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2. Background 

 

2.1 Introduction 
The estimation of resistant coefficient and hence discharge capacity in a channel or river is 

one of the fundamental problems facing river engineers.  

When applying Manning’s equation to natural channels, its   value represents the total 

resistance to flow. Rouse (1965) pointed out that Manning’s   can be affected by many 

factors from the fluid properties, flow characteristics, cross-sectional geometry and the 

geomorphology of the reach, to the sediment content. The coefficient determined by local 

roughness is not sufficiently representative of the overall resistance. Therefore in practice,   

values are obtained from those presented in texts such as (Chow, 1956), (Barnes, 1967), and 

(Acrement and Schneide, 1989). As many practitioners have experienced, the selected 

   value may not give reasonable flow estimates, and hence have to be modified by some 

trial-and-error approach. Soong and Depue (1996) indicated that such an approach employs 

no physical reasoning, but is accepted as the only way to determine   because tabulations and 

illustrations cannot be covered for all types of channels. On many occasions, experience 

alone has led to the determination of   values (Barnes, 1967).  

Manning’s equation can also be notated as:  

  
  

 
  

 
 

 
 2.1 

   Velocity,   = Hydraulic radius,    slope of the bed, 

   Cross-sectional area and    Manning’s roughness coefficient. 

 

Investigations of a fixed-bed, open channel resistance was first attempted by Antoine Chézy 

in his unpublished work which was reported by Herschel (1897) where Chézy inferred that 

channel resistance is directly proportional to wetted perimeter and the square of the velocity, 

and inversely proportional to the cross-sectional area and the hydraulic slope i.e. 

 Resistance 
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 2.2 

Or normally expressed as in the Chézy equation as; 

   √   2.3 

   resistance coefficient (Chézy coefficient). 

Other experiments by Darcy (1854) and Bazin (1865) on artificial roughened surfaces 

showed that  

  
 

√  
 

 

  (in metric units) 2.4 

Where   and   are constant dependent on boundary roughness. 

Additional experiments by Bazin (1897) resulted in a similar relation which for English units 

of measurement gives, 

  
     

   
 

√ 

  2.5 

Where    roughness factor, such that 0.109 <    < 3.17. 

Manning determined by experiment that the Chézy coefficient varied as the sixth root of the 

hydraulic radius, and in metric units is, 

   
 

 
 

 
 2.6 

 Rouse and Ince (1957) made similar determinations of the Chézy coefficient. 

Substitution of the value for   from equation 2.6 into the Chézy equation 2.1 results in the 

widely used equation, ascribed to Manning, 

  
 

 
  

 
 

 
 2.7 
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2.2 Composite resistance coefficient  

Different methods have been presented for computing a composite resistance coefficient (i.e. 

combined resultant resistance due to different components).Where only surface roughness 

contributes to resistance, but the roughness size varies across the channel cross section (but 

not longitudinally), a number of formulations for calculating the overall, effective value of 

Manning’s     (  ) have been  proposed.   These can be expressed as weighted averages of 

functions of the local   values, but this accounts only for variation across a section assumed 

to be longitudinally continuous: 

   (
(∑ (    

 ) 
   )

 
)

 

  2.8 

where the subscript   refers to the subsection associated with the local value   ,    the 

number of subsections specified,    the weighting variable (normally the wetted perimeter), 

and    an exponent which depends on the nature of the relationship assumed between 

subsection flow conditions. A few commonly used expressions of this form are the ones of 

Horton (1933) who assumed    3/2, Pavlovskii (1931), and Einstein and Banks (1950) who 

assumed    2. Other similar ones are those of Felkel (1960), Lotter (1933). Most of these 

formulas however do not account for interactions between subsection flows through 

transverse momentum exchange, which is considerable for overbank flows but less influential 

for most low, inbank flows (James and Jordanova, 2010). 

The effects of these interactions can, however, be accounted for (Wallingford 2004) using a 

lateral distribution model, such as the Conveyance Estimation system (CES). For local 

resistance due to different influences such as vegetation, irregularities and surface roughness 

equation 2.9 provides a way of combining these effects (James and Jordanova, 2010). HR 

Wallingford (2004) equation was also corroborated by James and Jordanova (2010) below 

     (    
      

      
 )

 

  2.9 

      surface roughness,      for irregularity and      for vegetation 

   is similar to the Manning’s  . 

Equation 2.9 defines local composite unit roughness and is intended for use at the local sub-

cross section scale. 
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Based on the concept introduced by Cowan (1956) for roughness variations not restricted to 

the transverse direction, the United States Soil Conservation Service (1963) (SCS) proposed 

an equation for the overall Manning’s coefficient  

    (                 2.10 

where       a base value of   for a straight uniform section of channel in natural materials, 

     a correction factor for the effect of surface irregularities 

    a correction value for variation in shape and size of channel cross-section, 

    a correction value for obstructions, 

    a correction value for vegetation and flow conditions on the flood plain, 

   a correctional factor for the meandering of the channel cross-section. 

It is clear that equation 2.9 and 2.10 both have terms accounting for resistance accruing from 

the combined influence of form drag and surface drag. According to James et al. (2008) these 

phenomena are different in nature and produce effects that are different as flow depth 

changes therefore they should be described in different terms. James et al. (2008) therefore 

proposed an equation for combining contributions to resistance from local form and bed 

shear. The equation which they developed for combined vegetation stem and bed resistance 

has been applied at the channel reach scale to account for large emergent elements such as 

boulders. 

  √
 

     
     2.11 

In this equation     a roughness length related to spacing ( ) and width ( ) of the form 

roughness elements by  

  
  

 
 2.12 

Therefore the terms are now accounted for separately where form resistance is accounted for 

by a drag coefficient (  ) and the bed shear resistance by the term   , which can be 

expressed in terms of the local surface Manning’s   or Darcy-weisbach friction factor   by 
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 2.13 

in which     the flow depth and   = acceleration due to gravity (James et al. 2008). 

Quantifying flow resistance is essential to understand the actual hydraulics of streams. 

Interactions between stream flow and channel boundaries lead to dissipation of energy as 

water moves within and between bed irregularities. Flow resistance is created by viscous skin 

friction around objects as well as form or pressure drag created from differential pressures 

around objects (Ferguson, 2007). According to David et al. (2011) the total value of the 

frictional losses can be represented with the dimensionless Darcy-Weisbach friction factor   

  
        

      
 2.14 

where    Darcy-Weisbach friction factor,    acceleration due to gravity (m/s
2
), 

     hydraulic radius (m),     friction slope (m/m), and    mean velocity (m/s).   

Each parameter (    ,   ) has error associated with the measurement method               

(David et al., 2011). The use of f, along with Manning’s  , nonetheless remains the most 

common approach to quantifying resistance in steep streams despite indications that 

Manning’s equation in particular is poorly suited to steep streams with shallow flows 

(Ferguson, 2010).  Einstein and Barbarossa (1952) proposed that, despite interactions among 

different components of resistance, the individual components could be quantified and 

summed in terms of    

Manning and Darcy-Weisbach hydraulic roughness coefficient can then be related using the 

following equation: 

  ⌈
  

 
 

  
⌉

 

 

 2.15 

Therefore once we have   we can determine  . 

The        according to Morris and Wigget (1972) is a combination of bed, bank and skin 

roughness, however for relatively low flows as we are considering bank roughness is of 

secondary importance. Skin friction consists of material and form drag. This skin friction is 
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described by the concept of bed shear stress while the form resistance was described by the 

balance between hydrodynamic and resistance forces (Morris and Wigget, 1972). 

                    2.16 

Where         viscous friction and form drag around grains in the absence of 

bedforms,       form drag around bedforms, which includes the individual component of 

form drag around other objects such as boulders. 

 

2.3. The combined resistance of bed shear and form roughness 

James (2012) stated that considering the downward slope weight component of a volume of 

water in a uniform flow to be balanced, the relationship between the sum of the forces arising 

from bed shear and form drag, becomes 

           2.17 

Where    the downslope weight component of the water,     the bed shear force and 

     the form drag (James, 2012). The weight component is 

         2.18 

Where    water density,    gravitational acceleration,    channel slope and    volume 

of water. 

The bed shear force is given by 

           2.19 

in which      the surface area on which the shear stress acts and     bed shear, which can 

be expressed in terms of the surface friction factor,  , as  

    
     

 
   2.20 

where    the average velocity (James, 2012). 

The form drag can be quantified through the drag equation, 

     
 

 
        2.21 
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Where     drag coefficient and     projected area of the form roughness elements in the 

flow direction (James, 2012). 

Substituting the force expressions in the force balance equation and rearranging gives an 

equation for the velocity in terms of   ,    and the channel characteristics, i.e. 

 

   √
 

  

 

   

 
   

  

 

√    2.22 

 

Further manipulation of equation (2.22) by James (2012) leads to  

   √
  

      
  

   

√
 

   
  2.23 

which can be expressed as 

   √
  

 
√   2.24 

i.e. the conventional form of the Darcy-Weisbach equation, with 

          2.25 

Where    the total friction factor and       effective friction factor associated with form 

resistance, given by 

        
  

   
   2.26 

and the hydraulic radius 

  
 

   
 2.27 

Expressing the bed shear in terms of the Manning resistance coefficient for the surface (  ) 

rather than the friction factor, i.e. 

 

    
     

 
 
 

   2.28 



CHAPTER 2- BACKGROUND. INVESTIGATIONS OF COMPOSITE ROUGHNESS COEFFICIENT IN A RIVER 
WITH LOW FLOW 

 

11 
 

 

leads to the conventional Manning’s equation 

   
 

 
 

 

  
 

  2.29 

with 

   √         2.30 

Where      resistance coefficient accounting for the form resistance component, given by 

     √
 

 
 

  
   

  

   
 2.31 

James (2012) used Friction factor relationships presented by the ASCE Task Force on 

Friction Factors in Open Channels (1963) for hydraulically smooth channels 

 

 

√ 
     (

  √ 

 
)  2.32 

 

where    9.55    2 

And for hydraulically rough channels  

 

 

√ 
     (

  

  
) 2.33 

 

where    12 and    2 

 

2.4 Resistance components of river with low flow 

Over the years it has become obvious that the different elements present in a water body 

contribute to the total resistance to flow within the channel reach. Extensive effort has been 

devoted to quantifying the relative importance of different components of  during the past 

few decades, yet no consensus has been reached regarding the most important components or 

the most appropriate method to calculate individual components. Additive approaches have 

been used to investigate the contribution of grains by Millar (1999), Millar and Quick (1994), 
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Einstein and Barbarossa (1952), Parker and Peterson (1980), wood and spill resistance by, 

Shields and Gippel (1995), Curran and Wohl (2003), and bar resistance in gravel bed rivers 

by Parker and Peterson (1980), Prestegaard (1983). Wilcox et al. (2006) demonstrated, 

however, that the immeasurable component was always the largest contributor to total 

resistance, so that an additive approach inflates the leftover component. Thus, quantifying the 

relative contribution of different sources of resistance remains a great challenge to 

understanding flow resistance in streams.  

Grain resistance is most often defined as the viscous friction around grains, but in high-

gradient channels, where boulders are on the same order of magnitude as flow depth, the 

grains can contribute significantly to form drag and spill resistance (Zimmerman, 2010). 

Due to the above statement grain resistance is defined here as the combined flow resistance 

(i.e., form drag, skin friction, spill resistance) that results from the presence of the grains in 

the flow. In this work it will be referred to as      .  

 

2.5 Investigations on Emergent Bank Vegetation. 

Emergent bank vegetation is that vegetation that is normally found along the banks of a river. 

Over time these vegetation strips have been found to contribute to the total composite 

resistance to flow in any river they are found. James and Mokoa (2006) conducted 

experiments with longitudinal strips of artificial vegetation in a 12.3m long, 1.0m wide, 

plaster-lined channel on a slope of 0.001. They represented the vegetation stems by 5mm 

diameter rods mounted in 1.0m by 0.125m frames in a staggered arrangement with centre 

spacing of 25mm in both directions.(longitudinal and transverse).Also arranging the frames 

in longitudinal strips with seven different widths and locations, each covering 50% of the 

channel area. Patterns producing realistic width to depth ratios (W/D) greater than 2 were 

selected and analysed. “The value of   for the flume surface was found from a test with no 

stems to be 0.0102 and a value of 0.0432 was found for the stem-water interface through 

application of a side wall correction procedure using discharges determined from integrated 

velocity measurements across the clear sections. Each strip pattern was tested with four or 

five different discharges” (James and Mokoa, 2006). 
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Hirschowitz and James (2009), used the Darcy-Weisbach friction factor rather than Manning 

  with    1 to establish the friction factor for the vegetation-water interface and 

recommended Kaiser’s (1984), equation 

              (      
    

 

      
 ) 2.34 

Where       the depth-averaged velocity in the channel as unaffected by vegetation, 

      the  depth-averaged velocity within the vegetated zone,     the flow depth and 

     a constant to be equal to zero (Hirschowitz and James, 2009) for W/D greater than 

about 5 and between 0.06 and 0.1 for narrow channels. 

Hirschowitz and James (2009) suggested a formula for calculating      

      √
 

  
√     2.35 

In which    the channel slope,    is the plant drag coefficient, and  

   concentration length (i.e. the ratio of projected plant area to water volume), which for the 

experiments described here may be calculated as: 

  
      

 

  
  2.36 

    Longitudinal stem spacing  

   Number of stems 

    the stem diameter. 

Finally Hirschowitz and James (2009) proposed a formula for the total friction in the channel 

with vegetation which is similar to that of Pavloski (1931). 

   
         

     
 2.37 

where    bed resistance value of the channel.    width of the channel.    depth of flow 

in the channel.    total Darcy-Weisbach friction factor in the channel. Equation 2.37 is used 

when the vegetation is arranged on the two sides of the channel length  
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According to Hirschowitz and James (2009) when the vegetation is on one side of the 

channel length equation 2.37 will be modified by replacing     with          to become  

   
                

     
 2.38 

where        the resistance coefficient of the solid boundary. 

 

2.6 Effects of bank irregularities to total resistance 

The flow resistance and thus water levels in channels are influenced by both the roughness of 

the bed and the roughness of the banks. For relatively small flow depths, the roughness of the 

banks is of secondary importance. This is generally the case for wide rivers at low flows 

(Meile et al. 2011). 

According to the concept of Morris (1955) and Jiménez (2004), in principle, three different 

flow types in the large-scale depressions at the banks can be distinguished: the reattachment 

flow type, the normal recirculating flow type, and the square-grooved flow type. 

The aspect ratio of the large-scale depression 
  

  
 is an important parameter in order to classify 

the flow into these three. The smaller the 
  

  
 is, the more easily the flow attaches to the 

sidewall of the cavity. When approaching 
  

  
  1, a circular gyre is revealed inside the cavity. 

If 
  

  
  0.1, the low-discharge flow does not reattach, but an elongated primary gyre and a 

very small secondary gyre can be observed. The increase of the discharge results in an 

increase of the rotating velocity of the gyre (Meile et al. 2011). For cavity aspect ratios 

  

  
 between 0.15 and 0.6, the observations showed a recirculation of the flow with a primary 

and secondary gyre (fig.2.42b).Their smallest value of 
  

  
 that has been tested is 0.05. In this 

case, the flow clearly reattaches to the cavity sidewall for all investigated discharges 

(Fig.2.42a).Their highest tested value 
 

  
  0:8. In this case, a single and almost circular gyre 

is located in the cavity (Fig.2.42c). In all cases, the secondary gyre is rotating with a much 

smaller velocity than the primary gyre, as stated by Uijttewaal et al. (2001); Uijttewaal 

(2005); Weitbrecht (2004). 
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Fig.2.41. (a) Plan view of the test flume with (b) the definition of the parameters of the macro 

rough configurations  ,   , and   (Meile et al. 2011). 

 

Fig.2.42. Observed basic flow types as a function of the aspect ratio of the large-scale 

depressions: (a) reattachment flow type; (b) normal recirculating flow type; and (c) square-

grooved flow type; grey zones indicate the range of performed experiments (Meile et al. 

2011). 

 

2.6.1 Semi-empirical Drag-Coefficient Model 

Meile et al. (2011) suggested a formula  

                 . 2.39 

which is analogous to equation 2.16 by Morris and Wigget (1972) where 

      resistance due to micro-roughness of the sidewalls of the elements causing the 

irregularities,        the resistance due to the bed. 
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The power-law optimization suggested by Meile et al. (2011) is a formula for calculating or 

predicting the friction factor due to bank irregularities alone and can be expressed as   

 

   
  

  

  

       2.40 

Where  
  

  
  the slope of the water surface.    Hydraulic radius,     Velocity of flow  

    total friction factor for bed with irregularities. 

Furthermore, Meile et al. (2011) arrived at a general formula for micro-roughness friction 

coefficient (   ) for a channel  

       
     

 

         
 2.41 

They ascertained by experiment that     0.475 but for this experiment    is observed to be 

0.5 

With      min (  , 
  

 
 ) 2.42 

Where       minimum of the geometric cavity depth and the effective cavity depth 

considering a certain expansion of the flow       inside of the cavity (fig.2.41) 

  (
    

  
   ) (

  

  
) 2.43 

    4.5 and       150000. 

 

Basically so many other publications related the determination of total roughness coefficients 

exist and were reviewed but three basic literatures of which will be revisited later in chapter 

five are those of James (2012), Meile et al. (2011) and Hirschowitz and James (2009).  

 

 


