Electronic Theses and Dissertations (Masters)

Permanent URI for this collectionhttps://hdl.handle.net/10539/38018

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    The effect of cholesterol depletion on TGF-ß-induced epithelial-mesenchymal transition in pancreatic cancer cells
    (University of the Witwatersrand, Johannesburg, 2024-06) Breytenbach, Andrea; Kaur, Mandeep
    Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic cancer that relies on the epithelial to mesenchymal transition (EMT) program for its spread. EMT is a cell plasticity program that involves the reorganization of cell structure as cells transition from an epithelial to a mesenchymal phenotype. The dysregulated cholesterol metabolism resulting from metabolic reprogramming in PDAC is thought to play a role in EMT by affecting EMT-related signalling pathways. However, no publication has yet investigated the impact of EMT on cholesterol content in PDAC. To shed light on these dynamics, EMT was induced in PANC-1 cells using TGF-β1, thereafter the effect of cholesterol-depleting agents (KS-01 and methyl-β-cyclodextrin) alone or in combination with chemotherapeutic agents (Gemcitabine (GEM) and 5-Fluorouracil (5-FU)) on cholesterol content, EMT state, drug resistance, and invasion were investigated. Our results showed that mesenchymal cells rely on reduced membrane cholesterol levels, synthesis, and uptake, while storing more cholesterol and promoting efflux. EMT also promoted drug resistance via upregulation of ABCB1 expression and reduced hENT1 expression. Targeting cholesterol using cyclodextrins promoted a cholesterol compensatory mechanism, leading to a hybrid EMT state, drug resistance, and metastatic potential. Treating mesenchymal PANC-1 cells with GEM or 5-FU monotherapies were seen to promote EMT-transcription factors, as well as promote cholesterol efflux, synthesis, and import, an unexpected result as these chemotherapeutic agents are not known to affect cholesterol. When GEM was combined with KS-01, drug resistance, invasion, EMT-transcription factors, vimentin, and E-cadherin was promoted indicating the promotion of a hybrid EMT state. Interestingly however, combining KS-01 with 5-FU resulted in an interplay that was seen to mitigate the EMT-promoting effects typically associated with cholesterol depletion alone. The exact mechanism linking the cholesterol compensatory mechanism to EMT remains complex and unknown. Based on work presented in this dissertation, it is proposed that targeting cellular cholesterol should be continued to be investigated, particularly in understanding the repercussions of the use of cholesterol depleting agents for the treatment of other disorders in patients with PDAC.
  • Thumbnail Image
    Item
    Characterising the Role of Cholesterol in Hypoxia-induced Epithelial- Mesenchymal Transition in Breast Cancer
    (University of the Witwatersrand, Johannesburg, 2022) Abdulla, Naaziyah; Kaur, Mandeep
    The cellular epithelial-mesenchymal transition (EMT) process is a complex labyrinth dependent on subversion of critical cellular signalling pathways, which crosstalk extensively to confer cancer cells with characteristics that mediate metastasis. Based on the pleotropic role of cholesterol in the cell, it is not surprising that cancer cells have evolved several mechanisms to facilitate cholesterol dyshomeostasis. In addition to meeting the increased metabolic demands of cancer cells, deregulated cholesterol metabolism also facilitates increased cellular cholesterol availability which is crucial to regulating the activity of protein intermediates in EMT-related signalling pathways. Despite evidence indicating that cholesterol directly regulates signalling pathways related to EMT, no publication to date has attempted to address the effect of EMT induction on cellular cholesterol levels in cancer. To shed light on the dynamics of cholesterol in the relationship between hypoxia and EMT, cholesterol content in MCF-7 cells pre- and post-hypoxia induced EMT was assessed. This dissertation presents findings indicating increased levels of free cholesterol, cholesteryl esters as well as lipid raft cholesterol in MCF-7 cells following hypoxia-induced EMT. Interestingly, MCF-7 cells post- EMT induction displayed increased sensitivity to treatment with cholesterol targeting agents and presented with reversion to an epithelial state as evidenced by the increased expression of epithelial markers, decreased expression of mesenchymal markers and also reduced invasive potential. Importantly, treatment with cholesterol targeting agents is also seen to abrogate the drug resistant potential following hypoxia-induced EMT. Based on these observations, it is proposed that targeting cellular cholesterol could be a promising area to invest in the search for novel therapeutics effective in combatting cancer metastasis