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Current clinical methods that determine Parkinson’s Disease (PD) stages are

mostly qualitative. The quantitative methods necessitate expensive equipment

and/or cumbersome wearable devices, which limits their usability. This research

presents a quantitative discrimination of PD stages using kinematic signals ob-

tained from low-cost walker mounted sensors. Signal processing, machine learning

and statistical methods are applied to extract and select features pertaining to

PD patients’ gait at the different stages of the disease. The research re-uses ac-

celerometer, force sensors and distance encoder signals acquired in an experiment

of a movement disorders clinic. The study consists of five key areas. (1) Signal

pre-processing where signal denoising is applied and a novel footfall detection al-

gorithm is proposed (2) Feature extraction which produces different categories of

features. (3) Feature selection using both machine learning and statistical meth-

ods, (4) Classification and regression machine learning paradigms using clinical

labels, where several machine learning methods are compared (5) Statistical anal-

ysis and modelling of the probability distributions associated with PD feature

manifestation. The results indicate that the different PD stages can be discrim-

inated using a Random Forest classifier with a 93% accuracy. The majority of

the features most relevant to this discrimination belong to the information the-

oretic and statistical feature sub-classes. Confidence intervals analysis validated

the class separability and a generalized pareto distribution was indicated as the

best fit distribution for PD features. These findings may provide an insight into

the disease progression. Additionally, a novel footfall detection algorithm, which

has higher accuracy when compared to methods from literature, could be useful in

other gait analysis studies. The research indicated the feasibility of signal process-

ing and machine learning tools to accurately classify PD stages and implies the

potential of affordable, simple walker-mounted sensors to aid medical practitioners

in a quantitative assessment of PD stages.
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CHAPTER 1

INTRODUCTION

1.1 Background and Context

Parkinson’s Disease (PD) is one of the most common neuro-degenerative diseases

[8–10]. It is caused by the progressive loss of dopaminergic neurons in the sub-

stantia nigra of the brain [11]. Studies indicate that globally, around 7-10 million

people are affected by PD [10, 12]. A major issue for PD patients is the motor im-

pairments that reduce their quality of life by restricting functional independence,

as well as being a major cause of both morbidity and mortality, as a result of falls

[13].

The diagnosis of PD is largely clinical and qualitative and is based on the presence

of clinical signs such as resting tremor, bradykinesia, rigidity and postural insta-

bility [4]. Two scales are commonly used for PD diagnosis and severity evaluation

based on these clinical signs. (1) The Unified Parkinson’s Disease Rating Scale

(UPDRS) includes an assessment of symptoms, as well as historical data obtained

from the patient or caregiver [11]. (2) Hoehn and Yahr (H & Y) scale has 5 stages

which reflect disease severity and the subsequent impairment to patient gait and

postural stability [14]. While these scales are validated and have a standardized

assessment procedure, the evaluation of the symptoms that provide the scores in

the scales are performed by clinicians and therefore entails a subjective component

in the scores given [15]. This means that patients could either be mis-diagnosed or

un-diagnosed and possibly mistreated. Moreover, since expert neurologists and/or

other healthcare professionals are needed to carry out these assessments, they are

1
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not accessible for many patients, who cost- and distance-wise cannot reach the clin-

ics. This need for professional labour also burdens the healthcare system. Hence,

automated and quantifiable assessments may assist clinicians as a diagnostic tool,

as well as for monitoring disease progression and therapeutic efficacy.

Whilst PD manifests with many physical and mental symptoms, many of these

symptoms pertain to gait. Gait is the locomotive movement of human limbs

and characterises the cyclical manner in which a person walks [16, 17]. Motor

disorders such as PD, result in impaired gait, which significantly limits a person’s

functionality and independence and can cause instability and fall hazards. Thus,

the assessment of gait is an important component in the management and long-

term monitoring of patients suffering from PD and other movement disorders [18,

19].

As a result, research and technology aims to provide a quantitative evaluation of

PD patient’s gait-based symptoms, in an automated, professional labour-saving

manner [11]. A typical quantitative method is the Timed-Up-and-Go (TUG) test,

where a patient sitting on a chair is requested to stand up, walk straight forward,

turn around, walk back and sit on the chair, and the task completion time is

logged. This method, however, only provides a single, time-related measure and

furthermore, still necessitates human observation and manual handling of a stop-

watch or button, which limits its accuracy [4]. Quantitative sensor-based methods

have therefore been suggested to solve these limitations though assessment of PD

gait using kinematic measurements.

Examples of sensor-based applications include devices strapped onto the subject’s

body [11] or fitted to the subject’s shoes [20]. These applications typically use

accelerometers to acquire kinematic patterns of the walking [13]. A drawback

of both method types is that they are complex and time-consuming to use for

patients or caregivers. Additionally, these devices are often cumbersome and un-

comfortable to wear, thereby harming the user experience, especially for motor

impaired persons [21]. Moreover, in more severe cases of PD, the patient would
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require a walking aid such as a walker or cane, which further limits the usability

of wearables for PD progression monitoring [4, 22].

A solution to these limitations is to mount the sensors on a walking aid. The

Personal Aid for Mobility and Health Monitoring II (PAMMII) is an example to

this concept. This exo-body walking frame is fitted with sensors to monitor patient

gait and support walking concurrently. The device has shown preliminary results

of high discrimination power between PD and control patients [4].

This research aims to assess the potential of kinematic signals acquired from the

PAMMII system to provide a quantitative discrimination between the different PD

stages, as pertains to gait. This five-class, gait features-based discrimination of PD

stages, seeks to enhance the scope of previous studies which discriminated between

PD patients and controls. The low-cost nature of the system entails noisy sensors

that are not attached directly to the subject’s body, as in the wearables paradigm,

but rather are mounted on a walker. These properties present a signal processing

challenge which needs to be addressed especially when a multiclass discrimination

is desired. If proven accurate and efficient, the signal processing and machine

learning methods used have the potential to allow doctors, technicians or nurses

to use this quantitative and objective system for PD patients monitoring, providing

patient-centred care with minimal cost and effort.

1.2 Problem Statement

To what extent can kinematic signals acquired from an instrumented walker sen-

sors provide an automated, quantitative and reliable discrimination between PD

progression stages?

1.3 Hypothesis

Signal processing and machine learning techniques applied to kinematic signals

acquired from low-cost and noisy sensors mounted on an exo-body walker can
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provide a quantitative measure of PD progression and discriminate between clinical

sub-types at various stages of the disease.

1.4 Research Objectives

The objective of this research is to discriminate between different PD stages, as

pertains to gait, using kinematic signals and applying signal processing and ma-

chine learning techniques.

The following sub-objectives will feed into the broader objective:

1. Investigate the applicability of different signal pre-processing techniques for

human motion signals acquired by low-cost and noisy sensors. Signal pre-

processing is a necessary compensation when dealing with such sensors to

ensure reliable feature derivation.

2. Develop a method for footfall detection (a basic element of gait) from signals

acquired by exo-body, walker mounted sensors.

3. Extract, evaluate and compare different categories of gait features. This

serves to evaluate which categories of features are most relevant to the dis-

crimination between the different PD stages.

4. Implement and evaluate different feature selection methods for the machine

learning algorithms.

5. Develop a quantitative understanding of features relevant to the discrimina-

tion between different PD stages, pertaining to gait.

6. Explore the viability of a finer PD progression scale, pertaining to gait.

7. Derive a statistical model to fit PD gait features and assess how the param-

eters of this statistical model change for the different disease stages.

8. Apply statistical testing to validate and gain further quantitative insight into

the similarity and differences between the different PD stages.
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1.5 Research Impact

This research aims to yield a reliable discrimination between PD stages that can

enable an automated, user-friendly PD assessment which can be performed within

everyday activities of patients and improve patient care. The simple usage and

low cost of this assessment may offer a potential of affordable PD monitoring to

developing countries and under-resourced healthcare settings.

The information derived from the features that provide this discrimination can in-

tegrate with clinical knowledge of PD and offer a quantitative insight into different

patterns of the gait involved in the disease progression. Moreover, the PAMMII

device can be used as a walking aid during gait evaluation, enabling patients with

severe gait impairment to participate in studies of gait and posture without the

risk of fall.

The engineering impact is three-fold. Firstly, the noisy and low-cost kinematic

sensors and their placement on an exo-body device present a signal processing

challenge. This is notably the case when these settings are compared to previous

studies, where good quality, expensive sensors were attached to the patient’s body,

thus producing more reliable readings, while reducing affordability and user com-

fort. The signal processing and data mining tools and algorithms used to address

this challenge could be generalized and used in other kinematic signals research

and applications. Secondly, the insight gained into which features provide the best

discrimination between PD stages may yield valuable information regarding the

limitations and advantages of both the instrumentation and the categories of the

extracted features. Thirdly, statistical analysis and modelling of these features at

different PD stages may provide an insight into the features and patterns of gait

disorders. Both feature types analysis and feature modelling in the context of PD

stage discrimination were not performed in previous studies.

The research provides quantitative measures for PD stages, which may contribute

to broader PD research. The multi-disciplinary, broad PD research strives for bet-

ter understanding of the disease symptoms and its progressions and for searches for
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better ways to evaluate existing and new treatments’ efficacy. The research forms

part of a research collaboration between the University of the Witwatersrand,

the Massachusetts Institute of Technology (MIT- USA) and Halmstad University

(Sweden) concerning patient-centred monitoring technologies for PD.

1.6 Organization of Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 reviews studies related to the thesis research. A review is presented

with regard to PD and current clinical and quantitative diagnostic approaches.

Thereafter, a review is presented of signal processing, feature extraction, feature

selection and machine learning methods widely used in literature for PD vs control

discrimination, as well as for other gait assessment applications.

Chapter 3 presents the methodology and technical details used in this research.

The chapter describes the dataset used as well as the signal pre-processing, feature

derivation, feature selection, machine learning, and statistical analysis techniques

employed.

Chapter 4 conveys the key results of each processing sub-section as outlined by

the methodology in Chapter 3.

Chapter 5 discusses and analyses the key findings of the research. Additionally,

applications of the findings, their limitations and future recommendations, as well

as concluding remarks are conveyed.



CHAPTER 2

LITERATURE REVIEW

2.1 Parkinson’s Disease

Parkinson’s Disease (PD) is the second most common neuro-degenerative disease

after Alzheimer’s disease [16, 17], affecting approximately 7-10 million people glob-

ally according to the Parkinson’s Disease Foundation [12] and is most prevalent in

patients over the age of 50 [23].

PD is a progressive degenerative disorder which affects the nervous system [16, 23].

It is manifested by the degeneration of dopamine producing neurons in the sub-

stantia nigra of the brain [16, 17]. Dopamine is the neurotransmitter responsible

for controlling smooth and co-ordinated muscle function [17] and the reduced

dopamine impacts the basal ganglia (responsible for motor control) which can be

seen in Figure 2.1.

Figure 2.1: Comparison of a healthy vs PD affected brain from [1]. The red
indicates higher levels of dopamine, in a brain with normal function.

7
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The reduced levels of dopamine in PD patients, when compared to non-PD pa-

tients as shown in Figure 2.1 can affect the motor performance of the PD patient

[16]. Moreover, the motor disturbance can compromise autonomy and fluidity of

patient movement [16]. In PD this is manifested by impaired balance/postural

instability, reduced co-ordination (ataxia), slowed voluntary movements (bradyki-

nesia), rigidity, resting tremor which can spread into the forearm, elbow and upper

arm [16, 17, 24].

Additionally, some PD patients experience Freezing of Gait (FOG), which is a

period of hesitation to move despite the intention. The typical PD patient will

display a stooped posture, slow gait, reduced arm swings and shortened steps [25]

and has appearance similar to Figure 2.2.

Figure 2.2: Typical manifestation of a patient suffering from PD from [2]
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Whilst, PD is not a fatal disease in and of itself, the complications are debilitating

and thus, impact the patient’s quality of life. The clinical features and disease

course vary among different individuals [26]. The heterogeneity means that as-

sessment of the disease is a challenging problem, as each patient can have different

combinations at different severities of manifestation [15].

Among the aforementioned disease symptoms, many are symptoms that pertain

to gait. Although many other physical and mental symptoms hinder the patients’

quality of life, reduced mobility is among the issues that most limit the patient’s

functionality and independence.

2.2 Gait Assessment

2.2.1 Human Gait

Gait is the cyclical manner in which a person walks [16, 17]. The gait cycle shown

in Figure 2.3 is the time between 2 successive and repetitive events of the same

footfall (ipsilateral movement). Gait is defined from initial contact where the

foot touches the ground, ending with the initial contact of the other foot (called

terminal contact) [16]. i.e. a singular gait cycle consists of left and right steps.

Typically the gait cycle is divided into two phases namely the stance and swing

phases [16, 17]. The stance phase is at the beginning of the gait cycle. It refers to

when one or both feet are on the ground and is the basis of initial and terminal

contact [16]. The swing phase is between initial and terminal contact, whereby the

reference foot is not on the ground and is moving forward [16]. In some cases, the

patient cannot lift their foot and thus, the swing phase is then defined as forward

motion of the foot [16].

2.2.2 Gait rationale for PD assessment

Gait is an important parameter of human movement that is impaired by motor

diseases such as PD. The assessment of gait is key to evaluate the quality of
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Figure 2.3: Illustration of the human gait cycle and the stance and swing
phases from [3]

movement and can assist in patient rehabilitation and management [19]. Gait can

be impacted by many factors including age, trauma and disease, which can affect

the locomotor system controlled by the central nervous system (CNS) [19].

This research deals with the quantitative analysis of gait deterioration related to

PD stage severity. Previous works presented the following findings of gait decline.

• Stride length and speed are reduced with PD [27].

• PD patients increase frequency of steps to compensate for the reduced stride

length [28] .

• Increase in stride time due to decreased mobility [19].

• Stride time variability increases with PD, due to PD affecting stability and

rhythmic movement [29].

2.3 PD Gait Assessment

PD gait is assessed clinically by healthcare practitioners. In recent years, other

quantitative solutions have been proposed including: laboratory systems, instru-

mented walkway systems, wearables and instrumented walkers. This section will

outline these existing solutions for PD assessment.
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2.3.1 Clinical Assessment

The two main clinical PD assessment scales are the Unified Parkinson’s Disease

Rating Scale (UPDRS) and the Hoehn and Yahr (H & Y) scale. UPDRS assesses

motor and gait symptoms such as rigidity, tremor, stability and patient posture,

as well as non-motor symptoms of PD [30]. It includes 4 scales of assessment

[15]. Firstly, the non-motor symptoms such as behaviour are evaluated. Secondly,

the clinician performs a mobility assessment. This involves both clinical questions

and a historical evaluation of the disease. Thirdly, a motor examination of the

levels of performance is carried out. Fourthly, a historical assessment of prior

motor complications is assessed. Each of the scales is rated between 0 and 4.

A rating of 4 indicating severe PD and 0 indicating non-PD. This scale involves

patient history, hence introducing subjectivity and variability. The variability can

be introduced both by the doctor’s assessment, as well as patient recollection.

The H & Y scale reflects disease severity by means of involvement of one or two

sides of the body and the severity of postural instability. The H & Y scale has a

PD ’score’ between 0-5 assigned by a clinician. The scale is as follows [15]:

• 0- Healthy, non-PD patient.

• 1- Unilateral disease. The patient exhibits minor or no disability.

• 2- Bilateral disease without impairment of balance.

• 3- Bilateral disease. The patient exhibits mild to moderate disability and

instability.

• 4- Severe disease, however can still walk unassisted.

• 5- Bed ridden or confined to a wheelchair without assistance.

In addition to the UPDRS and H & Y scores, the Timed-Up-and-Go (TUG) pro-

tocol is often used by clinicians to measure balance, fall risk and general mobility
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[31, 32]. The aim of the TUG test as seen in Figure 2.4, is to measure how long

the subject takes to complete the walking protocol. The time is then related to

the stage of disease [31]. The test involves the patient standing up from a chair,

walking 3m, turning around and walking 3m back to the starting point, thereafter

sitting down [31, 32]. The test is regarded as a gold standard for early assessment.

Figure 2.4: Illustration of the procedure of the TUG walking protocol from
[3]

2.3.2 Laboratory systems

Optical motion capture is used in laboratory-based gait assessment, both in terms

of biomechanics and kinetics, for diagnostic, sports and rehabilitation applications

[23]. Optical measurements are taken of the subjects while they walk under con-

trolled conditions, using external body markers [16, 23]. With the aid of cameras,

the real-time motion of the subject is assessed to provide highly accurate, quan-

titative gait models. The Vicon and CODA capture systems are the two devices

largely used in research settings to compute spatio-temporal parameters based on

the position of the markers [16, 23]. Despite the high accuracy, these devices are

limited by the high expense, complex setup, as well as needing a dedicated testing

environment.

2.3.3 Instrumented walkway system

Instrumented walkway systems have also been explored as a means of quantitative

PD gait assessment [33]. These systems aim to mimic the TUG protocol, whilst si-

multaneously performing quantitative measurements. Both the Gaitrite and Zeno
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walkway systems, measure the pressure exerted by the patients foot as they walk

[16, 33]. The premise is that foot pressure varies through the gait cycle and hence

can be used to quantify gait events, as well as patient stability [16]. Whilst, these

systems do have an advantage of high accuracy and lower cost, the downside is

the length constraint and dedicated environment.

2.3.4 Wearables

Wearable devices have been proposed to address the limitations of the aforemen-

tioned systems. These wearable devices are used for ambulatory gait monitoring.

Typically accelerometers, gyroscopes, force sensors, magnetometers etc are used

for this purpose [16]. The caveat to these approaches is that gait is not measured

directly but as a function of accelerations, angular velocities and forces. Hence,

signal processing is needed to obtain clinical gait information and spatio-temporal

parameters of gait. Three wearable devices appear in literature [33]. Firstly, the

Ambulatory Parkinson’s Disease Monitoring System (APDM) [33], is a watch-

based wearable which includes an accelerometer, gyroscope and magnetometer.

The system carries out signal processing to obtain velocity, cadence, stride length,

stride time, as well as trunk sway. APDM has been used in a TUG protocol

and has been proven to be sensitive in discriminating PD vs non-PD. This being

correlated with the UPDRS score, with a p-value of 0.006.

The second device is the Physilog device [33] which uses gyroscopes attached to

the body in order to obtain spatio-temporal gait parameters such as stride length,

time, and speed, as well as measurements of tremor. The algorithms have shown

96% sensitivity for PD.

The third device is the Axivity (AX3) [33] which is a three-axis accelerometer

mounted on the patient for continuous monitoring, in order to assess PD in free-

living conditions. The same spatio-temporal parameters were extracted along with

accelerometer magnitudes. The study concluded that PD patients at risk of falling
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had a less variable walking pattern to non-fallers and that generally PD patients

took more steps over shorter increments than non-PD patients.

Whilst wearables seemingly solve important problems, according to [4], a signif-

icant drawback of both systems is the lack of time to attach the sensors to the

patient within busy hospital settings. Additionally, these devices are often uncom-

fortable to wear thereby harming patient usability. Linked to this, in more severe

cases of PD the patient may need a walking aid, and thus the aforementioned

analysis tools are inappropriate monitoring solutions [4].

2.3.5 Instrumented Walker

Instrumented walkers aim to solve the aforementioned limitations by mounting

the sensors onto a walking aid. This allows patient gait to be measured using the

mounted kinematic sensors, whilst supporting the patient’s walking. The challenge

of such an exo-body device, is that determining gait parameters is challenging

compared to systems where the sensors are attached to and move with the subject’s

body.

One such exo-body walker is the Personal Aid for Mobility and Health Monitoring

II (PAMMII), shown in Figure 2.5. It is a commercially available, non-motorized,

exo-body walker, fitted with low-cost sensors to capture kinematic signals as the

subject uses the walker [4]. The PAMMII device has successfully been shown to

have the capability to differentiate between PD and control subjects with sensi-

tivity and specificity scores of 91% and 95% respectively for the TUG walking

protocol [4].

2.4 Analysis approach

Typically in literature the analysis of any signal processing and data mining re-

search consists of the following stages post-data acquisition: Signal Pre-Processing,

Feature Derivation, Feature Selection and Classification/Machine Learning.
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Figure 2.5: Diagram of the PAMMII exo-body instrumented walker from [4]

2.4.1 Signal Pre-processing

Signal pre-processing is an important part in signal analysis, especially when low-

cost systems and noisy sensors are concerned. The reason is that the measurement

errors introduced by low-cost sensors, unless compensated for, can impact the

features derived and thereby on overall performance [4]. Among the vast literature

on these issues, this review selected several that were used in similar applications

to this research.

Signal pre-processing of noisy signals is often done in the digital domain. Com-

monly, low-pass filters are applied to attenuate high frequency components [4].

Moreover, signal pre-processing can involve more traditional frequency domain

techniques such as Finite Impulse Response (FIR) and Infinite Impulse Response

(IIR) filters. These types of filters were explored for PD gait assessment by [11]

and [34]. In particular, [34] filtered raw accelerometer data for gait extraction,

using a high-pass IIR filter with a cut-off of 1 Hz to mitigate body movement

noise and a low-pass IIR filter with a 3 Hz cut-off based on the frequency as-

sociated with bradykinesia and dyskinesia. The second common technique uses

the wavelet transform and pre-processes the signal through setting of a wavelet

co-efficient. The wavelet-based denoising method has been used by [4] and [35].

Additionally, 4th order, low-pass, butterworth filters have been used to mitigate
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high frequency noise in the accelerometer data with a cut-off frequency in the

range of 2-3 Hz [4, 36].

It is also important to apply rotational correction when working with accelerometer

signals, in order to align the accelerometer signal with the direction of movement [4,

37, 38]. Another important reason for rotation is that an accelerometer measures

Earth’s gravitational acceleration in addition to acceleration of motion. In order,

to isolate motion-based acceleration, the gravity component must be removed.

Thus, once the accelerometer measurement has been rotated, [38] subtracted the

z-component of acceleration (which is gravity) of 9.81m/s2 in order that only

motion measurements remain.

Two additional findings from literature relevant to the study with regard to signal

pre-processing are presented. Firstly, [39] used an instrumented rollator walker to

determine footfalls. It was found that heel contact begins when the force sensor

value on the same side as the stride increases, whilst the opposite force sensor

value decreases. The peaks of the difference between the force sensor values were

proposed as being representative of footfalls [39].

Secondly, [40] successfully used Empirical Mode Decomposition (EMD) for pre-

processing of environmental non-stationary signals. The accelerometer signal was

decomposed into oscillatory components, called intrinsic mode functions (IMFs).

The IMFs were set adaptively to the actual signal, in contrast with analytical

methods such as wavelet transforms. The IMFs were then analysed and the signal

was reconstructed. It was found that the first IMF contains high frequency data

associated with noise and can be discarded [40].

2.4.2 Feature Derivation

Features are instances or representations constructed from the original data/signal

and are important to achieve membership to a particular class [35]. In the case of

disease and progression identification certain features might provide insight into
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classifying levels of disease [41]. Moreover, the classification performance depends

heavily on the features derived.

A variety of features are typically used in literature for gait assessment. The three

most common are stride time, length and velocity [4, 38, 39, 42, 43]. However,

there are numerous other features which have proven successful in similar studies.

These are illustrated below:

• Accelerometer Signal Entropy [34, 43, 44]

• Accelerometer and force sensor Signal RMS [4, 34, 43, 44]

• Cross correlation between the accelerometer axes [4, 34]

• Cadence [38]

• Kurtosis [43]

• Turn time and turn velocity [4, 38]

• Harmonic ratio [43, 44]

• Centroid of PSD [4, 43, 44]

• Accelerometer signal bandwidth [43]

• Mean force [4]

• Standard deviation of step velocity, step time and step length [4, 43, 44]

• Statistical features such as the Inter-Quartile Range (IQR), median, range

etc [45, 46]

• Information theory related features such as entropy, mutual information,

correlations etc [45, 46]



Chapter 2. LITERATURE REVIEW 18

2.4.3 Feature Selection

Feature derivation typically produces a large number of features, which results in

a high dimensional feature space [47]. This high dimensional feature space may

contain features not relevant for classification or may have redundant features

[35]. Feature selection methods produce a low dimensional feature set from a high

dimensional feature set [47]. This is called dimensionality reduction. It is also

shown by [41], that dimensionality reduction yields better classifier performance.

Moreover, [44] showed that feature selection can make the classifier faster, due to

fewer features being analysed. Moreover, larger dimensions of features means that

more data is needed to train the model.

Feature selection falls into one of two categories: projection methods and criteria-

based feature selection.

The most common projection method is called Principal Component Analysis

(PCA). It has been used successfully for PD feature selection by [4], [48], [39],

[49], [37] and [47]. PCA orthogonally transforms the input parameter/features in

order to maximize the variability of the output data [39]. PCA maximizes variance

of the feature space by mapping the feature space as a linear combination of the

original features and projecting it to produce a new, smaller set of derived variables

[4]. These variables are called principal components (PCs).

PCA involves the computation of the covariance matrix given by Equation 2.1.

X = XTX (2.1)

Where:

X = matrix of features
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The eigenvalues and eigenvectors of the covariance matrix are then computed. The

PCs are obtained by projecting the features matrix through the matrix computa-

tion with the matrix W, which represents the eigenvectors corresponding to the

largest eigenvalues. This is given by Equation 2.2.

PC = XTW (2.2)

Where:

X = matrix of features

W = matrix of eigenvectors corresponding to the largest eigenvalues

The second technique of dimensionality reduction is criteria-based feature selec-

tion. According to [44], this method is preferred to projection methods as instead

of creating new variables, the features remain the same which makes it easier for

clinicians to analyse. There are three types of feature selection methods namely:

filter, wrapper or embedded techniques [44].

Filter techniques consider the correlation between features when selecting features.

However, since they ignore interaction with the classifier they are prone to lower

accuracy results [44].

Wrapper techniques specify a variety of feature subsets based on clinical relevance,

correlation etc. The specific classifier is then trained and evaluated with the dif-

ferent feature subsets and the accuracy is the evaluative method [44].

Lastly, embedded techniques are those that select optimal features within the

construction of the classifier. However, the choice of classifier is limited as only

certain classifiers can utilize this technique: decision trees, random forest, näıve

bayes and SVMs [44].

2.4.4 Machine Learning

Once features have been selected the aim of the machine learning algorithm is

to find patterns in the data. These can be framed as either a classification or



Chapter 2. LITERATURE REVIEW 20

regression problems. Typically, these algorithms of classification or regression are

divided into two types: supervised and un-supervised learning [41].

Supervised Learning [41]: Each object has a pre-assigned label and the label is

used in the training stage to teach the algorithm to recognise a particular class of

object. The aim is to map labelled features to output classes

Unsupervised Learning [41]: data is unlabelled and the algorithm aims to learn

structure of the data. i.e. what characteristics make objects similar within groups

and different across groups. The algorithm learns patterns on its own.

Supervised learning, however is the most prevalent in literature for PD classifica-

tion. Typically, it is done for PD vs non-PD classification. [50] surveyed the most

used data mining techniques in literature for classifying gait based PD vs non-

PD. It was found that the following 5 frameworks were used extensively: Artificial

Neural Networks (ANN), Support Vector Machines (SVM), Random Forests, Näıve

Bayes and K-Means Clustering. The first four are supervised learning paradigms,

whilst K-Means Clustering is an unsupervised learning paradigm.

2.4.4.1 Artificial Neural Networks

The following works used shallow ANN, multi-layer perceptron (MLP) architec-

tures with a single hidden layer to classify between PD vs non-PD subjects.

• An ANN, MLP with one hidden layer using Levenberg Marquardt backprop-

agation showed a 95.63% accuracy using the four highest PCs [51].

• A similar ANN, MLP with one hidden layer using gradient descent backprop-

agation for extracted spatio-temporal parameters showed a 98% classification

accuracy [48].

• A gradient descent backpropagation MLP, achieved a 91% accuracy on the

training data set and 80% on validation data set [52].

The base element of a neural network is a neuron that receives inputs as features or

from other preceding neurons [5, 53, 54]. The input to the neuron is processed by
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an activation function, to produce the output [5, 55]. The strength of connections

between the output of one neuron and the input of another neuron is specified

by the weight of the connection [5, 56]. Neurons are arranged in layers to form

a neural network [5, 55, 56]. Typically there is an input and output layer of the

neural network, with hidden layers between the input and output as shown in

Figure 2.6.

f

f

f

N

Input 
Layer

Hidden
Layer Output 

Layer

Figure 2.6: Generalized structure of a 3-Layer ANN (adapted from [5] and
[6])

There exist two types of multi-layer ANN architectures: feedforward and recurrent

architectures. Feedforward ANNs require the data to be passed from the input

to the output, whereas a recurrent ANN also includes feedback to the layers [55].

Whilst, [57] states that recurrent ANNs are more powerful at solving systems with

non-linearities, there is also the drawback of a much longer training time and the

need for more training data. Thus, recurrent architectures are not used especially

for extendibility and speed. A feedforward network, would thus consist of an input

layer, a number of hidden layers and output layer. It is suggested by both [55]

and [54] that the activation function should be a tan-sigmoidal activation function

(f(x) = tanh(x)) to deal with non-linearity.
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Supervised learning makes use of a feedforward and backpropagation process. The

input data is propagated layer by layer through the network and the data is mul-

tiplied by the neuron weights to calculate the outputs [56].

The predicted and desired outputs are then compared and the cost function is

computed, which is usually the Mean Squared Error (MSE), given by Equation

2.3.

MSE =
1

2
(yd(k)− y(k))2 (2.3)

Where:

yd(k) = Desired output

y(k) = Actual output

Since, the hidden layer neurons contribute to the error, the weights are re-adjusted

using a backpropagation algorithm until the MSE is below a certain value [58].

Typically, gradient descent backpropagation or Levenberg Marquardt backprop-

agation is used. However, according to [59] these techniques are prone to result

in overfitting due to the high epochs of training. Moreover, it results in increased

bias and variance and consequently, poor generalization. It has been proposed

that regularization be used as a method to avoid this, with early stopping and

Bayesian Regularization being the two common techniques [59]. ANN’s that make

use of Bayesian Regularisation are called Bayesian Regularized Artificial Neural

Networks (BRANNs) [60].

BRANNS performs this role by minimizing the linear combination of the squared

errors and the weights [59, 60]. To understand this it would be useful to highlight

the differences in the performance functions.

Ordinary ANNs calculate optimal weights by minimizing the error function which

compares the distance between the true and predicted values given by Equation

2.4 [60].
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f(x) = ED(D|w,M) =
1

N

n∑
i=0

(pred− actual)2 (2.4)

Where:

ED = Mean sum of square errors

D = data with input-output pairs

w = weights

M = neural network under question

Bayesian Regularization is based on Bayes Theorem hence a probabilistic aspect

is added to the training, which involves a probability distribution of the weights

[59, 60]. The difference given by Equation 2.5 to the above function is that a

β value is added coupled with a function which aims to penalize the network for

large weights [59, 60]. This penalizing ensures that the fit is smoother, rather than

fitting to the noise of the dataset.

f(x) = βED(D|w,M) + αEW (w|M) =
1

N

n∑
i=0

(pred− actual)2 (2.5)

Where:

larger β = better error minimization

larger α = smoother network, by prioritizing weight minimization

The use of Bayes Rule changes the manner in which the weights are then updated

[60]. The prior belief (posterior distribution) of the weights is then updated by

Bayes Rule as shown in Equation 2.6.

P (w|D,α, β,M) =
P (D|w, β,M)P (w|α,M)

P (D|α, β,M)
(2.6)

The aim when updating the weights is to produce optimal weights that optimize

the posterior probability of the weights.
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2.4.4.2 Support Vector Machines (SVMs)

SVMs are another widely used machine learning algorithm prevalent in literature.

Aside from PD classification, SVMs have been successful in many other classifi-

cation systems from speaker classification, to face detection to gene classification

[34]. SVMs generate non-linear decision boundaries by mapping the feature space

into a higher dimensional space using kernels [34]. The mapping allows the fea-

tures to be linearly separable. The reason is that the linear hyperplanes in the

higher dimensional space, maximize the separation between classes.

The kernel functions produce a function f(x) which maps input-output relation-

ships [61]. The most used is epsilon-insensitive (ε) SVM. The goal of ε-SVM is to

find the function f(x), whose output deviates from the true Y/observed Y (Yo),

by no more than epsilon for each training point [61]. Thus, the goal is to minimize

the error function.

The mapping is shown in Equation 2.7 below [61]:

< φ(x), φ(y) >= K(x, y) (2.7)

Where:

φ = mapping function

K = Kernel

The most common kernels are Gaussian and polynomial kernels [61] given by

Equations 2.8 and 2.9 respectively.

K(x, y) = exp(− 1

2σ2
||x− y||2) (2.8)

K(x, y) = (xTy + 1)d (2.9)

• An SVM used spatio-temporal parameters to classify between PD and non-

PD, with a 100% accuracy [48].
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• An SVM was used with a different set of features to classify between PD and

healthy patient with a 76% accuracy [62].

Whilst, SVMs are typically used as a binary classifier, they can be extended to

multi-class classification [63].

The Random Forest and Näıve Bayes algorithms have also been used albeit not as

prevalent as the aforementioned two, however the relevant literature is as follows.

2.4.4.3 Naive Bayes

The Naive Bayes approach assumes that the classification problem can be modelled

probabilistically and that the data can be described or approximated by an a priori

probability distribution [28]. This method was used to classify spatio-temporal

parameters, achieving a 95% accuracy in classifying between PD patient and non-

PD patients.

Although the aforementioned methods have proven successful in general classifi-

cation tasks, as well as in PD related research, they lack in an important aspect:

These methods cannot provide an insight into which features from their input was

relevant to the classification, and to what extent. This information is important

for the clinical interpretation of the classes.

2.4.4.4 Random Forests

Random Forests introduced by Leo Breiman [64] is a decision tree based ensemble

which aims to produce a prediction function f(x) in order to predict Y , where x

is a vector of random variables or features [64, 65]. The random forest ensemble

constructs the predictor function f(x) as a function of the weak learners (individual

decision trees)[65].

The root node of these weak learners or decision tree is exposed to the entire feature

space, whilst the end nodes/terminal leaves represent the decisions/predictors.
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Figure 2.7: Example of the criteria based decision tree split

A sequence of splits is carried out in between, with predictors smaller than the

criterion going left whilst those larger going right [64]. This can be seen in Figure

2.7[65]. The split considers every possible split of every feature and chooses the

“best” based on the Gini Index given by Equation 2.10.

Gini(feature) = 1−
N∑
i=1

(pi)
2 (2.10)

Where:

N = Number of classes

pi = relative frequency of class i

The Gini Index measures purity (i.e. homogeneity), thereby maximizing which

features are most representative.

These weak learners are combined to form a strong learner. In classification, the

function f(x) is the most frequently predicted class [65]. This is called majority

voting and is given by Equation 2.11 below.
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f(x) = argmax(
N∑
i=1

hi(x)) (2.11)

Where:

N = Number of trees

hi = ith decision tree in the forest

When a random forest is used in a regression problem, instead of majority voting

of the decision trees which is used in classification, the outputs of each ”weak

learner” is averaged as given by Equation 2.12.

f(x) =
1

N

N∑
i=1

hi(x) (2.12)

Where:

N = Number of trees

h(x) = decision tree

f(x) = Predictive function

In an application of a Random Forest classifier, [66] achieved a 99% accuracy in

discriminating PD from non-PD subjects. The benefit of Random Forest is that

variables which contribute to decisions can be obtained unlike in ANN’s or SVM’s

[64, 65].

2.4.4.5 Boosted Forest

The usage of decision tree ensembles can be done in a boosting process rather than

the random forest method which uses a bagging approach. This would result in a

Boosted Forest [67, 68].

Boosted Forests produce a model that is additive rather than a majority voting

model and the predictive function is given by Equation 2.13 (i.e. it is a sum of

the weak learners) [67, 68].
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g(x) = f1(x) + f2(x)...+ fn(x) (2.13)

Where:

N = Number of trees

g(x) = predictive function

fn(x) = specific decision tree (i.e. weak learner)

Unlike random forests, where each tree is grown independently, rather in the boost-

ing method it makes use of gradient boosting, which is similar to gradient descent

optimization in that the training is iterative [67, 68]. Effectively what this does is

fit a new decision tree to the residual of the previous iteration.

This iterative nature is explained by Equation 2.14

gt(x) =
t−1∑
i=0

fi(x) (2.14)

Where:

gt(x) = function after t iterations

fi(x) = ith trained decision tree

The aim with gradient boosting is to minimize a loss function [67, 68], by iteratively

moving gt such that gt+1 = gt + ηft.

2.5 Regression

Regression makes use of the same models as classification. One added aspect is

measuring the performance of regression models. In classification, the performance

is measured by accuracy of classification. Whereas in regression, performance met-

rics are typically used. In particular, the comparison of the error of the regression

model, as well as the similarity measure between the actual and predicted values.

The following 15 performance metrics are used to literature to compare regression

models [69–71]. The parameters in Equations 2.15-2.29: Yo is the observed/true

H & Y scores and Yp is the predicted H & Y scores.
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(1) Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(Yo − Yp)2 (2.15)

• Perfect: MSE = 0

• Measures mean square prediction error

• Outliers heavily impact it

• Weights larger errors due to the squaring

(2) Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|Yo − Yp| (2.16)

• Perfect: MAE = 0

• Measures mean prediction error

• Outliers heavily impact it

(3) Mean Absolute Percentage Error (MAPE)

MAPE =
1

n

n∑
i=1

(Yo − Yp)
Yo

(2.17)

• Perfect: MAPE = 0

• Measures error as a relative percentage

• Outliers heavily impact it

(4) Root Mean Squared Error (RMSE)

RMSE =

√∑ (Yp − Yo)2
n

(2.18)
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• Perfect: RMSE = 0

• Measures error as a relative percentage

• Heavily weights larger errors due to the squaring

(5) Sum of Squares Error (SSE)

SSE =
n∑
i=1

(Yo − Yp)2 (2.19)

• Perfect: SSE = 0

• Measures variation of predictions

• Larger SSE means greater overall prediction variation

• Tends to weight the larger errors due to the squaring

(6) Cosine Similarity (CS)

CS =
Yo · Yp
||Yo||||Yp||

(2.20)

• Perfect: CS = 1

• Measures similarity between 2 vectors

• Only measures similarity of orientation

• Used for cluster cohesion

(7) Modified Index of Agreement (IA)

IA = 1−

n∑
1

|Yp − Yo|
n∑
i=1

(|Yp − Yo|+ |Yo − Yo|)2
(2.21)
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• Perfect: IA = 1

• Measures model prediction error

• Assesses the agreement between the prediction and actual values

• Modified IA formula, overcomes sensitivity to extreme values

(8) Mutual Information (MI)

MI =
∑

P (Yo, Yp) · log(
P (Yo, Yp)

P (Yo)P (Yp)
) (2.22)

• Greater implies less uncertainty about one random variable given the other

• Measures how much one random variable can tell us about the other

• Effectively a measure of dependency between 2 random variables

(9) R squared (Rsq)

Rsq =

∑
(Yp − Yp)2∑
(Yo − Yo)2

(2.23)

• Perfect: Rsq = 1

• Measures the amount of variance explained by the model (Goodness of fit)

• Assumed for linear models

• Not good to compare for linear vs nonlinear models

(10) Spearman’s Correlation

Correlation =
COV (Yp, Yo)

σYpσYo
(2.24)

• Perfect: Correlation = 1
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• Measures degree of assocation/relation between 2 vectors

• The statistical significance of the correlation is important

(11) Fractional Bias (FB)

FB =

∑
i(Yo − Yp)

0.5
∑

i(Yo + Yp)
(2.25)

• Perfect: FB = 0

• Measures mean bias and indicates systematic error [69]

• Is influenced by high outlier values

(12) Geometric Mean Bias (GMB)

GMB = e(ln(Yo)−ln(Yp)) (2.26)

• Perfect: GMB = 1

• Measures mean bias and indicates systematic error

• Is influenced by low outlier values

(13) Normalized Mean Square Error (NMSE)

NMSE =
(Yo − Yp)2

YoYp
(2.27)

• Perfect: NMSE=0

• Measures scatter and indicates both systematic and random error

• Is influenced by high outlier values

(14) Geometric Variance (GV)

GV = e(ln(Yo)−ln(Yp))
2

(2.28)
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• Perfect: GV=0

• Measures scatter and indicates both systematic and random error

• Is influenced by low outlier values

(15) Fraction of predictions within a factor of two of observations (FAC2)

Fraction satisfies 0.5 ≤ Yp
Yo
≤ 2.0 (2.29)

• Perfect: FAC2=1

• Measures scatter and indicates both systematic and random error

• Is influenced by high outlier values

2.6 Statistical Analysis

ANOVA tests are widely used in literature when comparing different means [72].

The ANOVA p-value states the significance of the difference between two or more

groups. The one-way ANOVA test has been used in PD literature to evaluate

whether there were significant differences between the mean values of PD and

control subjects [17]. Despite the widespread usage, a limitation of the ANOVA

p-value is that it does not provide an indication of the magnitude of these differ-

ences [72]. Moreover, the ANOVA does not indicate overlap or the differences for

individual groups.

In solving this conundrum, [72] proposed the usage of confidence intervals (CIs).

CIs are an estimated range of values, which have a high probability of covering

the true population value [73]. i.e. they provide a probabilistic indication of the

lower and upper limits. It was proposed by [72] that 50% or less overlap between

CI’s, implies a difference between the group means which is statistically significant.

Whilst, [73] state that when measuring overlap: less than 50% corresponds to a

95% statistical significance of the difference (p value ≤ 0.05), whilst no overlap
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of the CI corresponds to a 99% statistical significance of the difference (p value

≤ 0.01). It is important to note that unlike typical ANOVA analysis, for within-

subject or within-class CI analysis does not make assumptions that the errors in

each sample are independent.



CHAPTER 3

METHODOLOGY

In order to answer the research question, an adequate dataset was acquired, and

signal processing and data mining were applied to derive features from and per-

form classification on the data. Statistical methods were also applied as further

validation. This chapter will describe the data and tools that were implemented.

3.1 Dataset

3.1.1 Data

A quantitative answer to the question of the extent to which kinematic signals ac-

quired from an instrumented walker’s sensors provide an automated, quantitative

and reliable discrimination between PD progression stages, necessitated an appro-

priate dataset, which includes subjects at different PD stages and an adequate

number of patients as a whole.

To satisfy this, the study re-used an existing dataset of 71 patients and 21 controls

that was acquired in a movement disorders clinic, in the Sheba Medical Center,

Israel. This research is the first analysis of this extensive PD dataset.

The data was acquired during the patient’s routine follow-up visit to the clinic.

The clinical assessments as expounded in the literature review in Chapter 2 were

conducted as per the normal clinic follow-up visit, wherein PD H & Y severity

scores were assigned by the clinic’s neurologists. Additionally, an unaided TUG

35
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walking test was performed by 48 of the patients and the test times were sepa-

rately recorded. Thereafter, the patients who agreed to participate in the study

and signed an informed consent, performed an instrumented walking protocol (as

outlined in Section 3.1.3) using the PAMMII walker, as an addition to the clinic

visit. Control subjects were recruited from the medical staff and patients’ care-

givers who volunteered to participate in the experiment and likewise signed an

informed consent.

Ethics approval for re-use of data was obtained from the University of the Witwa-

tersrand, Human Research Ethics Committee. The clearance number is M180202

and clearance certificate is in Appendix A. Additionally, the experiment to collect

the data was performed in accordance with the Helsinki Declaration, as well as

under the hospital’s ethical guidelines (Ethics number: 3036-16-SMC).

3.1.2 Instrumentation

The PAMMII device described in Section 2.3.5 was the instrumentation used to

capture the raw data/signals. The device as shown in Figure 3.1 had two force

sensors (Tekscan A201) underneath the walker’s hand grips to measure a patient’s

grip force with a range of 0-440 N. Two digital encoders used to measure walker

motion were attached to the walker’s front wheels using tooth belts. The encoder

signals were processed to obtain the position and velocity of the walker. Lastly, a

tri-axial accelerometer (ADXL335) was contained in the control box of the walker.

The accelerometer scaled the reading to gravitational acceleration of 9.81m/s2 and

had a range of ± 16 g with resolution in increments of 0.1 g. An embedded micro-

controller (Arduino Nano V3) executed the commands and control functionality,

as well as acquired the data at a sampling rate of 21.5 Hz. The data was written

to an SD card in the form of a CSV file. The data consisted of the signals outlined

in Section 3.1.4
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Figure 3.1: Labelled diagram of the PAMMII system from [4]

3.1.3 Test Protocol

The data was obtained using an instrumented TUG walking protocol, which the

patients performed while holding and walking with PAMMII: The patient gets up

from a chair then walks along a 3m straight line path, thereafter turning around

and walking 3m back to the starting point. This test was then repeated with

a 10m walking protocol in order to have a longer distance, which was indicated

in previous studies with PAMMII to yield additional information in the signal

processing [4]. The raw data described in Section 3.1.4 below was acquired by the

device throughout the patient’s walking tests.

3.1.4 Dataset Structure

The dataset included a total of 92 subjects (71 patients and 21 controls), with 2

CSV files for each subject. One file for the 3m TUG and the other file for the 10m

walking test. Each file contained the raw signals/data obtained from the walker’s

sensors: three acceleration signals obtained from the tri-axial accelerometer; two

force signals obtained from the right and left handles of the walker and two distance

signals obtained from the encoders on the walker’s wheels. These signals were used

in the analysis described in Section 3.2.
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The patients’ H & Y scores, age, gender, clinical comments and the unaided TUG

times (for 52% of the patients) were stored in a separate file. The patient H & Y

scores included H & Y 0 (Controls), 1, 2, 2.5, 3 and 4. Patient’s with H & Y scores

of 5 were not included as these patients are bed ridden or confined to a wheelchair

without assistance and thus, would be unable to perform the walking tests.

3.2 Processing Methodology

3.2.1 High-Level Breakdown

Figure 3.2 illustrates the high-level block diagram of the methodology used in the

data analysis. The processes involved in each block are described in the following

sections.

Figure 3.2: Research methodology block diagram

3.3 Data Integrity and Organisation Check

Prior to the analysis, the integrity and completeness of the dataset needed to be

checked and then organized and prepared for the analysis. The following steps

were carried out:

1. Check that each patient has conducted an accurate 3m and 10m test. If a

patient does not have both tests the analysis is not run for that patient.

2. Check that each patient has recorded clinical scores such as H & Y scores.

3. Check for incomplete or missing data within each file. These data points

were then interpolated as explained in Section 3.4.2.
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3.4 Signal Pre-Processing

A crucial issue in dealing with the low-cost and noisy sensor data is the low quality

of the signals. Extensive signal pre-processing was employed to compensate for

the errors introduced by the low-cost and noisy sensors thereby ensuring reliable

feature derivation and system performance. The signal pre-processing included six

stages: velocity signal production, data interpolation, signal denoising, accelerom-

eter rotation, segmentation of movement phases and footfall detection.

3.4.1 Velocity Signal Production

Velocity signal was used in previous studies [4], with similar sensors and hence

the production of such signals means that it can be used for comparison to these

studies. Additionally, although velocity can be inferred from the displacement

and acceleration signals, this pre-processing stage simplifies the processing steps

to follow.

Prior to producing the velocity signals, the left and right encoder values were

averaged to determine the overall distance travelled by the walker. The velocity

signals were produced through numeric differentiation using the distance encoder

data, as well as the time stamps. The distance encoder ticks were converted to

meters to ensure that the units of velocity was m/s. The meters per tick conversion

ratio was per the datasheet of the encoders.

3.4.2 Interpolation

Based on preliminary analysis of the signals obtained from the PAMMII system,

it was noted there was a sample of missing or invalid data, approximately every

40-50 samples. Consequently, cubic splines interpolation was carried out across

the signal vector to mitigate this issue.
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3.4.3 Signals Denoising

The use of low-cost sensors led to the acquisition of signals that contain measure-

ment inaccuracies coupled with environmental and hardware noise. The errors

and/or imprecision of the measurements acquired by these sensors must thus be

compensated, so that the features extracted from the signals are reliable. Hence,

rigorous signal pre-processing was applied to achieve this compensation. The pre-

processing consisted of filtering to reduce signal noise.

A moving average filter was employed as a first process to de-noise all the acquired

signals in the database. The filter choice was motivated by evidence from wide

literature dealing with kinematic and other noisy signals [4, 11, 34–36], which

found it to be an ideal filter for reducing random noise (which characterize signals

from low-cost sensors), whilst retaining a sharp step response [74].

The output from the moving average filter is given by the difference equation in

Equation 3.1

The moving average filter is low-pass Finite Impulse Response (FIR) filter. The

design of the filter employed consisted of a window size/sample size of five and was

zero-phase lag, in order to mitigate phase distortion that resulted from filtering.

These parameters were obtained from experimental analysis of the measured sig-

nals. The output from the moving average filter is given by the difference equation

in Equation 3.1.

y[n] =
1

5
(x[n− 2] + x[n− 1] + x[n] + x[n+ 1] + x[n+ 2]) (3.1)

Secondly, Empirical Mode Decomposition (EMD) was also applied for the purposes

of adaptive filtering. It was applied to further denoise the accelerometer signals

for better footfall detection and will be discussed in Section 3.4.6.
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3.4.4 Accelerometer Rotation

As discussed in Section 2.4.1, when working with 3D accelerometer signals, it is

important to align the accelerometer signals with the direction of movement - in

this case, antero-posterior (parallel and perpendicular) to patient movement. A

rotation matrix method was used to rotate the signal [4, 37, 38]. Specifically, the

Rodrigues’ Rotation method was used, which rotates a vector in space using an

axis and angle. The Rodrigues’ Rotation algorithm is given by Equation 3.2.

Vrot = Vinit cos θ + (k × Vinit) sin θ + k(kV̇init)(1− cos θ) (3.2)

Where:

Vrot = Rotation Matrix

Vinit = Initial Reference Co-Ordinates

θ = Angle of rotation

k = Unit vector of the rotation axis given by Equation 3.3

k =
a× b
|a× b|

(3.3)

The accelerometer signal at the beginning of the test, when the patient was sta-

tionary (i.e. as the device is turned on), was used as the reference. The reference

(at device turn-on time) had gravity as the only component of acceleration. In

this case, the rotation axis and angle were such that the z-axis, at the turn-on

time, was aligned with [x, y, z] = [0, 0,−1]. Therefore, the rotation matrix was

formulated against this reference and all data points of the accelerometer signals

were rotated accordingly.

After rotation, gravity was subtracted from the signal, leaving only relevant kine-

matic measurements of actual patient movement in the x, y and z axis of acceler-

ation.
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3.4.5 Segmentation of Movement Phases

The movement phase segments were determined using the velocity signals. When

plotted, the velocity signal offers an intuitive view of where a movement phase

starts (signal amplitude increases from zero to a non-zero value) and stops (signal

amplitude returns to zero).

Based on the testing protocol, all patients walk in a straight line for 3m or 10m,

turn around and walk 3m or 10m back to the starting point. As a result, all

patients have two phases of straight line walking, separated by a turning phase.

That being said, the straight line walking phase can differ from patient to patient.

For example, while some patients might have uninterrupted straight line walking,

other patients may stop during this phase for short or long periods. These periods

could be a manifestation of the disease (e.g. freezing of gait (FOG)) or due to

physical limitations of the patient (e.g. fatigue or balance problem).

Hence, this trend was considered when estimating and segmenting movement

phases. The periods of negligible movement (stops) or turning were determined

using peak detection as shown in Figure 3.3. Peak detection was applied to the

velocity signal to determine the extrema (maxima and minima). The maxima was

the peak velocity achieved during straight line movement. The minima referred

to the slowest velocity which was representative of a turn or stop. The peaks

were then used to determine the tolerance band which was the threshold between

straight line movement and stop/turn phases. Experimentally, it was found that

a tolerance band of 12.5% below the mean of the extrema provided a reliable es-

timate of the turn and stop periods. The tolerance band is indicated by the blue

line in Figure 3.3.

Subsequently, the straight line movement phase was defined as periods of non-

negligible velocity (i.e. anything above the tolerance band shown in Figure 3.3).

This would include constant velocity, as well as periods of increasing velocity and

periods of decreasing velocity signal.
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Figure 3.3: Graphical explanation of the different aspects of movement phase
segmentation

Based on this definition of straight line movement and making use of the tolerance

band, the non-movement periods (timestamps) were then indexed in a movement

vector as binary 0, whilst the straight line movement periods (timestamps) were

then indexed in the vector as binary 1.

Anomaly mitigation was performed to identify single instances of negligible move-

ment introduced by measurement error. These singular instances were not FOG

episodes, but rather data points mis-classified as stationary. A sliding window was

used to check the binary movement vector (”1” represented straight line move-

ment and ”0” negligible movement or turn). Anomalies were characterized based

on experimental assessment as a single non-movement index (binary 0), with five

straight line movement indices (binary 1) on either side of the binary 0. If an

anomaly was detected, the data point was replaced with the mean of the window.
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This was to ensure that it was representative of the current state of the patient’s

movement.

3.4.6 Footfall Detection

Gait is composed of strides which are defined as the period from initial contact

of one foot to terminal contact of the other foot [16]. This basic element of gait

has been derived in many gait assessment systems, as these footfalls were crucial

building blocks for the derivation of reliable gait based features.

In the case of exo-body walker-mounted sensors, an accurate detection of footfalls

is very challenging compared to systems where the sensors are attached to and

move with the subject’s body.

Therefore, an algorithm for footfalls detection was developed and implemented

for the low-cost sensors mounted on the exo-body walker. Two algorithms were

investigated making use of both the force sensors and accelerometer.

• Algorithm 1: Replicated the footfall detection algorithm proposed by [39].

The algorithm made use of force sensors on the handles of a walker to cal-

culate footfalls. The authors proposed that by calculating the difference in

force between the right and left handles, thereafter applying peak detection

to this difference, the peaks would be representative of footfalls. However,

it must be noted that this algorithm was not validated and this assessment

was the first quantitative validation of the predictive accuracy.

• Algorithm 2: A novel footfall detection algorithm was developed and made

use of the z-axis accelerometer signal, Empirical Mode Decomposition (EMD),

signal reconstruction and peak detection.

The literature surveyed indicated that the gait of the patient was substantially

manifested in accelerometer signals. In an ideal, clean signal as illustrated in

Figure 3.4, the peaks of the accelerometer signal represent footfalls [7]. Two issues
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Figure 3.4: Ideal, ”clean” accelerometer signal where the peaks (stars) repre-
sent footfalls from [7]

were addressed in developing this new algorithm. Firstly, the need to accommodate

the noisy accelerometer signal. Secondly, since previous works provided no ground

truth validation for their algorithm, the accuracy of the predicted footfalls in this

study was established using ground truth of footfalls from video data.

Footfall detection is inherently based on peak detection. The signal therefore

should be meticulously cleaned in order to avoid false peaks which stem from

noise. Therefore after the initial denoising outlined in the pre-processing section,

a second rigorous denoising was performed using EMD. EMD as was discussed in

Section 2.4.1 is a locally adaptive algorithm which was indicated as suitable for

analysis of non-stationary signals [75].

The algorithm iteratively decomposes the signal into a finite number of oscilla-

tory components called Intrinsic Mode Functions (IMFs). These components are

sorted such that each IMF consisted of lower frequency oscillations than its preced-

ing IMF. The PAMMII device’s signals are such non-stationary time-series signals.

Hence, this thesis explored the applicability of the algorithm to the development of

a novel footfall detection algorithm. Moreover, explore the benefit of adaptive us-

age of Intrinsic Mode Functions (IMFs) when compared to other footfall detection

algorithms.
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The basis of EMD is that a signal is a superposition of fast and slow oscillatory

components [75]. The IMFs were extracted using a sifting algorithm. The novel

EMD based algorithm applied is detailed in Algorithm 1.

Algorithm 1: EMD Sifting Algorithm [76]

1: Obtain maxima and minima of the signal.

2: Construct the upper and lower envelope using cubic splines separately.

3: Calculate the mean value for the upper and lower envelopes.

4: Subtract this mean from the original signal to obtain a new signal residual

signal r(t).

5: Repeat steps 1) to 4) until the conditions of being an IMF are satisfied i.e.

the number of extrema or zero-crossings are equal to each other or differ by

one, as well as the mean value of the upper and lower envelope is equal to

zero.

6: When the conditions of an IMF from Step 5 are satisfied extract this value as

the nth IMF.

7: Take the remaining signal after extraction, as the new signal. Repeat steps

1) to 6) on the new signal.

8: Stop calculating IMFs once the stopping criterion of standard deviation of

0.3 is obtained.

The signal decomposed by EMD can be represented mathematically by Equation

3.4 [77].

x(t) =
n∑
i=1

ci(t) + r(t) (3.4)

Where:

x(t) = Original signal

c(t) = IMF decomposition

r(t) = Residual signal

After decomposing the signal using EMD, the z-axis accelerometer signal was then

reconstructed from various IMFs and peak detection applied to the reconstructed
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signal. This was done to assess the accuracy of footfall detection for signal re-

constructions from different IMFs. Thereafter, peak detection was carried out on

the reconstructed signal, whereby the peaks corresponded to predicted footfalls.

Different IMF levels were compared to determine the number of IMF’s which give

the best accuracy in footfall detection.

The performance benchmarking compared the predicted footfalls for both algo-

rithms versus the actual footfalls which were manually timestamped using the

video data.

3.5 Feature Derivation

Feature derivation is the transformation of the raw signals into a set of features,

which could provide distinctive properties and insight into the data. The feature

derivation carried out is presented below.

Accurate footfall detection described in Section 3.4.6, provided a basis for many

of the derived features. This section lists and describes the features that were

derived in this study. The features listed were an amalgamation of features derived

in multiple previous gait studies. Some of the features are specific to PD, whilst

other features pertain to gait assessment of other diseases (e.g. fibromyalgia,

COPD etc) or normal gait [78]. However, the derivation of all the features were

adjusted to suit the signals of the walker-mounted sensor system, where sensor

type, quality and placement were different from previous studies.

The tables below present different features which represent properties of the data.

The features are divided into the following categories: (1) Table 3.1: Spatio-

temporal features, (2) Table 3.2: Statistical Features, (3) Table 3.3: Frequency

Domain Features and (4) Table 3.4: Information Theory based Features.

The features translated from studies on other diseases are marked with an asterisk

(*). The novel features specific to this study are in bold.
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The acceleration features were derived separately for the x, y and z axis of the

accelerometer. These Cartesian axes of the accelerometer were also converted to

spherical co-ordinates: azimuth angle, elevation (polar) angle and radius distance,

which were useful for some features extraction.
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Table 3.1: Spatio-Temporal Features
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Table 3.2: Signal Statistic Features
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Table 3.3: Frequency Domain Features
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Table 3.4: Information Theoretic Features

F
e
a
tu

re
D

e
sc

ri
p
ti

o
n

C
y
cl

e
F

re
q
u
en

cy
*

F
u
n
d
am

en
ta

l
F

re
q
u
en

cy
of

th
e

ac
ce

le
ro

m
et

er
w

al
k
in

g
p
at

te
rn

fr
om

D
F

T

S
te

p
A

sy
m

m
et

ry
*

R
at

io
of

th
e

1s
t

(A
d
1
)

an
d

2n
d

(A
d
2
)

au
to

co
rr

el
at

io
n

co
effi

ci
en

ts

S
te

p
R

eg
u
la

ri
ty

*
F

ir
st

,
d
om

in
an

t
au

to
co

rr
el

at
io

n
co

effi
ci

en
t

in
d
ic

at
in

g
p

er
io

d
ic

it
y

W
al

k
R

at
io

*
A

ve
ra

ge
st

ep
le

n
gt

h
d
iv

id
ed

b
y

ca
d
en

ce
(i

n
d
ic

at
in

g
rh

y
th

m
ic

w
al

k
in

g)

H
ar

m
on

ic
R

at
io

R
at

io
of

su
m

of
ev

en
to

su
m

of
o
d
d

h
ar

m
on

ic
s

(a
cc

el
er

om
et

er
)

E
n
tr

op
y

(x
,y

,z
,r

m
s,

sp
h
er

ic
al

)
U

n
ce

rt
ai

n
ty

m
ea

su
re

of
th

e
ac

ce
le

ro
m

et
er

si
gn

al
,

li
n
ke

d
to

re
gu

la
ri

ty

Z
C

R
(x

,y
,z

,r
m

s,
sp

h
er

ic
al

)
Z

er
o

C
ro

ss
in

g
R

at
e

of
ac

ce
le

ro
m

et
er

si
gn

al

A
R

(x
,y

,z
,r

m
s,

sp
h
er

ic
al

)
A

u
to

-r
eg

re
ss

io
n

co
effi

ci
en

t
of

ac
ce

le
ro

m
et

er
si

gn
al

T
K

E
O

(x
,y

,z
,r

m
s,

sp
h
er

ic
al

)
In

st
an

ta
n
eo

u
s

C
h
an

ge
s

in
en

er
gy

(T
ea

ge
r-

K
ai

se
r

en
er

gy
)

of
ac

ce
le

ro
m

et
er

T
ot

al
H

ar
m

on
ic

D
is

to
rt

io
n

(x
,y

,z
)

M
ea

su
re

of
si

gn
al

d
is

to
rt

io
n

co
m

p
ar

ed
to

th
e

h
ar

m
on

ic
s

W
al

k
in

g
In

te
n
si

ty
*

M
o
d
u
lu

s
ta

ke
n

of
th

e
in

te
gr

al
of

th
e

ac
ce

le
ro

m
et

er
ou

tp
u
t

R
M

S
to

m
ed

io
-l

at
er

al
ac

ce
le

ro
m

et
er

ra
ti

o
P

ro
p

or
ti

on
al

m
ea

su
re

of
rm

s
to

m
ed

io
-l

at
er

al

R
M

S
to

an
te

ro
-p

os
te

ri
or

ac
ce

le
ro

m
et

er
ra

ti
o

P
ro

p
or

ti
on

al
m

ea
su

re
of

rm
s

to
an

te
ro

-p
os

te
ri

or

C
or

re
la

ti
on

of
R

-L
fo

rc
e

C
or

re
la

ti
on

b
et

w
ee

n
th

e
le

ft
an

d
ri

gh
t

fo
rc

e
se

n
so

r
m

ea
su

re
m

en
ts

C
or

re
la

ti
on

b
et

w
ee

n
ea

ch
ac

ce
le

ro
m

et
er

ax
is

C
or

re
la

ti
on

of
(x

,y
,z

,r
m

s,
sp

h
er

ic
al

)
w

it
h

ea
ch

ot
h
er

M
I

b
et

w
ee

n
ea

ch
ac

ce
le

ro
m

et
er

ax
is

M
u
tu

al
In

fo
rm

at
io

n
of

(x
,y

,z
,r

m
s,

sp
h
er

ic
al

)
w

it
h

ea
ch

ot
h
er

C
ro

ss
E

n
tr

op
y

b
et

w
ee

n
ea

ch
ac

ce
le

ro
m

et
er

ax
is

C
ro

ss
E

n
tr

op
y

of
(x

,y
,z

,r
m

s,
sp

h
er

ic
al

)
w

it
h

ea
ch

ot
h
er



Chapter 3. METHODOLOGY 53

3.6 Feature Selection

The feature derivation stage produced a large, high-dimensional feature set of 211

features (listed in the aforementioned Tables 3.1 - 3.4). Not only would such a

high dimensional feature set contain redundant features, but machine learning

algorithms perform better with reduced dimensionality [41].

Furthermore, a significant aspect of the study was to determine which features are

most relevant and provide the most insight into discriminating between different

PD severity stages. Feature selection served this purpose through selecting relevant

features which best characterize the changes between the different severity groups.

Three techniques of feature selection were conducted in this study for the afore-

mentioned purposes and are described below.

3.6.1 Principal Components Analysis (PCA)

Projection based PCA described in Section 2.4.3 was used to reduce dimensionality.

As required by PCA, the features were normalized to the range between 0 and 1 as

per Equation 3.5. This ensured features were comparable despite having different

units and scales. Moreover, this mitigated the bias introduced by features with

high variance.

Xnorm =
X −Xmin

Xmax −Xmin

(3.5)

Where:

Xnorm = Normalized feature value

Xmax = Maximum feature value

Xmin = Minimum feature value

X = Value to be normalized
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As is common practice, the number of Principal Components (PCs) chosen ex-

plained 95% of the variance of the feature set [79]. This ensured that critical

information was not lost due to the reduction in dimensionality.

A major drawback of PCA is its inherent trait, that the selected feature set con-

tains linear combinations of features. This transformation poses a problem from

a clinical perspective, as the features could no longer be easily interpreted by

clinicians: A particular focus in the selection process was to determine the most

important features in terms of discrimination between the different PD stages, as

determined by the H & Y scores. Consequently, in an attempt to preserve the

units of the feature set so that clinicians can still interpret the results, two further

feature selection techniques were implemented:

(1) Selection of features based on relevance to clinical usage and (2) Selection of

features using a one-way ANOVA test.

3.6.2 Selection of features based on relevance to clinical

usage

Clinicians make use of spatio-temporal observations when assessing PD, in the

initial diagnosis and later in determining the disease stage. Consequently, follow-

ing a consultation with clinicians, the following 13 features were selected from the

spatio-temporal parameters of Table 3.1. These features quantify the character-

istics used by clinicians in their assessments of gait and have the most clinical

relevance according to the clinicians’ suggestions.

1. Turn time

2. Mean Step Time

3. Standard Deviation of Step Time

4. Mean Step Length

5. Standard Deviation of Step Length
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6. Mean Velocity

7. Standard Deviation of Velocity

8. Mean Acceleration

9. Standard Deviation of Acceleration

10. Number of steps taken (during walking phase)

11. Total TUG time (including both straight line walking and turn time)

12. Total straight line walking time (excluding turn time)

13. Cadence

3.6.3 Feature Selection using ANOVA

The data consisted of subjects from different H & Y groups. These groups had

unknown statistical significance of the differences for individual features. The

Analysis of Variance (ANOVA) statistical test was used to ascertain if there was

a statistical difference between the means of three or more of these H & Y groups.

The Null Hypothesis was that the means of each of the groups are equal. However,

if a statistical difference was found with a p-value of less than 0.05, then the

alternative hypothesis was accepted, which stated that at least two H & Y groups

out of the total number groups have means that are statistically different.

The ANOVA test was performed on each individual feature to statistically deter-

mine which features were representative of the differences between the different H

& Y groups. Those features that rejected the Null Hypothesis were then selected

as viable features given the statistical significance of the difference.

3.7 Feature Space Analysis

Prior to applying machine learning for classification it is useful to understand the

distribution and other statistical properties of the features across the different
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classes. This aligns with the goal of quantitative understanding into the manifes-

tation of different PD stages. Thus, the distributions/probability density functions

of each feature were analysed as follows.

3.7.1 Normal Distribution Testing

Many processes such as biological, financial, astronomical, physics based etc are

often modelled by a normal distribution. The reason is that many measurements

fluctuate around a central measure [80]. Furthermore, when the measurement

information is limited to precision or error then the assumption of Gaussian (nor-

mal) fluctuations are typically seen as a good choice. This inference impacts the

statistical tests used, as parametric tests assume normal distributions of the data,

whilst non-parametric tests do not assume a normal distribution.

The Kolmogorov-Smirnov and the Anderson Darling tests were run on each indi-

vidual feature to test whether the data follows a normal distribution. Both tests

rejected the null hypothesis of accepting normality, if the p-value was less than

0.05.

3.7.2 Distribution Fitting

Since preliminary analysis showed that many of the features were not normally

distributed, it was important to ascertain the distributions of each individual fea-

ture. While these distributions were not used in machine learning, their pursuit

may provide quantitative understanding of the PD features by being a probabilistic

model of the features manifestation.

Fitting of different possible distributions to each individual feature was performed.

The distributions fitted were the following continuous distributions (supported

by MATLAB): Beta, Birnbaum-Sanders, Exponential, Extreme value, Gamma,

Generalized extreme value, Generalized Pareto, Inverse Gaussian, Logistic, Log-

logistic, Lognormal, Nakagami, Normal, Rayleigh, Rician, t location-scale and
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Weibull. The aforementioned extensive list of distributions was fitted to allow for

a more specific distribution fit. When fitting the different distributions to each

feature, the method employed maximum likelihood estimation (MLE).

The aforementioned extensive list of distributions was fitted to allow for a more

specific distribution fit. When fitting the different distributions to each feature,

the method employed maximum likelihood estimation (MLE).

Once all the distributions are fitted, the best distribution for each feature was se-

lected using the Bayesian Information Criterion (BIC), which minimizes Equation

3.6 below. The distribution with the lowest score is considered the optimal best

fit.

BIC = −2 · ln(L) + w · ln(v) (3.6)

Where:

v = size of the feature vector under examination

w = number of parameters

L = maximum likelihood function - P (data|parameters,model)

First, the distributions were fitted for each feature in the full feature set. Secondly,

the feature set was segmented based on H & Y group (i.e. severity). Each distri-

bution was then fitted for each feature for the different H & Y groups. e.g. the

distributions were fitted for the mean step length feature for each H & Y group.

This allowed the distributions of each feature, based on the severity of the disease,

to be obtained.

3.8 Machine Learning

The primary research question lies in finding the extent in which automated, quan-

titative discrimination between PD stages can be achieved, based on the acquired

signals. Machine learning was used to quantitatively answer this question.
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Machine learning can be specified as either a classification or a regression problem.

Both options were explored in this study and are described in Sections 3.8.1 and

3.8.2 respectively.

3.8.1 Classification

Classification or supervised learning given the class labels (Hoehn and Yahr - H &

Y scores) was first explored. The clinical H & Y scores were used as the class labels.

Whilst, the score may be subjective, these scores are given by experts, according

to an accepted test, and are therefore considered the current gold standard in

Parkinson;s disease (PD) assessment. Thus, since clinicians’ derived scores are the

metric which will serve as the benchmark for performance of the thesis proposed

system. Moreover, as described in Section 2.3.1, the H & Y scale is one of the

two accepted PD stage metrics (the other being the UPDRS – another clinician

derived scale) and both are the only available ground truth tools. Therefore it

makes sense to use such scores for comparative purposes.

The choice of supervised learning paradigm was based on the need to provide not

only a discrimination accuracy but also an insight into the relevance of the features

with respect to PD stage discrimination. Consequently, supervised learning models

such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs)

were unsuitable [65].

Hence, Random Forests were used as the classification algorithm as it solved this

problem, since in this classification method, feature importance is quantifiable. A

detailed description of random forests was provided in Section 2.4.4.4, thus only

implementation and testing is outlined in the forthcoming sections.

3.8.1.1 Random Forest Implementation & Testing

The implementation of the random forest was done as per the methods outlined in

Section 2.4.4.4, as expounded by Breiman [64]. The implementation of the random
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forest (RF) then had three different stages: (1) Determine the optimal minimized

forest size by analyzing the accuracy of RF’s of 1-1000 trees, (2) Determine the

important features using random permutation and (3) Test the performance accu-

racy of the optimal forest with the different feature subsets from Section 3.6. This

is described below:

(1) Determine the optimal forest size: In order to determine the optimal forest

size, random forests of with 1-1000 trees were evaluated and the accuracy plotted.

The knee point of the graph (i.e. the smallest forest size where the error does not

decrease anymore such that it tends to a limit) is considered as the optimal forest

size. The evaluation is done as per Algorithm 2.

Algorithm 2: Optimal Forest Size

1: Initialise state i=1

2: Train a random forest of size i on the full 211 dimensional feature set. As

recommended by Breiman [64] a different random bootstrap training sample

which omits 1/3 of the feature set was used to train each tree.

3: After training pass the entire training set through the random forest to test

performance and record the accuracy.

4: Increment i by 1

5: Repeat steps (2) to (4) until i=1000 (1000 was chosen to compare how

performance changes with increasing forest size)

6: Compare the generalization error of each forest size, by plotting a graph of

error vs number of trees

7: The optimal forest size is seen on the graph as the knickpoint where the error

tends to a limit. i.e. the smallest forest size without losing accuracy.

When each tree is grown, 1/3 of the data is randomly excluded. Hence, a separate

test set or cross-validation set was not required to obtain unbiased test results, as

randomness is injected internally when each tree is grown using a different random

bootstrapped sample, which omits 1/3 of the data [64].
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(2) Algorithm 3 below, describes how feature importance was determined using

random permutation. The random permutation of features was performed on the

optimal forest of 100 trees, obtained using Algorithm 2.

Algorithm 3: Feature Importance [65]

1: Initialise state i=1

2: For feature xi, randomly permute the feature column. (i.e. randomly shuffle

the feature column xi )

3: Compute the change in the error rate (i.e. accuracy of predictions) compared

to the original baseline error of the optimal forest.

4: Record the increase/decrease in error. The larger the error the higher the

feature importance. The reason for this is that by permuting important

features the accuracy will significantly decrease, whilst permuting

unimportant features will have minimal impact on accuracy

5: Increment i by 1

6: Repeat steps (2) to (4) for all i features (where i=211)

The test of feature importance was repeated 5 times. The features which were used

(as important features) by the random forest in 80% of the trials, were selected as

the ”important features”.

(3) Finally, the following feature subsets were tested with the optimally sized

random forest:

1. Full feature set

2. Principal Components

3. Features selected by the random forest

4. ANOVA selected features

5. Features selected based on clinical relevance

The discrimination accuracy between the aforementioned feature subsets was then

compared.



Chapter 3. METHODOLOGY 61

3.8.2 Regression

A regression model was used to predict H & Y scores. The rationale is that given

the coarse scale of 1 to 4, comparison of patients’ symptoms within and across

classes may be inaccurate. While clinicians, who are the gold standard assign

these scores, it may happen that patients with the same clinical score exhibit

different symptoms. Thus, a regression approach, may allow for a finer scale of

the H & Y. For example, where two patients have the same H & Y of 2, one may

be a more severe case than the other and hence be assigned an H & Y score of

2.3. This finer scale may allow for enhanced comparison between patients and for

better monitoring of a patient’s decline, which is not manifested using the current

H & Y.

A regression approach can provide a mathematical model. Although a determi-

nation of importance and relevance for each specific feature cannot be derived

from a regression model, this is an acceptable trade-off as feature importance has

already been obtained using the classification model. Moreover, the regression

model serves to illustrate the model/pattern mapping of input features to clinical

scores, whereby the predicted scores can be compared against the ground truth.

The following machine learning regression methods were designed and imple-

mented:

3.8.2.1 Stepwise Linear Regression

Whilst the assumption was that the model was complex and non-linear, it can

still be informative to explore linear models to validate the assumption. Thus,

a stepwise linear regression model was used and developed as per Algorithm 4.
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Testing of the model was done as per Section 3.8.2.7.

Algorithm 4: Stepwise Linear Regression Algorithm

1: Initialise the empty model

2: Perform regression (mapping of x-y) on each individual feature in the

dataset. i.e. regression for x1,x2...xN separately.

3: Calculate the t-statistic and p-value for each feature. The feature with the

lowest p-value is added to the model, provided the p-value is less than 0.15.

4: Feature xi will be selected based on the p-value in the previous step. The

model is then n dimensional.

5: Fit each of the remaining features to make a increased (n+1) dimensional

feature model and perform regression on that feature. i.e. regression for x1

x2; x1 x3...x1 xN separately.

6: Calculate the t-statistic and p-value for those remaining feature. The feature

with the lowest p-value is added to the model provided the p-value is less

than 0.15

7: Recheck the p-values of those predictors originally in the model before the

most recent addition. If the significance decreases then remove the added

feature

8: Repeat steps 1) to 7). Until the stopping criteria in step 9 is met

9: Stop when adding the additional feature does not yield t-statistic p-value of

less than 0.15 (Based on literature [81]).

3.8.2.2 Robust Linear Regression

Robust linear regression uses a weighting function to address the issue of outliers

that plagues Ordinary Least Squares (OLS) regression. The designed Robust linear

regression model used a bi-square weighting function given by Equation 3.7.
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w = (|r| < 1)× (1− r2)2 (3.7)

Where:

r = specific data point

Initially, each data point/variable got the same weight and the model coefficients

were estimated using OLS. The weights were then iteratively recomputed such

that points closer to the line got higher weights and those further from the line got

reduced weights. Thereafter, coefficients were recomputed using the new weights.

The model was tested as outlined in Section 3.8.2.7

3.8.2.3 Support Vector Regression

Support Vector Regression (SVR) is a non-parametric method of regression which

relies on kernels to produce a function which maps input to output relationships

as was outlined in Section 2.4.4.2.

The problem studied here after preliminary analysis of the linear models was found

to be complex and multi-dimensional. Hence, a non-linear SVR with a Gaussian

kernel function was used as the regression model. The model testing was done as

described in Section 3.8.2.7.

3.8.2.4 Random Forest Regression/ Regression Forests

Random Forests that are used for regression are called Regression Forests. The

difference between the classification and regression applications is that classifica-

tion uses majority voting while regression uses averaging, as discussed in Section

2.4.4.4.

A regression forest was grown with the optimal number of trees obtained in the

classification. The model was tested as outlined in Section 3.8.2.7.
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3.8.2.5 Boosted Trees Regression

Boosted Trees Regression are an ensemble learner which makes use of decision

trees, but in a different manner to random forests as was discussed in the Section

2.4.4.5.

An ensemble of boosted regression trees was grown with the optimal number of

trees as obtained by the random forest. The model was tested as outlined in

Section 3.8.2.7.

3.8.2.6 Artificial Neural Network (ANN)

A Bayesian Regularized Artificial Neural Network (BRANN) was designed for

the regression problem. As discussed in Section 2.4.4.1, BRANNs address the

issues of overfitting and increased bias and variance associated with typical ANNs

[59]. Moreover, when compared to early stopping which is typically used in deep

neural networks and heavily relies on intuition for good performance, Bayesian

regularization is a more formalized method of preventing overfitting.

A BRANN was designed with 20 hidden layers (using a tan-sigmoidal activation

function [54, 55]) and a single output layer to predict H & Y scores. Training and

testing of the model was conducted as outlined in Section 3.8.2.7.

3.8.2.7 Model Testing

The different regression models were tested and compared. The different regression

models used the full derived feature set as inputs. The inputs are then mapped

by the regression model to outputs which are finer scaled H & Y scores. The

generalization performance of each regression model was tested using 10-fold cross

validation. The patient cohort was divided randomly into 10 equal sized subsets.

The model was trained on 90% of the dataset (i.e. 9 subsets) and then 10% of the

data (i.e. 1 subset) was retained as the test set. This process was then repeated

10 times, so that each patient subset served as the test set.
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The predicted H & Y in the 10 cross-validated tests were then compared with

the dataset’s H & Y scores, which were determined by the neurologists. The

comparison employed 15 performance metrics discussed in Section 2.5. These

metrics are summarized in Table 3.5. Each round of cross-validation calculated a

separate value for the performance metrics. Finally, the mean of the 10 tests was

computed to obtain average values for each performance measure.

The different regression models were then compared. The most appropriate model

minimized the error between predicted and actual H & Y (e.g. MSE, RMSE,

MAPE etc) and maximized the similarity between predicted and actual H & Y

(e.g. cosine similarity, FAC2, correlation etc). This evaluation was done using the

regression performance metrics shown in Table 3.5.

Table 3.5: Regression Performance Metrics

Performance Measure Equation

Mean Squared Error (MSE) MSE = 1
n

n∑
i=1

(Yo − Yp)2

Mean Absolute Error (MAE) MAE = 1
n

n∑
i=1

|Yo − Yp|

Mean Absolute Percentage Error (MAPE) MAPE = 1
n

n∑
i=1

(Yo−Yp)
Yo

Root Mean Squared Error (RMSE) RMSE =
√∑ (Yp−Yo)2

N

Sum of Squares Error (SSE) SSE =
n∑
i=1

(Yo − Yp)2

Cosine Similarity (CS) CS = Yo·Yp
||Yo||||Yp||

Modified Index of Agreement (IA) IA = 1−
N∑
1
|Yp−Yo|

N∑
i=1

(|Yp−Yo|+|Yo−Yo|)2

Mutual Information (MI) MI =
∑
P (Yo, Yp) · log( P (Yo,Yp)

P (Yo)P (Yp)
)

R squared (Rsq) Rsq =
∑

(Yp−Yp)2∑
(Yo−Yo)2

Spearman’s Correlation Correlation = COV (Yp,Yo)

σYpσYo

Fractional Bias (FB) FB =
∑

i(Yo−Yp)
0.5

∑
i(Yo+Yp)

Geometric Mean Bias (GMB) GMB = e(ln(Yo)−ln(Yp))

Normalized Mean Square Error (NMSE) NMSE = (Yo−Yp)2
YoYp

Geometric Variance (GV) GV = e(ln(Yo)−ln(Yp))
2

Fraction of predictions- factor of two (FAC2) Fraction satisfies 0.5 ≤ Yp
Yo
≤ 2.0
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3.9 Statistical Analysis

The ANOVA test was used to compare the means of the different H & Y groups.

However, the ANOVA p-value does not indicate overlap or the differences between

individual groups as was discussed in Section 2.6. Confidence intervals (CI’s) were

used to address this issue and it was proposed by [72], that a ≤50% overlap of

CI’s indicates a statistically significant difference in group means. Whilst, [73]

stated that ≤50% overlap corresponds to a statistical significance of 95%, whilst

no overlap corresponds to a 99% statistical significance.

3.9.1 Confidence Interval Calculation

The means of each H & Y group for each individual feature was compared using

CI’s. The CI’s were calculated using Equation 3.8 [72]. The CI equation pro-

duces an estimated range of values (lower and upper bounds), which have a high

probability of covering the true population value [73]. The pairwise overlap of

that group with every other H & Y group was compared to ascertain statistical

significance of the difference. For example: the overlap of H & Y 0 is compared to

H & Y 1, H & Y 2, H & Y 2.5, H & Y 3 and H & Y 4. This comparison is done

pairwise for every group and had 15 possible comparison permutations.

CI = µi ±
√

2

2
(tn−1, 1−

α

2

√
J

J − 1
)(σi/

√
n) (3.8)

Where:

µi = mean of the ith group

tn−1, 1− α
2

= value from the t-distribution (α is 0.05)

J = number of levels (number of classes in the experiment)

(σi/
√
n) = standard error of the ith group

σi = standard deviation of the ith group

n = number of subjects in that group
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3.9.2 Feature Classification Performance Comparison

The assessment of CI overlap between groups allowed the comparison to determine

which features had the least and most overlap between different H & Y groups.

This was an indication of class separability. The features with the least overlap

(best discrimination performance) were then compared to the ANOVA selected

features, as well as the features selected by the random forest.

It is reasonable to assume that different features behave and manifest differently at

different stages of the disease. This assumption was corroborated by the clinicians

as well.

Thus, the CI significant features chosen were those that for any of the 15 possible

permutations which compared all H & Y pairs; at most 2 permutations were not

statistically significant (i.e. > 50% overlap).

The common features between the CI statistical method and the aforementioned

computational based methods served as a further validation step of the features

which are crucial to the discrimination between PD stages.



CHAPTER 4

RESULTS

The results of the research are presented in this chapter, in the same order as the

methodology steps described in Chapter 3. A detailed analysis and discussion of

the results and the insights derived from the results is presented in Chapter 5. In

this chapter, the data integrity and organisation check is followed by the results of

the signal pre-processing steps. Thereafter, the outcomes of different methods of

feature selection are presented. Findings from feature space analysis are followed

by the results of the different machine learning algorithms. Finally, the results of

statistical analysis using CI’s is presented.

4.1 Data Integrity and Organisation Check

The breakdown of the dataset according to H & Y severity group, after the data

integrity and completeness checks is listed in Table 4.1 below. Patients were

excluded as per the criteria outlined in Section 3.3.

68
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Table 4.1: Dataset Integrity Analysis comparing the number of subjects ex-
cluded and remaining for each H & Y group

H & Y Group Total Number Number Excluded Number Remaining

0 (Control) 21 0 21

1 7 0 7

2 26 2 24

2.5 18 1 17

3 14 2 12

4 6 1 5

Total 92 6 86

There is a distinct class imbalance among the different H & Y groups especially in

the smaller number of H & Y 1 and 4 subjects. This will be taken into consideration

and the analysis discussed accordingly in Chapter 5.

4.2 Signal Pre-processing

The results of signal pre-processing is outlined below. It covers the results of signal

denoising, segmentation of movement phases, as well as footfall detection.

4.2.1 Signal Denoising

The moving average filter coupled with zero-phase lag compensation was success-

fully applied to denoise the noisy signal. An example result for the velocity signal

is shown in Figure 4.1. The small window size can be seen to have allowed for

localized attenuation of the high frequency noise.
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Figure 4.1: Example of a velocity signal before (red line) and after the appli-
cation of a moving average filter (blue line).

4.2.2 Segmentation of movement phases

Movement phase segmentation involved identifying regions of straight line move-

ment, as well as regions of stationary or turning movement. The algorithm was

applied to the velocity signal and can be seen in Figure 4.2 below.

Figure 4.2: Movement Phases Algorithm Results where red lines are predicted
movement periods and black lines are predicted stationary or turning periods
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4.2.3 Footfall Detection Algorithm

The two footfall detection algorithms made use of the accelerometer and force

sensor signals respectively. Firstly, the EMD algorithm was used to extract IMFs.

An example of the initial four IMFs can be seen in Figure 4.3 below. The different

extracted oscillatory components are clearly visible, with decreasing frequency in

the subsequent IMFs.

Figure 4.3: Example of the First, Four IMFs which show a decreasing fre-
quency

The signal was then reconstructed, starting from different IMF levels (from IMF

1-4). After signal reconstruction, peak detection was performed on the signals,

where the peaks were representative of footfalls.

Footfall detection accuracy was calculated as follows. The video validated footfall

range was between heel strike and toe-off. The algorithm predicted footfall was

deemed accurate if it was detected within the timestamped range of the validated

footfall.

Figure 4.4 shows an example of the predicted footfalls (circles) compared to the

validated video footfalls ranges between the red and oranges X’s.
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Figure 4.4: Example of the Footfall detection algorithm: The predicted foot-
falls are represented by circles and the validated video-captured footfalls ranges
are plotted as “x”s when a red “x” is a start timestamp of the range and oranges

“x” the end of the range .

The algorithm accuracy was validated against four tests captured by video, which

had different walking patterns (simulating PD shaking, foot dragging, normal

walking, slow and irregular walking). The accuracy performance of the novel

accelerometer algorithm is shown in Figures 4.5 and 4.6.

The second footfall detection algorithm was the replicated force sensor algorithm

proposed by [39]. The accuracy performance of this algorithm is depicted in Fig-

ures 4.7 and 4.8.
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Figure 4.5: Novel Accelerometer Algorithm: Percentage Accuracy of footfall
detection with reconstruction from different IMF’s. Average accuracy indicates

the mean accuracy of the four trials for the specific IMF

Figure 4.6: Novel Accelerometer Algorithm: Comparison of number of ac-
tual footfalls (segmented from the video) to the predicted ones: the blue bar
represents the number of true measured footfalls, the green bar represents the
number of predicted footfalls, the red bar represents the number of correctly

predicted footfalls
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Figure 4.7: Force Sensor Algorithm: Percentage Accuracy of footfall detection
when reconstructing from different IMFs. Average accuracy indicates the mean

accuracy of the four trials for the specific IMF

Figure 4.8: Force Sensor Algorithm: Comparison of number of actual foot-
falls (segmented from the video) to the predicted ones: the blue bar represents
the number of true measured footfalls, the green bar represents the number
of predicted footfalls, the red bar represents the number of correctly predicted

footfalls
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Table 4.2 conveys that reconstructing from IMF 3 yields the highest accuracy for

both algorithms. Additionally, the newly proposed z-axis accelerometer footfalls

detection algorithm was compared to the replicated force sensor detection results.

The performance of the two algorithms is illustrated in Table 4.2 where accuracies

of all combinations of IMF reconstruction levels are computed.

Table 4.2: Predicted Footfalls Accuracy for the two Algorithms. Each column
contains the accuracy (in percentage) obtained for the different IMF reconstruc-
tions. The four rows are the 4 walking tests. The fifth row is the average across

tests for each IMF.

4.3 Feature Selection

4.3.1 Feature Selection based on clinical usage

As described in Chapter 3, the spatio-temporal feature subset listed below were

the most intuitive features that can be easily communicated to and understood by

clinicians. Moreover, they quantify the characteristics used by clinicians in their

assessments of gait. The following features met this criteria of clinical relevancy.
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Features based on clinical relevance

1. Turn time

2. Mean Step Time

3. Standard Deviation of Step Time

4. Mean Step Length

5. Standard Deviation of Step Length

6. Mean Velocity

7. Standard Deviation of Velocity

8. Mean Acceleration

9. Standard Deviation of Acceleration

10. Number of steps taken (during walking phase)

11. Total TUG time (including both straight line walking and turn time)

12. Total straight line walking time (excluding turn time)

13. Cadence

4.3.2 PCA

In this feature selection method, PCA was applied and the PC’s that explained

95% of the variance of the feature space were chosen. The number of the chosen

PC’s were 47 and 42 for the 3m tests and the 10m tests, respectively.
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4.3.3 ANOVA feature selection

One-way ANOVA was performed on each feature in the full feature set and the

selected features were those that rejected the null hypothesis of equal means with

a p-value less than 0.05. This implied a 95% certainty of a statistical difference

between the means of the six H & Y groups. The ANOVA, Type I error probability

in rejecting the Null Hypothesis was maintained at 5%.

This selection method yielded 67 features (3m test) and 66 features (10m test)

out of the 211 features. A summary of the chosen features grouped by feature

category is shown in Figure 4.9. The full list of chosen features which met this

criteria is detailed in Appendix B, Tables B.1 and B.2 for the 3m and 10m tests

respectively.

Figure 4.9: The ANOVA selected features grouped by feature category for the
3m and 10m tests
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4.4 Feature Space Analysis

4.4.1 Normal Distribution Tests

The Kolmogorov Smirov (KS) test rejected the Null Hypothesis for 100% of the

features for both the 3m and 10m tests. The Anderson Darling (AD) test rejected

the Null Hypothesis for 86% and 82% of the features for the 3m and 10m tests

respectively.

The difference between the KS test and AD tests is that the KS test places greater

weight on the center of the distribution, whilst the AD test allows for fatter tails

to the distribution. The implication of both tests is that normality could not be

assumed when conducting statistical tests. Therefore, the distribution fit for the

features was assessed.

4.4.2 Distribution Fitting

4.4.2.1 Entire Feature Space

After fitting different probability distributions to each of the individual features,

the Bayesian Information Criteria (BIC) was used to obtain the ”best fit” probabil-

ity distribution. The lowest BIC score as described in Section 3.7.2 corresponded

to the ”best fit” distribution to the specific feature. The result yielded 17 different

probability distributions for the features of the 3m test and 16 different probability

distributions for the features of the 10m test. The probability distributions were

tallied and the results are illustrated in Figures 4.10 and 4.11 for the 3m and 10m

tests respectively.
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Figure 4.10: Number of features per each best fit (based on BIC) distribution
for the 3m test

Figure 4.11: Number of features per each best fit (based on BIC) distribution
for the 10m test
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4.4.2.2 Distributions of H & Y Severity groups

In order, to assess how the different probability distributions change as a function

of disease severity, the features were then segmented into 6 groups, based on the

different H & Y group (0, 1, 2, 2.5, 3 and 4). The probability distributions were

then fitted to each feature for each H & Y group. The small number of H &

Y 4 subjects and the implication the representation provided by the probability

distribution is discussed in Chapter 5.

The 3 best probability distributions for the different H & Y stages are listed below.

The results of the 3m test is shown in Table 4.3 and the 10m test in Table 4.4.

Table 4.3: The 3 Best Distributions for the different H & Y Groups in the 3m
test. The percentage of features out of the total number of features is depicted

below the distribution name

Top 3

Distri-

butions

H & Y -

0

H & Y -

1

H & Y -

2

H & Y -

2.5

H & Y -

3

H & Y

- 4

1 Gen

Pareto -

48%

Gen.

Pareto -

28%

Gen.

Pareto -

85%

Gen.

Pareto -

55%

Gen.

Pareto -

85%

Gen.

Pareto -

79%

2 loglogistic

- 21%

Rayleigh

- 20%

t-

location

scale -

8%

t-

location

scale -

18%

t-

location

scale -

8%

t-

location

scale -

10%

3 t-

location

scale -

10%

loglogistic

- 18%

Gen.

extreme

value -

4%

Rayleigh

- 14%

Gen.

extreme

value -

4%

Gen.

extreme

value -

4%
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Table 4.4: The 3 Best Distributions for the different H & Y Groups in the 10m
test. The percentage of features out of the total number of features is depicted

below the distribution name

Top 3

Distri-

butions

H & Y -

0

H & Y -

1

H & Y -

2

H & Y -

2.5

H & Y -

3

H & Y

- 4

1 Gen.

Pareto -

58%

Gen.

Pareto -

44%

Gen.

Pareto -

75%

Gen.

Pareto -

48%

Gen.

Pareto -

62%

Gen.

Pareto -

79%

2 t-

location

scale -

13%

Rayleigh

- 14%

t-

location

scale -

8%

Exponen-

tial- 10%

Rayleigh

- 10%

Exponen-

tial- 14%

3 Gen.

extreme

value -

7%

loglogistic

- 7%

Gen.

extreme

value -

7%

t-

location

scale -

7%

Gen.

extreme

value -

10%

t-

location

scale -

10%

The generalized pareto distribution is shown to be the most prevalent probability

distribution among the features, in all groups. Figures 4.12-4.15 illustrate ex-

amples of the change in the generalized pareto distribution for the different PD

stages.
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Figure 4.12: The probability distribution of the Mean Step Velocity feature.
The distribution for each different PD stage is shown in different colours as per

the figure legend.

Figure 4.13: The probability distribution of the Mean Step Length feature.
The distribution for each different PD stage is shown in different colours as per

the figure legend.
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Figure 4.14: The probability distribution of the Mean Turn Velocity feature.
The distribution for each different PD stage is shown in different colours as per

the figure legend.

Figure 4.15: The probability distribution of the MI between z acceleration -
RMS acceleration feature. The distribution for each different PD stage is shown

in different colours as per the figure legend.

4.5 Machine Learning

The experiments and partitions utilized for both classification and regression ex-

periments was described in detail in Sections 3.8.1.1 and 3.8.2.7 respectively.



Chapter 4. RESULTS 84

4.5.1 Classification: Random Forest

4.5.1.1 Full Feature Vector

The random forest was trained as was described in Chapter 3. Different forest

sizes ranging from 1-1000 trees were grown and tested to determine an optimized

number of trees.

Figures 4.16 and 4.17 illustrate the percentage error in discrimination between dif-

ferent PD stages for the different forest sizes for the 3m and 10m tests respectively.

A random forest of approximately 100 trees is the optimal forest size. The reason

for the choice of optimal forest size of 100 is that this number of 100 trees in the

random forest met the optimization criteria (i.e. knee point of Figures 4.16 and

4.17 ) as outlined in Section 3.8.1.1.

Figure 4.16: Discrimination error (in percentage) between PD stages, for 1-
1000 trees, for the 3m test
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Figure 4.17: Discrimination error (in percentage) between PD stages, for 1-
1000 trees, for the 10m test

4.5.1.2 Random Forest Selected Features

The random forest classifier provides feature importance by indicating the features

that were used in the classification. The 30 features in Table 4.5 represent the

important features selected by the random forest classifier as was described in

Section 3.8.1.1.
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Table 4.5: Random Forest Selected Features which are the features used by
the random forest in discriminating between different PD stages

Mean Encoder Difference Radius Q1

Number of Steps y Accel Q3

Total Tug time RMS Accel Median

Standard Deviation Turn Velocity x Accel IQR

Mean Turn Velocity x Accel MSE

Walk Ratio y Accel MSE

y Accel half power azimuth MSE

y Accel 99% power azimuth Entropy

y Accel Q1 Correlation z Accel - Azimuth

RMS Accel Entropy Mutual Information x Accel - y Accel

Elevation Mean Mutual Information y Accel- Radius

Mean Step Length Mutual Information z Accel- Radius

Standard Deviation Accel Mutual Information z Accel- RMS Accel

y Accel Variance Skewness Azimuth

Mean Step Velocity Total Harmonic Distortion y

4.5.1.3 Performance comparisons with the optimal number of trees

Table 4.6 outlines the classification performance accuracy and execution time in

discriminating between different PD stages for the different feature selection sub-

sets. All feature subsets were evaluated and classified using the optimal random

forest of 100 trees.
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Table 4.6: Accuracy (Acc) and Execution Time Comparison using the optimal
100 tree Random Forest

Feature Subset 3m- Acc(%) 3m- Time (s) 10m-Acc(%) 10m- Time (s)

PCA 97 10.56 97 9.22

All 94 41.4 95 42

ANOVA Selected 93 15.2 94 16.2

RF Selected 90 6.36 90 6.94

Spatio-Temporal 87 4.05 83 4.22

Figure 4.18 and Figure 4.19 presents the accuracy results for a random forest with

100 trees (optimal number) using the different feature selection subsets for the 3m

and 10m tests respectively.

Figure 4.18: Random Forest Percentage Accuracy of discrimination between
different PD stages for different feature selection subsets, for the 3m test
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Figure 4.19: Random Forest Percentage Accuracy of discrimination between
different PD stages for different feature selection subsets, for the 10m test

Figure 4.20 presents the comparative accuracy results for a random forest with

100 trees using different feature subsets for both the 3m and 10m tests

Figure 4.20: Comparison of the Random Forest Percentage Accuracy of dis-
crimination between different PD stages for 3m and 10m Tests

The PCA selection method demonstrates the highest accuracy. The ANOVA fea-

ture selection is indicated as the best trade-off of high discrimination accuracy

(only slightly lower than PCA), fast execution time and unlike the PCA, pro-

vides untransformed features. A thorough analysis of the trade-offs described is

presented in Chapter 5.
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The change in percentage accuracy as a function of execution times (s) of the

different feature subsets is shown for 100 trees in Figure 4.21 and for 1-100 trees

in Figure 4.22.

Figure 4.21: Execution time vs. 100 trees Classifier accuracy for the 5 feature
subsets

Figure 4.22: Execution time vs. 1-100 trees Classifier accuracy for the 5
feature subsets

The large spike in execution times for both 3m and 10m tests was for the classifier

using the full 211-dimensional features space.

The confusion matrices using the ANOVA features for the 3m test which had a

93% accuracy and 10m test which had a 94% accuracy are shown in Figures 4.23

and 4.24 respectively. These confusion matrices provide the classification errors

and highlights the nature of the errors, in terms of how many classes apart mis-

classifications were.
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Figure 4.23: Confusion Matrix for the 3m test using ANOVA selected features

Figure 4.24: Confusion Matrix for the 10m test using ANOVA selected fea-
tures

4.5.2 Regression for H & Y Prediction

Different regression models for the H & Y predictions were compared and the

results are reported below.
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4.5.2.1 Performance Metrics

The results of the 10-fold cross validation for the different regression models is

shown in Table 4.7 and 4.8 for the 3m and 10m tests respectively. The values per

performance metric (i.e. per row) were normalized to the range of 0-1, so that

different models could be compared to each other. Consequently, in the new range

a 0 is the minimum score for the performance metric, whilst a 1 is the maximum

score for the performance metric. The assessment of these models is discussed in

Chapter 5.

Table 4.7: Normalized Regression Performance Metrics for the 3m test, where
the columns are the different regression models and the rows are the different

performance metrics

Stepwise SVM Robust Boosting ANN RF

MAE 1 0.014 0.038 0.032 0 0.003

SSE 1 0.000087 0.00061 0.00031 0 0.000021

MSE 1 0.000089 0.00063 0.00033 0 0.000018

MAPE 1 0.0063 0.0289 0.0174 0.0036 0

RMSE 1 0.0048 0.02329 0.01570 0 0.0011

RSQ 1 0 0.00085 0.0003 0.00011 0.00011

CORR 0.205 0.823 0 0.647 1 0.971

MI 1 0.708 0.625 0.416 0.583 0

Cosine Sim 0 0.931 0.681 0.841 1 0.977

IA 1 0 0.227 0.5 0.409 0.227

Fractional bias 0 0.884 1 0.971 0.927 0.884

Geo mean bias 0 0 0.392 0.392 0.428 1

NMSE 1 0.00187 0,0359 0.0154 0 0.0009

Geo var 0 0 0.393 0.393 0.428 1

Fac2 0 0.94 0.79 0.76 1 1



Chapter 4. RESULTS 92

Table 4.8: Normalized Regression Performance Metrics for the 10m Test,
where the columns are the different regression models and the rows are the

different performance metrics

Stepwise SVM Robust Boosting ANN RF

MAE 1 0.028 0.161 0.163 0.033 0

SSE 1 0.008 0.0493 0.0461 0.0074 0

MSE 1 0.0083 0.0482 0.0438 0.007 0

MAPE 1 0 0.1200 0.1903 0.0437 0.0025

RMSE 1 0.0313 0.1390 0.1241 0.0196 0

RSQ 1 0 0.038 0.087 0.0259 0.0089

CORR 0 0.314 0.155 0.550 1 0.939

MI 1 0 0.792 0.0604 0.548 0.319

Cosine Sim 0 0.956 0.833 0.858 0.975 1

IA 1 0 0.409 0.675 0.263 0.434

Fractional bias 1 0.0059 0.0029 0.00236 0.0022 0

Geo mean bias 0 0 0.925 0 1 0

NMSE 1 0.0026 0.0393 0.0444 0.00194 0

Geo var 0 0 0.925 0 1 0

Fac2 0 0.97 0.90 0.54 0.96 1

4.5.2.2 Relationship between feature values and H & Y scores

Scatter plots and the best fit line of the H & Y scores vs. feature values was

performed for all features. Figures 4.25-4.29 illustrate examples of 5 features, for

the 3m test. The results for the 10m test were similar to the 3m test. The plots

show the values for the H & Y stages 1-3. H & Y 0 and 4 were omitted since

the values are significantly larger or smaller and mis-scale the figure. The H & Y

1-3 are also the PD severity stages that are hardest to quantify and would greatly

benefit from a finer H & Y scale.
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Figure 4.25: H & Y vs Mean Step Velocity. The solid red line is the best fit
line and the dotted red lines is the 95% confidence bound

Figure 4.26: H & Y vs Mean Step Length. The solid red line is the best fit
line and the dotted red lines is the 95% confidence bound
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Figure 4.27: H & Y vs Mean Encoder Difference. The solid red line is the
best fit line and the dotted red lines is the 95% confidence bound

Figure 4.28: H & Y vs Y accel Q1. The solid red line is the best fit line and
the dotted red lines is the 95% confidence bound
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Figure 4.29: H & Y vs Mutual Information z accel-RMS accel. The solid red
line is the best fit line and the dotted red lines is the 95% confidence bound

The line fit analysis indicates that different features have different trends in terms

of their relation to H & Y scores. The examples of the 5 figures demonstrate there

are both negative and positive linear relationships, as well as negative and positive

exponential relationships. However, different as the mathematical relationships

are, most of the features exhibit change in finer increments than the H & Y score.

These trends are discussed fully in Chapter 5.

4.6 Statistical Analysis using CI’s and relation between

CI’s and selected features

The statistical analysis made use of CI’s and computed the overlap between the

groups. The CI features (which met the significance criteria outlined in Section

3.9), were compared to the ANOVA selected features and the features selected by

the random forest. These results are presented in the forthcoming sub-sections.
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4.6.1 Confidence Intervals

The overlap between the CI’s of the 6 different H & Y groups was computed using

Equation 3.8 for all the features. This method estimates the significance of the

difference between group means [72, 73]. The significant difference criteria, as

defined by [73] are: No overlap indicates a 99% significance, less than 50% overlap

indicates 95% significance and more than 50% overlap indicates no significance.

Figures 4.30 and 4.31 are examples of features that demonstrated no overlap

greater than 50%. The groups compared in the figures had either a 95% or 99%

significance for the difference between the H & Y groups.

Figure 4.30: CI Plot for Mean Step Velocity, which shows no group overlap
of greater than 50% and either a 95% or 99% significance of difference between

H & Y group pairs
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Figure 4.31: CI Plot of Mean Encoder Difference, which shows no group
overlap of greater than 50% and either a 95% or 99% significance of difference

between H & Y group pairs

Figures 4.32 and 4.33 are examples where the feature had one instance of overlap

greater than 50%, indicating no significant difference. This was between H &

Y 0 and 1 in Figure 4.32 and H & Y 2.5 and 3 in Figure 4.33. The rest of the

comparisons between H & Y groups had 95% and 99% significance of difference. It

was found that none of the features had greater than 50% overlap (no significant

difference) for every comparison between H & Y group pairs. The implication

is that even the less discriminative features demonstrated some discrimination

between different H & Y stages, even if it was a coarse difference i.e. between the

lower severity groups (H & Y 0, 1) and the higher severity groups (H & Y 3, 4)
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Figure 4.32: CI Plot of Mean Step Length, which shows greater than 50%
overlap for H & Y 0 and 1

Figure 4.33: CI Plot of Turn Velocity, which shows greater than 50% overlap
for H & Y 2.5 and 3



Chapter 4. RESULTS 99

4.6.2 Feature Comparison

The features which met the CI criteria (as described in Section 3.9.2 based on the

pairwise comparison of overlap between H & Y groups) were then compared to

the ANOVA selected features and to the random forest selected features.

Table 4.9 lists the percentage of features that were similar/overlapping, in being

discriminative between the H & Y groups, in the CI significance analysis and the

ANOVA selection and the random forest selection methods. Figures 4.34 and 4.35

demonstrate these similar features by category, for the ANOVA and the random

forest selection respectively. Table 4.10 lists these common features between the

features subsets which allowed for the highest accuracy of discrimination between

PD stages. The features that appeared in each pair of selection methods are

highlighted in cyan in Appendix B, Table B.3 for the ANOVA features and Table

B.4 for the random forest features.

Table 4.9: Percentage of features overlapping between the significant CI fea-
tures and the ANOVA and random forest selected features

Comparison % Features Overlapping

ANOVA Features - CI Features 80%

Random Forest Features- CI Features 63%

Random Forest Features - ANOVA Features 87%
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Figure 4.34: Percentage of overlapping features by category between the
ANOVA features and CI Features

Figure 4.35: Percentage of overlapping features by category between the
ANOVA features and Random Forest Selected Features
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Table 4.10: Common features between the features subsets which allowed for
the highest accuracy of discrimination between PD stages

Mean Encoder Difference Radius Q1

Number of Steps y Accel Q3

Total TUG time RMS Accel Median

Standard Deviation Turn Velocity x Accel IQR

Mean Turn Velocity azimuth Entropy

Walk Ratio y Accel MSE

y Accel half power y Accel Variance

y Accel 99% power Correlation z Accel - Azimuth

y Accel Q1 Mutual Information z Accel- RMS Accel

RMS Accel Entropy Mutual Information x Accel - y Accel

Total Harmonic Distortion y Mutual Information y Accel- Radius

Mean Step Length Mutual Information z Accel- Radius

Mean Step Velocity Standard Deviation Accel



CHAPTER 5

DISCUSSION AND CONCLUSIONS

This chapter presents a detailed discussion and analysis of the results presented

in Chapter 4 and conveys concluding remarks of the dissertation.

5.1 Key Findings

The following key findings are discussed: (1) The answer to the research question,

(2) Patterns in different PD severity groups and (3) Implications of the signal

pre-processing methods. Finally, possible applications of these findings, their lim-

itations and suggestions for future work are presented.

5.1.1 Research Goal

5.1.1.1 Extent of Discrimination between PD stages

The primary focus of this research was to assess the extent to which kinematic

signals obtained from walker-mounted sensors could provide an automated and

reliable discrimination between PD stages. The results that lead to the answer of

this question are outlined in the next sections.

The research question and hypothesis has been answered by the result that a

random forest classifier of a 100 trees, which used ANOVA-selected features can

reliably discriminate between the different stages of PD with an accuracy of 93%

and 94% for the 3m and 10m walking tests respectively. The confusion matrices in

102
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Figure 4.23 and 4.24 highlight the type of errors obtained and indicate that errors

typically result in mis-classification to the adjacent PD stage (i.e. either to the H

& Y stage immediately above or below the actual class). The highest number of

mis-classifications occur between the H & Y 2 and 2.5 stages.

The two walking tests employed in the data acquisition experiment – 3m and

10m tests yielded similar discrimination performance of 93% and 94% respec-

tively. This result implies that only one of them is needed, which can be useful

from the clinical point of view: where the assessment can be shortened to one

of the tests. This result is similar to an earlier study conducted with the PAM-

MII instrumented walker which showed that a 10m walking test provided better

discrimination between PD patients and controls [4]. The earlier study showed

a sensitivity and specificity between PD and controls were 91% and 95% for the

3m test and 96% and 100% for the 10m test. It must be noted, however, that

the difference in accuracy between the 3m and 10m tests is different in this study

when compared to the aforementioned earlier study conducted with the PAMM

instrumented walker [4]. Possible reasons for the accuracy difference may be that

the earlier study performed a binary classification between PD patients and con-

trols, where the differences between the classes are larger. Whereas, this study

involved more intricate discrimination hence the reduced accuracy.

5.1.1.2 Best Feature Subset for Discrimination

Kinematic signals and the usage of spatio-temporal parameters from these signals

have been used to assess gait abnormalities in both qualitative and quantitative

studies [4, 38, 39, 42, 43, 82, 83]. The present study aimed to improve the analysis

performed in these studies, by assessing a wider variety of features, as well as

incorporating a larger number of features (211 overall). Moreover, a comparative

analysis of the features in terms of their category (spatio-temporal, frequency

domain, statistical and information theoretic) was performed.

The large number of features necessitated feature selection to reduce dimension-

ality for the classification. Four different feature selection methods were applied
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to the entire feature set and the four feature subsets were compared. The selec-

tion methods were: spatio-temporal, PCA selected, ANOVA selected and random

forest selected features. These 4 features subsets were compared based on the

discrimination obtained using a random forest classifier. The random forest was

used, since unlike other machine learning methods explored, it allowed features

important to the discrimination to be determined [64, 65].

The comparison of the 4 selection subsets yielded that the spatio-temporal features

subset provided the worst discrimination accuracy, as well as the largest difference

between the discrimination accuracies for the 3m (87% accuracy) and 10m (83%

accuracy) test. The spatio-temporal subset was important to study since these fea-

tures could be better communicated to and accepted by clinicians and are a part of

the observation process used in clinical assessments [82–84]. These spatio-temporal

features that may correspond to the qualitative, “observable by clinicians” features

of gait, yielded poor performance in the quantitative discrimination, implying that

the other categories of features are necessary to improve accuracy. However, the

poor performance of the classifier using the 13 spatio-temporal features can be

attributed to the fact that this subset of features included a smaller number of

features when compared to the other subsets of features which were obtained by

mathematical selection methods and included a mixture of spatio-temporal, sta-

tistical, information theoretic and frequency domain features. Also, the human

visual perception, and particularly specialist’s, most probably pick up many other

cues when observing these spatio-temporal characteristics of gait.

The discrimination accuracy results in Table 4.6 revealed that the full feature

set, PCA selected feature set and ANOVA selected feature set produced similar,

high discrimination accuracy (greater than 90%) for both the 3m and 10m tests

(Figure 4.20). The objective of a further comparative analysis was to ensure fast

classifier execution time and features which are untransformed as to not obscure

the individual features and their units. Using the full feature set maintained the

units of the features, however the execution time was 3 times slower than PCA

features and 4 times slower than the ANOVA-selected features as shown in Table

4.6. The PCA feature subset had a short execution time, however this selection
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method results in features which can no longer be individually identified, nor

easily interpretable. The ANOVA selected features addressed both short-comings

by providing a short execution time, whilst not transforming the features.

The random forest selection method yielded a feature subset which produced a

5% lower discrimination accuracy compared to the PCA features and ANOVA

selected features. This may imply that for this data, the internal feature selection

performed in the random forest during the classification is less accurate compared

to PCA and ANOVA.

5.1.1.3 Finer H & Y scores using regression models

The PD stages of the patients, used as the labels of the classifier, are given by

the H & Y scale [15], which is determined by neurologists through clinical assess-

ment. The scale has the following discrete scores: 0- Healthy, non-PD patient ; 1-

Unilateral disease, the patient exhibits minor or no disability ; 2- Bilateral disease

without impairment of balance ; 3- Bilateral disease. The patient exhibits mild to

moderate disability and instability; 4- Severe disease, however the patient can still

walk unassisted; 5- The patient is bed ridden or confined to a wheelchair without

assistance (Not included in the experiment as discussed in Section 3.1.4 ). Al-

though the original scale consists of 5 discrete numbers (1 to 5), clinicians already

try to make it finer by using the Modified Hoehn & Yahr Scale [85] which adds

a ”1.5” and ”2.5” score. Even with this modified scale, the Movement Disorder

Society found that 69% of clinicians (of 1593 who participated in the survey) still

found that the PD categories were too broad to characterise severity accurately

[85]. Although the scale deals mainly with differences in stability, a finer gait scale

could be useful for clinicians.

Studies have used the concept of regression models to predict PD scores. However,

typically speech derived features (e.g. vocal frequency, jitter, amplitude etc) are

used to predict UPDRS scores [86–88]. Gait features were also used along with

regression by [45, 46], to predict a PD score which was then correlated to UPDRS.

The regression models in this study filled this gap of H & Y regression, by using
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walker derived gait features to predict H & Y scores. The results indicate a

viability to fill values between the discrete, integer H & Y scores and thus to

produce a finer ”gait-related H & Y scale”. This finer scale was quantitatively

assessed by comparing the model predictions against the clinician’s predictions,

these included “half scores” of 2.5. The best fit model aimed to minimize the

error metrics, whilst maximizing the similarity metrics. This mirrors the criteria

used by [88], where the optimized UPDRS regression model minimized error and

maximized similarity.

The regression models which met these best-fit criteria were the SVM, random

forest and ANN. All 3 methods were able to provide a good fit to the clinical

score as conveyed by the low normalized error metrics. The success of these non-

linear models indicates that non-linearity is necessary to accurately capture the

dynamics of the features. This corroborates both [86] and [87] in demonstrating

the best performance using non-linear regression models to predict PD UPDRS

scores.

Various performance fit metrics were employed to ensure both low error and high

similarity measures. When comparing the SVM, random forest and ANN it was

found that for similarity metrics, the SVM had lower correlation metrics when

compared to the random forest and ANN. Both the random forest and ANN had

low error metrics, as well as a high similarity metrics. Neither the ANN nor the

random forest regression models had distinct superiority when compared to each

other, thus the best fit model was based on architectures. The random forest

model has an advantage, as unlike the ANN, it is not a black box model.

The results of the random forest regression model are conveyed in Figures 4.25-

4.29. The graphs suggest that a robust model can be developed to predict H &

Y scores to a finer degree. This is additionally validated when comparing the

predicted H & Y scores which highlight the inter-subject difference (for subjects

from the same original H & Y class). That being said, the predictions closely

match the labelled H & Y scores (i.e. no discrepancy in the general PD stage), as

the error scores between the two are low (MAPE ≤ 26%) and the similarity scores
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are high (e.g. cosine similarity≥0.88). However, this ”gait quality scale” would

require further testing of a larger cohort of patients from all H & Y stages and an

evaluation of its benefits in aiding clinical assessment.

The stepwise linear model, which is widely used in medical research [89], performed

inadequately, based on the large values for all the error metrics (e.g. MAE, SSE,

MAPE) and the low values for all the similarity metrics (e.g. cosine similarity,

FAC2, correlation). This matches the findings of [89] who in epidemiological re-

search found that stepwise models, produce high errors when the data has a large

number variables and multicollinearity - which is the case for the features in this

study.

5.1.1.4 Most significant features for PD discrimination

The agreement between the selected features of the random forest and the ANOVA

selection amounted to 26 features (87% agreement between the 2 sets). These

features which, the techniques implied as significant to the PD stage discrimi-

nation are listed in Table 4.10. The ANOVA and random forest selected features

were compared as they produced the highest discrimination accuracy and untrans-

formed features. The PCA features were not considered in this comparison, as the

principal components (PCs) are transformed as a linear combination of features.

The features in Table 4.10 yield an insight on the instrumentation. The finding

that force features do not play a significant role implies that collecting force sensor

data may be redundant for future experimentation. Rather the accelerometer and

encoder data are important.

The analysis of the feature categories may also provide an insight into PD gait

characteristics which can used be in future research. Previous studies focused on

spatio-temporal features, particularly on step time, step length and step velocity,

derived from either wearable sensors ([38], [48]), as well as instrumented walkers

[4, 39].
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The significant features in this study– those that offered the best H & Y discrimi-

nation - however contain features from all the feature categories: spatio-temporal

(4/26), frequency domain (2/26), information theoretic (9/26) and statistical fea-

tures (11/26). Although, step length and step velocity are among the significant

features in this analysis, corroborating earlier studies, the percentage of informa-

tion theory and statistical features in the selected feature set was much larger, as

conveyed in both Table 4.10 (important features according to all 3 selection meth-

ods in the study) and Figure 4.9 (ANOVA features–the best selection method

according to this study analysis). This finding implies that PD gait analysis of

PD should not be limited to the observable, time-based features, but need also

include the more abstract and mathematical features. Including all four feature

categories in future research on PD gait analysis, whether using similar or different

sensors data, may yield additional insight into PD gait deterioration with disease

severity.

The larger feature sets, resulting from an initially larger feature space, compared

to those used in previous studies, and the expanded categories are due to the

fact that many of these features are either unique to this study, due to the data

acquisition procedure (e.g. turning features, walk ratio etc) or were proposed in

more recent research (post-2016)[45, 46]. Among these features are the statistical

features such as Q1, Q3, IQR, median and information theory features such as

entropy and mutual information. The results support a recommendation to use

the procedure as well as the additional features in future studies.

5.1.2 Patterns in different PD severity groups

The patterns found for the different PD groups will be discussed in the following

sections. Firstly, inter-group variability and similarity will be discussed. Secondly,

it will address the statistical model of a generalized pareto probability distribution.

Thirdly, the within-group CI analysis and overlap validation of the features will

be discussed.
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5.1.2.1 Inter-Group variability and similarity patterns

The analysis of the CI’s for different features, as well as, the probability distri-

butions (e.g. Figures 4.12-4.15) illustrated that although accurate discriminations

were achieved between all PD stages, certain PD stage pairs are more closely re-

lated to each other than others. The findings are discussed in the following points.

(i) H & Y 0 and 1 are closely related : Control subjects and subjects with H & Y

1 have differences but are still closely related, as per the CI plots in Figures 4.30 -

4.33. This finding was corroborated by the neurologist in the clinic as reasonable,

since H & Y 1 is unilateral disease - with minimal or no functional disability, which

may be similar to controls. Conversely there are heterogeneous symptoms in this

stage, where certain patients may display different combinations of symptoms and

which may not pertain to gait [15].

(ii) H & Y 2 is significantly different from H & Y 1 and 2.5 : The finding that

H & Y 2 is different from H & Y 1 is understandable as the disease becomes

bilateral at H & Y 2 and produces more severe symptoms, among which are the

gait related symptoms. An interesting finding was the difference in CI’s between

H & Y 2 and 2.5, as it highlights the benefit of a finer H & Y scale as the disease

progresses. The difference between H & Y 2 and 2.5 is further corroborated by

[90] who found differences between H & Y 2 and 2.5 when assessing features not

used in this study such as the ground reaction force (which is the force exerted on

the body per footfall typically measured using wearables).

(iii) H & Y 2.5 and 3 are closely related : H & Y of 2.5 and 3 were more closely

related than H & Y 2 and 2.5. This observation, however, does not pertain to all

the features used for the discrimination: Some features had CI overlap (e.g. turn

velocity), whilst others had no overlap (e.g. mean step length). Interestingly, a

large percentage of features with no CI overlap appeared in both feature subsets,

selected by the ANOVA and random forest as shown in Table 4.9.

(iv) H & Y 4 is significantly different from H & Y 3 : The difference between H

& Y 3 and 4 is reasonable as H & Y 4 patient’s manifest with more significant

instability and gait impairment. Additionally, the probability distributions shown
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in Figures 4.12-4.15 further demonstrate the significant difference that the H & Y

4 stage has compared to other PD stages.

The class imbalance of the number of subjects in each of the different H & Y

groups was noted in this study, especially in the smaller number of H & Y 4

subjects. However, the analysis yielded that the H & Y 4 patients, exhibit marked

differences in their gait features compared to the other PD stages, that are even

easily discernible in visual inspection of their gait recorded signals. This discernible

difference is also conveyed in the CI plots in Figures 4.30-4.33, as well as, in the

probability distributions in Figures 4.12-4.15. This discernible difference mitigates

some of the effects of the imbalance. Rather, it is H & Y 2 and 3 that are

typically more challenging to distinguish from each other and thus required more

test subjects (as was the case for this study).

5.1.2.2 Statistical model: Most prevalent probability distribution

Table 4.3 and Table 4.4 for the 3m and 10m tests show that the most prevalent

distribution fit to the features is the generalized pareto distribution. Moreover, a

greater number of features are modelled by that distribution as the H & Y score

increases. The percentage of features out of the total feature set, that followed the

generalized pareto was under 50% for the earlier PD stages (H & Y 1,2) and greater

than 80% for the more severe PD stages (H & Y 3.4). It was noted that there is

an exception in this trend for H & Y of 2.5, where the percentage of features with

that distribution drops. This finding may imply that the H & Y stages of 0 and

1 are not well characterized and that the H & Y 2.5 may be heterogeneous in the

characteristics of the features when compared to the other H & Y groups.

The second and third best fit distributions for the features varied and include: t-

location scale, Rayleigh (special version of the Weibull distribution), Generalized

Extreme Value, Loglogistic and Exponential. All these distributions except the

Exponential distribution are heavy-tailed distributions like the generalized pareto

distribution.
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It was found that the features which changed their best fit probability distribution,

as PD severity increased were mainly information theoretic (mutual information,

correlation, entropy) and statistical (MSE, IQR, standard deviation of accelera-

tion). This demonstrates the value of the information theoretic and statistical

features to the discrimination. That being said, the spatio-temporal features of

the number of steps and TUG time also exhibited this trend.

5.1.2.3 Implication of the generalized pareto distribution

Analysing the generalized pareto probability distributions for each different PD

stage as per Figures 4.12-4.15 shows the differences between the PD stages and

how the parameters of the distribution changes based on the PD stage. Whilst

some class differences are observable in the distributions, it did also further high-

light the similarities between stages. The following have differences between the

distributions but are still closely related to each other: H & Y 0 and 1 and then

H & Y 2, 2.5 and 3. H & Y 4 on the other hand is completely different from the

other stages. This corroborates the discussion in Section 5.1.2.1. That being said,

there is a limitation in the small sample size of H & Y 4 subjects and this finding

needs to be verified with a greater number of subjects in this group.

The prevalence of heavy-tailed distributions and the pronounced, narrow peaks

and long tails for the generalized pareto distribution, as can be seen in Figures

4.12-4.15 implies that there is a large probability of a disproportionate value in

the sample [91]. The term disproportionate refers to a feature value which is sig-

nificantly different from the other values within the same class (PD stage). This is

an understandable finding as at the same stage of PD, certain symptoms manifest

strongly for certain patients and not for others [15]. This would lead to a dis-

proportionate value for the specific feature, which these heavy-tailed distributions

model. These preliminary observations need to be validated using a much larger

number of patients, in all groups.

The distribution findings was then compared to a study by [92, 93]. They proposed

that a log-normal model of the velocity signal (obtained from inertial sensors) could
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be used to estimate the cranio-caudal signature during a turn (distinct motion of

the head followed by the trunk). This was then applied to PD to assess the

viability of a lognormal model in cases of mobility disorders [93]. The lognormal

distribution was shown to adequately model the cranio-caudal feature [93]. Thus,

the distribution could be used to estimate the cranio-caudal feature value and may

even represent the generating process associated with the neuromuscular system

[92, 93].

The lognormal distribution was then contrasted with the generalized pareto dis-

tribution model found through the current study. Firstly, both the lognormal and

generalized pareto distributions are heavy tail distributions. Secondly, [94] states

that log-normal and generalized pareto distributions are alternative distributions

to describe the same quantities. This validates the generalized pareto distribution

model fitted to PD features and the distribution could also be used to estimate

feature values by sampling values from the distributions for each PD stage.

5.1.2.4 CI Analysis and overlap validation

The analysis of the pairwise CI overlap of H & Y groups for each individual

feature, served as a statistical validation of the class separability. The results

in Table 4.9 indicate that the random forest selected features are worse than the

ANOVA selected features: Only 63% of the random forest selected features met the

CI significance criteria compared to 80% of the ANOVA selected features. These

findings may serve as another indication that the ANOVA selected feature set

enables a better discrimination, as indicated by the machine learning classification

performance, and a validation, by using a different statistical analysis

Finally, the higher discrimination accuracy using the ANOVA selected features,

when compared to the random forest selected features may be explained using the

within-group CI results. The greater percentage overlap between the CI significant

features and the ANOVA selected features implies that ANOVA feature selection

yielded features which had greater discrimination ability and may account for the

superior discrimination accuracy when using these features.
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5.1.3 Implications from signal pre-processing methods

A challenge in this research was the instrumentation used. Although chosen for its

low-cost and enhanced usability, the inexpensive sensors had large levels of signal

noise, as well as measurement imprecision. Moreover, the mounting of the sensors

on a walker instead of directly on the body, made basic gait parameters, that

are easily obtained from wearables much harder to compute. Specifically, these

properties, necessitated an accurate detection of footfalls, the basic parameter of

the gait cycle, to ensure reliable feature derivation.

5.1.3.1 Accurate footfall detection using EMD and peak detection ap-

plied to the z-axis accelerometer

Accurate footfall detection is necessary to quantify human walking patterns espe-

cially in assessment of gait disorders [76]. The novel z-axis accelerometer algorithm

proposed in this study which made use of EMD and peak detection showed su-

perior accuracy (86% footfall detection accuracy) when compared to a previously

reported algorithm by [39]. This work was used for performance comparison, as it

was one of few similar studies which used exo-body sensors rather than a wearable.

It was also found as per the results in Table 4.2, that IMF 3 was the most suitable

IMF to reconstruct the signal for both implemented algorithms, obtaining the best

results by removing high frequency noise and baseline drift, whilst maintaining the

peaks in the signal, which were not as easily discernible in the raw signal. The

discernible peaks facilitated footfall detection and the subsequent extraction of

relevant gait features. Reconstruction from IMF 1 performed poorly as it is simply

the original noisy signal. Reconstruction from IMF 2 did remove signal noise and

had an accuracy score of 82%, however reconstruction from IMF 3 still yielded

superior results. Reconstructing from IMF 4 also performs poorly, by discarding

the first 3 IMFs, thus losing important features and signal information.
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5.1.4 Main Findings Summary

The following are the main findings of the research:

1. PD stages can be discriminated using kinematic signals obtained from a

low-cost and noisy walker mounted sensor data.

2. A subset of the most relevant features, derived from this data, that provided

the best discrimination between PD stages was assessed.

3. A generalized pareto distribution was indicated as the best fit probability

distribution for the majority of PD features.

4. Confidence intervals and probability distributions validate the machine learn-

ing methods’ class separability between different PD stages.

5. A novel quantitative footfall detection algorithm achieves an accuracy of 86%

in detecting footfalls and improved on previous studies.

5.1.5 Application of the findings

This study demonstrated the feasibility that walker mounted sensors can reliably

discriminate between PD stages. This capability opens up the potential for health-

care professionals to use such device for PD progression evaluation, providing a

patient-centred care with minimal cost and labour. Moreover, the low-cost and

simplicity may enable patients to use this device at home and integrate in an

eHealth monitoring scheme.

In addition, the novel footfall detection algorithm and the statistical model may

be used as tools for other studies. Footfall detection is not only relevant to PD

and could be used in gait assessment (using similar instrumentation) for other

gait and movement disorders (such as elderly after falls or people after surgery).

The probability distribution is shown to model feature values for the different

PD stages. These distributions could be used to estimate values for features by

sampling a value from the probability distribution for the PD stage.
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5.1.6 Limitations and Future Work

1. While the footfall detection algorithm was quantitatively validated using

video data, its validation was done using control subjects who mimicked PD

gait and was therefore limited. Future studies could validate the algorithm

using a ground truth of video with actual PD patients.

2. The regression model proved the possibility of a finer H & Y scale, that

pertains to gait. However, a significant limitation was that there was no

ability to validate the finer, intermediate scores against ground truth scores.

A further study could be conducted, where the finer scores are assigned

by healthcare professionals, to analyse the significance of this scale from a

clinical perspective.

3. The H & Y scores, which served as labels to the data, were assigned in a

single clinic, by the same neurologists, which may produce a bias. A multi-

center study that would employ different clinicians can assess that there is

no bias in the H & Y scores.

4. In order to validate the generalized pareto distribution as a valid statistical

model, a larger study with more subjects in each H & Y group is needed.

5.2 Conclusion

The primary goal of the research was to determine the extent to which kinematic

signals obtained from walker mounted sensors could be used to provide an auto-

mated, quantitative and reliable discrimination between PD progression stages.

The signal processing and machine learning methods applied to the noisy walker

mounted sensor data achieved a 93% (3m) and 94% (10m) accuracy in discrimi-

nating between different H & Y stages of PD.

The most relevant features that provided this discrimination were obtained and

may provide a quantitative insight into gait changes as the disease progresses. The

majority of these features were information theoretic and statistical.
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The research also indicated a generalized pareto distribution as a best fit distribu-

tion of PD features, as manifested in gait, as well as the possibility of estimating

feature values from the distribution. A novel footfall detection algorithm improved

upon other algorithms.

There is scope for future improvements to this study, particularly in terms of val-

idating the algorithms and the findings with larger cohorts of patients. However,

this research has shown that optimized signal processing and machine learning

can overcome the limitations of low-cost and noisy sensors and offer good discrim-

ination based on their acquired signals. The study also implied that quantitative

methods have the potential to assist medical practitioners in the evaluation of

their PD patient’s disease stage.

In conclusion, this research confirmed the hypothesis that signal processing and

machine learning techniques applied to kinematic signals acquired from low-cost

and noisy sensors mounted on an exo-body walker can provide a quantitative

measure of PD progression and discriminate between clinical disease stages.
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Appendix B

Additional Results

This appendix presents additional results including the full list of ANOVA sig-

nificant features and features similar between the significant CI features and the

ANOVA features.
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Table B.1: ANOVA Significant Features - 3m Test
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Table B.2: ANOVA Significant Features - 10m Test
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Table B.3: Features Similar between the significant CI features and the
ANOVA features

Mean Step Velocity rms accel Q1

Mean Encoder Difference y accel Q1

Standard Deviation Turn Velocity radius Q1

Mean Step Length y accel IQR

Correlation x-z z accel IQR

Mean Turn Velocity azimuth range

y half power y accel MSE

z accel 3db bandwidth turn y accel TKEO

y accel Q3 Correlation x accel-radius

z accel Q3 Mutual Information z accel-radius

RMS Accel Mode Mutual Information z accel-rms

Radius Mode Cross Entropy y accel-radius

x accel median Standard Deviation Step Length

kurtosis azimuth Standard deviation acceleration

x accel mean freq Number of steps

z accel mean freq z Accel Median

mean f diff z Accel 3dB Bandwidth

y accel variance elevation median

walk ratio skewness elevation

total harmonic distortion y z accel mean

x accel mean freq step regularity

z accel mean freq harmonic ratio

y 99 power y accel ZCR

y half power turn Cross Entropy z accel-elevation

y 99 power turn elevation mean
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Table B.4: Features Similar between the significant CI features and the ran-
dom forest selected features

Mean encoder diff y accel MSE

Number of steps Mutual Information z accel-radius

Std turn Velocity Mutual Information z accel- RMS

Mean turn Velocity Mean Step Velocity

Walk ratio Total Tug time

y half power RMS accel entropy

y 99 power RMS accel median

y accel Q1 x accel IQR

elevation mean x accel MSE

mean step length azimuth MSE

std accel azimuth entropy

y accel var Correlation z accel- azimuth

Total Harmonic Distortion y Mutual Information x accel - y accel

radius Q1 Mutual Information y acce- radius

y accel Q3 skewness azimuth
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