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Abstract

The aim of this research project is to survey and elaborate on various generalizations and
refinements of Euler’s celebrated distinct-odd partition theorem which asserts the equality of
the numbers of partitions of a positive integer into distinct summands and into odd summands.
Although the work is not originally my own, I give clarity where there is obscurity by bridging
the gaps on the already existing work. I touch on combinatorial proofs, which are either
bijective or involutive. In some cases I give both combinatorial and analytic proofs. The
main source of this dissertation is [22, 5, 6, 8]. I start by first summarizing some methods
and techniques used in partition theory.
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0.1 Literature Review

A partition of a positive integer n is a multiset of summands, arranged in a nonincreasing
order, totaling n. Theory of Partitions is an active area of research that dates back to around
1674 when Leibniz questioned J. Bernoulli about partitions of positive integers. Surprisingly
Euler was the first one to dig deep and make significant discoveries. The Pentagonal number
Theorem and Euler’s odd-distinct Theorem are amongst the most notable partition identities
Euler proved back in the year 1748. Several partition identities containing amongst others
the names of Sylvester, Cauchy, Jacobi, Ramanujan, Gauss, Lebesgue and MacMahon were
later discovered.

Several people embarked on these theories of Partitions and made major contributions,
J.J. Sylvester is one of them after Euler. In the late nineteenth century Sylvester discovered
the recent combinatorial theory in the spirit of partitions [2]. Nothing of significance really
happened in the field between the eighteenth and nineteenth century. Substantial amount
of research was experienced in the twentieth century coupled with significant results from
Rademacher, Rogers, MacMahon and Ramanujan to name a few. This theory has famous
celebrated beautiful results like Euler’s Partition Identity with its generalizations and re-
finements. Historically, most of these partition identities were first proved using analytical
techniques and, only much later, using combinatorial techniques. In this research we will turn
our focus on partition identities that are either Euler’s generalisation or refinement.

We use the function p(n) to denote the number of partitions of a positive integer n. Andrews
in [5] gave some results on Hardy-Ramanujan-Radamacher formula for p(n). A combinatorial
explanation of partitions theory can be viewed as distributing n similar balls into n similar
urns [18]. In defining a partition, the same parts in two different orders would constitute the
same partition, so we regard a preferred order –the descending order– as the representation
we work with.

Sylvester and MacMahon viewed fixing the order of partitions important. The descending
order has succeeded in this regard. Though choosing the order is arbitrary, having parts in
descending order has proven to be more convenient. Tucker in [26] chose to define partitions
with parts arranged in increasing order. In various instances partitions has been defined
with parts arranged in ascending order, non-squashing partitions [25], M-partitions [20] and
Lecture-hall partitions [10] are examples of such instances.

0.2 Tools and Definitions for studying partitions

In this section we introduce tools and definitions that are crucial in what we shall be research-
ing.

0.2.1 Definitions

A partition of a positive integer n is a finite sequence of positive integers (λ1, λ2, · · · , λl) such
that λ1 + λ2 + · · ·+ λl = n, where λi ≥ λi+1.
The partition function p(n) denotes the number of partitions of a positive integer n.

Thus we shall refer to λ = (λ1, λ2, · · · , λl) as a partiton where λ1 ≥ λ2 ≥ · · · ≥ λl > 0 such a
λ is a partition of n when the sum of the parts is n. The preceding statements implies that:
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∑
i≥1

λi = |λ| = n.

Thus for n = 6; the partitions are: (1,1,1,1,1,1),(2,1,1,1,1),(2,2,1,1),(3,1,1,1),(4,1,1),(3,2,1),
(2,2,2),(3,3),(4,2),(5,1) and (6). Thus p(6)=11.

We will denote by a(λ) = λ1 the largest part of the partition λ and by e(λ) = λl the smallest
parts of the partition λ. We define l(λ) = l to mean the number of parts . We define On to
be a set of partitions of n in which all parts are odd and Dn to be a set of partitions of n in
which all parts are distinct. Let mi = mi(λ) denote the number of parts of λ equal to i.

We define the conjugate partition λ
′

= (λ
′
1, λ

′
2, · · · ) of λ where:

λ
′
i = |{j : λj ≥ i}| = mi +mi+1 + · · · .

Let λ = (7, 5, 2, 2), then there are:
4 parts ≥ 1
4 parts ≥ 2
2 parts ≥ 3
2 parts ≥ 4
2 part ≥ 5
1 part ≥ 6
1 part ≥ 7

Thus λ
′

= (4, 4, 2, 2, 2, 1, 1).

It follows that,
l(λ
′
) = a(λ).

Given the partitions λ = (λ1, λ2, · · · ) and ν = (ν1, ν2, · · · ) we define sum and union operators
as follows:

λ+ ν = (λ1 + ν1, λ2 + ν2, · · · ),

where the shorter of λ or ν is filled out with parts of size 0.

λ ∪ ν = {λi, νj} i, j ≥ 1

consequently,

(λ ∪ ν)
′

= λ
′
+ ν

′
.

0.2.2 Generating Functions.

Generating functions are powerful in studying integer partitions. Euler used them a lot in
his work in partitions. The generating function of a sequence of numbers {a(n)} is a formal
power series:

∞∑
n=0

a(n)qn, (1)
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whose coefficient encode information about a sequences of numbers a(n) that is indexed
by the natural numbers.
We use this presentation as follows. Let’s say we want to explore all possible partitions with
strictly an odd part and an even part less than 8. The generating function is:

(q2 + q4 + q6 + q8) · (q1 + q3 + q5 + q7) = q2+1 + q2+3 + q2+5 + q2+7 + q4+1 + q4+3 + q4+5

+ q4+7 + q6+1 + q6+3 + q6+5 + q6+7

= q3 + 2q5 + 3q7 + 3q9 + 2q11 + q13 (2)

Since the exponents represent the actual partitions with an odd part and an even part less
than 8, then the coefficients gives us the number of such partitions. For example coefficient
of q9 is 3, which implies that the number of partitions of 9 into one even part and one odd
part less than 8 equals 3.

This can be extended more general partitions. For example, The following is a generating
function of a partition with distinct parts from S = {n1, n2, n3} :

(1 + qn1)(1 + qn2)(1 + qn3) = 1 + qn1 + qn2 + qn3 + qn1+n2 + qn1+n3 + qn2+n3 + qn1+n2+n3 (3)

Now taking S = {1, 2, 3}, then (3) becomes:

1 + q + q2 + 2q3 + q4 + q5 + q6 (4)

If we define:
p(n, k) = number of partitions of n in which no part exceeds k.
p(n/k) = number of partitions of n with exactly k parts.
p(n/k)d = number of partitions of n with k different parts (i.e., into k part sizes),

then we can extend the generating function presentation to get a generating function of the
above partitions.

∞∑
n=0

p(n, k)qn = (1 + q1 + q1+1 + q1+1+1 + . . . )(1 + q2 + q2+2 + q2+2+2 + . . . )

(1 + q3 + q3+3 + q3+3+3 + . . . ) · · · (1 + qk + qk+k + · · · )

=

k∏
j=1

(1 + qj + q2j + q3j + . . . )

=

k∏
j=1

1

(1− qj)
(5)

Sometimes it is not simple to find a direct generating function for a given partition. It is
often helpful to find the conjugate partition for the generating function. For example the
generating function for p(n/k) is not easy to find, but we know its conjugate partition equals
the number of partitions of n in which the largest part is k. Using the latter characterization
we obtain:
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∞∑
n=0

p(n/k)qn = qk(1 + q1 + q1+1 + q1+1+1 + . . . )(1 + q2 + q2+2 + q2+2+2 + . . . )

(1 + q3 + q3+3 + q3+3+3 + . . . ) · · · (1 + qk + qk+k + · · · )

= qk
k∏
j=1

(1 + qj + q2j + q3j + . . . )

=
qk∏k

j=1(1− qj)
. (6)

Sometimes we encounter partition problems which are restricted in such a way that we have
to keep count of the parts. Depending on the restriction on the parts, we use a variable x to
keep count of the parts, for p(n/k) we have:

∞∑
n=0

n∑
k=0

p(n/k)xkqn =

∞∏
n=1

(1 + xqn + x2q2n + x3q3n + . . . )

=
1∏∞

n=1(1− xqn)
. (7)

If the restriction on the parts is such that we should keep track of the number of different
parts, then we have:

∞∑
n=0

n∑
k=0

p(n/k)dy
kqn =

∞∏
n=1

(1 + yqn + yq2n + yq3n + . . . )

=
∞∏
n=1

(
1 +

yqn

1− qn

)

=
∞∏
n=1

1− (1− y)qn

1− qn
. (8)

0.2.3 Ferrers Graphs and Ferrers Boards

Partitions can be represented using diagrams which are called Ferrers diagrams. These graphi-
cal representations of partitions are very useful in helping us to understand partitions especial-
ly for their combinatorial analysis. Many amazing facts about partitions are best explained
graphically. There are two common ways of drawing such graphs for a partition, namely
Ferrers graphs and Ferrers Boards.

Example 4 + 4 + 2 + 1 + 1 has Ferrers graph:

• • • •
• • • •
• •
•
•
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For some uses, the above representation with dots looks best; it’s called Farrers graph. On
other occasions, the representation where we replace dots with squares comes natural; it’s
called Farrers boards or Young diagram:

These diagrams are useful in finding transformations and if such a transformation is invert-
ible, then it is a bijection and can be used for proving some partition identities. As a very
elementary example of a transformation, take the Ferrers graph above and remove the top
row: r r r rr rrr
We see that if we remove the top row from a Ferrers graph, we are left with a new Ferrers
graph. If r was the length of the removed row, then all rows of the new Ferrers graph have
length less than or equal to r. Conversely, for any such Ferrers graph, we can add a row of
length r on top and obtain a Ferrers graph. Thus we have a bijection proving the partition
identity:

p(n| greatest part r) = p(n− r| all parts ≤ r). (9)

With this technique (transformation) we can bijectively prove and find lots of partition iden-
tities, for example, the variation of this technique that may make sense would be to remove
the first column instead of the top row. This would lead to:

p(n| m parts) = p(n−m| atmost m parts). (10)

Conjugate Ferrers Diagram: these are the Ferrers graph obtained by exchanging rows
and columns of the old Ferrers graph, i.e: (4, 4, 2, 1, 1)→ (5, 3, 2, 2)

r r r rr r r rr rrr

r r r r rr r rr rr r
−→

This transformation returns a partition with the greatest part equal to the number of parts
of the original partition, i.e

p(n| m parts) = p(n| greatest part is m). (11)



Chapter 1

Euler’s Partition Theorem

In combinatorics, integer partitions are of interest, mainly because many questions regarding
integer partitions, solved and unsolved, have no simple proofs. In the proof of the following
Euler’s Theorem we’ll see how generating functions are useful in proving partitions identities.
One will notice that the use of generating functions is more frequent as we go deep into
studying partitions.

Theorem 1 (Euler’s Partition Theorem) [5] The number of partitions of n into distinct
parts is equal to the number of partitions of n into odd parts.

Example:

Given n = 9, then
p(9) = 8 = |D9|

D9 = (9, 8 + 1, 7 + 2, 6 + 3, 6 + 2 + 1, 5 + 4, 5 + 3 + 1, 4 + 3 + 2)

and

p(9) = 8 = |O9|

O9 = (9, 7+1+1, 5+3+1, 5+1+1+1+1, 3+3+3, 3+3+1+1+1, 3+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1)

Now since:

∞∑
n=0

p(n | parts distinct)qn = (1 + q)(1 + q2)(1 + q3) · · ·

=

∞∏
n=1

(1 + qn) (1.1)

11
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and

∞∑
n=0

p(n | parts all odd)qn = (1 + q + q1+1 + q1+1+1 + · · · )(1 + q3 + q3+3 + q3+3+3 + · · · )

(1 + q5 + q5+5 + q5+5+5 + · · · ) · · ·
= (1 + q + q2 + q3 + · · · )(1 + q3 + q6 + q9 + · · · )(1 + q5 + q10 + q15 + · · · ) · · ·

=
∏
n odd

1

(1− qn)
(1.2)

then Euler’s Partition Theorem can be expressed in generating function form as follows:

∞∏
n=1

(1 + qn) =
∏
n odd

1

(1− qn)
. (1.3)

Showing that the two sides are equal will prove that:

p(n | parts distinct) = p(n | parts all odd). (1.4)

This generating function approach is very strong as it eliminates the problem of having to
show that the two sides are equal from their exact formulas which are very difficult to find.

1.0.4 Analytical Proof of Euler’s Identity

We supply the analytic proof using generating functions [6]. It is sufficient to show that (1.4)
holds, i.e

∞∏
n=1

(1 + qn) =
∏
n odd

1

(1− qn)
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The proof is as follows:

RHS =
∏
n odd

1

(1− qn)
=
∞∏
n=1

1

(1− q2n−1)

=
1

(1− q)(1− q3)(1− q5) · · ·

=
(1− q2)(1− q4)(1− q6) · · ·
(1− q)(1− q2)(1− q3) · · ·

=

∞∏
n=1

1− q2n

1− qn

=
∞∏
n=1

(1− qn)(1 + qn)

1− qn

=
∞∏
n=1

(1 + qn)

= LHS

Thus p(n | parts distinct) = p(n | parts all odd).

This concludes the analytical proof. Below we illustrate a transformation or bijection that
proves Euler’s identity.

1.0.5 Glaisher’s combinatorial description of Euler’s Identity

Transformation of a partition with odd parts into a partition with distinct parts, i.e On 7→ Dn.
[16]

We start with the partition where the parts are odd. If there are two identical odd parts,
then we add them to form one part. We proceed with this procedure until all the parts are
distinct.

Example:

For n = 13

3 + 3 + 3 + 1 + 1 + 1 + 1 7→ (3 + 3) + 3 + (1 + 1) + (1 + 1)

7→ 6 + 3 + 2 + 2

7→ 6 + 3 + (2 + 2)

7→ 6 + 3 + 4
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We now consider changing a partition with distinct parts into a partition with odd parts, i.e
Dn 7→ On.

We split each even part into two equal halves. We proceed with this procedure until all the
parts are odd.

Example:

For n = 17

8 + 6 + 3 7→ (4 + 4) + (3 + 3) + 3

7→ (2 + 2) + (2 + 2) + 3 + 3 + 3

7→ 3 + 3 + 3 + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1)

7→ 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

We show that this procedure present a mapping that is both surjective and injective φ : Dn 7→
On:

Let λ ∈ Dn. Let’s express the parts of λ into powers of two, i.e λi = 2niτi, where τi is an odd
integer. Then we have λ = 2n1τ12

n2τ2 · · · 2nsτs. Since λi 6= λj , we could have that τi = τj for
ni 6= nj . Then we can always transform λ into a partition of the form τ = τm1

x1 τ
m2
x2 · · · τ

mk
xk

,
where mi = 2i1 +2i2 +· · ·+2il , i.e mi is the number of τi in λ. Thus τ ∈ On. φ is injective since
it could only be the image under φ of some λ of the form 2niτi for each mi = 2i1 +2i2 + · · ·+2il

with exactly one sequence of nonnegative integers i1 > i2 > · · · > il. Since λ ∈ Dn, we have
a well-defined mapping π−1 : On 7→ Dn, so φ is surjective. ∴ φ is a bijection.



Chapter 2

Further Proof of Euler’s Theorem:
Dyson’s Iterated Map

Freeman Dyson in a paper published in the journal Eureka [14] (a publication of mathematical
students in Cambridge) introduced the notion of rank in a partition. Partitions with specified
ranks can also be treated using generating functions, see [13]. The work in this chapter is
based on [21].

2.1 Dyson’s Map

Freeman Dyson defined the rank of a partition λ, r(λ), as the largest part minus the number
of parts, that is r(λ) = a(λ)− l(λ). Example: for λ = 5 + 3 + 2 + 1, r(λ) = 5− 4 = 1.
Let Pn;r,Gn;r and Hn;r be the sets of partitions of n having a given rank r, at least r and at
most r, respectively. We denote their cardinality as follows: p(n; r) = |Pn;r|, h(n; r) = |Hn;r|
and g(n; r) = |Gn;r|.
We define Dyson’s Map ψr(λ) to be the partition whose Young diagram is obtained by first
removing the first column of the Ferrers diagram of λ and then adding a new top row of
length l(λ) + r(λ)− 1.

Example:

For λ = (5, 3, 3, 1), we get r(λ) = 5− 4 = 1 and ψr(λ) = (4, 4, 2, 2):

r r r r rr r rr r rr
r r r rr r r rr rr r

−→

Nathan Fine[21] gave the following theorem:

Theorem 2 (Fine’s theorem) A bijection exists between Hn;t+1 and Gn+t;t−1 for all λ ∈
Hn;t+1, where t ≥ r(λ)− 1.

15
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2.1.1 First Proof of Fine’s Theorem:

We construct a bijection ψt : Hn;t+1 7→ Gn+t;t−1. Given the Young diagram of λ ∈ Hn;t+1:

(1) Take out λ
′
1 = l(λ) from λ.

(2) Add a new row on top of λ with l(λ) + t squares. Let [µ] be the resulting Young
diagram.

This gives us ψt : λ 7→ µ

µ is a partition because of property (0) below:

(0)

a(µ) = l(λ) + t

≥ l(λ) + r(λ)− 1, since t ≥ r(λ)− 1

= l(λ) + (a(λ)− l(λ))− 1

= a(λ)− 1

(1)

|µ| = |λ| − l(λ) + (l(λ) + t)

= n+ t

(2)

r(µ) = a(µ)− l(µ)

= l(λ) + t− (λ
′
2 + 1)

≥ t− 1, since l(λ)− λ′2 ≥ 0

Or

r(µ) = a(µ)− l(µ)

= l(λ) + t− l(µ)

≥ l(λ) + t− (l(λ) + 1), since l(µ) ≤ l(λ) + 1

= t− 1

(3)
a(λ)− l(λ) = r(λ) ≤ t+ 1.

From property (1) and (2) we therefore conclude that: µ = ψt(λ) ∈ Gn+t;t−1.
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Example:

λ = (9, 7, 4, 4, 2, 1, 1) = 28 - µ = (8, 8, 6, 3, 3, 1) = 29

7→
ψ1

l(λ)t

λ ∈ H28;2, t=1 µ ∈ G28+1;0

For ψ−1t : µ 7→ λ, we should at least know the set Gn+t;t−1 where µ comes from, since
r(µ) ≥ t− 1. We proceed in the following manner:

Step(1):

Compute t by noting that t is one more than the second index of Gn+t;t−1.

Step(2):

From µ remove a(µ) and add 1 to all the remaining parts. Call the resulting partition λ∗.

Step(3):

Note that:

(1) If λ had no part of size one, then

|λ∗| = |λ| = n and λ∗ = λ. (2.1)

(2) If λ had a part of size one, then

|λ∗| = |λ| − |K| and λ = λ∗ ∪ K,

where K is a partition with parts of sizes one only and

|K| = n− |λ∗|
= |µ| − t− |λ∗|. (2.2)

Equation (2.1) and (2.2) imply that |λ| = n. This is clearly a direct reverse of ψt with
r(λ) ≤ t+ 1.
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2.1.2 Second Proof of Fine’s Theorem:

The first part of this proof ψt : λ 7→ µ is the same as in the first proof. Without wasting time,
we’ll proceed to the second part ψ−1t : µ 7→ λ.

Since a(µ) = µ1 is the sum of t and the length of the preimage λ which may contain 1′s. We
need to obtain the standard form of µ to contain trailing zeros.

We denote the latter by µ∗ and let l(µ∗) = v(µ), where v(µ) is the ”virtual length” of µ.

Then from property (0) we obtain:

a(µ) = (v(µ)− 1) + t

⇒ v(µ) = a(µ) + 1− t ≥ l(µ)

So µ∗ contains exactly v(µ)− l(µ) zeros, that is

µ∗ = µ ∪ (0v(µ)−l(µ)).

We now obtain the image λ by deleting a(µ∗) and adding 1 into each remaining part:

λ = µ2 + 1, µ3 + 1, · · · , µl(µ), 1v(µ)−l(µ). (2.3)

Equation (2.3) is the desired image for two reasons:

(i)

|λ| = (|µ| − a(µ)) + v(µ)− 1

= n+ t− a(µ) + (a(µ) + 1− t)− 1

= n (2.4)

(ii) t+ 1 ≥ r(λ), since this implies:

t+ 1 ≥ a(λ)− l(λ)

= µ2 + 1− v(µ) + 1

= µ2 + 1− (a(µ) + 1− t) + 1

= µ2 + 1− a(µ)− t

which gives
0 ≥ µ2 − a(µ)

or

a(µ) ≥ µ2,

which is trivially true.

(i) and (ii) show that λ ∈ Hn,t+1.
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Example:

Given µ = (8, 8, 6, 3, 3, 1) ∈ G29,0, we have t− 1 = 0⇒ t = 1.

v(µ) = a(µ) + 1− t = 8 + 1− 1 = 8.

So

µ∗ = (8, 8, 6, 3, 3, 1, 0, 0).

Hence
λ = (9, 7, 4, 4, 2, 1, 1) ∈ H28,2.

2.2 Iterated Dysons map

Nathan Fine also gave the following theorem on ranks of partitions:

Theorem 3 (Fine) [21] Let Dn;r be the set of partitions µ ∈ Dn with rank r(µ) = r. Let
Un;2k+1 be the set of partitions λ ∈ On, such that the largest part a(λ) = 2k + 1. Then:

|Un;2k+1| = |Dn;2k+1|+ |Dn;2k| .

The above theorem is clearly a refinement of Euler’s partition theorem. From properties of
ψt, Andrews in [3] showed how the theorem above directly follow.

Given that λ = (λ1, λ2, · · · , λl(λ)) ∈ On. A sequence of partitions v1, v2, · · · , vl(λ), such that

vl(λ) = (λl(λ)) and vi is found by simply applying Dyson’s map ψλi to vi+1. Let µ = v1 and
we name the new map ξ : λ 7→ µ the iterated Dyson’s map.

For example:

λ = (7, 5, 3, 1) ∈ U16;7, µ = (9, 5, 2) ∈ D16,6

v4 = (1)

- ���: ���:

Theorem 4 [21] The iterated Dyson’s map ξ defined above is a bijection between On and Dn.
Moreover, ξ(Un;2k+1) = Dn;2k+1 ∪ Dn;2k, for all k ≥ 0.
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2.2.1 Proof of iterated Dysons map

To prove that ξ : λ 7→ µ is a bijection and ξ(Un;2k+1) = Dn;2k+1 ∪Dn;2k, for all k ≥ 0, we first
need to show that µ ∈ Dn;2k+1 ∪ Dn;2k and r(µ) ∈ {2k + 1, 2k}, where a(λ) = 2k + 1.

Let λ = (λ1 ≥ λ2 ≥ · · · , λl(λ)) ∈ On.

By construction we note:

(1)∣∣vi∣∣ = λi + λi+1, · · ·+ λl(λ) =⇒
∣∣vi∣∣ = λi +

∣∣vi+1
∣∣ and ∣∣v1∣∣ = |λ| = n, i ≥ 0 (2.5)

(2)
a(vi) = l(vi+1) + λi (2.6)

(3)
l(vi+1) ∈ {a(vi+1)− λi+1, a(vi+1)− λi+1 + 1} (2.7)

(4)
l(vi) ∈ {l(vi+1), l(vi+1) + 1} (2.8)

Let vi1 and vi2 denote the length of the first and second row of vi, respectively.

vi1 = a(vi)

= l(vi+1) + λi by (2.6)

≥ a(vi+1)− λi+1 + λi by (2.7)

> a(vi+1)− 1 since λi − λi+1 ≥ 0

= vi2 (2.9)

Equation (2.9) shows that vi1 > vi2. The rest of the rows remain distinct because they lose
one box from the removal of the first column. Therefore vi1 > vi2 for all i.

r(vi) = a(vi)− l(vi)
= (l(vi+1) + λi)− l(vi) by (2.6)

∈ {λi, λi − 1} by (2.8) (2.10)

Equation (2.10) shows that:
r(vi) ∈ {λi, λi − 1}

∴ we conclude that µ ∈ Dn and moreover µ ∈ {Dn;λ1 ∪ Dn;λ1−1}.

Now we construct ξ−1.
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Step(1):

Given µ = v1 ∈ {Dn;λ1 ∪ Dn;λ1−1}, we know from (2.10) that r(v1) ∈ {λ1, λ1 − 1}.
Then we construct λ1 by computing r(v1).

Step(2):

Construct v(i+1)∗ by removing a(vi) and adding one from the remaining parts in vi. Note
that the second part of v(i+1)∗ ≥ 0.

Now construct
v(i+1) = v(i+1)∗ ∪ K(i+1), (2.11)

where K(i+1) is a partition with part(s) of size one only and

|K(i+1)| =
∣∣vi∣∣− ∣∣∣v(i+1)∗

∣∣∣− λi. (2.12)

We do this for all i up to the i where
∣∣vi∣∣ = λi or

∣∣vi+1
∣∣ = 0.

Step(3):

Now construct λ from all the λi obtained from step(2). This is clearly the reverse of ξ.

∴ ξ−1 : Dn 7→ On is well-defined. We now conclude that ξ : On 7→ Dn is a bijection.

Note that this theorem implies Euler’s odd-distinct parts theorem when r = Z.

Example:

λ = (7, 5, 3, 1, 1, 1, 1)

v7 = (1)

v6 = (2)

v5 = (2, 1)

v4 = (3, 1)

v3 = (5, 2)

v2 = (7, 4, 1)

v1 = (10, 6, 3) = µ

Now given µ = (10, 6, 3) we construct λ :

Step(1)

µ = v1 = (10, 6, 3) r(v1) = 7 and λ1 = 7
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Step(2)

•
From equations (2.11) and (2.12) , v2∗ = (7, 4) and K2 = (1)

v2 = (7, 4) ∪ (1) = (7, 4, 1) r(v2) = 4 and λ2 = 5

•
From equations (2.11) and (2.12) , v3∗ = (5, 2) and K3 = (0)

v3 = (5, 2) ∪ (0) = (5, 2) r(v3) = 3 and λ3 = 3

•
From equations (2.11) and (2.12) , v4∗ = (3) and K4 = (1)

v4 = (3) ∪ (1) = (3, 1) r(v4) = 1 and λ4 = 1

•
From equations (2.11) and (2.12) , v5∗ = (2) and K5 = (1)

v5 = (2) ∪ (1) = (2, 1) r(v5) = 0 and λ5 = 1

•
From equations (2.11) and (2.12) , v6∗ = (2) and K6 = (0)

v6 = (2) ∪ (0) = (2) r(v6) = 1 and λ6 = 1

•
From equations (2.11) and (2.12) , v7∗ = (1) and K7 = (0)

v7 = (1) ∪ (0) = (1) r(v7) = 0 and λ7 = 1

Step(3)

putting λi together we obtain: λ = (7, 5, 3, 1, 1, 1, 1).



Chapter 3

Further Proof of Euler’s Theorem:
Sylvester’s Refinement

In this chapter we elaborate on a combinatorial proof of Sylvester’s bijection and show how
it implies Euler’s Partition theorem.

Theorem 5 (Sylvester’s refinement) [22] The number of partitions of n with k sizes of
odd part equals the number of partitions of n into k separate sequences of consecutive integers.
(A sequence may have only one term).

This theorem of Sylvester is a refinement of Euler’s theorem because for k →∞ the first part
of it is a partition of n into odd parts and the second part of it is the partition of n into
distinct parts.

Example: When n = 15 and k = 3 (i.e using 3 odd parts), the eleven partitions in the first
class are:

11 + 3 + 1, 9 + 5 + 1, 9 + 3 + 1 + 1, 7 + 5 + 3,
7 + 5 + 1 + 1 + 1, 7 + 3 + 1 + 1 + 1 + 1 + 1, 7 + 3 + 3 + 1 + 1,
5 + 5 + 3 + 1 + 1, 5 + 3 + 3 + 3 + 1, 5 + 3 + 3 + 1 + 1 + 1 + 1,
5 + 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1

and the eleven partitions in the second class are (i.e 3 separate sequences):

11 + 3 + 1, 10 + 4 + 1, 7 + 5 + 3, 9 + 5 + 1, 9 + 4 + 2,
8 + 6 + 1, 8 + 5 + 2, 8 + 4 + 2 + 1, 7 + 5 + 2 + 1,
7 + 4 + 3 + 1, 6 + 5 + 3 + 1.

3.1 First Proof

In this proof we attempt to construct a bijection P : On → Dn. We will do it step by step.

23
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Step one:

We divide the diagram [λ] into two parts, along the line j = 1 + 2i. (where λ is a partition
into odd parts and i increases downwards, while j increases from left to right.)

0 ≤ i ≤ l(λ) and 1 ≤ j ≤ λi

Example:

HH
HY

j = 1 + 2i

Step two:

Read the parts above the line j = 1 + 2i as the Young diagram of a partition α. Read the
parts below the line j = 1 + 2i as the Young diagram of partition β , obtained after shifting
up all parts left-out hanging following the removal of α from [λ]

Example:

[λ]

-

α

α

+

β

β

Step three:

Conjugate(inline) each block of two consecutive squares in each row of [α] and denote it by
ᾱi =

(
αi
2

)
∪
(
αi
2

)
(i.e half each part of α) and conjugate β normally.
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Example:

ᾱ β′

Step four:

λ −→ ᾱ+ β′ = γ

[λ]

7−→

γ

To complete this proof we need to show that since λ is partitions of n with k sizes of odd
part then the resulting partition γ is a partition of n into k separate sequences of consecutive
integers. We’ll do this by first converting the Young diagram technique we used above into
an algebraic expression and then analyzing the difference between consecutive parts.

From the contraction of [λ] we see that the parts of ᾱ and β′ are simply constructed from the

expressions: ᾱr =
λd r2 e−δ(r)

2 and β′r = λ
′
r−
⌊
r
2

⌋
respectively, where δ(r) =

{
r, if r is odd

r − 1, otherwise
and 1 ≤ r ≤ rmax.

For rmax we note that: ∣∣l (β′)− l(ᾱ)
∣∣ = 1

and
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rmax =

{
l (β′) , if l (β′) > l(ᾱ)

l(ᾱ), if l (β′) < l(ᾱ)

From this we obtain the following expression which is an algebraic version of splitting [λ]
along the line j = 1 + 2i and conjugating α and β to obtain γ:

γr =
λd r2e−δ(r)

2
+ λ

′
r −

⌊r
2

⌋
, 1 ≤ r ≤ rmax

Thus we obtain the parts of the partition γ algebraically from it. From this we have that:

γr − γr+1 =
λd r2e − λd r+1

2 e + δ(r + 1)− δ(r)

2
+ λ

′
r − λ

′
r+1 +

⌊
r + 1

2

⌋
−
⌊r

2

⌋
Analyzing the components of this difference for the parity of r we observe the following
properties:

if r is odd:

(1)
δ(r + 1)− δ(r) = r − r = 0

(2) ⌊
r + 1

2

⌋
−
⌊r

2

⌋
=
r + 1

2
− r − 1

2
= 1

(3)
λd r2e − λd r+1

2 e = λ r+1
2
− λ r+1

2
= 0

(4)
λ
′
r − λ

′
r+1 ≥ 0

if r is even:

(5)
δ(r + 1)− δ(r) = r + 1− (r − 1) = 2

(6) ⌊
r + 1

2

⌋
−
⌊r

2

⌋
=
r

2
− r

2
= 0

(7)
λd r2e − λd r+1

2 e = λ r
2
− λ r

2
+1 ≥ 0

(8)
λ
′
r − λ

′
r+1 = 0

From these properties we get the following:

γr − γr+1 =


1 + λ

′
r − λ

′
r+1 ≥ 1, if r is odd

λ r
2
−λ r

2+1

2 + 1 ≥ 1, if r is even
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Now let’s analyse the above equation:

For r odd note that each time γr − γr+1 = 1, the rth column ends at the same level as the
(r + 1)th column of λ since λ

′
r = λ

′
r+1. So both columns determine the same odd part. But

when γr − γr+1 > 1, then since λ
′
r > λ

′
r+1, the rth column ends at a lower level (≥ 1 step)

than the (r + 1)th column, thus initiating a different odd part.

Similarly, for r even, each time γr − γr+1 = 1, the rth row ends at the same position on the
right as the (r+ 1)th row of λ. So both rows determine the same odd part (since λ r

2
= λ r

2
+1).

But when γr − γr+1 > 1, then since λ r
2
> λ r

2
+1, the rth row ends at a further position (≥ 2

steps) on the right than the (r + 1)th row, thus initiating a new odd part.

The foregoing discussion implies that the number of different odd parts in λ is equal to the
number of separate sequences of consecutive integers in γ.

Now let’s construct the inverse mapping.

Let i
′

= number of rows of the partition α

Let j
′

= number of columns of the partition β

Basically what the bijection P (λ) does with the partition λ is that it divides λ into α and β
along the line with equation j = 1 + 2i. It then adds the (j and j + 1)th column of β to half
the jth row of α, for j ≥ 1.

Example:

1st part of P (λ) =
∣∣1st column of β ∣∣ +

∣∣∣∣1st row of α

2

∣∣∣∣
2nd part of P (λ) =

∣∣∣2nd column of β ∣∣∣ +

∣∣∣∣1st row of α

2

∣∣∣∣
3rd part of P (λ) =

∣∣∣3rd column of β ∣∣∣ +

∣∣∣∣2nd row of α

2

∣∣∣∣
4th part of P (λ) =

∣∣∣4th column of β ∣∣∣ +

∣∣∣∣2nd row of α

2

∣∣∣∣
5th part of P (λ) =

∣∣∣5th column of β ∣∣∣ +

∣∣∣∣3rd row of α

2

∣∣∣∣
6th part of P (λ) =

∣∣∣6th column of β ∣∣∣ +

∣∣∣∣3rd row of α

2

∣∣∣∣
...

Note that each row in α is split into two equal parts and each part is merged with (j and j+1)th

columns for j ≥ 1.
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This will always give us a partition into distinct parts (Euler) because in each j and j + 1
columns we add the same number, also j and j+1 differ by at least one due to the segregation
line j = 1 + 2i. Therefore we obtain a partition into distinct parts.

We note that:

|# of colums of β − 2(# of rows of α)| =
∣∣l (β′)− l(ᾱ)

∣∣ = 1.

i.e: |j′ − 2i
′ | = 1

Now:

if l (β′) > l(ᾱ) then number of parts of P (λ) =l (β′),

if l (β′) < l(ᾱ) then number of parts of P (λ) =l(ᾱ).

Since l(ᾱ) = 2i
′
, then l(ᾱ) is always even, so if the number of parts of P (λ) are even, then

l(ᾱ) > l (β′) and if the number of parts of P (λ) are odd, then l (β′) > l(ᾱ).

Noting the above analysis, we now construct the inverse map of P (λ).

Our key point is the last part of P (λ) ( the smallest part).

Step one:

Draw the line j = 1 + 2i, where{
1 ≤ j ≤ l (P (λ)) , if l (P (λ)) is odd

1 ≤ j ≤ l (P (λ)) + 1, if l (P (λ)) is even.

Step two:

When the number of parts of P (λ) is odd:

Draw the smallest part as a vertical square(s) and place it vertically going down and po-
sition it at the end of the line j = 1 + 2i, it makes column j of β.

When the number of parts of P (λ) is even:

Draw double the smallest part as horizontal square(s) and place it horizontally going to
the left and position it at the end of the line j = 1 + 2i, it makes row i of α.

Step three:
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• When the number of parts of P (λ) is odd:

At the j− 1 position duplicate the jth column. Keep on adding (2 by 1) rectangles at the
ith row of α till |j − 1| +

∣∣ i
2

∣∣= 2nd last part. For the next column, calculate the difference
between the 3rd last part and the 2nd last part. On the (j − 2)th column put the (j − 1)th

column + the difference calculated . Then |j − 2|+
∣∣ i
2

∣∣= 3rd last part.

For (j−3)th column duplicate (j−2)th column and add (2 by 1) square(s) on the (i−1)th

row until the sum |j − 3|+
∣∣ i−1

2

∣∣= 4th last part.

Note that we always duplicate

(j, j − 1), (j − 2, j − 3), (j − 4, j − 5), · · ·

since consecutive different parts differ by at least two in a partition with only odd parts.

• When the number of parts of P (λ) is even:

For the jth column of β, construct square(s) of the difference between the last and second last
part. On the (j− 1)th column duplicate jth column. Calculate the difference between the 2rd

last part and the 3nd last part then add square(s) of length 2 times the calculated difference
to (i− 1)th row of α.

We proceed with the process as in the first case of P (λ) odd.

Step Four:

Continue with the same analysis and thinking as in step 3 until you get j − (j − 1) = 1st

column. Then you have [λ].

Example

Take our previous example: P (73) = 16 + 14 + 13 + 10 + 7 + 6 + 4 + 2 + 1

P (73) has 9 parts, hence odd number of parts.

Let’s get back to λ by following the inverse mapping of the bijection.

Step one:

We draw the line
j = 1 + 2i
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HH
HY

j = 1 + 2i

Step two:

Since the number of parts is odd, the smallest part is 1, so we put one square at the end and
below the line we drew.

H
HHY j = 9th column of β

−→
−→
−→
−→

1st

2nd

3rd

4th

Rows

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Columns

1st 2nd · · · 8th 9th

Step three:

On the 8th column we duplicate the 9th column, which is one, and add (2 by 1) rectangles on
the 4th row of α until 1+ number of (2 by 1) rectangles = 2nd last part of P (73), i.e 1+1 = 2.
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��*HHj2nd last part = 2

The difference between the 3rd last part and the 2nd last part = 4− 2 = 2

Now put the 7th column of β in such a way that it differs by 2 to 8th column of β, then add (2
by 1) rectangles on the 3rd row of α till the sum of the (2 by 1) square(s) and the 7th column
of β is equal to the 3rd last part of P (73).

��
��*

-3rd last part = 4

Step Four:

Continue with the same thinking and analysis as in step three by duplicating the 7th column
on the 6th column. Keep on duplicating (2j)th and (2j+ 1)th columns, j ≥ 1, and positioning
the columns and rows of β and α accordingly.

After all this we are left with the following final diagram:
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It is a Young diagram, [λ] = [73], with parts 15 + 15 + 11 + 9 + 9 + 7 + 3 + 3 + 1, the orig-
inal partition into odd parts!

3.2 Second Proof [Algebratized reversion]

This proof algebratizes the first proof.

Let P = (p1, p2, p3, · · · ) be a partition into exactly k odd parts and let its image Q =
(q1, q2, q3, · · · ) be a partition into k separate sequence of consecutive integers.

Given a partition P , we construct

U = (u1, u2, · · · ), where ui+1 = pi+1 − 2i− 1, ui ≥ 2, i ≥ 0,

V =

(
U

2

)
∪
(
U

2

)
and vi =

ud i2e
2

= vi+1, i = 1, 3, 5, 7 · · · 2l(U)− 1,

W = (w1, w2, w3, · · · ), where wi = p
′
i −
⌊
i

2

⌋
, wi ≥ 1, i ≥ 1,

and P
′

denotes the conjugate of P .

Then;
Q = V +W.

Q is a partition into distinct parts since V is a partition with v2i−1 = v2i, i ≥ 1 and W is a
partition with w1 > w2 and w2i = w2i+1.

Given Q, by construction we know the following:

(1) p
′
2i = p

′
2i+1, i ≥ 1

(2) vi = vi+1, i = 1, 3, 5, 7 · · · 2l(U)− 1

(3) qi = p
′
i −
⌊
i
2

⌋
+ vi, i ≥ 1

(4) If l(Q) is odd: ql(Q) = p
′

l(Q) −
l(Q)−1

2
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(5) If l(Q) is even: ql(Q) = vl(Q) = vl(Q)−1.

From these properties we construct V and P
′

as follows:

If l(Q) is odd

(i) From (4) get p
′

l(Q) and use (1) to get pl(Q)−1.

(ii) Use (3) to get vi and p
′
i for all i recursively by using (1) and (2) interchangeably.

If l(Q) is even

(i) From (5) get vl(Q) and use (2) to get vl(Q)−1.

(ii) Use (3) to get vi and p
′
i for all i recursively by using (1) and (2) interchangeably.

From V we construct U and from P
′

we construct W and W
′

as follows:

U = (u1, u2, u3, · · · ), where ui+1 = 2 · v2i+1, i ≥ 0

W = (w1, w2, w3, · · · ), where wi = p
′
i −
⌊
i
2

⌋
W
′

is a conjugate of W

Let W ∗ be a partition W
′

but with parts arranged in the following order: The first parts are
the first consecutive odd parts up to the part w

′
1 and the other parts are the remaining parts

from W
′

arranged in decreasing order.

Clearly,
P = U +W ∗

Since the parts of P are odd, then the multiplicities of the parts of P
′

are even except for
the largest part which has odd multiplicity, then it follows that the parts of W occur in pairs
except for the largest part. This implies that all parts of W

′
are odd.

P is a partition into odd parts since all parts of U are even and all parts of W ∗ are odd.

Example:

Let P = (19, 15, 15, 13, 9, 7, 3, 3, 1). and P
′

= (9, 8, 8, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 1, 1, 1, 1)

To get U we construct its parts from the fact that: ui+1 = pi+1 − 2i− 1, ui ≥ 2, i ≥ 0

u1 = 19− 2(0)− 1 = 18

u2 = 15− 2(1)− 1 = 12

u3 = 15− 2(2)− 1 = 10

u4 = 13− 2(3)− 1 = 6.

V is easily constructed as vi =
ud i2e

2 = vi+1, i = 1, 3, 5, 7 · · · 2l(U)− 1
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v1 =
18

2
= v2

v3 =
12

2
= v4

v5 =
10

2
= v6

v7 =
6

2
= v8

∴ V = (9, 9, 6, 6, 5, 5, 3, 3).

From the property, wi = p
′
i −
⌊
i
2

⌋
, wi ≥ 1, i ≥ 1, we obtain W

w1 = p
′
1 −

⌊
1

2

⌋
= 9− 0 = 9

w2 = p
′
2 −

⌊
2

2

⌋
= 8− 1 = 7

w3 = p
′
3 −

⌊
3

2

⌋
= 8− 1 = 7

w4 = p
′
4 −

⌊
4

2

⌋
= 6− 2 = 4

w5 = p
′
5 −

⌊
5

2

⌋
= 6− 2 = 4

w6 = p
′
6 −

⌊
6

2

⌋
= 6− 3 = 3

w7 = p
′
7 −

⌊
7

2

⌋
= 6− 3 = 3

w8 = p
′
8 −

⌊
8

2

⌋
= 5− 4 = 1

w9 = p
′
9 −

⌊
9

2

⌋
= 5− 4 = 1

Q = V +W = (9+9, 9+7, 6+7, 6+4, 5+4, 5+3, 3+3, 3+1, 1) = (18, 16, 13, 10, 9, 8, 6, 4, 1).

Now that we have Q let’s try to make our way back to P :

l(Q) = 9,which is odd

Step one :

From property (4), page 31, ql(Q) = p
′

l(Q) −
l(Q)−1

2

1 = q9 = p
′
9 −

9− 1

2
⇒ p

′
9 = 5

From property (1), p
′
8 = p8+1 = 5.
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Step two :

From property (3), with i = 8

4 = q8 = p
′
8 −

⌊
8

2

⌋
+ v8 ⇒ v8 = 3

By property (2) we know that vi = vi+1 for i odd, then:

v8 = v7 = 3.

Substitute v7 into property (3) to get p
′
7 :

q7 = p
′
7 −

⌊
7

2

⌋
+ v7 ⇒ p

′
7 = 6 = p

′
6

Substitute p
′
6 into property (3) to get v6 :

q6 = p
′
6 −

⌊
6

2

⌋
+ v6 ⇒ v6 = 5 = v5

Substitute v5 into property (3) to get p
′
5 :

q5 = p
′
5 −

⌊
5

2

⌋
+ v5 ⇒ p

′
5 = 6 = p

′
4

Substitute p
′
4 into property (3) to get v4 :

q4 = p
′
4 −

⌊
4

2

⌋
+ v4 ⇒ v4 = 6 = v3

Substitute v3 into property (3) to get p
′
3 :

q3 = p
′
3 −

⌊
3

2

⌋
+ v3 ⇒ p

′
3 = 8 = p

′
2

Substitute p
′
2 into property (3) to get v2 :

q2 = p
′
2 −

⌊
2

2

⌋
+ v2 ⇒ v2 = 9 = v1

Substitute v1 into property (3) to get p
′
1 :

q1 = p
′
1 −

⌊
1

2

⌋
+ v1 ⇒ p

′
1 = 9

V = (9, 9, 6, 6, 5, 5, 3, 3) and P
′

= (9, 8, 8, 6, 6, 6, 6, 5, 5, · · · ).

From V we construct U = (u1, u2, u3, · · · ), where ui+1 = 2 · v2i+1, i ≥ 0,

thus U = (2 · 9, 2 · 6, 2 · 5, 2 · 3) = (18, 12, 10, 6)

From P
′

we construct W = (w1, w2, w3, · · · ), where wi = p
′
i −
⌊
i
2

⌋
, wi ≥ 1, i ≥ 1
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w1 = p
′
1 −

⌊
1

2

⌋
= 9− 0 = 9

w2 = p
′
2 −

⌊
2

2

⌋
= 8− 1 = 7

w3 = p
′
3 −

⌊
3

2

⌋
= 8− 1 = 7

w4 = p
′
4 −

⌊
4

2

⌋
= 6− 2 = 4

w5 = p
′
5 −

⌊
5

2

⌋
= 6− 2 = 4

w6 = p
′
6 −

⌊
6

2

⌋
= 6− 3 = 3

w7 = p
′
7 −

⌊
7

2

⌋
= 6− 3 = 3

w8 = p
′
8 −

⌊
8

2

⌋
= 5− 4 = 1

w9 = p
′
9 −

⌊
9

2

⌋
= 5− 4 = 1

W = (9, 7, 7, 4, 4, 3, 3, 1, 1) and W
′

= (9, 7, 7, 5, 3, 3, 3, 1, 1)

Finally
W ∗ = (1, 3, 5, 7, 9, 7, 3, 3, 1)

∴ P = U +W ∗ = (18, 12, 10, 6) + (1, 3, 5, 7, 9, 7, 3, 3, 1) = (19, 15, 15, 13, 9, 7, 3, 3, 1)

3.3 Third Proof

We note that any partition into odd parts can be represented in a centrally justified Ferrers
graph. We shall use this special character of partitions into odd parts to give this alternative
proof of Sylvester’s refinement of Euler’s Theorem.

Let P = (p1, p2, p3, · · · ) be a partition into exactly k odd parts and let its image Q =
(q1, q2, q3, · · · ) be a partition into k separate sequences of consecutive integers.

Let ci be the ith column of the central justified Ferrers graph, where c1 is the middle column.
ci’s are counted alternatively on the sides of the middle column, such that c2i’s are on the
left. For Example:
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v v v v v v v v v v v v v v vv v v v v v v v v v v v v v vv v v v v v v v v v vv v v v v v v v vv v v v v v v v vv v v v v v vv v vv v vv
c1

c2 c3

c4c6

c8
c5 c7

c9 C = {9, 8, 7, 5, 4, 4, 3, 2, 1}

Let ri be the ith row on the central justified Ferrers graph such that r2i’s are on the left,
pi = r2i−1 + r2i + 2i− 2 and ri ≥ 0. Eg:

v v v v v v v v v v v v v v v r1r2 v v v v v v v v v v v v v v v r3r4 v v v v v v v v v v v r5r6 v v v v v v v v v r7r8 v v v v v v v v v r9v v v v v v vv v vv v vv
R = {8, 7, 7, 6, 4, 3, 2, 1, 1}

Observe that in the two forgoing diagrams columns and rows start at different places, starting
down diagonal from the center of the top row.

Given P , our aim is to find it’s image Q. We do this by first finding C = (c1, c2, c3, · · · ) and
R = (r1, r2, r3, · · · ). We construct centrally justified Ferrers graph for C and R and then use:

qi = ri + ci − 1 (3.1)

Given Q, by construction we know the following:

ci = ci+1 + 1, i = 2, 4, 6, 8, · · · (3.2)

ri = ri+1 + 1, i = 1, 3, 5, 7, · · · (3.3)

We also know that:

(1) If l(Q) is odd, then
ql(Q) = cl(Q).

(2) If l(Q) is even, then
ql(Q) = rl(Q).
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To construct P , we need to find C = (c1, c2, c3, · · · ) and R = (r1, r2, r3 · · · ) from the following
steps:

Step(1)

Use (1) or (2), depending on the parity of l(Q), to get cl(Q) or rl(Q).

Step(2)

Use Equations (3.1), (3.2) and (3.3) recursively to get all ci and ri.
Step(3)

Having C and R, we simple put them together appropriately to construct a centrally
justified Ferrers graph of P.

Example:

P = (15, 15, 11, 9, 9, 7, 3, 3, 1), has 9 odd parts.

Given P , it’s easy to draw the lines linking ci and ri with alternating the columns keeping c2i
and r2i to the left:

v v v v v v v v v v v v v v v r1r2 v v v v v v v v v v v v v v v r3r4 v v v v v v v v v v v r5r6 v v v v v v v v v r7r8 v v v v v v v v v r9v v v v v v vv v vv v vv
c1

c2 c3

c4c6

c8
c5 c7

c9

Thus
C = (9, 8, 7, 5, 4, 4, 3, 2, 1)

and
R = (8, 7, 7, 6, 4, 3, 2, 1, 1)

From equation (3.1):
q1 = 8 + 9− 1 = 16

q2 = 7 + 8− 1 = 14

q3 = 7 + 7− 1 = 13

q4 = 6 + 5− 1 = 10

q5 = 4 + 4− 1 = 7

q6 = 3 + 4− 1 = 6
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q7 = 2 + 3− 1 = 4

q8 = 1 + 2− 1 = 2

q9 = 1 + 1− 1 = 1

∴ Q = (16, 14, 13, 10, 7, 6, 4, 2, 1).

Now given Q, we should get back to P.

Step(1)

l(Q) = 9, which is odd. Then from (1) we have that: q9 = c9 = 1

Step(2)

• From (3.2): c8 = c9 + 1 = 1 + 1 = 2 and from (3.1): 1 = r9 + 1− 1 −→ r9 = 1

•
q8 = r8 + c8 − 1 −→ r8 = 2− 2 + 1 = 1

and

r7 = r8 + 1 = 1 + 1 = 2

•
q7 = r7 + c7 − 1 −→ c7 = 4− 2 + 1 = 3

and

c6 = c7 + 1 = 3 + 1 = 4

•
q6 = r6 + c6 − 1 −→ r6 = 6− 4 + 1 = 3

and

r5 = r6 + 1 = 3 + 1 = 4

•
q5 = r5 + c5 − 1 −→ c5 = 7− 4 + 1 = 4

and

c4 = c5 + 1 = 4 + 1 = 5

•
q4 = r4 + c4 − 1 −→ r4 = 10− 5 + 1 = 6

and

r3 = r4 + 1 = 6 + 1 = 7
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•
q3 = r3 + c3 − 1 −→ c3 = 13− 7 + 1 = 7

and

c2 = c3 + 1 = 7 + 1 = 8

•
q2 = r2 + c2 − 1 −→ r2 = 14− 8 + 1 = 7

and

r1 = r2 + 1 = 7 + 1 = 8

•
q1 = r1 + c1 − 1 −→ c1 = 16− 8 + 1 = 9

∴ C = (9, 8, 7, 5, 4, 4, 3, 2, 1) and R = (8, 7, 7, 6, 4, 3, 2, 1, 1).

Step(3)

v v v v v v v v v v v v v v v r1r2 v v v v v v v v v v v v v v v r3r4 v v v v v v v v v v v r5r6 v v v v v v v v v r7r8 v v v v v v v v v r9v v v v v v vv v vv v vv
c1

c2 c3

c4c6

c8
c5 c7

c9

v v v v v v v v v v v v v v vv v v v v v v v v v v v v v vv v v v v v v v v v vv v v v v v v v vv v v v v v v v vv v v v v v vv v vv v vv

−→

∴ P = (15, 15, 11, 9, 9, 7, 3, 3, 1)

Remark:

Note that the bijections in section 3.2 and section 3.3 give the same map since:

• in section 3.2 we construct
Q = V +W,

with

U = (u1, u2, · · · ), where ui+1 = pi+1 − 2i− 1, ui ≥ 2, i ≥ 0
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V =

(
U

2

)
∪
(
U

2

)
and vi =

ud i2e
2

= vi+1, i = 1, 3, 5, 7 · · · 2l(U)− 1

W = (w1, w2, w3, · · · ), where wi = p
′
i −
⌊
i

2

⌋
, wi ≥ 1, i ≥ 1

• in section 3.3 we construct
qi = ri + ci − 1.

By observation

ri − 1 = vi =
ud i2e

2
= vi+1 = ri+1, i = 1, 3, 5, 7 · · · 2l(U)− 1

and

ci = wi = p
′
i −
⌊
i

2

⌋
, wi ≥ 1, i ≥ 1

∴ ri − 1 + ci = V +W.

3.4 Different Refinement of Euler’s Theorem

Bousquet-Mélou and Eriksson gave another refinement of Euler’s theorem:

Theorem 6 The number of partitions of n into distinct parts whose alternating sum is r is
equal to the number of partitions of n into r odd parts [17].

On the context of lecture hall partitions, which are briefly explained in Chapter 7, they
obtained a general result and showed that the above theorem is a limiting case.

This implies Euler’s odd-distinct parts theorem in that when r −→∞ we have Euler’s parti-
tion theorem.

3.4.1 Proof

Let ζ be the mapping,
ζ : Dn → On

We put a condition on the last part to allow it to be a zero and then establish that any
partition, λ ∈ Dn, has even length. We now construct the unique partition

ζ(λ) ∈ On with r parts
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where r is the alternating sum of λ, ie

r =

l(λ)∑
i=1

(−1)i−1λi where l(λ) is the number of parts ofλ.

Let λ = λ1λ2λ3 · · ·λ2k.
We pile |λ| boxes into l(λ) rows in the complying fashion:

Step one:

For the first row we put λ1 boxes horizontally. λ2 boxes are placed (left justified) on top of
the λ1 boxes to obtain row two. λ3 boxes are placed(right justified) on top of the λ2 boxes to
obtain row three. We do this process repeatedly, alternating between leftmost and rightmost,
until we arrive at a diagram of height 2k, of which its top row may contain ≥ 0 boxes . It
contains 0 boxes when λ2k = 0.

Step two:

Now separate λ1 into two pieces, r boxes to the right and λ1 − r boxes to the left by
placing a vertical bar through the whole diagram. This vertical bar is called the separator.
The columns to the right of the separator now forms a partition into odd parts.
By letting α = α1α2α3 · · ·αr be the partition formed with the columns to the right of the
separator. From the construction of the diagram(r boxes to the right of the separator) r is
captured by the sum of the horizontal squares between consecutive parts on the right of the
separator. Then αr = l(λ) − 1 and α1 = 1 because l(λ) is even and λ1 > λ2, respectively.
Any odd integer between αr and α1 appears in α at least once as a part because from the
right of the separator the steps of the diagram increases upwards by blocks of two.

Step three:

We now construct another partition β = β1β2β3 · · ·β2k, where βi is the number of boxes to
the left of the separator in row i. Due to leftmost aligned boxes, we notice that β2i−1 = β2i >
β2i+1. To the rightmost of 2i−1 in α we evaluate 2i−1+2β2i−1(where 2β2i−1 = β2i−1 +β2i),
for i = 1, 2, 3, · · · , k − 1.

Step four:

Denote by δ the partition we get after rearranging the resulting sequence from step three
and the αi’s not used in step three. It’s obvious now that each δi ∈ On and l(δ) = r

Example

Step one:

Let λ = (16, 14, 13, 10, 7, 6, 4, 2, 1), then r = 9 and k = 5.
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1

2

4

6

7

10

13

14

16

Step two:

1

2

4

6

7

10

13

14

16

��	

Separator

9 7 7 5 3 3 3 1 1

α9 = 9, α8 = 7, α7 = 7, α6 = 5, α5 = 3, α4 = 3, α3 = 3, α2 = 1, α1 = 1

Step three:

β1 = 7, β2 = 7, β3 = 6, β4 = 6, β5 = 3, β6 = 3, β7 = 1, β8 = 1

2β1 + α1 = 15, 2β3 + α3 = 15, 2β5 + α6 = 11, 2β7 + α7 = 9

Step four:

δ = 15 + 15 + 11 + 9 + 9 + 7 + 3 + 3 + 1

and
l(δ) = 9

Remark:
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It is not by coincidence that this mapping coincides with the inverse of the Sylvester’s bijection
studied in section 3.1 above, it is in fact the inverse of Sylvester’s refinement of Euler’s
Theorem.

We now have to prove that the mapping

ζ : Dn → On

is a bijection where |λ| = |ζ(λ)| and r = |l(ζ(λ))|.

This is fairly straight forward as it is the reverse of the above. We use the same idea of the
”separator”.

Since
ζ(λ) = δ

let
δ = δ1δ2 · · · δl, ∀i, δi ∈ On.

Let αi be the height of the ith column to the right of the separator, then

α = α1α2α3 · · ·αl

Let βi be the number of boxes on the ith row to the left of the separator, then

β = β1β2β3 · · ·β2k, β2k ≥ 0

where k is the largest integer such that

δk ≥ 2k − 1.

We have that
β2i−1 = β2i.

We know that
δi = 2i− 1 + 2β2i−1, 1 ≤ i ≤ k.

From the construction of the above diagram, α1 = 1 and α2k−1 = 2k−1 and any odd part
between 1 and 2k − 1 appears atleast once. The number of parts of α equal the alternating
sum of λ,i.e l(α) = r. The reason why we add 2β2i−1 to each first appearance of a part of α
is to make sure that the new partition formed, δ, is a partition into r = l(α) odd parts and
these will form exactly those parts δk ≥ 2k − 1 because αi ≤ 2i− 1.

We proceed with the next simple steps for ζ−(δ) : On → Dn.

Step one:

Replace δ1δ2 · · · δk with the first k odd numbers such that δk ≥ 2k − 1, and we denote the
new partition by δ

′
once reordered.

i.e
δ
′

= 1, 3, 5 · · · 2k − 1, δk+1δk+2 · · · δl,
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since
αi ≤ 2i− 1

Step two:

Find all βi where 1 ≤ i ≤ 2k using the fact that

δi = 2i− 1 + 2β2i−1, 1 ≤ i ≤ k

and that
β2i−1 = β2i

Step three:

Conjugate
δ
′

= 1, 3, 5 · · · 2k − 1, δk+1δk+2 · · · δl
to get

α = α1α2α3 · · ·α2k−1

and note that
α1 = 1 and αl = l.

Step four:

Construct
λ = λ1λ2λ3 · · ·λ2k,

where λi = αi + βi for 1 ≤ i ≤ 2k
∴ λ ∈ Dn

Example:

Step one:

Let
δ = 15, 15, 11, 9, 9, 7, 3, 3, 1

δk ≥ 2k − 1 at k = 5

δ
′

= 1, 3, 5, 7, 9, 7, 3, 3, 1 = 1, 1, 3, 3, 3, 5, 7, 7, 9

Step two:

δi = 2i− 1 + 2β2i−1, 1 ≤ i ≤ 5

15 = 1 + 2β1
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15 = 3 + 2β3

11 = 5 + 2β5

9 = 7 + 2β7

9 = 9 + 2β9

∴
β1 = 7 = β2

β3 = 6 = β4

β5 = 3 = β6

β7 = 1 = β8

β9 = 0 = β10

Step three:

9

7

7

5

3

3

3

1

1

δ
′

-Conjugate

9

7

7

4

4

3

3

1

1

α

Thus

α = α1α2 · · ·α9

= 9, 7, 7, 4, 4, 3, 3, 1, 1.

Step four:

We construct:
λ = λ1λ2λ3 · · ·λ10,

where λi = αi + βi for 1 ≤ i ≤ 10
From step two and step three:

λ1 = α1 + β1 = 9 + 7 = 16
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λ2 = α2 + β2 = 7 + 7 = 14

λ3 = α3 + β3 = 7 + 6 = 13

λ4 = α4 + β4 = 4 + 6 = 10

λ5 = α5 + β5 = 4 + 3 = 7

λ6 = α6 + β6 = 3 + 3 = 6

λ7 = α7 + β7 = 3 + 1 = 4

λ8 = α8 + β8 = 1 + 1 = 2

λ9 = α9 + β9 = 1 + 0 = 1

λ10 = α10 + β10 = 0 + 0 = 0

∴ we obtain
λ = 16, 14, 13, 10, 7, 6, 4, 2, 1



Chapter 4

Further Proof of Euler’s Theorem:
Glaisher’s Generalization

Glaisher’s theorem is an identity useful to the study of integer partitions. It is named for
James Whitbread Lee Glaisher. The material covered in this chapter comes from [24].

Theorem 7 (Glaisher [16]) The number of partitions of n, where no part appears more
than d− 1 times is equal to the number of partitions of n into parts which are 6≡ 0 (mod d).

Glaisher’s theorem implies Euler’s theorem in that when d = 2 we have: The number of
partitions of n, where no part appears more than 1 time(distinct parts) is equal to the number
of partitions of n into parts which are 6≡ 0 (mod 2)(odd parts)

In this chapter we are going to demonstrate a proof of Glaisher’s theorem based on the
uniqueness of binary expansion of an integer. See [24] for more details into this generalization.

4.1 Proof of Glaisher’s theorem of Euler

Before outlining this proof, it is very crucial that we introduce the frequency notation of
partitions.

Any partition
l = l1 + l2 · · · lt, (4.1)

can be written as follows:

f1 · 1 + f2 · 2 + f3 · 3 + f4 · 4 · · · (4.2)

or

{f1, f2, f3, f4, · · · }, (4.3)

where fi represents the number of times i appears in the partition of n.

Example:

48
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5 + 5 + 4 + 3 + 3 + 3 + 2 + 1 = 2 · 5 + 1 · 4 + 3 · 3 + 1 · 2 + 1 · 1

= {1, 1, 3, 1, 2}.

Now that we have introduced the frequency notation let’s do the proof.

Let l = l1 + l2 + · · ·+ lt be a partition of n into t odd parts.

We write l in frequency notation:

f1 · 1 + f3 · 3 + f5 · 5 + f7 · 7 + · · · ;

Now we replace each fi with its binary expansion which is unique:

· · ·+ ai3 · 23 + ai2 · 22 + ai1 · 21 + ai0 · 20. (4.4)

So that

f1 · 1 + f3 · 3 + f5 · 5 + f7 · 7 + · · · = (· · ·+ a13 · 23 + a12 · 22 + a11 · 21 + a10 · 20) · 1
+ (· · ·+ a33 · 23 + a32 · 22 + a31 · 21 + a30 · 20) · 3
+ (· · ·+ a53 · 23 + a52 · 22 + a51 · 21 + a50 · 20) · 5
+ (· · ·+ a73 · 23 + a72 · 22 + a71 · 21 + a70 · 20) · 7
...

= a10 + 2a11 + 3a30 + 4a12 + 5a50 + 6a31 + · · ·

aij = 1 if it’s coefficient contribute to f ′is binary expansion , else aij = 0.
Since each aij ∈ {0, 1}, clearly the above partition is now a partition into distinct parts,

where for each distinct part bijaij > 0, we have 2j ||bij .

Since 2j ||bij , then to get the original partition into odd parts, we divide each bijaij by 2j and
the result is the original odd part and its multiplicity is 2j . We combine equal odd numbers
and finally multiply each odd by it’s multiplicity to get the initial partition.i.e:

a10 + 2a11 + 3a30 + 4a12 + 5a50 + 6a31 + · · · = a10
20

+
2a11
21

+
3a30
20

+
4a12
22

+
5a50
20

+
6a31
21

+ · · ·

= 20 · a10 + 21 · a11 + 20 · 3a30 + 22 · a12 + 20 · 5a50
+ 21 · 3a31 + · · ·

= 1 · a10 + 2 · a11 + 1 · 3a30 + 4 · a12 + 1 · 5a50 + 2 · 3a31 + · · ·
= (a10 + 2a11 + 4a12 + · · · ) · 1 + (a30 + 2a31 + · · · ) · 3

+ (a50 + · · · ) · 5 + · · ·
= f1 · 1 + f3 · 3 + f5 · 5 + f7 · 7 + · · ·
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Glaisher’s theorem can be alternatively stated as: The number of partitions of n into non-
multiples of m equals the number of partitions of n where no part appears more than m− 1
times [24].

4.2 Proof of Generalized Glaisher’s Theorem

Let l = l1 + l2 + · · ·+ lt be a partition of n into t nonmultiples of m.

We write l in frequency notation (where fi = 0 if m | i) and expand each fi into base m
as follows:

f1 · 1 + f2 · 2 + f3 · 3 + f4 · 4 + · · · = (· · ·+ a13 ·m3 + a12 ·m2 + a11 ·m1 + a10 ·m0) · 1
+ (· · ·+ a23 ·m3 + a22 ·m2 + a21 ·m1 + a20 ·m0) · 2
+ (· · ·+ a33 ·m3 + a32 ·m2 + a31 ·m1 + a30 ·m0) · 3
+ (· · ·+ a43 ·m3 + a42 ·m2 + a41 ·m1 + a40 ·m0) · 4
...

Since aij ∈ {0;m− 1}, then we conclude that a part can appear at most m− 1 time.



Chapter 5

Further Proof of Euler’s Theorem:
Franklin’s Extension

5.1 Franklin’s extension of the Euler’s partition theorem

Theorem 8 (Franklin’s extension of Euler’s partition theorem) [22] The number of
partitions of n with k even part sizes is equal to the number of partitions of n with k repeated
parts.

This theorem implies Euler’s partition theorem when we have k = 0

5.1.1 Analytic Proof

Let λ = η ∪ τk, where η is a partition into odd parts and τk is a partition into k even part
sizes. Let n = |λ|.

∞∑
n=0

p(n|λ = η ∪ τk)qn =
∏

ni=odd

(1 + qni + qni+ni + qni+ni+ni + · · · )
∞∏
j=1

(1 + yq2j + yq4j + yq6j + . . . )

=
∞∏
n=1

1

1− q2n−1
∞∏
j=1

(
1 +

yq2j

1− q2j

)

=
∞∏
n=1

1

1− q2n−1
∞∏
j=1

1− (1− y)q2j

1− q2j
. (5.1)
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∞∑
n=0

p(n| into k repeated parts )qn =
∞∏
n=1

(1 + qn)
∞∏
j=1

(1 + yqj+j + yq2j+2j + yq3j+3j + . . . )

=
∞∏
n=1

(1 + qn)
∞∏
j=1

(1 + yq2j + yq4j + yq6j + . . . )

=

∞∏
n=1

(1 + qn)

∞∏
j=1

(
1 +

yq2j

1− q2j

)

=

∞∏
n=1

(1 + qn)

∞∏
j=1

1− (1− y)q2j

1− q2j
. (5.2)

∴ To show that
∞∑
n=1

p(n|λ = η ∪ τk)qn =
∞∑
n=1

p(n| into k repeated parts )qn (5.3)

we just have to show that
∞∏
n=1

1

1− q2n−1
=
∞∏
n=1

(1 + qn). (5.4)

Equation (5.4) is true from Euler’s Partition theorem.

∴ This concludes the analytic proof of Franklin’s theorem.

5.1.2 Combinatorial Proof

We denote Pn the set of all partitions of n. We then define ξ : Pn ← Pn. Let λ = η ∪ τk,
where η is a partition into odd parts and τk is a partition into k even part sizes.

We see that λ ∈ Pn. What ξ does to λ is that it divides each part of τk by 2 and convert
each part of η into distinct parts by applying Euler’s Partition Theorem.

∴ ξ(λ) = ξ(η ∪ τk) = p(η|distinct parts) ∪ τk
2
∪ τk

2

ξ−1(λ) clearly add the repeated part sizes together and convert the distinct parts to odd
parts via Euler’s Partition Theorem.

ξ−1(λ) = ξ−1
(
p(η|distinct parts) ∪ τk

2
∪ τk

2

)
= p (p(η|distinct parts)) ∪ (

τk
2

+
τk
2

) = η ∪ τk

Example

48 = 9 + 9 + 8 + 7 + 6 + 3 + 2 + 2 + 1 + 1 3 even part sizes

= (9 + 9 + 7 + 3 + 1 + 1) + (8 + 6 + 2 + 2)

= (18 + 7 + 3 + 2) + (4 + 4 + 3 + 3 + 1 + 1 + 1 + 1)

= 18 + 7 + 4 + 4 + 3 + 3 + 3 + 2 + 1 + 1 + 1 + 1 3 repeated part sizes

= 48



Chapter 6

The Rogers-Ramanujan Identities

The Rogers-Ramanujan identities have applications in various scientific studies [4, 5]. Rogers,
Ramanujan and Schur discovered these identities and later Hardy named them [15]. Most of
the material in this chapter are based on [5, 8, 12].

Theorem 9 (The First Rogers-Ramanujan identity) [5, Chp. 7, p. 109] The partitions
of an integer n in which the difference between any two parts is at least 2 are equinumerous
with the partitions of n into part ≡ 1 or 4 (mod 5).

1 +
∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=
∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
(6.1)

Theorem 10 (The Second Rogers-Ramanujan Identity) [5, Chp. 7, p. 109] The par-
titions of an integer n in which each part exceeds 1 and the difference between any two parts
is at least 2 are equinumerous with the partitions of n into parts ≡ 2 or 3 (mod 5) .

1 +
∞∑
n=1

qn(n+1)

(1− q)(1− q2) · · · (1− qn)
=

∞∏
n=1

1

(1− q5n−2)(1− q5n−3)
(6.2)

Example:

There are 2 partitions of 9 such that each part differs by at least 2 and where 1 is not a
part: (2, 7), (3, 6). There are also exactly 2 partitions of 9 such that each part is congruent
to 2 or 3 modulo 5: (2, 2, 2, 3), (2, 7).

The First Rogers-Ramanujan identity is of Euler’s type because a set of partitions with
difference between any two parts being at least 2 implies a set of partitions with distinct parts.
The requirement that a part be congruent to 1 or 4 mod 5 is analogous to the requirement
that a part be odd in Euler’s theorem, since 1 and 4 are half of the nonzero residues mod 5.
A similar analogy applies to the second Rogers-Ramanujan Identity.

We will construct two proofs of these identities, a combinatorial proof and an analytical proof.
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6.1 First Proof of the Rogers-Ramanujan identities

We will present and prove a theorem called Gordon’s generalization and show that both of
these identities are corollaries of this generalization [5]. The proofs in [5] are briefly presented,
here we are going to fully elaborate on them and fill in the gaps.

Gordon’s Theorem:

Theorem 11 [5, Chp. 7, p. 109] Let Lk,i(n) denote the number of partitions of n of the form
(l1, l2, · · · , lr), where (lj − lj−k+1) ≥ 2 and at most i− 1 of the li equal 1. Let Ak,i(n) denote
the number of partitions of n into parts 6≡ 0,±i( mod 2k + 1), then Ak,i(n) = Lk,i(n) for all
n.

To prove this theorem we need to define certain generating functions and do some analytic
work on them.

6.1.1 Analytic Tools:

Here we define analytic tools needed for this section.

Standard abbreviations:

(a)n = (a; q)n = (1− a)(1− aq) · · · (1− aqn−1), (6.3)

(a)∞ = (a; q)∞ = lim
n→∞

(a; q)n, (6.4)

(a)0 = 1. (6.5)

Cauchy’s Theorem:

Theorem 12 [5, Chp. 2, p. 17] If |q| < 1, |t| < 1, then

1 +

∞∑
n=1

(a)nt
n

(q)n
=
∞∏
n=0

(1− atqn)

(1− tqn)
. (6.6)

Euler found two special cases of this theorem. We present them in the following corollary.

Corollary 6.1.1 (Euler) [5, Chp. 2, p. 19]. For |q| < 1, |t| < 1,

1 +

∞∑
n=1

tn

(q)n
=

∞∏
n=0

1

(1− tqn)
. (6.7)

1 +
∞∑
n=1

tnq
1
2
n(n−1)

(q)n
=
∞∏
n=0

(1 + tqn). (6.8)
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Proof [5, Chp. 2, p. 19]:

Equation (6.7) is trivial as it is a result of setting a = 0 in Theorem 12. For equation (6.8)
we replace a by a

b and t by bz in Theorem 12:

1 +

∞∑
n=1

(1− a
b )(1− a

b q) · · · (1−
a
b q
n−1)(bz)n

(q)n
=

∞∏
n=0

(1− a
b bzq

n)

(1− bzqn)
.

⇓

1 +

∞∑
n=1

(b− a)(b− aq) · · · (b− aqn−1)zn

(q)n
=

∞∏
n=0

(1− azqn)

(1− bzqn)
. (6.9)

Finally we get equation (6.8) when we set b = 0 and a = −1 in (6.9):

1 +
∞∑
n=1

tnq
1
2
n(n−1)

(q)n
=
∞∏
n=0

(1 + tqn).

Theorem 13 (Jacobi triple product identity) [5, Chp. 2, p. 21] For z 6= 0, |q| < 1,

∞∑
n=−∞

znqn
2

=

∞∏
n=0

(1− q2n+2)(1 + zq2n+1)(1 + z−1q2n+1). (6.10)

Proof [5, Chp. 2, p. 21]: For |z| > |q| , |q| < 1,

∞∏
n=0

(1 + zq2n+1) =

∞∑
m=0

zmqm
2

(q2; q2)m
by (6.8)

=
1

(q2; q2)∞

∞∑
m=0

zmqm
2
(q2m+2; q2)∞

=
1

(q2; q2)∞

∞∑
m=−∞

zmqm
2
(q2m+2; q2)∞ (Since (q2m+2; q2)∞ dissapear for m < 0)

=
1

(q2; q2)∞

∞∑
m=−∞

zmqm
2
∞∑
r=0

(−1)rqr
2+2mr+r

(q2; q2)r
, replacing q and t by q2 and

t

q
in (6.8) resp.

=
1

(q2; q2)∞

∞∑
m=−∞

∞∑
r=0

(−1)rz−rzm+rqrqm
2+2mr+r2

(q2; q2)r

=
1

(q2; q2)∞

∞∑
r=0

(−1)rz−rqr

(q2; q2)r

∞∑
m=−∞

zm+rq(m+r)2

=
1

(q2; q2)∞

∞∑
r=0

(−q/z)r

(q2; q2)r

∞∑
m=−∞

zmqm
2

=
1

(q2; q2)∞(−q/z; q2)∞

∞∑
m=−∞

zmqm
2
, on replacing q by q2 and t by

−q
z

in (6.7).
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Therefore:

∞∑
m=−∞

zmqm
2

= (q2; q2)∞(−q/z; q2)∞
∞∏
n=0

(1 + zq2n+1)

= (1− q2)(1− q4)(1− q6) · · · (1 + q/z)(1 + q3/z)(1− q5/z) · · ·
∞∏
n=0

(1 + zq2n+1)

=
∞∏
n=0

(1− q2n+2)
∞∏
n=0

(1 + z−1q2n+1)
∞∏
n=0

(1 + zq2n+1)

=

∞∏
n=0

(1− q2n+2)(1 + zq2n+1)(1 + z−1q2n+1)

We now construct the following corollary of Theorem 13:

Corollary 6.1.2 [5, Chp. 2, p. 22] For |q| < 1,
∞∑

n=−∞
(−1)nq(2k+1)n(n+1)/2−in =

∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in(1− q(2n+1)i)

=
∞∏
n=0

(1− q(2k+1)(n+1))(1− q(2k+1)n+i)(1− q(2k+1)(n+1)−i).

(6.11)

Proof[5, Chp. 2, p. 22]:

We simply replace q by qk+
1
2 and then let z = −qk+

1
2
−i in Theorem 13.

∞∑
n=−∞

(−qk+ 1
2−i)n(qk+

1
2 )n

2

=

∞∏
n=0

(1−(qk+
1
2 )2n+2)(1+(−qk+ 1

2−i)(qk+
1
2 )2n+1)(1+(−qk+ 1

2−i)−1(qk+
1
2 )2n+1).

⇓
∞∑

n=−∞
(−1)nq(2k+1)n(n+1)/2−in =

∞∏
n=0

(1− q(2k+1)(n+1))(1− q(2k+1)n+i)(1− q(2k+1)(n+1)−i)

To complete this proof, we show that equation (6.11) is equal to
∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in(1− q(2n+1)i).

∴
∞∑

n=0

(−1)nq(2k+1)n(n+1)/2−in(1− q(2n+1)i) =

∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in +

∞∑
n=1

(−1)nq(2k+1)n(n−1)/2+in

=

∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in +

−∞∑
n=−1

(−1)nq(2k+1)n(n+1)/2−in

=

∞∑
n=−∞

(−1)nq(2k+1)n(n+1)/2−in.
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6.1.2 Generating Functions

The following generating functions are crucial in our proof and are found in [5, Chp. 7, p.
106].

For |x| < |q|−1 , |q| < 1,

Hk,i(a;x; q) =

∞∑
n=0

xknqkn
2+n−inan(1− xiq2ni)(axqn+1)∞(a−1)n

(q)n(xqn)∞
, (6.12)

Jk,i(a;x; q) = Hk,i(a;xq; q)− xqaHk,i−1(a;xq; q). (6.13)

Lemma 1: [5, Chp. 7, p. 106]

Hk,i(a;x; q)−Hk,i−1(a;x; q) = xi−1Jk,k−i+1(a;x; q) (6.14)

Proof [5, Chp. 7, p. 106]:

We note that applying a few algebraic manipulations:

q−in(1− xiq2ni)− q−(i−1)n(1− xi−1q2n(i−1)) = q−in(1− qn) + xi−1qn(i−1)(1− xqn)

Now,
Hk,i(a;x; q)−Hk,i−1(a;x; q) :

=

∞∑
n=0

xknqkn
2+nan(axqn+1)∞(a−1)nq

−in(1− qn)

(q)n(xqn)∞
+

∞∑
n=0

xknqkn
2+nan(axqn+1)∞(a−1)nx

i−1qn(i−1)(1− xqn)

(q)n(xqn)∞

=

∞∑
n=1

xknqkn
2+nan(axqn+1)∞(a−1)nq

−in

(q)n−1(xqn)∞
+

∞∑
n=0

xknqkn
2+nan(axqn+1)∞(a−1)nx

i−1qn(i−1)

(q)n(xqn+1)∞

=
∞∑

n=0

xkn+kqkn
2+n+2kn+k+1an+1(axqn+2)∞(a−1)n+1q

−in−i

(q)n(xqn+1)∞
+

∞∑
n=0

xknqkn
2+nan(axqn+1)∞(a−1)nx

i−1qn(i−1)

(q)n(xqn+1)∞

= xi−1
∞∑

n=0

xknqkn
2+inan(axqn+2)∞(a−1)n

(q)n(xqn+1)∞

{
(1− axqn+1) + axk−i+1q2n(k−i)+k−i+1+n

(
1− qn

a

)}

= xi−1
∞∑

n=0

xknqkn
2+inan(axqn+2)∞(a−1)n

(q)n(xqn+1)∞
[1− (xq)k−i+1qn[2(k−i+1)−1]]−

xi−1
∞∑

n=0

xknqkn
2+inan(axqn+2)∞(a−1)n

(q)n(xqn+1)∞
axqn+1[1− (xq)k−iqn[2(k−i)−1]]

= xi−1[Hk,k−i+1(a;xq; q)− axqHk,i−1(a;xq; q)

= xi−1Jk,k−i+1(a;x; q).

Lemma 2:[5, Chp. 7, p. 107]

Jk,i(a;x; q)− Jk,i−1(a;x; q) = (xq)i−1(Jk,k−i+1(a;xq; q)− aJk,k−i+2(a;xq; q)). (6.15)
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Proof [5, Chp. 7, p. 107]:

Jk,i(a;x; q)− Jk,i−1(a;x; q) = (Hk,i(a;xq; q)−Hk,i−1(a;xq; q))− axq(Hk,i−1(a;xq; q)−Hk,i−2(a;xq; q))

= (xq)i−1Jk,k−i+1(a;xq; q)− a(xq)i−1Jk,k−i+2(a;xq; q)

= (xq)i−1(Jk,k−i+1(a;xq; q)− aJk,k−i+2(a;xq; q))

Lemma 3:[5, Chp. 7, p. 108]

For 1 ≤ i ≤ k, |q| < 1.

Jk,i(0; 1; q) =
∞∏

n=1, n 6≡0 or ±i(mod 2k+1)

(1− qn)−1. (6.16)

Proof[5, Chp. 7, p. 108]:

Jk,i(0; 1; q) = Hk,i(0; q; q) by substituting a = 0 and x = 1 into (6.13)

=

∞∑
n=0

qkn
2+n−in+knan(1− q2ni+i)(aqn+2)∞(a−1)n

(q)n(qn+1)∞
|a=0

=
∞∑
n=0

qkn
2+n−in+kn(1− q2ni+i)(aqn+2)∞(a− 1)(a− q)(a− q2) · · · (a− qn−1)

(1− q)(1− q2) · · · (1− qn)(1− qn+1)(1− qn+2)(1− qn+3) · · ·
|a=0

=

∞∑
n=0

qkn
2+(k−i+1)n(1− q2ni+i)(aqn+2)∞(−1)nqq2q3q4 · · · qn−1

(q)∞

= (q)−1∞

∞∑
n=0

qkn
2+(k−i+1)n(−1)nqn(n−1)/2(1− q(2n+1)i)

= (q)−1∞

∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in(1− q(2n+1)i)

=

∞∏
n=0

(1− q(2k+1)(n+1))(1− q(2k+1)n+i)(1− q(2k+1)(n+1)−i)

(q)∞
by corollary 6.1.2

=
∞∏

n=1, n 6≡0 or ±i(mod 2k+1)

1

(1− qn)
.

6.1.3 Proving Gordon’s Theorem

Now we use the tools we proved above to clarify the proof from [5, Chp. 7, p. 109—111].
Recall this part from Gordon’s theorem ”Let lk,i(m,n) denote the number of partitions,
(l1, l2, · · · , lm), of n with exactly m parts such that no more than i− 1 of the li equal 1 and
where lj ≥ lj+1 and (lj − lj+k−1) ≥ 2.”
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Since for 1 ≤ i ≤ k, we know that the only partition that is either of a nonpositive number
or has a nonpositive number of parts is the empty partition 0, then;

lk,i(m,n) =

{
1, if n = m = 0

0, if n ≤ 0 or m ≤ 0 but (m,n) 6= (0, 0)
(6.17)

and
lk,0(m,n) = 0 (6.18)

We also have the following property for lk,i(m,n) :

lk,i(m,n)− lk,i−1(m,n) = lk,k−i+1(m− i+ 1, n−m). (6.19)

It is straight forward to see that this property holds:

lk,i(m,n) − lk,i−1(m,n) gives those number of partitions from lk,i(m,n) with exactly i − 1
appearances of 1. This is because subtracting lk,i−1(m,n) from lk,i(m,n) removes all those
partitions with at most i − 2 appearances of 1. Altering lk,i(m,n) − lk,i−1(m,n) by remov-
ing the i − 1 ones and removing one from each of the parts that are remaining, results in
partitions of n − m with m − (i − 1) parts. The resulting partition is (l

′
1, l
′
2, · · · , l

′
m−i+1),

with the property that lj
′ ≥ l

′
j+1 and (l

′
j − l

′
j+k−1) ≥ 2. Due to the difference property of

these parts, the frequency of appearances of 1’s and 2’s in total is at most k − 1. Since 1
appears at most i − 1 times, then 2 appears at most k − 1 − (i − 1) times. Therefore in the
partition (l

′
1, l
′
2, · · · , l

′
m−i+1), one appears at most k − i times. This establishes a one-to-one

correspondence between lk,i(m,n)− lk,i−1(m,n) and lk,k−i+1(m− i+ 1, n−m).

Now we use the Generating function (6.13) to construct a function ck,i(m,n) and show that
it is analogous to lk,i(m,n). We do this in a clever way that will allow us to complete our
proof.

Let’s define the following generating function:

Jk,i(0;x; q) = ck,i(0, 0) +
∞∑
m=0

∞∑
n=0

ck,i(m,n)xmqn |(m,n)6=(0,0) . (6.20)

We rewrite the generating function (6.12):

Hk,i(a;x; q) =
(1− xi)(axq)∞

(x)∞
+

∞∑
n=1

xknqkn
2+n−inan(1− xiq2ni)(axqn+1)∞(a−1)n

(q)n(xqn)∞

where,

Jk,i(0;x; q) = Hk,i(a;xq; q) |a=0

=
(1− xiqi)(axq2)∞

(xq)∞
+
∞∑
n=1

xknqkn
2+n−in+knan(1− xiq2ni+i)(axqn+2)∞(a−1)n

(q)n(xqn+1)∞
|a=0

=
(1− xiqi)

(xq)∞
+

∞∑
n=1

xknqkn
2−in+kn+n(n+1)

2 (1− xiq2ni+i)
(q)n(xqn+1)∞

(6.21)
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Then:

Jk,i(0;x; q) = ck,i(0, 0) +
∞∑
m=0

∞∑
n=0

ck,i(m,n)xmqn |(m,n)6=(0,0)

=
(1− xiqi)

(xq)∞
+
∞∑
n=1

xknqkn
2−in+kn+n(n+1)

2 (1− xiq2ni+i)
(q)n(xqn+1)∞

For 1 ≤ i ≤ k:

Jk,i(0; 0; q) =
(1− 0iqi)

(0q)∞
=

1

1
= 1 = Jk,i(0;x; 0).

This implies that:

Jk,i(0; 0; q) = Jk,i(0;x; 0) = ck,i(0, 0) + 0 = 1,

and we conclude that:

ck,i(m,n) =

{
1, if n = m = 0

0, if n ≤ 0 or m ≤ 0 but (m,n) 6= (0, 0).
(6.22)

From (6.21) we see that

ck,0(m,n) =
(1− x0q0)

(xq)∞
= 0. (6.23)

Substituting a = 0 into Lemma 2, yields:

Jk,i(0;x; q)− Jk,i−1(0;x; q) = (xq)i−1Jk,k−i+1(0;xq; q),

we obtain

∞∑
m=0

∞∑
n=0

ck,i(m,n)xmqn −
∞∑
m=0

∞∑
n=0

ck,i−1(m,n)xmqn = (xq)i−1
∞∑
m=0

∞∑
n=0

ck,k−i+1(m,n)(xq)mqn,

⇓
∞∑
m=0

∞∑
n=0

(ck,i(m,n)− ck,i−1(m,n))xmqn =
∞∑

m=i−1

∞∑
n=m

ck,k−i+1(m− i+ 1, n−m)xmqn.

Comparing coefficients of xmqn yields:

ck,i(m,n)− ck,i−1(m,n) = ck,k−i+1(m− i+ 1, n−m). (6.24)

∴ We conclude that ck,i(m,n) = lk,i(m,n), ∀m,n with 0 ≤ i ≤ k.

Since
∑

m≥0 lk,i(m,n) = Lk,i(m,n), we have that:
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∑
n≥0

Lk,i(m,n)qn =
∑
n≥0

∑
m≥0

lk,i(m,n)qn

= Jk,i(0; 1; q)

=

∞∏
n=1, n 6≡0 or ±i(mod 2k+1)

(1− qn)−1 by Lemma 3

=
∑
n≥0

Ak,i(n)qn.

Corollary 6.1.3 (First Rogers-Ramanujan identity) [5, Chp. 7, p. 109] The partitions
of an integer n in which the difference between any two parts is at least 2 are equinumerous
with the partitions of n into part ≡ 1 or 4 (mod 5).

Proof: Substituting i = 2 and k = 2 into Gordon’s Theorem we obtain:

L2,2(n) gives the number of partitions, (l1, l2, · · · , lr), of n such that no more than 1 of the
parts are 1 and where (lj − lj−1) ≥ 2. A2,2(n) gives the number of partitions of n into parts
not congruent to 0 or ±2(mod 5), thus parts that are congruent to 1 or 4 modulo 5.

∴ A2,2(n) = L2,2(n) for all n and this is the first Rogers-Ramanujan identity.

Corollary 6.1.4 (Second Rogers-Ramanujan identity) [5, Chp. 7, p. 109] The parti-
tions of an integer n in which each part exceeds 1 and the difference between any two parts is
at least 2 are equinumerous with the partitions of n into parts ≡ 2 or 3 (mod 5) .

Proof: Substituting i = 1 and k = 2 into Gordon’s Theorem we obtain:

L2,1(n) which is the number of partitions, (l1, l2, · · · , lr), of n with no more than 0 of the
parts equal 1 and where (lj− lj−1) ≥ 2. A2,1(n) gives the number of partitions of n into parts
≡ 2 or 2 ( mod 5).

∴ A2,1(n) = L2,1(n) for all n and this is the second Rogers-Ramanujan identity.

6.2 Second Proof of the Rogers-Ramanujan identities

We will split the proof into two independent parts, combinatorial part and algebraic part.

What is important to this proof is our definition of the first Rogers-Ramanujan identity as in
equation (6.1):

1 +
∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=
∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
.

It is very important to prove that this identity in generating function form does indeed
hold. To prove this we give and prove a theorem and then show that the identity is just a
corollary of this new theorem.
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Theorem 14 (See [5, Chp. 7, p. 111]) For 1 ≤ i ≤ k, k ≥ 2, |q| < 1, then

∑
n1,n2,··· ,nk−1≥0

qN
2
1+N

2
2+···+N2

k−1+Ni+Ni+1+···+Nk−1

(q)n1(q)n2 · · · (q)nk−1

=

∞∏
n=1, n6≡0 or ±i(mod 2k+1)

(1− qn)−1 (6.25)

where Nj = nj + nj+1 + · · ·+ nk−1

Proof [5, Chp. 7, p. 109]:

We prove that

Jk,i(0;x; q) =
∑

n1,n2,··· ,nk−1≥0

xN1+N2+···+Nk−1qN
2
1+N

2
2+···+N2

k−1+Ni+Ni+1+···+Nk−1

(q)n1(q)n2 · · · (q)nk−1

. (6.26)

Substituting x = 1 into (6.26) and using Lemma (3) clearly proves Theorem 14. Equation
(6.26) follows from:

Jk,i(0;x; q) =
∑
n≥0

x(k−1)nq(k−1)n
2+(k−i)n

(q)n
Jk−1,i(0;xq2n; q), (6.27)

which may be seen immediately by induction on k since, setting i = k+ 1 into Lemma (2) we
have that:

Jk,k+1(0;x; q)− Jk,k(0;x; q) = (xq)k(Jk,0(0;xq; q)− 0Jk,1(0;xq; q))

= (xq)k(Hk,0(0;xq2; q)) from (6.13)

= (xq)k(0) from (6.12)

= 0,

and that
J1,1(0;x; q) = 1,

since by Lemma (2)

J1,1(0;x; q) = J1,1(0;xq; q) = J1,1(0;xq2; q) = · · · = J1,1(0;xqn; q)→ J1,1(0; 0; q) = 1

Now we only need to prove (6.27).

Let us define

Rk,i(x; q) =
∑
n≥0

x(k−1)nq(k−1)n
2+(k−i)n

(q)n
Jk−1,i(0;xq2n; q). (6.28)

Setting 1 ≤ i ≤ k, then we have:

Rk,i(0; q) = Rk,i(x; 0) = 1 (6.29)

and
Rk,0(x; q) = 0 (6.30)
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We also have that:

Rk,i(x; q)−Rk,i−1(x; q) =
∑
n≥0

x(k−1)nq(k−1)n
2+(k−i)n

(q)n
(Jk−1,i(0;xq2n; q)− qnJk−1,i−1(0;xq2n; q))

=
∑
n≥0

x(k−1)nq(k−1)n
2+(k−i)n

(q)n
(Jk−1,i−1(0;xq2n; q))

+ (xq2n+1)i−1Jk−1,i−1(0;xq2n+1; q)− qnJk−1,i−1(0;xq2n; q)

=
∑
n≥0

x(k−1)nq(k−1)n
2+(k−i)n

(q)n
(1− qn)Jk−1,i−1(0;xq2n; q)

+ (xq)i−1
∑
n≥0

x(k−1)nq(k−1)n
2+(k+i−2)n

(q)n
Jk−1,i−1(0;xq2n+1; q)

= xk−1q2k−i−1
∑
n≥0

x(k−1)nq(k−1)n
2+(3k−i−2)n

(q)n
Jk−1,i−1(0;xq2n+2; q)

+ (xq)i−1
∑
n≥0

x(k−1)nq(k−1)n
2+(k+i−2)n

(q)n
Jk−1,k−i+1(0;xq2n+1; q)

− (xq2n+2)k−iJk−1,i−1(0;xq2n+2; q)

= xk−1q2k−i−1
∑
n≥0

x(k−1)nq(k−1)n
2+(3k−i−2)n

(q)n
Jk−1,i−1(0;xq2n+2; q)

+ (xq)i−1
∑
n≥0

(xq)(k−1)nq(k−1)n
2+(k−(k−i+1)n

(q)n
Jk−1,k−i+1(0;xq2n+1; q)

− xk−1q2k−i−1
∑
n≥0

x(k−1)nq(k−1)n
2+(3k−i−2)n

(q)n
Jk−1,i−1(0;xq2n+2; q)

= (xq)i−1Rk,k−i+1(xq; q) (6.31)

Recalling that the coefficients in the expansion of Jk,i(0;x; q) were uniquely determined
by (6.22), (6.23) and (6.24), we conclude that since Rk,i(x; q) satisfies (6.29), (6.30) and
(6.31), and thus its coefficients must satisfy (6.17), (6.18) and (6.19). Therefore Rk,i(x; q) =
Jk,i(0;x; q) for 0 ≤ i ≤ k. Thus we obtain (6.27) and with it Theorem 14.

Corollary 6.2.1 (First Rogers-Ramanujan Identity) (See [6, Chp. 5, p. 52—53])

1 +

∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
(6.32)

Proof:

Substitute k = i = 2 in Theorem 14, yields:

1 +
q

1− q
+

q4

(1− q)(1− q2)
+

q9

(1− q)(1− q2)(1− q3)
+ · · · =

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
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⇓

1 +

∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=

∞∏
n=1

1

(1− q5n−1)(1− q5n−4)

Corollary 6.2.2 (Second Rogers-Ramanujan Identity) (See [6, Chp. 5, p. 52—53])

1 +

∞∑
n=1

qn(n+1)

(1− q)(1− q2) · · · (1− qn)
=

∞∏
n=1

1

(1− q5n−2)(1− q5n−3)
(6.33)

Proof:

Substitute k = 2, i = 1 in Theorem 13.

1 +
q

1− q2
+

q6

(1− q)(1− q2)
+

q12

(1− q)(1− q2)(1− q3)
+ · · · =

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)

↓

1 +

∞∑
n=1

qn(n+1)

(1− q)(1− q2) · · · (1− qn)
=

∞∏
n=1

1

(1− q5n−2)(1− q5n−3)

We can now use Schur’s identity to show its equivalence to the first Rogers-Ramanujan
identities. We now proceed to the combinatorial part of the proof.

6.2.1 First Part of the Proof [Combinatorial Part]

This section fill in the gaps of the work done in [8].

We shall use the conversion P = ∪nPn , p(n) = |Pn| where Pn is the set of all partitions λ
of n. We have a Rogers-Ramanujan partition if the condition e(λ) ≥ l(λ) holds. A set of
Rogers-Ramanujan partitions shall be denoted by Qn, where Q = ∪nQn, q(n) = |Qn|.

For m ≥ 0, we shall refer to an m-rectangle to be a rectangle whose height minus its width is
m. The largest m-rectangle that fits in the diagram [λ] is called the first m-Durfee and the
second m-Durfee rectangle is the largest m-rectangle that fits in the diagram [λ] just under
the first m-Durfee rectangle. Let sm(λ) and tm(λ) represent the height of the first and the
second m-Durfee rectangle respectively. Let m-Durfee rectangle’s width be ≥ 0 and its height
be ≥ 1. The partitions to the right of the m-Durfee rectangles, in the middle of the m-Durfee
rectangles and below the m-Durfee rectangles are α, β and γ respectively.

Example(See [8]): Here m = 0
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α

β

γ

λ = (10, 10, 9, 9, 7, 6, 5, 4, 4, 2, 2, 1, 1, 1),m = 0

α = (4, 4, 3, 3, 1), β = (2, 1, 1), γ = (2, 2, 1, 1, 1)

A case where an m-Durfee rectangle has a width of 0 is obtained when m > 0 and we have
that γ = (0) (see image below)

α

β

λ = (7, 6, 4, 4, 3, 3, 1),m = 2

α = (4, 3, 1, 1), β = (3, 1), γ = (0)

Our definition of rank is refined in this chapter to be:

r2,m(λ) = β1 + αsm(λ)−tm(λ)−β1+1 − γ
′
1, where αk = 0 if l(α) < k.

r2,0(10, 10, 9, 9, 7, 6, 5, 4, 4, 2, 2, 1, 1, 1) = β1 + α6−3−2+1 − γ
′
1 = 2 + 4− 5 = 1

r2,2(7, 6, 4, 4, 3, 3, 1) = β1 + α5−2−3+1 − γ
′
1 = 3 + 4− 0 = 7.

We note that r2,0(λ) is only defined for P r Q, because otherwise the second m-Durfee
rectangle does not exist (and hence β1) while r2,m(λ) exist for all m > 0.

The set Hn,m,r,Hn,m,≤r and Hn,m,≥r shall represent the set of partitions of n with r2,m(λ) =
r, r2,m(λ) ≤ r and r2,m(λ) ≥ r respectively. Equating the values we have:

h(n,m, r) = |Hn,m,r| , h(n,m,≤ r) = |Hn,m,≤r| and h(n,m,≥ r) = |Hn,m,≥r|



CHAPTER 6. THE ROGERS-RAMANUJAN IDENTITIES 66

From these definitions we clearly have:

h(n,m,≤ r) + h(n,m,≥ r + 1) = p(n) (6.34)

and

h(n, 0,≤ r) + h(n, 0,≥ r + 1) = p(n)− q(n). (6.35)

For all r ∈ Z and n ≥ 1, we have:

(First Symmetry)
h(n, 0, r) = h(n, 0,−r).

(Second Symmetry)

h(n,m,≤ −r) = h(n− r − 2m− 2,m+ 2,≥ −r).

These equations are crucial for our proof and their proofs can be found in [8].

6.2.2 Second Part of the Proof [Algebraic Part]

From Corollary 6.2.1 we have that:

1 +
∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=
∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
.

We rewrite the right hand side of this corollary by substituting q = t5 and z = −t−2 into
the Jacobi triple product identity [1, 5].

Jacobi triple product identity

(See [1, 5, 6])
∞∑
−∞

zkq
k(k+1)

2 =

∞∏
i=1

(1 + zqi)

∞∏
j=0

(1 + z−1qj)

∞∏
i=1

(1− qi) (6.36)

Substituting q = t5 and z = −t−2 into the left side of the above identity of Jacobi:

∞∑
k−∞

(−t−2)k(t5)
k(k+1)

2 =
∞∑
−∞

(−1)kt−2kt
5k(k+1)

2

=

∞∑
−∞

(−1)kt
k(5k+1)

2 (6.37)

Substituting q = t5 and z = −t−2 into the right hand side of above identity of Jacobi:
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∞∏
i=1

(1 + zqi)

∞∏
j=0

(1 + z−1qj)

∞∏
i=1

(1− qi) =

∞∏
i=1

(1 + (−t−2)(q5)i)
∞∏
j=0

(1 + (−t−2)−1(q5)j)
∞∏
i=1

(1− (q5)i)

=
∞∏
i=1

(1− t5i−2)
∞∏
j=0

(1− t5i+2)
∞∏
i=1

(1− t5i). (6.38)

Equating the above equations we get:

∞∑
k=−∞

(−1)kt
k(5k+1)

2 =

∞∏
i=1

(1− t5i−2)
∞∏
j=0

(1− t5i+2)

∞∏
i=1

(1− t5i),

and substituting k = −m and then dividing both sides by
∏∞
i=1

1
(1−ti) , we get:

∞∑
m=−∞

(−1)mt
m(5m−1)

2

∞∏
i=1

1

(1− ti)
=

∏∞
i=1(1− t5i−2)

∏∞
j=0(1− t5i+2)

∏∞
i=1(1− t5i)∏∞

i=1(1− ti)

=

∞∏
r=0

1

(1− t5r+1)(1− t5r+4)
. (6.39)

Schur’s identity

[8]

1 +
∞∑
k=1

tk
2

(1− t)(1− t2) · · · (1− tk)
=

∞∑
m=−∞

(−1)mt
m(5m−1)

2

∞∏
i=1

1

(1− ti)
(6.40)

Now it is clear that if Schur’s identity is correct, then corollary 6.2.1 is correct as well.
We now prove Schur’s identity to complete our proof of corollary 6.2.1.

Proof of corollary 6.2.1 [8]

For j ≥ 0, let

aj = h

(
n− jr − 2jm− j(5j − 1)

2
,m+ 2j,≤ −r − j

)
,

and

bj = h

(
n− jr − 2jm− j(5j − 1)

2
,m+ 2j,≥ −r − j + 1

)
.

From equations (6.34) and (6.35)we get aj + bj = p
(
n− jr − 2jm− j(5j−1)

2

)
, ∀j, r > 0.

Then:

aj = h

(
n− jr − 2jm− j(5j − 1)

2
,m+ 2j,≤ −r − j

)
= bj+1

Thus:
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h(n,m ≤ −r) = a0 = b1

= b1 + (a1 − b2)− (a2 − b3) + (a3 − b4)− · · ·
= (b1 + a1)− (b2 + a2) + (b3 + a3)− (b4 + a4) + · · ·
= p(n− r − 2m− 2)− p(n− 2r − 4m− 9) + p(n− 3r − 6m− 21)− · · ·

=
∞∑
j=1

(−1)j−1p

(
n− jr − 2jm− j(5j − 1)

2

)
. (6.41)

We compute the generating function of the above as:

Hm,≤−r(t) :=

∞∑
n=1

h(n,m,≤ −r)tn,

and for the conditions

• m, r > 0

• m = 0

• r ≥ 0,

we have:

Hm,≤−r(t) =
∞∑
n=1

∞∑
j=1

(−1)j−1p

(
n− jr − 2jm− j(5j − 1)

2

)
tn

=

∞∑
n=−jr−2jm− j(5j−1)

2

∞∑
j=1

(−1)j−1p(n)tn+jr+2jm+
j(5j−1)

2

=

∞∑
n=−jr−2jm− j(5j−1)

2

p(n)tn
∞∑
j=1

(−1)j−1tjr+2jm+
j(5j−1)

2

=
∞∏
n=1

1

(1− tn)

∞∑
j=1

(−1)j−1tjr+2jm+
j(5j−1)

2 (6.42)

In particular, we have:

H0,≤0(t) =
∞∏
n=1

1

(1− tn)

∞∑
j=1

(−1)j−1t
j(5j−1)

2

H0,≤−1(t) =

∞∏
n=1

1

(1− tn)

∞∑
j=1

(−1)
j(5j+1)

2

From equations (6.34) and (6.35) it follows that:

H0,≤0(t) +H0,≤−1(t) = H0,≤0(t) +H0,≥1(t) = P (t)−Q(t),
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where

P (n) = 1 +

∞∑
n=1

p(n)tn =

∞∏
i=1

1

(1− ti)
,

and

Q(n) = 1 +
∞∑
n=1

q(n)tn = 1 +
∞∑
k=1

tk
2

(1− t)(1− t2) · · · (1− tk)

∴ we conclude:

∞∏
n=1

1

(1− tn)

 ∞∑
j=1

(−1)j−1t
j(5j−1)

2 +

∞∑
j=1

(−1)
j(5j+1)

2

 =

∞∏
i=1

1

(1− ti)
−

(
1 +

∞∑
k=1

tk
2

(1− t)(1− t2) · · · (1− tk)

)

Rearranging this equality we have:

1 +
∞∑
k=1

tk
2

(1− t)(1− t2) · · · (1− tk)
=
∞∏
n=1

1

(1− tn)

1−
∞∑
j=1

(−1)j−1t
j(5j−1)

2 −
∞∑
j=1

(−1)j−1
j(5j + 1)

2


=
∞∏
n=1

1

(1− tn)

1 +
∞∑
j=1

(−1)jt
j(5j−1)

2 +
1∑

j=−∞
(−1)j

j(5j − 1)

2


=
∞∏
n=1

1

(1− tn)

∞∑
j=−∞

(−1)j
j(5j − 1)

2
(6.43)

∴ this proves Corollary 6.2.1
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Conclusions and Further work

From our work done in the previous Chapters, we conclude that Euler’s Partition Theorem is
amongst the beautiful results that are celebrated in partitions theory. We have also seen the
power of generating functions in treating partitions. Several generalizations and refinements of
Euler’s Partition Theorem abound, but the number of different combinatorial proofs remains
rather small.

Further work in this project would be to study those generalizations and refinement of Euler’s
Partition Theorem that require advanced techniques such as abacus diagrams and application
of the methods of sampling and simulation to estimate the number of partitions of an integer.

Some of my further work of interest according to the theme of this project are listed below.
In each case we indicate the connection with Euler’s partition theorem. However, time and
scope constraints forbid us from delving into them in detail.

7.1 Lebesgue identity

(See [22, 7])

∞∑
r=1

t(
r+1
2 ) (1 + zt)(1 + zt2) · · · (1 + ztr)

(1− t)(1− t2) · · · (1− tr)
=
∞∏
i=1

(1 + zt2i)(1 + ti), (7.1)

where it implies Euler’s identity:

∞∏
i=1

(1 + sti) = 1 +

∞∑
r=1

srt
r(r+1)

2

(1− t)(1− t2) · · · (1− tr)
,

when z = 0 and s = 1 [22].

7.2 The l-Euler theorem

See [23]

70
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For an integer l ≥ 2, we define the sequence {a(l)n }n≥0 by

a(l)n = la
(l)
n−1 − a

(l)
n−2,

with initial conditions a
(l)
0 = 0 and a

(l)
1 = 1. Let cl be the largest root of the characteristic

equation
x2 − lx+ 1 = 0.

Then the number of partitions of an integer N into parts from the set:

{a(l)0 + a
(l)
1 , a

(l)
1 + a

(l)
2 , a

(l)
2 + a

(l)
3 , · · · }

is the same as the number of partitions of N in which the ratio of consecutive (positive)
parts is greater than cl. This implies Euler’s partition theorem when l = 2.

7.3 Lecture Hall Partition Theorem

(See [6])
Bousquet-Melou and Eriksson in [11] first presented the theory of Lecture Hall Partitions

by looking at the quotient of successive parts.

Theorem 15 (Lecture hall partition theorem) (See [6, 9] For a fixed length N of the
lecture hall, the number of lecture hall partitions equals the number of partitions into odd parts
smaller than 2N . In other words,

p(n| lecture hall of length N) = p(n| odd parts < 2N).

Now, in what sense is this result a refinement of Euler’s identity? This theorem states
that the set of partitions into odd parts less than 2n is equinumerous with the set of partitions
having at most n distinct parts and satisfying the additional condition of lecture hall-ness”
[6]. Euler’s theorem states that the number of partitions of N into distinct parts equals the
number of partitions of N into odd parts. Then Euler’s identity is the limiting case of the
lecture hall partition theorem as n tends to infinity: For a fixed N , if we choose n large
enough, then the partitions into odd parts less than 2n will in fact be all possible partitions
into odd parts. On the other hand, the lecture hall partition of N for large n must satisfy
conditions of the type

λn−k
n− k

≤ λn−k+1

n− k + 1
(7.2)

and the numerators are much smaller than the denominators for non-zero parts, so that it
is sufficient that λn−k < λn−k+1 for the inequality to hold. In other words, the lecture hall
partitions of N of length n for large n are all partitions of N into distinct parts. Hence,
Euler’s identity follows from the lecture hall partition theorem when n tends to infinity.
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7.4 The l-lecture hall theorem

See [23]

These lecture halls are the a-Lecture halls but now the a-sequence becomes the l-sequence[23].
For l ≥ 2 and n ≥ 0,

∑
λ

qλ1+λ2+···+λn =
1

(1− qa
(l)
0 +a

(l)
1 )(1− qa

(l)
1 +a

(l)
2 )(1− qa

(l)
2 +a

(l)
3 ) · · · (1− qa

(l)
n−1+a

(l)
n )

, (7.3)

where the sum is over all sequences λ = (λ1, λ2, · · · , λn) satisfying:

λ1

a
(l)
n

≥ λ2

a
(l)
n−1

≥ λ3

a
(l)
n−2

≥ · · · λn−1
a
(l)
2

≥ λn

a
(l)
1

≥ 0.

We call these λ l-lecture hall partitions.

For more on l-sequence combinatorics see [23].

7.5 Formulas for partition functions

See [6]
This area is concerned with finding the enumerating functions for partitions. I’ll demon-

strate this by a computational example. Let p(n,m) be the number of partitions of n with
parts equal and less than m. Then

p(n,m) = p(n| parts in {1, 2, · · · ,m}). (7.4)

Obtaining p(n, 1) = 1 and p(n, 2) = bn2 c+1, is straight forward. The problem comes when
we have m ≥ 3.
For m ≥ 3 the following technique is used:

(1) Write down the generating function of p(n,m), that is;

∞∑
n=0

p(n,m)qn =
1

(1− q)(1− q2) · · · (1− qm)
. (7.5)

(2) Alter the right hand side algebraically so that you can obtain tractable power series
expansion. You can do this by computing q-Partial Fraction decomposition. See [19] for com-
putation of q-partial fractions.
(3) Extract the coefficients of qn using known results about series manipulations like Bino-
mial theorem and series expansion.

Example for m=3:
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∞∑
n=0

p(n, 3)qn =
1

(1− q)(1− q2) · · · (1− q3)

=
1/6

(1− q)3
+

1/4

(1− q)2
+

1/4

1− q2
+

1/3

1− q3

=
1

6

∞∑
n=0

(
n+ 2

2

)
qn +

1

4

∞∑
n=0

(n+ 1)qn +
1

4

∞∑
n=0

q2n +
1

3

∞∑
n=3

q3n

=
∞∑
n=0

(
(n+ 3)2

12
+ ε(n)

)
qn, (7.6)

where ε(n) takes only the values− 1/3,−1/12, 0, 1/4.

Then when we extract the coefficient of qn from (7.10) we get that

p(n,m) =
(n+ 3)2

12
+ ε(n).

Therefore

p(n, 3) =

{
(n+ 3)2

12

}
(7.7)

since ε < 1
2 .
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