A mixed-charge cluster facilities glutathione transferase dimerisation

Date
2006-11-14T06:55:29Z
Authors
Walters, John Clive
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Cytosolic glutathione transferases (GSTs) are obligate stable homo- and heterodimers comprising two GST subunits. Interactions across the subunit interface play an important role in stabilising the subunit tertiary structure and maintain the dimeric structure required for activity. The crystal structure of a rat Mu class GST consisting of two type one subunits (rGST M1-1) reveals a lock-and-key motif and a mixedcharge cluster at the subunit interface. Previous investigations revealed the lock-andkey motif was not essential for dimerisation. It was therefore postulated that the mixed-charge cluster at the dimer interface is primarily responsible for subunit association. Statistical analyses of individual rGST M1-1 chains did not predict the presence of any charge clusters. This suggests that the mixed-charge cluster forms only upon dimerisation and reinforces the probability that quaternary structure stabilisation is a major role of the mixed-charge cluster. Arginine 81 (Arg-81), a structurally conserved residue in the GST family involved in the mixed-charge cluster, was mutated to alanine. Phenylalanine 56 (Phe-56), the ‘key’ residue in the lock-and-key motif, was mutated to serine. These changes were engineered to disrupt the mixed-charge cluster and the lock-and-key motif situated at the dimer interface of rGST M1-1. Sizing by gel filtration chromatography of the mutant GST identified that these engineered amino acids resulted in a stable monomeric protein (F56S/R81A rGST M1). The F56S/R81A rGST M1 displayed almost no catalytic activity, suggesting perturbations of the active site or substrate binding sites. Structural investigations of the monomer by far- and near-UV circular dichroism revealed a similar secondary structural content to the wild-type. However, the tryptophan fluorescence properties suggested the tryptophans were situated in more hydrophilic environments than in the wild-type. ANS binding studies indicated a large increase in the accessible hydrophobic surface area of the monomer. Ureainduced equilibrium unfolding of F56S/R81A rGST M1 follows a cooperative twostate unfolding model. The unfolding data indicates decreased conformational stability and a large increase in the solvent exposed surface area of the monomer. In conclusion, the mixed-charge cluster at the dimer interface of rGST M1-1 is essential for monomeric association, which subsequently contributes to catalytic activity of the dimer and the stabilities of individual rGST M1-1 subunits.
Description
Student Number : 0213014A - MSc dissertation - School of Molecular and Cell Biology - Faculty of Science
Keywords
oligomerisation , oligomeric assemblies , Cytosolic glutathione transferases , GST , charge clusters , filtration chromatography
Citation
Collections