3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
1 results
Search Results
Item Forward and inverse spectral theory of Sturm-Liouville operators with transmission conditions(2017) Bartels, Casey AnnForwardandinversespectralproblemsconcerningSturm-Liouvilleoperatorswithoutdiscontinuitieshavebeenstudiedextensively. Bycomparison,therehasbeenlimitedworktacklingthecase where the eigenfunctions have discontinuities at interior points, a case which appears naturally in physical applications. We refer to such discontinuity conditions as transmission conditions. We consider Sturm-Liouville problems with transmission conditions rationally dependent on the spectral parameter. We show that our problem admits geometrically double eigenvalues, necessitating a new analysis. We develop the forward theory associated with this problem and also consider a related inverse problem. In particular, we prove a uniqueness result analogous to that of H. Hochstadt on the determination of the potential from two sequences of eigenvalues. In addition, we consider the problem of extending Sturm’s oscillation theorem, regarding the number of zeroes of eigenfunctions, from the classical setting to discontinuous problems with general constant coefficient transmission conditions