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Abstract 

The goal of this study was to develop a standard and reproducible method for the propagation 

of Euoniticellus intermedius (Coleoptera: Scarabaeida) larvae gut microbial consortia and 

subsequently use them in the production of bio-ethanol and biogas. Homogenized midgut and 

hindgut sections of the larvae were enriched in 4 different media (NB, TSB, M1A and M1B) 

under oxic conditions for 4 weeks with TSB giving the highest microbial counts with 3 x 10
7
 

CFU/ml for the hindgut consortium and 1.9 x 10
7
 CFU/ml for the midgut consortium. M1B 

enriched microbes gave the lowest counts at 1.1 x 10
7
 CFU/ml and 1.0 x 10

7
 CFU/ml for 

hindgut and midgut consortium, respectively.  

Midgut consortium enriched in M1B showed the greatest visible filter paper degradation 

along with the unenriched midgut consortium from the dung beetle larvae. However, HPLC 

analysis only detected D-glucose from filter paper degraded by hindgut microbes from TSB 

(0.34 g/l), midgut microbes from M1B (0.03 g/l) and hindgut microbes from the dung beetle 

(0.09 g/l).  

Ethanol detected from the experimental runs could not be conclusively attributed to gut 

consortia metabolic activity. Methane production was detected from the cultures incubated 

anaerobically for 8 weeks. The hindgut consortium consistently gave the highest 

concentration of methane with an average of 0.034 moles/l of methane produced from 

medium AM1 (carbon sources were D-glucose and D-lactose).  

Automated ribosomal RNA intergenic spacer analysis (ARISA) showed a clear distinction 

between the bacterial communities found in the midgut and hindgut of E. intermedius third 

instar larvae.  
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Chapter 1 

Introduction 

1.1 Fossil fuels 

The use of fossil fuels has generally come to be accepted as unsustainable due to reduction of 

resources and the amassing of greenhouse gases in the environment that have already 

surpassed the threshold of 450 ppm CO2 (Schenk et al., 2008; Chisti, 2007; Demirbas, 2008; 

Balat and Balat, 2009). An increasing gap between the energy needs of the industrialized 

nations and the failure to replace this need with the limited sources of energy like the fossil 

fuels in turn enhance the dangers of global warming and energy crisis (Mohan et al., 2008). 

Balat and Balat (2009), state that known petroleum reserves are difficult to access and a 

global peak on oil production has been put at between 1996 and 2035 by different studies.  

Motor vehicles are responsible for a significant proportion of urban air pollution in 

developing countries (Balat and Balat, 2009).  They account for over 70% the world’s carbon 

monoxide emissions and 19% carbon dioxide emissions (Goldemberg, 2008). Hansen (2004), 

states that there are over 700 million light duty vehicles on roads around the world and the 

numbers are predicted to rise to 1.3 billion by 2030 and to over 2 billion vehicles by 2050 

with most of the increase coming in the developed world. This increase will affect the 

stability of ecological systems, global climate and global oil reserves (Balat and Balat, 2009).  

Of late, there has been a great disquiet on the possible impacts of greenhouse gases on the 

global weather system (Zecca and Chiari, 2010). The world has witnessed the eight warmest 

years in history, a rise in sea levels, higher number of hurricanes being recorded than ever 

before and deadly infectious diseases spreading beyond the tropics. Khasnis and Nettleman 
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(2005), state that global warming will have serious implications in human health. Climate 

refugee migration is going to result in changes on disease patterns. Drought, induced by 

change in weather systems as a result of global warming, will leave human beings more 

vulnerable to diseases due to compromised immunity systems (Khasnis and Nettleman, 

2005). 

 

Clearly the world is in great need of alternative greener energy sources that practically can 

sustain the globes’ demand for energy. The very existence of mankind on earth lies in the 

finding of an alternative, environmentally friendly fuel. It is then that the interest in the use of 

bio-fuels world wide has strongly grown in recent years.  Renewable, low carbon foot print 

fuels are necessary for the environmental and economic sustainability (Chisti 2007; Schenk et 

al., 2008), and healthy living conditions for humans (Khasnis and Nettleman, 2005). 

1.2 Bio-fuels  

Bio-fuels are liquid, gaseous or solid fuels made using organic material, such as agricultural 

crops, municipal, agricultural and forest wastes (Balat and Balat, 2009; Demirbas, 2007). 

Bio-fuels can significantly reduce emissions by vehicles if they are widely used (Balat and 

Balat, 2009). Biomass energy technologies use waste or plant material to produce energy 

with lower level of greenhouse gas emissions than fossil fuel sources (Sheehan et al., 1998). 

They has been an increase in the use of advanced systems and improved bio-energy 

transformations utilizing a range of bio-fuels by developed nations (Puhan et al., 2005). Fig. 

1 and Table 1 clearly show increased interest in bio-fuels (bio-ethanol) production. 
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A variety of fuels can be produced from biomass resources including liquid fuels like ethanol, 

methanol and bio-diesel (Balat and Balat, 2009; Chisti, 2007; Demirbas, 2007; Jumbe et al., 

2009; Mshandete and Parawira, 2008), and gaseous fuels such as hydrogen and methane 

(Mshandete and Parawira, 2008; Demirbas, 2008; Tait et al., 2009; Kaparaju et al., 2009; 

Table 1: World ethanol production by Country, 2005 

Adapted from Mathews, (2007) 

Adapted from Mathews, (2007) 

Fig 1: World ethanol production, 1975 – 2005  
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Coalla et al., 2009; Lee et al., 2009; Zhu et al., 2007; Wang et al., 2009; Kaparaju et al., 

2008; Schenk et al., 2008).  

There are a numerous reasons why bio-fuels have been seen as potential replacements for 

fossil fuels by both developing and industrialised countries (Demirbas, 2007). These reasons 

range from energy and homeland security, environmental concerns, foreign exchange savings 

and socio-economic issues related to the rural sector (Demirbas, 2008). However, the 

prospect of oil exhaustion, the concerns of energy security and global warming are the main 

motives of bio-fuels promotion by public authorities in industrialized countries (Gnansounou 

et al., 2009). 

In general, bio-fuels have the following advantages (Puppan, 2002): 

a.) they are made using readily available organic material,  

b.) they have a low carbon foot print, 

c.) there are many benefits for the environment, economy and consumers in using bio-

fuels and  

d.) they can be degraded biologically and do not persist in the environment for too long.  

Vasudevan et al., (2005), states that there are three ways in which biomass can be 

transformed to biofuels, namely thermochemical, chemical and biological. Biomass can be 

converted to bio-fuels via chemical (bio-methanol and biodiesel production), thermochemical 

(bio-crude oil, bio-syngas, bio-hydrogen production) and biochemical (bio-ethanol, biogas, 

bio-hydrogen and biodiesel production) methods (Demirbas, 2008).  

Biomass seems to be an appealing feedstock for three main reasons. First, it is a renewable 

resource that can be sustainably developed in the future. Secondly, it appears to have good 

positive environmental properties resulting in no net release of carbon dioxide and very low 
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sulphur content. Thirdly, it appears to have significant economic potential provided that fossil 

fuel prices increase in the future (Cadenas and Cabezudo, 1998).   

The abundance of biomass sources makes bio-fuels production more sustainable compared to 

other alternative green energy sources (Demirbas, 2008). The added advantage with biomass 

is its ability to produce bio-fuels in all three states of matter, which can be stored and used at 

places a distant from where they were made.  

Industrialised and developing countries have set long term goals to substitute bio-fuels for 

fossil fuels. EU-Commission (2008), states that these goals are often in the range of 5-10% 

substitution to be reached within the next five years. However, today’s production, in most 

countries, is under 2% and more effort has to be made to increase the percentage supplied by 

bio-fuels to reach these goals (Royal_Society, 2008). Scientific notion is now reaching an 

agreement that bio-fuels could account for 10% of all fuels by 2010, and for 20% by 2020, 

rising to 50% of a (reduced) consumption of transport fuels by 2050 (Mathews, 2007). 

The use of bio-fuels has had its own fair share of problems. Among these problems has been 

the dilemma of using biomass resources like maize, rice and sugar cane to produce the so-

called first generation bio-fuels (Zah and Ruddy, 2009; Balat and Balat, 2009; Stein, 2007). 

Though it may seem beneficial to use the readily available resources like maize and sugar 

cane, it raises many concerns about major environmental problems, food shortages and 

serious destruction of vital soil resources (Pimentel, 2008). The growth of biomass for bio-

fuels production on arable land could also impact negatively on food security due to a 

reduction in agricultural land available for growth of food crops for human consumption.  

The draw back in producing bio-ethanol from sugar or starch is that the feedstock is 

expensive and is demanded for other applications as well (Enguidanos et al., 2002). The high 
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feedstock price then translates to a high bio-fuel price which makes it uncompetitive to 

petroleum fuels. 

Lignocellulosic biomass is potentially seen as being able to provide a great portion of the raw 

material needed for bio-fuel production (second generation bio-fuels, that is bio-fuels 

produced from lignocellulosic organic material where as first generation bio-fuels are 

produced from agricultural crops like maize, sugar and wheat) in the medium and long term 

due to its low cost and abundance (Gnansounou et al., 2005). However, conversion 

technologies for producing bio-fuels from lignocellulose are under development and have not 

been demonstrated yet to be commercially viable (Balat and Balat, 2009) 

1.2.1 Bio-ethanol 

Bio-ethanol is produced by hydrolysis of organic material, followed by alcoholic 

fermentation in order to produce ethanol (Demirbas, 2008). Polysaccharides in plant 

materials can be transformed to monosaccharides by hydrolysis which is normally an enzyme 

catalysed process. Enzymatic hydrolysis of cellulose to glucose through treatment by 

enzymes is a major processing step in the ethanol plant (Kumar et al., 2005). The glucose is 

subsequently fermented anaerobically and transformed to ethanol by the action of 

microorganisms, usually yeasts (Demirbas, 2008) like Saccharomyces cerevisiae.  

Bio-ethanol can be blended with petroleum at different mixtures, for example E10 is a fuel 

mixture of 10% ethanol and 90% petroleum which can be used without having to adjust the 

car’s engine (Demirbas, 2008). In fact, bio-ethanol has a higher octane number (Yoosin and 

Sorapipatana, 2007; Demirbas, 2008) or antiknock properties (Demirbas, 2008) compared to 

petroleum. Bio-ethanol also has broader flammability limits, higher flame speeds and a 

higher heat of vaporisation (Balat and Balat, 2009). These properties allow for a higher 
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compression ratio and shorter burn time which lead to theoretical advantages over petroleum 

fuels in an internal combustion engine (Balat, 2006).  

However, bio-ethanol has the following disadvantages:  

a.) it vaporizes more easily (Demirbas, 2008),  

b.) has lower energy density,  

c.) it is corrosive and  

d.) has low vapour pressure and toxicity to ecosystems (Dufey, 2006).  

Lignocellulosic materials serve as a less expensive and most available feedstock (Sassner et 

al., 2008). Producing bio-ethanol form lignocelluloses, a non-food source for humans, is seen 

as a solution to the environmental and food-versus fuel concerns that are the major draw 

backs of producing bio-ethanol from food crops like sugar or corn (Seelke and Yacobucci, 

2007). 

1.2.2 Biogas 

Biogas, a mixture of methane and carbon dioxide, is an environment friendly, clean, cheap 

and versatile fuel (Kapdi et al, 2005) produced by an anaerobic digestion process. The 

digestion process occurs in three sequential stages; in the first stage, hydrolytic 

microorganisms convert organic matter into a form that can be utilised by a second group of 

microorganisms, acetogens, in the second stage. Acetogens produce organic acids which are 

utilised by methanogens to produce methane in third and final stage of methane production 

(Parawira et al., 2004; Kelleher et al., 2000; Marty et al., 2001; Demirbas, 2008).  

There are a number of factors that impact on the relative measure of biogas produced during 

the anaerobic digestion process (Demirbas, 2008; Rastogi et al., 2008). Amongst these factors 

are pH, temperature, hydraulic retention time, carbon/nitrogen ratio and microbial balance 
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(Demirbas 2008; Rastogi et al., 2008; Demirel and Yenigun, 2002; Chen et al., 2008). 

Temperature is the most important parameter in the successful production of biogas 

(Demirbas, 2008; Rastogi et al., 2008; Demirel and Yenigun, 2002; Chen et al., 2008). 

1.2.2.1 Effect of temperature on biogas production 

The most optimal temperature for the activity of anaerobic bacteria is 36.75 to 54.45 ºC with 

a temperature tolerance range from under 0 ºC to over 57.25 ºC (Demirbas, 2008). 

Temperature does not only affect the carbon and electron flow, but it also affects the 

composition of the methanogenic consortium (Chin et al., 1999; Fey and Conrad, 2000). 

Chen et al., (2008), states that temperature affects the growth rate of microorganisms and the 

concentration of free ammonium.  A high temperature normally results in increased microbial 

metabolic activity. However, there is also an increase in the concentration of free ammonium 

as temperature increases (Chen et al., 2008). Kroeker et al., (1979), states that free ammonia 

is the main cause of anaerobic digestion process inhibition since it is freely membrane-

permeable  

1.2.2.2 Effect of pH on biogas production 

In a review written by Chen et al., (2008), pH is stated as one of the inhibitors of anaerobic 

digestion. This is due to the fact that pH affects the concentration of total ammonia nitrogen 

and growth of microorganisms (Kroeker et al., 1979; Hashimoto, 1983, 1984; Hansen et al., 

1999). Increase in pH would result in shift to a higher free-ammonia-to-ionized-ammonia 

ratio (Chen et al., 2008).  

1.2.2.3 Effect of volatile fatty acids on biogas production 

Volatile fatty acids are key intermediate metabolites in the anaerobic digestion process 

(Wang et al., 2009; Wang et al., 1999). Acetic acid and butyric acid are the main fatty acids 
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from which methane is produced by methanogens (Wang et al., 2009; Wang et al., 1999). All 

higher volatile fatty acids have to be first transformed into acetic acid before they can be used 

for methane production (Wang et al., 2009). 

1.2.2.4 Effect of microbial imbalance on biogas production 

The inability of a significant number of biogas digesters to operate efficiently has generated 

an interest to look into a more detailed role of microorganisms in biogas production (Rastogi 

et al, 2008). Microbial imbalances lead to reduced efficiency of a biogas plant (Rastogi et al, 

2008). Acid forming and methane producing bacteria, which have a key role in methane 

production, have been reported to differ widely in terms of physiology, nutritional needs, 

growth kinetics and sensitivity to environmental conditions (Pohland and Ghosh, 1971). The 

inability to maintain the balance between these two groups of microorganisms is the main 

cause of anaerobic reactor failure (Demirel and Yenigun, 2002). 

1.2.2.5 Methanogens 

Methanogens are strict anaerobic microorganisms which are methane producing that belong 

to the kingdom Archaebacteria (Abbanat et al., 1989; Zinder, 1998). There are found at the 

end of a chain of a group of anaerobic microorganisms that synergistically work together in 

transforming biomass to methane (Abbanat et al., 1989; Zinder, 1998). The methanogens 

metabolize acetic, formic acid or hydrogen produced by acidogens to produce methane 

(Abbanat et al., 1989; Zinder, 1998; Wang et al., 2009). Methanogens are categorized into 

three genuses, namely Methanobacterials, Methanococcales and Methanomicrobiales (Jones 

et al., 1987). 
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Hydrolysis and 

acidogenesis 

STAGE 1 

 Complex 

organics 

 

       4%                76%          20% 

    

  Higher organic 

acids 

 

 24%  52%            

Acetogenesis 

and 

dehydrogenation 

STAGE 2 

H2  Acetic acid 

 28%  72% 

Methanogenesis 

STAGE 3 

 CH4  

Fig 2: Methane production (McCarty, 1982).  

There are two important pathways used in the dissimilation of organic materials during 

methane production; the reduction of carbon dioxide with hydrogen or formate as the electron 

donors and the conversion of acetate to methane and carbon dioxide (Abbanat et al., 1989). 

There are many one carbon carrying coenzymes, only found in methanogens, which are 

involved in the carbon reduction pathway. These coenzymes are methanofuran, 

tetrahydromethanoprotein and coenzyme M (Abbanat et al., 1989; Zinder, 1998).  

Eikmanns and Thauer (1984), states that acetate is first activated before the cleavage of the 

carbon-carbon bond in electron and carbon transfer as it is transformed to methane. Increased 

levels of acetate kinase and phosphotransacetylase in Methanobacterium formicicum cells 

grown on acetate, suggest the combined process of the two enzymes may drive the activation 

of acetate to acetyl-CoA in this organism (Terlesky et al., 1987). 
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1.3 Insect gut microbial consortia 

Brune (2009), states that insects are the most thriving class of land animals, with respect to 

both species diversity and biomass. One important reason that has been attributed to this 

success has been their ability to feed on a variety of diets (Harada and Ishikawa, 1993) which 

includes fibre-rich foods (Brune, 2009). These feeding habits are closely related to endo-

symbionts harboured by the insects with an estimated 10% of all insect species believed to 

contain microorganisms within their cells (Harada and Ishikawa, 1993). These intracellular 

symbionts are harboured by epithelial cells of the gut or some special cells present closely 

around the gut (Buchner, 1965; Ishikawa, 1989). 

Research work by many scientists has shown that different insects have gut microbial 

consortia capable of digesting cellulose or hemicelluloses material into many different 

metabolites such as organic acids, ethanol and biogas (Egert et al., 2003; Egert et al., 2005; 

Lemke et al., 2003; Tholen et al., 1997; Tholen et al., 2007; Italo et al., 2005; Wagner and 

Brune, 1999; Bignell, 1994; Brennan et al., 2004; Tokuda and Watanabe, 2007). These gut 

microbial consortia have been shown to play a vital role in the survival of these insects. 

Eutick et al., (1978) and Fakatsu and Hosokawa (2002), have shown that loss of the gut 

consortia often results in abnormal development and reduced survival of the insect host. 

Egert et al., (2003) characterised the microbial community structure of bacteria and 

archaebacteria in the midgut and hindgut of the humus feeding larvae Pachnoda ephippiata 

(Coleoptera: Scarabaeida) using culture independent techniques. They showed that the 

bacterial consortium was dominated by phylogenetic groups with a fermentative metabolism. 

This was supported by high concentrations of lactate and acetate in both gut compartments 

(Lemke et al., 2003). Actinobacteria were dominant in the midgut while the hindgut was 

dominated by members of the Cytophaga-Flavobacterium-Bacteroides family (Lemke et al., 
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2003). Methanobactriaceae related 16s rRNA genes were most frequent in the hindgut 

(Lemke et al., 2003). 

Lemke et al., (2003) showed the ability of the gut consortia in cellulose degradation only 

under oxic conditions as well as methane production exclusively by the hindgut microbial 

consortia. Analysis of the physicochemical gut conditions larvae showed the two gut 

compartments, midgut and hindgut, to have different pH values and redox potentials. The 

midgut was shown to have a more alkaline pH with a maximum value of 10.1 and 10.7 whilst 

the hindgut was slightly alkaline with a pH of 8.4 ± 0.1 (Lemke et al., 2003). The reducing 

potential was shown to shift from oxidising conditions in the midgut of the first instars to 

reducing conditions in the second and third instar larvae. The hindgut was shown to be 

reduced at all the stages of growth (Lemke et al., 2003). 

Egert et al., (2005), showed that Melolontha melolontha larvae also had a similar consortia 

pattern with that for Pachnoda ephippiata with the major difference being that 

Methanobrevibacter and not Methanobacteriaceae were the methanogens found in the 

hindgut. This may suggest that insects from the same order and subfamily may have 

significant similarities in their gut consortia. 

Gut microbial consortia found in termites have been shown to play a role in the digestion of 

lignocellulose material ingested by termites (Brune, 1998; Tokuda and Watanabe, 2007; 

Tholen et al., 1997). However, Brune (2009) and Tokuda and Watanabe, (2007) quickly point 

out that digestion of cellulose in termites is a combined effort of enzymes produced by both 

the host and the symbiotic consortia. Tokuda and Watanabe (2007) showed a significant 

decrease in cellulase activity within the hindgut of the termite Nasutitermus takasagoensis 

that had been treated with an antibiotic, implying a bacterial origin of the hindgut cellulases. 

In contrary, the midgut cellulase activity was not affected by antibiotic activity (Tokuda and 
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Watanabe, 2007). Their experimental results suggest the termites to be the source of the 

enzymes and not the bacteria as they would have been killed by the antibiotics.  

In addition to their ability to digest cellulose, termites also have the ability to produce 

methane (Wagner and Brune, 1999; Brune, 2009; Brauman et al., 1992; Shinzato et al., 1992; 

Wheeler et al., 1996; Bignell et al., 1997; Sugimoto et al., 1998). Wagner and Brune (1999) 

showed that termite gut emissions were more pronounced in the P3/4a compartment; whereas 

low rates were only observed in the P1 and P4b compartments (Fig. 3). This possible 

indicates the influence of the different microorganisms colonising the different gut 

compartments in methane production. As a result of difference in gut consortia, they could be 

a difference in concentrations of methane in different guts. 

Brune (2009), states that the only insects known to produce methane are termites, 

cockroaches and scarab beetles. Methanogenesis occurs in the hindgut and is fueled by 

hydrogen and reduced one-carbon compounds that are formed during the fermentative 

breakdown of plant fiber and humus (Brune, 2009). 
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Fig 3: Structure of the intestinal tract of a lower termite (a), a higher termite (b), and a scarab 

beetle larva (c), crop (C) and the midgut (M) and hindgut (H) (Adapted from Brune, 2009). 

Critically important to the production of methane is the supply of substrates used by 

methanogens; hydrogen, formate or acetic acid. It has been generally shown that gut 

consortia in different insects use different substrates. Lemke et al., (2003), states that in 

cockroaches, hydrogen is transferred from the midgut to the hindgut where it is used by the 

methanogens as the electron donor in the process of methanogenesis. Similarly in termites, 

because of the proximity of the hydrogen producing and the hydrogen consuming 

compartments, hydrogen is used as the electron donor in methanogenesis (Wagner and Brune, 

1999).  

However, in scarab beetles like Pachnoda epphippiata, it has been shown that midgut 

fermentations are coupled to methanogenesis in the hindgut by formate transported via the 

hemolymph (Lemke et al., 2003) and possible acetate. As part of this research project, it will 

be critical to try and point out which substrate is utilised efficiently by E. Intermedius gut 

consortia in methane production.  
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1.4 Justification 

The world is quickly realising the need to find a new source of alternative energy as global 

warming becomes a big problem and world oil reserves become limited. Bio-fuels offer a 

reliable alternative and yet there are still not being extensively used. One of the major 

problems is their productive expense which translates to high product prices. One way of 

making them less expensive is by making the production process more efficient. Microbial 

starter cultures can play a vital role in improving the production of bio-fuels. Dung beetle 

larvae have gut microbial consortia that have the ability to degrade celluloid material to 

glucose and organic acids using them to produce bio-ethanol and biogas. The consortium is 

well balanced containing different microbes which work together synergistically in 

metabolising celluloid material to produce different metabolites particularly ethanol and 

biogas. The aim of this project is to isolate gut microbial consortia from dung beetle larvae 

and to propagate them to produce starter cultures that can be used in the production of biogas 

and bio-ethanol. 

1.5 Project Aim 

The main aim of this project is to evaluate the bio-ethanol and biogas production capabilities 

by the use of cellulose degrading  microbial gut consortia of the dung beetle larvae of E. 

intermedius (Coleoptera: Scarabaeida). 

1.6 Project objectives 

1. To develop a standard and reproducible method for the isolation, propagation and 

characterisation of dung beetle larvae microbial gut consortia. 

2. To evaluate dung beetle larvae microbial consortia in the production of bio-ethanol 

and biogas. 
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Chapter 2 

Materials and Methods 

2.1 Collection and maintenance of dung beetle Euoniticellus intermedius (Coleoptera: 

Scarabaeida) 

Live adult female and male dung beetles were collected on a farm south of Johannesburg, 

South Africa between September and October 2009.  Captured insects were placed into 

empty plastic (160mm x 130mm x 130mm) containers. The insects were bred in an insectry 

room in plastic (160mm x 130mm x 130mm) containers that were half filled with slightly 

moist soil. 

Cow dung (fresh stock that was kept in a –20ºC freezer for a week) was placed on the soil 

and three breeding pairs of beetles (3 males and 3 females) were placed in the containers. 

Every 3 – 4 days, fresh cow dung was placed in the container. Once a week the containers 

were sieved and any broodballs found were removed. Surviving breeding pairs were placed in 

a new container with fresh soil and dung. 

Collected broodballs were placed in a large (400 x 300 x 200mm) plastic container. These 

were covered with compact soil. A wet sponge was placed on the soil to keep it moist. Once 

beetles began to emerge, small plastic dishes filled with the dung were used as traps to 

capture them. These captured beetles were then used as the new breeding pairs to produce 

brood balls. 
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2.2 Dissection of the dung beetle larvae  

The dissection method of Lemke et al., (2003) was used with some modifications. A 

preparation dish filled with wax was sterilized leaving it for 24 hours covered with 70% 

ethanol. The dish was then placed in a laminar flow cabinet 2 hours prior to dissection to 

allow the ethanol to evaporate completely. Steel pins, forceps and scissors were sterilized by 

autoclaving (Vertical steam sterilizer, HL 341, Taiwan) for 15 minutes at 121ºC. Insect 

Ringer solution (0.9 g NaCl (Merck), 0.02g CaCl2 (Merck), 0.02g KCl (Merck) and 0.02g 

NaHCO3 (Merck)) was prepared following a protocol described by Hayashi and Kamimura 

(2001).  The insect Ringers solution was autoclaved for 15 minutes at 121ºC. 

Third instar larvae were used for all the experiments and all the dissection was done under the 

dissection microscope in a laminar flow cabinet. The larvae were first anesthetized by 

exposure to a nitrogen, hydrogen and carbon dioxide (71/7/22 vol/vol respectively) (Afrox 

grade) gas mixture for 15 minutes as described by Lemke et al., (2003).  Larvae were then 

fixed with steel pins, with the larvae laid on its sides, in a preparation dish filled with sterile 

insect ringer solution  

The cuticle was cut along the sidelines and the ventral integument, circular muscles and 

trachea carefully removed. The head was decapitated followed by a circular cut on the anus. 

The intestinal tract was then carefully removed from the body. The midgut and hindgut were 

then separated at the midgut hindgut muscular junction.  
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2.3 Microbial gut consortia identification 

Borneman and Triplett (1997), state that DNA fingerprinting methods are much faster and 

much less expensive techniques for studying microbial communities. A community is 

characterized in a shorter period of time than would have been done using cloning techniques 

and also includes DNA from unculturable microorganisms (Steele et al., 2005). Automated 

ribosomal RNA intergenic spacer analysis (ARISA) is one of the techniques used in 

fingerprinting. Steele et al., (2005), states that ARISA amplifies the variable spacer regions 

between the highly conserved 16s RNA and 23s RNA regions. The DNA from amplification 

is then run on an automated sequencer that produces an electropherogram separating the 

amplicons according to their size. The intergenic spacer sequence and size varies amongst the 

different taxa (Leuders and Friedrich, 2003).  

2.3.1 DNA extraction 

DNA was extracted from the midgut and hindgut samples using the ZR bacterial DNA kit 

(Zymo research, USA). Extracted and purified DNA was separated on a 1% agarose gel 

stained with ethidium bromide and visualized using ultraviolet light. 

2.3.2 ARISA - PCR amplification 

PCR reactions were performed on the DNA using a eubacterial specific primer set ITSReub     

and FAM (carboxy-fluorescein) labelled ITSF specific for the 16 rDNA intergenic spacer 

region. PCR reactions were done using a GeneAmp PCR System 2400 (AppliedBiosystems, 

USA).   The reaction mixture contained 0.5 l of the purified genomic DNA extracted from 

soil, 10 nM of each primer and 5 µl of KapaTaq readymix (KapaBiosystems, South Africa) in 

a total volume of 10 µl.  The PCR conditions consisted of an initial denaturing step of 3 min 

at 95 C followed by 38 cycles of 95 C, for 30 s, 56 C for 30 s and 72 C for 60 s. The 
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reaction was completed with a final extension at 72 C for 5 min and then cooled and held at 

4 C. PCR for each sample was performed in triplicate and pooled to eliminate background 

noise from the ARISA profile and reduce the PCR variability occurring.  PCR samples were 

separated on a 1% agarose gel, stained with Ethidium Bromide and visualized using 

ultraviolet light. 

The PCR products of every sample were run on an ABI 3010xl Genetic analyser to obtain an 

electropherogram of the different fragment lengths and fluorescent intensity. ARISA samples 

were run with ROX 1.1 size standard which varied from 20 to 900 bp.  GeneMapper 4.1 

software converted fluorescence data to an electropherogram and the peaks which 

represented fragments of different sizes are termed operational taxonomic units (OTU).  

Fragments less than 1% of total fluorescence was considered background 

2.4 Aerobic cultivation of gut consortia 

2.4.1 Medium preparation   

Four different types of media were used in the aerobic cultivation of gut consortia. Nutrient 

broth (16g/l, Merck), Tryptone soy broth (30g/l, Merck), basal media M1A, modified from 

MM5 described by Lemke et al (2003), and M1B were used in the enrichment of the gut 

microbes. Composition of M1A was as follows, 1g/l NaCl, 0.5g/l KCl, 0.1 g/l MgCl2
.
6H2O, 

0.015g/l CaCl2
.
2H2O, 0.3g/l NH4Cl, 0.2g/l KH2PO4, 0.15g/l Na2SO4, 0.5g/l yeast extract, 

0.225 g/l D-glucose and 0.855g/l D-lactose. 1ml of trace element solution SL11 (1.5 g/l 

FeCl2
.
4H2O, 100 mg/l CoCl2

.
6H2O, 100 mg/l MnCl2

.
4H2O, 70.0 mg/l ZnCl2, 36.0 mg/l 

Na2MoO4
.
2H2O, 24.0 mg/l NiCl2

.
6H2O, 6.0 mg/l H3BO3, 2.0 mg/l CuCl2

.
2H2O, 10.0 mg/l 

HCl (25%)) and Selenium tungstate solution (0.5 g/l NaOH, 4.0 mg/l Na2WO4
.
2H2O, 3.0 

mg/l NaSeO3
.
5H2O) were added to a liter of the prepared solution. M1B was similar to M1A 
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with the only difference that 0.405 g/l cellulose microcrystalline (Merck) was added and not 

the D-glucose and D-lactose as the carbon source.  

Nutrient broth (16g/l, Merck) and Tryptone soy broth (30g/l, Merck) were prepared following 

manufactures instructions and then autoclaved at 121ºC for 15 minutes. M1A and M1B were 

prepared as described in the above paragraph with medium being corrected to pH 7 using 

Na2HPO4 (3.56g/l Na2HPO4). Prepared medium were then autoclaved at 121ºC for 15 

minutes.      

2.4.1.1 Medium inoculation and culturing 

 Euoniticellus intermedius larvae were dissected following the protocol described in section 

2.2 of this report. The midgut and hindgut were separately homogenized in 8ml sterile 

phosphate buffered saline solution (8g/l NaCl, 0.2g/l KCl, 1.44g/l Na2HPO4 and 0.24g/l 

KH2PO4). 0.5ml of homogenate was then inoculated into culture tubes containing 4.5ml of 

the 4 different medium in triplicate for each gut section for each medium. Control media were 

set up by incubating the media without inoculation. The tubes were then incubated in the dark 

at 30ºC in a rotary shaker (Shaking incubator, 5082U, Labcon) at 100 rotations per minute for 

4 weeks. 
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2.4.1.2 Plate counts and pH analysis 

After 4 weeks of incubation (enrichment of microbes), plate counts were done for the 

inoculated culture medium from 2.2.1.1 using the pour plate method using solid Tryptone soy 

broth at 30g/l with Agar bacteriological (Merck) at 12g/l. From each culture bottle 1 ml was 

serially diluted in sterile saline solution (8.5g/l sodium chloride) and only the 10
-4

 dilution 

plated.  The plates were then incubated for 24 hours at 30ºC with the plate counts read after 

the 24 hour period using a colony counter (3329, Dark field Quebec, USA). The pH (pH 

meter – D-82362, Inolab pH level 1) of all tubes was determined after pour plating. 

2.4.2 Cellulose degradation   

Basal media M1C was prepared using a similar recipe to that for M1A with the only 

difference being that Whatman filter paper strips (5.5cm x 1cm) were used as carbon source 

and not D-glucose and D-lactose. A pair of Whatman filter paper strips was added per tube 

containing 10 ml of the salts solution. The media was then autoclaved at 121ºC for 15 

minutes. The tubes were inoculated with a loop of inoculum from plates after the plate counts 

from 2.2.1.2. Midgut and hindguts were inoculated in separate culture tubes in duplicate for 

each gut section.  Control experiment was an uninoculated M1C. 

Four M1C culture tubes (containing 9ml medium) were inoculated with each 1ml of the 

homogenized gut sections as described in protocol 2.2.1.1 of this report. Two tubes were 

inoculated with midgut homogenate (DB M) while the other two were inoculated with 

hindgut homogenate (DB H). All culture tubes were then incubated in the dark at 30ºC in an 

orbital incubator at 100 rotations per minute for 4 weeks. 
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2.4.2.1 Glucose, acetic acid and ethanol production analysis 

After 4 weeks of incubation, liquid samples of 1ml were taken from the tubes from 2.4.2 and 

centrifuged (Mini spin, Epperndorf AG, Germany) at 10,000 rpm for 15 min, and the 

supernatant was passed through a 0.45µm membrane filter for the analysis of glucose, acetic 

acid and ethanol using high performance liquid chromatography (HPLC). The principle 

behind the function of HPLC is similar to that of gas chromatography as described in section 

2.5.5 of this report. The difference is that in HPLC mobile phase is a liquid and not an inert 

gas as is the case with gas chromatography.  HPLC used was the Agilent Technologies 1200 

series, using a Biorad Fermentation Monitoring column (Particle size 9µm, 150 x 7.8mm), 

fitted with a refractive index column detector (Temperature at 40ºC). Mobile phase was 

0.001M sulphuric acid and HPLC grade water with a flow rate of 0.8ml/minute. 

2.5 Anaerobic cultivation of gut consortia 

2.5.1 Medium preparation  

The most critical step in preparing anaerobic media is oxygen removal by boiling the media 

and doing all the steps that follow in an oxygen free environment, for example under a 

nitrogen or carbon dioxide blanket (Zinder, 1998). Reducing agents like l-cysteine, sodium 

sulfide and palladium catalyst are added to remove oxygen. Sodium sulfide reacts with 

oxygen producing sodium sulfate, thereby removing the oxygen from the medium. Palladium 

catalyst catalysis the reaction between hydrogen and oxygen producing water and by so doing 

reduces the medium. Sodium sulfide allows less growth of contaminants in mixed culture 

systems studies than cysteine, which can be used as an energy source by some fermentative 

heterotrophs.  However, some anaerobes find sodium sulfide toxic (Zinder, 1998).  Resazurin 
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is used as an oxidation-reduction indicator. The redox indicator, resazurin, changes from 

purple to pink to clear when reduced. 

Basal media AM5 described by Lemke et al., (2003) with some modifications was used in the 

cultivation of the dung beetle larvae gut consortia. Composition of AM5 was as follows, 

10mg/l resazurin, 1g/l NaCl, 0.5g/l KCl, 0.5g/l MgCl2
.
6H2O, 0.1g/l CaCl2

.
2H2O, 0.3g/l 

NH4Cl, 0.2g/l KH2PO4, and 0.5g/l yeast extract. 

After complete dissolution of the salts and yeast extract, the medium was then split into four 

conical flasks in equal volumes. Four different media were prepared, namely AM1, AM2, 

AM3 and AM4. The carbon sources for the different medium were, for AM1 0.225g/l D-

glucose and 0.855g/l D-lactose, for AM2 0.405g/l cellulose microcrystalline (Merck), for 

AM3 0.225g/l D-glucose, 0.855g/l D-lactose and 0.17g/l sodium formate and for AM4 

0.225g/l D-glucose, 0.855g/l D-lactose and 0.2g/1 sodium acetate.  

2.5.2 Reducing solution preparation 

1. 0.2 N NaOH.......................200.0 ml 

2. Na2S 
.
 9H2O ........................2.5 g 

3. L-Cysteine
 .
 HCl...................2.5 g 

The sodium hydroxide solution was brought to a boil and bubbled with carbon dioxide 

(99.999%, Afrox) for 15 minutes. The solution was then allowed to cool and sodium sulfide 

and cysteine were added. 
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2.5.3 Hungate tube perpetration  

Each Hungate tube (15ml size tubes) was first dusted with carbon dioxide (99.999%, Afrox) 

for 3 minutes so as to remove oxygen from the sealed tubes. Two sterile needles were used 

both plugged with cotton wool. One needle was connected to the gas supply line, to bring in 

carbon dioxide, whilst the other allowed the air to come out the tube during gassing. After 

autoclaving, the tubes containing the reduced media were further dusted for 3 minutes 

removing any traces of oxygen. 

2.5.4 Reduced medium preparation 

The medium, AM1, AM2, AM3 AND AM4, were brought to a boil while gassing with 

carbon dioxide. The solution was kept boiling for several minutes until the indicator color 

turned from blue to reddish-pink at which stage the reducing solution  from 2.5.2 was added 

(40ml/l) during continuous gassing and boiling. The pink color disappears, indicating 

reduction. All media were corrected to pH 7 using 1 M NaHCO3. A palladium catalyst was 

then added to the reduced media which was left overnight in an anaerobic chamber (Forma 

anaerobic systems, 1025/1029 USA). The reduced media were added to dusted Hungate tubes 

(4.5 ml/ tube), from 2.3.2, anaerobically under nitrogen, hydrogen and carbon dioxide 

(71/7/22% vol/vol, respectively) gas mixture in an anaerobic chamber (Forma anaerobic 

systems, 1025/1029 USA). The tubes were then autoclaved for 15 minutes at 121ºC. 

Anaerobically homogenized (Prepared by homogenizing midgut and hindgut sections 

separately in 8ml anaerobic sterile phosphate buffered saline solution in an anaerobic 

chamber) gut sections were then inoculated into the reduced medium (0.5ml of homogenate 

to 4.5ml reduced medium) working in the anaerobic camber. The inoculated tubes were then 

incubated in the dark at 30ºC in an orbital incubator at 100 rotations per minute for 8weeks. 
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2.5.5  Methane analysis 

Methane gas analysis was done using a gas chromatography. As for all other 

chromatographic techniques, a mobile and a stationary phase are required. The mobile phase 

is comprised of an inert gas e.g. helium, argon and nitrogen. The stationary phase consists of 

a packed column where the packing or solid support itself acts as stationary phase, or is 

coated with the liquid stationary phase. More commonly used in many instruments are 

capillary columns, where the stationery phase coats the walls of the small-diameter tube 

directly.  

The main reason why different compounds can be separated this way is the interaction of the 

compound with the stationary phase. The stronger the interaction is, the longer the compound 

remains attached to the stationary phase, and the more time it takes to go through the column. 

Different detector types are used in gas chromatography. These include flame ionization 

detector, thermal conductivity detector and electron capture detector. Gas chromatography is 

well suited for more volatile compounds. 

After 8weeks of incubation of samples from 2.5.4, all samples were analyzed for methane 

and hydrogen production using a gas chromatography (Clarus 500, Perkin Elmer USA) 

equipped with a thermal conductivity detector (temperature set at 200ºC), using argon as the 

carrier gas at flow rate of 30ml/minute. 50 µl of gas sample was injected from each Hungate 

tube into the gas chromatography. 
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Chapter 3 

Results and discussion  

3.1 Euoniticellus intermedius culturing 

                         

Fig 4: Adult female Euoniticellus                              Fig 5: Euoniticellus intermedius egg in                                      

intermedius.                                brood ball. 

 

 

                        

Fig 6: 5 day larvae in brood ball.                              Fig 7: 17 day larvae Euoniticellus  

                 Intermedius.                                                                



 

 

27 

 

Fig 8: Life cycle of larvae from egg to first instar, second instar and finally third instar. A is a 

1 day old egg, B is a first instar, C is a second instar and D is a third instar. Third instar larvae 

intestinal tract was used all through for the experiments in this project. 

Euoniticellus intermedius adults (Fig. 4) collected reproduced in a normal life cycle. The 

females tunnelled into the soil within the containers where they buried brood balls each 

containing a single egg inside as seen in Fig. 5. It took a period of 5 – 6 days for the egg to 

develop into an embryo. Embryo then matured into a first instar within a week, the first instar 

then developed into second and third instar within a 2 week period. Third instar finally 

matured into a pupa which eventually developed into an adult dung beetle that hatch out of 

the broodball. The developmental stages time period shown by this particular culture 

indicated that we were working with a normal and healthy culture of Euoniticellus 

intermedius dung beetle larvae as the time lines of the life cycle are similar to those reported 

by Tyndale-Biscoe (1990).  
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3.2 Euoniticellus intermedius Larvae dissection 

50mm 

 

 

Fig 9: Photographic image of Euoniticellus intermedius larvae intestinal tract. Point X 

indicates where midgut was separated from hindgut. All pictures shown (Fig. 4 – Fig. 9) were 

captured using AxioVision 4.8.0.0. Hindgut is clearly seen as a chamber whilst midgut is 

long and relatively undeveloped. There is no clear difference between midgut and foregut. 

For this project the midgut included the foregut. 

The intestinal tract of Euoniticellus intermedius showed two clear distinct gut systems, a long 

cylindrical midgut and bulbous hindgut (Fig. 9). This type of intestinal tract resembles that of 

humus feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae) reported by Lemke 

et al., (2003). Similarity in physical structure of intestinal tracts of the insects pointed out that 

the intestinal tract system of the culture we used was normal considering that the insects 

belong to the same order and subfamily. However, to our knowledge there is no literature 

available that directly shows the intestinal tract of Euoniticellus intermedius and, therefore, 

we cannot fully conclude that the structure of the gut system was normal or abnormal. The 

accurate identification of the gut systems was vital as we specifically looked into culturing 

the different microbes in the midgut and hindgut separately.  An Entomologist, who has 

worked extensively with the Euoniticellus intermedius larvae, was consulted and confirmed 

the midgut and hindgut sections as we had identified them. 

 

 

Anus Head Midgut Hindgut 

X 
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3.3 DNA extraction and ARISA - PCR amplification 

 

Fig 10: Agarose gel electrophoreses total extracted DNA from samples 1 – 6. Sample 1 is 

midgut and its contents, 2 is hindgut and its contents, 3 is midgut contents only, 4 is hindgut 

contents only, 5 is midgut empty and 6 is hindgut empty. 

 

 

Fig 11: Agarose gel electrophoreses of bacterial ARISA PCR amplification of total extracted 

DNA. Sample 1 is midgut and its contents, 2 is hindgut and its contents, 3 is midgut contents 

only, 4 is hindgut contents only, 5 is midgut empty and 6 is hindgut empty. 
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Table 2: The Shannon diversity and number of OTUs observed with ARISA in samples 

1-6. 

Sample 1 2 3 4 5 6 

Diversity index 

2.50214

2 

3.14182

1 

2.27563

7 

2.84504

6 

2.85447

6 

3.05126

7 

Number of OTUs 13 23 13 17 17 23 
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Figure 12: Tree diagrams of the Cluster analysis of the Whittaker similarity analysis for the 

bacteria using weighted pair-group average.   
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Automated ribosomal RNA intergenic spacer analysis (ARISA) is molecular fingerprinting 

method applied in the study of microbial communities (Steele et al., 2005: Ranjard et al., 

2001: Fisher and Triplett, 1999). Ranjard et al., (2001), states that the principle behind the 

method is based on the measurement of the intergenic spacer (IGS) length between small 

(16S) and large (23S) subunit genes in the rrn operon. ARISA has been used in the 

characterisation of bacterial and fungal soil communities (Ranjard et al., 2001), monitor the 

structure of microbial communities in ethanol bioreactors (Steele et al., 2005), comparing 

fungal communities from four salt mash plants (Torzilli et al., 2006) and in the study of fresh 

water bacterial communities (Fisher and Triplett, 1999). 

The different ARISA-PCR bands shown on Fig. 11 show that there are different bacterial 

communities found in samples 1-6. This was further confirmed by the differences in the 

Shannon diversity index and the difference in the number of operational taxonomic units 

(OTU) as seen in Table 2. Tree diagrams of the Cluster analysis of the Whittaker similarity 

analysis for the bacteria using weighted pair-group average from Fig. 12 clearly shows that 

there is a distinction between the samples 1, 3 and 5 from samples 2, 4 and 6. Samples 1, 3 

and 5 were all coming from the midgut while 2, 4 and 6 all came from the hindgut, therefore, 

this suggest that there is a difference in the community of bacteria found within the midgut 

and those in the hindgut. These results are similar to those reported by  Egert et al., (2003) 

and Egert et al., (2005) who have also showed that there is a difference in the communities of 

bacteria found between the midgut and hindgut of Pachnoda ephippiata and Melolontha 

melolontha larvae (Coleoptera: Scarabaeidae),  respectively.   
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3.4 Aerobic culturing results 

 

Fig 13: Plate counts of Euoniticellus intermedius larvae after enrichment from Nutrient broth 

(NB), Tryptone soy broth (TSB), Basal medium M1A and M1B. H is hindgut while M is 

midgut consortia. All control experiments gave 0 CFU/ml after incubation. Incubation period 

was 4 weeks at 30ºC in the dark. 

Microbial gut consortium enriched in Tryptone soy broth gave the highest number of plate 

counts showing that it was most suited for growing the gut consortium as seen on Fig. 13. On 

two media (NB and TSB) hindgut plate counts were consistently higher than those of the 

midgut. This was consistent with results given by other researchers (Lemke et al., 2003; 

Egert et al., 2005). Lemke et al., (2003) report cell counts for hindgut to be 3 – 6 fold those 

of the midgut whilst Egert et al., (2005) report cell counts for midgut to be 5 times lower than 

of the hindgut. 
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Fig 14: Average pH analysis of the liquid media after enrichment from Nutrient broth (NB), 

Tryptone soy broth (TSB), Basal medium M1A and M1B. H is hindgut while M is midgut 

consortia. C is the controls. Incubation period was 4 weeks at 30ºC in the dark. 

Midgut consortia cultured in NB gave the highest average pH value of 9.5 with the lowest 

average pH value being recorded from M1A hindgut. 

 

Fig 15: Plate counts of Euoniticellus intermedius larvae after cellulose filter paper 

degradation in M1C. Incubation period was 4 weeks at 30ºC in the dark. 

Fig. 15 shows the number of microbial counts after degradation of the filter papers and it is 

very interesting to note that DBM which had the most visible filter paper degradation had the 

lowest number of microorganisms at 9.1 x 10
4 

CFU/ml compared to TSB M with 4.7 x 10
8
 

CFU/ml. 
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3.5 Cellulose degradation 

 

Fig 16: Average pH measurement of the liquid medium after cellulose filter paper 

degradation in medium M1C by microbial consortia initial enriched in Nutrient broth (NB), 

Tryptone soy broth (TSB), basal medium M1A and M1B. DB is microbial consortia coming 

directly from the gut larvae that had not been enriched and inoculated into M1C straight from 

homogenization. Incubation period was 4 weeks at 30ºC in the dark aerobically. 

An average pH value drop from 7.14 (MIC control pH value) to an average pH value of  5.2 

for DB M shown in Fig. 16 was the greatest drop recorded for all the samples. This drop 

could be attributed to the high concentration of acetic acid of 1.1 g/l shown in Fig. 17. There 

were, however, some unidentified peaks on the chromatogram (Fig. A9) that possible may be 

responsible for the drop in average pH.  Lemke et al., (2003) do report production of other 

organic acids like formate, lactate and succinate by microbial consortium in the larvae of 

Pachnoda ephippiata (Coleoptera: Scarabaeidae). Production of these organic acids by 

microbial consortium in the larvae of Euoniticellus intermedius (Coleoptera: Scarabaeidae) 

could possible also explain the decline in pH after filter paper degradation. 
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Fig 17: HPLC results for acetic acid production by gut consortia of Euoniticellus intermedius 

larvae after 4 weeks of incubation.   

 

Fig 18: Photographic images of filter paper degradation by Euoniticellus intermedius midgut 

consortia. A is the midgut consortia enriched in TSB (TSB M), B is midgut consortia 

enriched in M1A (M1A M), C is midgut consortia originally from the larvae which had not 

been enriched (DB M), D is midgut consortia enriched in M1B (M1B M), E is midgut 

consortia enriched in NB (NB M) and F is the control (non inoculated culture). Control filter 

paper is still completely intact. Incubation was done for 4 weeks at 30ºC in the dark.   
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Fig 19: Photographic images of filter paper degradation by Euoniticellus intermedius hindgut 

consortia. A is the hindgut consortia enriched in NB (NB H), B is hindgut consortia enriched 

in M1A (M1A H), C is hindgut consortia enriched in TSB (TSH H), D is hindgut consortia 

enriched in M1B (M1B H), E is hindgut consortia originally from the larvae which has not 

been enriched (DB H) and F is the control (non inoculated culture). Control filter paper is still 

completely intact. Incubation was done for 4 weeks at 30ºC in the dark.   

From Fig. 18, tubes C and D and Fig. 19, tube D, it is clearly visible that there was 

degradation of the filter paper by the midgut and hindgut microbial consortium under oxic 

conditions. Non-enriched midgut consortium, DB M, produced the greatest amount of 

degradation followed by midgut consortium enriched in basal medium M1B and lastly 

hindgut consortium enriched in M1B. Lemke et al., (2003) report the complete dissolution of 

filter paper disks by the consortium under oxic conditions.  Cellulose degradation amongst 

the larvae has long been debated as to whether the host produces the enzymes that degrade 

the cellulose or the symbionts do the degradation or alternatively play a supporting role. 

Results from Fig. 18 and 19 indicate that the symbionts in the midgut and hindgut of the 

Euoniticellus intermedius third instar larvae do degrade the cellulose and, therefore, could be 

degrading the cellulose feed for the host or possible play a supporting role with the host 

producing more cellulose degrading enzymes.  

A B C D E F 
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M1B H and M1B M show the greatest amount of filter paper degradation for all the 

enrichments, probably due to the fact that the consortium have been enriched on a cellulose 

carbon substrate basal medium M1B. This then meant that consortium does not go through a 

long lag phase in the basal medium M1C compared to the other enrichments.   

 

Fig 20: HPLC results for D-glucose production by gut consortia of Euoniticellus intermedius 

larvae after 4 weeks of incubation.   

Visible filter paper degradation noted for DB M in Fig. 18 would have suggested a possible 

high concentration of glucose as the cellulose would have been degraded to its monomeric 

unit glucose. However, this proved not to be the case as seen on HPLC results for D-glucose 

on Fig. 20. Instead it was TSB H (hindgut consortium enriched in Tryptone soy broth) that 

produced the highest concentration of glucose with 0.34 g/l. Lack of glucose from DB M 

could be attributed to the fact that sampling for HPLC analysis was done after 4 weeks of 

incubation and possible by that time all the glucose produced would have been utilized by the 

microorganisms.    
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Fig 21: HPLC results for ethanol production by Euoniticellus intermedius larvae after 4 

weeks of incubation. It was important to note that the control experiment had the highest 

amount of ethanol, therefore, ethanol peaks detected from sample runs cannot be conclusively 

attributed to gut microbial consortium.  

Though research on related dung beetle larvae by Lemke et al., (2003) showed the 

consortium to have an ability to produce ethanol, results from Fig. 21 cannot be interpreted to 

indicate that the midgut and hindgut consortium from E. intermedius larvae have the 

metabolic ability to produce ethanol as the control experiment had a higher ethanol 

concentration than anyone of the samples.  Ethanol in the control could possible been due to 

contamination during medium preparation but, definitely not by microbial contamination as 

plate counts for control did not give any colonies at all. 
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3.6 Methane production 

 

Fig 22: Gas chromatography results for methane production. Results are expressed in moles 

of methane produced per litre of media used. Carbon sources were 0.225g/l D-glucose and 

0.855 g/l D-lactose for basal medium AM1. Carbon soruces for basal medium AM2 was 

0.405 g/l microcrystalline cellulose, AM3  was 0.225 g/l D-glucose, 0.855 g/l D-lactose and 

0.17 g/l sodium formate, AM4 was 0.225 g/l D-glucose, 0.855 g/l D-lactose and 0.21 g/l 

sodium acetate. No methane was picked out in the control experiments. 

 

 

Fig 23: Gas chromatography results for hydrogen production. Results are expressed in moles 

of methane produced per litre of media used. Carbon sources were 0.225 g/l D-glucose and 

0.855 g/l D-lactose for basal medium AM1. Carbon soruces for basal medium AM2 was 
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0.405 g/l microcrystalline cellulose, AM3  was 0.225 g/l D-glucose, 0.855 g/l D-lactose and 

0.17 g/l sodium formate, AM4 was 0.225 g/l D-glucose, 0.855 g/l D-lactose and 0.21 g/l 

sodium acetate. No hydrogen was picked out in the control experiments. 

In methane production, methanogens use two pathways to produce methane (Abbanat et al., 

1989). One pathway utilizes formate and hydrogen whilst the other utilizes acetic acid 

(Abbanat et al., 1989). Therefore, in trying to monitor methane production it became 

necessary to look at which substrate is readily utilized by the methanogens to produce high 

concentrations of methane (between acetic acid and formate). From Fig. 22 it is seen that the 

highest concentration of methane was produced by microbial consortium grown in basal 

medium AM1 (carbon source was D-glucose and D-lactose), specifically the hindgut 

consortium with an average of 0.034 moles/l of the medium AM1 after 8 weeks of 

incubation. The high methane concentration production by hindgut consortium has been 

reported by Lemke et al., (2003) and Egert et al., (2005). They have, however, not reported 

the production of methane by midgut consortium. Methane detected in the midgut could be 

attributed to the action of transient methanogens (that is methanogens ingested inside dung by 

the larvae that will eventually colonize the hindgut not the midgut).  

Failure of both methane and hydrogen production by consortia cultured in AM2 (carbon 

source was microcrystalline cellulose) possibly indicates failure of the cellulose degradation 

by the consortium under anaerobic conditions or it could be due to the fact that the microbes 

are still in the lag phase of growth.  

Low methane production rates by consortia grown in AM3 and AM4 was rather surprising, as 

both formate (in AM3) and acetic acid (in AM4) are substrates directly utilized by the 

methanogens to produce methane. Therefore, the expectation would have been for both of 

them to produce a higher concentration of methane than AM1 midgut and hindgut consortia. 

Research by Lemke et al., (2003) and Egert et al., (2005) have shown that adding sodium 
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formate to isolated hindgut sections of the Pachnoda ephippiata and Melolontha melolontha 

larvae (Coleoptera: Scarabaeidae)  increased methane output by up to 5 fold and 2 fold, 

respectively. What could possible explain the low methane production could be the possible 

that at the concentrations that both sodium acetate and sodium formate were used were 

inhibitory to the activity of the methanogens as they might have been possible too high.  
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Conclusion and Recommendations 

Results from Fig. 13 clearly and conclusively show that we have successfully managed to 

develop a standard method for the propagation of E. intermedius larvae midgut and hindgut 

microbial consortia. However, the reproducibility of the method still remains to be 

conclusively shown. M1B proved to be the best medium for the propagation of E. 

Intermedius gut consortia as the few number of microorganisms that grew in it, compared to 

other media, degraded cellulose most extensively. 

Ethanol results from Fig. 21 do not show the metabolic potential of the consortium in ethanol 

production due to the fact that the control experiment had the highest concentration of ethanol 

than other samples. However, the ability of the consortia to produce D-glucose is good, as the 

glucose produced could then be utilized by yeast like S. cerevisiae to produce ethanol. 

Results from Fig. 18 and Fig. 19 as well as those in Fig. 22 conclusively show the ability of 

the culture to degrade cellulose as well as produce methane, respectively. 

It is recommended that more work be done in trying to optimise on cellulose degradation 

such that similar impressive results to those of DB M could be achieved in a shorter period of 

time with high glucose concentrations being detected. More experimental work needs to be 

done at different temperatures and pH of media to indentify what temperature and pH is most 

optimal for cellulose degradation using the gut consortia.  

Screening for microorganisms involved in methane production should also be done. This is 

likely to yield impressive results like those that were achieved in the brewing and bakery 

industries when only pure S. cerevisiae was used compared to the old traditional system in 

which an unknown consortia was used.  By identifying microorganisms in the consortia and 

removing microorganisms not within the methane production chain could improve on 
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concentration of methane produced. This because by removing microorganisms that are not 

involved in methane production but still compete with the three groups of microorganisms 

involved in methane production, more simple molecules are made available to acidogens 

which subsequently produce a higher concentration of organic acids. As a result, they will be 

an increase in the concentration of organic acids utilised by methanogens which in turn 

produce a higher concentration of methane.  
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Appendices 

1.pH after 4 weeks of enrichment 

NB H NB M NB C TSB H TSB M TSB C  

8.10667 7.85333 7.16333 7.25 8.70667 7.27667 Average 

0.89857 1.08868 0.05033 0.70314 0.77358 0.20207 Standard 

deviation 

8.49 6.82 7.17 6.73 8.15 7.51  

7.08 8.99 7.11 8.05 9.59 7.16  

8.75 7.75 7.21 6.97 8.38 7.16  

M1A H M1A 

M 

M1A C M1B H M1B M M1B C  

5.94 6.62667 6.32667 7.02667 6.54 6.90667 Average 

0.78045 0.30665 0.44636 0.18148 0.60828 0.56092 Standard 

deviation 

5.45 6.47 6.84 6.82 6.94 6.52  

5.53 6.98 6.11 7.16 5.84 6.65  

6.84 6.43 6.03 7.1 6.84 7.55  

       

 

2. Plate counts after enrichment 

NB H NB M NB C TSB H TSB M TSB C  

277.667 155.167 0 298.667 193.333 0 Average 

10.1719 9.06458 0 12.4526 10.0731 0 Standard 

deviation 

270 153 0 289 198 0  

264 144 0 294 204 0  

283 149 0 312 187 0  

290 170 0 300 187 0  

286 160 0 314 180 0  

273 155 0 283 204 0  

       

NB H NB M NB C TSB H TSB M TSB C  

2.8E+07 1.6E+07 0 3E+07 1.9E+07 0 Average 

1017186 906458 0 1245258 1007307 0 std deviation  

       

       

M1A H M1A M M1A 

C 

M1B H M1B M M1B C  

101.833 114 0 107.333 101 0 Average 

15.3417 10.4499 0 7.99166 10.8628 0 Standard 
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deviation 

118 117 0 96 108 0  

96 98 0 104 96 0  

121 123 0 117 112 0  

104 120 0 104 110 0  

84 104 0 116 96 0  

88 122 0 107 84 0  

       

M1A H M1A M M1A 

C 

M1B H M1B M M1B C  

1E+07 1.1E+07 0 1.1E+07 1E+07 0  

1534166 1044988 0 799166 1086278 0 std deviation  

 

3. Plate counts after cellulose digestion 

NB H NB M TSB H TSB M M1A H  

37.3333 261 35.3333 47 162 Average 

2.51661 67.9485 6.80686 5.56776 27 Standard deviation 

35 270 33 42 162  

40 189 43 46 135  

37 324 30 53 189  

      

NB H NB M TSB H TSB M M1A H  

3733333 2.6E+07 3.5E+08 4.7E+08 1.6E+07  

251661 6794851 6.8E+07 5.6E+07 2700000  

M1A M M1B H M1B M DB H DB M  

31.6667 65.3333 29.6667 675 91 Average 

4.50925 8.3865 7.37111 46.7654 22.2711 Standard deviation 

36 75 24 648 115  

32 60 38 729 87  

27 61 27 648 71  

M1A M M1B H M1B M DB H DB M  

3166667 6533333 2966667 6750000 910000  

450925 838650 737111 467654 222711  
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4. pH after cellulose digestion in M1C medium 

NB H NB M TSB H TSB M M1A H 

7.42 7.845 7.57 6.75 7.095 

0.66468 0.0495 0.84853 0.28284 0.19092 

7.89 7.81 8.17 6.55 7.23 

6.95 7.88 6.97 6.95 6.96 

M1A 

M 

M1B H M1B M DB H DB M 

7.475 6.665 5.945 6.5 5.195 

0.70004 0.07778 0.41719 0.77782 0.64347 

6.98 6.61 5.65 7.05 4.74 

7.97 6.72 6.24 5.95 5.65 

 

5. HPLC results 

NB H NB M TSB H TSB M M1A H M1C control 

0 0 0.34 0 0 0 Glucose 

g/l 

0.14 0.05 0 0 0.24 0 Acetic 

acid g/l 

0.04 0.04 0.04 0.03 0.02 0.06 Ethanol 

g/l 

M1A 

M 

M1B H M1B 

M 

DB H DB M M1C control 

0 0 0.03 0.09 0 0 Glucose 

g/l 

0.03 0.4 0 0.18 1.08 0 Acetic 

acid g/l 

0.03 0.04 0 0.03 0.03 0.06 Ethanol 

g/l 
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6. Methane production moles  /l medium used 

AM1  

H 

AM1 

M 

AM2  

H 

AM2 

M 

AM3 

H 

AM3 

M 

AM4 

H 

AM4 

M  

0.034 0.004 0 0 0.004 0 0.004 0.002 average 

0.012 0.006 0 0 0.007 0 0.007 0.003 

std 

deviation 

 

7. Hydrogen production moles/l of medium used 

AM1  

H 

AM1 

M 

AM2 

H 

AM2 

M 

AM3 

H 

AM3 

M 

AM4  

H 

AM4 

M  

0.032 0.007 0 0 0.004 0.002 0.002 0.001 average 

0.015 0.008 0 0 0.008 0.003 0.004 0.002 

std 

deviation 

 

 

 

 

 

Fig A1: Chromatogram for TSB H showing two identified peaks at for D-glucose and 

ethanol. 
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Fig A2: Chromatogram for M1B M showing one identified peak for D-glucose  

 

Fig A3: Chromatogram for DB H showing three identified peaks for  D-glucose, acetic acid 

and ethanol. 
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Fig A4: Chromatogram for NB M showing two identified peaks for acetic acid and ethanol. 

 

 

 

 

 

Fig A5: Chromatogram for NB H showing two identified peaks for acetic acid and ethanol 
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Fig A6: Chromatogram for M1A H showing two identified peaks for acetic acid and ethanol. 

 

 

 

Fig A7: Chromatogram for M1A M showing two peaks for acetic acid and ethanol. 
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Fig A8: Chromatogram for MIB M showing two identified peaks for acetic acid and ethanol. 

 

 

 

Fig A9: Chromatogram for DB M showing two identified peaks for acetic acid and ethanol 
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Fig A10:  Chromatogram for TSB M showing a single identified peak for ethanol 

 

Fig A11: Chromatogram for M1C control showing a single peak for ethanol. No peaks were 

peaked out at all for glucose and acetic acid. 
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