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A R T I C L E I N F O A B S T R A C T

Editor: J. Hisano Calabi–Yau manifolds can be obtained as hypersurfaces in toric varieties built from reflexive polytopes. We 
generate reflexive polytopes in various dimensions using a genetic algorithm. As a proof of principle, we 
demonstrate that our algorithm reproduces the full set of reflexive polytopes in two and three dimensions, 
and in four dimensions with a small number of vertices and points. Motivated by this result, we construct five-

dimensional reflexive polytopes with the lowest number of vertices and points. By calculating the normal form 
of the polytopes, we establish that many of these are not in existing datasets and therefore give rise to new 
Calabi–Yau four-folds. In some instances, the Hodge numbers we compute are new as well.
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1. Introduction

Ever since the early days of string phenomenology [1], the con-

struction of Calabi–Yau (CY) manifolds had been an active pursuit in 
the theoretical physics and mathematics communities. (See, for exam-

ple, the classic reference [2] as well as the recent textbooks [3,4].) 
This is motivated by the existence of Ricci-flat metrics on CY mani-

folds, a property which makes them a useful building block for com-

pactifications of string theory. In particular, CY three-folds compactify 
ten-dimensional superstring theory to four-dimensional quantum field 
theories with  = 1 supersymmetry [1].

In a parallel, and initially seemingly unrelated, vein, lattice poly-

topes play a central role in geometry, where a polytope defines a fan of 
strongly convex rational polyhedra cones which in turn defines a toric 
variety. In [5,6], Batyrev and Borisov showed how mirror pairs of (𝑛 −1)
complex dimensional CY manifolds can be realized from hypersurfaces 
in toric varieties constructed from 𝑛-dimensional reflexive polytopes.

Threading these two directions of CY compactifications and toric 
hypersurfaces, and motivated by their utility for string phenomenol-

ogy, Kreuzer and Skarke devised an algorithm to generate all reflexive 
polytopes in 𝑛 dimensions [7]. The algorithm consists of two steps. 
First, a set 𝑆 of “maximal” polytopes is constructed such that any re-

flexive polytope is a subpolytope of a polytope in 𝑆 . These maximal 
polytopes are defined by a so-called “weight system” or a combina-

tion of weight systems. Second, all subpolyhedra of all polyhedra in 
𝑆 are constructed and checked for reflexivity. The complete classifica-

tion of 4319 three-dimensional reflexive polytopes with this algorithm 
was accomplished in [8]. From these we obtain K3 surfaces, which is to 
say, CY two-folds. Proceeding to dimension three, the 184, 026 weight 
systems giving rise to four-dimensional reflexive polytopes were pre-

sented in [9], and the resulting 473, 800, 776 four-dimensional reflexive 
polytopes, leading to CY three-folds, were listed in [10]. In five dimen-

sions the total number of reflexive polytopes is prohibitively large, and 
Schöller and Skarke were only able to run the first stage of the algo-

rithm to calculate all 322, 383, 760, 930 weight systems corresponding 
to maximal polytopes [11]. They found that 185, 269, 499, 015 of these 
weight systems give rise to reflexive polytopes directly.1 This result con-

stitutes a partial classification, and we will compare our results to this 
list later on.2 The CY four-folds obtained from five-dimensional reflex-

ive polytopes facilitate F-theory model building.

Finding reflexive polytopes is not an easy task. A lattice polytope 
is reflexive when it satisfies a set of conditions: it must have only a 
single interior point (the so-called IP property), its dual must as well 
be a lattice polytope (that is, its vertices must lie on integer lattice 
points), and the dual must also satisfy the IP property. Alternatively 
and equivalently, a polytope is reflexive if and only if it satisfies the IP 
property and all bounding hyperplanes of the polytope lie at unit hy-

perplane distance from the origin. With multiple criteria, regression is 
unlikely to perform well at finding reflexive polytopes. Any loss func-

tion will have local minima, where polytopes satisfy some but not all of 
the conditions for reflexivity. We can ask if methods such as reinforce-

ment learning or genetic algorithms, which explore an “environment” 

1 It can be that distinct weight systems correspond to the same polytope. 
This means that the total number of unique five-dimensional reflexive polytopes 
found by Schöller and Skarke is less than 185, 269, 499, 015 (it is not known by 
how much).

2 All data produced by the Kreuzer–Skarke algorithm for reflexive polytopes 
in three and four dimensions can be found at [12]. The complete Schöller-
2

Skarke dataset of five-dimensional reflexive polytopes can be found at [43].
in order to maximize a fitness or reward function, might be better 
suited for such a task. In this paper, we will address this question for 
genetic algorithms (GAs) and leave reinforcement learning for future 
work. Significant work has already been done on applying machine 
learning techniques to study objects in string theory, including poly-

topes [13–15]. Genetic algorithms in particular have been successful at 
scanning for phenomenologically attractive string models [16,17] and 
cosmic inflation models [18], but this is the first time that genetic algo-

rithms have been used to search for reflexive polytopes.

We note that alongside classifying reflexive polytopes, there has also 
been focus on classifying 𝑛-dimensional smooth Fano polytopes, which 
correspond to reflexive polytopes with the extra condition that there 
are exactly 𝑛 edges emanating from each vertex and the primitive edge 
directions form a lattice basis of ℤ𝑛. The classification of smooth Fano 
polytopes, up to dimension 9, was carried out [19] using the polymake 
software [20]. Using this database there was some recent work done 
on generating smooth Fano polytopes [21] using sequential modeling. 
However, applying this methodology to reflexive polytopes without the 
smoothness condition does not yield good results.

The organization of this paper is as follows. In Sections 2.1 and 2.2, 
we present some background on reflexive polytopes and briefly re-

view genetic algorithms. In Section 3 we present the results of our 
GA searches for reflexive polytopes in two, three, and four dimensions 
and compare the results to the known complete classifications. Five-

dimensional reflexive polytopes are tackled in Section 4. Using GAs, 
we generate datasets of five-dimensional reflexive polytopes with the 
smallest number of points and vertices. From these we extract the poly-

topes with ℎ1,1 = 1 and ℎ1,1 = 2 and compare with the existing partial 
classification. We conjecture that there are exactly 15 five-dimensional 
reflexive polytopes that have ℎ1,1 = 1. We also present an example of a 
targeted search where conditions are placed on the Euler number of the 
CY manifold. In Section 5, we finish with a discussion and prospectus. 
Our code, along with a database of five-dimensional reflexive polytopes 
we have generated is available on GitHub [22,23].

2. Background

In this section we briefly review the necessary background, both on 
the mathematics of lattice polytopes and on genetic algorithms, while 
leaving some of the technical details to the appendices.

2.1. Reflexive polytopes

Due to theorems of Batyrev and Borisov [5,6] reflexive polytopes 
provide an efficient way to construct Calabi–Yau (CY) manifolds. (See 
Appendix A for a short review.) This close connection to CY manifolds is 
the principal reason why physicists are interested in reflexive polytopes, 
and it prompted Kreuzer and Skarke to perform a tour de force computer 
classification [7,8,10] which produced the largest available databases of 
smooth, compact CY manifolds in complex dimensions two and three.

Let us briefly review some of the properties of lattice polytopes rel-

evant to our work. An 𝑛-dimensional lattice polytope Δ is the convex 
hull in ℝ𝑛 of a finite number of lattice points 𝑥1, … , 𝑥𝑚 ∈ ℤ𝑛 ⊂ ℝ𝑛. 
These points can be conveniently combined into an 𝑛 × 𝑚 matrix  =
(𝑥1, … , 𝑥𝑚) whose columns are the generators. The vertices 𝑣1, … , 𝑣𝑁v

of Δ are a subset of the lattice points 𝑥𝑖, so that 𝑁v = 𝑁v(Δ) ≤ 𝑚. 
The vertices can also be combined into an 𝑛 × 𝑁𝑣 vertex matrix 𝑉 =
(𝑣1, … , 𝑣𝑁𝑣

). Let 𝐻 = {𝑥 ∈ℝ𝑛 | 𝑢 ⋅𝑥 = 𝑑} be a hyperplane where 𝑢 ∈ℤ𝑛

is a primitive lattice point and 𝑑 ∈ℝ. Such a hyperplane is called valid
if the polytope Δ is contained in the associated negative half-space, that 

https://github.com/elliheyes/Polytope-Generation
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is, if 𝑢 ⋅ 𝑥 ≤ 𝑑 for all 𝑥 ∈ Δ. A face of Δ is the intersection of Δ with a 
valid hyperplane, and a facet is a face of dimension 𝑛 −1. We denote the 
set of all facets by 𝐹 (Δ) and for a facet 𝜑 ∈ 𝐹 (Δ) with equation 𝑢 ⋅𝑥 = 𝑑

(where 𝑢 is a primitive lattice point) the number 𝑑 = 𝑑Δ(𝜑) is called the 
lattice distance of 𝜑 from the origin. It is also useful to introduce the 
notation 𝑁p(Δ) for the number of lattice points in Δ.

As explained in Appendix A, a lattice polytope is said to have the 
IP property if the origin is its only interior lattice point. Furthermore, 
Δ is called reflexive if it has the IP property and if its dual polytope 
Δ∗ is also a lattice polytope and has the IP property. Equivalently, Δ is 
reflexive if and only if it has the IP property and if all its facets have 
lattice distance one, that is, if 𝑑Δ(𝜑) = 1 for all 𝜑 ∈ 𝐹 (Δ). It is the latter 
characterization of reflexivity which we will use later in our definition 
of the fitness function.

We consider two polytopes Δ and Δ̃ with the same number of ver-

tices, 𝑁v(Δ) =𝑁v(Δ̃) =𝑁v, as equivalent if their vertices are related by 
a common integer linear transformation combined with a permutation. 
In other words, Δ and Δ̃ are equivalent if there exist an 𝑁v ×𝑁v per-

mutation matrix 𝑃 and a 𝐺 ∈ GL(𝑛, ℤ) such that their vertex matrices 
𝑉 and 𝑉 are related by

𝑉 =𝐺𝑉 𝑃 . (2.1)

The most efficient way to eliminate the redundancy due to this identifi-

cation is to define a normal form for the vertex matrix, thereby selecting 
precisely one representative per equivalence class. The definition of this 
normal form and an algorithm for its computation is reviewed in Ap-

pendix B. It is known that the number of reflexive polytopes, after 
modding out the identification (2.1), is finite in any given dimension 
𝑛 [24]. The connection between reflexive polytopes and CYs is further 
discussed in Appendix A.

2.2. Genetic algorithms

Genetic algorithms (GAs) are optimization algorithms which mimic 
the process of natural selection [25]. They were first put forward in the 
1950 s [26,27] and were later formalized by Holland [28]. Some more 
recent reviews are [29–34].

GAs operate on a certain state space called the environment, which 
is frequently (and indeed in our applications) taken to be the set 𝔽 𝑛bits

2
which consists of all bit lists with length 𝑛bits. The elements of this set 
are often referred to as genotypes. In our case the environment con-

sists of lattice polytopes Δ in 𝑛 dimensions which are generated as the 
convex hull of 𝑚 vectors 𝑥𝑎 ∈ ℤ𝑛, where 𝑎 = 1, ..., 𝑚. These vectors are 
arranged into an 𝑛 ×𝑚 matrix  = (𝑥1, … , 𝑥𝑚). A detailed explanation 
of the environment and how the matrices  are converted into a bitlists 
is given in Appendix C.

Further, we have two given functions, a fitness function 𝑓 ∶ 𝔽 𝑛bits

2 →
ℝ whose value the algorithm is attempting to optimize and a proba-

bility distribution 𝑝in ∶ 𝔽 𝑛bits

2 → [0, 1], which is used to select the initial 
population. Given the bijection between the spaces of genotypes and 
phenotypes these functions can be defined on either space and we opt 
for the latter. For the sampling probability 𝑝in it is usually sufficient to 
use a flat distribution, that is, every state in the state space has the same 
probability.3 In our case the basic fitness function is defined as

𝑓 (Δ) =𝑤1 (IP(Δ) − 1) −
𝑤2

|𝐹 (Δ)|
∑

𝜑∈𝐹 (Δ)
|𝑑Δ(𝜑) − 1| , (2.2)

where IP(Δ) equals 1 if Δ has the IP property and is 0 otherwise. 
The numbers 𝑤1, 𝑤2 ∈ ℝ>0 are weights which are typically chosen as 
𝑤1 = 𝑤2 = 1. Note that 𝑓 (Δ) ≤ 0 always and 𝑓 (Δ) = 0 if and only if 
Δ is reflexive. Accordingly, we set 𝑓term = 0 so that the terminal states 
correspond to reflexive polytopes.

3 For large ranges of the matrix entries it can be advantageous to choose a 
3

non-flat 𝑝in which favors the selection of 𝑥𝑖
𝑎

with smaller |𝑥𝑖
𝑎
|.
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For some of our applications we are interested in a more targeted 
search for reflexive polytopes with certain additional properties. For 
example, we might be interested in reflexive polytopes Δ whose number 
𝑁p(Δ) of lattice points equals a certain target 𝑁p,0. Another interesting 
subclass of reflexive polytopes is those whose number of vertices 𝑁v(Δ)
matches a target 𝑁v,0.4 To facilitate such targeted searches, we can 
modify the fitness function (2.2) to

𝑓 (Δ) = 𝑓 (Δ) −𝑤3 |𝑁p(Δ) −𝑁p,0|−𝑤4 |𝑁v(Δ) −𝑁v,0| , (2.3)

where 𝑤3, 𝑤4 ∈ ℝ≥0 are two further weights which can be used to 
switch the additional requirements on and off. If 𝑤3, 𝑤4 > 0, then 
𝑓 (Δ) = 0 and, hence, Δ is terminal, if and only if Δ is reflexive and 
has the target numbers 𝑁p,0 and 𝑁v,0 of lattice points and vertices.

The first step of a GA evolution is to select an initial population 𝑃0
which contains a certain number, 𝑛pop, of bit strings, each of length 
𝑛bits, by sampling the set 𝔽 𝑛bits

2 with probability 𝑝in. The genetic evolu-

tion then consists of a sequence

𝑃0 → 𝑃1 →⋯⋯→ 𝑃𝑛gen−1 → 𝑃𝑛gen
(2.4)

of further 𝑛gen populations, each with the same size 𝑛pop. The basic evo-

lutionary process, 𝑃𝑘 → 𝑃𝑘+1, to obtain population 𝑘 + 1 from popula-

tion 𝑘 is carried out in three steps, namely, (i) selection, (ii) cross-over, 
and (iii) mutation. We describe these three steps in turn.

(i) Selection: A probability distribution 𝑝𝑘 ∶ 𝑃𝑘 → [0, 1], based on the 
fitness function, is computed for the 𝑘th population. There are sev-

eral ways to do this but the method we will employ here is the 
so-called roulette wheel selection where 𝑝𝑘 for an individual 𝑠 ∈ 𝑃𝑘

is defined by

𝑝𝑘(𝑠) =
1

𝑛pop

(𝛼 − 1)
(
𝑓 (𝑠) − 𝑓

)
+ 𝑓max − 𝑓

𝑓max − 𝑓
, (2.5)

where 𝑓 and 𝑓max are the average and maximal fitness values on 
𝑃𝑘, respectively. The parameter 𝛼, typically chosen in the range 
𝛼 ∈ [2, 5], indicates by which factor the fittest individual in the 
population is more likely to be selected than the average one. Based 
on this probability 𝑝𝑘, 𝑛pop∕2 pairs are selected from the population 
𝑃𝑘.

(ii) Cross-over: For each pair selected in step (i), a random location 
𝑙 ∈ {1, … , 𝑛bits} along the bit string is chosen and the tails of the 
two strings are swapped. Carrying this out for all pairs leads to 
𝑛pop new bit strings, which form the precursor, 𝑃𝑘+1, of the new 
population.

(iii) Mutation: In the final step, a certain fraction, 𝑟mut, of bits in the 
population 𝑃𝑘+1 from step (ii) is flipped and this produces the next 
generation 𝑃𝑘+1.

A common addition to the above algorithm (which we employ in our 
applications) is elitism which means that the fittest individual from pop-

ulation 𝑃𝑘 is copied to the population 𝑃𝑘+1 unchanged. In summary, a 
GA evolution is subject to the following hyper-parameter choices: the 
population size 𝑛pop, the number of generations 𝑛gen, the parameter 𝛼
in (2.5) and the mutation rate 𝑟mut. For a systematic search, typically 
many GA evolutions, each with a new randomly sampled initial popu-

lation 𝑃0, are carried out. Then, the desirable (or “terminal”) states 𝑠, 
defined as states with 𝑓 (𝑠) ≥ 𝑓term for a certain critical value 𝑓term, are 
extracted from all populations which arise in this way.

Once the GA has found a list of reflexive polytopes, possibly with 
additional properties, we are not yet finished, since we have to elim-

inate the redundancies which arise from the identification (2.1). This 

4 Note that the number of vertices can be smaller than the number of gener-

ators 𝑚 that we start with, since generators can arise with multiplicity greater 

than one or can be contained in the interior of faces of Δ.
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is done by computing the normal form of the vertex matrix, using the 
algorithm described in Appendix B.

For our applications, we use PALP [35] tools for polytope compu-

tation and additional c code by the authors [23] which realizes the 
phenotype-genotype conversion. This is combined into a lightweight 
and fast c code [22] which realizes the GA.

3. Low dimensional results

To showcase the capability of GAs for searching reflexive polytopes, 
we start with 𝑛 = 2, 3, 4 dimensions where complete classification al-

ready exists.5 As we will see, these results provide useful guidance for 
the search in 𝑛 = 5 dimensions where a complete classification is lack-

ing.

There are some common hyperparameter choices which we use for 
all following runs (including those in Section 4). In each case, we 
evolve populations for 𝑛gen = 500 generations, we use a mutation rate of 
𝑟mut = 0.005, and the parameter 𝛼 in (2.5) is set to 𝛼 = 3. Other hyperpa-

rameters, such as the population size 𝑛pop, and environmental variables 
will be chosen to optimize results and their values for each case will be 
stated below.

3.1. Two and three dimensions

In two dimensions, where there are 16 unique reflexive polytopes, 
we use an integer range 𝑥𝑖𝑎 ∈ [−3, 4], so that each integer is encoded by 
𝜈 = 3 bits, and 𝑚 = 6 generators. Hence, each matrix  is represented 
by 𝑛bits = 36 bits and the environment consists of 1036 ≃ 1011 states.

The total number of reflexive polytope states in the environment will 
of course be greater than 16 because equivalence relations exist by the 
identification (2.1). We’d like to estimate the number of such states in 
the environment, the details of how we compute this estimate are given 
in Appendix C.1. In short, we estimate the number 𝑁 of GL(2, ℤ) ma-

trices which transform the unique reflexive polytopes into equivalent 
reflexive polytopes that exist within the environment, i.e. have vertex 
coordinates in the range [−3, 4]. The estimate on the number of reflex-

ive polytopes in the environment is then given as (# unique reflexive 
polytopes)×𝑁 . We estimate 𝑁 to be 107, and therefore we estimate 
that there are 16 × 107 ∼ 103 number of reflexive polytopes in the envi-

ronment.

Using a population size of 𝑛pop = 200, the genetic algorithm finds 
all 16 reflexive polytopes after only one evolution, taking only a few 
seconds on a single CPU. Assuming that the GA never visits the same 
state twice, the total number of states visited would be # evolutions ×
𝑛gen × 𝑛pop = 1 × 500 × 200 ≃ 105 which is only a fraction of ∼ 10−6 of 
the total environmental states. In reality, the GA is likely to visit states 
more than once so this is in fact an upper bound and the true fraction 
of states visited will be smaller.

In three dimensions, we use the coordinate range 𝑥𝑖𝑎 ∈ [−7, 8], with 
𝜈 = 4 bits per integer and 𝑚 = 14 generators. This means each matrix 
is described by 𝑛bits = 168 bits and the total environment size is 2168 ≃
1051. With population size set to 𝑛pop = 450, the genetic algorithm finds 
all 4319 reflexive polytopes after 117251 evolutions. The upper bound 
of states visited by the GA is 117251 ×500 ×450 ≃ 1011, which is a very 
small fraction of ∼ 10−40 of the environmental states. For comparison, 
we estimate the total number of reflexive polytopes in the environment 
to be ∼ 109 (∼ 10−42 of the total environment). Considering the small 
fraction of reflexive polytopes in the environment this it is a remarkable 
achievement that the GA managed to find all the unique ones.

5 The one-dimensional classification consists of a single reflexive polytope 
formed from two integer points ±1 adjacent to the origin. Since there is only 
4

one polytope of this type, we ignore this dimension.
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Fig. 1. Log plot of total number of generated four-dimensional reflexive poly-

topes with five vertices against number of genetic algorithm evolutions. The 
total before and after removing redundancy are shown in orange and blue, re-

spectively.

3.2. Four dimensions

In four dimensions, the total number of reflexive polytopes is large 
(473, 800, 776) and, for our purpose of obtaining baseline performance 
results to inform the five-dimensional search later on, it is not necessary 
to generate the complete set. Instead, we focus our attention on finding 
those polytopes Δ with the lowest number of vertices and points. In 
𝑛 = 4 dimensions the minimum number of vertices is 5 and therefore 
the minimum number of points (assuming reflexive polytopes for which 
the origin is the single interior point) is 6. To facilitate such a search we 
use the modified fitness function (2.3) with certain targets 𝑁v,0 or 𝑁p,0
for the number of vertices or points.

We first perform a search for reflexive polytopes with the lowest 
number, 𝑁v,0 = 5, of vertices (and an arbitrary number of points). This 
means we set 𝑤3 > 0 and 𝑤4 = 0 in the modified fitness function (2.3). 
The integer range is taken to be 𝑥𝑖𝑎 ∈ [−15, 16], that is, we use 𝜈 =
5 bits per integer and 𝑚 = 5 generators. This means the matrices 
are described by bit strings of length 𝑛bits = 100 and the environment 
contains 2100 ≃ 1030 states. Furthermore, we estimate the number of 
reflexive polytopes in this environment to be ∼ 1015, which is still a very 
small fraction ∼ 10−15 of the total environment. The population size is 
taken to be 𝑛pop = 200. With these settings we performed multiple GA 
runs and the number of reflexive polytopes as a number of generations 
obtained is shown in Fig. 1.

Evidently, the number of reflexive polytopes, after removing the re-

dundancy due to (2.1), saturates quickly and to a value of 1555, just 
six reflexive polytopes short of the total of 1561. The missing six poly-

topes all have Euler number 𝜒 = 0 and large vertex coefficients in their 
normal form. Applying a few million GL(4, ℤ) transformations, we are 
unable to find a single equivalent vertex matrix for these six cases which 
falls into our integer range. This suggests these cases can only be found 
by enlarging the integer range 𝑥𝑖𝑎 ∈ [−15, 16]. We will refrain from do-

ing this as the present run has already found 99.6% of all reflexive 
polytopes and provides strong evidence that, given appropriate hyper-

parameter and environmental choices, GAs can find virtually complete 
sets of reflexive polytopes.

Next, we are searching for polytopes with a given number, 𝑁p,0 of 
lattice points, so we set 𝑤3 = 0 and 𝑤4 > 0 in the fitness function (2.3). 
Specifically, we will be focusing on the cases 𝑁p,0 ∈ {6, 7, 8, 9, 10}. The 
vertex coefficients of such polytopes with a relatively small number of 
points are likely to be small. Therefore, we reduce the integer range to 
𝑥𝑖𝑎 ∈ [−3, 4] and describe every integer by 𝜈 = 3 bits. This leads to a 

reduction of the environment size and a significant improvement in the 



Physics Letters B 850 (2024) 138504P. Berglund, Y.-H. He, E. Heyes et al.

Table 1

Results for four-dimensional reflexive polytopes with a small number of lattice points, as 
in the first column. The size of the environment used for the GA is provided in the second 
column, the total number of unique reflexive polytopes for the given number of points (as 
taken from the Kreuzer–Skarke list) is given in the third column, the fourth column gives an 
estimate on the total number of reflexive polytopes in the environment, in the fifth column is 
the population size, the sixth column gives the number of GA runs required to find all unique 
reflexive polytopes and the last column provides an upper bound on the fraction of states 
visiting during all GA runs.

# points # states # un. refl. poly. # refl. poly. 𝑛pop # GA runs % states visited

6 ∼ 1019 3 ∼ 1010 400 5 ∼ 10−13
7 ∼ 1022 25 ∼ 1011 300 30 ∼ 10−16
8 ∼ 1026 168 ∼ 1012 400 60 ∼ 10−19
9 ∼ 1029 892 ∼ 1012 300 9378 ∼ 10−20
10 ∼ 1033 3838 ∼ 1013 350 9593 ∼ 10−24
algorithm’s performance, compared to the previous case. If a polytope 
has 𝑁𝑝,0 points, the maximum number of vertices is 𝑁v = 𝑁p,0 − 1, 
where all points are vertices except the origin. Therefore, in searching 
for polytopes with 𝑁p,0 points we set the number of generators to 𝑚 =
𝑁p,0 − 1. The results are summarized in Table 1. It is remarkable that 
all states are found in all cases after a sufficient number of GA runs.

4. Five-dimensional results

In the previous section, we have seen that GAs can generate com-

plete or near-complete lists of reflexive polytopes in two, three, and 
four dimensions. This is a valuable proof of principle which demon-

strates that GAs can successfully identify reflexive polytopes. However, 
the results are of limited practical use, given the complete classifications 
in those dimensions. We now turn to reflexive polytopes in five dimen-

sions, the lowest-dimensional case for which a complete classification 
is not available. The total number of (inequivalent) reflexive polytopes 
in dimensions 𝑛 = 1, 2, 3, 4 is given by 1, 16, 4319, 473, 800, 776, respec-

tively. This sequence suggests the number of reflexive polytopes in five 
dimensions is extremely large and producing a complete catalog is in-

tractable.6 The partial list of Schöller and Skarke of 185, 269, 499, 015
weight systems that give rise to (not necessarily inequivalent) maximal 
five-dimensional reflexive polytopes [11] is the state of the art. The GA, 
however, is not biased towards generating maximal polytopes, and can 
be used to search for polytopes with other properties. In fact, it is likely 
that the vertices of the largest polytopes are far from the origin, and the 
GA would struggle to find such cases. For these reasons, we focus on 
generating small polytopes with a small number of points and vertices. 
We note that the “small” polytopes we generate are not necessarily dual 
to Skarke and Scholler’s “maximal” polytopes. The maximal polytopes 
in Skarke and Scholler’s list are those that contain every reflexive poly-

tope as a subpolytope and so the dual of these will indeed have a small 
number of points. However, some of our small polytopes which have a 
small number of points might have a dual that is large (meaning it has 
large number of points) but it is still a subpolytope of an even larger 
maximal polytope, in which case the dual would not be in Skarke and 
Scholler’s database.

We can compute the normal forms of the polytopes found by the GA 
with those of the polytopes in the existing list, to confirm that we have 
indeed found new five-dimensional reflexive polytopes.

4.1. 𝑵v = 𝟔

In analogy with the four-dimensional case, we start by looking at 
polytopes with the smallest number of vertices, that is, 𝑁v = 6. We use 
the integer range {−15, … , 16} so that every integer is represented by 

6 Extrapolating this trend gives an estimate of 1.15 × 1018 five-dimensional 
5

reflexive polytopes [11].
Fig. 2. Total number of generated five-dimensional reflexive polytopes with six 
vertices against number of genetic algorithm evolutions.

𝜈 = 5 bits and the total length of the genotype is 𝑛bits = 150. Hence, the 
size of the environment is 2150 ≃ 1046. We have performed 626318 GA 
runs, taking over two months to complete on a single CPU. We used 
𝑛gen = 500 generations and a population size 𝑛pop = 500, meaning dur-

ing the search a fraction of at most 10−35 of the environment has been 
visited. The number of reflexive polytopes against the number of runs 
found in this way is shown in Fig. 2. After removing redundancies, we 
end up with a total of 115567 five-dimensional reflexive polytopes with 
six vertices. From Fig. 2 we see that the reduced number of reflexive 
polytopes is still increasing and therefore running the GA for longer 
we should find more six-vertex polytopes. However, due to limited re-

sources and so we do not pursue this.

4.2. 𝑵p = 𝟕,𝟖,𝟗,𝟏𝟎,𝟏𝟏

We have also searched for those five-dimensional reflexive polytopes 
with the lowest number of points, that is, 𝑁p,0 ∈ {7, 8, 9, 10, 11}. This 
has been done for the range integer range {−3, … , 4}, so that every 
integer is represented by 𝜈 = 3 bits, leading the bit strings of length 
𝑛bits = 15(𝑁p,0 − 1). In each case, we perform as many GA runs as nec-

essary until no new polytopes are found for 1000 evolutions. The results 
are presented in Table 2.

Of course we do not know with certainty which fraction of low-

point polytopes we have found in this way. It is possible that some five-

dimensional reflexive polytopes with such numbers of points still exist. 
On the other hand, in view of the highly successful low-point searches 
in four dimensions, it seems likely we have found a large fraction of 

those polytopes.
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Table 2

Results for five-dimensional reflexive polytopes with a small 
number of lattice points, as in the first column. The size of 
the environment used for the GA is provided in the second 
column, the population size in the third column, the fourth 
column lists the total number of unique reflexive polytopes 
found by the GA for the given number of points and the last 
column gives the number of GA runs at which the total list 
of reflexive polytopes saturates and after which no new re-

flexive polytopes are found for 1000 runs.

# points # states 𝑛pop # un. refl. poly. # GA runs

7 ∼ 1028 350 9 36
8 ∼ 1032 350 115 1278
9 ∼ 1037 450 1385 7520
10 ∼ 1041 750 12661 31857
11 ∼ 1046 650 94556 376757

4.3. 𝒉𝟏,𝟏 = 𝟏,𝟐

It is interesting to ask about CY manifolds with small Hodge num-

bers and here we focus on cases with small ℎ1,1. The Schöller–Skarke 
list contains 8 weight systems corresponding to CY hypersurfaces with 
ℎ1,1 = 1 and 33 weight systems corresponding to CY hypersurfaces with 
ℎ1,1 = 2. In their list there are also 8, 409, 140 and 186, 659, 154 weight 
systems with ℎ1,3 = 1, 2 respectively, whose duals will have ℎ1,1 = 1, 2. 
Taking a sample of 100, 000 weight systems in each case and comput-

ing the corresponding reflexive polytopes in their normal forms we find 
that there are only 7 and 47 unique polytopes. This is a huge reduction 
and highlights the large amount of redundancy in the Schöller–Skarke 
list of weight systems. We have scanned the lists of five-dimensional re-

flexive polytopes obtained from the GA runs described above and have 
found 15 polytopes with ℎ1,3 = 1 whose dual polytopes have ℎ1,1 = 1. 
Similarly, we have found 195 polytopes with ℎ1,3 = 2 whose dual poly-

topes have ℎ1,1 = 2. By comparing normal forms, we have verified that 
these dual polytopes contain all ℎ1,1 = 1, 2 polytopes from the Schöller–

Skarke list. In addition, there are many new examples, even some with 
Hodge numbers which are not contained in the Schöller–Skarke list or 
in the list of four-dimensional CY manifolds realized as complete in-

tersections in products of projective space (CICYs) [36,37]. Two such 
examples with a new set of Hodge numbers are given in Appendix D.

All 15 polytopes with ℎ1,3 = 1 arise from the datasets with 𝑁p =
7, 8 and no such polytopes are found for 8 < 𝑁p ≤ 11. We take this as 
evidence that the dataset is complete.

Conjecture 4.1. There are precisely 15 inequivalent (non-isomorphic) five-

dimensional reflexive polytopes that give rise to four complex dimensional 
Calabi–Yau hypersurfaces with Hodge number ℎ1,1 = 1.

4.4. Targeted searches

To showcase the capability of our GA at generating CY four-folds 
with specific criteria, we present an example of a targeted search in-

spired by [38]. In that paper, the authors consider eleven-dimensional 
supergravity compactified on CY four-folds with 4-form flux and pro-

vide the conditions necessary to break supersymmetry from  = 2 to 
 = 1. In Appendix A they search for CY four-folds with 𝜒 divisible 
by 𝛿 ∈ {24, 224, 504} which satisfy the  = 1 condition. By searching 
the Schöller–Skarke list they find eight examples which they present in 
their Table 1. To facilitate a GA search for such cases, we modify our 
fitness function to

𝑓 (Δ) = 𝑓 (Δ) −𝑤5
∑
𝛿

𝜒(Δ) mod 𝛿 , (4.1)

where 𝑤5 is a weight and 𝜒(Δ) is the Euler number of Δ. In our search 
6

for such polytopes we set the number of generators to be 𝑚 = 10 and 
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use the integer coordinate range [−3, 4], where each integer is repre-

sented by 𝜈 = 3 bits. With population size 𝑛pop = 550 and after 10000
evolutions the GA finds 1871 polytopes that satisfy the index condition 
and, comparing the Hodge numbers with those in Schöller and Skarke’s 
list, we find that two of these are new. One such example is given in 
Appendix D.

This example illustrates the possibilities of a targeted GA search. By 
a suitable modification of the fitness function one can design a dedi-

cated search for CY manifolds with prescribed properties, for example 
with certain values of the Euler number as above, but also with a given 
pattern of Hodge numbers, with Chern classes and intersection form 
satisfying certain constraints or combinations of all of these. This points 
to a different approach for dealing with large classes of geometries in 
string theory. Rather than producing complete lists of such geometries 
(which is not even feasible for the case at hand, that is, five-dimensional 
reflexive polytopes) the GA can be used to search for geometries with 
prescribed properties, as required for the intended string compactifica-

tion.

5. Discussion

In this paper we have shown that genetic algorithms (GAs) can be 
efficiently used to generate reflexive polytopes in two, three, four, and 
five dimensions. In two dimensions we have generated the complete 
set of 16 reflexive polytopes in just one GA evolution. We have also 
generated the complete set of reflexive polytopes in three dimensions in 
∼ 100000 evolutions. Due to the large number of reflexive polytopes in 
four dimensions, we have refrained from generating the complete set in 
this case. Instead, we have focused on the polytopes with the smallest 
number 𝑁p,0, of lattice points, that is, 6 ≤ 𝑁p,0 ≤ 10. By comparing 
with the Kreuzer–Skarke classification, we have shown that the GA can 
find all such polytopes. These results indicate that complete or near-

complete classifications of reflexive polytopes can be accomplished with 
GAs, at least for cases with a small number of lattice points.

This observation is important for the five-dimensional case, where 
only a partial classification of reflexive polytopes exists. Performing a 
GA search for 7 ≤ 𝑁p,0 ≤ 11 in five dimensions produces all reflexive 
polytopes from the partial classification and indeed many more, previ-

ously unknown cases. This includes cases which lead to CY four-folds 
with new sets of Hodge numbers. While the number of reflexive poly-

topes obtained in this way (see Table 2) is unlikely to be the true total 
there are good indications that they provide strong lower bounds. From 
these lists, we have also extracted all polytopes with ℎ1,1 = 1. We con-

jecture that the 15 cases found constitute the complete list of reflexive 
polytopes which give rise to CY four-folds with ℎ1,1 = 1.

It is perhaps not desirable, or even feasible, to generate the com-

plete list of reflexive polytopes beyond four dimensions. Instead, we 
propose an alternative approach, well-suited to the needs of string com-

pactifications, of targeted searches for reflexive polytopes (and their 
associated CY manifolds) with certain prescribed properties. We have 
demonstrated that GAs can be used for such targeted searches, by look-

ing for cases with certain prescribed values of the Euler number. This 
has led to new reflexive polytopes that satisfy the condition for M-

theory compactifications on CY four-folds, following [38]. We expect 
the same approach will work for other targets, such as a certain desir-

able pattern of Hodge numbers.

The c code underlying the above results and all data sets are avail-

able on GitHub [22,23].

There are many possible directions for future research. In particular, 
by fine, star, regular triangulation of a (dual) reflexive polytope into 
simplices, we can construct the CY hypersurface explicitly. This process 
is also amenable to attack with GAs. Targeted GA searches are another 
promising avenue. For example, it might be possible to design a targeted 
search for elliptically or K3 fibered CY four-folds. More ambitiously, one 
can aim for searches which produce F-theory compactifications with 

certain desirable properties. It might also be interesting to apply rein-

https://github.com/elliheyes/Polytope-Generation
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forcement learning to the problem of searching for reflexive polytopes 
and compare its performance to that of GAs. We leave this to future 
work.
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Appendix A. Calabi–Yau manifolds from reflexive polytopes

In this section, we briefly review the necessary elements of toric 
geometry, with the goal of introducing the construction of mirror pairs 
of Calabi–Yau (CY) manifolds from reflexive polytopes.

Definition A.1. Let 𝑀 ≅ ℤ𝑛 and 𝑁 = Hom(𝑀, ℤ) be a dual pair of 
lattices with the pairing ⟨⋅, ⋅⟩ ∶𝑁 ×𝑀 → ℤ, and let 𝑀ℚ, 𝑁ℚ be their 
rational extensions.

• A polytope Δ in 𝑀ℚ is the convex hull of finite number of points 
in 𝑀ℚ.

• Δ is called a lattice polytope if all its vertices lie in 𝑀 .

• The dual or polar polytope of Δ is defined as

Δ∗ = {𝑛 ∈𝑁ℚ|⟨𝑛,𝑚⟩ ≥ −1 ∀𝑚 ∈Δ} . (A.1)

• A face 𝜃 of Δ is defined as

𝜃 = {𝑚 ∈Δ|⟨𝑛,𝑚⟩ = 𝑟} , (A.2)

for some 𝑛 ∈𝑁ℚ and 𝑟 ∈ℝ.

Given an 𝑛-dimensional lattice polytope Δ, one can construct a com-

pact toric variety 𝑋Δ of complex dimension 𝑛. In short, one constructs 
the normal fan ΣΔ as follows: for a face 𝜃 of Δ, let 𝜎𝜃 ⊂𝑁ℝ be the dual 
of the cone:
7

𝜎∨
𝜃
∶= {𝜆(𝑢− 𝑢′)|𝑢 ∈Δ, 𝑢′ ∈ 𝜃, 𝜆 ≥ 0} ⊂𝑀ℝ . (A.3)
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Then the normal fan is given as ΣΔ ∶= {𝜎𝜃} for all faces 𝜃 of Δ. From 
the normal fan, the construction of the compact toric variety 𝑋Δ follows 
the usual procedure [39], where each cone gives rise to an affine toric 
variety and one glues these patches together.

Definition A.2. A polytope is said to satisfy the interior point (IP) prop-

erty when it contains only one interior point taken to be the origin. Let 
Δ ⊂𝑀 be a lattice polytope satisfying the IP property, then Δ is called 
reflexive if its dual Δ∗ ⊂ 𝑁 is also a lattice polytope satisfying the IP 
property.

We recall that a CY 𝑛-fold  is an 𝑛 complex dimensional space 
that is a compact Kähler manifold and has a vanishing first real Chern 
class. Calabi conjectured and Yau proved that such a geometry admits 
a unique Ricci-flat metric in each Kähler class.

The connection between CY manifolds and reflexive polytopes is the 
following. Let Δ ⊂ 𝑀 be an 𝑛-dimensional reflexive polytope and 𝑋Δ
the corresponding 𝑛 complex dimensional toric variety. Then it follows 
that the zero locus of a generic section of the anticanonical bundle −𝐾𝑋

is a CY variety  of dimension 𝑛 − 1 which can be resolved into a 
CY orbifold with at most terminal singularities. The mirror CY  is 
similarly obtained from the polar dual. (Because of the IP property, it 
turns out that (Δ∗)∗ = Δ.) See [40,41] for explicit constructions of CY 
manifolds from reflexive polytopes.

Appendix B. Normal form

There are two sources of redundancy when defining a reflexive poly-

tope Δ in 𝑛 dimensions by its 𝑛 ×𝑁v vertex matrix 𝑉 , whose columns 
are the 𝑁v vertices. First of all, one permute the vertices, leading to 
an 𝑆𝑁v

symmetry which permutes the columns of 𝑉 . Secondly, one 
can perform a coordinate transformation on the 𝑛-dimensional lattice 
by acting on 𝑉 with a GL(𝑛, ℤ) matrix from the left. Altogether, this 
amounts to a transformation of the vertex matrix as in Eq. (2.1).

In order to remove the redundancy in the list of polytopes, we 
compare their normal forms. This is the approach that was used by 
Kreuzer and Skarke in constructing the complete classification of three-

and four-dimensional reflexive polytopes [8,10] and is included in the

PALP software package [35]. If two polytopes Δ1 and Δ2 have the same 
normal form, then they are equivalent, in the sense that they are iso-

morphic with respect to a lattice automorphism. A detailed description 
of the how one computes the normal form is given in [42]. We shall 
give a short description here.

Let 𝑀 be a 𝑛-dimensional lattice and Δ ⊂𝑀ℚ a 𝑛-dimensional lat-

tice polytope with 𝑁v vertices, 𝑁f = |𝐹 (Δ)| facets and vertex matrix 
𝑉 . We also define the supporting hyperplanes of Δ, associated to the 
facets 𝜑𝑖 ∈ 𝐹 (Δ), as the set of all vectors 𝑣 satisfying ⟨𝑤𝑖, 𝑣⟩ = −𝑐𝑖, 
where (𝑤𝑖, 𝑐𝑖) ∈𝑀∗ ×ℤ. The algorithm to compute the normal form is 
then as follows.

1. Compute the 𝑁f ×𝑁v vertex-facet pairing matrix 𝑃𝑀 :

𝑃𝑀𝑖𝑗 ∶= ⟨𝑤𝑖, 𝑣𝑗⟩+ 𝑐𝑖 . (B.1)

2. Order the pairing matrix 𝑃𝑀 lexicographically to get the maximal 
matrix 𝑃𝑀max.

3. Further rearrange the columns of 𝑃𝑀max to get 𝑀 by the follow-

ing:

𝑀 ← 𝑃𝑀max

for 𝑖 = 1 to 𝑁v do

𝑘← 𝑖

for 𝑗 = 𝑖+ 1 to 𝑁v do
if 𝑐𝑀 (𝑗) < 𝑐𝑀 (𝑘) ∨ (𝑐𝑀 (𝑗) = 𝑐𝑀 (𝑘) ∧ 𝑠𝑀 (𝑗) < 𝑠𝑀 (𝑘)) then
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𝑘← 𝑗

end if

end for

𝑀 ← SwapColumn(𝑀,𝑖, 𝑘)

end for

where 𝑐𝑀 (𝑗) ∶= max(𝑀𝑖𝑗 |1 ≤ 𝑖 ≤ 𝑁f) and 𝑠𝑀 (𝑗) ∶=
∑𝑁f

𝑖=1𝑀𝑖𝑗 , 
where 1 ≤ 𝑗 ≤𝑁v.

4. Let 𝜎max denote the associated element of 𝑆𝑁f
× 𝑆𝑁v

that trans-

forms 𝑃𝑀 into 𝑀 . Order the columns of 𝑉 according to the 
restriction of 𝜎max to 𝑆𝑁v

to get the maximal vertex matrix 𝑉 max. 
This removes the permutation degeneracy.

5. Compute the row style Hermite normal form of 𝑉 max to obtain the 
normal form 𝑁𝐹 . This step removes the 𝐺𝐿(𝑛, ℤ) degeneracy.

Example 1. To illustrate the above algorithm, we present an example 
in three dimensions. Let Δ be a lattice polytope defined by the vertex 
matrix:

𝑉 =
⎛⎜⎜⎝
0 −2 −1 −1 1 −3 2 −2
1 −3 −1 0 0 −3 1 −1
1 −3 −2 −1 0 −4 3 −2

⎞⎟⎟⎠
. (B.2)

Computing the vertex-facet pairing matrix we get

𝑃𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 2 1 1 0
0 1 0 0 2 2 2 1
0 6 6 0 0 1 3 2
2 1 2 2 0 0 0 1
3 0 1 1 1 0 0 0
2 5 6 0 0 0 2 1
3 2 3 0 1 0 1 0
0 0 0 3 0 1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.3)

Ordering 𝑃𝑀 lexicographically we get the following maximal matrix:

𝑃𝑀max =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 6 3 2 1 0 0 0
6 5 2 1 0 2 0 0
3 2 1 0 0 3 1 0
2 1 0 1 0 2 0 2
1 0 0 0 0 3 1 1
0 1 2 1 2 0 2 0
0 0 1 0 1 2 2 0
0 0 0 2 1 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.4)

corresponding to the row and column permutations (3, 6, 7, 4, 5, 2, 1, 8)
and (3, 2, 7, 8, 6, 1, 5, 4) respectively. Further ordering the columns by the 
procedure described in Step 3 above we get

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 0 6 6 3
2 0 0 1 0 6 5 2
3 0 0 0 1 3 2 1
2 0 2 1 0 2 1 0
3 0 1 0 1 1 0 0
0 2 0 1 2 0 1 2
2 1 0 0 2 0 0 1
0 1 3 2 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.5)

corresponding to the column permutation (6, 5, 8, 4, 7, 1, 2, 3). Ordering 
the columns in 𝑉 correspondingly we get

𝑉 max =
⎛⎜⎜⎝
−3 1 −2 −1 2 0 −2 −1
−3 0 −1 0 1 1 −3 −1
−4 0 −2 −1 3 1 −3 −2

⎞⎟⎟⎠
. (B.6)

Finally, computing the row style Hermite normal form of 𝑉 max we ar-
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rive at the following normal form:
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𝐹 =
⎛⎜⎜⎝
1 0 1 0 1 −2 1 0
0 1 −1 0 −1 1 −3 −3
0 0 0 1 −1 0 −2 −2

⎞⎟⎟⎠
. (B.7)

ppendix C. Environment

In order to set up the environment, we consider lattice polytopes Δ
 𝑛 dimensions which are generated as the convex hull of 𝑚 vectors 
∈ ℤ𝑛, where 𝑎 = 1, … , 𝑚. These vectors are arranged into an 𝑛 × 𝑚

atrix  = (𝑥1, … , 𝑥𝑚).
In practice, we must restrict the entries 𝑥𝑖𝑎 of the matrix  to a finite 

nge which we choose to be 𝑥𝑖𝑎 ∈ {𝑥min, 𝑥min +1, … , 𝑥min +2𝜈 −1}, for 
rtain integers 𝑥min and 𝜈. Our environment 𝐸 therefore consists of all 
×𝑚 integer matrices  with entries in this range. The elements of an 
vironment 𝐸 are also referred to as phenotypes. The first step in ap-

ying GAs to such an environment is to define the phenotype-genotype 
ap 𝐸 → 𝔽 𝑛bits

2 . Given our choices this is quite straightforward. Each 
teger 𝑥𝑖𝑎 is converted into a bit string of length 𝜈 and concatenating 
ese leads to a bit string of length 𝑛bits = 𝑛 𝑚 𝜈 which describes the en-

re matrix  . With these conventions the phenotype-genotype map is, 
 fact, bijective and the environment 𝐸 contains a total of

bits = 2𝑛𝑚𝜈 (C.1)

ates. To orient ourselves let us consider polytopes in dimension 𝑛 = 5
ith the minimal number, 𝑚 = 6, of generators and with each integer 𝑥𝑖𝑎
presented by 𝜈 = 3 bits (so that, choosing for example 𝑥min = −4, the 
teger range is 𝑥𝑖𝑎 ∈ {−4, … , 3}). In this case, the environment consists 
 290 ≃ 1027 states, quite a sizeable number and certainly well beyond 
stematic search.

.1. Estimating the number of reflexive polytopes

We wish to estimate how many states in the total environment corre-

ond to 𝑛-dimensional reflexive polytopes, given the number of unique 
flexive polytopes. To do so we estimate the number, 𝑁 , of GL(𝑛, ℤ)
atrices which transform the unique reflexive polytopes to an equiva-

nt reflexive polytope than remains within the environment, i.e. with 
rtex coordinates in the range [𝑥min, 𝑥min + 2𝜈 − 1]. The total number 
 reflexive polytopes in the environment is then estimated to be (# 
ique reflexive polytopes)×𝑁 .

We estimate 𝑁 by the following steps:

1. Determine the minimum value of 𝐿 for which the majority of 
GL(𝑛, ℤ) matrices that transform the unique polytopes to something 
within the environment have entries in the range [−𝐿, 𝐿]. To find 
𝐿 we do the following, starting with 𝐿 = 2:

(a) Generate a random sample of 10000 GL(𝑛, ℤ) matrices with 
entries in the range [−𝐿, 𝐿], and either the maximum entry 
equal to 𝐿 or the minimum entry equal to −𝐿.

(b) Act on the unique reflexive polytopes with each of the 10000 
GL(𝑛, ℤ) matrices from the previous step and count what num-

ber of transformed polytopes exist within the environment, i.e. 
have vertex coordinates in the range [𝑥min, 𝑥min + 2𝜈 − 1].

(c) If any transformed polytopes remain within environment, in-

crease 𝐿 by 1 and repeat, otherwise stop.

2. Compute the total number, 𝑁GL, of GL(𝑛, ℤ) matrices with entries 
in the range [−𝐿, 𝐿]7:

𝑁GL = ((2𝐿+1)𝑛−1)((2𝐿+1)𝑛−(2𝐿+1))⋯ ((2𝐿+1)𝑛−(2𝐿+1)𝑛−1).

(C.2)

In general, the size of GL(𝑛, 𝔽𝑝), where 𝔽𝑝 is a finite field with 𝑝 elements, is 
ven as (𝑝𝑛 −1)(𝑝𝑛 −𝑝)(𝑝𝑛 −𝑝2) ⋯ (𝑝𝑛 −𝑝𝑛−1). Therefore the number of GL(𝑛, ℤ)
atrices with entries in the range [−𝐿, 𝐿] is ((2𝐿 + 1)𝑛 − 1)((2𝐿 + 1)𝑛 − (2𝐿 +
1))((2𝐿 + 1)𝑛 − (2𝐿 + 1)2)…((2𝐿 + 1)𝑛 − (2𝐿 + 1)𝑛−1).
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Table 3

Components of the estimates for the total number of reflexive polytopes that exist in the GA 
environment. The dimension is given in the first column, the number of vertices and points, 
if specified, are given in the second and third columns respectively, the minimum coordi-

nate entry is in the fourth column and the maximum number of generators in the fifth 
column. The range [−𝐿, 𝐿] of GL(𝑛, ℤ) entries is given in the sixth column, the number of 
such matrices is given in the seventh column, the fraction of these matrices with determi-

nant ±1 is given in the eighth column, the fraction of GL(𝑛, ℤ) matrices with entries in the 
range [−𝐿, 𝐿] and with determinant ±1 which transform the unique reflexive polytopes to 
polytopes within the environment is given in ninth column and the last column gives the 
estimate on the total number of reflexive polytopes in the environment.

𝑛 𝑁v 𝑁p 𝑥min 𝜈 𝐿 𝑁GL 𝑓1 𝑓2 𝑁

2 −3 3 4 5760 0.0433 0.430 107
3 −7 4 9 3.05 × 1011 0.000120 0.043 1.58 × 106
4 5 −15 5 15 7.03 × 1023 4.70 × 10−8 1.99 × 10−5 6.58 × 1011
4 6 −3 3 4 1.62 × 1015 0.000303 0.0349 1.72 × 1010
4 7 −3 3 4 1.62 × 1015 0.000303 0.0287 1.41 × 1010
4 8 −3 3 4 1.62 × 1015 0.000303 0.0203 1.00 × 1010
4 9 −3 3 4 1.62 × 1015 0.000303 0.0144 7.09 × 109
4 10 −3 3 4 1.62 × 1015 0.000303 0.0107 5.27 × 109
3. Take the random sample of 10000 GL(𝑛, ℤ) matrices with entries in 
the range [−𝐿, 𝐿] from the previous step and determine what frac-

tion 𝑓1 ∈ [0, 1] of these matrices have determinant ±1, a condition 
that is necessary to maintain reflexivity.

4. Generate a sample of 10000 GL(𝑛, ℤ) matrices, with entries in the 
range [−𝐿, 𝐿] and determinant ±1, act on the unique reflexive 
polytopes with each of these matrices and determine what fraction 
𝑓2 ∈ [0, 1] of the transformed polytopes remain within the environ-

ment, i.e. have vertex coordinates in the range [𝑥min, 𝑥min +2𝜈 −1].
5. Estimate 𝑁 as

𝑁 =𝑁GL × 𝑓1 × 𝑓2. (C.3)

The 𝑁GL, 𝑓1, 𝑓2 and 𝑁 values for the two, three and four-

dimensional cases are given in Table 3.

Appendix D. Examples

Example 2. A new five-dimensional reflexive polytope giving rise to a 
four-dimensional CY hypersurface with ℎ1,1 = 1 is given by the vertex 
matrix:

⎛⎜⎜⎜⎜⎜⎝

0 4 −1 2 −1 −2
3 −1 −4 9 0 −3
2 2 −2 2 −2 2
1 −3 0 3 0 −1
3 −5 1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎠
. (D.1)

This polytope8 has Hodge numbers ℎ1,2 = 0, ℎ1,3 = 111, ℎ2,2 = 492, and 
Euler number 𝜒 = 720.

Example 3. A new five-dimensional reflexive polytope giving rise to a 
four-dimensional CY hypersurface with ℎ1,1 = 2 is given by the vertex 
matrix:

⎛⎜⎜⎜⎜⎜⎝

0 −2 −4 −1 10 8 −2
4 0 2 −1 −6 −4 0

−1 1 −3 0 1 3 1
2 −2 0 0 −2 0 1
2 0 −2 1 −6 −2 3

⎞⎟⎟⎟⎟⎟⎠
. (D.2)

8 In five dimensions, that is for CY four-folds, these topological invariants are 
not all independent. We have the two relations ℎ2,2 = 44 + 4ℎ1,1 − 2ℎ1,2 + 4ℎ1,3

and 𝜒 = 48 + 6ℎ1,1 − 6ℎ1,2 + 6ℎ1,3. Mirror symmetry exchanges ℎ1,1 and ℎ1,3
9

while leaving ℎ1,2 and ℎ2,2 fixed.
This polytope has Hodge numbers ℎ1,2 = 0, ℎ1,3 = 111, ℎ2,2 = 496, and 
Euler number 𝜒 = 726.

Example 4. A new five-dimensional reflexive polytope giving rise to a 
four-dimensional CY hypersurface whose Euler number 𝜒 is divisible by 
24, 224, and 504 is given by the vertex matrix:

⎛⎜⎜⎜⎜⎜⎝

−1 −1 0 −1 0 1 −1 0
1 1 2 0 −1 2 0 0

−1 3 2 3 −1 −1 2 0
0 4 3 4 −2 0 3 1

−3 4 0 4 0 0 2 −2

⎞⎟⎟⎟⎟⎟⎠
. (D.3)

This polytope has Hodge numbers ℎ1,1 = 331, ℎ1,2 = 9, ℎ1,3 = 6, ℎ2,2 =
1374, and Euler number 𝜒 = 2016.
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