3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    A model for water hyacinth biological control
    (2016-01-20) Hauptfleisch, Kendall Adair
    Water hyacinth is one of the most invasive aquatic plants in the world. As such, there have been numerous attempts to model and predict its growth. Some of these models incorporate the influence of temperature or nutrients as the two most important determinants of water hyacinth growth. Other models include the effect of biological control on the growth of the plant, but only one model integrates environmental factors (temperature) with the effect of biological control. In this study, I attempt to incorporate temperature, and biological control effects on the growth of water hyacinth into a single model. Temperature-dependent water hyacinth and stage-structured Neochetina weevil population models were constructed in STELLA 9.1.4 and compared against an empirical dataset for two water hyacinth infested sites in South Africa for a two-year period (2004-2006). Although these models may not simulate field water hyacinth populations accurately, they suggest that Neochetina weevils can reduce water hyacinth populations, to below the assumed carrying capacity (70 kg/m2). It appears that the effects of Neochetina larvae are vital in reducing water hyacinth populations, and need to be further explored in order to simulate water hyacinth/weevil systems accurately.
  • Item
    The effect of water nutrients on weevil herbivory and development on water hyacinth
    (2016) Mukarugwiro, Jeanne d' Arc
    Because water hyacinth growth is highly dependent on nutrient availability, growth of the weevil Neochetina eichhorniae, which feeds only on water hyacinth, is closely linked to the plants’ nutrient status. The aim of this research was to investigate whether the nutrient levels could influence the larval development and larval feeding on water hyacinth. To investigate this, water hyacinth plants were grown at three different nutrient concentrations (high (6 mg/l N; 0. 83 mg/l P), medium (2.8 mg/l N; 0.4 mg/l P) and low (0.7 mg/l N; 0.01 mg/l) chosen according to a range of nutrient conditions found in South African water bodies. Control plants, without larval inoculation and treatment plants, with two larvae per plant were used. Plant biomass and other plant growth parameters were measured every week. We predicted a higher larval feeding rate on plants grown at the low nutrient level and faster larval development and a higher larval survival rate at the higher nutrient levels.
  • Item
    Hyperspectral remote sensing to detect biotic and abiotic stress in water hyacinth, (Eichhornia crassipes) (pontederiaceae)
    (2014-07-24) Newete, Solomon Wakshim
    Water hyacinth (Eichhornia crassipes) is one of the most notorious aquatic weeds in the world. Its management, despite the release of seven biocontrol agents since 1974, remains a problem in South Africa. This is often attributed to the high level of eutrophication. However, information on the effect of heavy metals or AMD on Neochetina eichhorniae and N. bruchi, which are the common and most widely established biocontrol agents in the country, is limited. In addition integrated management, which combines herbicides with biological control methods, is the current water hyacinth control method, and requires regular monitoring of the weed’s health status. This can be assessed via the canopy chlorophyll and water content, and can facilitate the decision when to intervene and what intervention measures are appropriate and timely. Hyperspectral Remote sensing (HRS) has the potential to be that monitoring tool. This thesis investigates the physiological status of water hyacinth grown with eight different heavy metals in a single-metal tub trial, three different simulated acid mine drainage (AMD) treatments in a pool trial under the influence of biocontrol agent from Neochetina spp., and in the Vaal River at the inlets of its tributaries, the Koekemoerspruit and the Schoonspruit. A hand-held spectrometer, the analytic spectral device (ASD), was used to measure reflectance. The hypothesis that HRS can detect the response of the plant to both the heavy metals and the biocontrol-induced stresses and their interactions was tested. Different spectral indices associated with the canopy chlorophyll and water content of water hyacinth were evaluated. Among these the modified normalized difference vegetation index (mNDVI) and those associated with the red edge position (the linear extrapolation and the maximum first derivative indices) were able to detect the metal, or AMD or weevil-induced plant health stresses and showed a strong positive correlation with the actual leaf chlorophyll content, measured by a SPAD-502 chlorophyll meter. Among the contaminants Cu, Hg, and Zn treatments from the single-metal tub trial and sulphate concentrations exceeding 700 mg/L in the AMD pool trial were detected by the RS as stressful to the plants. The RS also indicated that the water contamination level was greater downstream at the inlet of the Schoonspruit into the Vaal River, compared to the other sites after rainfall. These results were also consistent with actual measurements of the different plant growth parameters in all the trials and the weevils’ feeding and reproductive activities in the tub and pool trials. Thus, the results of this study indicated that the HRS has potential as a tool to assess the physiological status of water hyacinth from a remote position, which could be helpful in management of a serious national problem. The acquisition of spectral reflectance data at a larger scale, from aerial platforms, involves a complex data set with additional atmospheric interference that can mask the reflectance and which demands more complicated image analysis and interpretation. Thus, further such studies in future are recommended.
  • Item
    The use of water hyacinth mulch and sewage sludge in gold tailings to improve soil fertility and stability
    (2013-02-14) Wanenge, Macdonald. T
    Gold tailings contained in Tailing Storage Facilities (TSFs) contain pyrite which on exposure to air and water becomes a source of acid mine drainage (AMD). AMD has high salinity, elevated levels of heavy metals and low pH, which presents serious threats to surface and groundwater systems. These characteristics in tailings present a hostile environment for plant establishment and growth (Witkowski and Weiersbye 1998a). Therefore, it was hypothesized that organic mulch sourced from sewage sludge and water hyacinth could improve tailings fertility on TSFs in the Highveld gold mines of South Africa. The aim of this study was to develop a greenhouse study to understand how four indigenous plants (Asparagus laricinus Burch. (Asparagaceae), Eragrostis curvula (Schrad.) Nees. (Poaceae), Hyparrhenia hirta (L.) Stapf (Poaceae) and Sutherlandia frutescens (L.) R.Br. (Fabaceae) naturally colonizing the Highveld gold TSFs would survive, grow and accumulate metals from tailings amended using different percentages of water hyacinth and/or sewage sludge, and the susceptibility of the amended tailings to metal leaching. Tailings amended with WH: SS-1.0% proved to be the overall best amendment from the 19 treatments based on the variable tested (e.g. plant growth, plant metal uptake and metal leaching). Amending gold tailings with water hyacinth and/or sewage sludge improved seedling survival, plant survival and growth as compared to non-amended tailings. Tailings amended with dry water hyacinth (WH) created the most favourable plant growing conditions especially at 0.5% of amendment, while those amended only with sewage sludge (SS) presented the most challenging plant growth conditions for all four study species. Amending tailings with water hyacinth and/or sewage sludge showed no significant difference in tailings fertility. However, C (%) and total N decrease significantly after plant growth in all treatments. Hyparrhenia plants grown in tailings amended with WH: SS-1.0% accumulated significantly higher concentrations of Al, Cr, Ni and Zn, while those growing in tailings amended with WH-0.5% accumulated significantly lower concentration of Al, Co, Cr, Fe and Zn as compared to other treatments. Tailings amended with WH-1.0% leached significantly higher concentrations of Mn, while those amended with WH: SS-0.5% and WL-2.0% leached significantly higher concentrations of S as compared to other treatments. All four species accumulated significantly higher concentrations of Al, Co, Cr, Cu, Fe and Ni in the roots than the shoots, except for A. laricinus which accumulated significantly higher concentrations of S, Co, Cr, Mn, Ni and Zn in the shoots than the roots. Sutherlandia frutescens retained all the elements tested in its root biomass. Future field studies in the use of water hyacinth and sewage sludge as organic tailings amendments will be required to get a better understanding of these two potential tailings amendment treatment.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.