School of Animal, Plant and Environmental Sciences (ETDs)

Permanent URI for this communityhttps://hdl.handle.net/10539/37998

Browse

Search Results

Now showing 1 - 10 of 16
  • Item
    Behavioural and physiological responses of sable antelope to heat and aridity
    (University of the Witwatersrand, Johannesburg, 2024-10) Haylock, Kiara Avelyen; Hetem, Robyn; Parrini, Francesca
    The increased probability of longer, more extreme dry seasons, due to rapidly rising temperatures and the increased frequency and intensity of droughts, threatens water-dependent, selective grazers throughout Africa. Phenotypic plasticity such as behavioural adjustments and physiological flexibility may buffer the impacts of spatiotemporal variations in resource availability and climate. My project aimed to assess variations in home range size, movement distances, behavioural states of movement, fine-scale activity, microclimate selection and body temperature of sable antelope (Hippotragus niger niger), a water-dependent selective grazer, in relation to spatiotemporal variation in vegetation greenness and environmental heat load. To address the aim of my project, I measured body temperature and fine-scale activity using biologging in ten free-living GPS-collared sable antelopes in the semi-arid Bwabwata National Park of Namibia. Each collar was fitted with a miniature black globe thermometer to assess microclimate selection. A weather station with a standard black globe thermometer recorded black globe temperature and air temperature. Data collection spanned 24 months, from May 2016 to April 2018. The dry season was a critical period for sable antelopes, particularly the late dry season when high ambient temperatures compounded reduced resource availability. As conditions became hotter and browner with the progression of the dry season, home ranges elongated towards the Kavango River and increased in size by ~50% from the early dry to the late dry season. In response to increased 24-hour mean black globe temperature and increased exposure to brown vegetation, the 24-hour mean hourly displacement distance of sable antelopes increased with progression of the dry season, mostly due to the increased frequency of long, directed movements to the Kavango River during the late dry season. One sable antelope travelled between 13 and 30 kms every 4-5 days to access water from the river during the late dry season. Using Hidden Markov Models, four behavioural states were identified from the movement tracks of sable antelopes: resting, foraging, local movement and relocating. The long, directed movements to water, classified as a relocating behavioural state, predominated during the late dry season. Sable antelope displayed an increase in relocating behaviour and a decrease in foraging behaviour associated with high 24-hour mean black globe temperature and increased proportion of brown vegetation exposure. Sable antelopes also displayed an increase in local movement with increased exposure to brown vegetation and high 24-hour mean black globe temperature, but a decrease in resting behaviour with an increase in the proportion of brown vegetation exposure. Driven by decreasing vegetation greenness and increasing black globe temperatures, sable antelopes reduced their diurnal proportion of activity with progression of the dry season, associated with a reduction in activity during the heat of the day in response to increased exposure to brown vegetation, high 24-hour mean black globe temperature and an increased proportion of time spent in the shade. Sable antelopes did not fully compensate for lost diurnal activity, despite increased nocturnal activity during hot and dry conditions, as total 24-hour activity decreased with progression of the dry season. Sable antelopes also selected higher quality microclimates (i.e. microclimates that were on average 6.7 ± 0.2 oC cooler than direct sun) when increasingly exposed to brown vegetation and high 24-hour maximum black globe temperature. Fluctuations in 24-hour body temperature increased during the dry season with maximum amplitudes of body temperature rhythm of >5 oC within a single day during the late dry season. Sable antelopes displayed a reduction in minimum 24-hour body temperature in response to decreased 24-hour black globe temperature and increased exposure to brown vegetation during the early dry season, likely due to energy deprivation. While minimum body temperatures remained low during the late dry season, sable antelopes displayed an increase in maximum 24-hour body temperature in response to increased mean 24-hour black globe temperature and increased exposure to brown vegetation, likely due to water deprivation. High maximum 24-hour body temperatures, indicative of dehydration-induced hyperthermia, increased the likelihood of relocating movements to the Kavango River which in turn were associated with a subsequent decline in maximum 24-hour body temperatures. By linking body temperature to a behavioural state of movement, I am the first to demonstrate a direct link between access to a water resource and maximum body temperature in a free-living antelope species. The behavioural flexibility exhibited by sable antelopes during the dry season failed to buffer reduced resource availability as fluctuations in body temperature indicated that sable antelopes experienced nutritional and water stress. My findings highlight the importance of incorporating physiological measurements into behavioural and ecological studies to inform management decisions and improve conservation efforts in the face of climate change.
  • Thumbnail Image
    Item
    Assessing the climatic suitability and environmental responses of Anthonomus morticinus Clark (Coleoptera: Curculionidae), a potential biological control agent of Solanum mauritianum Scopoli (Solanaceae) in South Africa
    (University of the Witwatersrand, Johannesburg, 2024-10) Keizan, Yaron Yakov; Byrne, Marcus; Venter, Nic
    Insect biology is greatly influenced by the surrounding climate. Desiccation, owing to low relative humidity, poses a significant threat to insect populations, especially those with small body sizes. To avoid exposure to low relative humidity (RH) levels, insects actively seek out nearby microenvironments with raised RH. The flowerbud feeding weevil Anthonomus morticinus is an optimistic agent to limit the spread of the highly invasive Solanum mauritianum throughout South Africa. However, the restricted geographic range shown by A. santacruzi in South Africa due to climatic unsuitability questions how A. morticinus will respond to climatic variables, particularly humidity. The effect of low temperatures has shown to be a limiting factor by Mkhomazi (2022) on the survival of A. morticinus, but the effects of RH remains untested. This study examined the influence of RH on the survival and oviposition of A. morticinus inhabiting S. mauritianum inflorescences. Furthermore, this study also intended to reveal the influence of lethal humidities on A. santacruzi cultures compared to that of A. morticinus when sheltered by host inflorescences. Anthonomus morticinus colonies inhabiting S. mauritianum bouquets were kept at seven relative humidities, from ~80% to ~20% for a period of 14 days. Survival and oviposition, observed by dissection of buds, were recorded. For comparison, colonies of A. morticinus and A. santacruzi were maintained at 20% and 46% relative humidity for seven days to determine if the species had differing responses at the lower RH levels. A. morticinus survival and oviposition showed no significant differences at the decreasing humidity levels. Moreover, no significant differences were observed in the survival between A. morticinus and A. santacruzi at 46% and 20% RH. Weevils residing within the S. mauritianum flowers and shoots were shielded from the unfavourable environmental humidities owing to higher humidity levels within these microclimates. These results highlight the dependence of biological control agents on their hosts for more than just food and reproduction but also for physiological functionality.
  • Thumbnail Image
    Item
    Quantity Discriminatory Capacity and Choice Preference Between Binary Rewards in African Elephants
    (University of the Witwatersrand, Johannesburg, 2024) Mariotti, Elena; Parrini, Francesca; Ross, Don
    The ability to quantitatively discriminate between different numbers of the same items is shared by most animals and pre-verbal humans, and it is a requirement for being able to do simple arithmetic operations. This thesis investigated African elephants’ (Loxodonta africana) ability to do simple arithmetic by testing their quantity discrimination ability, potential drivers of it, and their learning ability, with a special focus on individual differences. The results from this thesis provide informative priors representing a necessary foundation to quantitatively estimate the risk preferences of elephants in further choice tasks, which is the aim of the larger project this thesis is part of. Individual elephants were presented with binary choices over different quantities of the same food. All data analysis used a Bayesian framework, to allow informed inferences about individual elephants. First, the preference of the elephants for different fruits was measured. Subsequently, using game pellets and the preferred fruits, quantity discrimination choices were observed using olfactory-only or olfactory-and-sound as cues. Elephants were successful in discriminating between different quantities based on olfactory cues only, but only when they could smell directly on the top of the perforated buckets containing the rewards. A combination of olfactory information and sound reduced their discrimination ability. The absolute difference between the alternatives had a stronger effect on the choices made by the elephants when the difference between the alternatives was larger, while the ratio of the alternatives affected the choices mostly when the two alternatives were similar in size, regardless of the food used. This finding suggests that elephant olfactory quantity discrimination was driven mainly by the numerosity of the rewards rather than by the idiosyncratic characteristics of the food. Grouping the quantity discrimination evidence over each reward together, I was able to show that elephants can perform simple arithmetic operations, being more precise when the alternatives differ by at least two units. The learning ability of the elephants was affected by the order and difficulty of the tasks, with initial tasks, when elephants were not accustomed to the experimental set-up yet, showing clear indication of learning. The fact that the elephants in this study were able to successfully discriminate between different quantities of different fruits, that they were relatively precise when the difference between the alternatives was at least 2 units, and that they showed signs of learning over the course of novel tasks, allows one to infer that eliciting the risk preferences of elephants might be possible. In addition to representing the first step to a quantitative elicitation of the risk preferences of elephants, this thesis proves for the first time that African elephants can do simple arithmetic and also provides vital information to increase our understanding of how elephants make decisions in the wild.
  • Thumbnail Image
    Item
    The application of machine learning methods to satellite data for the management of invasive water hyacinth
    (University of the Witwatersrand, Johannesburg, 2023-06) Singh, Geethe; Reynolds, Chevonne; Byrne, Marcus; Rosman, Benjamin
    Biological invasions are responsible for some of the most devastating impacts on the world’s ecosystems, with freshwater ecosystems among the worst affected. Invasions threaten not only freshwater biodiversity, but also the provision of ecosystem services. Tackling the impact of invasive aquatic alien plant (IAAP) species in freshwater systems is an ongoing challenge. In the case of water hyacinth (Pontederia crassipes, previously Eichhorniae crassipes), the worst IAAP presents a long-standing management challenge that requires detailed and frequently updated information on its distribution, the context that influences its occurrence, and a systematic way to identify effective biocontrol release events. This is particularly urgent in South Africa, where freshwater resources are scarce and under increasing pressure. This research employs recent advances in machine learning (ML), remote sensing, and cloud computing to improve the chances of successful water hyacinth management. This is achieved by (i) mapping the occurrence of water hyacinth across a large extent, (ii) identifying the factors that are likely driving the occurrence of the weed at multiple scales, from a waterbody level to a national extent, and (iii) finally identifying periods for effective biocontrol release. Consequently, the capacity of these tools demonstrates their potential to facilitate wide-scale, consistent, automated, pre-emptive, data-driven, and evidence-based decision making for managing water hyacinth. The first chapter is a general introduction to the research problem and research questions. In the second chapter, the research combines a novel image thresholding method for water detection with an unsupervised method for aquatic vegetation detection and a supervised random forest model in a hierarchical way to localise and discriminate water hyacinth from other IAAP’s at a national extent. The value of this work is marked by the comparison of the user (87%) and producer accuracy (93%) of the introduced method with previous small-scale studies. As part of this chapter, the results also show the sensor-agnostic and temporally consistent capability of the introduced hierarchical approach to monitor water and aquatic vegetation using Sentinel-2 and Landsat-8 for long periods (from 2013 - present). Lastly, this work demonstrates encouraging results when using a Deep Neural Network (DNN) to directly detect aquatic vegetation and circumvents the need for accurate water extent data. The two chapters that follow (Chapter 3 and 4 described below) introduce an application each that build off the South African water hyacinth distribution and aquatic vegetation time series (derived in Chapter 2). The third chapter uses a species distribution model (SDM) that links climatic, socio-economic, ecological, and hydrological conditions to the presence/absence of water hyacinth throughout South Africa at a waterbody level. Thereafter, explainable AI (xAI) methods (specifically SHapley Additive exPlanations or SHAP) are applied to better understand the factors that are likely driving the occurrence of water hyacinth. The analyses of 82 variables (of 140 considered) show that the most common group of drivers primarily associated with the occurrence of water hyacinth in South Africa are climatically related (41.4%). This is followed by natural land cover categories (32.9%) and socio-economic variables (10.7%), which include artificial land-cover. The two least influential groups are hydrological variables (10.4%) including water seasonality, runoff, and flood risk, and ecological variables (4.7%) including riparian soil conditions and interspecies competition. These results suggest the importance of considering landscape context when prioritising the type (mechanical, biological, chemical, or integrated) of weed management to use. To enable the prioritisation of suitable biocontrol release dates, the fourth chapter forecasts 70-day open water proportion post-release as a reward for effective biocontrol. This enabled the simulation of the effect of synthetic biocontrol release events under a multiarmed bandit framework for the identification of two effective biocontrol release periods (late spring/early summer (mid-November) and late summer (late February to mid-March)). The latter release period was estimated to result in an 8-27% higher average open-water cover post-release compared to actual biocontrol release events during the study period (May 2018 - July 2020). Hartbeespoort Dam, South Africa, is considered as a case study for improving the pre-existing management strategy used during the biocontrol of water hyacinth. The novel frameworks introduced in this work go a long way in advancing IAAP species management in the age of both ongoing drives towards the adoption of artificial intelligence and sustainability for a better future. It goes beyond (i) traditional small-scale and infrequent mapping, (ii) standard SDMs, to now include the benefits of spatially explicit model explainability, and (iii) introduces a semi-automated and widely applicable method to explore potential biocontrol release events. The direct benefit of this work, or indirect benefits from derivative work outweighs both the low production costs or equivalent field and lab work. To improve the adoption of modern ML and Earth Observation (EO) tools for invasive species management, some of the developed tools are publicly accessible. In addition, a human-AI symbiosis that combines strengths and compensates for weaknesses is strongly recommended. For each application, directions are provided for future research based on the drawbacks and limitations of the introduced systems. These future efforts will likely increase the adoption of EO-derived products by water managers and improve the reliability of these products.
  • Thumbnail Image
    Item
    The impact of nickel and chrome mine tailings on the growth of Hibiscus cannabinus and Linum usitatissimum and a preliminary assessment of their applicability as economically beneficial phytoremediation species
    (University of the Witwatersrand, Johannesburg, 2023-07) Campbell, Tiago Roberto; Furniss, David; Scholes, Mary
    Current and previous mining activities in South Africa have caused various environmental, human health and societal impacts. This has led to the formation and enforcement of legislation regarding the rehabilitation of active, closed and abandoned mines in South Africa. The requirements contained in this legislation include rehabilitation, skills transfer, job creation and development of post mine land use regarding active, closed and abandoned mines. A common impact of mining activities is the contamination of soils with various metals. The process of phytoremediation has demonstrated potential in the remediation of metal contaminated soils. Plant species commonly utilised in this process are hyper accumulators, which can translocate and accumulate high concentrations of various metals from soils into their biomass. However, large areas of previously economically productive land become underutilised when hyper-accumulators are used for phytoremediation. Economically valuable fibrous plant species have demonstrated potential in their use as phytoremediation species. This presents an opportunity in which economically valuable plant species could be utilised in phytoremediation applications on active, closed and abandoned mines in South Africa. Thus, the aim of this research was to assess the ability of Hibiscus cannabinus and Linum usitatissimum to grow in and extract metals from soil contaminated with nickel and chrome mine tailings. Furthermore, the concurrent use of H. cannabinus and L. usitatissimum as phytoremediative and economically beneficial plant species was determined. Normal (non impacted), rehabilitated (previously impacted) and tailings (impacted) soil treatments were collected and used from the Onverwacht tailings storage facility of Nkomati Nickel mine. Hibiscus cannabinus and L. usitatissimum were cultivated in each soil treatment in greenhouse conditions over a six-month period. Multiple plant growth parameters were recorded at monthly intervals. The amount (mg) and concentration (mg/kg) of Mn, Zn, Ni, Cu, Cr and Co contained within plant tissue samples at the end of the six-month period was determined. The area (ha) of land categories available for H. cannabinus and L. usitatissimum cultivation onsite was determined using Sentinel 2B satellite imagery and supervised image classification. The measured and expected total yield (t), yield value (R), profit/loss margin (R) and amount (g/ha) of Mn, Zn, Ni, Cu, Cr and Co extracted through cultivation of H. cannabinus and L. usitatissimum onsite was determined. The growth of H. cannabinus and L. usitatissimum cultivated in rehabilitated soil was severely impacted. While growth of each species exhibited minimal differences between those cultivated in normal and tailings soil. Hibiscus cannabinus consistently exhibited greater growth than L. usitatissimum. Both species demonstrated the ability to accumulate varying amounts and concentrations of each of the tested metals in their total, above and below ground components. Both species consistently accumulated increased amounts and concentrations of Mn and Zn. Those cultivated in tailings soil exhibited increased accumulation of Cr. Linum usitatissimum generally accumulated metals at higher concentrations than H. cannabinus, however, minimal differences in the amount of metal accumulated between species were observed. Based on the measured yield cultivation of each species onsite would result in economic loss and generally low metal extraction. However, based on the expected yield, species cultivation onsite, in normal and tailings soil, would result in economic gain and generally high metal extraction. Hibiscus cannabinus and L. usitatissimum exhibited phytoremediative and economic potential. Aspects of the current state of mine impacted land in South Africa and the requirements of rehabilitation enforced through South African legislation could possibly be addressed through the application of H. cannabinus and L. usitatissimum for mine rehabilitation strategies.
  • Thumbnail Image
    Item
    Using the South African Diatom Index (SADI) to determine the present ecological status of the Crocodile River, Kruger National Park
    (University of the Witwatersrand, Johannesburg, 2023-08) Thamae, Seeng; Snow, Gavin; Parrini, Francesca
    The Crocodile River in the Mpumalanga Province of South Africa is a river of great economic significance, while providing support to the surrounding aquatic and riparian ecosystems through ecological processes of chemical, hydrological, and geomorphological nature. This river forms part of the Inkomati River Basin, which serves as a transboundary basin shared between the Republic of South Africa, Mozambique and Eswatini. The importance of the effective management of transboundary water resources, from an African perspective, cannot be stressed enough due to the water-scarce nature of the Southern African region, particularly South Africa. Incorporating Integrated Water Resources Management (IWRM) and Strategic Adaptive Management approaches into the governance of water resources can aid in the protection of both the quality and quantity of the country’s freshwater reserve. Good governance of water resources is essential in the conservation of aquatic and riparian ecosystem biodiversity, as well as meeting the basic human needs reserve, which is essential to meet people’s daily drinking, food preparation and personal hygiene requirements. The Crocodile River is not immune to pollution of anthropogenic origin, such as urbanisation, mining, agriculture, and industrial by-products. The above mentioned constitutes some of the direct and indirect results of large-scale stresses that are exerted on a river system, mainly owing to environmental factors such as landscape, demographic, atmospheric and hydrologic changes. A few practical examples of these factors include changing population dynamics and resultant land-use requirements, accompanied by compromised riparian vegetations arising from the altered land-use. All this necessitates the regular monitoring of the quality of water in this river system. The outcome of regular river monitoring is essential to the protection of this resource through regulation and policy. The use of physico-chemical parameters to determine the health of the Crocodile River has assisted in identifying compromised aquatic and riparian ecosystems and ultimately recommending relevant mitigation strategies necessary in maintaining an acceptable standard of water quality. Incorporating biomonitoring techniques, wherein aquatic microorganisms are used to infer water quality, as a tool to assess the health of a river ecosystem has proven useful, mainly due to the sensitivity of periphyton assemblages (algae, cyanobacteria, diatoms) to changing river conditions, based on nutrients and physico-chemical parameters. The use of these organisms, in bio-assessments of aquatic ecosystems has been key to overall river health monitoring. This study highlights how diatoms, through their published ecological data, can contribute to the Resource Directed Measures method of determining the Present Ecological Status of a river, using the Crocodile (East) River as a case study. The current study was developed to assess the ecological category of the Crocodile River, along the southern boundary of the Kruger National Park. Four sampling sites were identified for the study, from which water samples were collected during September 2019, October 2019, and March 2020 sampling sessions. The basis of this was to investigate the changes in diatom communities and dominant microphytobenthos (MPB) groups (based on the tolerance to fluctuating environmental conditions amongst the various species) in response to the spatio-temporal changes in the quality and quantity of water at the four sites throughout the study period. These results were then compared to past studies to determine if there has been a change in river health over the past decade. Physico-chemical variables were measured in situ using a YSI Professional Plus (Pro Plus) multi-parameter instrument, which included temperature, pH, electrical conductivity, and dissolved oxygen. The benthic microalgal biomass of cyanobacteria, green algae and diatoms was quantified from the fluorescent signatures of the groups in situ using a bbe BenthoTorch. The bbe BenthoTorch is a hand-held apparatus that uses in situ quantification of chlorophyll-a fluorescence as an index of benthic algal biomass. The diatoms present in the samples were later prepared and isolated for microscopic identification and individual counts. The Relative Abundance (RA%) of dominant diatom species and the ecological category of each sampling site was determined using OMNIDIA software based South African Diatom Index (SADI). Ecological categories using the SADI range from A (good quality) to E (bad quality). Data analyses include the use of ordination plots (CCA and PCA) to evaluate the response of the dominant diatom species to changing environmental variables and the interspecific relationships between the diatom species in each assemblage, based on their ecological requirements. The study revealed that the ecological status of the Crocodile River when compared to previous studies had remained the same; C (moderate quality). This finding supports the use of the South African Diatom Index (SADI) in determining the Present Ecological State of the Crocodile River, in the Kruger National Park. There have been similar studies in other river systems within the Kruger National Park, wherein diatoms (specifically diatom-based index scores) were used to infer the water quality, at the time, in comparison to historic / benchmark water quality parameters. These studies were conducted in the Olifants, Letaba and the Sabie rivers of the park. The viability of these studies is motivated by benthic diatoms being particularly sensitive to changes in water quality, making them an ideal indicator of river health that is complementary to the current suite of biomonitoring tools. This method has immense potential in South Africa, provided that more focus is placed on diatoms and investment made in capacitating researchers and diatom taxonomists with the skills to perpetuate this vast field of study.
  • Thumbnail Image
    Item
    South African Podocarpaceae distribution interpreted from a physiological and population genetics perspective
    (University of the Witwatersrand, Johannesburg, 2023-09) Twala, Thando Caroline; Fisher, Jolene T.; Glennon, Kelsey L.
    Podocarpaceae (podocarp) are the most diverse conifer family with a Southern Hemisphere distribution. Podocarps occur in Afrotemperate and Afromontane forests at high elevations that are cool and humid. Podocarps once dominated the forest canopy but due to their slower growth rate and photosynthetic rates they have are in competition withangiosperms which have faster growing and higher photosynthetic rate. Due to the competition between podocarps and angiosperms, Bond (1989) proposed that podocarps were excluded to nutrient poor and unfavourable environments due to their limited competitive ability. However, podocarps persist under the forest canopy until conditions become favourable. This power dynamic shifts with climate oscillations where podocarps distributions expand and dominate when conditions become cooler. Owing to podocarps being the most diverse and widespread conifers they make for a good study system. This thesis focuses on understanding the climatic variables driving the current and future distribution of podocarps, how their seedling physiology may influence their ability to recruit and establish under climate change, and how this can influence their ability to disperse in their South African distribution. Ensemble species distribution modelling was used to characterise the current and future distribution of podocarps and identify the climatic variables that influence their distribution. The current and future environmental niche was quantified using environmental niche modelling. I found that variables predicting rainfall seasonality were the most important at determining the distribution of podocarps in South Africa. Afrocarpus falcatus and P. latifolius were predicted to have the largest geographic distribution, with P. henkelii and P. elongatus having restricted distributions. Both A. falcatus and P. latifolius were predicted to occur in the Limpopo, Mpumalanga, KwaZulu-Natal, Eastern Cape and Western Cape provinces of South Africa. Podocarpus henkelii was predicted to occur in the KwaZulu-Natal and Eastern Cape provinces. Podocarpus elongatus is endemic to the Western Cape Province. All four podocarps were predicted to expand to higher altitudes (up the escarpment) under climate change and contract in its coastal distribution. Although P. elongatus was predicted to occupy the smallest geographic distribution it was predicted to have the widest environmental niche than the other species, which was predicted to contract under climate change. The environmental niche of P. latifolius and P. henkelii was predicted to remain stable. Afrocarpus falcatus, P. latifolius, and P. henkelii showed niche conservatism, however, P. elongatus under RCP 4.5 → current and the RCP 8.5↔ current niche comparisons showed niche divergence. Podocarpus elongatus was predicted to expand to an environment it currently does not occupy. Ecophysiological and morphological experiments were conducted to understand how podocarp seedlings respond to drought and elevated temperatures. The experiments indicated that P. henkelii seedlings were more drought and heat tolerant than A. falcatus seedlings. Conditions are predicted to become hotter and drier in some parts of South Africa, and this study has shown that P. henkelii seedlings will be able to tolerate these conditions better than A. falcatus seedlings. Furthermore, this suggests that the distribution of P. henkelii is not constrained by its physiology but rather by other mechanisms such as competition, reproductive biology, and/or shade tolerance. Microsatellites were used to inform us about possible podocarp dispersal patterns in A. falcatus, P. latifolius and P. henkelii in South Africa. The results suggested that podocarp populations in South Africa were shown to have higher genetic diversity than other podocarps globally, however these results may be due to the limited number of microsatellites used in this study, smaller population sizes in comparison to other studies and methods used to measure population structure and diversity. As expected, the geographically widespread species (A. falcatus and P. latifolius) are more diverse than the geographically restricted P. henkelii. Geographically distant A. falcatus and P. henkelii populations showed higher differentiation than geographically proximal populations. In P. latifolius South African populations, there was strong isolation by distance. Although the distribution of podocarps is disjunct, there is dispersal between populations. Podocarps are resilient to climate change as was demonstrated by the work in this thesis, and by their paleodistribution expanding and contracting with climate oscillations. In this thesis I considered climate, ecophysiology and genetics as determinants of podocarps distribution. Under climate change, podocarps are predicted to expand to higher elevations to track favourable climatic conditions. Seasonal drought is the most important climatic determinant of podocarp distribution. The ability of these species to tolerate drought and heat stress suggests that the seedlings might be able to tolerate short periods of drought and heat stress, however prolonged exposure may lead to seedling mortality, but populations will then be maintained by adults. Populations show evidence of gene flow, indicating they will be able to persist through changing climates, as they have done in the past. This thesis has highlighted that the factors constraining podocarp distributions might be demographic, and future works should investigate the role of fire in podocarp seedling establishment and longevity, as well as their interactions with angiosperm competitors.
  • Thumbnail Image
    Item
    Characterizing microclimates as potential thermal buffers for reptiles, birds, and mammals in an arid-zone environment
    (University of the Witwatersrand, Johannesburg, 2023) Warner, Grace M.; Alexander, Graham J.; Fuller, Andrea
    Aridification, increases in air temperatures and frequency of extreme weather events, such as heat waves, are predicted to intensify under climate change, suggesting dire consequences for dryland animals. Microhabitats may buffer dryland animals against the changing climate, yet microclimatic data remains scarce from Africa and arid regions. The distribution, abundance, and thermal buffering capacity of five microhabitat types (burrows, nests, rock crevices, tree hollows and vegetation) were investigated across three habitat types (dunes, plains, and mountains) in the Kalahari. The distribution and abundance of microhabitats were assessed via strip transects, while thermal buffering capacity was evaluated by comparing miniature black globe temperatures from 70 representative sheltered microhabitats with 12 localised exposed-site microhabitats. The data generated have provided a baseline measure of the abundance and distribution of microhabitats in the Kalahari and have produced a year-long fine-resolution microclimatic thermal dataset. Microhabitat types and abundance were found to differ per habitat type and across topographic gradients. Abiotic drivers, such as soil type and fire frequency, along with drivers such as biotic community composition, were highlighted as potential causes of these microhabitat distribution patterns. Burrows were the best buffered microhabitat across all tested temporal and spatial gradients, providing an average maximum decrease of -29.5 ˚C during the day, and an average maximum increase of 20.1 ˚C during the night. Well-buffered microhabitats were rare within the field-site, whereas some of the poorest buffering microhabitats (Vegetation) were abundant and widespread. Thus, competition for well-buffered microhabitats may increase under climate change, whilst the risk of traversing large distances between microhabitats may become too great for smaller animals as exposure risk to extreme temperatures increases. Furthermore, birds and large mammals may likely be at a high risk of extreme temperature exposure, as their size and structural adaptations may restrict them from access to well-buffered microhabitats. Therefore, the need for the concurrent assessments of microhabitat distribution, abundance and buffering capacity in future species vulnerability assessments is highlighted, as it is the combination of these factors that are likely to impact population viability under climate change.
  • Thumbnail Image
    Item
    Factors affecting mammal utilisation of non-wildlife railway underpasses within the Greater Kruger, South Africa
    (University of the Witwatersrand, Johannesburg, 2023) de Villiers, Hannah; Parrini, Francesca; Teren, Gabriella
    Railways are an integral component of sustainable transport systems, but cause significant impacts to biodiversity, primarily through wildlife-train collisions and the habitat fragmentation created in the landscape. Crossing structures (CSs) for wildlife are the key mitigation measure for these adverse impacts, which will be critical throughout Africa, where 55,000 km of new railway lines are predicted to cut through hundreds of protected areas. For the first time in southern Africa, mammal usage of railway underpasses that were not designed to facilitate wildlife movement was studied using camera traps in the Greater Kruger National Park, South Africa. This study demonstrates that 70% of the terrestrial medium and large mammals species present in the area used at least one non-wildlife CS during the study period, with a total of 1,823 usage events by 33 species. Twelve medium to large African mammal species used underpasses regularly, improving the permeability of the railway line for these species. A viaduct design was characterised by almost four times the usage rate of a typical box culvert and was used by twice as many species, including megaherbivores and mesoherbivores, whereas box culverts supported a smaller number of species, of which the majority were predators. Species most affected by rail collisions in the study area were mostly herbivorous and seldom used non-wildlife underpasses. These results indicate that a railway line with only drainage culverts and the occasional viaduct is not effective in providing adequate safe crossing structures for megaherbivores and ungulate mesoherbivores. Contrary to expectations, vegetation and environmental factors influenced mammal usage of box culverts more than structural dimensions. Ensuring that there is high visibility through the structure, with less herbaceous cover and more woody cover outside of entrances, is likely to enhance culvert usage by most trophic groups. In a savanna context where faunal diversity is high and no single species is a target for mitigation, a range of underpass designs including larger viaducts, located in different types of vegetation cover, thereby combining the range of requirements of different guilds, is recommended.
  • Thumbnail Image
    Item
    The past, present and future of cactus invasions in South Africa in response to rising atmospheric CO2 and climate change
    (University of the Witwatersrand, Johannesburg, 2023) Venter, Nicolaas; Byrne, Marcus
    Cactaceae originate from the Americas and over the past 250 years have been introduced into South Africa and elsewhere for agricultural and horticultural purposes. Numerous species, including useful taxa, have become important invasive weeds that have serious socio-economic and environmental impacts. Fortunately, management strategies, in particular biological control, have been successful in controlling certain species. However, with rising atmospheric CO2 invasive cacti are likely to pose a renewed threat, whereby evidence shows that cactus species are responsive to CO2 fertilisation, which is likely to increase their vigour, mainly through improved water use efficiency (WUE). Additionally, studies show that plant quality declines with increasing CO2 which in general has negative effects on their arthropod herbivores. This study sought to determine the effect of CO2 on two functionally different invasive cactus species and how they may respond to predicted increases in atmospheric CO2. Opuntia stricta (a succulent shrub) is an obligate CAM photosynthetic species that invades grasslands and savannas across semi-arid to subtropical environments whereas Pereskia aculeata (a scrambling woody vine with well-developed leaves) is a CAM-cycling photosynthetic species that invades forest type habits across subtropical environments. Plants were grown at three CO2 concentrations that represented pre-industrial (sub-ambient - 250 ppm), current (ambient - 400 ppm) and future (elevated - 600 ppm) atmospheric CO2 conditions. Plants were also subject to suboptimal and optimal watering treatments for the duration of the experiments to determine the ameliorative effect of CO2 on productivity in response soil moisture deficits. In addition, an experiment was conducted on O. stricta to test the effects of the three CO2 concentrations on plant quality and the subsequent effect on the fitness and efficacy of its insect biological control agent, Dactylopius opuntiae. Growth and productivity of O. stricta and P. aculeata responded positively to increasing CO2, however the responses varied with CO2 concentration. Increasing atmospheric CO2 concentration from date of introduction to present possibly facilitated O. stricta invasion whereas this was less likely for P. aculeata. In both species WUE increased with increasing CO2. Under suboptimal watering, there was partial amelioration of productivity at 600 ppm CO2, but the plant traits that benefitted varied according to species. Plant quality declined for both species, most notably cladode nitrogen (N) content decreased, and carbon/nitrogen ratios (C/N) increased. When D. opuntiae were exposed to O. stricta grown at elevated CO2 (only tested on well-watered plants), D. opuntiae fitness was reduced which in turn reduced the rates of plant mortality due to the insect damage. Using the WUE results from O. stricta, a mechanistic species distribution model (SDM) created here predicted greater increases in its potential distribution in South Africa under climate change relative to the SDM that did not include WUE as a predictor variable. This suggests that improved WUE under future CO2 concentrations can offset the effect of declining rainfall in certain regions of South Africa. Overall, these results suggest that O. stricta and P. aculeata will show more vigorous growth and are also likely to expand their ranges into regions where rainfall currently limits their distribution. This expanded distribution may be further facilitated by reduced biocontrol agent efficacy as host plant quality declines. These findings suggest that management of these two species and other invasive cacti is likely to become more challenging with increasing atmospheric CO2 and climate change.