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ABSTRACT 

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis 

(MTB), the causative agent of tuberculosis, reinforces the need for novel 

antimycobacterial compounds. Secondary metabolites from various 

microorganisms have provided most antibacterials introduced clinically since 

1935. Previously, a putative Pseudomonas isolate was identified that inhibited 

growth of the non-pathogenic M. smegmatis (MSM). Here, we demonstrate the 

stable isolation of the inhibitory compound(s) in crude extract, and present 

microbiological data characterizing the antimycobacterial effect. A parallel 

extraction was performed on an unrelated Pseudomonas isolate which failed to 

inhibit growth of MSM, thereby confirming that the inhibitory effect is limited to our 

strain, designated Pseudomonas � MB (anti-mycobacterial). Moreover, the crude 

extract inhibited growth of all Gram-positive organisms assayed, including other 

actinobacteria, but not the Gram-negative E. coli, suggesting the possibility of a 

Gram-restricted target range. As the cell wall constitutes the dominant target of 

natural-product antibacterials, we hypothesised that the active compound(s) might 

inhibit cell wall metabolism. However, preliminary data are inconclusive and the 

target of the extract remains to be elucidated, perhaps reflecting the presence of 

more than one active compound. Notably, the crude extract was shown by broth 

microdilution assay to inhibit growth of MTB at a concentration of 14-16 µg/ml, a 

value ten-fold higher than key frontline anti-TB agents tested. Therefore, although 

the identity of the constituent compound(s) and its mode of action are unknown, 

the apparent anti-MTB activity suggested by our preliminary experiments identifies 

the Pseudomonas-derived active agent(s) as a compelling candidate for further 

investigation as a potential lead compound(s) against a major human pathogen 

increasingly associated with drug resistance. 
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INTRODUCTION 
 

1.1 Tuberculosis  

Tuberculosis (TB) is caused by Mycobacterium tuberculosis (MTB), a gram-

positive, facultative intracellular pathogen that successfully invades and persists 

within macrophages (34). Up to one third of the world’s population is infected with 

this highly successful pathogen (145) and there are an estimated 8 million new TB 

cases and 2 million deaths worldwide each year. TB is the leading cause of death 

from an infectious agent worldwide (140). Several factors have contributed to the 

increase in incidence, including the Human Immunodeficiency Virus (HIV) 

pandemic, immigration, increased trade and globalization (145). HIV-associated 

TB has increased dramatically as the virus weakens the immune system, leading 

to the reactivation of latent TB. In addition, the threat of resistant strains, both 

multidrug resistant (MDR) and extensively drug resistant (XDR), have resulted in 

prolonged treatments due to the inefficiency of current antibiotics to eliminate 

persistent infection(8). Current efforts to control TB focus primarily on reduction of 

TB transmission yet 95% of infection exists in an asymptomatic latent form(144). 

This reinforces the need for more effective antimycobacterial therapeutics that are 

shorter-acting and active against non-replicating mycobacteria. 

 

1.2 TB Chemotherapy 

Following the discovery of penicillin in 1928, a significant number of antibiotics 

were discovered in the subsequent years, many of which were used for the 

treatment of gram positive infections (1). These included aminoglycosides, such 

as streptomycin, tetracyclines, chloramphenicol, neomycin, erythromycin, 

vancomycin, kanamycin and cephalosporin. However, since the 1960s, the rate of 

discovery of useful antibiotics has decreased dramatically (1). Since the 

introduction of streptomycin (STM) in 1946, the chemotherapy of TB has evolved 

over the years (67). However, shortly after its introduction as an effective 

chemotherapy, reports of streptomycin-resistant MTB appeared, later shown to be 

the result of streptomycin monotherapy (68). Therefore, the combination of 

streptomycin with para-aminosalysilic acid (PAS), also discovered in 1946, was 
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shown to be more effective than treatment with either agent alone (68). In 1949, 

isoniazid (INH) became available and by 1955, the standard treatment for TB 

compromised the combination of STM, PAS and INH (67). The major 

breakthroughs in the treatment of TB came with the discovery of rifampicin (RIF) in 

the late 1960s and the rediscovery of the antimycobacterial activity of 

pyrazinamide (PZA) which made it possible to shorten the duration of treatment 

considerably (69). However, the drastic decline in antibiotic discovery since the 

1960s has resulted in few developments in available therapies for the treatment of 

TB in particular (114), and the current TB therapeutic regimen is dependent on 

antibiotics discovered more than 40 years ago, emphasizing the need for novel 

antibacterials. 

The recently implemented DOTS (directly observed therapy short course) program 

relies on a complex regimen of administering several different drugs 

simultaneously. These include a two month long treatment with four drugs - either 

STM, INH, RIF and PZA or INH, RIF, PZA and ethambutol (EMB) - which is then 

followed by four months of INH and RIF (139). However, resistance has evolved to 

every antibiotic ever placed into clinical practice (101). Several problems are 

associated with the current anti-tuberculosis drugs that have led to the widespread 

emergence of drug resistance. These include the numerous side effects which are 

complicated by the long duration of therapy and , in turn, lead to patient non-

compliance - a major contributor to the emergence of drug resistance (27).  

 

1.2.1 Mechanisms of resistance 

Unlike in other bacteria where horizontal gene transfer is frequent, MTB – owing in 

part to its isolation in the ecologically sterile macrophage niche – acquires drug-

resistance exclusively by chromosomal mutations which alter either the drug target 

itself or the bacterial enzymes required for activating the prodrugs (112). Stress 

induced DNA damage is one mechanism thought to result in these mutations (15, 

90). For example, there is some evidence to suggest that the rate of mutation may 

increase in an environmentally dependent manner through the upregulation of 

error-prone polymerases (17). Another mechanism by which multidrug resistance 

may be acquired is by mutagenesis through the production of reactive oxygen 
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species (ROS), stimulated by sublethal concentrations of antibiotics (73). 

Resistance to INH occurs due to a single missense mutation in the inhA gene of 

MTB, the product of which is involved in fatty acid synthesis (133). Additionally, 

mutations in - or deletion of - the katG gene, encoding the catalase-peroxidase 

KatG, result in resistance to INH (70). RIF resistance is associated with missense 

mutations and short deletions within the rpoB gene that encodes the RNA 

polymerase � -subunit (107). Missense point mutations or deletions in the pncA 

gene result in PZA resistance by decreasing the pyrazinamidase activity (107, 

115). EMB resistance is most often found in association with missense mutations 

at codon 306 of embB which encodes arabinosyl transferases (122). 

MTB acquires MDR and XDR through a step-wise accumulation of chromosomal 

mutations, each of which confers resistance to individual drugs (92). In the early 

1990s, several converging features led to the emergence of MDR-TB (112), which 

is defined as MTB that is resistant to at least INH and RIF, the two major front-line 

drug. The perceived threat of MDR-TB is enormous as TB control has been put in 

jeopardy and the cost of treating MDR-TB patients is extremely high relative to 

treatment for patients carrying drug-sensitive strains (43). In addition to MDR-TB, 

an increasing number of XDR-TB cases have been reported globally. XDR-TB is 

defined as resistance to at least INH and RIF, plus any fluoroquinolone, and at 

least one of the three injectable second-line drugs (amikacin, capreomycin, or 

kanamycin) (139). In South Africa, XDR-TB is considered endemic:  a 2006 

outbreak in the small town of Tugela Ferry, KwaZulu-Natal, highlighted the scale 

of the problem (51). This study reported that of the 221 patients diagnosed with 

MDR-TB, 53 of the cases were identified as XDR-TB (51, 118), and the mortality 

rate among patients co-infected with HIV was 98% (51, 92). Since the Tugela 

Ferry study, more than 250 cases of XDR-TB have been reported in South Africa, 

highlighting the need to identify novel drugs with novel mechanisms of action 

(MOA). 
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1.3 Drug Targets 

Antibiotics in clinical use target a limited number of cellular processes. There are 

four main targets for the majority of antibacterial drugs: protein synthesis, nucleic 

acid biosynthesis (DNA replication and RNA transcription), folate metabolism, and 

cell wall biosynthesis (Figure 1.1). In each of these, the antibiotics act selectively 

through the use of comparative biochemical differences between prokaryotic and 

eukaryotic machinery (136). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1:  The Major Targets of Antibiotics (adapted 
from (119)). Antibiotic classes used for the treatment of 
tuberculosis are highlighted in pink. Some examples of front-
line/ second-line TB drugs from each drug class include: 
Amikacin, Kanamycin (Aminoglycosides); Capreomycin, 
Vancomycin (Polypeptides); Ciprofloxacin, Ofloxacin 
(Fluoroquinolones); and Rifampicin. 
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1.3.1 Inhibition of Protein Biosynthesis 

Protein biosynthesis is essential for cellular function, and is catalyzed by 

ribosomes. Owing to the large number of molecular steps involved in initiation, 

elongation and termination of protein assembly, it is not surprising that there are 

many steps within the process that are targeted by various classes of protein-

synthesis inhibitors (143). Important antibiotics that inhibit protein biosynthesis 

include the macrolides (such as erythromycin), the tetracyclines 

(chlortetracycline), and the aminoglycosides (streptomycin and its synthetic 

variant, kanamycin) (136). Many clinically significant mycobacteria are susceptible 

to macrolides, such as clarithromycin. These antibacterial drugs bind to the 50S 

ribosome subunit and act as physical ‘plugs’, blocking the exit of the peptide chain 

(95). However, several mycobacteria including MTB, M. smegmatis (MSM) and 

some members of the M. fortuitum group are intrinsically resistant to macrolides 

(95). 

 

1.3.2 Inhibition of DNA and RNA Biosynthesis 

DNA replication is an essential process for all organisms. A number of quinolone 

antibiotics have been shown to have activity against many mycobacterial species 

in vitro and this has been confirmed in animal models of infection (53). The 

synthetic fluoroquinolones exert their antibacterial effect by inhibiting DNA gyrase 

and DNA topoisomerase IV, enzymes that are essential for DNA replication and 

transcription (117). Transcription is an essential process for decoding genetic 

information from DNA to RNA. The antibiotic RIF inhibits RNA polymerase by 

binding to the �  subunit of the enzyme (143).  

 

1.3.3 Inhibition of Folate Biosynthesis 

Sulfonamides are the longest-used antibacterial drugs and include 

sulfamethoxazole, which is used in combination with trimethoprim to confer a 

bactericidal effect. Folic acid is necessary for the production and maintenance of 

new cells. Each of the drugs inhibit a distinct step in folic acid metabolism (135). 

Sulfamethoxazole inhibits dihydropteroate synthase as it has a higher affinity for 

the enzyme than the natural substrate, p-aminobenzoic acid. Trimethoprim inhibits 
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dihydrofolate reductase, a key enzyme in the folate biosynthetic pathway. 

Sulfonamides are primarily used to treat nontuberculous mycobacterial infections 

(mycobacteria other than MTB and M. leprae) (135). 

 

1.3.4 Inhibition of Cell Wall Biosynthesis 

The peptidoglycan layer of the bacterial cell wall provides mechanical strength and 

protects the organism from osmolysis. Peptidoglycan is a meshwork of covalently 

crosslinked strands of peptide and glycan. Transglycosidases crosslink the glycan 

strands, while transpeptidases crosslink the peptide strands (143). The � -lactam-

containing penicillins and cephalosporins target the transglycosidase and 

transpeptidase domains of bifunctional enzymes. Transpeptidases (also called 

penicillin-binding proteins or PBPs) are inactivated by � -lactams through the 

acylation of the active sites. Therefore antibiotics such as penicillin prevent normal 

crosslinking of peptide chains in the peptidoglycan layer, resulting in a weakened 

cell wall, which is susceptible to lysis on changes in osmotic pressure (136).  

In addition to � -lactams, the vancomycin family of glycopeptide antibiotics also 

targets the peptidoglycan layer of the bacterial cell wall. However the MOA is 

different from that of � -lactams, as vancomycin sequesters the peptide substrate, 

thereby preventing it from reacting with either the transpeptidases or the 

transglycosylases (136). This results in the failure of peptidoglycan cross-linkage, 

thereby rendering the cell wall susceptible to osmolysis. 

The bacterial cell wall is a common target for the majority of natural-product 

antibacterial drugs. Many cyclic lipopeptides (CLPs) are compounds that are 

required in the metabolism of the producing bacteria and therefore remain bound 

to the cell when produced, while others play a role in pathogenesis and are 

released into the environment to kill or inhibit other bacterial cells (75). 

Daptomycin is a CLP antibiotic produced by Streptomyces roseosporus. Other 

CLP antibiotics related to daptomycin include calcium-dependent antibiotic (CDA) 

and A54145, which are secondary metabolites, produced by actinomycetes (6).  

The proposed MOA of CLPs is the insertion of a number of monomers of the 

compounds into the lipid membrane in a Ca2+-dependent manner. Insertion is 

facilitated by the amphipathic nature of the molecule (65). The monomers produce 
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an ion channel that facilitates passive ion exchange of K+, H+ and Ca2+, which 

ultimately results in cell death (59). A large influx of Ca2+ ions leads to the 

activation of intracellular signaling cascades associated with kinase-mediated 

phosphorylation of membrane proteins. The specific nature of the bacterium does 

mediate the activity of the CLP, for example syringomycin appears to be linked to 

the presence of teichoic acid in gram positive bacteria (12).  

Other examples of peptide-based, natural-product antibacterial agents with novel 

MOAs are the structurally-related, bacteria-derived peptides bacitracin and 

polymixin, which were introduced clinically in 1942. These peptides interfere with 

peptidoglycan synthesis by inhibiting the transfer of cytoplasmically synthesized 

peptidoglycan precursors to bactoprenol pyrophosphate (62). 

 

1.4 The Mycobacterial Cell Wall as a Drug Target 

As previously described, the bacterial cell wall is ripe with potential targets for 

drugs, particularly those of bacterial origin.  This is even more apparent with the 

mycobacteria owing to the complexity of their cell wall as well as the fact that it 

offers a significant barrier to entry to many compounds (18). The low permeability 

of the mycobacterial cell wall also offers resistance to chemical injury, dehydration 

and certain antibiotics (18).  The cell wall of Mycobacterium spp. is structurally 

unique owing to the high percentage of mycolic acids. Mycolic acids are a class of 

complex fatty acids that consist of a hydroxyl group on the � -carbon and an 

aliphatic chain attached to the � -carbon of the fatty acid. These complex lipids 

make up approximately 40% of the dry weight of the cell and render the cell 

envelope extremely hydrophobic (71). The permeability of the cell wall is 

significantly enhanced by the disruption of this lipid layer, either by the inhibition of 

mycolic acid biosynthesis or by the interference of mycolic acid attachment to 

arabinogalactan (18).  

The mycobacterial cell envelope is composed of three major components: the 

plasma membrane, the cell-wall core, and the extractable glycans, lipids and 

proteins (20). The cell wall core can be defined as the layer external to the plasma 

membrane and is termed the mycolyl aribinogalactan-peptidoglycan complex 

(MAPc) (20). This core is essential for viability of the cell as it is insoluble and 
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remains intact when the cell wall is disrupted with certain solvents. Therefore, the 

MAPc is an ideal target for the development of novel drugs. Many currently 

available drugs inhibit the synthesis of various cell wall components. EMB is 

thought to inhibit the biosynthesis of the cell wall components arabinogalactan and 

lipoarabinomannan by inhibiting arabinosyl transferases (embCAB) which are 

involved in polymerizing arabinose into arabinan (111, 122). INH is activated by 

the catalase-peroxidase enzyme, KatG. The activated drug then reacts with a 

NADH radical to form a complex which binds tightly to ketoenylreductase, InhA, 

thereby preventing access of the natural substrate. This process inhibits mycolic 

acid synthesis (29). Some researchers have questioned the mycobacterial cell 

wall as a drug target for latent bacteria, as cell wall synthesis might not occur 

during the stationary phase (18). However, whether cell wall metabolic pathways 

(such as maintenance and re-modelling) are active during periods of non-

replication remains to be established. Certainly, studies carried out on other 

bacteria have shown that cell wall turnover occurs during the stationary phase, 

reinforcing the potential relevance cell wall processes to non-replicating MTB (18). 

Thus, the complexity of the mycobacterial cell wall offers great potential as a drug 

target for the discovery of novel antimycobacterials, possibly with novel MOAs. 

 

1.5 Novel Antibacterial Compounds: Secondary Metabolites 

The inevitable development of resistance that follows the clinical introduction of 

antibiotics necessitates a constant supply of new compounds, ideally with novel 

MOAs. However, despite the mounting urgency for new antibiotics, only four new 

classes of antibiotics have been introduced since the early 1960’s (48). There 

have been two lines of antibiotic discovery over the past 70 years: natural 

products and synthetic compounds (137). Most of the antibacterial drug classes 

known today are derived from natural products or natural product leads (96). 
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Figure 1.2: The clinical introduction of new classes of 
antibiotics and the subsequent development of 
resistance (Adapted from (1)). Antibiotics that are of 
synthetic origin are highlighted in green. 

 

Recently, the availability of the complete genome sequence of MTB (30) has 

enabled the identification of essential proteins as novel targets for drug 

development.  The success of the target-based approach relies on the quality of 

the target as well as the level of validation (5). Only a few validated targets have 

been revealed to date, namely RNA polymerase, DNA gyrase, NADH-dependent 

enoyl-(acyl-carrier-protein) reductase and ATP synthase. Current TB drugs, at 

various stages of clinical trials, founded on these validated targets include 

Rifapentine (Rifamycin drug class) and Gatifloxacin and Moxifloxacin 

(Fluoroquinolones) (104). Limitations of the target-based approach may, in part, 

be due to the formidable cell wall barrier of mycobacteria, but may also be due to 

unforeseen difficulties of this approach - highlighted by GlaxoSmithKline’s general 

failure to identify new antimicrobials against Helicobacter pylori by this approach 

(101). In addition, the single-target approach is questionable, as a number of 

antibacterials have multiple targets (8). Whole-cell screening strategies offer an 

alternative to the target-based approach and allow for all essential targets to be 

screened simultaneously (8). In fact, the whole-cell screening approach has 
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identified four of the compounds currently in clinical trials: SQ109, PA-824, 

TMC207 and OPC-67683 (5).  

Secondary metabolites, produced by a variety of microorganisms, have proved a 

major source of antibacterial compounds introduced clinically since 1935. In fact, 

more than two-thirds of the antibiotics used today are microbial natural products or 

semisynthetic derivatives of these molecules (47). These compounds may confer 

upon the producing organism a competitive advantage in its ecological niche 

(119), and are identified through the random screening of environmental bacteria. 

These secondary metabolites are therefore a major source of natural product 

compounds and have not only served as leads that were chemically modified and 

developed as antibacterial agents, but have also provided novel chemical 

scaffolds for many drugs as well (119). Natural product antibiotics range from 

small molecular weight compounds (e.g., penicillins) to large peptides (e.g., 

teicoplanin). Of the three new antibacterial classes that have entered the market 

since 1970, two are natural-product derived (22): the oxazolidinones linezolid and 

mupirocin, and the CLP daptomycin. However, it is estimated that, through 

analyses of bacterial genome sequences, researchers have discovered only ~10% 

of the natural products produced by screened strains, and just ~1% of the 

molecules from the global consortium of known microbial producers. Even more 

interestingly, certain natural product antibiotics of the same class are produced by 

two or more microbial taxa (48). 

 

1.6 The Pseudomonas spp. as a source for novel antimicrobial 

compounds 

The Gram-negative, rod-shaped, aerobic bacteria of the Pseudomonas spp. are 

capable of producing a wide diversity of secondary metabolites with antibacterial 

activity (65). The metabolites produced by these bacteria include bacteriocins and 

CLPs. Bacteriocins are ribosomally produced peptide structures that have a 

narrow killing range, often eliminating or inhibiting cells of closely related species 

or killing different strains of the same families (25). These compounds are 

produced by a variety of Gram-positive and Gram-negative bacteria and act by 

disrupting the cell membrane of target cells, thereby resulting in cell death. CLPs 
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are peptide-based compounds, with a framework consisting of a cyclic peptide ring 

attached to a fatty-acid residue, that are produced non-ribosomally by several 

different bacteria and have been shown to be promising antimicrobial compounds 

due to their structural diversity (75). These compounds have been tested against a 

range of non-pathogenic and pathogenic Gram-positive and Gram-negative 

bacteria as possible antimicrobial treatments. Several of these compounds have 

activity against the mycobacteria, both MTB and MSM, as well as other organisms 

such as B. subtilis (21, 52, 62, 105).  

Previously, an isolate of the � -proteobacterium, Pseudomonas, that exhibited 

antagonism towards MSM was identified (Department of Microbiology, School of 

Molecular and Cell Biology, University of the Witwatersrand). The primary 

objective in this study was to characterize the inhibitory effect of the Pseudomonas 

isolate. Since the vast majority of secondary metabolites target the bacterial cell 

wall, and given the intractable barrier offered by the mycobacterial cell wall, we 

hypothesized that the Pseudomonas-derived  inhibitory compound(s) were exerted 

extracellularly, i.e. either at the cell wall or cell membrane of the mycobacteria cell. 

Also, given that the inhibitory compound(s) are of Pseudomonas origin, it was 

hypothesized that the inhibitory compound might be related to the CLP’s. 

Consequently, this study had the following aims: 

1. To identify the inhibitory bacterial isolate through 16S rRNA sequence 

analysis. 

2. To extract the inhibitory compound(s) from the bacterial isolate. 

3. To determine the spectrum of target specificity. 

4. To determine the MOA by which this Pseudomonas-derived extract inhibits 

bacterial growth.  

5. Additionally, to utilize exposure to cell wall perturbing agents to aid the 

possible identification of the mycobacterial cell wall as a possible target of 

the inhibitory compound(s).  

6. To compare the potency of the inhibitory compound(s) to other 

antimycobacterial drugs. 

7. To determine the effect of the inhibitory compound(s) on (MTB). 
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2.0 MATERIALS AND METHODS 

 

2.1 Bacterial strains and growth conditions 

The list of strains used in this study is contained in Table 2.1. All strains were 

stored at -70°C in 66% glycerol, and recovered by streaking onto the appropriate 

media (See Appendix A), followed by incubation at 37°C.  

 

Table 2.1: Bacterial strains used in this study 

Species Strain Genotype Reference/ Source 

M. smegmatis mc2155 
High frequency 
transformation mutant of 
M. smegmatis mc26 

Snapper et al. (1990)(121) 

M. parafortuitum IFM 0490  Y. Shibayama* 

M. tuberculosis H37Rv  MMRU Laboratory Strain 

Chris Sassetti Laboratory 
Strain 

R. erythropolis ATCC 4277  Y. Shibayama 

R. equi   Y. Shibayama 

R. fasciens   Y. Shibayama 

R. rhodochrous 01  Y. Shibayama 

R. rhodochrous Ri8  Y. Shibayama 

N. farcinica IFM 10757  Y. Shibayama 

N. farcinica IFM 10779  Y. Shibayama 

B. cereus ATCC  K. Naicker* 

B. subtilis 01 Wild Type S. Deva* 

S. aureus   Microbiology Department, 
School of Molecular and 
Cell Biology 

S. epidermidis   Microbiology Department, 
School of Molecular and 
Cell Biology 

E. coli 29  K. Naicker* 

E. coli 32  K. Naicker* 
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* Previous/ current post-graduate students within the School of Molecular and Cell 

Biology, University of the Witwatersrand. 

 

2.2 Identification of the producer organism 

 

2.2.1 DNA extraction 

The colony boil method was used for the isolation of all mycobacterial and 

Pseudomonas genomic DNA. Cultures were streaked out onto 7H10 

(mycobacteria) or LA (Pseudomonas) to obtain single, pure colonies. Colonies 

were picked and resuspended in 50 � L of 1x TE buffer. For reference, 10 � L was 

spotted onto a plate. The remaining 40 � L was boiled for 20 min at 100°C followed 

by the addition of 40 � L of chloroform (99% Analysis Grade, Merck). The solution 

was mixed and allowed to rest at room temperature for 5 min followed by 

centrifugation at 13 000 rpm (Eppendorf Centrifuge 5415D, Merck) for 5 min. The 

supernatant was used as the DNA template during PCR reactions.  

 

2.2.2 PCR and agarose gel electrophoresis 

Amplification of 16S rDNA was performed, using the primer set Bac27F and 

U1392R (IDT, USA) (see Table 2.2). The PCR reactions were performed in an 

Eppendorf MasterCycler (Eppendorf International) and conditions were identical 

for all reactions. Primers (each to a final concentration of 0.5µM) were used in 

combination with 2x PCR Master Mix (Fermentas Life Sciences), according to the 

manufacturer’s instructions, and yielded a product of approximately 1300 bp. The 

1x concentrations of each component in the 2x PCR Master Mix is as follows: 

0.025 units/µl Taq DNA Polymarase in reaction buffer; 2mM MgCl2 and 200µM of 

each dNTP. PCR amplifications were performed using the following conditions: 

initial denaturation of template DNA at 94°C for 3 min; 35 cycles consisting of 

denaturation (94°C, 30s), annealing (60°C, 45s), extension (72°C, 1min), and a 

P. putida 317 Wild type D. Lindsay 

P. putida � MB Wild Type K. Lukasa* 
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final extension at 72°C for 7 min. All PCR products were analysed on agarose 

gels. For a 1% agarose gel, 0.4 g of agarose (Electrophoresis Grade, Invitrogen 

Life Technologies) was dissolved in 40 ml of 1x TAE buffer with 2 � l of Ethidium 

Bromide (final concentration = 0.5 µg.ml). Samples were loaded with DNA loading 

buffer (see Appendix B12) and resolved until dye front was three quarters the 

length of the gel. The product sizes were compared to the appropriate DNA 

markers (Roche Applied Science, Germany). 

 

2.2.3 DNA sequencing 

The NucleoSpin®ExtractII kit (Macherey-Nagel, Separations) was used to purify 

PCR products. The purified PCR product was sequenced (DNA Sequencing 

Facility, Stellenbosch University) and the resulting sequences were analyzed by 

BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) (4) against 16S rDNA sequences 

from GenBank (GenBank database of the National Centre for Biotechnology 

Information, http://www.ncbi.nlm.nih.gov/GenBank/). A homology tree of the 

isolates was constructed using the neighbour joining method. 

 

Table 2.2: Primer sequences used to amplify the 16SrDNA locus 

Primer Sequence (5'- 3') Size of Product (bp) 

 Bac27F AGA GTT TGA TCC TGG CTC AG  

1300 
U1392R ACG GCT ACC TTG TTA CGA CTT 

 

2.3 Ethyl acetate extraction of the inhibitory compound(s) 

A 15 ml culture of P. putida � MB was grown in LB (see Appendix A2) to a colony 

forming unit/ml (cfu/ml) of 108. The culture was plated onto 100 plates of 

unsupplemented 7H10 (see Appendix B3) (100µl/ plate) and plates were 

incubated at 37
C for 3 days. The cells from each plate were then scraped and 

added to ethyl acetate (99% Analysis Grade, Merck) to a final volume of 300 ml 

followed by storage at 4
C for 7 days. During this one week storage period, the 
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cells were frequently agitated to ensure maximum exposure to the ethyl acetate. 

The solution was then filtered, to remove the cells, and a rotavapor (Buchi 

RotaVapor, Switzerland) was used to concentrate the solution to a final volume of 

� 10ml. The extract was immediately tested on an MSM indicator plate (as 

described below), and the remaining extract was stored at 4
C, covered in 

aluminium foil as sensitivity to light was unknown.  

 

2.4  Antagonism of the Pseudomonas-derived extract 

 

2.4.1 Preparation of Indicator Plates  

Indicator plates were made by seeding agar with the various indicator organisms 

(OD600 of 0.6- 0.8). All 7H10 indicator plates were supplemented with GS (10 ml 

GS per 1L 7H10. A 10% volume of the cultures was seeded into the appropriate 

cooled media (See Appendix A) which was then poured into Petri dishes at a 

standardized volume of 25ml/ plate. Following solidification of the media, indicator 

plates were stored at 4
C. 

 

2.4.2 Inhibition Assay 

Agar plugs (diameter = 5 mm) were created and removed in the various indicator 

plates. A standardized volume of 15 µl/hole of either inhibitory extract in 100% 

Ethyl acetate or inhibitory extract in 50% ethanol was added to each hole. Each 

solvent was also tested on the indicator plates, as the appropriate control. The 

plates were incubated at 37
C for 2 days and zones of inhibition (ZOIs) were 

recorded for comparative analyses.  

 

2.5 Broth microdilution method 

The broth microdilution method (32, 41) allows a range of antibiotic concentrations 

to be tested, on a single 96-well microtitre plate, to determine the minimum 

inhibitory concentration (MIC). Briefly, a 10 ml culture of MSM is grown to an 

OD600 of 1.0. The culture is then diluted to an OD600 of 0.1 in 7H9 media. In a 96-
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well microtitre plate, 50 µl of 7H9 media was added to all wells from Rows 2-12. In 

the first and last well of Row 1, 100 µl of 7H9 media was added as a control. The 

solvent (100 µl) in which the inhibitory extract is dissolved is added to the second 

and second last well of Row1. The inhibitory extract (100 µl) is then added to the 

remaining four wells in the centre of Row 1. A serial dilution was prepared, using a 

multichannel pipette, by transferring 50 µl of the liquid in Row 1 to Row 2 and 

aspirating to mix. 50 µl of the liquid in Row 2 was transferred to Row 3 and 

aspirated. The procedure was repeated until Row 12 was reached, where 50 µl of 

the liquid in Row 12 was discarded to bring the final volume in these wells to 50 µl. 

Finally, 50 µl of the diluted MSM culture was added to all the wells of Rows 2-12. 

The microtitre plate was sealed in its original plastic bag and incubated at 37°C for 

72 Hrs. After the incubation period, Alamar blue (Molecular Probes®, USA) was 

added to each well (10% of the final volume in each well, thus, 10µl) and the plate 

was incubated at 37°C for 6 Hrs, after which observations were made. The lowest 

concentration of drug that inhibited more than 95% of the bacterial population was 

considered to be the MIC.  

 

2.6 The effect of the inhibitory extract against ethambutol-

resistant MSM mutants 

 

2.6.1 Isolation of spontaneous ethambutol-resistant mutants 

MSM was grown in 7H9/ OADC (see Appendix B4) supplemented with either 0.5 

µg/ ml or 1.0 µg/ ml EMB. The cultures were spread onto 7H10 media 

supplemented with OADC, T80 (0.05%) and EMB at either of the following 

concentrations: 0.5 µg/ ml, 1.0 µg/ ml, 2.0 µg/ ml, 4.0 µg/ ml. 8.0 µg/ ml and 10 µg/ 

ml (78). If a plate had more than 20 colonies, an assumptive EMBR mutant was 

picked and re-plated on EMB plates, at concentrations at which they were arose 

identified, to confirm resistance. Seven independent spontaneous mutants were 

isolated in this manner despite the numerous mutants that were isolated but not 

selected for further experimentation.  
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2.6.2 Confirmation of mutation in embB gene 

Genomic DNA was extracted by the colony boil method (as described above). Lety 

et al. (1997) showed that a single amino acid substitution in a highly conserved 

region among the mycobacterial EmbB proteins results in resistance to EMB (78). 

In MSM, this region is located at nucleotide position 898-909. Mokrousov et al. 

(2002) successfully amplified the region within the MTB embB gene, known to 

confer resistance to EMB (91). Therefore, the primers used by Mokrousov et al. 

(2002) were selected and the corresponding primers in the MSM embB gene were 

designed to amplify a highly conserved region, the Ethambutol Resistance 

Determining Region (ERDR), within the embB gene of MSM (Table 2.3) (91). The 

PCR reactions were performed in an Eppendorf MasterCycler (Eppendorf 

International) and conditions were identical for all reactions. Each 50 � L reaction 

consisted of 1x Phusion HF Reaction Buffer (with MgCl2) (Finnzymes, Finnland), 

20.5 � l dH2O, 200 � M of each dNTP (New England Biolabs Inc., UK), 0.5 � M of 

each primer, 0.02 units/µl Phusion® DNA Polymerase and 6 � l of the genomic 

DNA. PCR amplifications were performed using the following conditions: initial 

denaturation of template DNA at 98°C for 1 min; 30 cycles consisting of 

denaturation (98°C, 1 min), annealing (64°C, 30s), extension (72°C, 1min), and a 

final extension at 72°C for 7 min. The PCR products were resolved by agarose gel 

electrophoresis on a 1% agarose gel using a Gel Doc Imaging System (BioRad, 

USA) and product sizes were assessed in comparison to molecular weight marker 

VI (Roche Appled Science, Germany).The PCR products were purified using a 

PCR clean-up gel extraction kit, Nucleospin® Extract II (Macherey-Nagel, 

Germany). The purified products were sequenced (Inqaba Biotech, Inc, South 

Africa) and the resulting sequences were analyzed using SeqMan (DNAStar, Inc, 

USA). 

Table 2.3: Primer sequences used to amplify the ERDR within the embB gene 

Primer Sequence (5'- 3') Size of Product (bp) 

 embF CGC CTG ATC CCG ACG CGC  

254 
embR* TCG GAT CCG ATG CTG GCG TC 
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*A point mutation was introduced unintentionally during the design of primer 

embR. However this did not interfere with the identification of mutations 

associated with EMB resistance. The actual sequence is [5´-TCG GAT CCA GAT 

GCT GGC GTC-3´]. The use of this primer, together with embF, will yield a 255bp 

product. 

 
2.6.3 Drug resistance assay 

For further confirmation of resistance to EMB, a drug resistance assay was 

performed on the assumptive EMBR mutants. A susceptible MSM mc2155 strain 

has an MIC of 0.5µg/ml (3). Therefore the experiment was repeated, using a 

modification of the conventional agar proportion method. MSM mc2155, used as a 

control, and all 7 mutants were grown to an OD600 of 1.2-1.3 (starting OD600 = 0.1).  

A standard dilution series of each culture was prepared (0 to -7), and spotted onto 

7H10 media supplemented with 2, 10, 20, 30, 40, 50, or 60 µg/ml EMB. 7H10/ GS 

plates were used as a control. 

 

2.6.4 Inhibition assay 

To examine sensitivity of the EMBR mutants to the inhibitory extract, indicator 

plates of each mutant was prepared and exposed to two independent inhibitory 

extracts.  These were then compared to a wild-type MSM indicator plate that was 

also treated with the inhibitory extracts to determine if there is an increased 

sensitivity of these cell wall mutants to the extract. For comparative analyses, 

indicator plates were standardized by ensuring all mutants and wild-type MSM 

were grown to an OD600 of 0.65-0.75 (starting OD600 = 0.06). The volume in each 

indicator plate was also standardized (as described above). 

 

2.7 Production of spontaneous MSM mutants, resistant to the 

Pseudomonas-derived inhibitory extract. 

An exponential culture of MSM mc2155 was serially plated onto 7H10 media 

containing different dilutions of the inhibitory extract. Three different dilutions were 

selected: 100 µl, 500 µl and 1 ml. 7H10 (GS) plates containing no extract were 
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used as a control. Plates were incubated at 37°C for 5 days after which possible 

mutants were isolated and cultured in 7H9 media. To confirm resistant mutants, 

indicator plates of each possible mutant were prepared and exposed to the 

inhibitory extract.  

 
2.8 Comparative analysis of the potency of the inhibitory extract 

 

2.8.1 DMSO as an alternative solvent for the inhibitory compound(s) 

An extraction of the Pseudomonas-derived inhibitory compound(s) was performed 

in duplicate to obtain two independent extracts (called Extract 1 and Extract 2). 

The ethyl acetate from both extracts was completely evaporated off and the 

remaining residues were weighed.  Extract 2 was stored at -20
C for 5 weeks. 

Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, USA) as a solvent was examined on 

Extract 1, however significant amounts of insoluble deposits resulted, even as the 

volume of DMSO was increased. These insoluble deposits were removed and 

weighed; the mass of which was deducted from the initial mass of Extract 1. The 

soluble inhibitory compound(s) was dissolved in a final volume of 2 ml of DMSO 

and tested on a MSM indicator plate. Extract 2 was removed from storage after 5 

weeks and subjected to the procedure as Extract 1. The insoluble deposits of 

Extract 1 were added to 1 ml of DMSO, to determine if precipitation had occurred 

due to saturation in the original 2 ml. 
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3.0 RESULTS 

 

3.1 Isolation of an unidentified organism which inhibits the 

growth of MSM 

Previously, an unknown organism that appeared to be antagonistic to MSM was 

isolated in the laboratory of Dr. Steven Durbach, in the School of Molecular and 

Cell Biology at the University of the Witwatersrand. The organism was initially 

identified as a contaminant on an MSM indicator plate. Subsequently, the isolate 

was cultured and shown to result in growth inhibition as determined by well-

defined clearings or zones of inhibition (ZOIs) in the agar (Fig. 3.1). The data are 

from a representative experiment that was performed each time a freezer stock of 

the unidentified organism was cultured. 

 

 

 

 

 

 

 

 

Figure 3.1: Inhibition of MSM by the unidentified isolate.  
MSM indicator plates illustrating the inhibitory effect of the 
unidentified isolate, as determined by ZOIs. 

 

3.2 The inhibitory organism is identified as Pseudomonas 

Having demonstrated inhibitory activity, it was necessary to identify the producing 

organism. The physical characteristics (round, yellow coloured colony), suggested 

that the producer organism was a bacterium. As this organism was originally 

isolated from a soil sample, the isolate was considered likely to belong to one of 

the following phyla: Actinomycetes (64), Proteobacteria or Firmicutes (47). 
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Numerous genera from each of these phyla, including Streptomyces (13, 64); 

Pseudomonas (64, 106) and Bacillus (64), are soil-dwelling organisms.  Therefore 

the identity of the isolate was determined by sequencing the 16S rRNA locus, 

which is highly conserved among bacteria (76). DNA was extracted from the 

isolate and MSM mc2155, as a control, followed by amplification of the 16S rRNA 

sequence using a universal primer set for eubacterial 16S rRNAs (138). The PCR 

products were resolved by agarose gel electrophoresis and a 1300bp PCR 

product identified for both the unknown isolate and the MSM control (Fig. 3.2). 

PCR of 16S rRNA was performed once since an amplicon of the expected size 

was identified, and because high concentrations of DNA were obtained for 

subsequent confirmatory sequencing reactions. 

 

 

 

 

 

 

 

 

Figure 3.2: Amplification of the 16S rRNA region. Ethidium 
bromide stained 1% agarose gel containing 1300 bp 
amplification products obtained from the primers Bac27F and 
U1392R (Table 2.2). Lanes: M, DNA Molecular Weight 
Marker III; 1, no template DNA control; 2, MSM mc2155 and 3, 
unidentified isolate. 

 

The 1300 bp fragments from MSM and the unknown isolate were sequenced, and 

a 730bp portion of the sequenced PCR products compared to sequences lodged 

at the Genbank database (GenBank database of the National Centre for 

Biotechnology Information, http://www.ncbi.nlm.nih.gov/GenBank/) by BLAST (4) 

analysis (see Appendix C2). The results indicated 99% sequence similarity of the 

isolate to the � -proteobacteria class (Fig. 3.3.). 

Lane: 

1375  

 M        1           2              3 

947  
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Figure 3.3: Phylogenetic tree comparing the unknown 
isolate to the domain Bacteria. Distance tree using BLAST 
pairwise alignments of 16S rRNA sequence. From this 
analysis, the unidentified isolate (highlighted in yellow) 
appears most closely related to � -proteobacteria 

(http://www.ncbi.nlm.nih.gov/blast/tree_view/blast_tree_view.). 

 

In order to identify the isolate at a species level, the 16S rRNA sequence of the 

isolate was then compared to sequences within the � -proteobacteria class. The 

results indicated 99% sequence similarity to P. putida and P. entomophila and 

98% sequence similarity to P. mendocina. Homology trees were constructed from 

the original query sequence (Fig. 3.4) using the Blast Tree View Widget 

(http://www.ncbi.nlm.nih.gov/blast/tree_view/blast_tree_view.). 
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Figure 3.4: Phylogenetic tree comparing the unidentified 
isolate to the � -proteobacteria family. Distance tree using 
BLAST pairwise alignments illustrating relationship of the 
unknown isolate (highlighted in yellow) to the Gamma 
subdivision of Proteobacteria: Pseudomonadaceae. 
(http://www.ncbi.nlm.nih.gov/blast/tree_view/blast_tree_view.). 

 

The phylogentic trees are from a representative BLAST search that was 

performed in duplicate. On the basis of these results, the producing strain was 

designated Pseudomonas � MB to denote its demonstrated antimycobacterial 

effect. 
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 3.3 The inhibitory compound(s) are extractable using ethyl 

acetate as a solvent 

 

3.3.1 The extraction protocol 

The observed ZOI (Fig. 3.1) suggested that Pseudomonas � MB was producing 

and secreting an inhibitory compound(s) into the growth medium. Therefore, in 

order to identify the nature of the inhibitory agent(s), a protocol was developed to 

extract and purify the inhibitory compound(s). The protocol adopted (Fig. 3.5) was 

initially developed by K. Naicker in the laboratory of Dr. Durbach and was based 

on methods developed for various antibiotic-producing bacteria (K. Naicker, MSc 

Dissertation, Wits, 2010) (94). Importantly, this protocol enabled the successful 

extraction of the inhibitory activity from the Pseudomonas � MB cells using ethyl 

acetate as a solvent. Antibiotic biosynthesis has been extensively characterized 

for the genus Streptomyces (9, 13, 66). In these organisms, secondary 

metabolism is growth-phase dependent; for example, antibiotic production is 

upregulated during  the stationary phase (66). Although not a streptomycete, we 

reasoned that by applying similar methods to Pseudomonas � MB, we might 

enhance the production of the inhibitory compound(s). P. putida has a doubling 

time of 62 minutes when glucose is utilized as the carbon source (54). Therefore 

the protocol was developed to allow an exponential-phase culture of 

Pseudomonas to incubate for 3 days on solid medium, ensuring entry into the 

stationary phase. Most antibiotic biosynthetic pathways are initiated by suboptimal 

growth conditions, imposed by some nutritional limitation (9). While Luria-Bertani 

medium sustains optimal growth of P.putida (54) and P. entomphila (63), 7H10 

was developed by Middlebrook and colleagues in 1958  specifically for growth of 

mycobacteria (87, 88). We postulated, therefore, that a degree of nutritional stress 

might be imposed on Pseudomonas � MB by growing the exponential-phase 

culture on solid 7H10 medium. As Pseudomonas spp. grow optimally at 25-30°C 

(54, 63, 106), the Pseudomonas strain isolated in this study was cultured at 37°C 

at all times to further increase the likelihood of inducing a stress response that 

might result in increased antibiotic production. In her original protocol, K. Naicker 

settled on ethyl acetate as the preferred solvent after testing various organic 
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solvents (94), consistent with the observations of a number of published studies 

(10, 58). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Schematic representation of the ethyl acetate 
extraction protocol. Briefly, an exponential culture of the 
Pseudomonas � MB isolate was spread across 100 7H10 
plates, and incubated at 37°C for 3 days. Cells were then 
scraped from the plates, added to ethyl acetate, and 
incubated for 1 week at 4°C. The resulting solution was then 
filtered and concentrated, and the potency of the extracted 
compound(s) confirmed on an MSM indicator plate. 

 

During the one-week incubation period of Pseudomonas � MB in ethyl acetate, the 

cells appeared increasingly dehydrated and formed large clumps (Fig. 3.6A). 

Therefore, to ensure maximum exposure to the ethyl acetate, the culture was 

agitated frequently. At the end of the week the ethyl acetate solution was filtered 

and concentrated using a rotavapor, resulting in a yellow-coloured solution of 

approximately 4ml volume (Fig. 3.6B). The data are form a representative 

experiment that was performed each time the inhibitory compound(s) was 

extracted. 

15 ml Pseudomonas culture 
(108 cfu/ml)

� � �
Spread 100µl on 7H10 

(unsupplemented)

Incubate at 37°C for 3 days

Scrape cells and add ethyl 
acetate to final volume of 300ml

Keep at 4°C for 1 week. Agitate 
cells frequently.

Filter solution and use a 
rotavapor to concentrate the 

extract.

Test activity on M. smegmatis
indicator plate.
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Figure 3.6: Ethyl acetate extraction of the inhibitory 
compound(s). (A) Pseudomonas � MB cells suspended in 
ethyl acetate. Notice the large cellular aggregates or clumps.   
(B) Filtration and concentration yields approximately 4 ml 
solution contain active inhibitory compound(s).  

 

 
Figure 3.6: Ethyl acetate extraction of the inhibitory 
compound(s). (A) Pseudomonas � MB cells suspended in 
ethyl acetate. Notice the large cellular aggregates or clumps.   
(B) Filtration and concentration yields approximately 4 ml 
solution contain active inhibitory compound(s). 

 

To ensure that the concentrated extract retained inhibitory activity, an aliquot of 

the 4ml solution was immediately tested on an MSM indicator plate before 

continuing further with any microbiological assays. Extractions were considered 

successful only when they yielded concentrated extract that was inhibitory to MSM 

mc2155, as determined by ZOI measurement (Fig. 3.7). The data are form a 

representative experiment that was performed each time the inhibitory 

compound(s) was extracted. 

 

 

 

 

 

 

 

Figure 3.7: The inhibitory effect of the Pseudomonas-
derived extract. Anti-mycobacterial activity of two 
independent extractions from Pseudomonas � MB (B) and (C) 
were tested on an MSM indicator plate and compared with an 
ethyl acetate only control (A).  

A B 

A 

B C 
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3.3.2 Optimization of the extraction protocol 

The extraction protocol described above was laborious, and required the 

processing of 100 plates for each extraction which yielded approximately 4 ml of 

the inhibitory compound(s). Therefore, we attempted to optimize the extraction 

procedure. Specifically, we wanted to determine whether the yield of the inhibitory 

extract could be increased, or if it was possible to isolate concentrated extract with 

increased inhibitory activity, thereby decreasing the quantity required to achieve 

the inhibitory effect. As noted above, for many organisms optimal antibiotic 

production occurs during the stationary phase (66). Therefore we examined the 

effect of a longer incubation period on the production of the inhibitory activity.  To 

this end, 100 7H10 plates were again spread with Pseudomonas � MB. However, 

after the normal 3 day incubation, the batch was split: 50 plates were scraped and 

the inhibitory compound(s) were extracted as described (see section 3.3.1), 

whereas the remaining 50 plates were incubated for a further 7 days (total 

incubation period of 10 days) before processing according to the same ethyl 

acetate-based extraction protocol. The resulting extracts (“3 day” and “10 day”) 

were tested on MSM indicator plates and their ZOIs compared (Fig. 3.8). The 

7H10 plates inoculated with Pseudomonas � MB for an extra 7 days yielded 

concentrated extract with a significantly larger ZOI than was obtained from the 

normal 3 day incubation. These data established that the extraction protocol could 

be improved by extending incubation time. The data are from replicate 

experiments performed at least twice. 

 

 

 

 

 

 

Figure 3.8: Increasing the incubation period of the 
Pseudomonas yields more potent inhibitory extract. Ethyl 
acetate control (A); inhibitory extract after a 3-day incubation 
period (B) and inhibitory extract after a 10-day incubation 
period (C). 

C A B 
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3.4 The inhibitory compound(s) is not extractable from 

the agar  

To determine whether the inhibitory compound(s) were secreted into the agar 

during the incubation period and, if so, whether the compound(s) were extractable 

using ethyl acetate, a normal 100 plate extraction was performed. After scraping 

the cells, the agar was sliced up and suspended in ethyl acetate for 2 weeks at 

4°C. The agar was then removed by filtration and the remaining ethyl acetate 

concentrated as per the standard protocol before testing for inhibitory activity. No 

improvement in inhibitory activity was observed (Fig. 3.9), suggesting that an 

insignificant amount of inhibitory compound(s) was secreted into the agar during 

the 3-day incubation period or, alternatively, that this protocol was inefficient at 

extracting the inhibitory compound(s) from the agar. The data are from replicate 

experiments performed at least twice. In any event, the failure to improve the yield 

significantly meant that this approach was abandoned; therefore, all future 

extractions did not include the agar medium. 

 

 

 

 

 

Figure 3.9: Extraction from agar failed to improve 
yield. Ethyl acetate control (A) and inhibitory 
compound(s) extracted from the agar (B). 

 

3.5 The inhibitory compound(s) are active in liquid culture 

To determine whether the Pseudomonas-derived extract was able to inhibit growth 

of MSM in liquid culture, we assayed inhibitory activity of the concentrated extract 

using the broth microdilution method (32, 41). The initial results were inconclusive 

as the 96-well microtitre plate was degraded by the ethyl acetate solvent. 

Therefore, 50% ethanol was examined as an alternative solvent. To this end, a 4 

ml extract in ethyl acetate was split into two equal (2 ml) volumes, and the ethyl 

A B 



 

29 
 

acetate allowed to evaporate. The dried-down extracts were then resuspended in 

either 100% ethyl acetate or 50% ethanol. The extract was not completely soluble 

in 50% ethanol as moderate quantities of insoluble deposits were observed. 

However these insoluble deposits were retained in the 50% ethanol, and the 

extract was tested on an MSM indicator plate. Thereafter, inhibitory activity was 

assessed on solid medium. The extract was active against MSM whether 

dissolved in 100% ethyl acetate or 50% ethanol (Fig. 3.10), although ethyl acetate 

appeared to be a slightly better solvent on the basis of a more distinct, and slightly 

larger, ZOI. Nevertheless, these results suggested the utility of 50% ethanol as 

alternative solvent to ethyl acetate, a conclusion supported by the observation that 

the 50% ethanol only control did not inhibit MSM in solid medium. Importantly, 

these results implied a potentially significant role for the solvent in the efficacy of 

the inhibitory compound(s). The data are from a representative experiment that 

was performed in duplicate. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: The inhibitory effect of the Pseudomonas-
derived extract in different solvents. Comparison of 
inhibitory activity of (A) the 100% ethyl acetate control, (B) the 
extract dissolved in 100% ethyl acetate, (C) the 50% ethanol 
control, and (D) the inhibitory extract dissolved in 50% 
ethanol. Inhibition is observed when both 100% ethyl acetate 
and 50% ethanol are used as solvent, though the ZOI 
appears larger and more distinct in (B).  

 

Having confirmed inhibition of MSM on solid medium, we assayed the potency in 

liquid culture of the extract dissolved in 50% ethanol. To this end, we applied the 

broth microdilution method (32, 41) which allows a range of antibiotic 

A 

B 

C 

D 
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concentrations to be tested, on a single 96-well microtitre plate, to determine the 

minimum inhibitory concentration (MIC). Briefly, this method involves the serial 

dilution of the extract across a 96-well microtitre plate containing MSM cells 

growing in 7H9 medium from a low starting inoculum. An equal volume of a diluted 

MSM culture (OD600 = 0.02) is added to each well, excluding the first column as 

this serves as a no-cells (or cell-free) control, and the plate is incubated at 37°C 

for 72 hrs (See section 2.5 of Materials and Methods). Growth of the bacterial cells 

in the microtitre plate is usually scored by recording the size of the pellet in each 

well. Therefore, in wells that contain high concentrations of the antibiotic, no 

bacterial pellets are observed. As the antibiotic is serially diluted (as one 

progresses down a single row) bacterial pellets are observed of increasing size; 

that is, pellet size correlates directly with antibiotic concentration and, therefore, 

inhibitory activity. In some cases, this method of scoring growth can be difficult as 

relative pellet size is not always easily discerned. Moreover, pellets are not always 

visible in photographs. Therefore, Alamar Blue, a resazurin-based oxidation-

reduction dye (49), was added to each well for visualization purposes. This dye is 

a general indicator of cellular growth and/or viability: it is blue in its non-

fluorescent, oxidized form (31) but, during cellular growth, the dye turns pink and 

fluoresces upon reduction. Therefore, growth can be measured with a fluorometer, 

spectrophotometer or determined by an easily visible colour change (31). In the 

study presented here, all microtitre plates were scored by visible colour change, 

and the MIC was defined as the concentration at which > 95% growth inhibition is 

observed (indicated by blue or deep purple). In Fig 3.11, Alamar Blue was added 

to half the microtitre plate (Rows 1-4) after 72 hrs of incubation, allowing relative 

bacillary growth to be visualized as a gradient extending from blue to pink across 

each row. From this assay, we confirmed growth inhibition of MSM in liquid 7H9 

where wells contain up to a 1/16 dilution of the Pseudomonas-derived extract 

dissolved in 50% ethanol. The data are from a representative experiment that was 

performed in duplicate. 
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Figure 3.11: Broth microdilution assay of the inhibition of 
MSM by the Pseudomonas-derived extract dissolved in 
50% ethanol. Image was taken after 6 hrs of incubation with 
Alamar Blue; pink indicates growth and blue indicates no 
growth. From this assay, the MIC falls in the range 1/8 – 1/16 
dilution of the neat extract, and is indicated by the yellow box. 

 

3.6 The inhibitory compound(s) is produced by 

Pseudomonas � MB exclusively 

Having demonstrated the efficacy of the ethyl acetate-based extraction procedure 

to isolate cell-free, active inhibitory compound(s), we next wanted to eliminate two 

potential confounding factors: firstly, the possibility that the inhibitory compound(s) 

was produced by all Pseudomonas strains; and, secondly, the concern that the 

inhibitory effect resulted from the ethyl acetate extraction protocol itself, and was 

independent of the producer organism. To address these concerns, a parallel 

extraction was performed on Pseudomonas � MB and an alternative strain, P. 

putida 317. The P. putida 317 isolate was obtained from Dr. D. Lindsay in the 

School of Molecular and Cell Biology at the University of the Witwatersrand and 

was provided as a confirmed Pseudomonas isolate on the basis of 16S rRNA 

analysis (N. Fernandez, MSc Dissertation, Wits, 2010) (46). Extractions from both 

organisms, Pseudomonas � MB and P. putida 317, yielded a yellow-coloured 

liquid, which was tested against MSM on an indicator plate. In contrast to that 

isolated from Pseudomonas � MB, the extract derived from P. putida 317 failed to 

No cells   1/2      1/4       1/8      1/16     1/32     1/64    1/128   1/256   1/512   1/1024   1/2048 

7H9 Medium 

50% Ethanol 

Extract 

Extract 

Extract 

Extract 

50% Ethanol 

7H9 Medium 
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inhibit growth of MSM (Fig. 3.12). The data are from a representative experiment 

that was performed in duplicate. This result confirmed that the inhibitory 

compound(s) was limited to Pseudomonas � MB and, importantly, demonstrated 

that the inhibitory effect was not as a result of the extraction protocol.  

 

 

 

 

 

 

 

 

 

 

Figure 3.12: The inhibitory compound(s) is specifically 
produced by the Pseudomonas � MB strain. Ethyl acetate 
control (A), Pseudomonas � MB-derived extract (B) and P. 
putida 317-derived extract (C). Inhibitory effect as determined 
by ZOI.  

 

3.7 Resistance to ethambutol does not confer cross-resistance to 

the Pseudomonas-derived inhibitory compound(s)  

Cyclic lipopeptides (CLPs) are produced by several Pseudomonas species (38, 

97) and have a diverse range of inhibitory activity against several human 

pathogenic organisms, including enveloped viruses, mycoplasmas and Gram-

positive bacteria (105). Since the inhibitory organism clustered most closely with 

Pseudomonas species (Fig. 3.4), we speculated that the inhibitory compound(s) 

might be related to the CLPs. CLPs target teichoic and lipoteichoic acids of gram 

positive bacteria (12). In mycobacteria, arabinogalactans (AGs) and 

lipoarabinomannans (LAMs) are the structural equivalents of teichoic and 

lipoteichoic acids (123). Ethambutol (EMB) is a first-line antituberculosis drug that 

is thought to inhibit the biosynthesis of the cell wall components AG and LAM by 

targeting the arabinosyl transferases embCAB (11, 127). EMB differentially inhibits 

AG and LAM biosynthesis in wild-type and EMB-resistant (EMBR) bacilli, indicating 

A 
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that AG and LAM are synthesized by different pathways (72, 89). To determine 

whether the Peudomonas-derived inhibitory compound(s) targets AG and/or LAM 

biosynthesis, spontaneous MSM EMBR mutants were isolated and exposed to the 

inhibitory extract. The MIC of EMB (MICEMB) for MSM is 0.25 µg/ml - 0.5 µg/ml (3, 

78, 89) and was used as a guideline to isolate EMBR mutants. Spontaneous EMBR 

MSM mutants were isolated by exposing wild-type MSM in liquid culture to 0.5 

µg/ml of EMB, and thereafter plating the EMB-exposed culture onto 7H10 

containing various concentrations of EMB (0.25 µg/ml; 0.5 µg/ml; 1.0 µg/ml; 2.0 

µg/ml; 4.0 µg/ml; 8.0 µg/ml and 10 µg/ml) as described previously (78, 89). The 

estimated mutation frequency to EMB-resistance was calculated to be between10-

8 to 10-7, consistent with previous reports (78). We then selected seven 

independent EMBR mutants for further characterization(summarized in Table 3.1) 

EMB resistance is primarily associated with missense mutations within the EMB 

resistance determining region (ERDR) of the embB gene (3, 108, 122, 127). 

 

Table 3.1: Characterization of EMBR mutants 

Mutant 
Number 

EMB concentration 
at which mutant 

was isolated  

(µg/ mL) 

Base change Corresponding 
amino acid 

change 

Maximum 
MIC  

(µg/ mL) 

1 2 ATG909ATC Met292Ile 10 

2 4 ATC898ATG Ile289Met 10 - 20 

3 2 ATG909ATC Met292Ile 10 

4 4 ATC898ATG Ile289Met 20 - 30 

5 4 N/A N/A N/A 

6 2 ATG909ATC Met292Ile 10 - 20 

7 2 ATG909ATC Met292Ile 10 

 

Spontaneous EMBR MSM mutants were isolated by plating 
wild-type MSM on 7H10 containing various concentrations of 
EMB. Of the seven mutants that were selected for further 
characterization, four mutants had a Met292Ile amino acid 
change, while two mutants had an Ile289Met amino acid 
change. EMBR in mutant 5 was not associated with an 
identifiable mutation in the ERDR, so this isolate was not 
selected for further characterization. 



 

34 
 

To confirm that the identified mutants carried genetic mutations, a 254 bp region 

within the ERDR of the embB gene was amplified with the primers EmbF and 

EmbR (Fig. 3.13). PCR of the 254bp region was performed once since an 

amplicon of the expected size was identified, and because high concentrations of 

DNA were obtained for subsequent confirmatory sequencing reactions. From PCR 

sequencing, we identified six mutants with mutations in this region. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: PCR amplification of a 254 bp region by the 
EmbF and EmbR primers. Lanes: M, Marker VI; Lane 1, no 
template DNA control; Lane 2 and Lane 3 MSM mc2155; Lane 
4-10, EMBR mutants 1-7. Mutant 5 (Lane 8) was not 
successfully amplified. 

 

Sequence analysis revealed that Mutants 2 and 4 had a point mutation at 

nucleotide 898 (C�  G), resulting in the amino acid change Ile289Met, while 

Mutants 1, 3, 6 and 7 had point mutations at nucleotide 909 (G�  C), resulting in 

the amino acid change Met292Ile (Fig. 3.14). Both transversion mutations are 

consistent with those described previously (78). 

  

                                   M    1    2    3    4    5    6    7   8    9   10 

234/ 220 
298 

254  
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Figure 3.14: Single transversion mutations are associated 
with EMBR in MSM. DNA sequencing chromatograms 
showing the two types of point mutations identified in the 
ERDR of spontaneous EMBR MSM mutants. The wild-type 
codons in EMB-susceptible isolates are ATC (Ile) and ATG 
(Met) (A), ATC�  ATG mutations found in Mutants 2 and 4 are 
highlighted in yellow (B) while ATG�  ATC mutations found in 
Mutants 1, 3, 6 and 7 are highlighted in orange (C).  

 

Although associated with (and often diagnosed by) single mutations in target 

genes, the level of resistance to a specific drug is a function of multiple factors, 

including the presence of drug efflux pumps (45). Therefore, while the identified 

EMBR mutants (Table 3.1) carried genetic mutations consistent with EMBR, we 

wanted to determine whether these mutants were associated with different levels 

of EMBR. The MICEMB was determined for seven mutants and one susceptible 

strain of MSM by spotting serial, log-fold diluted cultures onto 7H10 medium 

supplemented with the standard glucose/salt (GS) mix, as the control, and EMB at 

a range of concentrations between 0 and 60 µg/ml. The parental, EMB-susceptible 

mc2155 strain had an MICEMB of 2 µg/ml as determined by this method, which 

compares favourably with reported values (3, 78, 89). All seven mutants isolated 

had an MICEMB of 10 µg/ ml or greater, a five-fold increase over the wild-type MIC 

(Fig. 3.15). The variability of the MICs between the mutants indicates that 

additional mutations could have been co-selected during growth on EMB resulting 

in mutants that exhibited higher MICs. The data are from a representative 

experiment that was performed in duplicate. 
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Fig 3.15: Drug resistance assay used to determine the 
MIC of EMB for each mutant strain. Column 1 illustrates the 
Glucose/Salt (GS) control, Column 2-6, EMB plates at the 
following concentrations respectively: 2, 10, 20, 30 and 60 
µg/ml. The growth of MSM mc2155 is inhibited at EMB (2 
µg/ml), consistent with reported MICEMB values (3, 78, 89). By 
contrast, all seven mutants grew at this concentration. 

  

MSM mc2155 

Mutant 1 

Mutant 2 

Mutant 3 

Mutant 4 

Mutant 5 

Mutant 6 

Mutant 7 

            G/S          2µg/ml    10µg/ml     20µg/ml   30µg/ml   60µg/ml 

EMB 
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To determine the effect of the Pseudomonas-derived extract on the EMBR 

mutants, indicator plates containing each mutant were exposed to the inhibitory 

extract. For comparative analyses, indicator plates of wild-type MSM were also 

prepared; moreover, all indicator plates were standardized to include a similar 

number of wild-type or mutant cells (OD600 between 0.6 – 0.8), and each plate was 

prepared from the same volume of solid 7H10 agar (25 ml/plate). Each of the 

mutant and wild-type indicator plates was exposed to two independent extracts, as 

well as an ethyl acetate only control. Measurements of the ZOIs indicated that 

EMBR mutants were not cross-resistant to the Pseudomonas-derived inhibitory 

compound(s). The data are from replicate experiments performed at least twice. 

Although the complex nature of EMB-mediated growth inhibition (11, 40, 72, 89, 

124) precludes a simple interpretation of these results, the failure of EMBR 

mutations to confer cross-resistance to the Pseudomonas extract eliminated this 

assay as a simple test for mechanism of action (MOA). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16: Resistance to EMB does not correlate with 
resistance to the Pseudomonas-derived extract. The ZOIs 
of the two independent extracts were measured (the 
diameter, mm, of the extract on the left of each plate is given 
first): wild-type MSM, 20 and 24; Mutant 1, 21 and 22; Mutant 
3, 21 and 21; Mutant 4, 21 and 23; Mutant 5, 20 and 24; 
Mutant 6, 20 and 23; Mutant 7, 21 and 25. There was no 
significant increase in the sensitivity of these mutants to the 
inhibitory extract. The 100% ethyl acetate control is indicated 
by the green box. 

           Mutant 4                      Mutant 5                      Mutant 6                     Mutant 7 

    Wild-type MSM               Mutant 1                     Mutant 2                      Mutant 3 
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3. 8 Tyloxapol and SDS increase susceptibility of MSM 

to the inhibitory compound(s) 

Detergents such as polyethylene glycol sorbitan monooleate (Tween 80) and SDS 

weaken the bacterial cell wall. Tween 80 is a nonionic surfactant as well as an oil-

in-water emulsifier. Exposure to Tween 80 has been shown to weaken the cell wall 

of mycobacteria and increase susceptibility to antimicrobial agents (129). Tween 

80 can be substituted by Tyloxapol, which is a non-hydrolyzable detergent (131). 

Sodium dodecyl sulfate (SDS) is also a cell wall-perturbing agent (131). To 

determine whether a cell wall permeability defect could increase sensitivity to the 

Pseudomonas-derived extract, indicator plates were supplemented with one of the 

following detergents - Tween 80 (0.05%), sodium dodecyl sulphate (SDS, 0.01% 

and 0.001%) or Tyloxapol (0.02%) - and exposed to the extract. Indicator plates 

supplemented with GS only served as a control, and two independent extracts 

analyzed. In addition, in order to determine the effect of the various detergents on 

the growth of MSM in indicator plates in the absence of the inhibitory activity, an 

additional control was implemented: specifically, indicator plates supplemented 

differentially with the various detergents were incubated without any exposure to 

the inhibitory extract and compared to the corresponding indicator plates to which 

extract was exposed. That is, all plates labelled “A” (in Fig. 3.17) were compared 

to plates labelled “B”. The data are from replicate experiments performed at least 

twice. 
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Figure 3.17: MSM indicator plates differentially 
supplemented with cell wall perturbing agents. Two 
independent extracts were tested and the ethyl acetate 
control is highlighted in pink.  Indicator plates supplemented 
with GS (1A-1B) served as a control for the comparison of 
ZOIs, while 7H10 GS plates with a bacterial lawn (6A-6B), 
served as a second control to ensure that viable cells were 
added to the indicator plates. All plates labelled (A) were not 
exposed to the extract, but incubated simultaneously with 
those that were exposed (B). 

 
The presence of SDS (0.001%) or Tyloxapol (0.02%) in the indicator plates 

resulted in the most significant increase in the apparent potency of the inhibitory 

extract (Figs. 3B and 5B compared to Fig. 1B). In fact, it appeared as if MSM was 

hypersensitive to the extract in the presence of Tyloxapol, indicated by the large 

1A 1B 

7H10/ GS Control 

2B 2A 

7H10/ GS/ 0.01% SDS 

3B 3A 

7H10/ GS/ 0.001% SDS 

4B 4A 

7H10/ GS/ 0.05% T80 

6A 6B 

Control 

5B 5A 

7H10/ GS/ 0.02% Tyl 
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ZOI in Fig. 5B compared to Fig. 1B. No bacterial growth was observed in Fig. 2A 

compared to Fig. 1A, indicating that SDS at a concentration of 0.01% was 

inhibitory to MSM growth in indicator plates. Tween 80 appeared to have no 

significant effect on sensitivity to the extract, as the ZOIs observed in Fig. 4B are 

comparable to those in the control, Fig. 1B.  The control that was created, in Fig. 

6A and 6B, indicated that the cells added to the indicator plates were viable, as a 

bacterial lawn formed on 7H10/GS plates. This experiment also highlighted the 

inability of the concentrated extract to inhibit growth of an established culture, as 

no ZOI was detectable when extract was added to a pre-existing bacterial lawn 

(Fig. 3.17, 6B). This implies that the inhibitory compound(s) are not able to reach 

the target(s) when the cell density is too high, a possibility that could be tested by 

plating a bacterial lawn with a significantly lower cell density followed by exposure 

to the extract. 

 

3.9 The Pseudomonas-derived inhibitory compound(s) may have 

a Gram-restricted target range 

For drug development from natural products, it is important to consider whether 

the active compound(s) inhibits the target organism specifically, or whether it 

exerts a general effect, targeting a number of unrelated organisms (“broad 

spectrum”). Therefore, to determine the target specificity, the Pseudomonas-

derived extract was tested against selected indicator organisms including 

Actinobacteria such as Mycobacterium, Rhodococcus and Nocardia spp.; other 

Gram-positive bacteria including Bacillus and Staphylococcus spp. and the Gram-

negative E. coli. For this experiment, indicator plates were prepared using growth 

media appropriate to the specific organism under investigation (See Table 5.1, 

Appendix A). Each bacterial strain was exposed to the inhibitory extract dissolved 

in 100% ethyl acetate or 50% ethanol. Each of the different bacteria assayed 

possesses a characteristic growth rate. Therefore, plates were incubated at 37
C 

for different time periods: 1 day for Bacillus spp. and E. coli; 2 days for 

Mycobacterium spp. and Staphylococcus spp.; and 5 days for the remaining 

actinobacteria. ZOIs, observed as clearings in the agar, were recorded for 

comparative analyses (Fig. 3.18). 
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Although a slight inhibitory effect was observed against the Gram-negative E. coli, 

the inhibition was insignificant in comparison to the Gram-positive bacteria, which 

appeared to be significantly more sensitive to the extract (Fig. 3.18). E. coli was 

selected as the representative Gram-negative species, of which only two strains 

were tested against the crude extract. To further investigate potential Gram-

specificity of the Pseudomonas-derived extract, a variety of Gram-negative 

bacteria should be examined. As such, our data do not eliminate the possibility 

that the crude extract has activity against Gram-negative organisms. The Nocardia 

strains appeared to be hypersensitive to this extract, as large ZOIs were observed 

in comparison to the ZOIs of the other bacterial species. Notably, an increased 

inhibitory effect was observed when 100% ethyl acetate was used as a solvent. 

This was consistent with previous observations (Fig. 3.10), and again suggested 

the importance of the solvent for activity. The data are from a representative 

experiment that was performed in duplicate. 
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Figure 3.18: The Pseudomonas-derived extract inhibits 
growth of Gram-positive organisms and its inhibitory 
effect is solvent dependent. The Gram specificity of the 
crude extract was examined by assaying its growth inhibitory 
effect on a panel of representative Gram-positive organisms, 
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actinomycetes, and the Gram-negative E. coli. From these 
data, the extract appears to have maximum effect against 
Gram-positives, however the panel of representative Gram-
negatives needs to be expanded (see text for details). In 
addition, these data reveal an apparent solvent-dependent 
effect on inhibitory activity. 

 

3.10 Mutants resistant to the Pseudomonas-derived extract 
cannot be spontaneously isolated  
A common strategy to elucidate an unknown MOA is to characterize mutants 

resistant to the compound(s) of interest. This approach exploits the fact that that 

mutation(s) in the target or complementary gene(s) are generally associated with 

drug resistance (50, 85, 93), and is especially true in an organism such as MTB in 

which resistance is conferred exclusively by chromosomal mutations. 

Spontaneously-arising resistant mutants can often be isolated by serially plating 

log-fold dilutions of a drug-susceptible wild-type culture onto medium containing 

various concentrations of the antibiotic (35, 85). Since we were utilizing a crude 

extract of the Pseudomonas-derived compound(s), it was not possible to use 

varying concentrations to isolate spontaneous mutants; instead, different dilutions 

of the extract were applied. Log-fold dilutions of a wild-type MSM culture were 

serially plated onto 7H10 medium containing the extract at a range of dilutions: 

specifically, 100 µL, 500 µL and 1 ml of the crude extract per 25 ml agar plate. 

Extract-free GS plates were used as a control. Although the experiment was 

repeated in triplicate, the following results were not reproducible, perhaps 

indicating the complexities associated with applying this method to an extract that 

likely comprises multiple active compounds. The extent of inhibition of MSM 

growth was in direct proportion to the volume of the extract applied, with maximum 

inhibitory effect obtained at the highest volume (1ml/plate) and almost no inhibition 

at the lowest (100 µl/plate) (Fig. 3.19). The data are from replicate experiments 

performed at least three times. 
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Figure 3.19: Growth inhibition of MSM on solid 7H10 
medium supplemented with increasing volumes of the 
crude extract.  Log-fold dilutions of a wild-type MSM culture 
were plated onto solid 7H10 agar plates containing 100ul, 
500ul, and 1ml Pseudomonas-derived extract per plate, 
respectively. Putative resistant mutants were isolated from 
plates supplemented with 500µl and 1ml of the extract, as 
indicated by the circled areas (magnified images*).  
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Several putative mutants were isolated and cultured in liquid 7H9 medium 

(GS+Tween 80). The mutants exhibited unique growth characteristics: the cells 

appeared to settle to the bottom of the flask in small clumps, and did not yield an 

homogenous suspension in the liquid medium. To confirm the heritability of the 

resistance phenotype (and, therefore, genotype), indicator plates containing each 

of the selected mutants were prepared and exposed to the extract. However, the 

“mutants” that had been identified as resistant on the original plates were not 

resistant to the inhibitory extract in the indicator plate assay (Fig. 3.20). If anything, 

these isolates appeared somewhat hypersensitive to the extract, as suggested by 

the larger ZOIs in Fig 3.20A and 3. 20B compared to the ZOI in Fig. 3.20C. 

However, the basis for this effect is unclear. The data are from a representative 

experiment that was performed in duplicate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.20: Putative resistant "mutants"  were not 
resistant to the inhibitory extract. Indicator plates 
containing possible “extract-resistant” mutants originally 
isolated from plates containing 500µl (A) or 1ml (B) of the 
extract. An indicator plate containing wild-type MSM was used 
as a control (C). Ethyl acetate control is highlighted in blue. 
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3.11 Susceptibility of MSM in liquid culture to the 

inhibitory compound(s) is increased in the presence of 

Tyloxapol  

We showed previously that MSM was hypersensitive to the inhibitory extract in 

indicator plates supplemented with Tyloxapol (Fig. 3.17, 5B). In order to determine 

whether the apparently synergistic effect of Tyloxapol on the extract-mediated 

growth inhibition applied similarly in liquid medium, a broth microdilution assay 

was set up as previously described (See Section 3.4) using 7H9 supplemented 

with either Tween 80 (0.05%) or Tyloxapol (0.02%). In addition, to investigate 

whether the nature of the carbon source affects susceptibility, the liquid medium 

was prepared with either GS or Albumin-Dextrose-Saline (ADS) which is often 

used as a supplement for MTB (57). From these assays, it was established that 

the nature of the supplement (GS vs. ADS, Tyloxapol vs. Tween 80) impacted the 

MIC measurement. In general, MSM appeared to grow better in 7H9 

supplemented with GS than with ADS: the GS supplemented cells (“7H9 media” 

control wells; Fig. 3.21) developed the pink colour indicative of bacillary growth 15 

hrs after the addition of Alamar blue, whereas the ADS-supplemented cultures 

(“7H9 media” control wells; Fig. 3.22) remained blue after the same incubation 

period. Moreover, in GS supplemented medium, Tween 80 and Tyloxapol had a 

significant effect on the MIC:  the addition of Tyloxapol to the growth medium 

resulted in a significantly lower MIC than that observed with Tween 80 (Fig. 3.21), 

reinforcing similar observations on solid medium (Fig. 3.17, 5B compared to Fig. 

3.17, 4B). The data are from a representative experiment that was performed in 

duplicate. 
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Figure 3.21: The inhibitory effect of the extract on MSM 
grown in GS-supplemented medium with Tween 80 or 
Tyloxapol. The effect of the detergent on the inferred MIC of 
the Pseudomonas-derived crude extract was investigated by 
performing duplicate broth microdilution assays with either 
Tyloxapol or Tween 80. (A) The MIC occurs at a 1/16 dilution 
of the neat extract when assayed against MSM grown in GS-
supplemented 7H9 medium containing  Tween 80 (0.05%), 
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but lies between 1/32 and 1/64 dilutions when the same 
medium  contains Tyloxapol (0.02%) as detergent. The MIC’s 
are highlighted in yellow. 

 

When ADS was used, supplementation with Tween 80 or Tyloxapol had no 

significant effect on the MIC: both experiments yielded an MIC at a 1/4 dilution 

(Fig. 3.22), a value at least two-fold higher than the MIC determined from media 

supplemented with GS (Fig A and reported previously). This result suggested that 

the presence of ADS in the liquid medium limited the inhibitory activity of the crude 

extract. In fact, the lowest MIC was observed when 7H9 was supplemented with 

GS and Tyloxapol (0.02%). Although these observations suggest that the nature of 

the C source might affect the activity of the extract, it is equally likely that the 

presence of albumin in the ADS supplement interferes with the inhibitory 

compound(s). The molecular basis for this effect will form one aspect of future 

research into the MOA of the inhibitory compound(s), as indicated below (see 

Discussion). 
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Figure 3.22: The inhibitory effect of the extract on MSM grown in 
ADS-supplemented medium with Tween 80 or Tyloxapol. (A) The 
MIC of the inhibitory extract occurs at a 1/4 dilution when 7H9 is 
supplemented with ADS and Tween 80 (0.05%), and (B) at a 1/4 
dilution when 7H9 is supplemented with ADS and Tyloxapol (0.02%). 
The MIC’s are highlighted in yellow. 
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Nutrient availability not only affects the growth of bacteria, but also the efficacy of 

antimicrobials. The structure of CLPs can be altered by the nutrient source 

provided in the bacterial growth medium (142). The addition of bovine serum 

albumin (BSA) has been previously reported to enhance the growth of tubercle 

bacilli in liquid medium (42). In contrast to these findings, Sattler and Youmans 

(1948) reported contradictory results in which BSA did not stimulate growth (113). 

Both groups did, however, identified the primary role of BSA in binding unesterified 

fatty acids which are toxic to MTB (42, 113). We observed improved growth of 

MSM in liquid 7H9 medium supplemented with ADS relative to the same medium 

supplemented with GS. Although the basis for this observation is unclear, it is 

possible that albumin (in ADS) might fulfil a similar detoxification role, but this will 

require further investigation.  

 

3.12 The susceptibility of liquid cultures of MSM to cell 

wall inhibitors is increased in the presence of Tween 80 

The presence of Tyloxapol in the growth medium appeared to increase the 

sensitivity of MSM to the inhibitory extract. To determine whether this effect was 

specific to the crude extract, or was a common feature of all antibiotic 

compounds, we set up broth microdilution assays to examine the sensitivity of 

MSM grown in the presence of Tween 80 or Tyloxapol to various antibiotics. For 

these experiments, we selected representative antibiotics: two cell wall 

biosynthesis inhibitors - vancomycin (VAN) and carbenicillin (CAR), both of which 

are inhibitors of peptidoglycan (60, 81) - as well as two antibiotics that target 

processes other than cell wall biosynthesis – KAN, a protein synthesis inhibitor via 

interference of translation (74), and RIF, which inhibits transcription by binding to 

the � -subunit of RNA polymerase (24). On the basis of the observations described 

in the previous section (above), all liquid media used in this experiment were 

supplemented with GS. The presence of Tween 80 in the liquid medium increased 

the sensitivity of MSM to the cell wall inhibitors, CAR and VAN (Fig. 2.33). In 

contrast, the sensitivity of MSM to KAN and RIF remained unchanged regardless 

of the addition of Tween 80 (Fig. 3.23) or Tyloxapol (Fig. 3.24). This strongly 

suggests that the cell wall might be a target for our compound(s). It is interesting, 
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however, that we did not see enhanced efficacy with Tween 80 although this 

detergent does improve efficacy of VAN and CAR. The data are from replicate 

experiments performed at least twice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.23: Effect of Tween 80 on antibiotic-mediated 
inhibition of MSM. Starting concentrations in lane 1: CAR, 
50mg/ml; VAN, 100 µg/ml; KAN, 80 µg/ml and RIF, 1000 
µg/ml. MICs are highlighted: CAR, 3.125 mg/ml (orange), 
VAN, 1.56 µg/ml (blue); KAN, 1.25 µg/ml (purple) and RIF, 
31.25 µg/ml (green). 
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Figure 3.24: Effect of Tyloxapol on antibiotic-mediated 
inhibition of MSM. Starting concentrations in lane 1: CAR, 
50mg/ml; VAN, 100 µg/ml; KAN, 80 µg/ml and RIF, 1000 
µg/ml. MICs are highlighted: CAR, 6.25 mg/ml (orange), VAN, 
3.125 µg/ml (blue); KAN, 1.25 µg/ml (purple) and RIF, 31.25 
µg/ ml (green). 

 

3.13 The extract is active against MSM at concentrations 

comparable with established antimycobacterial agents  

DMSO is the most common solvent in which antibiotics are dissolved (19). 

Therefore, we assessed its potential as an alternative solvent for the 

Pseudomonas-derived extract. Two independent extracts were dried down to solid 

pellets, which were weighed (Table 3.2) and then dissolved in 2 ml of DMSO. Prior 

to resuspension in DMSO, Extract 2 had been stored for 5 weeks at -20°C. Both 

extracts were incompletely soluble in DMSO, as evidenced by the presence solid 

particulate matter in the DMSO suspension. In order to ensure a homogenous 

solution, the insoluble matter was removed and weighed, and this mass deducted 

from the initial mass to allow the calculation of an approximate final concentration 

of 16.5 mg/ml for Extract 1 and 7.5 mg/ml for Extract 2 (Table 3.2). 
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Table 3.2: Calculation of final concentrations of Extract 1 and Extract 2 

 Initial 
Mass 

(mg) 

Mass of 
insoluble 
deposits 

(mg) 

Final 
Mass 

(mg) 

Estimated Final 
Concentration (mg/ ml) 

Extract 1 68 35 33 16.5 

Extract 2 75 60 15 7.5 

 

Both extracts inhibited growth of MSM in indicator plates (Fig. 3.25). Moreover, 

despite the fact that the concentration of Extract 1 was more than double that of 

Extract 2, there appeared to be no significant difference in the inhibitory effect of 

the two extracts against MSM grown on solid 7H10 medium. 

 

 

 

 

 

 

Figure 3.25: Inhibition of MSM by the inhibitory extract 
when dissolved in DMSO. There was no significant 
difference in the ZOIs despite differences in concentrations 
between the extracts. DMSO control (A), Extract 1 at a 
concentration of 16.5 mg/ml (B) and Extract 2 at a 
concentration of 7.5 mg/ml. 

 

The broth microdilution method was then used to examine the inhibitory effect of 

the DMSO extracts against MSM in liquid. In both cases, the extract appeared to 

be quite potent, as inhibition was observed at concentrations of 8 µg/ml and 1.8 

µg/ml for Extract 1 and Extract 2 respectively (Fig. 3.26). The data are from a 

representative experiment that was performed in triplicate. 
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Figure 3.26: Inhibition of MSM, in liquid culture, by Extract 1 
and Extract 2. Starting concentrations of Extract 1 and Extract 
2, 16.5 mg/ml and 7.5 mg/ml, respectively. Inhibition was 
observed at concentrations of 4 µg/ml for Extract 1 (green) and 
0.9 µg/ml for Extract 2 (orange). 

 

An analysis of the potency of the Pseudomonas-derived inhibitory extract in 

comparison to two established antimycobacterials, KAN and EMB, was then 

examined. The MIC of Extract 1 ranged between 0.23 µg/ml and 0.55 µg/ml (Fig. 

3.27) and between 1.2 µg/ml and 0.63 µg/ml for Extract 2 (Fig. 3.28). That is, the 

MIC of the Pseudomonas-derived inhibitory extract against MSM can reasonably 

be estimated as falling between 1.2 µg/ml and 0.2 µg/ml. This value compares 

favourably with the published MSM MICs of EMB (2 µg/ml) and KAN (0.63 µg/ml), 

especially since these compounds are supplied in purified form whereas the 

Pseudomonas-derived inhibitory compound(s) is present in crude extract. The 

data are from an experiment that was only performed once, as the MICs of EMB 

and KAN compared favourably with published MICs. 
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Figure 3.27:  Comparison of the growth-inhibitory efficacy 
of Extract 1 with known antimycobacterials. EMB (A) and 
KAN (B). All antimicrobials are at concentrations of µg/ml.  The 
MICs of Extract 1 (highlighted in yellow) ranges between 1.1 
µg/ml and 0.55 µg/ml.  The MIC of EMB is 4 µg/ml (highlighted 
in green) and the MIC of KAN is 1.25 µg/ml (highlighted in 
orange). 

 

 

 

 

 

 

 

 

 

Figure 3.28: Comparison of the growth-inhibitory efficacy of 
Extract 2 with known antimycobacterials. EMB (A) and KAN 
(B) All antimicrobials are at concentrations of µg/ml.  The MIC of 
Extract 2 (highlighted in yellow) ranges between 1.2 µg/ml and 
0.46 µg/ml.  The MIC of EMB is 2 µg/ml (highlighted in green) 
and the MIC of KAN is 0.63 µg/ml (highlighted in orange). 
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3.14 The Pseudomonas-derived extract inhibits growth of 

MTB 

To determine the effect of the inhibitory extract on MTB, log-fold dilutions of an 

exponential phase culture of H37Rv were serially plated onto 7H10 medium 

containing 1ml of the extract. After 3-4 weeks of incubation at 37°C, inhibition of 

growth was not observed. However, we hypothesized that the prolonged 

incubation period at 37°C, might have impacted negatively on the activity of the 

inhibitory compound(s). 

Therefore, we switched to the broth microdilution method (32, 41) which allows 

results to be scored within two weeks of incubation, to test the inhibitory extract, 

dissolved in DMSO, against MTB. The effect of the extract dissolved in DMSO 

was compared to that of RIF and KAN. The broth microdilution method was 

modified when testing against MTB by adding media only to the outer perimeter 

wells of the 96-well microtitre plate to prevent dehydration in experimental wells 

during the incubation period. The MIC of Extract 1 was compared to that of RIF 

(Fig. 3.29). The starting concentration of RIF (25µg/ml) was too high, as killing 

was observed in all wells even where diluted 1000-fold. The published MIC of RIF 

for MTB ranges between 0.01- 0.02µg/ml (28, 41). Therefore in order to observe 

this MIC, the starting concentration of RIF should be much lower, possibly 4µg/ml. 

Despite this oversight, we estimated the MIC of Extract 1 at 16µg/ml. The data are 

from a representative experiment that was performed in triplicate. 
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Figure 3.29: Examination of the inhibitory effect of Extract 1 
against MTB and comparison to the MIC of RIF.  No cells 
were added to the outer perimeter wells of the micotitre plate. 
Starting concentrations, in lane 1, for RIF is 25 µg/ml and 16.5 
mg/ml for Extract 1. The MIC of the inhibitory extract is 16 µg/ml 
(highlighted in orange).  

 

Additionally, the MIC of Extract 2 was compared to that of KAN (Fig. 3.30). In this 

experiment, the MIC of KAN was observed to be 3.125 µg/ml while the MIC of 

Extract 2 is 14.6 µg/ml. The MIC of KAN in MTB ranges between 1- 8 µg/ml, as 

reported (2, 41), which is consistent with the findings in this study.  
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Figure 3.30: Examination of the inhibitory effect of Extract 2 
against MTB and comparison to the MIC of KAN.  No cells 
were added to the outer perimeter wells of the micotitre plate. 
Cells were unintentionally excluded from Lane 5, however this 
does not interfere with the MIC of KAN or Extract 2.  Starting 
concentrations, in Lane 1, for KAN is 200µg/ml and 7.5mg/ml for 
Extract 2. The MIC of the inhibitory extract is 14.6 µg/ml 
(highlighted in green).  

 

Importantly, these data provide good evidence that MTB might be susceptible to 

the Pseudomonas-derived inhibitory extract. Notably, similar results were obtained 

from duplicate experiments performed with separate extracts. However, these 

data are preliminary and require further repetition with appropriate controls in 

order to establish conclusively that MTB is susceptible to the crude extract. 
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4.0 DISCUSSION 

The rise of resistant pathogens emphasizes the dire need for new therapeutic 

agents (126). This is especially true for MTB, a major human pathogen that has in 

recent years been associated with the increasing emergence of multi-drug 

resistance (116). The majority of effective treatments currently available derives 

from nature, specifically microorganisms (37). Microbes constitute a rich reservoir 

of bioactive microbial products, and it is estimated that a mere 1% of the global 

consortium of microbial producers has been discovered (47). In this study, we 

identified a bacterial isolate that was shown to be inhibitory to the growth of MSM. 

Following 16S rRNA analysis, the isolate was designated Pseudomonas � MB to 

reflect its antimycobacterial activity. Subsequently, we demonstrated the stable 

extraction of the inhibitory compound(s) using ethyl acetate as a solvent, and 

confirmed that the Pseudomonas-derived extract was produced exclusively by our 

� MB strain. Although the MOA remains unclear, microbiological assays indicated 

that the inhibitory activity was specific for Gram-positive organisms. Moreover, the 

crude extract was effective against MTB in broth culture at a concentration that 

compared favourably to key frontline and secondary anti-TB drugs. As such, the 

Pseudomonas-derived active agent(s) represents a compelling candidate for 

further investigation as potential lead compound(s) for a novel antimycobacterial 

agent(s). 

 

The dynamics of secondary metabolite production 

Most bioactive compounds are organic molecules of low molecular weight (37). 

These secondary metabolites are conventionally thought to function as an 

alternative defence mechanism, conferring a selective advantage on the producer 

organism (83). However, recent studies have described the function of secondary 

metabolites in terms of the phenomenon of hormesis which holds that the activity 

of a compound is concentration-dependent (37): that is, all natural small molecules 

regulate transcription at lower concentrations (environmental levels) and exhibit 

antibiosis, or inhibitory activity, at higher (artificial) concentrations (36). Notably, 

the hormetic properties of small molecules have been confirmed in studies in 
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which multiple phenotypes (such as morphology and antibiosis) can be induced by 

growing environmental bacteria in close proximity on agar plates (128).  

Natural environments, such as marine or soil ecosystems, offer a potentially rich 

source of antimicrobial producers. The bacterial strain characterized in this study 

was initially isolated from a soil sample on an MSM indicator plate, and was 

subsequently identified as having 99% sequence similarity to several 

Pseudomonas species (Fig. 3.4). For this reason, we designated the isolate as 

Pseudomonas � MB to denote its demonstrated antimycobacterial effect. Future 

work, including a combination of molecular genetics and the generation of a 

complete genome sequence, will be required to situate our isolate accurately 

within the genus, as well as to confirm the nature of the inhibitory compound(s) 

and to identify the machinery responsible for its production (discussed below). 

Pseudomonas is a genus of � -proteobacteria, one of four microbial taxa shown to 

be major producers of currently available antimicrobials (47). Secondary 

metabolism is a characteristic feature of Pseudomonas spp. which produce 

diverse metabolites including siderophores, CLPs, phytotoxins, and bioactive 

compounds with antibacterial and antifungal activities (55). The parallel ethyl 

acetate extractions on Pseudomonas � MB and an unrelated P. putida strain 

indicated that the observed antimycobacterial effect was not common to all 

Pseudomonas spp (Fig. 3.12) and, further, eliminated the possibility that the 

inhibitory effect resulted inadvertently from the ethyl acetate-based extraction 

protocol. Taking into consideration the phenomenon of hormesis, it is possible that 

the Pseudomonas-derived compound(s) described in this study may have 

alternative biological functions and that the observed inhibitory effect is a direct 

consequence of the increased concentration of these molecules on solid agar 

medium. 

A number of factors may trigger secondary metabolite production. These include 

the depletion of nutrients, the synthesis or addition of an inducer, as well as a 

decrease in the growth rate of the producer organism (39). Numerous studies 

have exploited fermentation technology to stimulate the production of bioactive 

secondary metabolites (98, 99, 142). In the study presented here, a modified 

version of solid substrate fermentation was used to stimulate the production of the 

inhibitory activity. This methodology involves fermentation on a solid matrix in the 
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absence - or near absence - of free water, though with sufficient moisture to 

sustain the growth and metabolism of the microorganism (120). We observed 

maximal production of the inhibitory compound(s) after increasing the incubation 

time of the 7H10 agar plates containing Pseudomonas � MB (Fig. 3.8). 

Additionally, an insignificant amount of the inhibitory compound(s) was secreted 

into the agar during the incubation period (Fig. 3.9), indicating that the majority of 

the inhibitory compound(s) is extracted from the Pseudomonas � MB cells.  

Alternatively, it is possible that the applied protocol is inadequate for the extraction 

of the inhibitory compound(s) from the agar, and other methods could be 

examined, such as freeze-drying the agar before extraction (14). Given that the 

inhibitory effect was significantly increased after a longer fermentation period (Fig. 

3.8), it is possible that the depletion of nutrients or the biosynthesis of an inducer 

may be the trigger(s) for the accumulation of the inhibitory compound(s). The 

growth medium was unsupplemented 7H10 – that is, standard 7H10 agar without 

an additional carbon source in the form of glucose or equivalent; therefore, it 

seems unlikely that an external inducer is operating under these conditions.  

However, since the growth rate of the Pseudomonas was not monitored during the 

fermentation period, the role of an inducer in stimulating production cannot be 

definitively excluded. Future studies are required to elucidate the stimuli for 

production, as well as the specific molecular elements regulating the genetic 

programme for the biosynthesis of the inhibitory compound(s). To this end, we 

have obtained a (HiMar-based) transposon which will be used to generate a 

whole-genome knockout library of Pseudomonas � MB (80), and so should 

facilitate the identification of genes required for the production of the inhibitory 

compound(s).  

The protocol applied in this study (Fig. 3.5) was sufficient for the small scale 

extraction of the activity. However, as suggested by our preliminary attempts to 

optimize the extraction, there are many steps within the protocol that might be 

modified in order to improve the yield of the active compound(s). As mentioned 

previously, fermentation conditions have considerable influence on the production 

of secondary metabolites (103). (103). Studies have shown that variation of media 

composition (79), as well as the life cycle stage of the initial inoculum (that is, 

isolated from younger versus older cultures) can influence the production of 
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different metabolites (103). Therefore, additional modifications of the extraction 

protocol to improve yield might include the use of controlled fermentation of liquid 

cultures, which can also have a significant impact on the quantity of inhibitory 

compound isolated (10, 58). The composition of the growth medium might also be 

adjusted; for example, the nature of the nitrogen source has been shown to 

influence secondary metabolite production with not all nitrogen sources supporting 

the production of certain secondary metabolites (79). In addition, the introduction 

of oxygen, nitrogen, chlorine, or sulphur can affect the function of the synthesized 

metabolite(s) (23, 82, 84). For the extraction process, alternative organic solvents 

such as acetone, chloroform, hexane (10) or methanol (23) may yield more potent 

activity.  

 

Solubility of the inhibitory compound(s) 

We inherited a preliminary extraction protocol based on ethyl acetate (94). 

Although it proved a useful  solvent for the extraction of the inhibitory 

compound(s), ethyl acetate posed some problems in subsequent experiments, 

primarily as a result of ethyl acetate-mediated degradation of standard plastic 

consumables (microtitre plates in particular). Several alternative solvents were 

evaluated, including 50% ethanol and DMSO. Although 50% ethanol circumvented 

the problem of degradation, the inhibitory activity of the crude extract seemed to 

be reduced in 50% ethanol relative to ethyl acetate (Fig. 3.10). This might indicate 

that inhibition requires the activity of more than one active compound, each having 

its own biochemical properties including different solubility in different solvents. 

Notwithstanding the minor reduction in activity, we selected 50% ethanol as an 

alternative solvent for the bulk of our initial experiments as it was not inhibitory to 

bacterial growth on its own and, importantly, the ethanol-based extract retained 

antimycobacterial activity, ensuring that it could be used in broth microdilution 

system (Fig. 3.11). However, the extract was not completely soluble in 50% 

ethanol, and moderate quantities of insoluble deposits were observed, again 

reinforcing the likely presence of more than one active compound. The 

accumulation of insolubles during extraction procedures appears to be a common 

occurrence, as others have reported the need to apply subsequent purification 
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steps to remove insoluble deposits, such as filtration through a fritted funnel in 

vacuo (23). 

Non-polar compounds are predicted to be more soluble in ethyl acetate than 50% 

ethanol, which is the more polar of the two solvents. The differential (reduced) 

activity of the crude extract when resuspended in polar (50% ethanol) versus non-

polar (ethyl acetate) solvent suggests that the inhibitory compound(s) may be non-

polar in nature. In later experiments, DMSO was examined as a possible solvent 

in order to ascertain the effect of solvent on inhibitory activity (Fig. 3.23 – Fig 

3.26). On solid medium, there appeared to be no significant difference for DMSO 

relative to ethyl acetate (Fig. 3.23). However, when the inhibitory compound(s) 

was assayed in liquid medium, the potency appeared to be significantly higher 

when DMSO was used as a solvent compared to 50% ethanol (Fig. 3.24). This 

might be a direct consequence of the dual hydrophobic and hydrophilic 

characteristics of DMSO (19), which would ensure the solubility of different 

compounds within the extract with different solubility characteristics. This 

possibility is further supported by the moderate solubility of the compound(s) in 

50% ethanol which suggests that the compounds are not totally hydrophilic in 

nature. However, further characterization is required to establish unequivocally 

that solubility determines the apparent relative potency of the inhibitory agent(s) in 

different solvents which might be summarized as follows: DMSO > ethyl acetate > 

50% ethanol. 

Initially, solid media were supplemented with a 1ml volume of the crude extract to 

test the susceptibility of MTB H37Rv to growth inhibition. At this concentration, no 

inhibition of MTB was evident on agar plates. MTB has a doubling time of ~24hr 

when incubated on solid 7H10 agar at 37oC under standard aerobic conditions 

(77); it is possible, therefore, that the inhibitory compound(s) loses activity during 

the extended incubation period (three to four weeks) required to enumerate viable 

CFUs. Also, it is important to note that this experiment utilized 50% ethanol as 

solvent, which might have influenced the experimental outcome, as discussed. 

Notably, this result was consistent with our previous observation that the crude 

extract dissolved in 50% ethanol was not as active against MSM as the equivalent 

ethyl acetate-dissolved extract (Fig. 3.10). 
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The crude extract inhibits growth of Gram-positive organisms 

The crude extract was tested against a spectrum of bacteria, including various 

actinomycetes, Gram-positives and the Gram-negative E. coli (Fig. 3.18). 

Actinomycetes are characterized by highly complex cell walls comprising 

branched fatty acids called mycolic acids (18). The cell walls of other Gram-

positives (for example, Bacillus subtilis) are made up of teichoic and lipoteichoic 

acids, whereas the Gram-negative E. coli possesses a cell wall comprising 

lipopolysaccharides (44). In our assays, Gram-positive bacteria generally 

appeared to be more sensitive to the growth inhibitory effects of the extract, with 

the Nocardia strains the most sensitive overall (Fig. 3.18). The apparent 

hypersensitivity of Nocardia to the Pseudomans � MB-derived compound(s) is of 

special interest as MTB and Corynebacterium glutamicum are most closely related 

to N. farcinica phylogenetically (132) and the closeness of this relationship has 

suggested Nocardia as a useful model for some aspects of mycobacterial 

physiology (33, 132).  

Although these assays did indicate the ability of the crude extract to inhibit growth 

of E. coli, this effect was minimal and considered insignificant when compared with 

its strong inhibition of the Gram-positive organisms, including MSM (Fig. 3.18). 

Nevertheless, we cannot exclude the possibility that there are multiple compounds 

within this crude extract and, further, that some of these might be active against 

Gram-negative bacteria. However, as only two strains of the representative Gram-

negative E.coli species were tested against the crude extract, further examination 

of the potential Gram-restricted target specificity is required in which more than 

one Gram-negative species is tested. 

This experiment also highlighted the important influence of the solvent on the 

observed inhibitory activity: for many of the strains tested - for example, M. 

parafortuitum and the Rhodococcus spp. - inhibition was only observed when ethyl 

acetate was used as the solvent, whereas for organisms such as MSM, 

Staphylococcus spp., and Bacillus spp., the ethyl acetate-based extraction 

resulted in increased inhibition. Again, these observations reinforce the possibility 

that the extract contains multiple compounds with diverse biochemical properties 

and that the composition of the crude resuspension might be differently affected 

depending on the nature of the chosen solvent. This effect would be exacerbated 
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if the inhibitory activity were a function of multiple active constituents acting 

synergistically.  

The demonstrated activity of the crude extract against Gram-positive bacteria 

supports the need to investigate the Pseudomonas � MB-derived compound(s) 

further as candidate lead molecules. Gram-positive infections are of particular 

concern in the hospital environment (109, 141). It is thought that the focus in the 

1970s and 1980s on the development of drugs against Gram-negative bacteria 

might have resulted in the slow evolution and selection of Gram-positive bacteria 

(7). In turn, this might explain the increasing prevalence of Gram-positive 

infections. As noted previously, only a few classes of novel antibiotics have been 

introduced clinically since 1999. These include the streptogramin combination, 

quinupristin/dalfopristin; the oxazolidinone, linezolid; the lipopeptide, daptomycin; 

cationic antimicrobial peptides such as ketolides; the glycylcyclines such as  

tigecycline; the glycopeptides, oritavancin and dalbavancin; and the 

lipoglycodepsipeptide antibiotic, ramoplanin (61). Further work is required to 

elucidate the MOA of the Pseudomonas-derived extract; however, the fact that the 

cell wall constitutes the major target of many of the newer Gram-positive 

antimicrobials (Figure 4.1) suggests that the active compound(s) is likely also to 

target the cell wall, or cell membrane. 
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Figure 4.1: The MOA of the newer antimicrobial agents 
introduced for use against Gram-positive bacteria 
(Adapted from (62)). 

 

What is the active compound(s) in the Pseudomonas-derived 

extract? 

The limited solubility of some antimicrobials affects their drug delivery potential by 

decreasing the bioavailabilty of the active compounds (86). An example is RIF, 

which is classified as a class II drug on account of key characteristics: it is highly 

permeable but has low solubility and high hydrophobicity (86). The relative 

insolubility of the crude extract in 50% ethanol appeared to correlate with reduced 

activity against Gram-positive organisms (including MSM) when compared with 

the same extract dissolved in ethyl acetate. This suggests that the ethyl acetate-

soluble compound(s) within the ethanol-insoluble deposits might act synergistically 

to effect inhibition. A possible candidate active compound is the known antibiotic 

pyrrolnitrin, or a derivative thereof. Pyrrolnitrins were first isolated from 
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Pseudomonas pyrrocinia and, subsequent to their initial discovery, were isolated 

from a number of other Pseudomonas species (130). Of these,  pyrrolnitrin 1 has 

demonstrated antimicrobial activity against fungi, yeast and Gram-positive 

bacteria, including mycobacteria (130). The possibility of there being more than 

one active compound acting synergistically is appealing, and is consistent with the 

relative activity of the extract in different solvents, as well as our inability to isolate 

a resistant mutant (discussed below). Recently, a U.S. patent was issued to 

Casida, L.E. for Burkholderia ambifaria strain 679-2 based on its broad-spectrum, 

extracellular antimicrobial activity (23). Following extraction and purification of the 

inhibitory activity, three distinct compounds were isolated: two of these, pyrrolnitrin 

and maculosin, had been identified previously while the other was a novel 

compound named banegasine. Notably, when maculosin and banegasine were 

tested individually or in combination, antimicrobial activity was not observed. 

However, increased antimicrobial activity was demonstrated against a spectrum of 

bacteria using a combination of all three compounds (23). This study highlights the 

importance of pursuing compound(s) that exhibit a broad spectrum of activity and 

cautions that measurement of antimicrobial activity of single compounds may 

exclude promising candidates. 

The addition of Tween 80, a non-ionic surfactant, had no significant effect on the 

growth of MSM or the inhibitory activity of the extract, regardless of the available 

carbon source (Figs. 3.21 and 3.22). This is equivalent to the data obtained from 

experiments performed on solid media in the presence of cell wall-perturbing 

agents (Fig. 3.17). However, the addition of Tyloxapol lowered the MIC of the 

extract significantly in liquid media containing glucose as the carbon source (Figs. 

3.21 and 3.22), reinforcing the observation that Tyloxapol renders MSM, 

hypersensitive to the inhibitory extract in indicator plates (Fig. 3.17). The addition 

of Tween 80 has been reported to enhance the growth of MSM, as it is 

metabolized into oleic acid and converted into triacylglycerols, which can then be 

used as carbon sources for lipid biosynthesis and other biomass building blocks 

(125). In contrast, Tyloxapol is a non-hydrolyzable detergent, therefore cells grown 

in the presence of Tyloxapol do not enjoy the same growth advantage as that 

conferred by Tween 80 – a factor that might partially account for the apparent 

hypersensitivity of MSM to the extract in media supplemented with Tyloxapol. The 
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effect of SDS on MSM growth in liquid media was not examined. However, 

supplementation of indicator plates with 0.001% SDS rendered MSM 

hypersensitive to the Pseudomonas-derived extract (Fig. 3.17). Cell wall 

permeability defects have been shown to enhance susceptibility to lipophilic 

antibiotics, which include some first line antituberculosis agents such as RIF, EMB 

and INH (131). Recently, Vandal et al. (2009) showed that acid-sensitive MTB 

mutants with cell wall defects were hypersensitive to SDS and appeared to be 

more sensitive to lipophilic antibiotics (131). In the study presented here, the 

hypersensitivity of MSM to SDS suggests the inhibitory compound/s may be 

lipophilic in structure. However the evidence is only preliminary and further work is 

required to elucidate the structure of the inhibitory compound(s).  

 

Preliminary elucidation of MOA of the inhibitory compound(s)  

As noted previously, natural product extracts have proved a valuable source of 

antibiotics; however, the attractiveness of natural products is limited to some 

extent by the high probability of re-isolating known compounds (134). In addition, 

evidence suggests that in many cases the inhibitory activity is non-specific. In 

combination, these observations place a premium on the elucidation of the MOA, 

which is also critical to the potential  development of a compound as a drug 

candidate (101) and impacts both target specificity as well as any subsequent 

attempts to derivatize the lead molecule for improved pharmacological effect. 

One approach to revealing the MOA is through the isolation and characterization 

of mutant strains resistant to the compound of interest. Our experiments aimed at 

isolating MSM mutants resistant to the crude extract proved unsuccessful (Fig. 

3.19). Moreover, apparent mutants (phenotypically resistant colonies) were 

associated with resistance phenotypes that were not reproducible in classic 

heritability experiments (110). In some cases, the colonies isolated from solid 

media containing inhibitory activity failed to grow in the presence of the extract. It 

is likely that these conflicting results are attributable to multiple factors, and similar 

attempts to identify resistant mutants have failed in other screens of natural 

compounds (102). In addition, as noted above, the presence of more than one 
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compound within the Pseudomonas-derived inhibitory extract might further 

confound attempts to produce resistant mutants. 

Synergistic activity suggests that the compounds attack different targets (23). Most 

forms of drug resistance are thought to occur in a single step as a result of a single 

spontaneous mutation. However, it has been reported that a single mutation may 

change the susceptibility to more than one type of antimicrobial at a time (111). 

Therefore the colonies isolated and initially identified as resistant mutants in this 

study may have mutations that confer resistance to certain compounds within the 

inhibitory extract but are susceptible to other more potent compounds also present 

in the extract. Cavalieri et al. (1995) reported that the combination of 

clarithromycin, a drug that showed relatively poor in vitro activity against MTB, and 

various first-line antituberculosis drugs provided a potential solution to multidrug 

resistance (26). Even though characterization of resistant mutants is a common 

method of defining the MOA of an antimicrobial compound, it has to be taken into 

account that mutations conferring resistance are not only located in target genes 

(50). Again, if there is indeed more than one inhibitory compound within the 

extract, resistant mutant characterization may not be ideal as target-related 

resistance mutations may not be identifiable (50). 

 

Whole cell-antibacterial screening 

In drug discovery programmes, certain characteristics of potential antimicrobials 

must be considered before candidates can be developed (102). Aside from the 

broad experiments highlighted in Fig. 4.2, a number of specific tests (Dr. Helena 

Boshoff, personal communication) can be performed to further characterize and 

develop a candidate antimicrobial compound (14). Firstly, determination of target 

specificity of the candidate compound is required since demonstrated activity 

against the organism of interest (in this case, MTB) is essential. For this reason, 

primary screens test the activity of selected compounds against MTB H37Rv, the 

fully virulent laboratory strain of MTB that has a drug susceptibility profile which is 

considered representative of drug susceptible clinical isolates (100). In addition, 

testing for activity against other bacteria (E. coli, for example) excludes the 

possibility that the compound may be a generic cellular toxin, a concern that might 
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be further examined in toxicity assays (14, 102). In the study presented here, the 

two strains of E. coli, the selected representative Gram-negative species, both 

exhibited limited sensitivity to the crude extract, in comparison to the 

representative Gram-positive species. Further investigation of the Gram-specificity 

of the Pseudomonas-derived extract is required, through the examination of a 

wide range of Gram-negative organisms. This will form the basis of future work.  In 

addition to Gram-restricted target specificity, preliminary broth microdilution 

assays demonstrate inhibition of MTB with an apparent MIC of 14-16 � g/ml of 

crude extract. 

In addition to target specificity, it is important to establish that the compound(s) of 

interest is specifically produced by a particular strain and not a broad range of 

microorganisms that have been previously exploited. Accordingly, we were able to 

demonstrate that the inhibitory compound(s) is produced by the Pseudomonas 

� MB strain but not the closely related P. putida. A limitation of many natural 

product studies is the inability to extract the active compound(s) in sufficient 

quantity. We did not examine production of the Pseudomonas-derived 

compound(s) in liquid medium, as it is not unusual for organisms to produce 

secondary metabolites on solid medium only. However, liquid medium extractions 

from different liquid media (nutrient-rich vs. nutrient-limited), may need to be 

examined in the future, as extraction from liquid might offer an easier purification 

method (14). We did, however, exclude the possibility that a significant amount of 

the Pseudomonas-derived compound(s) was secreted into the agar. However, the 

applied protocol might have been inadequate and an alternative would be to first 

freeze dry the agar before extraction of the compound(s) (14). In terms of the 

solvents chosen, DMSO is commonly used for in vitro assay of many antibiotics; 

however, it is not ideal for initial assays as the compound(s) cannot be removed 

once dissolved in this solvent (19). It is for this reason that majority of our 

experiments were performed with the Pseudomonas-derived compound(s) 

dissolved in 100% ethyl acetate or 50% ethanol, both of which are easy to remove 

by evaporation.  
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Purification of a crude extract is vital to the further development of a candidate 

compound: it is critical for MOA determination as well as structural and chemical 

analyses. Therefore, purification of our Pseudomonas-derived extract is a future 

research priority. The MOA of an antimicrobial compound can be determined by 

means of numerous methods (Fig. 4.2). However microarray technology is the 

most widely-accepted method, as it allows novel MOAs to be ascertained through 

comparative analysis with antibiotics of known MOAs. Transcriptional profiling also 

allows known signatures to be determined (16). For example, the database of 

transcriptional profiles for a diverse set of drugs and growth-inhibitory conditions 

not only accurately identifies the MOA of well-established antimicrobials, but also 

provides fundamental insights into the MOA of unknown compounds, in theory 

enabling the subsequent identification of novel compounds with novel MOAs (16). 

Additionally, a signature of general DNA damage response in most cases 

eliminates a compound as candidate owing to non-specific MOA (for example, 

DNA intercalating agents). 

The determination of bactericidal or bacteriostatic MOAs is imperative to the 

further development of a candidate compound, which can be determined by the 

broth microdilution method (56). A bacteriostatic MOA is indicated by the MIC, 

defined as the lowest antibiotic concentration demonstrating no visible growth, 

while a bactericidal MOA is defined by the minimum bactericidal concentration 

(MBC), which can be determined by removing 0.1 ml of the bacterial suspension 

from subcultures showing no visible growth and inoculating solid media, followed 

by incubation for a prolonged period (56). Therefore, the MBC is defined as the 

lowest antibiotic concentration demonstrating 99.9% of killing of the bacterial 

inoculum. Finally, the isolation of pure compound also enables key primary 

chemical analyses, such as hydrolysis with protease K for peptide determination, 

or saponification to determine if the active compound(s) are esters by nature (14). 

  



 

73 
 

CONCLUSION 

This study reports the microbiological characterization of a crude extract derived 

from a putative Pseudomonas strain that exerts growth inhibitory effects on Gram-

positive organisms including M. tuberculosis. The extract exhibited an MIC against 

MTB in the range 14 – 16 µg/ml in preliminary broth microdilution assays. This 

appears to be a relatively strong inhibitory effect given that a crude extract was 

used, and suggests that a potent compound/s within the crude extract may be 

responsible for the observed inhibition. The inhibition of MTB by a novel 

Pseudomonas-derived extract highlights the importance of exploiting naturally 

occurring microorganisms as possible sources of antimicrobials. In addition, the 

extract appears, from preliminary experiments, to have a greater effect on Gram-

positive organisms, including MTB, suggesting the potential value of its further 

characterization, including the purification of the active compound(s) followed by 

their structural and functional characterization. 
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5.0 APPENDICES 

 

A. Bacterial Growth Conditions 

Table 5.1: Growth conditions for the various bacterial strains used in this study 

Species Strain Growth Conditions (solid/liquid media) and  

(growth temperature) 

M. smegmatis mc2155 7H10 agar/ 7H9 broth (GS), 37°C 

M. tuberculosis H37Rv 7H10 agar/ 7H9 broth (OADC), 37°C 

M. parafortuitum IFM 0490 7H10 agar/ 7H9 broth (GS), 37°C 

R. erythropolis ATCC 

4277 

Nutrient agar/ Nutrient broth, 37°C 

R. equi  Nutrient agar/ Nutrient broth, 37°C 

R. fasciens  Nutrient agar/ Nutrient broth, 37°C 

R. rhodochrous 01 Nutrient agar/ Nutrient broth, 37°C 

R. rhodochrous Ri8 Nutrient agar/ Nutrient broth, 37°C 

N. farcinica IFM 10757 Nutrient agar/ Nutrient broth, 37°C 

N. farcinica IFM 10779 Nutrient agar/ Nutrient broth, 37°C 

B. cereus ATCC Luria Bertani agar/ Luria Bertani broth, 37°C 

B. subtilis  Luria Bertani agar/ Luria Bertani broth, 37°C 

S. aureus  Luria Bertani agar/ Luria Bertani broth, 37°C 

S. epidermidis  Luria Bertani agar/ Luria Bertani broth, 37°C 

E. coli 29 Luria Bertani agar/ Luria Bertani broth, 37°C 

E. coli 32 Luria Bertani agar/ Luria Bertani broth, 37°C 

P. putida 317 Luria Bertani agar/ Luria Bertani broth, 37°C 

Pseudomonas � MB Luria Bertani agar/ Luria Bertani broth, 37°C 
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B. Media, Reagents and Solutions 

All media were made to a final volume of 1L with distilled water. Media were 

sterilized by autoclaving at 121
C for 15-20 min. 

 

1. Luria-Bertani Agar 

10 g Tryptone 

10 g NaCl 

5 g Yeast Extract 

15 g Bacteriological agar 

1L distilled water 

 

2. Luria-Bertani Broth  

10 g Tryptone broth 

10 g NaCl 

5 g Yeast Extract 

1L distilled water 

 

3. Middlebook 7H10 Agar 

19 g 7H10 agar powder (DifcoTM, USA) 

5 ml glycerol (Merck, Germany) 

990 ml distilled water 

Following sterilization, the solid medium was supplemented with 10 ml 

Glucose/salt (from a 100x stock solution). For 7H10/ OADC, 900 ml distilled 

water was added and, following sterilization, enriched with 100 ml OADC (BD 

Microbiology Systems, USA). 
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4. Middlebrook 7H9 Liquid Medium 

4.7 g 7H9 broth powder (DifcoTM, USA) 

2 ml glycerol (Merck, Germany) 

990 ml distilled water 

Following sterilization, media was supplemented with 10 ml Glucose/salt (from 

a 100x stock solution) and 2 ml Tween 80 (from a 25% v/v stock solution). For 

7H9/ OADC, 900 ml distilled water was added and, following sterilization, 

enriched with 100 ml OADC (BD Microbiology Systems, USA) and 2 ml Tween 

80 (from a 25% v/v stock solution). 

 

5. Nutrient Broth Agar 

8 g Nutrient broth powder (DifcoTM, USA) 

15g Bacteriological agar 

1L distilled water 

 

6. Nutrient Broth 

8g Nutrient broth powder (DifcoTM, USA) 

1L distilled water 

 

7. Glucose/ Salt (100x) 

20 g glucose 

8.5 g sodium chloride 

100 ml distilled water 

Sterilized by filtration through a 0.22-� m membrane and stored at 4°C. 

 

8. Tween 80 (25% v/v) 

25 ml polyoxyethylenesorbitan monooleate (Tween 80) (Sigma-Aldrich, USA) 

75 ml distilled water 

The distilled water was heated to aid dissolving the Tween 80, sterilized by 

filtration through a 0.22-� m membrane and stored at 4°C. 
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9. Tyloxapol ( 20% v/v) 

20 ml Tyloxapol (Sigma-Aldrich, USA) 

80 ml distilled water 

Sterilized by filtration through a 0.22-� m membrane and stored up to 1 year at 

4°C 

 

10. Ethambutol stock solution [1mg/ml] 

100 mg ethambutol dihydrochloride powder (Sigma-Aldrich, USA) 

100 ml distilled water 

Sterilized by filtration through a 0.22-� m membrane and stored up to 1 month 

at 4°C. 

 

11. Albumin-dextrose-saline (ADS) (1L) 

8.5 g NaCl 

50 g BSA fraction V (Sigma-Aldrich, USA) 

20 g D-dextrose 

950 ml distilled water 

Dissolved NaCl and BSA fraction V first before adding D- dextrose.  Adjusted 

to final volume of 1L. Sterilized clarified solution by filtration through a 0.22-� m 

membrane. Incubated bottles at 37°C overnight to detect possible 

contamination and stored up to 6 months at 4°C. 

 

12.  6 × DNA loading buffer (250 ml) 

0.3 g Bromophenol blue 

0.3 g Xylenol 

93.6 ml 80% glycerol 

3 ml 0.5 M EDTA 

100 ml distilled water 

Adjusted to final volume of 250 mL with distilled water. 
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1. DNA Molecular Weight Markers
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Figure 5.1: DNA Molecular Weight Markers
(A) and Marker VI (B)

 

A

Other Appendices 

1. DNA Molecular Weight Markers

Figure 5.1: DNA Molecular Weight Markers
(A) and Marker VI (B)

 

A 

Other Appendices  

1. DNA Molecular Weight Markers 

Figure 5.1: DNA Molecular Weight Markers
(A) and Marker VI (B), from Roche.
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2. Sequence Alignments 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: 16S rRNA sequence alignment of the 
unknown isolate with Proteobacteria. A 730bp portion of 
the sequenced 16S PCR product from the unknown isolate 
compared to Proteobacteria 16S sequences within the 
Genbank database. The alignment indicates 99% 
sequence similarity to the � -proteobacteria class 
(highlighted in pink). 
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Figure 5.3: 16S rRNA sequence alignment of MSM 
mc2155 with Actinobacteria. A 730bp portion of the 
sequenced 16S PCR product from MSM mc2155 compared 
to Actinobacteria 16S sequences within the Genbank 
database. The alignment indicates 100% sequence 
similarity to MSM mc2155 (highlighted in blue). 
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