linked with lower competition or predation risks in those northern sections 

of KNP.  Furthermore, the common species expanded on both nutrient rich basaltic 

and nutrient poor granitic substrates in this northern half of KNP.  In addition, the 

same common species occurred on both granite and basalt substrates in the southern 

half of KNP.   

Comparisons of recent distributions (1980-1993) to those mapped around 1960 

indicate these basic features.  (1) An increased occupation of northern half of KNP by 

common species (zebra, buffalo, impala, warthog, giraffe, and wildebeest).  (2) 

Several species (1980-1993) occurred during dry season in areas indicated around 

1960 as wet season range (zebra, warthog, buffalo, waterbuck, and wildebeest).  (3) 

Distributions of rarer grazers contracted in northern half of KNP and west central 

region.  

Impala appeared more widespread away from rivers in northern and central 

regions due to increases in their numbers in these sections.  Warthog also appeared 
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more widely distributed in the northern half of KNP than was shown around 1960.  

Apparently, some range expansion for waterbuck away from rivers occurred in 

central-east, south-east, and south-west.    

Areas in east central region shown around 1960 as part of wet season range for 

zebra and wildebeest had become dry season concentration areas.  Wildebeest 

appeared more widespread in north region than was indicated around 1960.  There 

were more wildebeest and zebra in KNP in 1989-1993 than 1979-1983, while their 

populations showed little change after 1988.  Therefore, proportional distribution 

shifts suggest a higher local increase of their numbers in northern half of KNP.  Dry 

season concentrations for buffalo were indicated along the central-western boundary, 

which was indicated as wet season range around 1960.  An increase in proportion of 

buffalo in northern half relative to southern half during a period when buffalo were 

declining suggests that proportional distribution shifts were due to decline of numbers 

in northern region relative to southern sections.  Kudu showed a similar pattern to 

buffalo.  Giraffe expanded their presence in northern half of KNP to areas not 

occupied prior to 1963, so their proportion increased in this region.   

Recent (1980-1993) distribution patterns indicated a shrinkage of ranges of 

rarer antelope species associated with a decline in their relative numbers in northern 

half of KNP.  Areas occupied by sable in west-central region around 1960 appeared 

fragmented into discrete patches.  Tsessebe were absent from western granite areas in 

the central region where Pienaar had shown them to be present.  Eland range had 

apparently shrunk north of Letaba River.  Roan disappeared from north-west of central 

region and from most of the western section of northern regions where Pienaar 

indicated their presence.   

Distributions of browsers are less influenced by surface water availability in 

dry season in comparison to those of grazers (Western 1975, Ayeni 1975).  Therefore, 

giraffe in KNP may have expanded their distribution northward because of food 

availability there.  Patterns suggest that impala, zebra, buffalo, wildebeest, waterbuck, 

and warthog likely increased occupation of areas away from perennial rivers after 

waterpoints were added.  Persistence during dry season in areas marked as wet season 

range around 1960 suggests that provision of permanent water to those areas may have 

led to these changes.  The number of boreholes and drinking troughs amounted to 

about 300 plus 50 earth dams by the 1980s (Joubert 2007).  Stevenson-Hamilton 
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(1947) suggested that lack of surface water during dry season limited occupation of 

northern KNP.   

It has been suggested that widespread provision of artificial surface water in 

semi-arid savannas may result in homogenisation of animal distributions (Owen-Smith 

1996, Smit et al. 2007).  Based on this view, distributional shifts presented here could 

be explained by widespread provision of waterpoints.  Smit et al. (2007) reported that 

grazers in KNP were more associated with artificial waterpoints than browsers and 

mixed feeders.  Patterns presented here appear to support those observations.  Grant et 

al. (2002) recorded that radio-collared zebras in KNP moved away from areas where 

waterholes were closed towards areas where waterholes were still operational.  

Harrington et al. (1999) noted that there was a zebra influx in roan range shortly prior 

to roan decline.  The strong influence that surface water has on where grazers occur on 

the landscape was shown for Tsavo National Park and in the Amboseli, Kenya, where 

most grazers occurred within 4 km from a water source during the dry season (Ayeni 

1975, Western 1975) 

I expected dry season distributions for previously migratory wildebeest and 

zebra to shift in central region where fences blocked movement westwards outside the 

park.  Patterns shown here appear to show some support for this expectation for 

wildebeest and zebra, although availability of water in dry season in those areas may 

potentially be an additional factor.  Results presented here suggest tsessebe had 

disappeared from the area.  Roan and tsessebe disappeared from west central KNP 

while sable distribution became patchy in this area.   

 This study provides support for previous conclusions (Whyte & Joubert 1988, 

Grant et al. 2000) that management effects that included blocking migration outside 

the park by fencing and augmenting artificial water may lead to grazer species 

remaining in areas where waterpoints were added during dry season.  Expansions of 

ungulate distribution northwards and occurrence in areas previously used during wet 

season suggest that shifting distributions may have been associated with effects of 

providing permanent surface water to those areas.  Range shrinkages and 

fragmentation of rare antelope distributions may have occurred because common 

species had become resident on areas which then became less suitable to rare 

antelopes.   
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FIGURE CAPTIONS 

 

FIG. 1.  Main ecological zones in Kruger National Park.  1-Bushveld (Pretorius 

Kop/Malelane), 2-Thorn thickets around Sabi and Crocodile Rivers, 3- Mopane 

shrubveld, 4-Mopane woodlands 5-Mountain bushveld (Lebombo), 6-Knob thorn and 

marula park land, 7-Mixed bushwillow woodlands, 8- Others, 9-Thorn thickest 

(Delagoa) 

 

FIG. 2.  Distribution ranges (1980-1993) (a) impala (h = 0.0222), (b) zebra (h = 

0.0498), (c) buffalo(h = 0.0651), (d) wildebeest (h = 0.0265) (e) giraffe (f) kudu (h = 

0.0196) (g) warthog (h = 0.0222), (h), waterbuck (h = 0.0244) (i) sable (h =  0.0279), 

(j) eland (h = 0.0364), (k) tsessebe (h = 0.0288), (l) roan (h = 0.0357). 

 

FIG. 3.  Changes in proportional distribution in various regions.  1-Complete fill with 

small dots represent the Far North, 2-diamonds represent the North region, 3-vertical 

lines represent the Central region and 4-slanted lines represent the Southern region (a) 

impala, (b) zebra, (c) buffalo, (d) wildebeest, (e) kudu, (f) giraffe, (g) waterbuck, (h) 

warthog, (i) sable, (j) tsessebe, (k) eland, (l) roan.  
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Table 1. - Proportion of animal sightings in all herds in 0.95/.099 probability isopleths within each landscape type expressed as a percentage relative  

to its proportional extent in Kruger National Park.  1- Bold represent favoured landscapes, 2- Brackets represent avoided landscapes.  

 

                        

  Impala Zebra Buffalo Wildebeest Giraffe Kudu Warthog Sable Waterbuck Eland  Tsessebe Roan 

Landscape Type Avail. Proportion of use 

Mopane 

Woodland 30 21 26 35 () 13 21 28 49 26 57 11 17 

Mopane  

Shrubveld 17  23 23 12 () 12  10 20 35 78 75 

Mixed  

Bushwillow 

woodland  12 17  8 11 16 15 16 15 8 (0) (1) (0) 

Knob thorn-marula  

parkland 11 11 20 14 45 21 15 22 () 16 (0) (2) (0) 

Others 9 10 8 8 7 12 9 8 12 5 6 5 5 

Mountain  

bushveld 7 10 11 () 7 13 14 4 () 17 () () () 

Thorn thickets (near 

Sabie & Crocodile 

Rivers  7 15 () () () 8 6 7 (0) () (0) (0) (0) 

Sour bushveld  5 3 () () () () 6 () 10 3 () () () 

Delagoa thorn thicket 3 6 3 4 5 7 2 5 (0) 3 (0) (0) (0) 
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Figure. 2. 
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c)                                                                 d)   
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g)                                                                  h)  

      
 

i)                                                                   j)  
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Figure 3 

a) Impala    

                                         

 
 

b) Zebra 
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c) Buffalo     

                                        

    
 

d) Wildebeest 
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e) Kudu   

                                  

  
 

 

f) Giraffe 
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g) Waterbuck                                          

  

 
 

 

h) Warthog 
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i) Sable  

                                              

 
 

 

j) Tsessebe 
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k) Eland                                           

 

  
 

l) Roan   
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CHAPTER 4 

Contracting distributions at the edge of the range: 
rarer antelope species in Kruger National Park, South 
Africa.    
 

J. Chirima, N. Owen-Smith, V. Macandza and E. Le Roux   

Centre for African Ecology, School of Animal, Plant & Environmental Sciences, 

University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa 

 

ABSTRACT 
 

Distributional changes in response to global warming documented for several taxa 

involve a range shift towards higher latitudes or elevations.  At range edges, changes 

may be complex.  Species may disappear from less suitable patches while persisting 

where conditions remain sufficiently favourable.  Less documented are range shifts 

related to changing rainfall amount and seasonal distribution influencing vegetation 

composition and productivity, and hence food resources for herbivores.  Roan 

antelope, sable antelope, and tsessebe declined to 20% or less of their prior abundance 

during recurrent droughts between 1982 and 1995 in Kruger Park at the southern limit 

of their geographical distribution.  We assessed changes in their distribution ranges 

associated with these population declines using location records obtained from (1) 

park-wide annual aerial surveys (1977–1997), and (2) locations of sable herds tracked 

by GPS in two regions of Kruger Park (2001-2007).  Range contractions were evident 

for all three antelope species, associated with local herd extirpations, especially 

following the severe 1991/2 drought.  Range shifts up the rainfall gradient did not 

occur, and roan and tsessebe became locally extirpated in the wetter southern section 

of the park.  Small sable herds persisted in discrete remnants of their former 

distribution in the park.  Populations of these three species have not recovered despite 

more favourable rainfall in recent years.  It remains uncertain whether heightened 

predation risk, increased competition from more abundant grazers, or a regime shift in 

habitat conditions following persistent El Nino conditions through 1982-1995, is 

holding back the recovery of these rarer antelope species.  
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Introduction 
 

Distributional shifts in response to global warming have been documented for insects 

(Parmesan et al., 1999), amphibians (Janzen, 1994), fish (Brander et al., 2003), birds 

(Thomas & Lennon, 1999), and mammalian carnivores (Walther et al., 2002).  These 

typically involve a range shift towards higher, and hence cooler, latitudes or 

elevations.  However, spatial patterns may be more complex around the margin of the 

distribution range due to local variation in habitat conditions and other influences 

ranges (Caughley et al., 1988; Gaston, 1990; Lawton, 1993).  Species may become 

extirpated from localities representing marginal habitat, while persisting in places 

where conditions remain more suitable (Lomolino & Channel, 1995).  Changes in 

occurrence may be mediated through interactions with competitors or predators rather 

than being simply a response to changing climatic conditions (Gaston, 1990; Channel 

& Lomolino, 2000a).   

Relatively poorly documented are range shifts related to changing rainfall 

patterns.  The amount and seasonal distribution of rainfall strongly influences 

vegetation structure, composition and productivity in drier regions (Woodward, 

1987), with consequences for the distribution and abundance of large herbivores 

dependent on this vegetation as food (Walker, 1991; Brown et al., 1997).  Moreover, 

the presence of these large mammals has become restricted largely to protected areas, 

which may be fenced or surrounded by human settlements and livestock preventing 

dispersal.  Three large herbivore species occur at the southern limit of their historical 

distributions within the Kruger National Park (KNP) in South Africa: roan antelope 

(Hippotragus equinus), sable antelope (Hippotragus niger) and tsessebe (Damaliscus 

lunatus) (Skinner & Chimimba, 2005).  All three remain widely prevalent in wetter 

savanna regions further north in Africa.  Their populations within KNP declined to 

20% or less of their peak abundance during the recurrent droughts that occurred 

between 1982 and 1995 (Ogutu & Owen-Smith, 2003).  Various lines of evidence 

implicate an increase in abundance of their major predator, plus shifts in prey 

selection, as primarily responsible for the sharp downturn in population trends of 

these species apparent after 1986, rather than simply low rainfall (Owen-Smith et al., 

2005; Owen-Smith & Mills, 2006, 2008).  Underlying this pattern was expanded 

surface water availability through the provision of numerous artificial waterpoints in 

form of boreholes and dams by park managers.  The result was expanded populations 
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of the ungulate species that form the principal prey of lions.  Nevertheless, the rarer 

antelope species have not recovered despite more favourable rainfall conditions since 

1995, and the closure of many water points.  This suggests that some lasting effect of 

the prolonged dry conditions, persistent high predation pressure, or increased 

competition from the more abundant grazers, may be restricting their population 

recovery.   

In this paper, we assess distributional changes within the park associated with 

the population decreases by these relatively rare antelope species in order to unravel 

the contributory mechanisms further.  We draw on two sources of data: (a) aerial 

censuses of all large herbivores within KNP, carried out annually from 1977 to 1997, 

including spatially explicit herd locations, and (b) locations of surviving herds of 

sable antelope tracked by telemetry in two regions of the park between 2001 and 

2007.  We expected that, if habitat deterioration as a consequence of lowered rainfall 

was the main influence, the range shrinkage would be greater in the drier northern 

section of the park than in the wetter southern region.  However, the increase in water 

points putatively leading to heightened predation was also proportionally greatest in 

the northern section of the park (Grant et al., 2002), potentially confounding 

relationships with rainfall.  We also extracted supporting information on changes in 

herd numbers, herd sizes, and calf proportions recorded during the aerial censuses.  

All three antelope species form cohesive breeding herds occupying distinct and 

spatially fixed home ranges (Skinner & Chimimba, 2005).  Hence distributional shifts 

occur through the local extirpation of herds.  While predation by lions affects 

especially adult mortality (Owen-Smith et al., 2005), a reduction in food availability 

due to less effective rainfall, or predation by smaller carnivores, should lead mainly to 

reduced calf survival (Gaillard et al. (1998).  We expected that, if effects besides 

rainfall (e.g. predation) were overriding, contractions of distribution range, herd sizes 

and recruitment would be spatially disparate.  If rainfall was the main cause, 

reductions in recruitment and herd size should be consistently greater in the drier 

north.  Variation in the timing, regional location, and spatial extent of range 

reductions could provide further clues to the causal mechanisms.    
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Methods 
 

Study area and species  

 

Kruger National Park (KNP) covers almost 20,000 km
2
 in the eastern Lowveld 

region of South Africa.  Its boundaries became completely fenced in 1976, but in 

1993 a section of the fence separating the park from private wildlife reserves to the 

west was removed.  Precipitation ranges from 750 mm in the south-west to around 

450 mm in the north-east (Venter et al., 2003).  Granite-derived sandy soils prevail in 

the west and basaltic clays in the east.  In the southern half, the vegetation is 

predominantly knob thorn (Acacia nigrescens) - marula (Sclerocarya birrea) parkland 

on basalt, and bush willow (Combretum spp.) - silver cluster-leaf (Terminalia sericea) 

savanna on granite.  In the northern half, mopane (Colophospermum mopane) savanna 

woodland or shrubland predominates on both substrates.  Towards the north-west, 

rainfall rises locally to 600 mm, and largely sandstone substrates support Combretum-

dominated savanna in the Punda Maria area. 

Sable antelope typically occur in herds of females plus young numbering 20-

50 animals, frequently accompanied by the local territorial male.  Herd home ranges 

cover 3-15 km
2
, with little overlap among neighbouring groups (Estes & Estes, 1974; 

Grobler, 1974).  Roan antelope form somewhat smaller herds of 6-12 animals, and 

move over discrete ranges of up to 100 km
2
 (Joubert, 1974).  Tsessebe also form 

discrete herds, typically numbering 3-12 animals including the accompanying 

territorial male, occupying discrete ranges of 2-4 km
2
 with herd aggregations 

sometimes forming in favoured feeding areas (Joubert, 1972; Grobler, 1973).  For all 

three species, there are no historical records of their presence south of the Crocodile 

River, which forms the southern boundary of the Kruger National Park (Du Plessis, 

1969). 

 

Data collection 

 

Annual ecological aerial surveys (EAS) of KNP have been conducted by 

fixed-wing aircraft carrying the pilot, a recorder and four observers (Viljoen & Retief, 

1994).  Adjacent transects 800 m apart were flown from May to August when 

visibility was best.  For interpretation, the park area is divided into four broad regions, 
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separated by major rivers (Fig. 1).  The entire extent of the park was covered from 

1980 to 1993, except for hilly regions in the extreme north and south-west.  However, 

the South was covered only partially through 1977-1979 and omitted through 1994-

1996, while the Central section was left out in 1977 and covered only partially in 

1994-1996. Parts of the northern half were omitted in 1995 and 1996, while in 1997 

only South was censused.  

The geographical locations of animals seen had an uncertainty of up to 2 km 

prior to 1987 when sightings were mapped by hand, but subsequently were within 0.8 

km enabled by a Global Positioning System (GPS) unit in the aircraft coupled to a 

palmtop computer.  Herd size was recorded, as well as the number of calves less than 

a year old that were visible.  All-male groups were distinguished from herds including 

females plus young where possible.  The fraction of animals of medium-sized 

antelope species detected from the air was estimated to be 60-80% (Redfern et al., 

2002).      

Locations of the two sable herds remaining within a 400 km
2
 area near Punda 

Maria camp in Far North were tracked using Very High Frequency (VHF) radio 

collars from October 2001 to September 2003, and thereafter by Global Positioning 

System (GPS) - cellular phone (GSM) collars.  In June 2006, GPS-GSM collars were 

used to track the movements of the four sable herds that remained in a 1,500 km
2
 

region around Pretorius Kop camp in the south-west.  GPS units were scheduled to 

record herd locations at 6 hour intervals.   

 

Data analysis  
 

To include data from years with incomplete spatial coverage (1977-1979) and 

still ensure unbiased estimates of distribution changes, I duplicated data from the 

same census block in preceding or subsequent years to represent the missing data.  I 

considered duplication of data appropriate because the focus here was to document if 

a herd had disappeared from a previously occupied geographic area.  Sable antelope 

are sedentary and form stable cohesive groups.  Thus, it is reasonable to assume that 

two sightings of a sable herd in the same home range area in a space of two years 

represent persistence of that same herd.  Furthermore, construction of distribution 

ranges only uses geographical positions of herds and not numbers of animals per herd.  
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Because our concern was with the distribution of breeding herds, we excluded data for 

single animals and herds recorded as including only males, which might occupy 

outlying home ranges.  To estimate distribution ranges, we used the Adaptive Local 

Convex Hull (a-LoCoH) method (Getz et al., 2007) as Spatial Analyst Extension in 

Arc Map 9.1 (GIS).  This method is more sensitive to gaps in occurrence, and less 

influenced by outliers, than kernel methods (Getz & Wilmers, 2004; Chirima & 

Owen-Smith in preparation).  Initially, we fixed the value of k (minimum number of 

points used to construct a polygon) at 3, and the value of a (distance from the root 

point) at 1 m.  We then plotted the area of the estimated distribution range versus 

increasing values of a to find the point where the area began to level off (the 

minimum spurious hole covering or MSHC value of a, Getz et al., 2007).  With a 

fixed at this value, we then varied k to find its MSHC value.  Thereafter we used these 

joint values of a and k to construct the final distribution ranges.  Hulls are joined from 

smallest to largest into isopleths.  We represented total distribution ranges by the 95% 

isopleths, and distinguished core from marginal regions using 75% isopleths.  The 

same approach was used to construct range utilization distributions for sable herds at 

Punda Maria and Pretorius Kop, using location records from either EAS surveys and 

VHF or GPS telemetry. 

 Distribution ranges were plotted from the EAS data distinguishing four 

periods: (1) 1977-1981, prior to the low-rainfall conditions; (2) 1982-1986, through 

the 1982/3 drought but before the population declines; (3) 1987-1991, through the 

initial population declines, and (4) 1992-1997, following the severe 1991/2 drought.  

Assuming a sighting probability of 0.7, the chance of a herd being missed for five 

consecutive years is 0.24%, while if only four years were covered this chance is 

around 0.8%.  For Punda Maria and Pretorius Kop, local distribution ranges were 

estimated from the EAS data for these same periods and in addition from radio-

telemetric locations for three divisions of the period between late 2001 and 2007.  

Rainfall was exceptionally high in 1999/2000 (July-June), thereafter alternating 

between high and low rainfall years. 

Changes in mean herd size and number of herds recorded in the EAS were 

analysed by year for South, Central, North, and Far North sections (excluding single 

animals and all-male herds).  Annual calf recruitment was calculated by dividing the 

number of animals estimated to be less than a year old by the total number of animals 

in breeding herds besides calves.  While the calf proportion is underestimated because 
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of the smaller size of these animals relative to adults, this bias should remain fairly 

consistent between years.  For roan antelope, we also plotted annual changes in 

number of animals recorded in the spatially discrete subpopulation units. 

 

Results 

 

Sable antelope 

 

Sable antelope showed a patchy distribution spread throughout the KNP, but 

with a concentration towards the west.  Their distribution range showed some 

expansion in the northern half of the park between 1977 and 1986, associated with a 

50% increase in population size.  Following their population decline after 1987, their 

range contracted in western and southern regions of the northern half of the park, and 

eastern margin of the south-western patch, accentuated after 1991 (Fig. 2, Table 1). 

The increase in population size between 1977 and 1986 was coupled with a 

substantial increase in number of herds recorded in both northern sections, while 

mean herd size showed little overall change (Fig. 3).  Herd size but not herd numbers 

increased in the Central section during this period, while in the South there was little 

change in either measure. Herd numbers as well as size declined slightly in northern 

sections after 1986, followed by a precipitous drop in herd numbers after 1992. By 

1995, only 22 herds were recorded in Far North and 13 herds in North, compared with 

57 and 49 herds respectively when the population had peaked around 1985-6. Herd 

size also decreased substantially, from earlier means of about 15 to around 5 in both 

northern sections.  Calf proportion fluctuated between years without any trend from 

1980 through 1991, being low in dry years and high in years with good rainfall, 

except in South where it remained relatively constant (Fig. 3 (c)). After 1991, calf 

recruitment dropped most notably in South where it had previously been consistently 

highest. 

A detailed examination of distribution changes in the Pretorius Kop region in 

the south-west showed initial signs of herd disappearances towards the north-eastern 

edge after 1987, which was accentuated after 1992 (Fig. 4).  By 1997, only 8 herds 

were counted in this region, down from the peak of over 20 herds seen around 1987.   

When GPS collars were fitted in 2006, only four herds of 7-12 animals were found in 
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this section, with gaps between their home ranges that had formerly been occupied by 

other herds. However, chance sightings indicated that 2-3 additional herds remained 

to the south of the GPS study area.  In the Punda Maria study area, the concentration 

of sable that had been present in the south disappeared after 1991 (Fig. 5). Only 4 

herds were counted from the air in 1995, down from a peak of 12-15 herds around 

1987. When VHF collars were placed in 2001, only two herds totalling about 30 

animals were found in this region.  After 2003 when GPS tracking was undertaken, 

the remaining animals formed a single herd of around 20 animals, with their 

movement range having shrunk towards a north-west core by 2006.   

 

Roan antelope 

 

Prior to 1986, roan antelope occurred in two fairly distinct core ranges, 

including about 100 animals each, in the east of North and Far North, plus three 

isolated herds within the western region of the northern half, and a remotely situated 

herd in South (Fig. 6).  Range shrinkage was evident across the whole park after 1986 

(Table 1(b)).  Specifically, the isolated herd in the South plus the herd in the south-

western region of North had disappeared by 1989, followed by all remaining herds in 

North, including the core subpopulation, by 1996 (Fig. 7).  The four herds remaining 

in Far North in 1992 had decreased to two herds, totalling around 20 animals, plus 

some lone males, by 1996, representing the entire free-ranging population in the park.     

 

Tsessebe 

 

Tsessebe occurred fairly continuously through the eastern region of the 

northern half of KNP, plus an isolated subpopulation in the south-eastern region of the 

Central section (Fig. 8).  No range contraction took place until after 1991, when the 

northern range shrunk and the south-western herds disappeared (Table 1(c)).  The 

number of tsessebe herds increased in KNP between 1977 and 1991, after which herd 

counts exhibited a downward trend (Fig. 9 (a)).  Tsessebe herd size showed a slight 

downward trend over this period (Fig.9 (b)).  The appearance of an occupied patch in 

the south-west after 1986 was as a result of animals moved there by park managers.   
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Discussion  
 

Reductions in the distribution ranges of the three antelope species occurred 

throughout KNP, rather than being manifested mainly in the drier northern half, after 

1986.  Nevertheless, the initial range shrinkage became evident during a sequence of 

years with generally below-average rainfall when populations of these species 

declined, initiated by a severe drought in 1982/3 (Ogutu & Owen-Smith, 2003).  For 

sable, much of this range reduction was associated with the loss of herds that had 

established during the sequence of high rainfall years extending through 1981.  Range 

contraction by all three species became accentuated following the extremely severe 

drought experienced in 1991/2, involving the disappearance of isolated herds of roan 

and tsessebe, as well as herds within continuously occupied regions for all three 

antelope species.  In the Punda Maria area, up to 15 sable herds totalling over 200 

animals present around 1987 had become reduced to a single herd of about 20 animals 

after 2003.  In the Pretorius Kop area, herd numbers changed little until the severe 

1991/2 drought, after which many long-standing herds were no longer recorded.  Peak 

numbers of around 450 sable in over 30 breeding herds recorded in this region around 

1987 had declined to under 100 animals in no more than seven herds by 2004 (Whyte, 

2006).  Hence for sable the range contraction was almost as severe in this wettest 

region of KNP as in the drier north.  Furthermore, all tsessebe herds plus the single 

roan herd were extirpated from the southern half of KNP.  

For sable, calf recruitment fluctuated in response to annual rainfall variation.  

A persistent downward shift was evident in the south-west and far north of the park 

after 1991, but not in other sections.  Hence poor recruitment probably accentuated 

the shrinkage and ultimately the disappearance of sable herds in the former two 

sections.  In the Central section where no range contraction by sable was evident, calf 

recruitment remained constant and herd numbers showed no change, although herd 

size declined.  Roan antelope showed annual variation in calf recruitment without any 

trend, meaning that the downward population trend was an outcome of the elevated 

adult mortality related to herd disappearances (Harrington et al., 1999).  Tsessebe 

recruitment indicated little variation prior to 1991 but exhibited a persistent 

downward trend thereafter. 

 Historical records indicate that contractions in the distribution ranges of sable, 

roan, and tsessebe became evident prior to 1977.  During the 1920s, sable had been 
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among the most common antelope species within and beyond the western boundary of 

KNP, being frequently shot for meat (Roche, 2002; Joubert, 2007).  Distribution 

ranges mapped by Pienaar (1963) from rangers’ reports plus ground surveys show 

sable more widely distributed in west-central and far north-east regions of KNP 

around 1960 than documented after 1977.  Roan antelope evidently occurred more 

widely in the western region of the northern half of the park at that time.  Tsessebe 

were recorded through much of the west-central region of KNP, as well as in western 

sections of Far North.  Eight hundred sable were reported to be present on in private 

nature reserves to the west of KNP around 1962, along with numerous tsessebe and 

several herds of roan antelope, but all of these animals have subsequently vanished 

(Roche, 2002).   

 A widespread decline in tall trees, and thickening of woody shrubs especially 

on granite substrates, occurred in parts of KNP between 1940 and 1998 (Trollope et 

al., 1998; Eckhardt et al., 2000).  A thickening of woody vegetation in private nature 

reserves to the west of KNP was also evidently under way during the 1960s (Roche, 

2002).  This vegetation transformation could make animals more vulnerable to being 

killed by lions (Funston et al., 1998).  Nevertheless, wildebeest and zebra, which form 

the principal prey species for lions, remain abundant within the park, although not in 

the private nature reserves.  The drastic decline of roan antelope and disappearance of 

sable in the north-eastern basalt plains of KNP appeared to be related to increased 

predation on adult females.  This was associated with an increase in the local 

abundance of lions following an influx of zebra, in turn attracted by artificial 

waterholes when drought conditions prevailed (Harrington et al., 1999; Owen-Smith 

& Mills, 2006).  Zebra numbers also increased more than two-fold in the far north-

western region of Kruger Park between 1983 and 1987.  Within the Punda Maria area, 

zebra herds appeared to concentrate towards the south, i.e. the zone from which sable 

herds disappeared.  In the Pretorius Kop area, a temporary doubling of zebra numbers 

was recorded in 1992, just prior to the sable decline there.  Apart from the role of 

zebra in attracting lions, their competitive grazing at times when grass was in short 

supply during droughts cannot be discounted.  An increase in the number of buffalo 

around Pretorius Kop was also evident between 1982 and 1990, adding their 

competitive grazing pressure as well as expanding the prey base for lions.  A buffalo 

herd totalling around 400 animals shared the Punda Maria study area with the 

surviving sable herd. 
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 Evidence for the role of predation in the decline after 1986 of the rarer 

antelope species, as well as relatively more common species like kudu (Tragelaphus 

strepsiceros) and waterbuck (Kobus elipsiprimnus), came from increases in adult 

rather than juvenile mortality (Owen-Smith & Mason, 2005; Owen-Smith et al., 

2005), plus increased representation of these species in lion kills (Owen-Smith & 

Mills, 2008).  Elevated adult mortality was also associated with the reduction of herd 

sizes of the rarer antelope species, as documented above.  Localities that had formerly 

supported herds no longer did so following the persistently dry conditions prevailing 

over 1982-1993, whether because of greater predation numbers, bush thickening, or 

grassland deterioration.  In the northern section of KNP, new sable herds became 

established during the high rainfall conditions that prevailed through the late 1970s, 

indicating a general improvement in habitat suitability in this region of predominantly 

low rainfall.  Earlier estimates of sable numbers from aerial plus ground counts 

indicated a fairly consistent total of around 1000-1200 sable in KNP from 1954 

through 1975, with little decline during the drought years of the late 1960s (Joubert, 

2007).  The steep decline across all regions after 1991 reduced the sable population to 

an unprecedented low of under 500 animals, with little or no recovery evident 15 

years later (Whyte, 2006).  The sable pattern is closely paralleled by both tsessebe and 

roan antelope, with the latter reduced to numbers where a vortex of genetic and 

demographic stochasticity (Gilpin & Soule, 1986) could lead to local extirpation.  The 

long-term viability of the sable population is also insecure, despite its larger total, 

because remaining herds could be more susceptible to predation because of their small 

size, as an Allee effect (Stephens & Sutherland, 1999).  The recent alternation of good 

and bad rainfall years could also be holding back recovery, through allowing little 

opportunity for rebound from the poor calf survival in the dry years.   

Whilst outbreaks of anthrax in the past have been associated with mortality 

among roan, buffalo, and kudu, the occurrence of anthrax related deaths is closely 

monitored in KNP (Furnis & Hahn 1981) with none recorded at the time the rare 

antelope population declines were initiated.  Diseases can potential reduce 

abundances of species, however, there was no evidence that this was the case for KNP 

concerning the rare antelope.  There were no reports in KNP that suggested an 

outbreak of diseases during the initial decline of rare antelopes.  Elephant impacts 

were associated with a decline of other antelope species elsewhere through 

modifications of habitat structure (Valeix et al. 2006).  However, there is no evidence 
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that this is the case in KNP, instead, sable herds persisted in the north west, areas 

which, have been categorized as high elephant density zones (Whyte et al. 1999).  

The shrinkage in the distribution ranges of the rarer antelope species that occurred 

after 1986 has been documented in greater detail elsewhere (Chirima et al. submitted).  

Furthermore, the spatial distribution of these species within KNP appears to be related 

primarily to the available prey biomass for lions, rather than to the geological and 

vegetation features expected to govern habitat suitability for the three grazers (sable 

antelope, roan antelope, and tsessebe).  However, the shrinkage in distribution ranges 

of these species were associated with persistently low rainfall conditions, including an 

especially severe drought in 1991/2, suggesting that habitat deterioration was a 

contributory factor.  There is also evidence of a generally thickening in the shrub 

layer in the western granitic section of KNP, while the eastern basaltic region in the 

southern half, although not in the mopane-dominated north, has become more open as 

a result of the destruction of canopy trees by elephants (Trollope et al. 1998, Eckhardt 

et al. 2000).  This change may also have heightened the risk of predation for the rarer 

antelope species where they mostly occurred.  

 The pervasive lack of recovery by these rarer antelope populations raises the 

possibility that a tipping point or ―regime shift‖ in habitat conditions occurred when 

the severe 1991/2 drought accentuated the generally dry, El Nino-related conditions 

that had prevailed over most of the preceding decade (Holmgren et al., 2006).  The 

habitat transformation could be the bush thickening alluded to above, changes in grass 

composition and seasonal forage value, or a general aridification exacerbated by 

woody plant expansion coupled with low rainfall.  Notably, all three species 

commonly occur in wetter savannas than represented within the boundaries of KNP.  

Nevertheless, sable herds, as well as the sole roan herd, disappeared in the south-

western region of KNP which approached moist savanna conditions.  This is also an 

area where relatively few artificial waterpoints were added.  It is possible that 

persistently aridity led to the drying up of natural springs and streams in this region of 

granite inselbergs, forcing the emigration of some sable herds into unsuitable habitat 

and hence their demise.  Ogutu and Owen-Smith (2003) related widespread declines 

among less common ungulate populations in KNP after 1986 to extremely little 

rainfall during the normally dry season months, but unusually low rainfall during the 

dry season has not persisted.  These authors also noted that prevailing temperature 

conditions rose by about 0.4
o
C around the time of the population declines, as a local 
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reflection of global warming.  Persistently warmer conditions especially at night could 

elevate plant respiration and hence lead to a more rapid loss of green foliage during 

the dry season, to the detriment of forage quality.  The atmospheric CO2 increase 

contributing to global warming could also be promoting bush thickening, through 

benefiting the growth of woody plants at the expense of grasses (Walker, 1991; Bond 

& Midgley, 2000).  Furthermore, warmer conditions could cause more rapid 

evaporation of soil moisture. 

 Whether changes in woody-grass balance, grass species composition or grass 

phenology underlie the shrinkage in the distribution of rarer antelope species in KNP 

cannot be established reliably because of the lack of adequate records of vegetation 

features prior to the onset of low rainfall conditions in 1982.  Hence, the suggested 

shift in habitat conditions remains speculative.  Moreover, it is difficult to disentangle 

the direct effects of predation on prey populations from factors predisposing animals 

to a greater risk of predation, whether through inadequate nutrition, denser vegetation 

cover, or more predators following changes in populations of common ungulate 

species.  Aerial censuses completely covering the KNP were discontinued after 1994, 

so that information on subsequent population changes by the rare antelope species is 

fragmentary.  Surveys of population structure also ended.  This lack of information 

prevents us from making more confident statements about causal processes bringing 

about the range and population contractions. 

 Nevertheless, our study has documented how adverse conditions, through 

whatever cause, both contracted and fragmented the distribution of these three 

antelope species in a region representing the southern margin of their historic 

distribution ranges.  Range contractions were associated with local herd extirpations, 

but no distributional shift up the rainfall gradient.  The fence blocking dispersal 

towards the west was of little consequence, since no movement of sable in this 

direction has taken place following the removal of this fence in 1993.  Recolonization 

from animals occupying wetter habitats further west is no longer possible, because 

these three antelope species occur there only within tightly fenced wildlife ranches.  

Climate variation affects these species not only through changing food resources, but 

also indirectly through ramifying interactions related to susceptibility to predation and 

competition linked to surface water access.  All of these mechanisms play out within a 

changing spatial template.  Comprehensive information on spatial variation in these 
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influences is needed in order for confident conclusions to be drawn about contracting 

species distribution ranges.  
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FIGURE CAPTIONS 

 

Figure 1 Map of Kruger National Park, South Africa, showing the four sections 

distinguished as well as location of the two intensive study areas. Grey lines indicate 

rivers forming boundaries between these sections; shading indicates areas in north and 

south not covered during aerial surveys. 

 

Figure 2 Changes in sable antelope herd distribution in Kruger National Park mapped 

by Local Convex Hull method: (a) 1977-81, (b) 1982-1986, (c) 1987-1991, (d) 1992-

1997. Darker grey represent core region within 75% isopleths, with lighter grey 

bounded by 95% isopleths.  

 

Figure 3 Trends in (a) herd counts, (b) mean herd size, and (c) calf proportions for 

sable antelope in the four sections of Kruger National Park, recorded in aerial surveys. 

 

Figure 4 Changes in sable antelope herd distribution in Pretorius Kop region of south-

western Kruger National Park between 1977 and 1997, recorded in aerial surveys (a-

d), and between 2006 and 2007, from GPS tracking of collared herds, mapped by 

Local Convex Hull method (e; shading as in Figure 2). 

 

Figure 5  Changes in sable antelope herd distribution in Punda Maria region of north-

western Kruger National Park between 1977 and 1995, recorded in aerial surveys (a-

d), and between 2001 and 2007, from VHF or GPS tracking of movements of collared 

herds, mapped by Local Convex Hull method (e-g; shading as in Figure 2). 

 

Figure 6 Changes in roan antelope herd distribution in Kruger National Park mapped 

by Local Convex Hull method (shading as in Figure 2):  (a) 1977-81, (b) 1982-1986, 

(c) 1987-1991, (d) 1992-1995. 

 

Figure 7 Annual changes in the number of roan antelope recorded in discrete patches 

within the distribution range (FN – Far North, N - North, S – South; -E – eastern 

region, -W – western region, -NW = north-western region, SW = south-western 

region).  
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Figure 8 Changes in tsessebe herd distribution in Kruger National Park mapped by 

Local Convex Hull method (shading as in Figure 2):   (a) 1977-81, (b) 1982-1986, (c) 

1987-1991, (d) 1992-1995. 

 

Figure 9 Trends in (a) herd counts and (b) mean herd size for tsessebe in three 

sections of Kruger National Park, recorded in aerial surveys. 
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Table1a.  Area covered by estimated 95% distribution ranges (km
2
) during four blocked 

periods for each antelope species within each section of Kruger National Park (Total 

extent: Far North - ; North - ; Central - : South - . 

 

(a) Sable antelope 

 

 Period      Region  

Entire park  Far North North Central  South 

 1977-1981 1800 1179 322 785 4086 

 1982-1986 1865 1641 426 807 4739 

 1987-1991 1519 1123 402 724 3768 

 1992-1997 1272 879 515 426 3092 

 

 

(b) Roan antelope 

 

 Period      Region  

Far North North Central  South Entire park 

 1977-1981 1046 666 0 46 1758 

 1982-1986 1660 1059 0 58 2777 

 1987-1991 1148 815 0 0 1963 

 1992-1995 544 247 0 0 791 
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(c) Tsessebe 

 

 Period      Region  

Far North North Central  South Entire park 

 1977-1981 1683 663 3 79 2428 

 1982-1986 1729 735 7 100 2571 

 1987-1991 1714 713 21 192 2640 

 1992-1995 1038 583 0 36 1657 
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Figure 1 
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Figure 2 

a                                                                  b 
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Figure 3 
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Figure 4 
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Figure 5 

a                                                        b                                                c                                                d 
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Figure 6 

a                                                               b 
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Figure 7 
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Figure 8 

a                                                                  b 
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Figure 9  
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CHAPTER 5 

Biotic vs. abiotic determinants of the local distribution 
of a low-density large herbivore in the Kruger National 
Park.  

 

ASBTRACT  
 

The aim was to determine which factors restricted a wider distribution of sable antelope 

in Kruger National Park.  I used park-wide aerial surveys (1978–1988) to distinguish 25 

km
2
 cells occupied by sable herds from unoccupied regions.  I fitted logistic regression 

models using geology, rainfall, vegetation type, and distance from water sources as 

abiotic predictors.  I used biomass of the most abundant grazers impala, wildebeest, 

buffalo, and zebra to assess competition.  As a proxy for predation risk, I used prey 

available for lions calculated as the product of each species abundance, carcass mass and 

relative selection by lions, summed over prey species.  I fitted logistic regression models 

to biotic predictors (competition and predation).  Sable prevalence differed from 

expectation for geology because prevalence was highest on nutrient poor granite and 

sandstone instead of nutrient rich basalt and gabbro.  Distances of up to 5 km from 

perennial water sources did not appear to exert limiting influences on where sable herds 

occurred in Kruger Park.  Land type was the best supported abiotic factor in explaining 

distribution of sable herds.  Sable favoured mopane/bushwillow (tree/bush) savanna, 

mopane/knob thorn savanna, and sour bushveld over thorn veld, mountain bushveld and 

knob thorn/bushwillow/silver cluster-leaf bush savanna.  Sable prevalence was most 

negatively associated with impala and wildebeest which favoured different habitat types.  

Sable were not excluded from areas of high biomass of buffalo or zebra, with most 

similar food selection, suggesting that sable herds established home ranges within wider 

range occupied by buffalo and zebra.  Sable were more prevalent in areas where 

predation risks appeared lower than elsewhere.  Predation risks appeared more influential 

on sable distribution compared to competition.  Results presented here show that biotic 

factors modify effects of abiotic factors on where rare and sedentary species establish.  
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Introduction 
 

Relationships between occurrence of a species and features of the types of habitats it 

occupies are central to establishing factors that influence the distribution of a species 

(Johnson 1980, Heglund 2001, Johnson et al. 2004).  Predicting where a species could 

occur and determining which resources are favoured is achieved through quantifying 

occupied areas and used resources in relation to their availabilities to the animals (Manly 

et al. 2002, Boyce et al. 2002, Johnson et al. 2004).  Senft et al. (1987) suggested that 

resource selection requires multi-scale considerations because animals use different sets 

of selection criteria at different scales.  Johnson (1980) outlined a hierarchical fashion in 

which selection could occur from a geographic range, (1
st
 order), home range (2

nd
 order), 

usage of various components within home ranges (3
rd

 order) (e.g. feeding sites) to 

procurement of items (e.g. food) from those available at a site (4
th

 order).  

At the 1
st
 order of selection, a species distribution range is represented as a 

continuous unit, which encompasses all regions in which individuals have been recorded 

(Heller 1918, Gaston 1991, Hill et al. 1999).  Broad abiotic factors such as climate and 

geographic barriers have overriding influences over biotic influences to identify regions 

that lie outside a species range (Heller 1918, Palmeirim 1988, Olson et al. 2001, Pearson 

et al. 2002).  Distribution models developed at this selection level are helpful to provide 

insights into range losses under changing climate effects (Peterson 2006) 

Less studied is the 2
nd

 order of selection, which relates to how herbivores select 

where to establish home ranges and how interactions between abiotic and biotic factors, 

including predation or competition, influence occupation patterns.  Studies at this scale 

clarify the different influences that resource types exert at each order of selection, and 

reveal factors that could constrain use of those resource types; aspects that have received 

little attention in resource selection studies (Boyce et al. 2002).  The 2
nd

 order of selection 

may expose which species might be of concern to conservationists because of shrinking 

distributions (Pim et al. 1995, Lawton et al. 1994).  Important for conservation is that the 

2
nd

 order of selection reveals which areas may be suitable, and which are unsuitable, for 

the establishment of home ranges (Gaston 1991).  Soberón and Peterson (2005), and 

Soberón (2007) propose three conditions that could be pertinent to establishment of a 

home range: (i) a local environment that allows the species population to grow, (ii) 
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interactions with other local species that allow the species to persist, and (iii) an 

accessible location in terms of dispersal.  

At 2
nd

 order of selection, abiotic factors particularly temperature and precipitation 

in association with topographic conditions, which influence vegetation growth, could 

impose physiological limits to species occurrence (Grinnell 1917, Soberón & Peterson 

2005).  Animals respond to plants as food and because they provide breeding sites or 

shelter.  Rainfall also influences plant distributions, composition and structure, and hence 

prevalence of open grasslands, thickets, forest, and tree savannas.  Larger herbivores may 

select from among these vegetation structures or from among attributes such as shrub 

density, percentage cover, or distance from water (Funston et al. 1994, Manly et al. 

2002).  For example, caribou (Rangifer tarandus) favour vegetation patches of alpine 

forest distributed at mid-elevations on moderate to steep slopes (Johnson et al. 2004), 

whilst ibex (Capra ibex nubiana) establish in high altitude, steep and rocky slope habitats 

(Hirzel et al. 2002).  Interactions between vegetation structure and predation through 

visibility issues might reduce security from predation (Walker 1991, Brown et al. 1999).  

Buffalo (Syncerus caffer) in a reserve bordering central Kruger favoured tree savanna 

with better visibility than thorn thickets, which possibly reduced predation risk from lion 

(Panthera leo) (Funston et al. 1994).   

Identifying which factors have primary influences on where animals establish 

home ranges is tricky because their influences vary at different scales.  Whilst location of 

food could be basic (Quinn et al. 1997), predation risks associated with some locations 

modify selection of where animals can occur.  In many parts of Africa, elephant range 

selection is modified by locations of dry season water, because water exerts constraints 

on where elephants can occur during dry seasons (Chamaille-Jammes et al. 2007, Harris 

et al. 2008).  Grazers are water dependent (Western 1975, Gaylard et al. 2003), and 

therefore selection of where to locate home ranges should be modified by distance to 

nearest water source.  Pienaar (1963, 1970), reported a gradual colonisation by herbivores 

of drier northern Kruger Park after provision of artificial water.  A superior competitor 

may relegate inferior competitors to establish residency in areas where the former species 

is less abundant (Harrison et al. 1995, Soberón & Peterson 2005).  If an abundant primary 

prey locally maintains a predator population, an alternative prey species could be 
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restricted to low abundance levels or even excluded from some areas (Holt 1977, 

Bergerud & Elliot 1986).   

In African savanna regions, food production indexed by rainfall (Coe et al. 1976, 

Owen-Smith 1990), or normalized difference vegetation index (NDVI) (Van Bommel et 

al. 2006, Chammaille-James et al. 2007) correlates with herbivore biomass.  Areas with 

too little vegetation productivity may not provide sufficient forage that remains to carry 

animals through the dry season.  However, Mueller et al. (2007) noted that highest 

vegetation productivity was associated with mature forage that provided a poor quality 

resource for gazelles (Procapra gutturosa) because grasses decline in nutritional quality 

as they grow.  Higher NDVI values may be associated with more mature and hence less 

nutritious grasses (Van Bommel et al. 2006, Mueller et al. 2007).  Thus, sable antelope 

may favour intermediate to high NDVI ranges that could allow for both sufficient forage 

quantity as well as quality during wet season.  Sable antelope might establish home 

ranges in locations that retain more green leaves during dry seasons.  Alternatively, 

locations of higher food production could attract superior competitors and hence might 

not be favoured by sable antelope.  Geological substrates are strong drivers of large-scale 

heterogeneity in savannas (Scholes et al. 2003, Venter et al. 2003).  Differences in 

nutrient status of soils originating from diverse geological substrate types influence plant 

growth, biomass, and quality of food for herbivores (Scholes et al. 2003).  Clays from 

basalt are richer in nutrients and lead to more vegetation growth than sandier soils from 

granite (Scholes et al. 2003).  Interactions of geological substrates with climate yield 

spatial variation in vegetation structure and composition, thus implying differences in 

distribution of forage quality and quantity for grazers (Venter et al. 2003).   

Modelling distributions of large mammalian herbivores at scales relevant to 2
nd

 

order selection is faced with challenges because commonly data on absences are not 

reliable (Hirzel & Le Lay 2008).  Survey errors might result in false absences (Hirzel & 

Le Lay 2008).  The data set used in this study reliably accounts for absences.  Redfern et 

al. (2002) estimated that the fraction of animals detected during aerial surveys of Kruger 

Park is 60-80% for medium-sized ungulates such as sable antelope.  However, the 

likelihood of missing a sable herd if present is very small ((0.3)
10

) over 10 years of 

repeated surveys.  Sable antelope constitute an interesting model species because it 
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occurs more commonly in wetter regions of Africa, but are at the southern edge of their 

distribution in Kruger (Skinner & Chimimba 2005).  Furthermore, sable antelope form 

sedentary and cohesive breeding herds (Estes 1991), and occur in distinct patches in 

Kruger Park (Pienaar 1963), which provides an opportunity to distinguish variables such 

as resources or biotic influences that are associated with patches they occupy, or that 

could exclude occupation of other areas within the park.  Since 1988, the abundance of 

sable antelope has declined dramatically from a peak of 2 240 individuals in 1986 to 

probably less than 500 in 1993 (Grant et al. 2002, Ogutu & Owen-Smith 2003).  Thus, 

this study contributes to exploring causal mechanisms behind sable antelope decline in 

Kruger. 

Factors that might influence where sable can establish home ranges include (i) 

distance from water, considering that Kruger Park has augmented water sources in the 

park by providing dams and drinking troughs fed by windmills since the 1930s (Grant et 

al. 2002, Smit et al. 2007), (ii) distribution of locations that retain more green leaves in 

dry season when food quality drops, (iii) competition from the numerically most 

abundant grazers in the park, which include impala (Aepyceros melampus), buffalo, 

wildebeest (Connochaetes taurinus), and zebra (Equus burchelli), and (iv) predation risks 

associated with spatial distribution of prey supporting lions.  I excluded megaherbivores 

(>1000 kg) that included hippopotamus (Hippopotamus amphibious), white rhinoceros 

(Ceratoherium simum), and elephant (Loxodonta africana) because the differences in 

body mass between sable (220 kg) and for example a white rhinoceros (>1 000 kg) 

(Owen-Smith 1998) yield high body mass ratios of around 4.5.  According to Prins and 

Olff (1998), such a ratio could be too high for competition to occur, but instead is 

suggestive of facilitation.  In addition, megaherbivores are not common prey for lions.   

It is important to separate effects of abiotic factors from those of biotic factors on 

sable distribution to identify those factors that exert the most influence on where sable 

herds occur.  Abiotic factors such as geology and rainfall can indicate places with 

environmental conditions that allow a species population to persist (i.e. spatial extent of a 

fundamental niche) (Soberón & Peterson 2005, Hirzel & Le Lay 2008).  However, biotic 

interactions can constrain occupation to a limited proportion of those conditions (i.e. 

subset of fundamental niche) (Soberón & Peterson 2005, Hirzel & Le Lay 2008).  For 
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example, presence of a superior competitor or predators may prevent a species from 

occupying some part of its potential range (Hirzel & Le Lay 2008).   

The aim was to determine which factors restricted a wider distribution of sable in 

Kruger Park.  I used geographical positions of herds from aerial surveys of larger animal 

species (1978–88).  This period was chosen in order to investigate what factors limited 

distribution of sable antelope before the population declined.  In chapter 4, it was evident 

that changes in distribution of certain herbivore species after 1984 were associated with 

contraction of sable abundance and distribution after 1988.  I used landscapes 

(representing specific vegetation type) distinguished by Gertenbach (1983) and Venter 

(1990) that are available as GIS files in KNP database to distinguish factors that were 

most influential on sable home range distribution.  Specific questions and hypotheses 

were:  

1. Does geology influence sable distribution, and if that is the case, which geological 

substrates appear most influential? 

 H1: Sable home ranges are more prevalent on fertile basalt substrates than on 

nutrient poor substrates such as granites, sandstone or aeloian sands because 

nutrient richer locations will support more production of forage resources.  

2)  Does rainfall influence sable distribution?   

 H2: Sable home ranges are more prevalent in areas with higher annual rainfall 

which indicate locations that produce more food and subsequently retain more 

forage resources through the dormant season.  

 H3: Dry season rainfall is a better predictor of sable distribution than annual 

rainfall because it indicates locations that retain more green foliage during the 

period when food quality is lower 

3) Does vegetation production or retention of green foliage through the dry season 

influence sable distribution? 

 H4: Sable home ranges are more prevalent on areas with higher dry season NDVI, 

which indicates locations that retain more green foliage when food quality is low.   

 H5: Sable home ranges are more prevalent on areas with higher wet season 

NDVI, which indicates locations that produce more food and subsequently retain 

more food later when plants stop growing in dry season.  
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 H6: NDVI is a better predictor of sable distribution than rainfall because primary 

production and retention of green foliage not only depend upon rainfall, but also 

on soil moisture availability, which varies between soil types.    

4) Does distance from water sources influence sable distribution? 

 H7: Sable are less prevalent > 5 km from perennial water sources.   

5)  Does landscape type influence sable distribution, and if that is the case, which 

landscapes are most influential?  

 H8:  Sable home ranges are more prevalent in woodland savanna over shrubland 

and dense bush savanna or areas that are predominantly grassland with sparse 

trees. 

 6) Does competition influence sable distribution, and if that is the case, which potential 

competitors appear most influential?  

 H9: Sable home ranges are more prevalent on areas with lower competition from 

the most abundant grazers, buffalo, wildebeest, zebra, and impala.  Competition 

should be greatest from buffalo and zebra, because as medium tall grass grazers, 

they compete for similar forage with sable. 

7) Does predation influence sable distribution?  

1. H10: Sable home ranges are more prevalent on areas with lower prey base 

supporting lion because such areas support fewer lions and thus, have lower 

predation risks.  

 

METHODS     

            
1. Study area 

Kruger National Park covers nearly 20 000 km
2 

in eastern lowveld region of 

South Africa.  The park was entirely fenced from 1976 to 1993.  In 1993, a section of the 

western fence separating KNP from private wildlife reserves was removed (Joubert 

2007).  Eighty percent of the annual precipitation falls during the wet season (October–

March).  Annual rainfall distribution averages 750 mm in south-west and decreasing to 

450 mm in north-east (Ogutu & Owen-Smith 2003).  During dry season, surface water 

remain in perennial rivers or waterholes fed by windmills (Redfern et al. 2003).  The 
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western half of KNP is principally underlain by granite, although gabbro intrusions occur 

in south, central, and northern regions, whilst sandstone occurs in north-west.  The 

eastern half is primarily basalt, although rhyolite occurs along the eastern park boundary 

(Gertenbach 1983, Venter 1990).  Granite derived soils are sandier and generally less 

fertile than soils from basalt (Scholes et al. 2003).   

Different vegetation communities occur on the different geological substrates 

(Venter 2003).  Mopane (Colophospermum mopane) predominates in northern half with 

tree savanna on granite and shrub savanna on basalt.  Marula (Sclerocarya birrea) and 

knob thorn (Acacia nigrescens) savanna occur on basalt, and Delagoa thorn (Acacia 

welwitschii) and magic guarri (Euclea divinorum) woodland on karoo sediments and ecca 

shales in central and southern regions to the east.  Red bushwillow (Combretum 

apiculatum) dominates in mountain bushveld on rhyolite extreme east of central and 

southern regions (along park boundary), and in west of central region in mixed woodland 

dominated by Combretum spp. on granite.  In southern region, sour bushveld dominated 

by silver cluster-leaf (Terminalia sericea) and sickle bush (Dichrostachys cinerea) occur 

on granite to the west.  Mountain bushveld dominated by C. apiculatum occurs on granite 

to the south and dense mixed savanna woodland dominated by Combretum spp. occur on 

granite to the north and central.  Gertenbach (1983) distinguished 35 landscapes based on 

finer details of vegetation patterns and outlined plant community features that distinguish 

one landscape from the next.  Venter (1990) produced a hierarchical classification system 

based on soil characteristics that distinguished 56 land types.  Boundaries of landscapes 

delineated by Gertenbach (1983) and land types delineated by Venter (1990) are 

equivalent in many cases.  However, differences exist in places that Gertenbach (1983) 

represented as single landscapes, whilst Venter (1990) subdivided those areas into 

distinct units (Appendix Table 5).  The Venter (1990) system has more divisions than 

were delineated by Gertenbach (1983).   

 

1.1 Source data 

Details of methods used during Kruger National Park’s annual Ecological Aerial 

Surveys (EAS) are outlined elsewhere (Joubert 1983, Viljoen 1989, Viljoen & Retief 

1994).  Ecological aerial surveys were conducted between May and August when 
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visibility conditions were best (Viljoen 1989, Redfern et al. 2002).  I analysed presence 

/absence of sable herds from 1978 up to 1988 covering a period when sable abundance 

peaked in the park (Grant et al. 2002) in order identify factors that affected sable 

distribution before declines started (post-1988).  I analysed data on lion abundance that 

was recorded during EAS surveys covering a period (pre-1989) before lion range 

expanded into northern Kruger Park following an influx of zebra (Harrington et al. 1999).  

Surveys periods considered here covered most of KNP except for an area in far north that 

is hilly and was not regularly surveyed.  That part of far north was excluded from this 

analysis.  In 1978 and 1979, some areas of central southern region were not covered.  

Census transects were 800 m apart, and four observers, two on each side of a fixed wing 

aircraft recorded geographical locations of herds, herd size and composition.  Prior to 

1987, accuracy of locating herds was uncertain up to 2 km because sightings were 

mapped by hand, but the uncertainty decreased to within 0.8 km after incorporating a 

palmtop computer coupled to a GPS unit during the surveys from 1987 onwards (Viljoen 

& Retief 1994).   

 

1.3 Data analysis  
 

1.3.1 Tiles 

Sable is a sedentary species and assuming an annual herd sighting probability of 

0.7 based on estimates by Redfern et al. (2002), the chance of a herd being missed if 

resident in an area for two incomplete surveys is small (0.09).  Therefore, I accounted for 

areas not surveyed in 1978 and 1979 (southern region) by duplicating herds location data 

recorded in those areas in 1980.  I created a shape file of 5 × 5 km tiles in Arc Map 

(version 9.1) a Geographical Information System software (GIS), using a map of KNP as 

a template.  I overlaid the tile shape file on a map of KNP that showed geographical 

positions of herds and classified each tile as showing presence/absence of a sable herd 

record.  I considered a herd was resident (i.e. present) if a tile presented at least 2 records 

of sable herds from 1978-1993 a period when EAS surveys covered all KNP.  I 

considered 2 sightings (for different years) as enough to exclude records when a herd 

may have been sighted outside usual home range.  Tiles that contained multiple records 
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of herds over the same period (1978-1988) were treated as a single ―presence‖.  I chose 

the 25 km
2
 scale to form the basis for this analysis because it approximates home range 

size estimates for sable (Joubert 1974, Sekulic 1981, Estes 1991).  Hence, the presence of 

a resident herd in one home range is independent of the presence of neighbouring herds 

during the same aerial survey.  I used 25%, 50%, 75% and greater than 75% percentiles 

to distinguish different levels for each categorical variable. The above levels (percentiles) 

were deemed appropriates because frequency distribution plots constructed for sable herd 

occurrences against most of my predictor variables exhibited natural breaks in these 

bands.   

 

2. Abiotic factors  

I formed two groups of abiotic factors: i) broad factors consisting of geology, dry 

and wet season rainfall, dry and wet season NDVI index and distance from perennial 

water source, and ii) specific vegetation composition and structure represented by 

landscapes (Gertenbach 1983) and land types (Venter 1990).  Because the two 

classification systems are different concerning delineation of boundaries, and descriptions 

representing certain vegetation types (Appendix 3), I fitted them in separate models to 

assess which one explained better where sable herds occurred.   

 

2.1 Broad abiotic factors  

2.1.1 Rainfall     

 I derived two predictors from Kruger National Park’s long-term rainfall records 

(ranging from 18 to 85 years of data per station), 1) mean annual rainfall and 2) mean dry 

season rainfall, but fitted models separately because the two are dependent.  The wet 

season extended from October to March, and dry season from April to September 

following distinctions by Venter and Gertenbach (1986).  I used ordinary kriging 

techniques in Arc GIS on rainfall records at each rainfall station to predict values that I 

assigned to neighbouring tiles.  Kriging carries out interpolation functions of random or 

regularly spaced out points to predict values for neighbouring tiles (Oliver 1990).  I 

calculated percentiles (25%, 50%, 75% and > 75%) of all rainfall values in the 718 grids 

considered in this study to create categorical predictors each with four levels (Mean 
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annual rainfall; up to 475 mm; > 475 to 525 mm; 525 to 575 mm; and > 575; Dry season 

rain; up to 40 mm; > 40 to 47; > 47 to 56 and > 56 mm).   

 

2.1.2 NDVI 

      I used NDVI 10 days composite data sets acquired by the National Oceanic and 

Atmospheric Administration (NOAA) Very High Resolution Radiometer (AVHRR) from 

1984 to 1995 (1994 excluded due to satellite failure).  The 1 × 1 km spatial resolution of 

these images was resampled to a 5 × 5 km resolution to match the scale used for all other 

analysis in this study.  I processed the data, as described below, to (a) minimize cloud 

contamination effects, and (b) define metrics such dry season NDVI and wet season 

NDVI following Reed et al. (1994) and White et al. (1997, 2000).  Clouds and poor 

atmospheric conditions result in low NDVI values, or NDVI values in a series that drop 

suddenly but peak again suddenly, thus can be considered as noise, and removed.  I 

applied a line smoothing algorithm to the time series NDVI data, following Chen et al. 

(2000).  The smoothing consisted of 1) calculating the mean NDVI value for each of the 

thirty six 10-days composite data sets in a year and 2) comparing the mean of a 10-day 

period under consideration with the mean of a previous and the following 10-day period 

in the series.  If the mean value under consideration was greater than the previous one, 

the previous one was replaced; if the mean value was smaller, then the previous NDVI 

value was retained.  This technique preserves the essence of the NDVI time series, whilst 

eliminates much of the contaminated data (Chen et al. 2000).  I calculated percentiles 

(25%, 50%, 75% and > 75%) of NDVI values using the same procedure as with rainfall, 

and created categorical predictors each with four levels (Wet season NDVI; up to 987; > 

987 to 1105; > 1105 to 1228; and > 1228; Dry season NDVI; up to 675; > 675 to 776; > 

776 to 874 and > 874).  

 

2.1.3 Distance to water points 

 Locations of water sources were recorded simultaneously during herbivore EAS 

surveys (Viljoen 1996).  I excluded temporary water sources from the analysis because I 

consider their influences would be more pertinent to movement patterns within a home 

range rather than to large scale sable distribution patterns.  I created a shape file of 



 

 

149 

distance from a perennial water source to the centre of each tile yielding five categories 

(0-1 km, 1-2 km, 2-3 km, 3-5 km) and greater than 5 km.  Five kilometres was proposed 

as within the daily movement range of water dependent medium sized herbivores such as 

wildebeests and zebra (Owen-Smith 1996).  I used the distance from each water source as 

the explanatory variable. 

 

2.1.4 Geology 

 First, I reduced the 15 geological zones distinguished by Venter (1990) to just 7 

major geological entities; granite, basalt, gabbro, karoo sediments, aeolian sand, and 

rhyolite with distinctive soil types and vegetation structure.  The above was achieved 

through lumping geology types that yielded soils with similar characteristics.  For 

example, I lumped together geology types that yielded sandy soils from granite origin, 

and geology types that yielded clays from basalt origin.  I included an additional 8
th

 

category, others, which consisted of tiles that covered more than one geological substrate.   

 

3. Fine abiotic factors 

3.1 Landscapes and land types 

 Landscapes and land types are not independent from effects of geology.  

However, a decreasing rainfall gradient (north to south) has been associated with 

different vegetation formations on same type of geological substrate in areas that differ in 

mean annual rainfall.  I reduced land type categories to 14 from the 56 categories 

proposed by Venter (2003), and reduced 35 landscape categories of Gertenbach (1983) to 

13 (see Appendix Table 5).  I included an additional category, others, in each case, to 

represent tiles that covered more than one land type or landscape.  I used names based on 

dominant woody species and geology to represent these simplified land types/landscapes.  

 

4. Biotic factors 

4.1 Competition  

Changes in distribution patterns of certain herbivore species after 1984 were 

associated with changes in distributions of sable and other rare antelopes after 1988 

(Chapter 4).  Therefore, I considered competition and predation effects for the period pre-
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1984.  I considered competitive effects of a single species (impala, buffalo, wildebeest, or 

zebra) first, and then later considered combined effects of the sum of the biomass for the 

four competitors on distribution of sable.  I multiplied the average body mass of each 

potential competitor by the number of individuals of that species in each 5 × 5 km tile 

after down weighting the biomass of impala (mixed grazer-browser) to 50% (approximate 

contribution of grass to impala diet in KNP) (Sponheimer et al. 2003, Codron et al. 

2005).  Because buffalo herds move over wider areas relative to the other species, I 

buffered buffalo biomass in each 5 × 5 tile using surrounding biomasses in 5 × 5 tiles and 

calculated a moving focal mean in Arc Map 9.1.  The focal mean is a neighbourhood 

statistical function in GIS that creates output values for each considered location based on 

the value for that location plus values identified in a specified neighbourhood.  I used 

predictor ―aggregate biomass‖ to represent the combined biomasses of the four species.  

Competitor biomass in 5 × 5 tiles was the predictor variable.  I derived four categories for 

the competition index by calculating percentiles (25%, 50%, 75% and >75%) of the 

biomass values in all the 718 tiles.  

 

4.2 Predation  

The predation risk proxy and competition proxy were both derived using biomass 

of species.  However, the predation proxy differs from the competition index because it 

includes browsers, grazers, and mixed feeders (browser-grazers) that constitute prey for 

lions (Owen-Smith & Mills 2006, 2008).  Each species was weighted based on relative 

selection shown by lions for these species (Owen-Smith & Mills 2008) (i.e. a species was 

weighted relative to how much it contributed to lion diet).  The relative degree of 

selection for different prey species by lion was derived by comparing the proportion in 

the prey killed with the proportion in the herbivore assemblage.  I estimated the spatial 

distribution of predation risk in each 5 × 5 km tile using a proxy following Owen-Smith 

and Mills (2006, 2008).  The proxy was calculated as the product of each species 

numbers, carcase mass, and relative selection by lions, summed over all prey species.  

Accordingly, the relative kill likelihood was calculated by assigning the prey species 

showing the highest selection ratio for lion a value of 1 and adjusting the selection ratios 

for other species relative to this maximum.   



 

 

151 

  The most favoured prey species for lion; wildebeest, was assigned a relative 

selection of 1.0, and comparative values for other species were calculated as a proportion 

of this fixed maximum (Owen-Smith & Mills 2008) (see Appendix Table 2 for list of 

prey species and relative likelihood of selection by lions considered in the predation 

proxy).  The predation risk proxy incorporates aspects related to prey capture, search, and 

effects of prey herd sizes, and locations where the lions hunt (Owen-Smith & Mills 

2008).  I excluded megaherbivores (>1000 kg) such as elephant (Loxodonta africana), 

hippopotamus (Hippopotamus amphibius), black rhino (Diceros bicornis and white 

rhinoceros (Ceratoherium simum) because mortality of these species attributable to lion 

kills is very low.  I derived four categories of the predation risk by calculating 25%, 50%, 

75%, and > 75% percentiles of the spatial predation risk values in all the 718 tiles.  Then, 

each 5 x 5 km tile was allocated one of four predation risk categories from 1 = least risk 

to 4 = most risk.  I used EAS lion counts (pre-1989) to derive four categories representing 

distribution of lions by calculating 25%, 50%, 75%, and > 75% percentiles of lion 

biomass values in all the 718 tiles.  The four lion biomass levels were; 0; > 0 to 320; > 

320 to 960; and > 960 kg.  Buffalo contributed less to lion diet prior to 1984 compared to 

post-1984 (Owen-Smith & Mills 2008), thus, I down weighted buffalo to 25% of its 

potential contribution to lion diet by biomass during the period up to 1984.    

Sightings of lions and number of individuals in a pride were recorded during 

aerial surveys in KNP.  However, lion is subject to greater undercounting bias because 

the species is cryptic and thus not easily seen from the air.  I calculated the spatial 

distribution of lion biomass.  Then I estimated the probability of sable presence in 

relation to distribution of lion biomass.  I also calculated the correlation between the 

distribution of lion biomass and the predation proxy.   

 

5. Statistical procedures  

5.1 Model fitting  

I used the 5 × 5 km tile shape file as the base for all the statistical analyses.  I 

excluded tiles covering less than 12.5 km
2
 (i.e. half sable home range area), which 

occurred along the park fences.  I considered that sable home range was present if a herd 

was recorded on at least two occasions from 1978-1988 in the same tile.  The latter 
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minimized chances of including in the analysis sable herd locations recorded outside 

usual home range.  I defined a sable herd as two or more individuals, including males and 

breeding herds seen at any one particular location at the same time.   

I fitted logistic regression models because the technique is considered appropriate 

for modelling dichotomous outcomes (Hosmer & Lemeshow 2000) (i.e. presence/absence 

of a sable herd) defined for this analysis.  I preferred logistic regression to log linear 

analyses because the latter do not allow for defining a response variable (Agresti 1996).  I 

fitted models in a hierarchical fashion (Agresti 1996, Manly et al. 2002) to assess the 

distribution of sable as a function of (i) broad abiotic factors (geology, rainfall, NDVI), 

(ii) fine abiotic factors (vegetation structure) and (iii) biotic factors (competition and 

predation).  First, I fitted models to single terms within each grouping in order to 

determine a) which factors influenced sable distribution, and b) in a factor, which 

distinctions (i.e. levels) were most influential?  I did not fit NDVI and rainfall predictors 

in the same model because the two terms are both indices of (i) vegetation production 

(wet season) and (ii) retention of green leaves (dry season) and thus are dependent.  Land 

types (Venter 2003) and landscape systems (Gertenbach 1983), both indices of vegetation 

structure and composition, were considered non-independent, and thus I did not 

incorporate both of them in one model.  I did not fit geology and indices of vegetation 

composition and structure in the same model because these were also non-independent.  I 

also did not fit the predation proxy with competition terms in same models, and did not fit 

the aggregate competition term in same model with competition terms representing single 

species because they are dependent.   

I used the step down procedure in SPSS 13.0 to investigate which of the 

predictors was closely associated with a probability of sable herd presence, and I 

evaluated the contribution of each predictor in the model using the log-likelihood statistic 

(Agresti 1996).  Akaike Information Criterion (AIC) model selection procedures provided 

the relative support for each individual model by comparing, AIC values, and delta 

Akaike (AIC Δi) amongst the various models (Burnham & Anderson 2002).  Burnham 

and Anderson (2002) proposed that models with delta AIC values < 2 have equally good 

fit and in the event of several models presenting delta AIC values of < 2, the model with 

the fewest parameters (i.e. the most parsimonious) is the best (Anderson & Burnham 
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2002).  Models with substantial support that should be considered candidates for the best 

model should be within 4-7 AIC units of the best model.  Burnham and Anderson (2002) 

proposed that models with delta AIC values >10 are not supported.  I calculated AIC 

using the formula AIC = -2(log-likelihood) + 2K, where K is the number of estimable 

parameters included in the model + intercept (Burnham & Anderson 2002) (2
nd

 edition 

page 60-62).  For categorical predictors, number of estimable parameters equal number of 

categories in each predictor minus 1 summed over all categories.  The above AIC formula 

yields identical relative AIC values, delta AIC and evidence ratios to an alternative 

formula (AIC = -2LL-2df), where LL is the log likelihood of the model and df is degrees 

of freedom proposed for log linear analysis Quinn and Keogh (2002) (pages 393-399). 

At first, I fitted models to address the following questions; A; i) Does geology, 

rainfall, NDVI and distance from water influence sable distribution?  ii) Which 

geological substrates, which rainfall components and which NDVI aspect is most 

influential?  iii) At what range of distance from water source do sable antelope favour to 

establish home ranges?  B; i) Do effects of geology on sable distribution depend on 

distance from water source?  ii) Do effects of geology on sable distribution depend on 

rainfall or NDVI?  iii) Do effects of rainfall or NDVI on sable distribution depend on 

distance from water source?  To answer questions (A) i, ii, and iii, I fitted models that 

estimated probability of presence/absence of resident sable herds as a function of effects 

of individual broad abiotic factors.  To answer questions (B) i, ii, and iii, I fitted models 

that estimated probability of presence/absence of resident herds as a function of i) 

additive effects of geology and distance from water, and ii) additive effects of geology 

and rainfall or NDVI.  I also estimated probability of presence/absence of resident sable 

herds as a function of additive effects of distance from water and rainfall or NDVI.  

Furthermore, I fitted models that estimated the probability of presence/absence of sable 

herds as a function of additive effects of distance from water, geology and rainfall or 

NDVI.   

At the second stage, I fitted models to address the following questions.  A) Do 

landscapes or land types influence where sable herds occur, if so, which landscapes are 

most influential?  B) I then considered the best supported specific vegetation type 

predictor, and fitted models to address the following question: i) Does effect of landscape 
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on sable distribution depend on effects of distance from water, rainfall, or NDVI?  To 

answer the first question, I fitted two models, first, to assess contributions of effects of 

landscape alone and second, assess contributions of effects of land type alone to sable 

distribution.  To answer question B (i) I fitted models that predicted sable distribution as 

a function of additive effects of land types and effects of broad abiotic predictors.   

At the third stage, I fitted models to address the following questions, A) Does 

competition influence sable distribution, if so, which competitors are most influential?  I 

fitted models that estimated the probability of presence/absence of resident sable herds as 

a function of effects of; i) single competitors and ii) aggregate biomass of competitors.  

During the fourth stage, I fitted models to address the following questions; A) i) Does 

predation additionally influence sable distribution?  ii) Does predation risk have a 

stronger influence on sable distribution than competition?  B) Does competition or 

predation risk override influences of abiotic conditions?  I lumped categories of geology 

that presented a prevalence level of < 0.1 into one category, other.  I lumped levels of 

land type using the same criteria.  I then modelled the modified geology with 5 levels 

instead of 8 and the land type predictor with 10 levels instead of 15.  First, I fitted models 

to assess if effects of the modified geology and land type predictors were better than 

effects of the unmodified counterparts in predicting where sable herds established.  

Second, I fitted models to estimate probability of presence/absence of resident herds as a 

function of predation effects alone.  Third, I fitted models of effects of competitors with 

land type.  Fourth, I compared effects of competition vs. effects of predation risk on 

where sable herds occurred.  Fifth, I fitted models to estimate the probability of 

presence/absence of sable herds as a function of i) effects of competition and land type 

and ii) as a function of effects of predation risk and land type.  Sixth, I fitted models of 

presence/absence of sable herds as a function of i) effects of competition, land type and 

distance from water, and ii) effects of predation risk, land type and distance from water.  

 

RESULTS   
 

1. Broad Abiotic factors 

Sable herds were recorded on 301 (42%) of the 718 tiles that were equal or greater 

than the minimum size (12.5 km
2
) considered in this analysis.  Amongst effects of single 
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broad abiotic factors on where sable herds occurred, geology was the most influential 

followed by dry season NDVI, dry season rainfall, and wet season NDVI (Table 1).  

Sable were more prevalent on granite and sandstone rather than the more nutrient rich 

basalt or gabbro substrates (Fig. 2a).  Models that combined modifying effects of dry 

season NDVI/wet season NDVI, dry season rainfall, and distance from water with effects 

of geology received more statistical support for explaining where sable herds occurred 

compared to models that incorporated solely effects of single abiotic factors.  The ―best‖ 

model that explained where sable herds occurred consisted of effects of geology 

combined with effects of wet season NDVI and distance from water.   

Sable prevalence was associated positively with both dry season and wet season 

NDVI (Fig 2e-f).  As single factors, effects of dry season NDVI received more statistical 

support than effects of dry season rainfall and effects of wet season NDVI.  However, a 

model that combined effects of dry season rainfall with effects of geology plus effects of 

distance from water, received equivalent statistical support in explaining where sable 

herds occurred to a model that combined effects of dry season NDVI with effects of 

geology plus effects of distance from water (Table 1).  Prevalence of sable was highest in 

areas of highest NDVI values, but prevalence increased with an increase of rainfall and 

slightly dropped in areas of highest rainfall (Fig. 2b-c).  Although effect of distance from 

water solely on where sable herds occurred appeared weak, it nevertheless improved the 

fit of a model that included effects of geology plus effects of wet season NDVI, dry 

season rainfall, or dry season NDVI (Table 1).   

    

2. Landscape and land types  

Land type received better statistical support than landscape or geology for 

predicting where sable herds occurred (Table 2).  Effects of wet season NDVI, dry season 

rainfall and dry season NDVI appeared most influential in addition to effects of land type 

in predicting where sable herds occurred.  In addition, models that combined effects of 

dry season rainfall, dry season NDVI and wet season NDVI with effects of land type 

made up the best seven supported models that could best explain sable antelope 

distribution.  Distance from water made little contribution to model fit either when added 

to effects of land type or when combined with effects of land type plus effects of dry 
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season rainfall.  Effects of land type and effects of dry season rainfall contributed to the 

best supported model, although a model with effects of land type and wet season NDVI 

could not be excluded as an alternative.  Effects of wet or dry season NDVI were 

statistically better supported than effects of dry season rainfall when these factors were 

combined with effects geology.  Most favoured land types were; i) mopane/bushwillow 

(tree/bush) savanna on sandstone,  ii) mopane/knob thorn savanna on granite, iii) sour 

bushveld on granite, iv) mopane savanna on granite, and v) mixed bushwillow/silver 

cluster-leaf woodland.  Least favoured were i) mountain bushveld on rhyolite, ii) delagoa 

thorn thickets on karoo sediments, iii) sand camwood/silver cluster-leaf (shrubveld/bush) 

savanna on aeolian sands and iv) knob thorn/bushwillow/silver cluster-leaf on granite 

(Fig. 3).  

 

3 Biotic factors  

3.1 Competition   

Amongst single effects of potential competitors, impala and wildebeest appeared 

most influential on where sable herds occurred.  Effects of zebra and buffalo appeared 

least influential on where sable herds occurred (Table 3).  Sable prevalence was lowest in 

areas of highest impala and wildebeest biomass, but not in areas of highest buffalo or 

zebra biomass as anticipated (Fig. 4a-e).  Additive influences of impala, wildebeest, 

zebra, and buffalo contributed to the ―best‖ model for competition.  However, models 

with additive effects of either buffalo or zebra plus effects of impala and wildebeest could 

not be discounted as alternatives.  Additive effects of buffalo or zebra received equivalent 

statistical support in explaining where sable herds occurred when combined with effects 

of impala.  Sable prevalence peaked at intermediate levels of zebra biomass.  Sable 

prevalence dropped from 0.53 (45%) to 029 for areas of their intermediate biomass to 

areas of their highest biomass.  Aggregate competition was less strongly supported 

compared to impala or wildebeest alone in explaining where sable herds established.  

Effects from competitors were less influential to where sable herds occurred compared to 

land type.  Adding effects of aggregate competition and land type marginally improved 

the fit of the model relative to effects of land type alone (Table 4).    
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3.2 Predation   

Predation risk was an additional factor that influenced sable distribution and was 

better supported as a predictor of where sable herds occurred than aggregate competition 

(Table 4).  Amongst effects of single competitors, only effects of impala were better 

supported than predation.  Effects of predation and effects of wildebeest received 

equivalent statistical support for explaining where sable herds occurred.  Sable 

prevalence dropped from about 0.50 (50%) in areas of lowest predation risk to 0.25 in 

highest predation risk areas (Fig. 5a).  Additive effects of predation risk with effects of 

land type received equivalent statistical support to additive effects of zebra and buffalo 

with effects of land type.  Prevalence of sable in relation to lion abundance exhibited 

patterns equivalent to those shown by our predation index (Fig. 5b).  The predation proxy 

was positively correlated to lion presence records (Pearson correlation coefficient, 0.252, 

P = 0.01).  Sable herds mostly occurred in the northern half of Kruger and on western 

side of the southern half where predation risks appeared lower than elsewhere (Fig. 6a-b).  

 

Discussion 
 

 Sable prevalence differed from expectation for geology because prevalence was 

highest on nutrient poor granite and sandstone instead of nutrient rich basalt and gabbro.  

Distances of up to 5 km from perennial water sources did not appear to exert limiting 

influences on where sable herds occurred in Kruger Park.  Land type was the best 

supported abiotic factor in explaining distribution of sable herds.  Sable herds established 

more in mopane/bushwillow savanna, mopane/knob thorn savanna, and sour bushveld 

than mopane shrubveld, mountain bushveld, and Delagoa thorn thickets.  Despite that, 

models with additive effects of places that could potentially produce more food in wet 

season and places that retain green foliage in dry season combined to effects of land type 

were amongst the top statistically supported.  Additive effects of competition or predation 

modified effects of land type and all other factors on where sable herds occurred.  Sable 

prevalence was most negatively associated with impala and wildebeest.  The statistical 

support exhibited for effects of zebra, impala, and those of wildebeest when combined 

with effects of land type suggested existence of competitive influences on where sable 
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herds occurred.  Sable were not excluded from areas of high biomass of buffalo or zebra 

suggesting that sable herds established home ranges within wider range occupied by 

buffalo and zebra.  Predation risks appeared more influential on sable distribution 

compared to competition.   

Evidence from NDVI and rainfall suggested that on the nutrient poor substrates, 

sable were prevalent on areas of high rainfall and those that retained high NDVI during 

dry seasons.  In theory, this implied that sable in a way conform to what is known for 

large African herbivores (Coe et al. 1976).  Food production indexed by rainfall 

correlates with herbivore biomass.  Why then were sable relegated to nutrient poor 

granite and sandstone in Kruger Park?  In Angola, sable range encompassed both nutrient 

poor and richer areas.  Sable range covered a mixture of gritty sandstones of the karoo 

sediments, deep aeolian sands of Kalahari system and granite in uplands but heavy clays 

in low lands (Estes & Estes 1974).  Reddish ferralitic clays and sandy clay loams also 

occurred in parts of sable range in woodland areas (Estes & Estes 1974).  At Loskop dam 

and Percy Fyfe Reserve, South Africa, sable occurred on soils of low organic matter and 

poor in macronutrients originating from granite.  In Zimbabwe, sable in Matetsi occur on 

basalt of the karoo system whilst in Hwange and Matopos sable occur on aeolian 

Kalahari sands and granites respectively (Wilson & Hirst 1977).  

Additive effects of rainfall appeared not to be consistent on the effect of land type.  

Whilst additive effects of dry season rainfall plus effects of land type received statistical 

support to explain sable distribution, a model with additive effects of mean annual 

rainfall and effects of land type did not receive enough statistical support and did not 

improve fit of the model.  Consistent with prediction, retention of green foliage in dry 

season (dry season NDVI/rainfall) and vegetation production in growing season (wet 

season NDVI) was positively associated with where sable herds occurred.  Dry season 

NDVI/rainfall may have been more reliable at indicating locations that retain quality food 

during critical periods of the year, whilst wet season NDVI would have shown locations 

that produced enough food to last through the dry season when plants stop growing.  Dry 

season NDVI would also indicate locations with a high component of woody cover. The 

preference for areas with high dry season retention of green foliage by sable is also in 

agreement with patterns observed for many African grazers such as zebra, topi, and 
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buffalo that use bottomlands during the dry season (Bell 1970, Duncan 1975, Sinclair 

1977).  Estes and Estes (1974) documented that sable range in Angola covered upland 

woodland (wet season areas) and the fertile lowlands (dry season areas). 

Sable prevalence increased with corresponding increase of rainfall and peaked at 

intermediate rainfall levels but dropped slightly in areas of highest rainfall.  Sable 

prevalence peaked at highest NDVI values.  The latter could (a) reflect contributions of 

tree canopy cover to NDVI values.  Sable were more prevalent on granite than basalt, and 

granite areas in KNP present a higher proportion of the woody component of vegetation 

than basalt (Gertenbach 1983, Venter et al. 2003).  Therefore, NDVI values on granite 

areas incorporate a higher proportion of NDVI from tree canopy than on basalt especially 

during dry season.  In the Zambezi valley, Zimbabwe, sable favoured ecotone areas 

between grassland and woodland (Jarman 1972).  The tendency by sable to favour 

landscapes with a high proportion of the woodland component of vegetation is in 

agreement with patterns observed elsewhere (Estes & Estes 1974, Wilson & Hirst 1977, 

Grobler 1981).  Sable contrast with other African grazers such as wildebeest, zebra 

(Duncan 1975) and some populations of buffalo (Sinclair 1977), which favour 

predominantly grassland areas.  In Angola, sable range covered miombo (Brachystegia 

spiciformis, Julbernardia paniculata) woodland with a canopy height from 7 to 15 m, and 

little or no shrub layer (Estes & Estes 1974).  Broadly, Percy Fyfe, Rustenburg, Lospkop 

Dam, and Matopos are regarded as sourveld areas (Wilson & Hirst 1977).  Vegetation of 

Loskop is mixed bushveld and sour bushveld (Wilson & Hirst 1977).  Vegetation is open 

tree savanna, dominated by Burkea africana and Combretum molle, Acacia caffra.  Sable 

preferred open savanna woodland in Matetsi (Wilson & Hirst 1977).   

Avoidance of habitats in open grasslands is consistent with observations done at 

the 3
rd

 and 4
th

 orders of selection elsewhere (Grobler 1974; Estes & Estes 1974, Ferrar & 

Walker 1974, Wilson & Hirst 1977).  In Pilanesberg, sable avoided secondary grassland, 

but used slopes during wet season and valley bottom during the dry season (Magome 

1991).  The only exception was in Kenya, where sable showed a preference from more 

open grasslands due to the absence of the open woodland (Sekulic 1987).  The dry season 

use of habitat by sable at Pilanesberg (moving down the valleys) indicated the importance 
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of valleys in terms of providing green leaf.  The water table is higher in valleys compared 

to hillsides so that grass communities were relatively greener in valleys.   

I hypothesized that sable prevalence would be higher up to 5 km from perennial water 

sources.  Overall influence of distance from water on where sable herds occurred was 

found to be weaker in KNP than what was previously reported for sable or other grazers 

(Estes & Estes 1974, Western 1975, Wilson & Hirst 1977, Grobler 1981, Smit et al. 

2007).  Sable in Angola were documented to be water dependent, drinking every day 

even during wet season (Estes & Estes 1974).  My results support Redfern et al. (2003) 

who reported that the KNP is well supplied with artificial water, and that less than 10% of 

KNP occurs further than 5 km from water.  Smit et al. (2007) reported that sable occurred 

at lower numbers close to rivers and beyond 4 km from water; this does not refute my 

conclusions that distances within the 5 km range do not explain why sable occur on 

nutrient poor substrates.  Collars fitted to sable herds have recorded that sable in KNP can 

travel more than 5 km to water (unpublished data), thus, distances within 0 - 5 km from 

water may not have restricting influences to a widespread of sable in Kruger Park.  

Details of factors that might have overriding influences on where a species can 

establish a home range (2
nd

 order of selection) are scant, but studies at finer 3
rd

 and 4
th

 

selection orders suggest competition could have such an effect.  Large herbivores can 

avoid other species in relation to some perceived negative competition impacts (Grobler 

1981, Sinclair 1985).  I predicted that competition effects would be negatively associated 

with sable prevalence.  My results suggest that competition influences from zebra, 

buffalo, impala, and wildebeest could be exerting negative effects on sable prevalence, 

thus relegating the latter to areas of low abundances of these species.  Effects from 

impala and wildebeest appeared more influential on where sable herds established than 

effects of zebra and buffalo.  However, effects of impala and wildebeest competition 

diminish when land type is taken into account.  Effects of competition from the two 

species need further studying because sable may avoid impala and wildebeest because 

these species have different habitat preferences to sable.  Observations from areas such as 

Matopos, Zimbabwe (Grobler 1981) and Kenya (Sekulic 1978) indicate that sable 

generally do not favour areas dominated by bushes or shrubs.  Impala in KNP 

predominate in thickets and along rivers (Pienaar 1963, chapter 3).  In addition, 
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competition effects of impala on sable may not be much because impala switch to browse 

when grasses dry out (Sponheimer et al. 2003, Codron et al. 2005).  However, 

competition effects of impala cannot be completely discounted on sable because, first, 

Grobler (1981) observed that impala grazing kept grass heights below 40 mm, a fact he 

suggested excluded sable from using the same patches.  Second, impala were the most 

common species sharing range with sable in Angola (Estes & Estes 1974) a fact that 

could perhaps suggest use of some common resource type.  If that is the case, should such 

a resource be insufficient for both species then competition might occur.  However, the 

negative associations of sable with wildebeest in KNP may as well be associated with 

distinct habitat preferences by the two species.  Wildebeest in KNP were abundant in 

knob thorn and marula savanna, which is dominated by short grasses and a few trees in 

central areas of the park, whilst sable were prevalent on mopane woodland savanna areas 

of the western half of the park (Pienaar 1963, chapter 3).  Elsewhere in Africa, wildebeest 

predominate on open short grasslands (Bell 1970, Ferrar & Walker 1974, Estes 1991).  

Alternatively, sable might avoid areas with higher concentrations of wildebeest because 

of predation risks associated with areas such areas.  Wildebeest constitute the most 

preferred species for lions in KNP (Owen-Smith & Mills 2008).   

The fact that zebra and buffalo range over wider areas than sable was convincing 

enough to explain why sable were not completely excluded from areas with high 

abundances of the two species.  Zebra and buffalo range was not restricted suggesting 

that it might be difficult for sable to avoid buffalo or zebra at scales relevant to home 

range selection.  Sable could avoid buffalo or zebra at finer scales through movement 

patterns within a home range.  This may be particularly important during dry seasons 

when food quality is low and buffalo concentrate around water supplies.  Sable 

prevalence was also low in areas where biomass of buffalo and zebra was low, implying 

existence of some areas that were less suitable for all three species.  Observations of sable 

in Pilanesberg, South Africa are in agreement with findings here; sable avoided the more 

open habitat and grasslands that were favoured by wildebeest, white rhino, hartebeest, 

and zebra, thus partially reducing grazing competition (Magome 1991).  In Percy Fyfe 

Nature Reserve, zebra spatially overlapped with sable in the dry season and early spring 

(August through November) (Wilson and Hirst 1977).  Survey records of sable antelope 
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in the Selous-Niassa corridor are in agreement with findings here, the population is 

reportedly increasing likely because abundances of impala, wildebeest, zebra, and buffalo 

are very low in this area (Hofer et al. 2004). 

Elsewhere, Sinclair (1985) observed that zebra and wildebeest favoured different 

habitats during dry periods when food is scarce in Serengeti.  Thompson & Fox (1993) 

suggested that larger species could be better off than smaller ones in the event of 

competition.  Accordingly, for sable the latter implies competitive advantages for buffalo 

and zebra.  However, my result did not show exclusion of sable by buffalo.  Based on 

habitat models, Rosenzweig (1991) suggested that increased animal abundance in a 

shared habitat reduces benefits from that habitat and that at some stage it becomes 

beneficial for a species to establish in ―inferior habitats‖ that are less crowded.  He 

further suggested that spilling over into an alternative habitat may be excluded by 

presence there of some competing species.  According to these models if sable was 

indeed an ―inferior competitor‖ to wildebeest and impala, then it could be possible that 

sable could be relegated to poor granite areas.  No sable home ranges occurred on 

rhyolites and aeolian sands.  Considering that areas under aeolian sands also showed 

lower biomass of competitors, we could assume that this substrate might not support 

some preferred type of resource for sable.  My predation risk map placed rhyolite areas in 

southern KNP in the high risk category, thus, I could not be entirely certain whether 

rhyolites areas were avoided because they do not support the required resources for sable 

or rhyolites are predation risky areas.   

 Research on African ungulates has described separation of species by habitat type 

(Bell 1970, Jarman 1972), by food species (Jarman 1971) and by plant parts eaten (Bell 

1970), but few clarify what drives selection of where to establish home ranges for species 

that physically do not interfere with another.  Caughley et al. (1987) suggested that 

distribution of large macropods responded strongly to rainfall and temperature, rather 

than outcomes of species interactions.  Studies on selection generally do not clarify at 

which level of selection a resource type has overriding influences (Manly et al. 2002, 

Boyce et al. 2002, Johnson et al. 2004).  Basic generalizations emphasize importance of 

abiotic factors because they are associated with provision of food (Funstone et al. 1994, 

Quinn et al 1997, Dettki et al. 2003, Hirzel et al. 2002) or may represent access to some 
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key resources such as water (Chammaille-James et al. 2007).  Predators are generally 

considered to influence negatively a population through direct predation or indirectly 

when prey species show avoidance of areas where chances of encountering predators are 

high (Lingle 2002, Hik 1995, Burger et al. 2000).  Evidence presented here shows the 

role effects of predation and competition can play by modifying effects of abiotic factors 

and ultimately relegate sable a sedentary species to establish in nutrient poor areas, and 

preclude a wider range expansion for this species.  Nutrient poor granite and sandstone 

might potentially be less productive (i.e. less forage resources for sable), but may have 

less competitors and could be relatively safer for sable herds to establish.   
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FIGURE CAPTIONS 

 

FIG. 1. Sable herd prevalence in relation to geological substrates 1-granites, 2- basalts, 3- 

sandstone, 4-gabbro, 5- Karroo sediments, 6- rhyolites, 7-aeliam, 8-mixed geology. 

FIG. 2a. Sable herd prevalence in relation to dry season rainfall  

FIG. 2b. Sable herd prevalence in relation to mean annual rainfall 

FIG. 2c. Sable herd prevalence in relation to distance from water  

FIG. 2d. Sable herd prevalence in relation to dry season NDVI 

FIG. 2e. Sable herd prevalence in relation to wet season NDVI  

FIG.  3.  Sable herd prevalence in relation to land type  

FIG. 4a. Sable herd prevalence in relation to impala biomass  

FIG. 4b. Sable herd prevalence in relation to aggregate biomass  

FIG. 4c. Probability of a sighting sable herd in relation to wildebeest biomass  

FIG. 4d. Sable herd prevalence in relation to zebra biomass  

FIG. 4e. Sable herd prevalence in relation to buffalo biomass 

FIG. 5a. Sable herd prevalence in relation to a predation risk 

FIG. 5b. Sable herd prevalence in relation to lion distribution 

FIG. 6. Spatial distribution of; a) locations of sable herds, b) locations of lions, and c) 

predation risk.  
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Table 1. Sable distribution as a function of broad abiotic conditions 

 

Predictors 

-2Log 

likelihood  

Sample size 

(N) K df AIC 

Delta 

AIC (Δi) 

Evidence 

Ratio 

Geol+DryNDVI+DistH2O 806.2 718 15 702 836.2 0.0000 1.0000 

Geol+DryNDVI 815.9 718 11 706 837.9 1.7930 0.4080 

Geol+DryRain 817.4 718 11 706 839.4 3.2760 0.1944 

Geol+DryRain+DistH2O 810.8 718 15 702 840.8 4.6830 0.0962 

Geol+WetNDVI+DistH2O 811.7 718 15 702 841.7 5.5480 0.0624 

Geol+NDVIwet 823.1 718 11 706 845.1 8.9590 0.0113 

Geol+DistH2O 837.3 718 12 705 861.3 25.1210 0.0000 

Geology 846.6 718 8 709 862.6 26.4330 0.0000 

Geol+WetRain+DistH2O 835.3 718 15 702 865.3 29.1930 0.0000 

Geol+Mean annual rain 844.1 718 11 706 866.1 29.9820 0.0000 

DryNDVI 900.2 718 4 713 908.2 72.0200 0.0000 

Dryrain 917.2 718 4 713 925.2 89.0780 0.0000 

WetNDVI 938.8 718 4 713 946.8 110.6640 0.0000 

Mean annual rain 948.9 718 4 713 956.9 120.7260 0.0000 

DistH2O 952.8 718 5 712 962.8 126.6600 0.0000 

   
Notes: Geol- geology; DistH2O- distance from water; DryNDVI- dry season NDVI; NDVIwet- wet season NDVI; K- number of parameters; Supported models 

are indicated in boldface; Delta AIC (Δi) - a measure of each model relative to the best model calculated as AICi-min AIC where AICi is the AIC value for model 

i, and minAIC is the AIC value of the best model; Evidence Ratio –a ratio that compares one model to the other. Calculated as Wj/Wi 
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Table 2.  Sable distribution as a function of broad abiotic factors, land types and landscapes 

(specific habitat predictors) 

 

Predictors 

-2Log 

likelihood  

Sample size 

(N) K df AIC 

Delta 

AIC (Δi) 

Evidence 

Ratio 

Land type+DryRain 695.9 718 18 699 731.9 0.0000 1.0000 

Land type+DryRain+DistH2O 691.3 718 22 695 735.3 3.3320 0.1890 

Land type+NDVIwet 700.7 718 18 699 736.7 4.7930 0.0910 

Land type+DryNDVI 700.9 718 18 699 736.9 4.9850 0.0827 

Land type+NDVIwet+DistH2O 694.0 718 22 695 738.0 6.0760 0.0479 

Land type+DryNDVI+DistH20 694.4 718 22 695 738.4 6.4220 0.0403 

Land Type 710.5 718 15 702 740.5 8.5530 0.0139 

Land type+DistH2O 703.8 718 19 698 741.8 9.9090 0.0071 

Land type+Mean annual rain 706.5 718 18 699 742.5 10.5800 0.0050 

Landscpe 722.4 718 14 703 750.4 18.4750 0.0001 
 

Notes: DistH2O, distance from water; NDVIwet, wet season NDVI; Dryrain, dry season rainfall; DryNDVI, dry season NDVI; K, number of parameters 

Supported models are indicated in boldface 
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Table 3. Sable distribution as a function of competitors 
 

Predictors 

-2Log 

likelihood  

Sample 

size (N) K df AIC 

Delta 

AIC 

(Δi) 

Evidence 

Ratio 

Impala+Wildebeest+zebra+buffalo 830.4 718 13 704 856.4 0.0 1.0000 

Impala+wildebeest +buffalo 842.6 718 10 707 862.6 6.2 0.0446 

Impala+Wildebeest+zebra 842.7 718 10 707 862.7 6.4 0.0415 

Impala+wildebeest 863.3 718 7 710 877.3 21.0 0.0000 

Impala+zebra+buffalo 866.2 718 10 707 886.2 29.8 0.0000 

Wildebeest+buffalo+Zebra 866.3 718 10 707 886.3 29.9 0.0000 

Wildebeest+Zebra 875.8 718 7 710 889.8 33.4 0.0000 

Impala+zebra 880.2 718 7 710 894.2 37.8 0.0000 

Impala+buffalo 880.9 718 7 710 894.9 38.6 0.0000 

Wildebeest+buffalo 881.9 718 7 710 895.9 39.6 0.0000 

Impala 898.6 718 4 713 906.6 50.2 0.0000 

Wildebeest 899.8 718 4 713 907.8 51.4 0.0000 

Aggregate competition(less Buffalo) 909.8 718 4 713 917.8 61.5 0.0000 

Buffalo+zebra 923.5 718 7 710 937.5 81.1 0.0000 

Zebra 934.2 718 4 713 942.2 85.9 0.0000 

Buffalo 948.3 718 4 713 956.3 99.916 0.0000 

Aggregate competition 954.8 718 4 713 962.8 106.473 0.0000 

 
Notes: K, number of parameters; Supported models are indicated in boldface 
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Table 4.  Sable distribution as a function of distance from water, land type, competition, and predation.  
 

Predictors 

-2Log 

likelihood  

Sample size 

(N) K df AIC 

Delta 

AIC (Δi) 

Evidence 

Ratio 

Land type+impala+wildebeest+zebra+buffalo 616.7 718 27 690 670.7 0.00 1.0000 

Land type+impala+wildebeest+zebra 627.7 718 24 693 675.7 5.04 0.0805 

Land type+impala+zebra 643.9 718 21 696 685.9 15.23 0.0005 

Land type+impala+wildebeest+buffalo 640.0 718 24 693 688.0 17.33 0.0002 

Land type+impala+buffalo 649.1 718 21 696 691.1 20.41 0.0000 

Land type+wildebeest+impala 656.0 718 21 696 698.0 27.29 0.0000 

Land type+impala 663.3 718 18 699 699.3 28.63 0.0000 

Land type+wildebeest+zebra 676.2 718 21 696 718.2 47.53 0.0000 

Land type+wildebeest+buffalo 688.3 718 21 696 730.3 59.63 0.0000 

Land type+wildebeest 696.1 718 18 699 732.1 61.37 0.0000 

Land type+zebra 700.4 718 18 699 736.4 65.74 0.0000 

Land type+buffalo 703.7 718 18 699 739.7 69.02 0.0000 

Land type+Predation 705.9 718 18 699 741.9 71.16 0.0000 

Land type+Aggregate competition 706.8 718 18 699 742.8 72.13 0.0000 

Land type 2 732.6 718 11 706 754.6 83.88 0.0000 

Predation 922.6 718 4 713 930.6 259.94 0.0000 

Lion 932.8 718 4 713 940.8 270.13 0.0000 

Aggregate competition 954.8 718 4 713 962.8 292.16 0.0000 
 

Notes: Supported models are indicated in boldface 
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Figure. 1 
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Figure. 2a                                                                                                 b 
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Figure. 3   

 
 

Notes: G, granites; B, basalt; K, karoo sediments; Gab, gabbros; R, rhyolite; S, sandstone 
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Figure. 4a                                                                                                                             b 

      

c                                                                                                   d 
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Figure. 5a                                                                                                b 
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Figure 6 
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CHAPTER 6 

Conclusion and recommendations 
 

This study was complementary to a bigger research programme aimed at understanding 

causes of rare antelope decline or lack of recovery in KNP.  The aim of my study was to identify 

factors that influenced habitat suitability for sable antelope.  To do this I distinguished 

environmental features associated with localities sable occupy and where absent.  I categorized 

key questions in this study into two groups.  The first group of questions concerned the broader 

issues of sable distribution: (i) was the perceived contraction of sable antelope distribution and 

abundance limited only to this species?, and (ii) were those contractions only in certain 

landscape types or regions of KNP?  The second set concerned specific habitat characteristics:  

(i) what distinguished occupied areas from unoccupied areas?, (ii) what features were associated 

with variation of sable presence within occupied areas?, and (iii) what restricted a wider 

distribution of sable in KNP?   

The broader questions required use of methods capable of (a) estimating changes in 

probability of occupation by a species across the park and (b) revealing variation in occupancy 

patterns.  Documenting changes of distributions and changes in probability of occupation of 

landscapes is important for addressing concerns relating to range shifts, range fragmentation 

and/or species losses (Parmesan et al. 1999, Thomas & Lennon 1999, Gaston 1990, Lawton 

1993).  The above information helps in conserving species through identifying favoured habitats 

and localities where probability of occurrence has severely declined.  A severely declining 

probability of occupation suggests reduced chances of local persistence by a species.  Existing 

methods designed for radio tracking of animals estimate probabilities of use of sections of a 

home range.  Two broader questions presented here required methods with those capabilities 

adapted to use for studying distributions.  Previous assessments of species distributions (Gaston 

1990, Thomas & Lennon 1999, Janzen 1994, Brander et al. 2003,) assume that all areas where 

individuals have been sighted exhibit equal chances of occurrences of that species (i.e. all areas 

are equally suitable), but this is known not to be true (Getz et al. 2007).  Therefore, I added a 

new objective to examine use of home range methods on species distributions.  The new 

objective concerned comparing performances of Local convex hull and kernel methods in 
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estimating some examples of commonly encountered types of distribution patterns for different 

objectives.  This became my first task because it was fundamental to provide basis for 

identifying which method was appropriate to address other distinct objectives in this study.   

The outcome of this comparison was that contrary to generalizations from home range 

studies (Silverman 1986, Seaman et al. 1999, Kernohan et al. 2001, Gitzen, Millspaugh & 

Kernohan 2006, Getz & Wilmers 2004, Getz et al. 2007), application of these methods to species 

distributions suggested no superiority of one method over the other.  Instead, these methods have 

different capabilities useful for assessing different purposes of species distributions.  The LoCoH 

method has a propensity for not including areas where a species was not recorded.  The kernel 

method by contrast exhibited an opposite tendency.  The kernel method consistently produced 

the largest range estimates for species assessed in this study.  However, with different species 

distributions examined here, performances of these methods did not appear to lead to different 

interpretations of their occupancy patterns and range extent estimates.  Furthermore, 

performance of a method is also influenced by type of spatial patterns exhibited by a study 

species.  Both kernel and LoCoH methods were recommended for representing local differences 

in occupation patterns for species exhibiting continuous distributions, linear patterns of 

occurrences or patchy distributions.  However, automatic procedures of choosing a smoothing 

parameter could lead to different interpretations of occupation patterns produced by fixed kernel 

method vs. those from LoCoH method for species that occur in patches which exhibit boundaries 

that are not clearly outlined (e.g. sable in northern half of KNP) and those exhibiting clumped 

occurrences in places and widespread occurrences elsewhere (e.g. wildebeest).  For these type of 

pattern, the fixed kernel method showed evidence of a limitation pointed out during home range 

analyses (i.e. masking gaps and exaggerating range extents) (Getz et al. 2007).  Evidence from 

the estimated wildebeest pattern was in line with observations of computer simulation models of 

home range where the kernel method reportedly overestimated extents of areas covered by 

location points (Getz & Wilmers 2004).  My conclusions here are that fixed kernel method might 

have to be applied with different h values to different sections of that type of pattern (e.g. one h 

value for northern half of KNP exhibiting widespread occurrences and a distinct h value for 

central region where wildebeest are continuously distributed).  Thus, it may be practical to divide 

a study area into separate sections and then mapping their ranges independently.  
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This study illustrated that LoCoH method is useful for identifying gaps and revealing 

shifts of distributions for all species examined here.  However, increased sensitivity to picking up 

gaps may require applying this method with caution for estimating range extent sizes of species 

exhibiting continuous distributions or those that roam widely because the method may show 

narrower range extents and perhaps emphasize unimportant gaps.  I recommended a-LoCoH 

method as best for showing 1
st
 order range extent estimates and for assessing distribution shifts 

for patchy distribution patterns because this method consistently produced least range estimates 

for all distribution types considered here.  Thus, one would be more confident by using a-LoCoH 

than other methods to conclude that a real change in distribution has occurred or not.   

Application of LoCoH or kernel method required making decisions of when to apply 0.95 

vs. 0.99 statistical levels, which depended on abundance of location points.  The 0.99 levels 

extended outermost boundaries of a distribution to areas where herd sightings were not recorded 

for less abundant sable and waterbuck, whilst 0.95 could potentially lead to underestimating area 

of occurrence for abundant species such as impala and wildebeest.  Thus, there is some 

uncertainty on deciding the cut-off point for applying a 0.95 or a 0.99 level.  The challenge 

appears related to automatic procedures of choosing h.  Therefore, a further development of 

methods of choosing a smoothing parameter may overcome this limitation.   

The application of LoCoH and kernel methods to assess species distributions was 

additionally of value to conservation activities because these methods (a) facilitate comparisons 

of distribution patterns across populations and species, (b) may help in planning which 

landscapes can be conserved for a focal species, and (c) show areas where distributions are 

disrupted.  These methods enhance potential to; (i) investigate causes of disruptions of 

distributions, (ii) distinguish resource types related to changes in probability of occurrences, and 

(iii) link patterns of distributions and abundances to rates of birth, death, and dispersal.    

In chapter 3, I could not identify factors associated with historical sable distribution 

because collection of geographical positions of animal herds and animal count records was 

irregular prior to 1977 (Joubert 2007).  Therefore, I modified the original objective to become;-

―to establish changes to historical distributions of larger ungulate species‖.  Maps constructed by 

Pienaar (1963) provided an opportunity for comparing recent distributions of several large 

ungulate species against their respective distributions around 1960.  The aim was to identify if 

perceived contractions noted for sable antelope distribution was limited to this species alone.  
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Because the concern was not to reveal fine scale variation of occurrence, but instead identify 

changes (at a broad landscape level) that may have occurred amongst ungulate distributions 

before sable declined (around 1960) and when sable declined (1980-1993), the fixed kernel 

method, with a tendency not to underestimate 1
st
 order range extents (chapter 2) was applied.  

Furthermore, choice of fixed kernel method was appropriate because distributions mapped 

around 1960 are uncertain to some level, thus a method which is not prone to type I error had to 

be applied if those species distributions were to be compared with recent patterns.   

This study has implicitly suggested an approach whereby broad distribution patterns are 

considered first before setting up hypotheses for small scale studies.  For example, examining 

broader distribution patterns revealed that influences of climate may be involved in the decline of 

sable abundance.  Climate was not initially considered as an important factor involved in the 

decline of sable antelope abundance.  In addition, assessment of broader distributions revealed 

that declines in sable abundance were across the entire KNP and not just in certain landscapes.  

This widespread nature of effects of constraints on sable antelope had not been considered as 

important during the early planning of the research. 

An important outcome of this assessment was that changes in distribution and abundance 

of sable antelope was in some way linked to changes in distributions and to an increase in 

proportion of common grazers (buffalo, wildebeest, zebra and impala) in northern sections of 

KNP after 1983, where previously they were less abundant.  Thus, in some way this study 

supported previous findings that indicated an increase in competing or prey species that 

supported lions were implicated in roan antelope decline (Harrington et al. 1999).  The same 

process may also have contributed to sable antelope decline.  Another important outcome of this 

assessment was that contractions of distributions and abundance had also occurred to other rare 

antelopes (tsessebe and roan), which like sable are at the edge of their geographic distribution in 

Africa.    The above factor would otherwise have been less clear if distribution patterns of other 

large ungulates across KNP had not been examined.  Therefore, this study suggested that 

diagnosis of factors affecting a species should not be considered in isolation.   

Chapter 3 further illustrated that impala, buffalo, wildebeest, warthog, and waterbuck 

appeared widespread away from rivers than was indicated around 1960 (Pienaar 1963).  Because 

common species occurred during dry season in areas they previously used during wet season, 

this could have led to a decline in suitability of those areas to rarer antelope.  Movement by 
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common species from wet season ranges to dry season areas that may have previously allowed 

recovery of forage resources had been blocked.  Broadly, the analysis highlighted that; i) fences 

particularly in central-west that excluded wildebeest movement outside the park appeared 

associated with distributional changes of herbivores as species became resident in the area.  ii) 

Augmenting of surface waterpoints in areas that in the 1960s lacked surface water during dry 

season appeared influential to the increase of common grazers i.e. buffalo, wildebeest and zebra 

in northern half of KNP.  The increase of these species appeared associated with a decrease in 

rarer antelopes in this northern half of KNP.   

This study has contributed to conservation management in KNP by producing 

distribution patterns of several species based on a statistical probability of a species occurring in 

an area.  Patterns produced here may thus be used as basis to assess future distribution changes in 

the park.  The maps constructed here show concentration areas of each species, information that 

might be important in making management decisions concerning which locations to prioritize 

when conserving target species for example roan or sable.   

Assessments of broader questions pointed towards range contractions for sable and other 

rarer antelopes.  Thus next step was to ask specific questions such as; (1) has range losses 

occurred through animals shifting to other areas or herds going locally extinct.  (2) Which areas 

were no longer parts of a range? (3) What characterized the range contractions; (a) lack of 

recruitment leading to declining of herd sizes and eventually disappearance, or (ii) a climate 

effect through making habitats perhaps less suitable?  I therefore added another new objective 

aimed at investigating if a climate effect had caused sable range contractions and abundance 

decline.  Elsewhere climate change effects were linked to species shifting distributions towards 

cooler areas and where conditions were still suitable (Bakkenes et al. 2002, Rodriguez 2002, 

Walther 2002).  The motivation for this new objective followed Caughley et al. (1988) who 

proposed that patterns of how distributions shrunk could reveal the nature of causal factors.  For 

this purpose, it was evident that LoCoH was the method of choice.  My initial task in the study 

had revealed advantages of LoCoH for assessing gaps and changes in areas occupied by a 

species exhibiting a patchy distribution.  The focus here was to examine changes that might have 

occurred at fine spatial scales including noting changes of areas occupied by specific sable herds 

radio collared and tracked in two regions of KNP.  It was now important to pick up finer details 

of changes in herd sizes or recruitment in space and over time.  The expectation was that if 
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suitability of sable areas had declined as a consequence of lowered rainfall, contractions of 

distributions, herd sizes and recruitment of sable antelope would be widespread across KNP but 

be greater in drier northern sections than in the relatively wetter south-western region.  

Otherwise, range loses and declines in recruitment or herd sizes would be localized to some areas 

but show no change elsewhere.   

I could not establish beyond doubt the exact influence of climate on these rarer species, 

but I showed that the widespread contractions of ranges, recruitment and herd sizes was 

characteristic of an influence consistent to that of climate.  Whether climate effects contributed 

through changes in woody–grass balance or forage species composition that consequently could 

have affected suitability of the areas to rare antelopes could not reliably be established.   All 

three rare antelope species showed evident range contractions associated with local herd 

extirpations especially following the severe 1991/2 drought.  Some of the new herds that 

established during the period (1984-1988) after the first drought had disappeared.  Distribution 

shifts through tracking perhaps suitable conditions comparable to cases documented in northern 

hemisphere (Bakkenes et al. 2002, Rodriguez 2002, Walther 2002) were not observed in KNP.  

Sable, roan, and tsessebe herds became locally extirpated even in the relatively wetter southern 

section of KNP.  Small sable herds persisted in discrete remnants of their previously wider 

distribution in the park.  For KNP tsessebe, sable and roan antelopes that occur at the edge of 

their geographic distribution in Africa, other influences perhaps involving biotic factors (chapter 

5) appeared to restrict persistence of these species to localized patches rather than expanding 

distributions towards higher rainfall areas.  Because I could not establish the exact nature of 

climate effects in KNP, I recommended further studies especially on vegetation structure 

changes which may be related to decreased visibility and hence increased predation risk. 

Chapter 5 contributed the most to the aim and questions set out in this thesis because it 

involved rigorously testing (i) contributions of factors that exhibit broad scale influences (NDVI, 

distribution of water points, geology and specific habitat types) and ii) factors that could 

influence small and localized changes in species distribution (e.g. spatial differences in predation 

risks or influences of competition) in order to established factors that restricted distribution of 

sable antelope.  I expected location of food to be a basic indicator of where sable antelope should 

establish home ranges (Soberón and Peterson 2005, Hirzel & Le lay 2008), thus, factors such as 

geology and rainfall should explain best where sable antelope occur because they indicate 
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locations which potentially can support enough forage resource.  Assessment of this objective 

necessitated the application of the tile based approach because (i) the identity of each area (i.e. 

tile) in the analysis had to remain the same during the analysis, and (ii) there was a need to apply 

rigorous statistics to estimate influence of different levels of the various factors on the same area.   

The study indicated that sable prevalence differed from expectation for geology because 

prevalence was highest on poor nutrient granite and sandstone instead of nutrient rich basalt and 

gabbro.  Distances of up to 5 km from perennial water sources did not appear to exert limiting 

influences on where sable herds occurred in KNP.  Land type was the best statistically supported 

abiotic factor in explaining distribution of sable antelope herds.  It appears there is an ecological 

separation between KNP sable antelope distribution with wildebeest or impala distributions.  

Broadly, sable antelope favoured mopane savanna woodland in north-west and far north-west 

and sour bushveld around Pretorius Kop in south-west.  Sable antelope avoided knob thorn-

marula parkland, which is favoured by wildebeest in eastern parts of the central region.  Impala 

favoured dense areas along rivers.  Sable range overlapped with buffalo and zebra ranges, hence, 

sable could avoid these species by movement patterns.  By exploiting or establishing on such 

areas that are not favoured by the common grazers in KNP, sable may have been able to reduce 

grazing competition.  Sable were more prevalent in areas where predation risks appeared lower 

than elsewhere.  Predation risks appeared more influential on sable distribution compared to 

competition.  The novel contribution of this objective (chapter 5) is that biotic factors exert 

strong modifying influences on effects of abiotic factors on distribution of sable a sedentary 

species.  This study (chapter 5) reveals a strong modifying influence of predation risk at a higher 

order of selection (i.e. distribution of sable home ranges) in the KNP.     

In Kruger National Park, land type was the predictor that best explained distribution of 

sable antelope.  Predation risk and competition were important factors that modified influences 

from land type on where sable antelope occurred, and restricted a wider spread of this species in 

the park.  Data from Hwange National Park was less rigorously collected compared with aerial 

counts in KNP.   However, slight modifications to the model presented here would allow to test 

if sable antelope distribution in Hwange was limited by the same factors as those in KNP.  The 

land type predictor in Hwange has the following levels: woodland, wooded bushland, bushed 

grassland, scrub, thicket, and woodland-bushland-grassland mosaic.  The biomass of impala, 

wildebeest, zebra and buffalo at all waterholes in a given landscape type could be used to index 
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competition effects in that landscape.  Spatial distribution of predation risks of a given landscape 

type would be estimated using a proxy calculated from prey available to lions at all waterholes.  

Generalized linear models such as Logistic regression models could be fitted to combinations of 

these predictors: landscape, competition, and predation risk testing how well the predictors 

explain the distribution of sable antelope.      

 

Management implications 

The findings of this study provide some insights into what could be done to improve conditions 

for sable antelope in KNP.  The knowledge that predation risk and competition have strong 

modifying roles on effects of abiotic factors on where sable herds occur and have restricted a 

widespread sable distribution can help improve management of potential competitors or prey for 

lions.  The abundance of Roosevelt’s sable antelope (Hippotragus niger roosevelti) in the 

Selous-Niassa Corridor is on the increase (Hofer et al. 2004).  Animal census records of the 

Selous-Niassa corridor showed very little or no wildebeest, impala or zebra in the area.  In 

addition, the few buffalo occurring in the corridor were considered migratory (Hofer et al. 2004).  

Therefore, in some ways sable in the Selous-Niassa corridor maybe experiencing lower 

competition effects from these species.  The latter can also suggest lower abundances of prey 

species that support lions in area, thus potentially reducing predation risks.  Therefore, I 

concluded that for successful reintroduction of sable in any area, abundances of impala, zebra, 

wildebeest, and buffalo should be monitored.  The above could be done through variations in the 

current waterpoint management policy.  Smaller water troughs that may not support huge buffalo 

herds may be maintained in sable areas.  In addition, since sable is a sedentary species, home 

range of each sable herd should be treated as a distinct management unit so that each herd may 

benefit from burning programmes in the park.  

To monitor and manage successfully environmental drivers of sable distribution it is 

fundamental to collect data on sable locations at a relevant spatial resolution.  Collection of 

geographical locations of animal herds (during surveys) no longer occurs over the entire area of 

KNP, as occurred prior to 1998, but rather is based on a distance sampling method.  The distance 

sampling method works by dividing the park into equally spaced strips.  Data obtained that way 

have a coarse spatial resolution and leads to inability to detect local variability in occurrences of 
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a species or detect shift of distributions.  This study makes recommendations that broadly cover 

two issues:  

1) Collecting spatial data on sable distribution without loss of spatial variability or resolution 

to the data.     

2) Improving conditions for sable in areas where they occur 

 

1) Data collection (adjustments to current technique) 

It is unlikely that management in KNP can detect where sable distribution has shifted if they do, 

where sable are doing well and which landscapes are sable not recruiting from data collected 

using distance sampling techniques. 

I recommend spatially varying intensities of surveys: instead of flying over the whole park using 

evenly spaced out transect for all species, more census transects should be laid out in areas which 

have highest value for sable persistence than outside sable areas.  Areas that are important to 

sable have been identified and mapped in this study.  Those extra transects need not be surveyed 

every year, but instead every 3-4 years (a reliable enough frequency to detect spatial changes in 

probability of occupancy or local herd size decline before it is too late for remedial action).   

 

Other considerations 

Survey flights across the 20 000 km
2
 area of KNP is always going to involve high costs 

because large number of flying hours are required, thus future surveys are always going to be 

uncertain.  Therefore, I recommend exploring possibilities of establishing partnerships with other 

parks, government, internal national partners and non-governmental organizations to set up some 

kind of a national authority that carries out censuses in all parks in the country.  The authority 

could be carrying out census every 3-4 years in a park.  An alternative to the above would be 

carrying out the census annually but only covering one region in KNP per year (i.e. flying each 

region alternatively).  This last approach has an extra advantage in that spatial differences in 

recruitment across regions can be assessed.  The area covered by one region is small hence 

counting of juveniles could be possible.  
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1) Improving conditions for sable in the areas where they occur 

The aim should be to reduce large concentrations of competitors or prey for lions in sable areas.  

Thus I recommend spatially varying size dimensions of waterpoints and burnt plots. 

(a) Monitoring of remaining sable herds with the help of rangers, who should other than 

closing waterpoints where sable core areas occur, should reduce the sizes of water 

troughs in these areas and maintain larger water troughs elsewhere away from sable 

range.   

(b) Burning small patches in sable habitats that may not attract huge concentrations of 

competitors and prey for lions.  This would be more effective if burning of bigger patches 

outside sable areas would be implemented at the same time in such a manner that the 

green flushes of grass would occur at about the same time in both areas.   

The above could likely reduce competition and predation risk in habitats of highest value to sable 

(i.e. create refuge where sable can escape from predators and competition). 
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APPENDIX I: Method Details 

Tile method 

The tile method is used in spatial analysis for establishing presence/absence, densities of 

animals per given area (White and Garrott 1990, Swihart 1992,) and assessing spatial 

associations between species (Doncaster 1990, Redfern et al. 2006).  Two tile scales, (5 × 5 and 

10 × 10 km) were applied.  Tile size choices are flexible and dependent on the scale of study 

(Redfern et al. 2006) and might also depend on minimum home range size estimates of species 

understudy.  A tile size that approximates home range size estimates has advantages; first, 

surveys are unlikely to result in omissions of herds if resident in an area over a given period, e.g. 

1980-1993 in this case.  Second, a record of one herd in one tile is thus independent of another 

herd recorded in a different tile during a survey.  The 10 × 10 km tile size was chosen to allow 

comparisons to previous studies of spatial association in the KNP (Redfern et al. 2006).   

For our this assessment, the 5 × 5 km was within the minimum range size requirements 

for each of the four species, and in addition, 5 × 5 is half the 10 × 10 km scale and therefore, 

ideal for assessments of effects of bigger tile sizes versus effects of smaller tiles on estimating 

distribution ranges.   

Kernel method  

I applied the kernel method using least–square cross-validation (LSCV) techniques for 

choosing the smoothing parameter h (Silverman 1986, Powell 2000 and Worton 1989).  Each 

merged point shape file was loaded onto the Animal Movement Spatial Analyst Extension Tool 

where I estimated 0.99 and 0.75 kernels distributions.  The technique constructed kernels through 

allowing h to vary (adaptive kernels) or remain fixed (fixed kernel) from one point to another 

(Silverman 1986).  Following Seaman and Powell (1996) and Terrell and Scott (1992), the fixed 

kernel is mathematically defined as 



f fixed () 
1

nh2
K

i1

n

 h1(  X i) ,                                                                                                (1)
 

where n is the number of points, K is a kernel density, h is the smoothing parameter (Silverman 

1986), X is a random sample of t independent points,  is a vector of (x,y) coordinates describing 

the location where the function is being evaluated and Xi is a series of vectors whose coordinates 

describe the location of each observation i.   

 

The adaptive kernel is defined by 
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 )(
11

)(
11

1
2adaptive ii

n

i i

XhK
nh

f 




 



,                                                  

(1.1)
 

where 



t is local smoothing parameter that depends on the density of points around each data 

point Xt and  the other symbols are defined as in fixed kernel.   

   

Local Convex Hull Algorithms 

LoCoH methods following Getz et al. (2007) were implemented as an extension to Arc 

GIS (Ryan et al. 2006).  These techniques estimated a distribution range by identifying a user-

specified number of nearest points to each location in the data set that were either fixed at k (k-

LoCoH) or constrained such that the sum of their distances to the root point was less than or 

equal to a (a-LoCoH).  Then local hulls were constructed from each point and its selected 

neighbours, and the union of these hulls moving up from the smallest were used to construct the 

isopleths (Getz and Wilmers 2004, Getz et al. 2007).  Individual isopleth levels can be calculated 

from 10% up to 100% depending on specific objectives of the range estimation.  Each isopleth 

encompassed a determined proportion of the statistical distribution of locations—for example the 

100 isopleth covered all the distribution, the 99 isopleth encompassed 99% the distribution and 

75 isopleth covered 75%—using the principle that smaller hulls represent the more heavily used 

regions.  Thus, isopleths provided information on the location of core areas (75%) and marginal 

areas (99%) across the range.  We used both k-LoCoH and a-LoCoH algorithms to estimate 

distribution ranges in our analysis.    

Selection of k and a is non trivial:  values that are too large include gaps where the 

species were not recorded and take in outliers points, but conversely small values exclude 

intervening localities that are part of the range (i.e. too conservative).  In the case of k-LoCoH, 

the minimum number of points required for constructing a hull is 3 while the largest is the 

sample size itself.  In that case k-LoCoH yields the MCP such that the technique is also a 

generalization of the MCP approach to estimate the animal’s home range (Getz and Wilmers 

2004).  For a-LoCoH the maximum value for k is 3 and a is the cumulative point to point 

distance from each point to its nearest neighbour.   

We plotted distribution range area estimates against k for each species for several values 

of k upwards, searching for the value of k where the positive relationship for range area with k 

begins to flatten out until reaching a constant (i.e. point of inflection).  Prior to this point range 
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area increased with corresponding increases in k, and after this point, increases of k do not lead 

to corresponding increases of range area.  That k value referred to by Getz and Wilmers (2004) 

as the MSHC (minimum spurious hole covering) was adopted for each species. This same 

method was used to identify the MSHC value of a.  Additionally, knowledge of gaps in the 

species distributions because of picnic sites, rest camps, and park residence locations was helpful 

and used to improve judgements on choice of h and on whether the distribution ranges created 

looked appropriate.   
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APPENDIX II: Additional methods figures (chapter 2) 

1. a.  Adaptive kernel h = 0.0222                          b. Adaptive LoCoH a = 150000, k = 3      
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2 a. Tile 5 × 5                                                             b. Fixed LoCoH k = 24                                                                                  

         

 

3. a Tile 5 × 5                                                     b Adaptive kernel h = 0.0244 

               

  

4. a.  Tile 5 × 5                                                       b. Adaptive kernel h = 0.0279 
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5 a. Impala Tile 10 × 10                               b. Wildebeest Tile 10 × 10                                                                                                 

                          

 

 

 

c. Waterbuck Tile 10 × 10                                   d. Sable Tile 10 × 10 

 

                                                                                                                                                                                                                                               
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

207 

6. a Automatic choices of h with wildebeest 

 

 

6 b. h ref, impala, h = 0.145058           c) h ref, sable, h = 0.260745 
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APPENDIX III  Summary of landscapes and land types of Kruger (after 

Gertenbach 1983 and Venter 1990)  

 

Landscape Land type Geology 

Mixed 

mopane/teak/bushwillow 

woodland  

Mopane/ teak/ bushwillow 

(tree/bush savanna) 

sandstone 

Mopane shrubveld   Mopane shrub savanna basalt 

Mountain bushveld  Mountain bushveld 

(eurphobia/bushwillow) 

rhyolite 

Sand camwood-silver 

cluster-leaf shrubveld or 

bush savanna  

Sand camwood-silver 

cluster-leaf shrubveld or 

bush savanna  

aeolian 

sands 

Mopane-knob thorn 

savanna woodland  

Mopane-knob thorn 

savanna 

 

granite 

 

Mopane-bushwillow granite 

Mopane-silver cluster-leaf 

woodland 

 

granite 

Thorn veld  Thorn veld gabbro 

Sourveld (silver cluster 

leaf/sickle bush) 

Sour bushveld  granite 

Delagoa thorn thickets  Delagoa thorn thickets  Karroo 

sediments & 

ecca shales 

Marula - knob thorn Marula-knob thorn savanna   basalt 

Mountain bushveld  Mountain bushveld 

(bushwillow-silver cluster-

leaf)  

granite 

Mixed bushwillow-silver 

cluster-leaf woodland  

Mixed bushwillow /silver 

cluster- leaf savanna 

granite 

Mixed mopane - 

bushwillow  woodland 

Thickets of the Sabi and 

Crocodile Rivers  

Mixed dense bush savanna 

bushwillow/silver cluster-

leaf/ knob thorn/ sickle  

granite 

 
Notes; common names of plant species following Gertenbach (1983) and Venter (1999) 
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APPENDIX IV Prey species for lion, body mass and weighting factor (kill likelihood) 

used to calculate the predation index 

Species Body mass  Weighting factor 

Wildebeest 208 1 

Warthog  83 0.8 

Waterbuck  210 0.8 

Kudu  214                                                                                                                                                                                  0.7 

Zebra 270 0.6 

Giraffe  1013 0.5 

Eland  463 0.5 

Sable antelope 230 0.5 

Tsessebe  134 0.5 

Roan antelope 270 0.5 

Buffalo 600 0.25 

Impala  52 0.2 

   

Notes; Body mass of prey species following Owen-Smith (1998) are available as a 

range. body mass values- calculated as the (sum of male and female mid-points 

divided by two) average of two mid-points; i) males and ii) females, and weighting 

factor following Owen-Smith and Mills 2006, 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 


