Electronic Theses and Dissertations (Masters)

Permanent URI for this collectionhttps://hdl.handle.net/10539/38009

Browse

Search Results

Now showing 1 - 10 of 25
  • Thumbnail Image
    Item
    Assessing the Validity of the Exclusion of Night-time Thermal Comfort in Tourism Climate Indices
    (University of the Witwatersrand, Johannesburg, 2024-09) Mnguni, Zandizoloyiso; Fitchett, Jennifer
    Biometeorological indices are instruments that can be used to streamline complex climatic information for economic and other decision-making. Indices hold inherent assumptions where the use of an index is only reliable and valuable if those assumptions are true. The Holiday Climate Index (HCI) is presented as the improved version of the TCI, with a key difference being the removal of night-time thermal comfort due to the assumption that air conditioning is ubiquitous throughout Europe. This study investigated the validity of this exclusion of night-time thermal comfort in tourism climate indices, particularly for the HCI using the six European cities for which the index was developed – Barcelona, Stockholm, London, Istanbul, Paris and Rome. The assumption of ubiquitous air conditioning was investigated using Booking.com accommodation listings, the night-time economy and prevalence of night-time activities outside of each accommodation establishment, and whether tourists experienced adverse thermal comfort during the night through posted reviews. Without the air conditioning filter applied, the proportion of listings categorized as offering air conditioning ranged from 28.8% for Stockholm to 98.9% for Rome. With the filter applied, the proportions ranged from 96.4% for Stockholm and 99.0% for Paris. A total of 24,252 TripAdvisor reviews were also examined for both accommodation establishments and night-time tourist activities. The reviews were manually examined for the mention of weather, climate, night-time temperature and air conditioning. The findings of this study exhibit a range of night-time activities, many of which are outdoors, where tourists did comment on night-time thermal comfort. The research disproves the claim of the original authors, and it was found that air conditioning is not ubiquitous. Therefore, the assumption that the HCI is based on is problematic, and the index should be used with caution. Moreover, a similar approach in index validity testing should be performed prior to future studies seeking to apply indices.
  • Thumbnail Image
    Item
    Modelling for Rainwater Harvesting Structures Using Geospatial Techniques
    (University of the Witwatersrand, Johannesburg, 2024-10) Makaringe, Precious Nkhensani; Atif, Iqra
    Climate change poses a significant threat, leading to droughts, floods, and hindering sustainable development. Water scarcity is a growing concern, particularly in developing countries like South Africa, where limited freshwater resources are further strained by climate variability. This research explores the potential of rainwater harvesting (RWH) as a strategy to address water scarcity in such regions. This study aims to model potential rainwater harvesting sites in Lynwood Park, Pretoria, South Africa, utilising geospatial techniques. Object-Based Image Classification (OBIC) was employed to extract building footprints from high-resolution satellite imagery. Microsoft and Google building footprints were utilised to determine the suitable automated building footprints for Lynnwood Park. ArcGIS Pro software served as the primary platform for spatial data analysis and mapping potential RWH sites. Data integration included high-resolution satellite imagery, a Digital Elevation Model (DEM), building footprints, and rainfall data. Additionally, questionnaires were distributed to estimate population and water demand within the study area. The research demonstrates the efficacy of geospatial tools in identifying suitable locations for RWH systems. Indicating that steeper slopes in the southern region of Lynnwood Park have limited collection from large rooftops, while the flatter north offered greater potential. Rainfall graphs and PRWH results suggest that over half of Lynwood Park's annual water demand could be met through rooftop rainwater collection. However, factors such as system losses due to evaporation, inefficiencies in collection and storage, and variability in rooftop sizes across different buildings would need to be incorporated into more detailed models, as well as water quality analysis for rooftop harvested water in future studies. This study highlights the potential of RWH as a viable water security strategy in water-scarce regions. The findings contribute to the development of geospatial approaches for RWH implementation, promoting water security and sustainability in a changing climate.
  • Thumbnail Image
    Item
    Assessing and comparing the performance of different machine learning regression algorithms in predicting Chlorophyll-a concentration in the Vaal Dam, Gauteng
    (University of the Witwatersrand, Johannesburg, 2024-03) Mahamuza, Phemelo Hope; Adam, Elhadi
    The state of Vaal Dam is influenced by various land uses surrounding the Dam, including agricultural activities, mining operations, industrial enterprises, urban settlements, and nature reserves. Mining activities, farming practices, and sewage outflows from nearby villages led to access contamination within the Dam, increasing algal bloom levels. Sentinel-2 MSI data were utilized to forecast and comprehend the spatial pattern of Chlorophyll-a concentration, indicating algal bloom occurrence in the Vaal Dam. Targeting Sentinel-2 Level-1C, the image was preprocessed on the Google Earth Engine (GEE) with acquisition dates from 25 – 26 October 30, 2016, corresponding to the on-site data collection between October 26 and October 28, 2016. Due to limited resources, up-to-date data on the Vaal Dam could not be collected. However, since this study focuses on applying various machine learning regression models to predict chlorophyll-a levels in waterbodies, the dataset is used to test the models rather than reflect the current state of the Vaal Dam. The dataset, comprising 23 samples, was divided into 70% training and 30% test sets, allowing for comprehensive model evaluation. Band ratio reflectance values were extracted from the satellite image and correlated with in-field Chlorophyll-a values. The highest correlation coefficient values were utilized to train five machine-learning models employed in this study: Random Forest (RF), Support Vector Regression (SVR), Least Absolute Shrinkage and Selection Operator (LASSO), Ridge Regression, and Multilinear Regression (MLR). Each model underwent training with ten iterations each; the best learning iteration was then used to generate the final Chlorophyll-a predictive model. The predictive models were validated using the Sentinel-2 MSI satellite data and in-situ measurements using R2, RMSE, and MAPE. Among the five machine learning algorithms trained, RF performed the best, with an R2 of 0.86 and 0.95, an RMSE of 1.38 and 0.8, and MAPE of 15.09% and 10.92% for the training and testing sets, respectively, indicating its ability to handle small, non-linear datasets. SVR also demonstrated a fair performance, particularly in handling multicollinearity in the data points with an R2 of 0.68 and 0.87, an RMSE of 2.37 and 1.56, and MAPE of 18.13% and 19.28% for the training and testing sets, respectively. The spatial pattern of Chlorophyll-a concentrations, mapped from the RF model, indicated that high concentrations of Chlorophyll-a are along the Dam shorelines, suggesting a significant impact of land use activities on pollution levels. This study emphasizes the importance of selecting suitable machine learning algorithms tailored to the dataset's characteristics. RF and SVR demonstrated proficiency in handling nonlinearity, with RF displaying enhanced generalization and resistance to overfitting. Limited field data evenly distributed across the Dam and satellite overpass dates may affect result accuracy. Future research should align satellite pass dates with fieldwork dates and ensure an even distribution of in-field samples across the Dam to represent all land uses and concentration levels.
  • Thumbnail Image
    Item
    GIS-Based Location-Allocation Modelling of School Accessibility in the Bojanala Platinum District Municipality, South Africa
    (University of the Witwatersrand, Johannesburg, 2024-09) Molefe, Kebarileng Christinah; Atif, Iqra
    School accessibility modelling performs a crucial part in guaranteeing that educational institutions are physically and practically reachable by every student, irrespective of their abilities, disabilities, or socioeconomic status. Neglecting school accessibility perpetuates inequality, reinforces negative stereotypes, and isolates affected students. Therefore, the principal goal of this research was to evaluate the distribution of schools across the Bojanala Platinum District Municipality, focusing on their accessibility to local communities. The study employed an integrated approach, combining geostatistical techniques, location-allocation modelling, and multicriteria decision analysis. By considering both quantitative data and spatial relationships, these methodologies contributed to robust decision-making and informed policy recommendations. The study utilized population data and school-related information sourced from the Department of Education and the HUMDATA websites, both dated to the year 2020. The study examined the distribution of schools in the Bojanala Platinum District Municipality. It was discovered that the schools were clustered, with a concentration in the Rustenburg local municipality, followed by Madibeng. However, a significant inequality in school access was evident. Secondary school students faced the greatest vulnerability, as most accessible schools primarily served primary students. To address this, potential school sites were proposed across the district. The study emphasizes the need for effective interventions by educational administrators and policymakers to eliminate this inequality. This study recommends the establishment of new schools in underserved regions, strategically enhance existing schools, and maximize school accessibility for all residents. Adequate school provision promotes equity, reduces travel burdens, and strengthens community bonds.
  • Thumbnail Image
    Item
    Detecting Disease in Citrus Trees using Multispectral UAV Data and Deep Learning Algorithm
    (University of the Witwatersrand, Johannesburg, 2024-06) Woolfson, Logan Stefan; Adam, Elhadi
    There is a high prevalence, in South Africa, of fruit tree related diseases infesting lemon trees, subsequently affecting overall crop yield and quality. Ultimately, the income for the farmers is significantly diminished and limits the supply of nutritional food crops for the South African population, who already suffer from a high incidence of malnutrition. Currently, there are various methods utilized to detect diseases in fruit trees, however they pose limitations in terms of efficiency and accuracy. By employing the use of drones and machine learning methods, fruit tree diseases could be detected at an earlier stage of development and with a much higher level of accuracy. Consequently, the chances of remedying the trees before the disease spreads is greatly improved, and the supply of nutritious fruit within South Africa is increased. This research report’s aim is to investigate the effectiveness of a deep learning algorithm for detecting and classifying diseases in lemon orchards using multispectral drone imagery. This entails assessing the performance of a pretrained ResNet-101 model, fine-tuned with additional sample images, in accurately identifying and classifying diseased lemon trees, specifically those affected by Phytophthora root rot. The methodology involves the utilization of a pretrained ResNet-101 model, a deep learning architecture, and the retraining of its layers with an augmented dataset from multispectral aerial drone images of a lemon orchard. The model is fine-tuned to enhance its ability to discern subtle spectral variations indicative of disease presence. The selection of ResNet-101 is grounded in its proven success in image recognition tasks and transfer learning capabilities. The results obtained demonstrated an impressive accuracy of 80%. The deep learning algorithm exhibited notable performance in distinguishing root rot-affected lemon trees from their healthy counterparts. The findings indicate the promise of utilizing advanced deep learning methods for timely and effective disease detection in agricultural farmlands, facilitating orchard management.
  • Thumbnail Image
    Item
    Assessing the effectiveness of wetlands in the Krugersdorp Game Reserve in attenuating pollution from mines on the West Rand, South Africa
    (University of the Witwatersrand, Johannesburg, 2023) Sawuka, Noluthando Thulisile; Evans, Mary; Masindi Khuliso
    In South Africa, 48% of the country’s wetlands are critically endangered because of anthropogenic activities. Wetlands are an important part of the landscape and play a critical role including but not limited to improving water quality, habitat provision, and water storage. This research aimed to assess the effectiveness of wetland systemsin attenuating pollution from water discharged from abandoned gold mines in the Krugersdorp Game Reserve (KGR), West Rand. Eight (8) water samples were collected in the study site. Physico-chemical parameters were measured in situ, and chemical parameters were measured in the lab. The measured physico–chemical parameters from the majority of the sampled wetlands exceeded at least one of the stipulated water quality legislations, which included the General Authorization Limit Section 21f and h, 2013; Unit for TWQGR; Mine Health and Safety Act; and WUL wastewater in terms of the recorded pH, total dissolved solids, and salinity variables. Overall, a decreasing trend in pH level was observed from wetlands sampled upstream of the KGR to wetlands sampled downstream of the KGR, with the highest recorded pH level (Alkalinity: 8.9) obtained from the sampled wetland that was closest to the adjacent mining site upstream of theKGR whilst the lowest recorded pH level (Acidity: 3.9) obtained from a wetland sampling point that was further from the adjoining mine and downstream in the KGR. A weak and positive correlation (r=0.040) was obtained between the measured total dissolved solids and pH levels from the sampled wetlands, indicating minimal spatial variability. However, a strong positive correlation (r=0.999, Correlation is significant at the 0.01 level) was obtained between the measured total dissolved solids and salinity from the sampled wetlands. At least one of the limits stipulated by the water quality legislation was exceeded in terms of the analysed inorganic constituents from the sampled wetlands. The dominant ions recorded in the wetlands in increasing order are F, K, Cl, Mg, Na, Ca, and SO4. Mn and Si were the dominant metal concentrations recorded in most wetlands, with the former also showing exceedances when compared to the stipulated water quality guidelines. The recorded data from the measured physico–chemical parameters and analysed chemical variables indicated poor water quality in wetlands sampled downstream of the KGR and upstream of the KGR. Stringent measures in water quality monitoring need to be implemented to mitigate the environmental impacts associated with wastewater discharge into the receiving environment.
  • Thumbnail Image
    Item
    Estimating rooftop solar energy potential using spatial radiation models and thermal remote sensing: The case of Witwatersrand University
    (University of the Witwatersrand, Johannesburg, 2023) Ndemera, Rudo Hilda; Adem, Ali K.; Adam, Elhadi
    The main purpose of this research was to estimate the University of Witwatersrand building’s rooftop solar energy potential using the GIS-based solar Area Solar Radiation (ASR) analyst upward hemispherical view shed algorithm. The two major datasets used in this research for rooftop solar energy potential modelling are building footprint data and the Digital Surface Model. Building footprint data, specifically rooftop area was extracted using machine learning CNTK unified toolkit and deep neural networks. The data was presented as individual polygon shape files for each building. The high-resolution Digital Surface Model imagery was sourced from the Advanced Land Observation Satellite. Pre-processing of the imagery was done for atmospheric correction. The DSM was then used in the Area Solar Radiation model to create an upward view shed for every point on the study area which is essential for computing solar radiation maps. The efficiency of using this algorithm is that it considers the shading effects caused by surrounding topography and surrounding man-made features, alterations in the azimuth angle and the position of the sun. Apart from the incoming solar radiation reaching the rooftops, the elevation and orientation of the rooftop cells limit the solar panel tilt angle and intensity of the incoming solar radiation, respectively. These factors were used in setting the suitability criteria together with solar radiation for the identification of suitable rooftop cells in this research. The relationship between land surface temperature and solar radiation values was assessed to determine if it can be used as an indicator for solar panel efficiency. Results from this research indicate that the University of Witwatersrand receives high levels of incoming solar radiation and has a high solar energy rooftop generation capacity that can meet the energy demand on campus. To improve accuracy of the research results, a drone could have been used to measure insolation across the study area to improve the spatial resolution. However, this was not possible due to various restrictions.
  • Thumbnail Image
    Item
    Mapping and monitoring land transformation of Boane district, Mozambique (1980 – 2020), using remote sensing
    (University of the Witwatersrand, Johannesburg, 2023) Dengo, Claudio Antonio; Atif, Iqra; Adam, Elhadi
    Although natural and environmental factors play a significant role in land transformation, human actions dominate. Therefore, to better understand the present land uses and predict the future, accurate information describing the nature and extent of changes over time is necessary and critical, especially for developing countries. It is estimated that these countries will account for 50% of the world's population growth in the next few years. Hence, this research was an attempt to assess and monitor land cover changes in Boane, Mozambique, over the past 40 years and predict what to expect in the next 30 years. This district has been challenged by a fast-growing population and land use dynamic, with quantitative information, driving forces and impacts remaining unknown. Through a supervised process in a cloud base Google Earth Engine platform, a set of five Landsat images at ten-year intervals were classified using a random forest algorithm. Seven land classes, i.e., agriculture, forest, built-up, barren, rock, wetland and water bodies, were extracted and compared through a pixel-by-pixel process as one of the most precise and accurate methods in remote sensing and geographic information system applications. The results indicate an active alternate between all land classes, with significant changes observed within agriculture, forest and build-up classes. As it is, while agriculture (-26.1%) and forest (-21.4%) showed a continuously decreasing pattern, build-up class (45.8%) increased tremendously. Consequently, over 69% of the forest area and 59% of the agricultural area shifted into build-up, i.e., was degraded or destroyed. Similarly, the conversion of barren land area (57.2%) and rock area (47.3%) into build-up indicates that those areas were cleaned. The overall classification accuracy averaged 90% and a kappa coefficient of 0.8779 were obtained. The CA-Markov model, used to assess future land uses, indicates that build-up will continue to increase significantly, covering 60% of the total area. From this finding, the land cover situation in the next 30 years will be critical if no action is taken to stop this uncontrolled urban sprawl. An adequate land use plan must be drawn, clearly indicating the locations for different activities and actions for implementation.
  • Thumbnail Image
    Item
    Evaluating the spatiotemporal changes of urban wetlands in Klip River wetland, South Africa
    (University of the Witwatersrand, Johannesburg, 2023-09) Nxumalo, Nolwazi; Knight, Jasper; Adam, Elhadi
    This study assesses the impacts of land use / land cover (LULC) change in an urban wetland over the past 30 years utilizing machine learning and satellite-based techniques. This study looked at LULC distributions in the Klip River wetland in Gauteng, South Africa. The aims and methods used in this study were: (1) to conduct a comprehensive analysis to map and evaluate the effects of LULC changes in the Klip River wetland spanning from 1990 to 2020, employing Landsat datasets at intervals of 10 years, and to quantify both spatial and temporal alterations in urban wetland area. (2) To predict the change in urban wetland area due to specific LULC changes for 2030 and 2040 using the MOLUSCE plugin in QGIS. This model is based on observed LULC including bare soil, built-up area, water, wetland, and other vegetation in the quaternary catchment C22A of the Klip River wetland, using multispectral satellite images obtained from Landsat 5 (1990), Landsat 7 (2000 and 2010) and Landsat 8 OLI (2020). (3) For the results of this study, thematic maps were classified using the Random Forest algorithm in Google Earth Engine. Change maps were produced using QGIS to determine the spatiotemporal changes within the study area. To simulate future LULC for 2030 and 2040, the MOLUSCE plugin in QGIS v2.8.18 was used. The overall accuracies achieved for the classified maps for 1990, 2000, 2010, and 2020 were 85.19%, 89.80%, 84.09%, and 88.12%, respectively. The results indicated a significant decrease in wetland area from 14.82% (6949.39 ha) in 1990 to 5.54% (2759.2 ha) in 2020. The major causes of these changes were the build-up area, which increased from 0.17% (80.36 ha) in 1990 to 45.96% (22 901 ha) in 2020—the projected years 2030 and 2040 achieved a kappa value of 0.71 and 0.61, respectively. The results indicate that built-up areas continue to increase annually, while wetlands will decrease. These LULC transformations posed a severe threat to the wetlands. Hence, proper management of wetland ecosystems is required, and if not implemented soon, the wetland ecosystem will be lost.
  • Thumbnail Image
    Item
    Examining the remaining Rock Art at Linton, Eastern Cape, and its relationship with the Linton Panel at the Iziko South African Museum in Cape Town
    (University of the Witwatersrand, Johannesburg, 2023) Oster, Sandee Michelle; Pearce, David
    The Linton panel has been the subject of great awe for many decades. It has been displayed in various exhibits worldwide and the subject of multiple research publications. However, its history and origin are not nearly as well understood as once believed, as a large part of its past has been omitted or forgotten. In this dissertation the images of not only the Linton panel are discussed, but those that remain in the shelter from whence it came are brought out of obscurity. How the panel came to be where it is today and the images’ relationship with the shelter and the remaining paintings are examined. Lastly, a forgotten piece of the shelter, a second panel, will be examined in greater detail than ever before: how it fell into relative obscurity and what its images tell us about the Linton shelter and its artists’ beliefs and purposes.