School of Geosciences (ETDs)
Permanent URI for this community
Browse
Browsing School of Geosciences (ETDs) by SDG "SDG-12: Responsible consumption and production"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Cost-effective and novel seismic methods for mineral and coal exploration: Examples from Witwatersrand goldfields and Bushveld Complex(University of the Witwatersrand, Johannesburg, 2023) Sihoyiya, Mpofana; Manz, Musa S. D.The reflection seismic method has its origin from oil and gas exploration in the land and offshore sedimentary soft rock environment. Since the inception of the reflection seismic technology in hardrock environment, more advanced processing methods such as migration algorithms have been established to revamp the quality of hardrock seismic data for deep mineral targeting. This study shows the value of recovering and reprocessing legacy reflection seismic data using advanced processing techniques that were not available at the time of acquisition. This is achieved through different novel processing workflows that incorporate iterative static corrections, Kirchhoff pre-stack depth migration (KPreSDM), Kirchhoff pre-stack time migration (KPreSTM), and the newly developed Fresnel-volume (FV) and coherency migration (CM) techniques. This research also shows the value of novel processing of the seismic data acquired in-mine challenging environments. The legacy data from the Kaapvaal Craton in South Africa have been processed to improve the delineation of the deep-seated mineral deposits such as the gold-bearing horizons (termed reefs) in the Witwatersrand Basin and Platinum Group Element (PGE) horizons in the Bushveld Complex. Furthermore, the shallow coal seams and associated geological structures of the Karoo Supergroup in the Evander Basin, an arcuate basin characterized by the Witwatersrand Basin towards the south and the Bushveld Complex towards the north, have been delineated for future mine planning and designs. To better image and understand the geometry of the gold-bearing reefs and crosscutting geological structures in the South Rand goldfield, an 18 km long legacy two-dimensional (2D) reflection seismic line was reprocessed using today’s standard processing workflow which employed iterative static corrections. Improved structural imaging of the steeply dipping faults (mostly normal and reverse), as well as dolerite intrusions, was mostly achieved by using KPreSTM and KPreSDM, with KPreSDM providing better structural imaging than other techniques. Moreover, reprocessing of this profile using an improved velocity model and numerical simulations assisted in delineating near surface stratigraphic units and deep-seated (> 1 km depth) geological structures that are associated with the gold-bearing reef but missed by the legacy post-stack time migrated section. In the Bushveld Complex, the PGE deposits (known as platinum reefs) are delineated using a newly developed depth migration technique called coherency migration. Imaging through CM workflow shows evidence of the complex structural architecture that controls the platinum deposits in the study area. The 50 km long legacy 2D profile traverses towards the center of the complex and provides a better understanding of the tectonic evolution in the region. Additionally, magnetic data were utilised to constrain seismic interpretation and delineate the highly magnetic major geological structures such as the Chaneng structure and strongly magnetized rocks of the Rustenburg Layered Suite. The Chaneng structure, in particular, was poorly defined by the seismic data due to its steeply dipping nature. In 2020, in-mine seismic experiments were conducted to delineate the PGE-bearing horizons such as the Upper Group-2 (UG2) and Merensky Reef. Three reflection seismic profiles from these experiments were cautiously processed to attenuate the infrastructure-generated noise. The experiments were successful and delineated the Merensky Reef and UG2 mineralisations at depths between 55 m and 124 m beneath the developmental tunnel (~550 m below the surface). Six legacy 2D reflection seismic profiles acquired for gold exploration in 1986 in the Evander Basin are processed for imaging both the Witwatersrand Basin and the Bushveld Complex, as well as the coal seams of the Highveld and Witbank coalfields. The profiles were acquired perpendicular to each other providing pseudo-three-dimensional (3D) imaging of the subsurface and better delineation of the geological structures. The degree of faulting and folding that affect the mineralisation observed on the processed profiles in all sites would not have been achieved if advanced processing workflows were not implemented. Processing of the legacy data provides a more cost‐effective way to explore the mineral deposits than reacquiring new data, which could be costly and limited by surface conditions. The processing approaches used in this thesis can be used in other brownfield mining regions where the legacy data exist, and they can also be used to revamp the quality of the data acquired in noisy mining environment