SQL comprehension and synthesis

Show simple item record

dc.contributor.author Obaido, George Rabeshi
dc.date.accessioned 2021-07-02T08:34:11Z
dc.date.available 2021-07-02T08:34:11Z
dc.date.issued 2020
dc.identifier.uri https://hdl.handle.net/10539/31408
dc.description A thesis submitted to the Faculty of Science, in fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, 2020 en_ZA
dc.description.abstract Structured Query Language (SQL) remains the standard language used in Relational Database Management Systems (RDBMSs), and has found applications in healthcare (patient registries), businesses (inventories, trend analysis), military, education, etc. Although SQL statements are English-like, the process of writing SQL queries is often problematic for non-technical end-users in the industry. Similarly, formulating and comprehending written queries can be confusing, especially for undergraduate students. One of the pivotal reasons given for these difficulties lies with the simple syntax of SQL, which is often misleading and hard to understand. An ideal solution is to present these two audiences: undergraduate students and non-technical end-users with learning and practice tools. These tools are mostly electronic, and can be used to aid their understanding, as well as enable them write correct SQL queries. This work proposes a new approach aimed at understanding and writing correct SQL queries using principles from Formal Language and Automata Theory. We present algorithms based on: regular expressions for the recognition of simple query constructs, context-free grammars for the recognition of nested queries and a jumping finite automaton for the synthesis of SQL queries from natural language descriptions. As proof of concept, these algorithms were further implemented into interactive software tools aimed at improving SQL comprehension. Evaluation of these tools showed that the majority of participants agreed that the tools were intuitive and aided their understanding of SQL queries. These tools should, therefore, find applications in aiding SQL comprehension at higher learning institutions and assist in the writing of correct queries in data-centered industries en_ZA
dc.language.iso en en_ZA
dc.title SQL comprehension and synthesis en_ZA
dc.type Thesis en_ZA
dc.description.librarian CK2021 en_ZA
dc.phd.title PhD en_ZA
dc.faculty Faculty of Science en_ZA
dc.school School of Computer Science and Applied Mathematics en_ZA

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search WIReDSpace


My Account