Electronic Theses and Dissertations (Masters)
Permanent URI for this collection
Browse
Browsing Electronic Theses and Dissertations (Masters) by Author "Maphalla, Retsebile"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Clustering and Classification Techniques in the Presence of Outliers: An Application to the Johannesburg Stock Exchange Stocks(University of the Witwatersrand, Johannesburg, 2024) Maphalla, Retsebile; Chipoyera, HWIn this study, the impact of outliers on clustering using the K-means algorithm was explored. It was observed that a high prevalence of outliers can seriously compromise the results of clustering. A novel algorithm called Clustering-quality-aided outlier detection (CQAOD) is proposed in this study. The novelty stems from the fact that apart from identifying outliers, good quality clustering is achieved and the “optimal” number of clusters for K-means clustering of multivariate Gaussian data is simultaneously proffered. In the case of the Johannesburg Stock Exchange (JSE) data, an investigation to compare the efficacy of the following clustering techniques: Hierarchical clustering, spectral clustering, Clustering Large Applications (Clara), Density-based spatial clustering of applications with noise (DBSCAN) was done with the aim of constructing a diversified stock portfolio. The study found that the hierarchical clustering algorithm is the best algorithm to cluster the shares on the JSE