4. Electronic Theses and Dissertations (ETDs) - Faculties submissions
Permanent URI for this community
Browse
Browsing 4. Electronic Theses and Dissertations (ETDs) - Faculties submissions by SDG "SDG-6: Clean water and sanitation"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item A comprehensive analysis of urban river pollution – the case of the Hennops river in Gauteng Province, South Africa(University of the Witwatersrand, Johannesburg, 2023) Letseka, Thabiso Esaiah; Chimuka, L.; Richards, L.H.The water quality of rivers is declining at an alarming rate due to pollution from anthropogenic activities associated with urbanization. To ensure ecological restoration and management of rivers, engaging in pollutant source apportionment, evaluation, and monitoring of water quality is of great significance. The study delivers a comprehensive assessment of the state of pollution in the Hennops river catchment facing pollution threats from rapid urbanization. The water quality assessment of the Hennops river was performed through chemical, microbiological, microplastics analysis and ecotoxicological approaches, spanning from upstream region in Tembisa to the downstream Hartbeespoort Dam. Standard methods were employed to assess physiochemical properties of the river’s water. Electrical conductivity and pH fell within the accepted criteria based on the standard water quality guidelines. However dissolved oxygen (DO) levels were below acceptable limits, ranging from 1.53 mg L-1 to 6.47 mg L-1. This signifies a substantial demand for oxygen in the river, likely due to the discharge of sewage from leaking pipes and wastewater treatment plants. This sewage introduces a high volume of organic matter, leading to an increased oxygen demand in the water. Microbiological pollution indicators were employed to assess the microbial water quality of the river. The study's findings revealed elevated bacterial counts, with Escherichia Coli (E. coli) reaching up to 2 250 cfu mL-1 upstream and decreasing to 30 cfu mL-1 downstream. These high counts suggest faecal contamination in the river water. Similar trends were observed with total coliform counts, high coliform counts 170 000 cfu mL-1 in the upstream which remained detectable even downstream and beyond the Hartbeespoort Dam, despite the dilution effects within the dam. The dam was identified as the primary repository for pollution originating upstream. Grab sampling followed by solid phase extraction (SPE) and the passive sampling using a Polar Organic Integrative Sampler (POCIS), were employed as sample preparation methods for preconcentration of methocarbamol, etilefrine, nevirapine, carbamazepine and venlafaxine from river water with subsequent analysis on Liquid Chromatography coupled to quadrupole time of flight mass spectrometry. Both methods yielded good figures of merit with limits of quantification in the range of 0.57 to 2.12 ng mL-1 for POCIS and 0.19 to 1.82 ng mL-1 for SPE. The compounds were detected in the water but at low levels (µgL-1 ), with detected concentrations of carbamazepine in the range 0.62 ng mL-1 – 0.32 ng mL-1 , methocarbamol detected in the range 0.11 ng mL-1 - 0.14 ng mL-1 and venlafaxine 0.50 ng mL-1 – 0.44 ng mL-1 using POCIS. The detected concentrations using SPE were in the range 0.13 ng mL-1 – 0.19 ng mL-1 for carbamazepine, while nevirapine and venlafaxine were detected although below limit of quantification. This underscores the advantage of using passive samplers, which enable the detection of fluctuating contaminant concentrations over time, in contrast to the one-time measurements obtained through grab sampling. In the case of microplastics in the water and sediment samples, five polymer types were identified: polyethylene (PE), polypropylene (PP), high density polyethylene, (HDPE), polyester and polystyrene. The predominant polymer type in surface water was PE (48.6 %), and that in sediment was PP (52.7 %). PE and PP were the most abundant polymer types in both phases, and as these also the leading polymers in plastics production. 80% of the identified microplastics were found to be fibre with most dominant sizes of 1-2 mm for sediments and 0.5-1 mm in water samples. The conducted tests deemed the river water not suitable for irrigation, drinking or recreational purposes and not capable to support aquatic life.Item Acid[c]ity - Undamning the Dam: Wicking of the Harmony Gold Mine Dam Through Algae Exploration(University of the Witwatersrand, Johannesburg, 2024-02) Le Pere, Justine; Doermann, Kirsten; Daskalakos, ChristosThis project discusses the need to help fight against the effects of mining on water, and to help the surrounding environment and community. A large emphasis is placed on the use of algae to treat the water from the Harmony Gold Mines’ tailings dams, and the facility plays host to this natural water treatment method. The facility provides the space for water resource management and water treatment education to take place. The community of Tshepisong Phase 2 lies north of the facility and acts as the activator of the facility. Without the community needing to collect water for use at home, the facility would not have a strong sense of integration into the township. The layout of the facility allows the layers of privacy to help aid the program, and the program allows the facility to be transparent to its visitors and the neighbouring township.Item Addressing high dimensionality in water quality modelling in water distribution networks(University of the Witwatersrand, Johannesburg, 2024-02) Machweu, Morongwa Ednah; Taigbenu, AkpofureWater quality models are the most effective tools for characterizing water quality conditions, assessing the effects of water pollution, and supporting decision-makers with water quality management. They can be utilised for detecting the variations in the water quality parameters. Despite the usefulness of water quality models, an appropriate and simple water quality descriptor for a particular application, considering the high dimensionality of various water quality parameters, remains a challenge (Chapman, 1992). To address this high dimensionality, a single dimensionless index is commonly used to describe water quality for a particular application. While pollution loads at various points in a river reach have been widely assessed by studies using water quality indices, little research has been done on water distribution networks with service reservoirs and a variation of loading conditions. In a water distribution network, service reservoirs function similarly to rivers in that they have complicated mixing mechanisms, are subject to a variety of water quality factors, and are sized and located differently. The most common water quality indices require the formation of subindices and weights to avoid ambiguity, eclipsing and rigidity. The Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) does not require the formation of sub-indices and weights, thus providing a simplified way of describing water quality. This study investigates the use of the CCME WQI to address high dimensionality in water quality modelling of water distribution networks, taking into consideration the locations of multiple service reservoirs. This study was carried out primarily for decision-making and design optimization purposes only. Using EPANET 2.2, four hydraulically optimised solutions (which satisfied minimum pressure requirements) were further analysed for water quality performance. This was achieved by incorporating simulated data on three water quality variables (chlorine residual, water age and THM concentration) into the CCME WQI for a hypothetical water distribution network, Anytown. The results indicate that two of the four hydraulically optimised solutions achieved excellent water quality levels. This study has demonstrated the usefulness of a dimensionless index as a proxy for multiple water quality variables of a water distribution system in facilitating decision-making.Item Adoption of constructed wetlands in informal settlement(University of the Witwatersrand, Johannesburg, 2023-08) Jetha, Hemal Girish; Thatcher, AndrewThe study aimed to assess the effectiveness of constructed wetlands as a solution to greywater treatment in the context of water use in Setswetla, Alexandra, an informal settlement in Johannesburg that is characterized by makeshift housing, poor sanitation, and a lack of proper greywater treatment facilities. The lack of such facilities has resulted in the disposal of contaminated greywater across the settlement, which poses serious health risks to its people. The installation of constructed wetlands was considered a feasible solution, given that they can be built without displacing the population. However, the successful implementation of this solution would require a change in the behaviour of the population regarding greywater disposal. Therefore, this study aimed to evaluate the adoption of constructed wetlands which were installed in one portion of Setswetla, Silvertown to gain a better understanding of whether installing constructed wetlands helps with greywater disposal. The study also sought to determine if there was any difference in water use behaviour before and after the installation of the constructed wetlands. The research revealed that there was not much behaviour change pre- and post-installation of the constructed wetlands. Some of the significant differences found was that more people reported that they do collect the same amount of water during both summer and winter. More participants indicated that they do not collect the same amount of water during the week and weekend. Less participants reported that they could collect water during the day and night.Item Benchmarking the technical efficiency of south African municipal water utilities: a double bootstrap DEA approach(University of the Witwatersrand, Johannesburg, 2023) Matutu, Amanda; Dikgang, JohaneEfficiency enhancement in the water sector can help to optimise the use of available resources and mitigate the impact of climate change on water resources, while promoting sustainable water usage. Ultimately, this can lead to cost savings that may be channelled into enhancing service delivery and expanding access to water. Benchmarking is considered a useful method for improving water sector efficiency. The production frontier approach is the most commonly used technique for benchmarking, which can be computed using either non-parametric techniques, including data envelopment analysis (DEA), or parametric methods, including stochastic frontier analysis (SFA). A review of the literature reveals that DEA has become the most frequently used method for efficiency analysis in the water sector. Though a predictable approach, the DEA method may be influenced by measurement errors and anomalies, and it cannot be used to draw statistical conclusions. To address this problem, the double-bootstrap DEA technique was introduced, which permits statistical inference in DEA models. This technique helps the researcher to estimate efficiency scores that have been corrected for bias, and also identifies the factors that influence efficiency. For these reasons, this research employs double-bootstrap DEA to evaluate the efficiency scores of municipal water utilities in the South African water sector. The truncated double-bootstrap regression outcomes show that water consumer debt, consuming units receiving free water, and the effects of climate change (such as temperature variation and altered rainfall patterns) all impact the relative efficiencies of municipal water utilities. The results indicate notable distinctions in rankings and efficiency scores between the double-bootstrap DEA model and the traditional DEA model for both urban and rural municipal water utilities. Using the regression model, this research discovered that water consumer debt and consuming units receiving free water are significant factors influencing the efficiency of urban and rural municipal water utilities. These findings raise concerns about the prospects of South African municipal water utilities, particularly their ability to strike a balance between supporting indigent households and securing revenue for maintenance and future water infrastructure development, as well as efficiently managing water consumer debt and addressing the effects of climate change to deliver desired results consistently and sustainably.Item Benchmarking the Technical Efficiency of South African Municipal Water Utilities: A Double-Bootstrap Dea Approach(University of the Witwatersrand, Johannesburg, 2023-03) Matutu, Amanda; Dikgang, JohaneEfficiency enhancement in the water sector can help to optimise the use of available resources and mitigate the impact of climate change on water resources, while promoting sustainable water usage. Ultimately, this can lead to cost savings that may be channelled into enhancing service delivery and expanding access to water. Benchmarking is considered a useful method for improving water sector efficiency. The production frontier approach is the most commonly used technique for benchmarking, which can be computed using either non-parametric techniques, including data envelopment analysis (DEA), or parametric methods, including stochastic frontier analysis (SFA). A review of the literature reveals that DEA has become the most frequently used method for efficiency analysis in the water sector. Though a predictable approach, the DEA method may be influenced by measurement errors and anomalies, and it cannot be used to draw statistical conclusions. To address this problem, the double-bootstrap DEA technique was introduced, which permits statistical inference in DEA models. This technique helps the researcher to estimate efficiency scores that have been corrected for bias, and also identifies the factors that influence efficiency. For these reasons, this research employs double-bootstrap DEA to evaluate the efficiency scores of municipal water utilities in the South African water sector. The truncated double-bootstrap regression outcomes show that water consumer debt, consuming units receiving free water, and the effects of climate change (such as temperature variation and altered rainfall patterns) all impact the relative efficiencies of municipal water utilities. The results indicate notable distinctions in rankings and efficiency scores between the double-bootstrap DEA model and the traditional DEA model for both urban and rural municipal water utilities. Using the regression model, this research discovered that water consumer debt and consuming units receiving free water are significant factors influencing the efficiency of urban and rural municipal water utilities. These findings raise concerns about the prospects of South African municipal water utilities, particularly their ability to strike a balance between supporting indigent households and securing revenue for maintenance and future water infrastructure development, as well as efficiently managing water consumer debt and addressing the effects of climate change to deliver desired results consistently and sustainably.Item Effect of pipeline pigging on raw water pipeline flow rate and energy consumption(University of the Witwatersrand, Johannesburg, 2024-02) Phillip, Neil Claude; Ndiritu, JohnPipeline pigging is a widely used method of pipeline cleaning to improve the hydraulic efficiency of a pipeline system, reduce deposits within a pipeline, reduce operational costs and improve water quality. With insufficient pipe cleaning, pipeline deposits accumulate within the pipeline which reduces the cross-sectional flow area of the pipeline and increases the friction losses in the pipeline. This subsequently reduces the operating flow rate, increases the pumping cost of the system, and reduces the water supply to the surrounding area. Therefore, the study aimed to investigate the hydraulic improvements and operational cost savings of a pipeline system after pigging and to determine when pigging should be done. A case study of the Tayside high lift pump station in South Africa was used for this investigation. Results indicate that pigging removes deposits and sediments from the pipelines thereby increasing the flow rate while reducing the cost of pumping substantially. The increase in flow rate calculated from the case study was 23.9% after one of the pigging operations in 2016. In addition, the pigging operations completed yearly also indicated a flow rate increase after pigging. The study showed that the increase in sediment levels of the raw water in the rainy season led to a reduction in the hydraulic capacity of the pipeline indicating an increase in sediment deposition in the pipeline. Life cycle cost analysis of the case study system obtained annual cost savings of R991,800.59 over a 50-year period. Based on the findings, a flexible routine for pigging based on the reduction in the hydraulic capacity of the pipeline is proposed to cater for the variability in levels of sediment in the raw water in alignment to the rainfall and streamflow patterns. This allows the pipeline to operate at the lowest energy cost and at the highest possible flow rate.Item Improving the Penalty-Free Multi-Objective Evolutionary Design Optimization of Water Distribution Systems(University of the Witwatersrand, Johannesburg, 2024-02) Kambalame, Emily; Ndiritu, JohnWater distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions out performed other retention allocations by identifying the optimal solution with the fewest function evaluations.Item Trends in reporting on climate change, water and COVID-19 by JSE listed companies(University of the Witwatersrand, Johannesburg, 2022) Seedat, Zakiyyah; Lange, Yvette; Maroun, WarrenEnvironmental, social and governance (ESG) information is increasingly demanded by stakeholders as companies face risks and opportunities due to ESG issues, such as climate change, water and COVID-19. ESG disclosure helps reduce information asymmetry for users of company reports and helps companies maintain their social licence to operate. Disclosure is voluntary and this introduces differences in the information disclosed by companies. This study analysed the annual, integrated and ESG reports of the top 40 Johannesburg Securities Exchange (JSE) listed companies. These reports were analysed following an interpretive approach to determine the extent of disclosure on climate change, water and COVID-19 in 2018, 2019 and 2020. This study also considered the change in disclosure on climate change and water over these three years. A disclosure checklist has been developed using professional literature. Content analysis has been used to codify the disclosed information with disclosures being scored using an ordinal scale. Descriptive statistics have been used to analyse and graphically present the data. Exploratory factor analysis has been used for the identification of major disclosure themes. This study contributes to existing research by considering the current state of ESG disclosure at a time when notable developments in the reporting environment have occurred. The findings indicate that companies have focused on quantitative and strategy-related disclosure, indicating the adoption of similar reporting practices by companies. The study also found that there was no significant change in climate change and water disclosure from 2018 to 2020Item Trimetallic nanoparticles immobilised on polymeric membranes for the degradation of organic pollutants in water(2021) Kgatle, Masako; Moloto, Nosipho; Sikhwivhilu, Keneiloe; Ndlovu, GebhuWater is one of the most essential resources in the world, but its scarcity has become an issue of global concern. The scarcity of water is largely the result of climate change, water pollution and increasing population growth which limits the availability of water resources. Moreover, South Africa has been making headlines since 20 IO due to water shortages experienced. It is, therefore crucial to find cost-effective ways to expand the water supply and address the issue of water pollution. This study seeks to tackle the problem of water pollution emanating from textile industries. Over the last few years, nanotechnology and membrane technology have appeared as some of the most widely used methods for the mitigation of water pollution problems. Particularly, nanoscale zerovalent iron (nZVI) has emerged as one of the most broadly used nanoparticles in wastewater treatment and remediation owing to its low-cost and high effectiveness. However, because of its ease of aggregation and consequent loss of reactivity, nZVI is coupled with one or more transition metals to produce multimetallic systems. Nanoparticles alone quickly agglomerate and form large micro-scale particles owing to the magnetic forces thus losing their mobility and chemical reactivity. To avoid these issues, the nanoparticles are stabilized on polymeric membranes. In this study, two trimetallic nanoparticle systems were synthesized, characterized and tested for catalytic activity. The polyvinylpyrrolidone (PVP)-stabilized Fe/Cu/Ag nanoparticles were synthesized by the sodium borohydride chemical reduction method. These nanoparticles were characterized using XRD, XPS, EDX and TEM. The XRD, EDX and XPS techniques showed the presence of all three metals, including iron oxides due to the oxidation of iron in air. The obtained TEM images showed the characteristic core-shell morphology of the nZVI-based nanoparticles. The evaluation of the catalytic activity of the nanoparticles was conducted using methyl orange (MO) dye as the model pollutant and this showed a remarkable degradation efficiency within few minutes. The effect of parameters such as MO solution pH, initial MO dye concentration and nanoparticle dosage in MO degradation was investigated. The nanoparticles were found to have performed better at lower pH, lower initial MO dye concentration and higher nanoparticle dosage. The degradation of MO dye was monitored using UV-Vis analysis and occurred within 1 min. The degradation was found to follow a pseudo first-order kinetic model and was vastly influenced by the studied parameters. The analysis of by-products and reaction pathway were done using LC-MS and this further confirmed that the degradation of MO was indeed rapid. The Fe/Cu/Ag trimetallic nanoparticles were demonstrated as suitable and effectual alternative for the remediation of textile dye wastewater. For the second trimetallic system, three different trimetallic nanoparticles (Fe/(Zn/Ag), Fe/Zn/Ag and Fe/ Ag/Zn) with different metal addition sequences were synthesized. The prepared nanoparticles were characterized using XRD, EDX and TEM analyses. The techniques proved successful synthesis of the nanoparticles and XRD and EDX showed the presence of the three metals together with the oxides. The evaluation of the catalytic reactivity of the nanoparticles was conducted in a series of batch experiments using MO dye as the model pollutant. About 100% of the MO dye was degraded by Fe/ Ag/Zn trimetallic nanoparticles within 1 min and the second-order rate constant obtained was 0.0744 ppm- 1min-\ the rate of reaction was higher than that of the other trimetallic systems. Using Fe/ Ag/Zn trimetallic nanoparticles, parametric tests were conducted at different MO solution pH, initial MO concentration and nanoparticle dosage. The results showed that the reactivity of the Fe/Ag/Zn trimetallic nanoparticles was highly dependent on the aforementioned parameters. Like the Fe/Cu/Ag system, the Fe/Ag/Zn performed better at lower pH, lower initial MO dye concentration and higher nanoparticle dosage. The overall kinetic study showed the removal of MO using Fe/Ag/Zn system to follow a second-order kinetic model. The elucidation of the degradation pathway and MO by-products identification were done using LC-MS and the mechanism of degradation displayed the degradation of methyl orange to proceed via azo-bond cleavage. Moreover, the Fe/ Ag/Zn nanoparticles proved to be effective at degrading methyl orange dye and can be used to treat azo-dye wastewater from textile industries. The Fe/Cu/ Ag trimetallic nanoparticle system was immobilized on a polymethacrylic acid grafted polyethersulfone (PMAA-g-PES) membrane to minimize the issue of recoverability and nanoparticle agglomeration. The nanocomposite membranes were prepared by loading different quantities of Fe/Cu/Ag trimetallic nanoparticles onto the PMAA-g-PES membrane for optimization purposes. Characterization was performed using FTIR, NMR, XPS, SEM/EDS and AFM analyses. The PMAA g-PES and nanocomposite membranes were found to have a porous top layer and a rough surface. Moreover, the addition of nanoparticles did not cause any significant changes in the membrane structure, however, further addition of nano particles led to the blockage of pores. The performance of the synthesized membranes was tested using pure water flux and MO (anionic dye) and methylene blue (MB) (cationic dye) dye removal capacity. The negatively charged membranes were found to have more affinity for MB dye than the MO dye and this was ascribed to the charge interaction between the membrane surface and the dyes. The nanocomposite with 5% Fe/Cu/Ag trimetallic nanoparticle loading on PMAA-g-PES membrane (M4-5% membrane) was found to have the best adsorption capacity with about 60% MB dye removal efficiency. Furthermore, the effect of process parameters such as pH, temperature and H2O2 concentration on the removal of MB was studied. The removal efficiency was found to be higher at higher pH and lower temperature. About 100% removal efficiency was obtained when the process was performed at pH 9 in the presence of H2O2 via adsorption and Fenton degradation. This showed that a hybrid of processes was convenient for the removal of MB dye by adsorption (primarily) and degradation using the nanocomposite membrane. Adsorption equilibrium data were assessed using the Langmuir, Freundlich and Temkin models; the Temkin model was the most convenient to explain the adsorption of MB onto M4-5% membrane. Moreover, lcinetic studies were performed on four kinetic models: pseudo first-order, pseudo second order, intraparticle diffusion and elovich models. The pseudo second-order was found to be the best suitable to explain the adsorption of MB onto M4-5% membrane. Thus, the adsorption of MB onto the nanocomposite membrane is an exothermic chemical process that occurs on a heterogeneous surface. Therefore, the nanocomposite membrane has the prospective to be applied in the removal of cationic textile dyes in the presence of an oxidiser.Item Use of Multispectral Satellite Imagery to Monitor the Decant Pond of Tailings Dams(University of the Witwatersrand, Johannesburg, 2023-08) O’Donovan, Christopher Galen; Adam, Elhadi; Torres-Cruz, AlbertoTailings dam failures, such as the Jagersfontein failure in the Free State province and the Fundão and Feijão failures in Brazil, have brought into question the ability of the mining industry to operate safely, threatening its social license. To improve the safety of tailings dams, leading indicators of dam safety should be monitored. The location and historical behaviour of the tailings decant pond provides insight into several such leading indicators and can be used as a proxy to flag potential construction issues. This work investigates the use of public multispectral data collected by the Sentinel-2 satellite mission to monitor the supernatant tailings dam decant pond. This is achieved by leveraging the cloud-based Google Earth Engine platform and open-source GIS tools. Sentinel-2 acquires visible and near infrared spectrum data with a spatial resolution of 10 m and a revisit time of 5 days. Pond data is obtained by visual assessment and automated thresholding of Sentinel-2 imagery. Thresholds of near-infrared (NIR) reflectance and the normalised difference water index (NDWI) obtained by a least square error analysis are investigated. Implementation of the method at three South African tailings dams, constituting four decant ponds, illustrates the capabilities and limitations of Sentinel-2 imagery. High spatial resolution (<5 m) multispectral satellite imagery and natural colour aerial orthophotos (<0.25 m) serve as reference data. Visually assessed Sentinel-2 pond data presented a bias towards slight over estimation of the pond area compared to reference data. Other leading indicators did not show systematic bias across all sites. In general, the deviation between Sentinel-2 and the reference measurements was high, indicating that Sentinel-2 imagery should be used with caution for measurements critical to dam safety. Site-specific thresholds of NIR and NDWI indicated that automated thresholding of the NDWI is superior to NIR reflectance alone. It is shown that Sentinel-2 timeseries imagery can be used in tailings dam monitoring to supplement existing construction surveillance frameworks and provide historical pond data in the absence of such information.Item Water for Firefighting in Sol Plaatje Municipality, Northern Cape, South Africa(University of the Witwatersrand, Johannesburg, 2023) Thage, Tumelo MacAurthur; Ilemobade, AdesolaIn South Africa, SANS 10090 (SABS, 2018a) and the Red Book (DHS & CSIR, 2019) recommend that for firefighting municipal water distribution systems must have and maintain the capacity to provide water for firefighting purposes. van Zyl & Haarhoff (2007) state that the provision of water for firefighting is a dominant design consideration as it influences the sizing and outputs of critical components. Scheepers (2012) argues that fire flows acts ‘as the most limiting demand condition’ as when it required it is extracted in large quantities for a short period. The most commonly used fire flow values in the SANS 10090 have largely remained unchanged for several decades. In other words, these values have not been revised to take account of the evolution of municipal water consumption over more than 30 years. This suggests that the recommended water requirements for firefighting may no longer be fit for purpose. The literature review revealed that the fire flows in the Red book violates the same in the SANS 10090 - this is illegal as the SANS 10090 specifies enforceable absolute limits. Furthermore, the Red book and SANS 10090 provide different fire risk classifications and values for the different parameters and as such, inconsistent and lack uniformity. It is important for design engineers to have accurate input data when planning and designing for fire flow requirements as any deficiency in basic design information could lead to an insufficient capacity to fight fires or an over-design of water supply infrastructure. A question arose from these observations, which provided inspiration for this study: Are fire flows in the SANS 10090 and Red book appropriate for current firefighting efforts? In answering this question, the first step of this study was to identify participating municipalities that were willing to release their datasets on firefighting for this study. Sol Plaatje municipality was one of the willing municipalities. This study thereafter categorised and analysed information contained in the 3236 fire incident reports that occurred within Sol Plaatje Municipality during the period 21 July 2017 to 21 August 2020, and compared actual fire flow volumes and flow rate data against the SANS 10090, Red book and previous South African studies. In order to provide context and aid better understanding of the datasets, structured interviews were conducted with municipal officials responsible for firefighting operations at Sol Plaatje municipality. Key highlights of this study indicated: ∼ 93.3% of fires in Sol Plaatje municipality were extinguished using 7 Kℓ or less of water. This result is similar to previous studies- In a 2014 study more than 90% of fires in 5 Western Cape Towns were extinguished using less than 10 Kℓ of water; In a 2019 study, 75% of fires in the City of Johannesburg were extinguished using less than 6.60 Kℓ of water; and In a 2022 study, 87% of fires in the City of Johannesburg were extinguished using 10 Kℓ or less of water. Overall, 75%-93% of fires were extinguished in the various study areas using 10 Kℓ or less of water. For large fires in Sol Plaatje municipality, the average water volume used to extinguish 85 large Category 2 fires was 8.56 Kℓ or less of water. This finding is similar to that of the Western Cape 2014 study and the 2022 City of Johannesburg study that found that 8.6 Kℓ and 9.63 Kℓ or less of water extinguished 77 and 89 large category 2 fires, respectively. What is evident from the results is that the volumes of water used in Sol Plaatje and previous studies are significantly less that the specified values in SANS 10090 and the Red book. An adverse consequence of higher values is that it leads to an over-design of water supply infrastructure as it increases the volume of municipal storage required for firefighting and consequently, increases the total capacity of municipal storage. Increased storage capacity increases resources that are expended, as well as water retention times, which negatively affects water quality. This study validates the recommendations of previous studies that the fire flows in the SANS 10090 and Red book need to be revised to enable the efficient conservation of scarce water resources and optimal design of water systems.