Electronic Theses and Dissertations (Masters)
Permanent URI for this collectionhttps://hdl.handle.net/10539/38006
Browse
3 results
Search Results
Item Envisioning the Future of Fashion: The Creation And Application Of Diverse Body Pose Datasets for Real-World Virtual Try-On(University of the Witwatersrand, Johannesburg, 2024-08) Molefe, Molefe Reabetsoe-Phenyo; Klein, RichardFashion presents an opportunity for research methods to unite machine learning concepts with e-commerce to meet the growing demands of consumers. A recent development in intelligent fashion research envisions how individuals might appear in different clothes based on their selection, a process known as “virtual try-on”. Our research introduces a novel dataset that ensures multi-view consistency, facilitating the effective warping and synthesis of clothing onto individuals from any given perspective or pose. This addresses a significant shortfall in existing datasets, which struggle to recognise various views, thus limiting the versatility of virtual try-on. By fine-tuning state-of-the-art architectures on our dataset, we expand the utility of virtual try-on, making them more adaptable and robust across a diverse range of scenarios. A noteworthy additional advantage of our dataset is its capacity to facilitate 3D scene reconstruction. This capability arises from utilising a sparse collection of images captured from multiple angles, which, while primarily aimed at enriching 2D virtual try-on, inadvertently supports the simulation of 3D environments. This enhancement not only broadens the practical applications of virtual try-on in the real-world but also advances the field by demonstrating a novel application of deep learning within the fashion industry, enabling more realistic and comprehensive virtual try-on experiences. Therefore, our work heralds a novel dataset and approach for virtually synthesising clothing in an accessible way for real-world scenarios.Item Generating Rich Image Descriptions from Localized Attention(University of the Witwatersrand, Johannesburg, 2023-08) Poulton, David; Klein, RichardThe field of image captioning is constantly growing with swathes of new methodologies, performance leaps, datasets, and challenges. One new challenge is the task of long-text image description. While the vast majority of research has focused on short captions for images with only short phrases or sentences, new research and the recently released Localized Narratives dataset have pushed this to rich, paragraph length descriptions. In this work we perform additional research to grow the sub-field of long-text image descriptions and determine the viability of our new methods. We experiment with a variety of progressively more complex LSTM and Transformer-based approaches, utilising human-generated localised attention traces and image data to generate suitable captions, and evaluate these methods on a suite of common language evaluation metrics. We find that LSTM-based approaches are not well suited to the task, and under-perform Transformer-based implementations on our metric suite while also proving substantially more demanding to train. On the other hand, we find that our Transformer-based methods are well capable of generating captions with rich focus over all regions of the image and in a grammatically sound manner, with our most complex model outperforming existing approaches on our metric suite.Item Learning to adapt: domain adaptation with cycle-consistent generative adversarial networks(University of the Witwatersrand, Johannesburg, 2023) Burke, Pierce William; Klein, RichardDomain adaptation is a critical part of modern-day machine learning as many practitioners do not have the means to collect and label all the data they require reliably. Instead, they often turn to large online datasets to meet their data needs. However, this can often lead to a mismatch between the online dataset and the data they will encounter in their own problem. This is known as domain shift and plagues many different avenues of machine learning. From differences in data sources, changes in the underlying processes generating the data, or new unseen environments the models have yet to encounter. All these issues can lead to performance degradation. From the success in using Cycle-consistent Generative Adversarial Networks(CycleGAN) to learn unpaired image-to-image mappings, we propose a new method to help alleviate the issues caused by domain shifts in images. The proposed model incorporates an adversarial loss to encourage realistic-looking images in the target domain, a cycle-consistency loss to learn an unpaired image-to-image mapping, and a semantic loss from a task network to improve the generator’s performance. The task network is con-currently trained with the generators on the generated images to improve downstream task performance on adapted images. By utilizing the power of CycleGAN, we can learn to classify images in the target domain without any target domain labels. In this research, we show that our model is successful on various unsupervised domain adaptation (UDA) datasets and can alleviate domain shifts for different adaptation tasks, like classification or semantic segmentation. In our experiments on standard classification, we were able to bring the models performance to near oracle level accuracy on a variety of different classification datasets. The semantic segmentation experiments showed that our model could improve the performance on the target domain, but there is still room for further improvements. We also further analyze where our model performs well and where improvements can be made.