3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
2 results
Search Results
Item Metal-insulator transition in boron-ion implanted type IIa diamond.(2000) Tshepe, TshakaneHigh purity natural type Il a diamond specimens were used in this study. Conducting layers in the surfaces of these diamonds were generated using low-ion dose multiple implantation-annealing steps. The implantation energies and the ion-doses were spread evenly to intermix the point-defects, thereby increasing the probability of interstitialvacancy recombinations and promoting dopant-interstitial-vacancy combination resulting in activated dopant sites in the implanted layers. The process used to prepare our samples is known as cold-implantation-rapid-annealing (CIRA). Carbon-ion and boron-ion implantation was used to prepare the diamond specimens, and de-conductivity measurements in the temperature range of 1.5-300 K were made following each CIRA sequence. An electrical conductivity crossover from the Mott variable range hopping (VRH) to the Efros-Shklovskii VRH conduction was observed when the temperature of insulating samples was lowered. The conductivity crossover temperature Tcross decreases with increasing concentration of the boron-ion dose in the implanted layers, indicating the narrowing of the Coulomb gap in the single-particle density of states near the Fermi energy. (Abbreviation abstract)Item Thermodynamics of metal-insulator systems(1996) Kasl, Charles.The properties-of systems which undergo a metal-insulator (MI) transition are currently being extensively studied. Both the transport and thermodynamic properties of these MI systems show interesting behaviour, particularly near the MI transition. A complete theory to describe MI systems does not yet exist. In the present work the focus is on the thermodynamic properties of MI systems, in particular on the specific heat and susceptibility. The thermodynamic properties in the absence of a magnetic field are now well understood, with models such as the two-fluid model giving a good account of the behaviour. In finite magnetic fields the thermodynamic properties are even more interesting and varied. It is the aim of the present work to develop and test models to explain the effects of applying magnetic fields to MI systems. The focus is mainly on phosphorous doped silicon, and the results are gratifying. The theory should, however, also apply to other similar MI systems.