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ABSTRACT 

 

This is the third phase of a project to identify, confirm, and operationalise biomarkers 

for crystalline silica dust exposure that could be used for surveillance of dust exposure 

levels in South African mines. The first phase of the project involved a comprehensive 

review of the relevant literature [Gulumian et al., 2006] from which ten potential 

biomarkers of  effect were identified as being worthy of further investigation. The 

second phase of the project examined the ten identified biomarkers in silica dust-

exposed and unexposed black male subjects [Murray et al., 2006]. Two of the ten short 

listed biomarkers, namely erythrocyte glutathione peroxidase (GPx) and serum Clara 

cell protein 16 (CC16), were found to have significantly reduced levels in the silica 

dust-exposed versus unexposed subjects. In addition, the biomarkers were found to be 

unaffected by HIV sero-status, smoking, age and the presence of silicosis. As a result, 

this third phase of the project aimed to confirm the levels of and further analyze GPx 

and CC16 in miners exposed to crystalline silica dust.  

 

This third phase involved the measurement of the levels of erythrocyte GPx and serum 

CC16 in 80 adult male gold miners upon their return from leave and then again two to 

six months after they had returned to work (involving exposure to crystalline silica). 

Before the field work was conducted, however, the optimal operational parameters for 

the biomarkers (namely storage temperature, delay in time between blood collection and 

separation, laboratory temperature and storage duration) were established. The results of 

these optimization experiments were used to develop Standard Operating Procedures 

(SOPs) for biomarker specimen handling and storage under field conditions, and for 

laboratory assays.  
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In this phase, the findings of the second phase were confirmed in that the levels of GPx 

and CC16 were lowered in miners exposed to crystalline silica dust and were unaffected 

by age, race and cigarette smoking. In addition, while CC16 was unaffected by the 

presence of radiological silicosis, GPx may have been affected. Finally, the decrease in 

the levels of GPx activity and CC16 concentration observed in the study were 

unaffected by the level of silica dust exposure (high or low) as determined by job 

category or by the duration of crystalline silica exposure.  

 

Regarding the levels of GPx activity, the results suggested that GPx levels decrease 

after two to six months of chronic exposure to crystalline silica dust and remain 

decreased (throughout the working week and over a weekend) and then increase or even 

recover to normal levels during a period of leave. It was therefore concluded that GPx 

activity levels rise and fall, in response to silica dust exposure, gradually and over 

periods of some time, possibly months.  

 

The CC16 results were, however, less promising. After two to six months of chronic 

exposure to crystalline silica dust there was a significant change in CC16 on a 

Wednesday afternoon following an 8-hour shift and during the duration of a shift. In 

addition, there is the possibility that the observed changes were due to a time-dependent 

diurnal variation in the CC16 levels.   

 

It was concluded that the results of the current phase warrant further research into the 

use of erythrocyte GPx and serum CC16 as biomarkers of early effect from crystalline 

silica exposure. 
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Chapter 1: 

INTRODUCTION 

 

Exposure to respirable crystalline silica can result in a variety of diseases the most 

common of which is silicosis [NIOSH, 2002], a potentially fatal, irreversible, progressive 

and untreatable fibrotic lung disease [Greenberg et al., 2007].  

 

In South Africa, gold miners constitute the largest group of workers exposed to crystalline 

silica containing-dust [Murray et al., 2006] and despite control measures in place to limit 

the inhalation of this dust by gold miners, the prevalence of silicosis is still high [Girdler-

Brown et al., 2008]. Although there are currently no methods available to assess the early 

health outcomes of dust control measures, the field of biomarkers may provide the 

solution. 

 

If scientifically acceptable biomarkers were found that allowed the changes that occur 

between silica exposure and silicosis to be measured, they could be used to detect early 

adverse effects of silica exposure and to evaluate dust-control methods thereby allowing 

intervention schemes to be implemented quickly [Gulumian et al., 2006].  

 

The dissertation starts with a background to the project and a review of the relevant 

literature. Following a description of the methodology used (including statistical methods), 

the relevant results are presented. Finally, the results are discussed and conclusions are 

drawn.  
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1.1 Background to the project 

 

This is the third phase of a project to identify, confirm, and operationalise biomarkers for 

crystalline silica dust exposure that could be used for surveillance of dust exposure levels 

in South African mines.  

 

The project was solicited by the South African Mines Health and Safety Council (MHSC) 

in an attempt to identify biomarkers that could help to assess the success of respirable 

crystalline silica dust exposure control measures in South African gold mines. The project 

was not intended to identify a diagnostic test(s) for the diagnosis of silicosis disease in 

individuals as biomarkers would probably be too non-specific for such a definitive 

diagnostic purpose. In addition, due in part to high variability in some biomarker levels, 

individual test results cannot be used to indicate (in an absolute sense) an individual 

volunteer’s dust exposure levels. As a result, phases two and three of the project were both 

epidemiological studies focusing on population-based average readings. 

 

The first phase of the project was a comprehensive review of the relevant literature on 

prospective silicosis biomarkers [Gulumian et al., 2006]. From the literature, ten potential 

biomarkers were identified that were considered worthy of further investigation in the 

project. The ten biomarkers identified were: reactive oxygen species (ROS) measurement 

by chemiluminescence (neutrophil release), erythrocyte glutathione (GSH), erythrocyte 

glutathione-S-transferase (GST), erythrocyte glutathione peroxidase (GPx), n-8 

isoprostane, tumour necrosis factor alpha (TNF-α), platelet-derived growth factor (PDGF), 

interleukin-8 (IL-8), Clara cell protein 16 (CC16), and total antioxidant status as a trolox 

equivalent (TAS). None of these biomarkers were biomarkers of susceptibility since such 
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biomarkers would not indicate excess exposure to silica dust but rather an individual’s 

predisposition to silicosis. 

 

 The second phase of the project evaluated the ten biomarkers, identified in phase one, to 

determine the influence (if any) of Human Immunodeficiency Virus (HIV) infection, anti 

retroviral (ARV) treatment, smoking, age and the ability to discriminate between silica 

exposed and unexposed individuals. The ten biomarker levels were measured in 60 African 

male underground gold miners (20 HIV sero-positive and 40 HIV sero-negative) and 60 

African males who had never been exposed to silica dust (28 HIV sero-positive and 32 

HIV sero-negative). Two of the ten biomarkers investigated, namely erythrocyte GPx and 

serum CC16, were found to be significantly decreased in the silica dust-exposed subjects. 

In addition, the two biomarkers were unaffected by HIV infection, ARV treatment, 

smoking, age and the presence of radiological silicosis. [Murray et al., 2006].   

 

This third phase of the project aimed to confirm the levels of and further analyze serum 

CC16 and erythrocyte GPx in miners exposed to low and high levels of crystalline silica 

dust.  
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1.2 Literature review 

 

1.2.1. Crystalline silica exposure 

 

Exposure to respirable crystalline silica occurs in a number of industries and, because of its 

toxicity, can result in a variety of diseases.  

 

1.2.1.1 Definition of crystalline silica  

 

Silicon is the second most common element in the earth’s crust, making up approximately 

28% [Mandel and Mandel, 1996]. Due to their abundance, silicon and oxygen atoms 

commonly combine to form a fundamental tetrahedral unit (SiO4) which consists of a 

central silicon ion with oxygen attached at the four ‘corners’ of the tetrahedron. These 

tetrahedral units are joined by common oxygen atoms to form a molecule, with an average 

stoichiometric formula of SiO2, known as silicon dioxide or silica. [Parkes, 1974].  

 

Silica can exist in two forms, namely non-crystalline (amorphous) silica and crystalline 

silica (figure 1.2.1.1). In crystalline silica, the atoms and molecules are arranged in a three-

dimensional repeating pattern. In amorphous silica, the atoms and molecules are randomly 

arranged with no pattern [USBM, 1992].  
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Figure 1.2.1.1: The different structural forms of silica: A) the silicon-oxygen tetrahedron, B) the 

repeating pattern of crystalline silica, and C) the random pattern of amorphous silica.  

Silicon (ο) and oxygen (•). Adapted from [USBM, 1992]. 

 

Crystalline silica exists as at least eight different polymorphs (same chemical composition 

but different structure), the most common of which are quartz, cristobalite and tridymite 

[Guthrie and Heaney, 1995]. Quartz can exist as one of two forms, alpha (α) and beta (β), 

depending on the conditions. Under ambient conditions, quartz exists as α-quartz but at 

high temperatures (above 573
o
C) and pressures it transforms into β-quartz. [USBM, 1992].  

 

Alpha quartz (the most abundant form of crystalline silica) is the second most common 

mineral in the world. It is the major component of sand and of dust in the air and is also 

abundant in igneous, sedimentary and metamorphic rock. [USBM, 1992].  

 

1.2.1.2 Industries involving crystalline silica exposure 

 

Exposure to crystalline silica occurs in a wide variety of industries, with the most common 

exposures occurring in mining and mining-related occupations [Rees and Murray, 2007]. 

 

In gold mining, in particular, a significant release of crystalline silica is expected since 

quartz forms veins in sedimentary rock and it is these veins that form the matrix for 

B C A 
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precious metals such as gold [DOL, 2005]. During the mining process, a number of 

activities (such as drilling, hewing, shovelling, crushing, tunnelling and the use of 

explosives) can generate a large of amount of crystalline silica containing-dust [Parkes, 

1974].  

 

In South African gold mines, the mined rock usually contains 60-90% of quartz while the 

respirable dust generated contains approximately 30% free quartz  [Hnizdo and Sluis-

Cremer, 1991].  

 

In addition to the mining industry, exposure to crystalline silica has been shown to occur in 

the following industries: glass, ceramic and fine china manufacturing; the construction 

industry; heavy industry such as the oil and gas industry; agriculture; and in high-

technology applications such as the field of laser optics [USBM, 1992].  

 

1.2.1.3 Factors affecting crystalline silica toxicity  

 

In order to identify potential biomarkers of crystalline silica exposure, the factors 

responsible for its toxicity need to be understood. A number of factors affect the biological 

toxicity of silica polymorphs including: origin, structure, composition, crystallinity, 

solubility, particle size, interactions with other chemicals/minerals, and most importantly 

the surface properties. [Gulumian, 2007] 

 

Origin: 

The matrix in which the silica particle is found (for example in coal mine dust) can affect 

the toxicity of the particle [Donaldson et al., 2001]. This is because silica commonly bonds 
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with elements such as sodium, potassium, calcium, magnesium, iron and aluminium 

(forming compounds called silicates) [USBM, 1992] and it is these other contaminating 

elements that may play an important role in the toxicity of crystalline silica [Donaldson 

and Borm, 1998]. 

 

Size: 

The size of a particle is an important factor in determining its ability to penetrate deep into 

the lung. When air is inhaled through the nose, the majority of particles greater than 10 µm 

in diameter are trapped in the nose and pharynx [Parkes, 1974]. Respirable free crystalline 

silica particles (defined as particles less than 10µm in diameter) are most likely to have a 

toxic effect, with particles 1 to 3 µm in diameter having greatest capability to deposit in the 

alveoli [Ziskind et al., 1976]. 

 

Crystallinity:  

Only crystalline silica has been found to be toxic [Fubini and Fenoglio, 2007]. 

 

Solubility in biological fluids:  

The amount of time a particle stays in the body depends on the effectiveness of the 

clearance mechanisms and solubility. The longer the particle remains unaltered in the 

biological compartment (where it can cause stress to cells and tissue), the greater the extent 

of any damage caused. [Fubini and Fenoglio, 2007]. 
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Surface reactivity: 

Because it is the surface of the silica particle that interacts with biological fluids and 

molecules, the properties of the particle surface ultimately determine the particles’ toxicity 

[Guthrie and Heaney, 1995].   

 

The surface properties of a particle are determined by their history (such as the method by 

which the dust was generated), weathering, processing conditions and the presence of 

contaminants [Fubini and Fenoglio, 2007].  

 

For example, when crystalline silica is cut, ground, or milled (as occurs during occupations 

such as sandblasting, rock drilling, tunnelling, and silica milling) the crystal is fractured. 

This results in cleavage planes which have surface properties (such as the presence of 

reactive oxygen species) that make them more reactive for lung tissue and therefore more 

likely to cause rapid development of pulmonary disease [Castranova et al., 1996a].  When 

silica crystals are freshly fractured, the silicon-oxygen bond is cleaved via either a 

homolytic pathway (which results in the reactive surface radicals Si
•
 and SiO

•
) or a 

heterolytic pathway (which results in the surface charges Si
+
 and SiO

-
) as illustrated in 

figure 1.2.1.3. These reactive species tend to either recombine or to react with atmospheric 

components, yielding reactive oxygen species (ROS) at the surface and in the subsurface 

layers of the particle [Fubini et al., 1995].  In aqueous conditions (such as the lung lining 

fluid or tissue fluid) the Si
•
 and SiO

•
 radicals can give rise to highly reactive hydroxyl 

radicals (OH
•
) [Castranova et al., 1996a] and the Si

+
 and SiO

-
 charges can interact with 

membranes [Fubini et al., 1995]. It has been shown that aqueous suspensions of freshly 

fractured quartz particles can produce hydroxyl radical (OH
•
), hydrogen peroxide (H2O2), 

superoxide anion radical (O2
••••-

), and singlet oxygen(O2) [Shi et al., 1995].  
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Figure 1.2.1.3: The pathways by which reactive surface radicals (Si
•••• and SiO

••••) and surface 
charges (Si

+
 and SiO

-
) are produced by the cleavage of the silicon-oxygen bond. Adapted from 

[Fubini et al., 1995]. 

 

 

In addition to its ability to produce free radicals, the surface properties of a particle that are 

most likely to influence its toxicity are its ability to adsorb endogenous molecules, and its 

degree of hydrophilicity and hydrophobicity [Fubini and Fenoglio, 2007]. 

 

Age:  

A number of studies have shown that freshly fractured silica is more cytotoxic and 

inflammatory than aged silica of similar size and composition [Castranova et al., 1996b, 

Vallyathan et al., 1995, Shoemaker et al., 1995, Vallyathan et al., 1988, Vallyathan et al., 

1991]. The higher toxicity of freshly fractured silica has been attributed to the ability of the 

newly created surfaces to generate surface radicals, which has been shown to decrease with 

age [Castranova et al., 1996a]. 

 

 

Homolytic pathway: 

 
                                                                                                            •••• 

                      O                                                                                O 

              ••••                       ••••                                                                                                        •••• 
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Heterolytic pathway: 
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1.2.1.4 The pathway of inhaled crystalline silica  

 

 

Figure 1.2.1.4: The human respiratory system  [WAHSA/NIOH, 2006]. 

 

Airborne crystalline silica particles enter the body through the mouth or nose during 

inhalation of air (in which they are suspended). Once inhaled, the silica particles first travel 

through the upper airways from the trachea through the bronchi to the bronchioles (the 

small airways). At this stage, the majority of the inhaled silica particles are either exhaled 

or deposited in the upper airways where they are then removed by the mucociliary 

‘escalator’ (which involves the movement of ciliated epithelium [Beckett, 2000]). If the 

particles are not removed they can travel through the lower airways from the terminal 

bronchioles into the respiratory bronchioles which end in alveolar sacs consisting of 

clusters of alveoli.  It is in these respiratory bronchioles and alveoli areas that small silica 
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particles (less than 10 µm in aerodynamic diameter) can be deposited. [WAHSA/NIOH, 

2006].  

 

The depth to which the particles travel in the lung is determined by their physical 

characteristics (size, density, shape and aerodynamic properties) and by the volume of each 

inhalation. Because the majority of particles are removed from the lung, their concentration 

in the inhaled air needs to be high in order to allow some particles to be deposited in the 

lungs. [Parkes, 1974]. 

 

1.2.1.5 Diseases associated with crystalline silica exposure 

 

The most common disease caused by crystalline silica exposure is silicosis [NIOSH, 2002]. 

However, exposure to crystalline silica can lead to a number of other diseases such as 

emphysema, immunologic reactions, interstitial fibrosis, industrial bronchitis, small airway 

disease, vascular diseases [Ding et al., 2002] and lung cancer [IARC, 1997]. Exposure to 

crystalline silica has also been implicated in the development of a number of autoimmune 

diseases, including systemic sclerosis, rheumatoid arthritis, systemic lupus erythematosis, 

and chronic renal disease [Rimal et al., 2005]. In addition, respirable crystalline silica 

exposure (even in the absence of radiological silicosis) has been found to increase the risk 

of pulmonary tuberculosis [te Water Naude et al., 2006, Hnizdo and Murray, 1998].    

 

Lung cancer: 

The relationship between silica exposure, silicosis and lung cancer has been hypothesized, 

investigated and debated for many years. In 1997, after a review of research published until 

then, the International Agency for Research on Cancer (IARC) concluded that there was 
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sufficient evidence in humans for the carcinogenicity of inhaled crystalline silica (in the 

form of quartz) from occupational sources. As a result, crystalline silica (quartz) was 

classified as a Group 1 carcinogen. However their final evaluation noted that 

carcinogenicity was not found in all the industries studied and they therefore speculated 

that “Carcinogenicity may be dependent on inherent characteristics of the crystalline silica 

or on external factors affecting its biological activity or distribution of its polymorphs”. 

[IARC, 1997]. It is generally thought that if crystalline silica is a human lung carcinogen, it 

is a relatively weak one [Wong, 2002]. 

 

Silicosis:  

Silicosis is a potentially fatal, irreversible, progressive and untreatable fibrotic lung disease 

caused by the inhalation and deposition of respirable crystalline silica [Greenberg et al., 

2007].  

 

Pulmonary tuberculosis (PTB) is a common complication of silicosis. Although PTB may 

occur at any stage in the development of silicosis, it is more likely to occur in older 

workers with severe grades of silicosis [Cowie, 1994]. 

 

Pulmonary tuberculosis is epidemic on South African gold mines with the incidence of 

PTB among South African gold miners much higher than that of the general population. A 

study carried out by  te Water Naude and colleagues [2006] examined 520 gold miners 

over 37 years of age and found a PTB prevalence of 35% even though the average 

concentration of respirable quartz was 0.053 mg/m
3
 (below the current occupational 

exposure limit, OEL, of 0.1 mg/m
3
). Even more worrying is that this study and one by 

Hnizdo and Murray [1998] showed that even in the absence of silicosis, exposure to silica 
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dust increases the risk of  developing tuberculosis and that this risk persists long after 

exposure ends. Hnizdo and Murray also found that the risk of developing PTB increased 

with the presence of radiologically diagnosed silicosis, with increasing cumulative 

exposure to crystalline silica, and with tobacco pack years. 

 

Silicosis [Hnizdo and Murray, 1998, Cowie, 1994] and HIV [Corbett et al., 1999, Corbett 

et al., 2000] are strong risk factors for tuberculosis. The study by Corbett [2000] showed 

that, in South African gold miners, the effects of silicosis and HIV infection on the risk for 

PTB are multiplicative rather than additive. It found that silicosis increased the PTB risk 

threefold while HIV increased the PTB risk fivefold and the combined effects of silicosis 

and HIV infection increased the PTB risk 15 times. 

 

1.2.1.6 A history of silicosis 

 

It is thought that silicosis has afflicted miners for centuries, probably since mining 

activities started between 4000 and 3000 B.C. in China, India and Egypt. Around 400 B.C., 

Hippocrates described lung disease in miners when he described the metal digger as a man 

who breathes with difficulty. Pliny (A.D. 23-79) suggested that miners wear protective 

masks to prevent the inhalation of “fatal dust” in the mines and Galen (A.D. 131-201) was 

the first to describe the symptoms of silicosis [Harley and Vallyathan, 1996]. In 1866, the 

German pathologist Fredrich von Zenker used the term pneumokoniosis (“dust lung”) to 

describe dust-related lung diseases such as silicosis and in 1870 the term “silicosis” was 

first used by Visconti [Greaves, 2000]. Since then, pneumoconiosis has been defined as 

“The presence of inhaled dust in the lungs and their non-neoplastic tissue reaction to it” 
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[Parkes, 1974] and it has become widely accepted that silicosis is caused by the inhalation 

and deposition of crystalline silica. 

  

In South Africa, gold mining started in the Witwatersrand in 1886 [Gold rush, 2009]. Since 

then, there have been four main periods in the history of silicosis on the Witwatersrand 

mines: 1) the initial period of gold mining on the rand, from 1886 to 1899, was a period of 

ignorance as to the dangers of silicosis, 2) the dangers of silicosis and the nuisance of 

prevention measures were first realised in the period from 1902 to 1910, 3) a legal system 

of compensation for silicosis and preventative measures were introduced in the period from 

1911 to 1916, and 4) full systematised measures of prevention, detection and compensation 

were implemented from 1916 to the current day [Donsky, 1993].  

 

1.2.1.7 Current prevalence of silicosis in South African mine workers 

 

Despite silicosis prevention measures currently employed in South African mines, the 

prevalence of silicosis is high among currently employed, retired and deceased miners. 

This has been demonstrated by a number of studies, both radiography-based and autopsy-

based.  

 

 A cross-sectional study conducted with living black ex-miners from Botswana showed an 

overall prevalence of pneumoconiosis of  between 26.6% and 31.0% [Steen et al., 1997], 

while a similar study in the Eastern Cape showed an overall prevalence of between 22% 

and 36% [Trapido et al., 1998].  In both studies, the relatively insensitive method of chest 

radiographs were used to diagnose the pneumoconiosis and therefore the disease rates may 

have been underestimated. A study of active black South African gold miners (over 37 
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years of age) found a silicosis prevalence of between 18.3% and 19.9% [Churchyard et al., 

2004]. However, due to the healthy worker effect the disease rates may also have been 

underestimated. Since silicosis prevalence rates can also be estimated by autopsy based 

studies, a number of studies have been carried out using the data from the pathology 

automation system (PATHAUT) database. The PATHAUT database contains the clinical 

files of and the pathological findings of autopsies carried out on deceased South African 

miners since 1975. It is the only comprehensive surveillance database on occupational 

respiratory diseases available to the South African mining industry. The 2007 annual 

PATHAUT surveillance report showed that the overall prevalence of silicosis in deceased 

gold miners increased from 19.1% in 2000 to 31.6% in 2006. [Ndlovu et al., 2007]. 

 

These high silicosis prevalence rates indicate that: 1) the dust control measures in place are 

not adequate, 2) the levels of respirable crystalline silica are too high, and 3) the 

surveillance of workers’ health is not effectively organised [Fedotov, 2006]. 

 

It is therefore important that more effective control measures for crystalline silica dust 

exposure, are implemented to prevent the significant silicosis problem facing South 

African gold miners.  

 

1.2.1.8 The development of silicosis 

 

A number of factors influence the development of silicosis. The main determinants of 

whether an individual develops silicosis are the silica dose in the ambient air (including the 

percentage of free crystalline silica in the dust particles), the duration of exposure, and the 
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characteristics of the silica particle [Banks, 1996]. Host factors, such as genetic variation, 

also influence an individual’s susceptibility [Rees and Murray, 2007].  

 

1.2.1.9 Mechanisms in the pathogenesis of silicosis  

 

Once a silica particle has been deposited in the alveolar spaces of the lungs, it may 

contribute to the pathogenesis of silicosis in a number of ways, including direct 

cytotoxicity and stimulation of alveolar macrophages.  

 

Direct cytotoxicity: 

As described in section 1.2.1.3, ROS can be generated on the surface of silica particles. 

These ROS are strongly implicated in the mechanisms of silica toxicity in that they can 

cause lipid peroxidation (leading to cell membrane damage) and cell damage [Fubini, 

1998]. In addition, if ROS are produced in excess, they can overwhelm the lungs’ 

antioxidant defences and lead to oxidative stress and inflammation, which would then 

result in scarring, fibrosis and diminished gas exchange [Castranova, 1996].  

 

Stimulation of alveolar macrophages: 

The alveolar walls contain various cell types (including type I pneumocytes, type II 

pneumocytes, alveolar macrophages (AM), endothelial cells, epithelial cells, fibroblasts, 

leucocytes and lymphocytes). These cells are responsible for a variety of functions in the 

lung, such as gas exchange, disposal of inhaled foreign bodies, and immunological 

activities. [Parkes, 1974].  
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Alveolar macrophages are the lungs’ most important means of defence against inhaled 

pollutants and they function to engulf and eliminate foreign bodies (such as silica particles) 

[Balduzzi et al., 2004]. They do so by invagination of their boundary membrane to form a 

vesicle called the phagosome (the process is referred to as phagocytosis) [Parkes, 1974].  

 

Once a silica particle has been deposited in the alveolar spaces of the lungs, the immune 

system is activated and AMs are recruited to eliminate the particles [Fubini and Fenoglio, 

2007]. Activation of AMs leads to the production and release of ROS [Rahman and 

MacNee, 2000], and inflammatory cytokines; such as tumor necrosis factor (TNF-α), 

interleukin-1 (IL-1), interleukin-6 (IL-6), and platelet-derived growth factor (PDGF) 

[Green and Vallyathan, 1996]. The increased production of ROS is referred to as the 

“respiratory burst” as it results in an increase in oxygen consumption [Ding et al., 2002]. 

 

Because the crystalline silica particles are cytotoxic they eventually cause AMs to die and 

release the particle as well as additional ROS and cytokines into the surroundings [Fubini 

and Fenoglio, 2007]. This leads to the activation of redox-sensitive transcription factors, 

such as nuclear factor-kappa Β (NF-κΒ) and activator protein-1 (AP-1), which regulate the 

antioxidant genes and the genes for pro-inflammatory cytokines [Rahman et al., 2006]. 

This results in inflammation.  

 

Although inflammation is usually a protective response to cellular or tissue injury (which 

aims to promote repair), if uncontrolled it results in excessive cell or tissue damage and 

eventually chronic inflammation and the destruction of normal tissue [Rahman and 

MacNee, 2000] .  
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Additionally, the inflammatory cytokines released by the AMs act as chemoattractants that 

help recruit new immune-defence cells (AMs and polymorphonucleated, PMN, cells). A 

continuous cycle of recruitment and cell death is therefore established and this results in 

sustained inflammation (which lasts as long as the particle remains in the lungs) and 

oxidative stress, which can eventually lead to fibrosis. [Fubini and Fenoglio, 2007].  The 

severe inflammation that follows silica exposure therefore appears to be the initiating step 

in the development of silicosis [Rimal et al., 2005]. 

 

1.2.1.10 Pathological features of silicosis 

 

There are four pathologically distinct forms of silicosis: chronic silicosis, progressive 

massive fibrosis, accelerated silicosis, and alveolar lipoproteinosis [Rees and Murray, 

2007]. 

 

1. Chronic (nodular) silicosis  

This is the most common form of silicosis. It can take 10 to 30 years (a working lifetime) 

of low intensity exposure to crystalline silica before abnormalities can be seen on a chest 

radiograph. Thereafter, the disease may progress slowly over a long period of time [Green 

and Vallyathan, 1996], even after exposure to silica has ceased [Hnizdo and Sluis-Cremer, 

1993, Hnizdo and Murray, 1998].   

 

Chronic silicosis is characterised by the presence of small rounded opacities (less than       

1 cm in diameter) known as silicotic nodules. Individuals with chronic silicosis don’t 

usually present with chest symptoms, however, some have reported a chronic productive 
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cough [Banks, 1996]. This type of silicosis is common in occupations such as quarrying, 

stone cutting and mining [Vallyathan and Shi, 1997]. 

 

2. Progressive massive fibrosis (PMF) 

PMF develops when neighbouring smaller silicotic nodules coalesce and collapse into one 

another to form an opacity (greater than 1 cm in diameter) [Green and Vallyathan, 1996]. 

 

Steen and colleagues [1997] found that the latency period between crystalline silica 

exposure and the manifestation of radiological abnormalities was at least 15 years for 

PMF. 

 

3. Accelerated silicosis 

Although this form of silicosis is radiologically identical to chronic silicosis, the time from 

initial exposure to crystalline silica to the development of silicotic nodules (latency period) 

is much shorter [Banks, 1996]. It usually develops after 1 to 14 years of high to moderate 

exposure to crystalline silica  [Green and Vallyathan, 1996].  

 

4.  Alveolar lipoproteinosis  

This is the most aggressive form of silicosis as it progresses rapidly (it may develop after 

only six months of exposure to crystalline silica) and has a high mortality rate [Green and 

Vallyathan, 1996]. It results from exposure to extremely high concentrations of respirable 

crystalline silica. The individual progresses to disabling chest symptoms and extreme 

respiratory impairment, which ultimately leads to respiratory failure and death [Banks, 

1996]. 
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This type of silicosis is common in occupations such as silica flour mill operations, surface 

mine drilling, tunnelling, sandblasting, and pottery manufacturing [Vallyathan and Shi, 

1997]. 

 

The silicotic nodule  

Chronic silicosis is characterised by the silicotic nodule, which is morphologically distinct 

from lesions formed by exposure to other inorganic particles. Macroscopically, the nodules 

appear as rounded, firm to hard regions of fibrosis that are easily distinguishable from the 

surrounding lung parenchyma. [Green and Vallyathan, 1996].  

 

1.2.1.11 Detection of silicosis 

 

The detection of silicosis in dust exposed workers is based on the presence of silicotic 

nodules on a chest radiograph [Hnizdo et al., 1993]. 

 

       

Figure 1.2.1.11: Chest radiographs depicting A) normal lung tissue, B) small parenchymal 

opacities (found in nodular silicosis), and C) large parenchymal opacities (found in PMF). 
[CDC, http://www.cdc.gov/niosh/topics/chestradiography/ilo.html]. 
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In order for a diagnosis of silicosis to be made, three conditions need to be met. Firstly, the 

individual must provide a history of silica exposure which would be sufficient to cause 

silicosis. Secondly, the chest radiograph must show opacities which are consistent with 

silicosis. Thirdly, no underlying illnesses which could mimic silicosis should be present. 

The diagnosis of silicosis does not require respiratory symptoms or lung function 

impairment (even though they might be present). [Banks, 1996].  

 

1.2.1.12 Classification of silicosis 

 

The International Labour Organisation (ILO) has standardized the radiographic 

classification of pneumoconioses by providing a set of standardized radiographs and 

guidelines for their use. During the classification process a number of factors are 

described, such as the technical quality of the radiograph; the size, shape (round or 

irregular), affected zones of the lungs and profusion of parenchymal abnormalities; and the 

characteristics of pleural abnormalities.  

 

Parenchymal abnormalities include both small opacities (< 1 cm in diameter), such as the 

simple silicotic nodule, and large opacities (> 1 cm in diameter), such as the nodules 

characteristic of complicated silicosis. For small opacities, the term profusion is used to 

describe the concentration of small opacities in the affected zones of the lungs. There are 

four main categories and twelve subcategories of profusion, ranging from 0/0 (no small 

opacities present) to 3/+ (a high concentration of small opacities present), as illustrated in 

figure 1.2.1.12 below.  The size of opacities is also described. [ILO, 2000].  
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Figure 1.2.1.12: Guideline for the classification of the profusion of small opacities on chest 
radiographs. [ILO, 2000] 

 

Silicosis can also be classified by means of a macroscopic and microscopic examination of 

the lung parenchyma at autopsy. The degree of silicosis is based on the number of palpable 

silicotic nodules as follows: none (0), insignificant (< 5), slight (5-9), moderate (10-29), 

and marked (≥ 30). Microscopic analysis of the histological slides is used to confirm the 

presence of silicotic nodules. [Hnizdo et al., 1994]. 

 

1.2.1.13 Limitations of silicosis detection  

 

Although standard chest radiography is inexpensive, widely available and involves low 

amounts of radiation; it also has some significant limitations: 

1) It is widely known that routine standard chest radiographs are relatively insensitive 

for diagnosing interstitial lung disease when compared to direct microscopic 

analysis of the tissue [Checkoway and Franzblau, 2000, Hnizdo and Sluis-Cremer, 

1993, Hnizdo et al., 1993]. As a result, misclassification of silicosis may occur. 

2) Large inter-reader and intra-reader variability can arise in the assessment of 

abnormalities. A number of factors that can potentially contribute to this variability 

 

Increasing profusion of small opacities    

 
 

  Categories 

 

Subcategories 

          0             1              2                         3 

       0/0   0/1     1/0   1/1   1/2     2/1   2/2   2/3     3/2   3/3   3/+ 
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are radiographic technique and quality, age, obesity, cigarette smoking, gender, and 

differences in readers’ tendencies [Meyer et al., 1997, Dick et al., 1992].  

3) Errors in the interpretation of chest radiographs can also occur due to rotation of the 

subject, exhalation while the radiograph is taken, and the presence of soft tissue 

shadows [Parkes, 1974]. 

 

A further limitation of the radiological diagnosis of silicosis is the fact that silicotic 

nodules are late and irreversible manifestations of the disease. As a result, the annual chest 

radiograph used to screen miners for silicosis is only a late indicator of harmful dust 

exposure and therefore does not provide an effective way to measure and control the dust 

exposure.   

 

1.2.1.14 Treatment of silicosis 

 

At present there is no effective treatment for silicosis [Greenberg et al., 2007]. As a result, 

one can only attempt to prevent the development of silicosis by limiting exposure to 

crystalline silica.  

 

1.2.1.15 Prevention of silicosis 

 

Numerous measures can be implemented to help prevent silicosis, such as: the enforcement 

of exposure limits and safety standards, the use of engineering controls (for example the 

use of personal protection, improved ventilation, wet techniques, and process enclosure) 

and safe work practices, evaluation of the working environments to assess the effectiveness 
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of preventative measures, epidemiological evaluations, medical surveillance of workers at 

risk (for early detection of the disease), and training and health education [Fedotov, 2006]. 

 

Industrialised countries (such as the United Kingdom and the United States) have shown 

that the incidence rate of silicosis can be significantly reduced with well-organised silicosis 

prevention programmes[Fedotov, 2006]. 

 

In 1995 the Joint International Labour Organization (ILO) and World Health Organization 

(WHO) Committee on Occupational Health established the ILO/WHO Global Programme 

for the Elimination of Silicosis (GPES) by 2030. At the South African Mine Health and 

Safety Summit in 2003, the Minister of Minerals and Energy emphasised the need for 

improvements in health and safety in the South African mining industry. It was at this 

summit that the following milestones for the elimination of silicosis, in South Africa, were 

set:  

1) By 2008, 95% of all dust exposure measurements should be below the respirable 

crystalline silica Occupational Exposure Limit (OEL) of 0.1mg/m
3
. 

2) By 2013, no new cases of silicosis in previously unexposed individuals should be 

diagnosed (using current diagnostic techniques). 

In June 2004, the National Programme for the Elimination of Silicosis (NPES) in South 

Africa was launched by the Department of Labour.[Stanton et al., 2005]. In addition, the 

Mine Health and Safety Council also launched a Silicosis Elimination Programme which is 

a research-based programme aimed particularly at the mining industry [Rees, 2006].  

 

In the United States of America, the Occupational Safety and Health Administration 

(OSHA) set a permissible exposure limit (PEL) of 0.1 mg/m
3
 for an 8-hour work shift 
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[Greaves, 2000] while the National Institute for Occupational Safety and Health (NIOSH) 

set a recommended exposure limit (REL) of 0.05 mg/m
3
 for up to 10 hours per day for a 

40-hour work week [NIOSH, 2002]. In South Africa, the OEL for crystalline silica is 0.1 

mg/m
3 

[DME, 2006]. 

 

Alarmingly, evidence suggests that this current respirable crystalline silica OEL of 0.1 

mg/m
3 

may be insufficient to protect workers from developing silicosis. This was 

highlighted by Greaves [2000] who reviewed three important epidemiological studies (one 

of which was conducted in South Africa). He illustrated (with the aid of figure 1.2.1.15 

below) that after 45 years of exposure to respirable crystalline silica at the current OEL of 

0.1 mg/m
3
, the risk of developing silicosis of grade 1/1 or greater would be over 40% and 

that if the OEL were lowered to 0.05 mg/m
3
, the risk of developing silicosis would be 

about 10-20%. As observed in figure 1.2.1.15, the estimated silicosis risks presented by 

Kreiss and Zhen [1996] were almost double those found by Hnizdo and Sluis-Cremer 

[1993] and Steenland and Brown [1995] which may be explained by the fact that the latter 

studies estimated silica exposures from the average silica content of ore or dust samples 

while the former study used job title-specific silica exposure measurements which are less 

likely to result in silica exposure misclassification [Kreiss and Zhen, 1996]. 

 

The conclusion that the OEL of 0.1 mg/m
3
 is not protective against silicosis was also made 

by Churchyard [2004], Finkelstein [2000] and Murray [1996]. The no-observed-adverse-

effect-level (NOAEL) for respirable crystalline silica is currently unknown but it is clear 

that the current OEL of 0.1 mg/m
3 

is too high and that even lowering the OEL to 0.05 

mg/m
3 

would offer no adequate protection against silicosis. 
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Figure 1.2.1.15:  Comparison of silicosis risks in three studies of hard rock miners. In this 

case, silicosis was defined by the presence of small round opacities with profusion 1/1 or greater. 

The average respirable silica levels were derived from cumulative exposure data assuming 45 years 

of continuous exposure. Purple and orange dotted arrows are used to indicate the risk of developing 

silicosis (of grade ≥ 1/1) at an average silica exposure level of 0.1mg/m
3 
and

 
0.05mg/m

3
, 

respectively. Graph constructed by Greaves [2000] using data from Hnizdo and Sluis-Cremer 

[1993], Steenland and Brown [1995], and Kreiss and Zhen [1996]. 

 

 

 

1.2.1.16 Methods for the measurement of respirable dust  

 

Due to the uncertainties surrounding the effectiveness of the OEL to prevent silicosis, it is 

vital that the methods used to measure the amount of respirable crystalline silica containing 

dust are accurate. 

 

 Currently, the instrument used for the measurement of respirable dust in field operations is 

the personal gravimetric dust sampler. The sampler consists of a cyclone assembly and 

filter holder, which contains a pre-weighed millipore filter and is attached to a battery-

             Kreiss & Zhen  

             Steenland & Brown 

             Hnizdo & Sluis-Cremer 
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powered pump. As the pump draws air through the assembly the larger particles are 

discarded while the smaller particles stay on the filter. The dust can then be analyzed in a 

number of ways, including: examination under a polarizing microscope, roentgenographic 

diffraction; colorimetry; infra-red spectrophotometry and X-Ray Diffraction (XRD). 

[Ziskind et al., 1976].  

 

The use of dosimetric readings to estimate immediate exposure to harmful dust is routinely 

used by the mines, however, these readings are often unreliable. For instance, the levels 

recorded have been found to be quite variable even within groups working closely 

together. In addition, the equipment is sometimes not worn correctly or it is allowed to get 

wet (since the mining areas are often sprayed with water to decrease the levels of dust). It 

is often difficult in practice to measure the exposure over a full 8-hour shift, and this leads 

to problems when estimating the cumulative exposure levels. Also, miners may move 

around and change their activities during a shift, so compliance and interpretation become 

problematic. [Girdler-Brown et al., 2006].  

 

1.2.1.17 Compensation of silicosis afflicted individuals 

 

It is estimated that there are nearly half a million ex-mineworkers suffering from 

compensatable lung disease in southern Africa, and that there is approximately 2.8 billion 

rand worth of unpaid compensation [Marks, 2006]. The enormous problems encountered in 

the compensation of miners could also be resolved if early biomarkers could be identified 

that would prevent silicosis from occurring.  
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1.2.1.18 Biomarkers for crystalline silica exposure 

 

The high silicosis prevalence rate (despite the implemented dust control measures), the 

limitations of the use of chest radiographs for the early detection of silicosis, the lack of an 

effective treatment for silicosis, the uncertainties regarding the OEL level, the problems 

involved in the measurement of dust exposure, the potential financial issues regarding 

compensation and the association of crystalline silica exposure with other diseases, 

emphasize the need for more effective silicosis prevention methods (both locally and 

globally).  

 

Since silicosis can be prevented by limiting the inhalation of crystalline silica dust [Rimal 

et al., 2005], it is important to be able to reliably assess the effectiveness of dust control 

measures currently employed.  

 

If scientifically acceptable biomarkers were found that could allow the measurement of 

changes that occur immediately after exposure to crystalline silica but prior to the 

appearance of abnormalities on chest radiographs, they could be used to detect early 

adverse effects of silica exposure and also to evaluate efficacy of dust-control methods 

implemented [Gulumian et al., 2006].  
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1.2.2 Biomarkers 

 

In the past, relationships were observed between exposure and disease even though the 

mechanisms of action or the intervening steps were not often understood (refer to figure 

1.2.2). However, this approach is not very useful in situations with low levels of exposure, 

intermittent exposure, a mixture of exposures, or for diseases with long latency periods 

(such as silicosis). This approach is also problematic as there is a tendency to misclassify 

people as to their exposures and it does not take into account acquired or genetic host 

factors. Biological markers (biomarkers) may, potentially, address these problems. [NRC, 

1987, Schulte, 1995]. 

 

 

 

 

 

 

 

 
Figure 1.2.2: The traditional view of the relationship between exposure and disease. Adapted 

from [Schulte, 1995]. 

 

 

1.2.2.1 Definition of biomarkers 

 

The Committee on Biological Markers of the National Research Council (NRC) in the 

United States of America has defined biomarkers as “Indicators of variation in cellular or 

biochemical components or processes, structure or function that are measurable in biologic 

systems or samples” [NRC, 1989]. Therefore, biomarkers may represent signals in the 

intervening steps between exposure and resultant disease [Schulte, 1989]. 
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Biomarkers can be classified into three main types: biomarkers of exposure, biomarkers of 

effect and biomarkers of susceptibility [NRC, 1987]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2.2.1: Flow chart of the position of different types of biomarkers in the pathway 
from exposure to disease. Solid arrows indicate progression. The pathway is a temporal 

sequence where the higher event generally precedes the lower event. Biomarkers in the first three 

blocks can be considered biomarkers of exposure and biomarkers in the lower four blocks can be 

considered biomarkers of effect. Biomarkers of susceptibility can occur at any stage in the 

pathway. Adapted from [NRC, 1987].  

 

 

 

For any given toxicant exposure, there may therefore be several biomarkers with different 

levels of sensitivity and specificity that can be measured in different body fluids and 

tissues [Timbrell, 1998]. 
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1.2.2.2 Biomarkers of exposure 

 

These are the xenobiotic substance of interest or a metabolite(s) or product of its 

interaction with a biological molecule or cell, that are measured in a compartment within 

an organism [NRC, 1989]. They can be divided into two types: markers of internal dose or 

markers of effective dose.  

 

While external exposure is the level of xenobiotic substances an organism is exposed to, 

the internal dose is the amount of the xenobiotic compound that is actually absorbed into 

the organism and effective dose is the amount of the xenobiotic compound that interacts 

with critical subcellular, cellular and tissue targets [NRC, 1987]. Biomarkers of internal 

dose therefore indicate that exposure to a xenobiotic compound has taken place by 

measuring the compound or its metabolite(s) in body fluids. Biomarkers of effective dose 

indicate that exposure to a xenobiotic compound has resulted in the compound or its 

metabolite(s) reaching a toxicologically significant target [Timbrell, 1998]. 

 

Examples of biomarkers of exposure in the occupational health setting include urinary 

cadmium as a long term marker of cadmium exposure, urinary methylhippuric acid as a 

marker of recent xylene exposure and the DNA adduct Styrene oxide-O
6
 guanine as a 

marker of styrene exposure [Waterfield and Timbrell, 2000].  

 

1.2.2.3 Biomarkers of effect 

 

These are measurable physiologic, biochemical, or other changes within an organism that 

can be recognized as a potential or established health impairment or disease [NRC, 1989].  
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In the case of biomarkers of effect, an effect is defined as a recognized disease, an early 

precursor of a disease process, or an event that is nonessential to any disease process but is 

correlated with one and is thus predictive of the development of the disease. A biological 

marker of effect can therefore be any change that is quantitatively or qualitatively 

predictive of a disease associated with exposure. [NRC, 1987, NRC, 1989].  

 

As far as exposure is concerned, biomarkers of effect are, in theory, non-specific. 

However, in occupational situations it is often possible to exclude other factors affecting 

the biomarker levels and therefore a relative specificity is possible [Aitio, 1999].  

 

Biomarkers of effect range from simple (for example body weight) to complex (for 

example determination of specific isoenzymes). They can also be divided into those that 

detect biochemical changes or those that indicate pathological damage; and those that can 

be accessed through invasive or non-invasive procedures. [Timbrell, 1998]. In addition, 

biomarkers of effect can be classified as either early or late biomarkers. Early biomarkers 

of effect can indicate the extent of the initial interaction of the toxic substance (for example 

crystalline silica) with the cellular systems while late biomarkers of effect can indicate 

early minimum damage to the lung. An ideal biomarker of effect would be able to indicate 

early reversible events [Gulumian et al., 2006].  

 

Examples of biomarkers of effect include the enzyme aspartate aminotransferase (AST) as 

a measure of myocardial damage, induction of cytochrome P450 isoenzymes as a marker 

of exposure to polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds, 

and increased metallothionein levels as a marker of heavy metal exposure (such as 

cadmium) [Waterfield and Timbrell, 2000]. 
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1.2.2.4 Biomarkers of susceptibility 

 

These indicate an acquired or inherent limitation in the ability of an organism to respond to 

the exposure to specific xenobiotic substance [NRC, 1989]. Therefore, any variation in the 

response of an individual to identical exposures could indicate a difference in susceptibility 

due to either the genetic make-up of the individual or to factors or environmental 

influences such as diet or the uptake and absorption of the xenobiotic substance. However, 

the most likely source of variability is due to the metabolism of the substance by the 

organism, which may be genetically determined. [Waterfield and Timbrell, 2000]. 

 

Biomarkers of susceptibility include, among others, polymorphisms in genes responsible 

for DNA repair, genomic stability and chemical activation or detoxification [Schulte and 

Rothman, 1998].  

There are however numerous ethical, legal and social issues surrounding the use of 

biomarkers of susceptibility [Schulte, 1991].  

 

1.2.2.5 Applications of biomarkers 

 

The different types of biomarkers can be used to 1) assess exposure, 2) identify effects or 

changes that occur as a result of the exposure, 3) identify the start of pathological changes 

before the development of the disease, and 4) predict susceptibility of individuals to 

disease [Gulumian et al., 2006]. Therefore, the ultimate objective of biomarkers is to 

identify problems as early as possible to avoid adverse effects [Waterfield and Timbrell, 

2000].  
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The most important prerequisite for a biomarker to be practically useful is that enough 

information is available to translate the observed changes in terms of health significance 

and clinical relevance. The most challenging part of achieving this is to distinguish 

between adaptive and toxic effects, reversible and irreversible effects, and adverse from 

non-adverse effects [Bernard and Hermans, 1997].  

 

In population studies, the potential uses of biomarkers include: 1) mechanistic studies (i.e. 

the identification of the mechanism); 2) as a “gold standard” in validation studies; and 3) to 

monitor compliance to a prescribed regime [Howe, 1998]. 

 

One application for biomarkers of exposure is in biological monitoring (which involves the 

periodic measurement of a biomarker of exposure). Biological monitoring aims to quantify 

the amount of chemical absorbed; transformed into an active metabolite or accumulated in 

organs, tissues or cells when exposure to a chemical occurs. In epidemiological research, 

this can help to overcome the limitations of crude markers of exposure such as job titles or 

point estimates of airborne pollution. [Mutti, 1999].  

 

1.2.2.6 Limitations of biomarkers 

 

Potential limitations of the use of biomarkers include: 1) the high cost of assaying many 

biomarkers may mean that only a small sample size can be used (which results in an 

increase in random error and a decrease in study power); 2) in case-control studies many 

biomarkers may only reflect recent exposures and may not reflect exposure at the time 

relevant to the aetiology of the disease; 3) in case-control studies the disease process and/or 
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treatment may affect the biomarker in an unpredictable manner; and 4) in cohort studies 

longitudinal exposure data may not be available [Howe, 1998]. 

 

1.2.2.7 Ideal characteristics of biomarkers 

 

Ideally, a biomarker should be 1) specific, 2) sensitive, 3) quantitative, 4) in-expensive, 5) 

easily measurable, 6) related to the biochemical mechanism, 7) detectable at realistic 

exposure doses and 8) assessed by non-invasive procedures [Timbrell, 1998]. However, all 

these characteristics will rarely be available in one biomarker [NRC, 1989]. 

 

1.2.2.8 Validation of biomarkers 

 

Before a biomarker can be used as an independent or dependent variable for medical 

screening, surveillance, or intervention, it must be validated [Schulte, 2005]. An essential 

step in the validation process is establishing that a relationship between an environmental 

exposure and the biological change of interest (the biomarker) exists [NRC, 1989]. 

Validation can also include the determination of the specificity and sensitivity of the 

biomarker, characterization of all variability sources (analytical, biological) and 

characterization of the background levels [Manini et al., 2007]. 

 

Validation of biomarkers involves both laboratory and population requirements. The 

laboratory requirements include the analytical validity of the assay or test and an 

understanding of the biology of the biomarker. The population requirements include 

describing the performance of the test in populations and the factors that affect the test or 

biomarker (for example pre-existing medical conditions, lifestyle choices, or 
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environmental factors). [Schulte, 2005]. It is also important to consider the stability of the 

biomarker during the sampling process and storage (for example the storage temperature 

and duration) [Kang et al., 2005].  

 

In order to evaluate the health risks arising from exposure to xenobiotic substances, 

reference values (called Biological Exposure Indices or BEI) for the general population are 

determined in order to identify individuals with an increased exposure compared to the 

background level [Morgan, 1997]. However, biomarkers are subject to biological 

variability. As a result, reference values (RVs) for biomarkers should be defined at a local 

level since they are influenced by environmental exposure levels in that country, biological 

conditions (age, sex, diseases), metabolic interferences due to lifestyle choices (such as 

tobacco and alcohol consumption, use of drugs), genetic polymorphisms, and improvement 

in analytical procedures [Manini et al., 2007].    

 

1.2.2.10 Potential biomarkers of crystalline silica exposure 

 

Ever since the pathogenic pathway of silicosis was elucidated, attempts have been made to 

identify suitable biomarkers to detect exposure to high levels of crystalline silica and/or to 

predict the development of silicosis.  

 

In terms of crystalline silica as a biomarker of exposure, the major problem is that silica 

cannot be measured directly in blood, unlike other chemicals such as lead. It can however 

be measured in lung tissue and in bronchoalveolar lavage fluid (BALF) but these methods 

are invasive and expensive and therefore not practical for exposure studies. In addition, 
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neither the presence nor elemental analysis of crystalline silica has produced an accurate 

estimation of internal dose in relation to disease. [Gulumian et al., 2006].  

 

A number of polymorphisms, such as TNF-α and IL-1 polymorphisms, have been 

investigated as possible biomarkers of susceptibility for silicosis in crystalline silica 

exposed individuals. One of these investigations [McCanlies et al., 2002] has however 

suggested that although this genetic information is valuable in characterising risk, it is not 

a useful tool for individual classification. In addition, such biomarkers would indicate 

susceptibility to silicosis rather than indicating recent exposure to crystalline silica 

exposure [Corbett et al., 2002]. Finally, there may be ethical, social, and legal problems 

associated with the use of biomarkers of susceptibility [Schulte, 1991].  

 

Due to the limitations associated with the biomarkers of exposure and susceptibility, it is 

preferable to investigate silica exposure indirectly by identifying and measuring 

biomarkers of effect of crystalline silica exposure in the blood or other easily accessible 

body fluids.  

 

The first phase of this project identified ten potential biomarkers of effect that were 

considered worthy of further investigation [Gulumian et al., 2006]. The ten biomarkers 

identified were: reactive oxygen species (ROS) measurement by chemiluminescence 

(neutrophil release), erythrocyte glutathione (GSH), erythrocyte glutathione-S-transferase 

(GST), erythrocyte glutathione peroxidase (GPx), n-8 isoprostane, tumour necrosis factor 

alpha (TNF-α), platelet-derived growth factor (PDGF), interleukin-8 (IL-8), Clara cell 

protein 16 (CC16), and total antioxidant status as a trolox equivalent (TAS).  
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The second phase of this project evaluated the ten biomarkers to determine the influence (if 

any) of Human Immunodeficiency Virus (HIV) infection, anti retroviral (ARV) treatment, 

smoking, age and the ability to discriminate between crystalline silica exposed and 

unexposed individuals. Two of the ten biomarkers investigated, namely erythrocyte GPx 

and serum CC16, were found to be significantly decreased in the silica dust-exposed 

subjects. In addition, the two biomarkers were found to be unaffected by HIV infection, 

ARV treatment, smoking, age and the presence of radiological silicosis. [Murray et al., 

2006].   

  

 This third phase of the project aimed to confirm the levels of and further analyze CC16 

and GPx in relation to the levels and duration of crystalline silica exposure. GPx and CC16 

are both biomarkers of effect; erythrocyte GPx is a marker of oxidative stress while serum 

CC16 is a marker of Clara cell (lung) damage.  
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1.2.3 Oxidative Stress markers 

 

1.2.3.1 Reactive oxygen species  

 

Reactive oxygen species (ROS) is the term given to oxygen free radicals and their 

metabolites. Free radicals are atoms or molecules with one or more unpaired electrons. 

Oxygen-centred free radicals contain the unpaired electron on the oxygen atom. 

[Vallyathan and Shi, 1997].  

 

In the lungs, ROS can be produced by both endogenous and exogenous sources:  

 

Endogenous sources:  

Oxygen free radicals, which are usually beneficial to metabolic processes, are constantly 

produced by living cells. The main sources for the endogenous production of ROS are the 

mitochondria (during energy production), microsomes, endoplasmic reticulum, endothelial 

cells, nuclei, and phagocytic cells (such as AMs and neutrophils).  

 

Exogenous sources:  

These include physical and chemical agents such as tobacco smoke, toxic gases, vapours, 

chemicals, dust particles (such as asbestos and crystalline silica), and ambient air 

containing toxicants. [Vallyathan and Shi, 1997]. 
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1.2.3.2 The involvement of ROS in silica exposure 

 

As was previously described in sections 1.2.1.3 and 1.2.1.9, crystalline silica is able to 

produce ROS directly and/or by the stimulation of inflammatory cells (such as AMs). The 

ROS produced directly by freshly fractured crystalline silica include silicon-based radicals 

(Si
•
, SiO

•
,
 
and SiOO

•
) in air [Ding et al., 2002], as well as hydroxyl radical (OH

•
), 

hydrogen peroxide (H2O2), superoxide anion radical (O2
•-

), and singlet oxygen (O2) in 

aqueous medium [Shi et al., 1995]. The ROS produced by the immune response to 

crystalline silica inhalation include the superoxide anion radical (O2
•-

), hydroxyl radical 

(OH
•
), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) [Engelen et al., 1990]. 

 

Reactive oxygen species may be involved in a number of silica-induced responses such as 

inflammation, fibrosis [Mossman and Churg, 1998], cell injury and proliferation 

[Vallyathan et al., 1998], and DNA modifications [Shi et al., 1995]. 

 

1.2.3.3 Oxidative stress 

 

Oxidative stress has been defined as “An imbalance between oxidants and antioxidants in 

favour of the oxidants, potentially leading to damage” [Sies, 1997]. As described earlier, 

oxidants such as ROS are continuously generated by both endogenous and exogenous 

sources. While low doses of radicals can be valuable or essential (for example in 

intracellular messaging and defence against micro-organisms), high doses can result in 

oxidative stress [Mates et al., 1999]. 
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Oxidative stress plays a key role in the pathogenesis of many lung diseases both directly or 

indirectly [MacNee, 2000]. In the case of silicosis, exposure to crystalline silica causes an 

overwhelming production of ROS, which causes an imbalance in oxidant/antioxidant state 

and therefore oxidative stress [Zhang et al., 1999]. 

 

1.2.3.4 The lungs’ defence against oxidative stress  

 

The lung is the primary interface between the organism and the inhaled toxicants and it 

therefore plays a vital role in protecting against the ROS produced by these toxicants 

[Rahman et al., 1999]. The large epithelial surface area of the lung (including the 

tracheobronchial tree and the alveolar space) is particularly at risk to attack from ROS 

produced by inhaled toxicants [Comhair and Erzurum, 2005].  

 

The lungs’ main defence against inhaled ROS is an antioxidant system, which consists of a 

range of enzymatic and non-enzymatic molecules [Rahman et al., 1999]. The antioxidant 

system is normally able to cope with the continuous stream of free radicals [Borm et al., 

1986]. Antioxidants exert their protective effect by: 1) preventing free radical production, 

2) intercepting free radicals that have already been produced, 3) repairing oxidative 

damage caused by free radicals and 4) helping to eliminate damaged molecules 

[Gutteridge, 1995].  

 

1.2.3.5 The non-enzymatic antioxidant defence system 

 

One of the most important antioxidant defence mechanisms is the non-enzymatic 

glutathione (GSH) redox system.  
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Glutathione is a tripeptide consisting of γ-glutamic acid, cysteine and glycine, and it is 

present in all tissues. Reduced glutathione (GSH) can react with oxidants to form the 

oxidized form, glutathione disulphide (GSSG), or a mixed disulphide (RSSG) [Moldeus 

and Jiang, 1987].  

 

The susceptibility and tolerance of lung epithelial cells to oxidative stress are strongly 

affected by their intracellular redox status (GSH/GSSG) [Rahman et al., 2005]. Normally 

the cells of the lung contain a high concentration of GSH to help protect the lung from 

oxidative stress. Glutathione limits the oxidative stress induced by toxicants by 1) 

returning cellular constituents to their normal reduced forms and thereby restoring their 

normal physiological function and 2) assisting in the detoxification of oxidants thereby 

preventing cellular injury. A decrease in GSH levels may therefore contribute to the 

development of lung injury and disease. [Rahman et al., 1999] 

 

Besides GSH, the GSH redox system consists of a number of antioxidant enzymes, 

namely, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-

transferase (GST), and glucose 6-phosphate dehydrogenase (G6PD). While GSH and GPx 

function to detoxify exogeneous toxicants and their reactive intermediates, GR reduces 

GSSG back to GSH (using reduced nicotinamide adenine dinucleotide phosphate, 

NADPH) and G6PD helps maintain the NADPH in its reduced form. [Rahman et al., 

1999]. 
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1.2.3.6 The enzymatic antioxidant defense system  

 

The main antioxidant enzymes are catalase (CAT), manganese and copper-zinc superoxide 

dismutase (SOD), and glutathione peroxidase (GPx). They frequently act in a coordinated 

manner to protect the lungs or other tissues from damage caused by oxidative stress. 

[Quinlan et al., 1994]. Superoxide dismutase converts the toxic superoxide anion radical 

(O2
•-

)
 
into hydrogen peroxide (H2O2) as follows: 

 

2 O2
•- 

  +  2 H
+
    H2O2 + O2 

 

In order to prevent hydrogen peroxide from forming the highly toxic hydroxyl radical 

(OH
•
), CAT and GPx catalyze the conversion of hydrogen peroxide to other non-toxic 

products (such as water) as follows [Rahman et al., 2005]: 

 

2 H2O2    O2  +  2 H2O 

 

H2O2  +  2GSH   2 H2O +  GSSG   

 

These three antioxidant enzymes are all found in human erythrocytes [Andersen et al., 

1997], and for a long time CAT and GPx were considered the erythrocyte’s main defense 

against hydrogen peroxide. Recently, however, more attention is being paid to the 

antioxidant role of a family of peroxidases, called peroxiredoxins, in erythrocytes [Low et 

al., 2007]. 

 

SOD 

CAT 

GPx 
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Peroxiredoxins (Prxs) are a group of antioxidant enzymes that reduce H2O2 and alkyl 

hydroperoxides to water and alcohol, respectively [Jara et al., 2007]. They rely on a 

conserved cysteine residue to catalyze the reduction. Six mammalian isoforms (Prx1-6) 

have been identified with erythrocytes possessing in abundance Prx2 and a small amount 

of Prx1 and Prx6. [Low et al., 2007]. Except for Prx6 which uses GSH as a co-substrate , 

Prxs use thioredoxin (Trx) as a co-substrate and therefore the reduction of hydrogen 

peroxide by most Prxs can be illustrated as follows [Rahman et al., 2005]:  

 

H2O2  +  Trx(SH)2     H2O  +  TrxS2 

   

1.2.3.7 Characteristics of GPx 

 

Glutathione peroxidase (E.C.1.11.1.9) was first described by Mills in erythrocytes [Mills, 

1957]. It was shown to be essential for the protection of erythrocytes from oxidative 

breakdown, for example from hydrogen peroxide or ascorbic acid  [Mills, 1957, Mills and 

Randall, 1958].  

 

Glutathione peroxidase exists as two forms, selenium (Se)-dependent GPx and Se-

independent GPx. Approximately one third of the lung GPx activity is Se-independent. 

[Rahman et al., 1999]. 

 

There are four types of selenium-dependent GPx (that result from the expression of 

different genes): the classic cellular GPx (cGPx), the gastrointestinal GPx (giGPx), the 

extracellular or plasma GPx (eGPx or pGPx), and the phospholipid hydroperoxide GPx 

Prx 
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(PHGPx) [Brigelius-Floche, 1993], also referred to as GPx-1 to GPx-4, respectively 

[Toppo et al., 2008]. 

 

Erythrocyte (cellular) GPx is a 85 kDa protein [Rahman et al., 1999] that forms a tetramer 

of four identical subunits each with a selenocysteine in their active site [Forstrom et al., 

1978]. It plays a significant role in the protection of lungs against oxidative damage 

(caused by ROS) [Nadif et al., 2001]. This may be due to the fact that erythrocytes can act 

as a circulating antioxidant system in the lung. They are able to penetrate into the smallest 

blood vessels, which allows them to reach the sites of inflammation [Borm et al., 1986].  

 

1.2.3.8 Function of GPx 

 

Glutathione peroxidases catalyze the reduction of hydrogen peroxide (H2O2), lipid 

hydroperoxides, and organic hydroperoxides; such as cumene hydroperoxide (CUOOH) 

[Saint-Denis et al., 1998] and tert-butyl hydroperoxide (t-BOOH) [Brigelius-Floche et al., 

2002]; to water (H2O) and alcohol (ROH) using reduced glutathione (GSH) as a co-

substrate [Mannervik, 1985]: 

 

ROOH  +  2 GSH  H2O  +  ROH  +  GSSG 

 

The oxidised glutathione (GSSG) is recycled to its original state by reduced nicotinamide 

adenine dinucleotide phosphate (NADPH) in a reaction catalyzed by glutathione reductase 

(GR) [Brigelius-Floche et al., 2002]:  

 

GSSG  +  NADPH  +  H
+
                        2 GSH  +   NADP

+
 

GPx 

GR 
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The primary function of glutathione peroxidase is therefore the in vivo detoxification of 

toxic hydrogen peroxide to less toxic products. Evidence reveals that cellular GPx (in 

conjunction with the pentose phosphate cycle and glutathione reductase) efficiently 

metabolizes intracellular hydrogen peroxide. The cellular GPx system is therefore a highly 

efficient and indispensable part of the cells’ protection against oxidative stress. [Ursini et 

al., 1995].  

 

1.2.3.9 Research involving GPx and exposure to crystalline silica and 

other toxicants  

 

The activity of GPx has been shown to be affected by exposure to a number of toxicants, 

such as cigarette smoke [Li et al., 1994, Gilks et al., 1998, Vallyathan and Shi, 1997, 

Duthie et al., 1991, Kondo et al., 1994, Ho et al., 2005] and cadmium [Babu et al., 2006], 

and in a number of diseases including chronic obstructive pulmonary disease (COPD) 

[MacNee, 2000, Kluchova et al., 2007], asthma [Misso et al., 1996, Powell et al., 1994], 

and bronchopulmonary dysplasia [Fu et al., 2008].  

 

Since crystalline silica exposure causes oxidative stress and GPx activity is considered a 

marker of oxidative stress, a number of studies have examined the effect of crystalline 

silica exposure (and/or silicosis) on the activity of GPx.  

 

In two studies involving silicosis patients and unexposed controls, one study found a 

significant decrease in GPx activity in the silicosis patients versus controls (p < 0.001) 

[Zhou et al., 1999] while the other found a non-significant decrease (2.44 U/g Hb versus 

2.86 U/g Hb,  p < 0.1)[Borm et al., 1986]. A decrease in GPx activity has also been 
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observed in coal mine workers.  A study of active and retired French coal miners showed a 

significant decrease in mean GPx activity in the active miners compared to the retired 

miners (38.8 ± 12.5 U/g Hb versus 44.6 ± 13.7 U/g Hb,  p = 0.01) [Nadif et al., 2001]. A 

similar study of coal miners from three French regions found that the retired miners with 

coal workers’ pneumoconiosis (CWP) had a lower GPx activity than those without CWP; 

however, the study also found that the GPx activity of active underground miners with 

CWP was slightly higher than those without CWP. Engelen and colleagues [1990] also 

showed that mean GPx activity was higher in Belgian coal miners with CWP than those 

without CWP (9.80 ± 0.05 U/g Hb versus 9.58 ± 0.08 U/g Hb, p = 0.04). A later study of 

rats acutely exposed to quartz  also found a significantly higher level of GPx activity in the 

exposed rats compared to the controls [Vallyathan et al., 1995].  

 

The large variation in GPx activity values obtained in the aforementioned Borm et al 

[1986], Nadif et al [2001] and Engelen et al [1990] studies may have been due to the fact 

that different assays were used and the study participants were from different geographical 

regions. Although an accepted range of GPx activity for healthy silica exposed workers 

could not be found, a study on the biological variability of erythrocyte GPx [Guemouri et 

al., 1991] reported erythrocyte GPx activity levels of between 22.5 and 67.0 U/g Hb in 

healthy unexposed adult males and between 24.4 and 68.1 U/g Hb in healthy adult females. 

 

Due to the uncertainty surrounding the effect of crystalline silica exposure on GPx activity, 

further investigation was warranted. In addition, none of the above mentioned studies 

involved South African subjects or gold miners and none examined the effect of HIV 

infection or ARV treatment on GPx activity. Phase two of this project on biomarkers 

therefore aimed to investigate the levels of GPx activity in silica exposed gold miners and 
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controls from South Africa and determine if the levels were affected by HIV infection or 

ARV treatment. It showed that the GPx activity was significantly lower in the subjects 

exposed to crystalline silica compared to those with no exposure. It also found that there 

was no significant effect of HIV infection or ARV treatment on GPx activity. [Murray et 

al., 2006] 

 

The third phase of this project therefore aimed to further investigate the levels of 

erythrocyte GPx activity in relation to crystalline silica exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 49 

1.2.4 Lung damage markers 

 

The lung is a highly complex organ that contains over 40 different cell types [Bernard and 

Hermans, 1997], including Clara cells.  

 

1.2.4.1 Clara cells 

 

Although Clara cells were first recognised as a morphologically distinct cell type by 

Kölliker in 1881, Max Clara described the same cells in 1937 and the cells were named 

after him [Singh and Katyal, 1997]. Clara cells are nonciliated secretory epithelial cells 

(with diameters of 5 mm or less) that line the pulmonary airways (figure 1.2.4.1), in 

particular the respiratory and terminal bronchioles [Singh et al., 1988b].  

 

Clara cells are one of the most multifunctional and heterogeneous cell types in the 

mammalian lung, with their main function being the protection of the respiratory tract 

[Broeckaert and Bernard, 2000].  

 

One of the proteins secreted by Clara Cells is a 16 kDa protein known as Clara Cell Protein 

16 or CC16 [Singh and Katyal, 1997]. In literature, the different CC16 homologues have 

been referred to by a number of different names which indicate their molecular weight 

(CC16, and Clara cell 10 kDa protein (CC10)), their origin (human protein-1, urine 

protein-1, uteroglobin (UG), and Clara cell secretory protein (CCSP)), or their function 

(blastokinin, Clara cell phospholipid-binding protein, and PCB-binding protein) 

[Broeckaert and Bernard, 2000]. 
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Figure 1.2.4.1: A schematic diagram of the distal pulmonary epithelium (A) with an enlarged 
view of a Clara cell (B). sER= smooth endoplasmic reticulum, rER= rough endoplasmic 

reticulum. Adapted from [Matthay et al., 2002] and 

http://anatomy.iupui.edu/courses/histo_D502/D502f04/lecture.f04/Respsystemf04/respiratory.html  

 

1.2.4.2 History of CC16 

 

In 1988, Jackson described the purification of a protein (called urine protein-1) from the 

urine of patients with renal failure [Jackson et al., 1988]. A protein, that was specifically 

localised to Clara cells in the lung, was then identified in rats [Singh and Katyal, 1984, 

Singh et al., 1985], rabbits [Gupta et al., 1987] and humans [Singh et al., 1988b]. It was 

determined, by means of sodium dodecyl sulphate-polycrylamide gel electrophoresis 

(SDS-PAGE), that the protein had a molecular weight of 10 kDa and was composed of two 

5 kDa subunits [Singh et al., 1987]. Because the protein was the major secretory protein of 

the Clara cell, it was called Clara cell 10 kDa protein (CC10). Later studies showed that 

CC10 was identical to urine protein-1 [Bernard et al., 1992c, Bernard et al., 1992b] and 

that it was also the counterpart of rabbit uteroglobin [Mantile et al., 1993]. In 1993, 
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electrospray ionization/mass spectrometry showed that the molecular mass of the protein 

was actually 15 840 Da (16 kDa) which lead to the more common term of CC16 [Bernard 

et al., 1993].  

 

1.2.4.3 Structure of CC16 

 

Clara cell protein 16 is a homodimer of two identical 70 amino acid subunits (in 

antiparallel orientation) that are connected by two disulphide bonds [Singh et al., 1988a]. 

The early studies of CC16 showed that it is rich in glutamic acid, leucine, serine, and 

aspartic acid amino acids [Singh et al., 1988b] .  

 

1.2.4.4 Function of CC16 

 

The exact function of CC16 is still unknown, however, research indicates that it plays a 

key role in the lung as an anti-inflammatory, immunosuppressive, and antifibrotic agent 

[Wang et al., 2007]. This research includes: 

1)  The entire human CC16 gene has been sequenced and localized to chromosome 11, in 

particular the p12-p13 region. This region is occupied by several genes involved in the 

regulation of inflammation and allergy [Hay et al., 1995]. This lead to the suggestion 

that CC16 plays an important role in the regulation of inflammation in the lungs [Singh 

and Katyal, 1997].  

1) Clara cell protein 16 has been shown to inhibit the production and biological activity of 

inflammatory cytokines [Broeckaert and Bernard, 2000, Wang et al., 2007]. 

2) Clara cell protein 16 has been found to inhibit cytosolic phospholipase A2 (PLA2, an 

important enzyme in the inflammatory process) and this may be important in 
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controlling the inflammatory responses in the lung [Singh et al., 1990, Lesur et al., 

1995]. Since inhibitors of PLA2 have been shown to inhibit superoxide anion 

generation [Henderson et al., 1989], this may form part of CC16’s anti-inflammatory 

activity.  

3) Clara cell protein 16 is also able to inhibit PDGF-induced fibroblast chemotaxis 

(probably by inhibition of cytosolic PLA2) and it has been suggested that a decrease in 

CC16 may allow the recruitment of fibroblasts (and therefore fibroblast activation and 

overgrowth) in fibrosing lung diseases [Lesur et al., 1995]. 

4) Clara cell protein 16 could play an important role in the sequestration or clearance of 

toxic substances that have been deposited in the respiratory tract [Singh and Katyal, 

1997].  

5) It has also been suggested that CC16 protects the respiratory tract against oxidative 

stress [Broeckaert and Bernard, 2000]. 

 

1.2.4.5 Characteristics of CC16 

 

Although it was initially thought that CC16 was produced exclusively by Clara cells 

[Singh et al., 1988b], it was later shown that CC16 is also secreted in the male urogenital 

tract (in particular the prostate) [Bernard et al., 1991] as well as in the thyroid, mammary 

gland, and the pituitary [Peri et al., 1993]. As a result, in addition to the BALF, CC16 has 

been detected in a number of body fluids including urine, sperm, amniotic fluid and serum 

[Bernard et al., 1993].   

 

The presence of CC16 in serum can only be explained by assuming that it moves from the 

lung into the bloodstream [Hermans and Bernard, 1999].  Although the exact mechanism 
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by which this happens and the exact sites of their passage are unknown, the most likely 

explanation is passive diffusion across the bronchoalveolar-blood barrier. This theory has 

been supported by studies that show a positive correlation between the CC16 concentration 

in serum and BALF [Petrek et al., 2002]. The most likely driving force for this diffusion is 

the large CC16 concentration gradient that exists across the bronchoalveolar-blood barrier 

[Bernard et al., 1998].  In addition, because CC16 is small (molecular radius ∼1.9 nm) and 

because of the sieving properties of the alveolar barrier, CC16 is likely to move across the 

bronchoalveolar-blood barrier with little hindrance [Hermans and Bernard, 1998].  

 

Once in the bloodstream, CC16 can rapidly be eliminated by glomerular filtration in the 

kidneys before being collected and catabolised in the proximal tubule cells [Bernard and 

Hermans, 1997].  

 

The concentration of CC16 in serum is therefore determined by a number of factors. 

 

 

Figure 1.2.4.5: Schematic diagram of factors affecting the concentration of CC16 in serum. 
CC16 moves from the lung into serum and is then eliminated by the kidneys. GFR= glomerular 

filtration rate, ELF=epithelial lining fluid, BALF = bronchoalveolar lavage fluid. [Hermans and 

Bernard, 1998] 
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1.2.4.6 Applications of CC16 as a lung damage marker 

 

If this theory of the movement of CC16 from the lung to the bloodstream is accepted, the 

assessment of the levels of CC16 in serum could be used for two important applications:  

1) It could be used to assess the integrity of the bronchoalveolar-blood barrier (which can 

be compromised in a number of diseases)  

2) It could be used to assess the changes in the number and/or integrity of the lung 

epithelial cells (when the bronchoalveolar-blood barrier is intact or slightly impaired). 

[Hermans and Bernard, 1998].  

 

In fact, studies on experimental animals and occupationally exposed workers indicate that 

serum CC16 may be a relatively specific and sensitive biomarker for detecting early acute 

or chronic effects of toxicants on the tracheobronchial tree [Bernard and Hermans, 1997]. 

This is important as early lung injury is difficult to identify [Waterfield, 2000] and, at 

present, no toxicity biomarker is in place to monitor populations exposed to occupational 

or environmental pneumotoxins [Bernard and Hermans, 1997].  

 

1.2.4.7 Research involving CC16 and exposure to crystalline silica and 

other toxicants 

 

Levels of CC16 have been shown to increase in individuals exposed to toxicants such as 

asbestos [Petrek et al., 2002], polypropylene combustion products [Bernard et al., 1997], 

and ozone [Arsalane et al., 1999, Blomberg et al., 2003] and in patients suffering from 

sarcoidosis [Bernard et al., 1992a] and idiopathic pulmonary fibrosis [Lesur et al., 1995]. 
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This increase has been attributed to an increase in the permeability of the bronchoalveolar-

blood barrier and therefore an increase in the movement of CC16 into the bloodstream.  

 

However, the few studies that have examined the effect of crystalline silica dust exposure 

on the concentration of CC16 in serum have found decreased CC16 levels. Bernard and 

colleagues [1994a] measured the levels of CC16 in the serum of asymptomatic quarry 

miners exposed to silica dust and control subjects and found a significant decrease in the 

mean CC16 levels in the miners (16.3 ng/ml for controls versus 12.3 ng/ml for miners,      

p = 0.001). Later, Wang et al [2007] studied the role of serum CC16 as a biomarker for the 

early diagnosis and the pathogenesis of silicosis. They also found that the serum CC16 

concentration was significantly reduced in the silica-exposed pyrite mine workers 

compared to the controls   (4.42 ± 1.83 ng/ml versus 12.59 ± 3.85 ng/ml, p < 0.01). The 

authors proposed that the decrease in CC16 levels in serum was as a result of a decreased 

secretion or production of CC16 due to the destruction of Clara cells by silica. 

 

The results obtained for the aforementioned studies indicated that CC16 may be a 

promising marker of early lung injury caused by crystalline silica exposure. The second 

phase of this project on biomarkers therefore aimed to investigate the effect of crystalline 

silica exposure on the levels of serum CC16 in gold miners and controls from South 

Africa. It also aimed to determine if the CC16 levels were affected by HIV infection or 

ARV treatment. The study found that the CC16 levels were significantly lower in the 

subjects exposed to silica than those with no exposure (4.87 ± 1.69 ng/ml versus 5.77 ± 

1.64 ng/ml, p = 0.02) and it also found that there was no significant effect of HIV infection 

or ARV treatment on the CC16 levels [Murray et al., 2006][see Appendix A]. 
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The third phase of this project therefore aimed to further investigate the levels of serum 

CC16 concentration in relation to crystalline silica exposure. 

 

There was a large variation in the mean CC16 levels in the control groups of the Bernard et 

al [1994a], Wang et al [2001] and Murray et al [2006] studies. This large variation may be 

due to population differences. Other studies have reported serum CC16 levels of between 

6.6 and 23.2 µg/l in healthy adult males and between 3.7 and 22.9 µg/l in healthy adult 

females [Shijubo et al., 2003]. A study on the effect of geographical location on CC16 

levels would therefore be worthwhile; however, this was not investigated in the current 

study. 
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1.3 Aims and Objectives 

 

The overall aim of this project on biomarkers is to identify, confirm and operationalise 

biomarkers for crystalline silica dust exposure that could be used for surveillance of dust 

exposure levels in South African mines and thereby assess the success of dust control 

measures. This third phase of the project aimed to confirm the levels of, and further 

analyze, two biomarkers, GPx and CC16, in miners exposed to low and high levels of 

crystalline silica dust. It also aimed to develop Standard Operating Procedures (SOPs) for 

biomarker specimen handling and storage under field conditions, and also for their assay in 

the laboratory.  

 

In order to accomplish these aims, the following objectives needed to be completed: 

• To classify the study participants into high and low dust exposure groups according to 

their current job description.  

• To measure the levels of GPx and CC16 in the study participants after their return 

from a period of leave and again following their exposure to crystalline silica. 

• To investigate the relationship between the levels of GPx and CC16 and the duration 

of exposure to crystalline silica. 

• To record chest radiological evidence of silicosis. 

• To determine the effect of storage temperature, delay time between blood sample 

collection and separation, ambient laboratory temperature and storage duration on the 

levels of GPx and CC16. 
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Chapter 2:  

Materials and Methods 

The protocol for this study was peer-reviewed by international collaborators prior to the 

commencement of the study. 

 

The diagram below outlines the three main steps involved in this phase of the project, 

which are described in sections 2.1 to 2.4: 
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2.1 Protocol for the assay of glutathione peroxidase 

 

Analysis of the activity of glutathione peroxidase (GPx) was performed using a 

Glutathione Peroxidase Assay Kit (Cayman Chemical Company, Ann Arbor, MI, U.S.A) 

according to the manufacturer’s instructions. 

 

2.1.1 Principle of the Glutathione peroxidase Assay Kit 

 

The GPx assay kit measures GPx activity indirectly by a coupled reaction with glutathione 

reductase (GR). During the assay, GPx catalyzes the reduction of cumene hydroperoxide 

(CUOOH) to water (H2O) and alcohol (CUOH) using reduced glutathione (GSH) as a     

co-substrate [Saint-Denis et al., 1998]: 

 

CUOOH  +  2 GSH       H2O  +  CUOH  +  GSSG 

 

The oxidised glutathione (GSSG) is recycled to its original state by reduced nicotinamide 

adenine dinucleotide phosphate (NADPH) in a reaction catalyzed by glutathione reductase 

(GR) [Brigelius-Floche et al., 2002]: 

 

GSSG  +  NADPH  +  H
+
                         2 GSH  +   NADP

+ 

 

The oxidation of NADPH to NADP
+
 is accompanied by a decrease in absorbance at       

340 nm (A340). Under the assay conditions, the GPx activity is rate limiting and therefore 

the rate of decrease in the absorbance at 340 nm is directly proportional to the GPx activity 

GR 

GPx 
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in the sample [Paglia and Valentine, 1967]. The Cayman GPx Assay Kit can be used to 

measure all of the glutathione-dependent peroxidases in plasma, erythrocyte lysate, tissue 

homogenate, and cell lysate [CaymanChemical, 2004]. 

 

Since the kit uses cumene hydroperoxide as the substrate, the total GPx activity is 

measured. However, human lungs and erythrocytes only contain Se-dependent GPx 

[Carmagnol et al., 1983] and since the current study used erythrocyte lysate samples, only 

the Se-dependent GPx activity was being measured.  

 

Although GPx is not the only hydroperoxide reducing enzyme in cells, the assay is specific 

to GPx since the assay of catalase activity involves measuring the decomposition of 

hydrogen peroxide at a wavelength of 240 nm [Andersen et al., 1997], the assay of 

peroxiredoxin activity uses the thioredoxin reductase system [Kim et al., 2005] and neither 

of catalase nor peroxiredoxin use GSH as a co-substrate.  

 

2.1.2 Glutathione peroxidase assay kit specifications 

 

Each kit contained one vial of assay buffer concentrate (10 X), one vial of sample buffer 

concentrate (10 X), one vial of GPx control (consisting of a solution of bovine erythrocyte 

GPx), three vials of co-substrate mixture (consisting of a lyophilized powder of NADPH, 

glutathione and glutathione reductase), one vial of cumene hydroperoxide, one 96 well 

plate and one plate cover.  

 

The kits were stored at -20 
o
C until the indicated expiration date.  
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2.1.3 Reagent preparation  

 

The kit was removed from the -20 
o
C freezer and the components were brought to 25 

o
C.  

 

The assay buffer was prepared by transferring 2 ml of assay buffer concentrate into a 

clearly labelled sterile 50 ml Falcon tube (Greiner Bio-One GmbH, Germany) containing 

18 ml of HPLC-grade water, and gently mixing. The diluted assay buffer was stable for 

two months if stored at 4 
o
C. The sample buffer was prepared by transferring 2 ml of 

sample buffer concentrate into a clearly labelled sterile 50 ml Falcon tube containing 18 ml 

of HPLC-grade water, and gently mixing. The diluted sample buffer was stable for one 

month if stored at 4 
o
C. 

 

The co-substrate mixture was prepared by adding 2 ml of HPLC-grade water to the vial 

provided and vortexing gently to mix. Each reconstituted vial of co-substrate mixture was 

enough for approximately forty wells. It was therefore only necessary to reconstitute the 

number of vials needed to supply the number of wells that were being used. The 

reconstituted co-substrate mixture was stable for two days if stored at 4 
o
C. 

 

The GPx control was prepared by pipetting 10 µl of the GPx control into a 1.5 ml 

microcentrifuge tube containing 490 µl of diluted sample buffer, and gently mixing. The 

GPx control was only stable for four hours when stored at 4 
o
C and therefore it was only 

prepared after the sample preparation was complete (refer to section 2.1.4).  According to 

the kit protocol, a 20 µl aliquot of the diluted GPx control should cause a decrease of 

approximately 0.051 absorbance units per minute under standard assay conditions 

[CaymanChemical, 2004].  
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2.1.4 Sample preparation 

 

The thawed erythrocyte lysate samples (the preparation of which is described in sections 

2.3.2.1, 2.3.3.1, 2.3.4.1, 2.3.5.1 and 2.4.4.1) were diluted 30 X by transferring 10 µl lysate 

into a 1.5 ml microcentrifuge tube containing 145 µl of diluted sample buffer, and gently 

mixing. According to the kit protocol, a 20 µl aliquot of diluted sample should have an 

initial absorbance of between 1.2 and 0.5 and should cause an absorbance decrease of 

between 0.02 and 0.135 per minute [CaymanChemical, 2004].  

 

2.1.5 Assay procedure 

 

Into each well, 100 µl of diluted assay buffer and 50 µl co-substrate mixture were added. 

The blank (non-enzymatic) wells were prepared by adding 20 µl of diluted assay buffer in 

triplicate into the designated wells. The positive control wells were prepared by adding    

20 µl of diluted GPx control in triplicate into the designated wells. The sample wells were 

prepared by adding 20 µl of 30 X diluted erythrocyte lysate sample into the designated 

wells. Finally, to initiate the reaction, 20 µl of cumene hydroperoxide was added to each 

well. 

  

The plate was gently shaken and placed in the plate holder of the automated BioTek 

ELx800
TM

 microplate reader (BioTek Instruments, Inc., USA). The GPx activity was then 

measured.  
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2.1.6 Plate analysis 

 

To measure the absorbance of the samples, an automated microplate reader was used in 

conjunction with KC4
TM

v3.4 software (BioTek Instruments, Inc., USA). 

 

The microplate reader was set up while the reagents and samples were thawed. A laptop 

installed with KC4
TM

v3.4 software and a HP LaserJet 1010 printer were connected to the 

microplate reader. Using the KC4
TM

v3.4 program and the accompanying manufacturers’ 

instructions, a new protocol was designed for each experiment. Each protocol included 

details about the layout of samples, controls and blanks in the plate; the wavelength to be 

used; and the results needed in the printed report.  

 

When the plate was ready to be analyzed, the absorbance of each well was measured at       

340 nm every minute for a total of five minutes.  The resulting absorbance data was printed 

and used to calculate the GPx activity (see Appendix B). 

 

2.1.7 Calculation of GPx activity  

 

To ensure accuracy, two different methods of calculating the GPx activity (using the 

absorbance data obtained) were used. The first method involved an automated analysis tool 

provided by Cayman Chemical Company while the second involved a manually designed 

spreadsheet in Microsoft Excel.  
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2.1.7.1 Analysis tool 

 

The Cayman Chemical Company website (www.caymanchem.com) provides access to an 

analysis tool that allows the GPx activity to be calculated automatically from the 

absorbance data obtained. A document entitled “GSHases Triple’’ was downloaded and in 

the worksheet entitled “Analysis” (see Appendix C), the absorbance data obtained were 

entered into the appropriate fields. The GPx activity in each well was automatically 

calculated. The corresponding graphs of absorbance versus time for each sample were also 

automatically constructed and illustrated in a worksheet entitled “Graphs” (Appendix D). 

 

2.1.7.2 Microsoft Excel calculations 

 

Using the absorbance data obtained, the change in absorbance (∆A340) per minute of the 

blanks, positive controls and samples was calculated using the formula: 

 

 ∆∆∆∆A340/ min = (A340 (at 5 minutes) – A340 (at 0 minutes)) / (5 Minutes – 0 Minutes) 

 

The average rate of ∆A340/min of the blank wells was calculated and subtracted from the 

rate of ∆A340/min of the positive control wells and the sample wells. The GPx activity in 

each well was then calculated using the formula: 

 

 GPx Activity = ((∆∆∆∆A340/ min)/ 0.00373 µµµµM
-1

) x (0.19 ml/0.02 ml) x Sample Dilution = nmol/min/ml 
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Where: 0.00373 µM
-1 

is the NADPH extinction coefficient; 0.19 ml is the final assay 

volume in each well; 0.02 ml is the volume of sample in each well; and the sample dilution 

is 30 X. 

 

In order to ensure reproducibility, Microsoft Excel was used to design a spreadsheet into 

which the formulae were entered. The absorbance values were then entered into the 

spreadsheet and the GPx activity was calculated.  

 

For both methods the GPx activity results were reported in units of nmol of NADPH 

oxidized to NADP
+ 

per minute per ml (nmol/min/ml). The units were then manually 

converted, using Microsoft Excel, to units per millilitre (U/ml) where one unit (U) is 

defined as the enzyme activity that catalyzes the oxidation of 1 µmol of NADPH to 

NADP
+ 

per minute. In order to report the GPx activity results, for the field work samples, 

in the standard SI units of Units per gram haemoglobin (U/g Hb), the haemoglobin 

concentration of the samples was measured.  

 

2.1.8 Measurement of haemoglobin  

 

The haemoglobin concentration (in g Hb/dl) of the erythrocyte lysate samples was 

measured using a Coulter ® LH500 Hematology Analyzer (Beckman Coulter, Inc, USA). 

Since the replicate erythrocyte lysate samples used in the optimization of GPx 

methodology experiments (see section 2.3.1) were prepared from the same blood sample it 

was not necessary to measure the haemoglobin concentration of these samples. Therefore, 

haemoglobin concentration was only measured in the erythrocyte lysate samples collected 

during the field work (see section 2.4.4). 
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2.2 Protocol for the assay of Clara Cell Protein 16  

 

The Clara cell protein 16 (CC16) concentration was determined using a Human Clara Cell 

Protein ELISA kit (BioVendor Laboratory Medicine, Inc; Czech Republic) according to 

the manufacturer’s instructions.  

 

2.2.1 Principle of the Human Clara Cell Protein ELISA Kit  

 

The Human Clara Cell Protein ELISA kit is a biotin labelled antibody based sandwich 

enzyme immunoassay for the quantitative measurement of human CC16 in serum, plasma, 

tissue culture medium and bronchoalveolar lavage fluid. Standards, quality controls or 

samples are incubated with rabbit polyclonal anti-human Clara Cell Protein antibody 

coated in microtiter wells. A washing step is then performed and biotin-labelled polyclonal 

anti-human Clara Cell Protein antibody is added to bind with the captured CC16. After 

incubation and washing, streptavidin-horseradish peroxidase conjugate is added to bind to 

the biotin attached to the captured CC16 via the polyclonal anti-human Clara Cell Protein 

antibody. Following a final incubation and washing, the remaining conjugate is allowed to 

react with the substrate H2O2-tetramethylbenzidine. The reaction is stopped by addition of 

acidic solution and absorbance of the resulting yellow product is measured at 450 nm. The 

absorbance is proportional to the concentration of Clara Cell Protein. A standard curve is 

constructed by plotting absorbance values versus Clara Cell Protein concentrations of 

calibrators, and concentrations of the unknown samples are determined using the standard 

curve.
 
[BioVendor, 2006]. 
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2.2.2 Human Clara Cell Protein ELISA Kit specifications 

 

Each kit contained 100 ml of wash solution concentrate (10 X), 20 ml of dilution buffer,    

13 ml of biotin labelled antibody solution, 13 ml of streptavidin- horseradish peroxidase 

(HRP) conjugate, 13 ml of substrate solution (TMB), 13 ml of stop solution (0.2 M 

H2SO4), two vials of quality control (QC) high (lyophilized), two vials of QC low 

(lyophilized), one vial of Clara Cell Protein master calibrator (purified from human urine 

and then lyophilized), and sealed antibody coated microtitier strips (96 wells). An 

instruction manual and a certificate of analysis were also included with the kit. 

 

The kits were stored at between 2 
o
C and 8 

o
C until the indicated expiration date. 

 

2.2.3 Reagent preparation  

 

Before performing the assay, the kit was removed from the 4 
o
C fridge and the components 

were brought to room temperature (approximately 25 
o
C).  

 

Diluted wash solution was prepared by adding 100 ml of the wash solution concentrate into 

a clearly labelled 1 L Schott laboratory bottle (Schott UK Ltd, UK) containing 900 ml of 

HPLC-grade water, and gently mixing. The diluted wash solution was stable for one month 

if stored at 4 
o
C. 

 

The Clara Cell Protein Master Calibrator was reconstituted by the addition of 0.5 ml 

dilution buffer and mixed gently. The concentration of human Clara Cell Protein in the 
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stock solution was 100 ng/ml. The 100 ng/ml stock solution was serially diluted to prepare 

a 40, 20, 10, 5 and 2 ng/ml standard according to table 2.2.3.a.  

 

Table 2.2.3.a: Preparation of Clara Cell Protein standards by serial dilution of 100 ng/ml 

Clara Cell Protein stock solution 
 

Volume of standard 
Volume of 

dilution buffer 

Final concentration  

of standard 

200 µl of 100 ng/ml stock 300 µl 40 ng/ml 

200 µl of 40 ng/ml standard 200 µl 20 ng/ml 

200 µl of 20 ng/ml standard 200 µl 10 ng/ml 

200 µl of 10 ng/ml standard 200 µl 5 ng/ml 

200 µl of 50 ng/ml standard 300 µl 2 ng/ml 

 
 

The QC high, QC low and the six standards were diluted 25 X by pipetting 10 µl of the 

reagent into a 1.5 ml microcentrifuge tube containing 240 µl dilution buffer and were 

mixed gently. 

 

Each Human Clara Cell Protein ELISA kit contains a certificate of analysis stating the 

expected results for the provided standards and quality controls (refer to table 2.2.3.b 

below and Appendix E). 

 

Table 2.2.3.b: Expected ELISA results for standards and quality controls (QCs) as specified 

by the certificate of analysis (for lot no RD-1276R1) 

Standards/ QC Average A450 
Expected CC16  

concentration (ng/ml) 

Standard 1 3.245 100 

Standard 2 2.482 40 

Standard 3 1.637 20 

Standard 4 0.987 10 

Standard 5 0.569 5 

Standard 6 0.264 2 

Blank 0.011 - 

QC High 1.913 23.09 (18.5-27.7) 

QC Low 0.546 4.46 (3.6-5.3) 



  

 

 69 

2.2.4 Sample preparation 

 

The thawed serum samples (the preparation of which is described in sections 2.3.2.2, 

2.3.3.2, 2.3.4.2, 2.3.5.2 and 2.4.4.1) were diluted 25 X by transferring 5 µl sample into a 

1.5 ml microcentrifuge tube containing 120 µl of dilution buffer and mixed gently.  

 

2.2.5 Assay procedure 

 

The blank wells were prepared by pipetting 100 µl dilution buffer in the designated wells 

in duplicate. The quality control wells were prepared by pipetting 100 µl diluted QC high 

and diluted QC low into the designated wells in duplicate. The standard wells were 

prepared by pipetting 100µl of the diluted 100, 40, 20, 10, 5 and 2 ng/ml CC16 standards 

into the designated wells in duplicate. The sample wells were prepared by pipetting 100 µl 

of diluted serum sample into the designated wells. 

 

The plate was wrapped in foil and incubated at room temperature for 75 minutes. The plate 

was washed five times with 1 X wash solution using an automated microplate washer. 

Biotin labelled antibody solution (100 µl) was then added to each well and the plate was 

wrapped in foil and incubated at room temperature for 75 minutes. Following a second 

washing step, a 100 µl streptavidin-HRP conjugate solution was added to each well. The 

plate was wrapped in foil and incubated at room temperature for a further 75 minutes. A 

third washing step was performed after which 100 µl substrate solution was added to each 

well. The plate was wrapped in foil and incubated, in the dark, at room temperature for an 

additional 10 minutes (the incubation time was increased to 20 minutes if the room 
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temperature was lower than 20 
o
C). The colour development was stopped by the addition 

of 100 µl stop solution. The plate was analyzed immediately.  

 

2.2.6 Plate analysis 

 

Analysis of the plate involved the measurement of the absorbance of the blanks, quality 

controls, standards and samples at 450 nm using an automated BioTek ELx800
TM

 

microplate reader in conjunction with KC4
TM

v3.4 software. 

 

The microplate reader was set up while the reagents and samples were thawed. A laptop 

installed with KC4
TM

v3.4 software and a HP LaserJet 1010 printer were connected to the 

microplate reader. Using the KC4
TM

v3.4 program and the accompanying manufacturers’ 

instructions, a new protocol was designed for each experiment. Each protocol included 

details of the layout of blanks, quality controls, standards and samples in the plate; the 

wavelength to be used; the type of standard curve, and the results required in the printed 

report. 

 

2.2.7 Calculation of CC16 concentration 

 

The absorbance values, corrected absorbance values, CC16 concentrations and a standard 

curve (refer to figure 2.2.7) were automatically calculated by the KC4
TM

v3.4 software and 

the results were presented in a report that was printed (see Appendix F). In order to allow 

statistical analysis of the results, they were entered into a spreadsheet in Microsoft Excel. 
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Figure 2.2.7: Example of the CC16 standard curve obtained using the KC4
TM

v3.4 software. 
The curve was constructed by plotting the absorbance at 450 nm (Y) obtained for the standards 

versus the log of the known CC16 concentration (X) of the standards, using the four-parameter 

function. 
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2.3 Optimization of operational parameters 

 

Before the field work could commence, it was essential to determine the optimal 

conditions for the handling, storage and assaying of the GPx and CC16 samples in order to 

ensure reliable and reproducible results. A series of four optimization experiments were 

carried out to investigate the effects of storage temperature, time between blood collection 

and separation, ambient laboratory temperature and storage duration on the assessed levels 

of erythrocyte GPx and serum CC16.  

 

2.3.1 Study sample 

 

Willing volunteers were recruited from the National Institute for Occupational Health 

(NIOH). After reading the information sheet (Appendix G) and signing the necessary 

consent forms (Appendix H), blood specimens were collected from the volunteers. Five 

volunteers were used for the GPx experiments (one male and four females) and four 

volunteers were used for the CC16 experiments (three males and one female). 

 

2.3.2 The effect of storage temperature 

 

2.3.2.1 Erythrocyte GPx 

 

Venous blood was collected from two volunteers into two 6 ml BD Vacutainer


 tubes 

containing Lithium heparin as an anti-coagulant (Becton, Dickinson and Company, 
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U.S.A.). The bloods were immediately centrifuged at 1300 x g for 10 minutes at room 

temperature (approximately 25 
o
C). The upper plasma layer and buffy coat (leukocytes) 

were discarded and forty five 50 µl aliquots of packed erythrocytes were pipetted into     

1.5 ml microcentrifuge tubes containing 200 µl ice-cold distilled water (in order to lyse the 

erythrocytes). The samples were inverted gently to mix and centrifuged at 10 000 x g for 

15 minutes at 4 
o
C. The erythrocyte lysate supernatant (100 µl) was pipetted into clearly 

labelled 1.8 ml CryoTubes


. Fifteen aliquots each were stored at 4 
o
C, -20 

o
C or -80 

o
C, 

respectively. 

 

At the end of three weeks storage, the 45 erythrocyte lysate samples were thawed at room 

temperature. The GPx activity in the samples was then determined using the Glutathione 

Peroxidase Assay Kit as described in section 2.1.  

 

2.3.2.2 Serum CC16  

 

Venous blood was collected from two volunteers into two 6 ml BD Vacutainer tubes 

containing Clot Act (Becton, Dickinson and Company, U.S.A.). The bloods were left to 

coagulate at room temperature for 10 minutes and then centrifuged at 1300 x g for 10 

minutes at room temperature. Forty five aliquots of 50 µl serum were pipetted into clearly 

labelled 1.8 ml CryoTubes. Fifteen aliquots each were stored at 4 
o
C, -20 

o
C or -80 

o
C, 

respectively. 

 

Following three weeks of storage, the 45 serum samples were thawed at room temperature. 

The CC16 concentration in the serum samples was then determined using a Clara Cell 

Protein Human ELISA Kit as detailed in section 2.2. 
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2.3.3 The effect of a delay in time between blood sample 

collection and separation 

 

2.3.3.1 Erythrocyte GPx  

 

Venous blood was collected from two volunteers into two 6 ml BD Vacutainer


 tubes 

containing Lithium heparin. One of the 6 ml tubes was immediately centrifuged at 1300 x g 

for 10 minutes at room temperature. From the remaining 6 ml tube, half the blood was 

transferred into a new BD Vacutainer


 tube. The two tubes containing 3 ml blood were left 

at room temperature for 1 and 2 hours, respectively, before centrifugation at   1300 x g for 

10 minutes at room temperature.  

 

Following centrifugation, the upper plasma layer and buffy coat were discarded and fifteen  

50 µl aliquots of packed erythrocytes were pipetted into 1.5 ml microcentrifuge tubes 

containing 200 µl ice-cold distilled water. The samples were gently inverted to mix and 

centrifuged at 10 000 x g for 15 minutes at 4
o
C. The erythrocyte lysate supernatant (100 µl) 

was pipetted into clearly labelled 1.8 ml CryoTubes and frozen at -80 
o
C.  

 

After two weeks of storage, the 45 erythrocyte lysate samples were thawed at room 

temperature. The GPx activity in the samples was then determined using a Glutathione 

Peroxidase Assay kit as described in section 2.1. 
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2.3.3.2 Serum CC16 

 

Venous blood was collected from two volunteers into two 6 ml BD Vacutainer tubes 

containing Clot Act. The bloods were left to coagulate at room temperature. Half the blood 

from one tube was transferred to a new BD Vacutainer tube. The two tubes, containing  

3 ml blood, were left at room temperature for 1 and 2 hours (respectively) before 

centrifugation at 1300 x g for 10 minutes at room temperature. After only 10 minutes, the 

remaining 6 ml tube was centrifuged at 1300 x g for 10 minutes at room temperature. 

Fifteen aliquots of 50 µl serum were pipetted from each tube into clearly labelled 1.8 ml 

CryoTubes and frozen at -80 
o
C.  

 

At the end of two weeks of storage, the 45 serum samples were thawed at room 

temperature. The CC16 concentration in the serum samples was then determined using a 

Clara Cell Protein Human ELISA Kit as detailed in section 2.2. 

 

2.3.4 The effect of ambient laboratory temperature 

 

2.3.4.1 Erythrocyte GPx 

 

Venous blood was collected from two volunteers into two 6 ml BD Vacutainer


 tubes 

containing Lithium heparin. The bloods were immediately centrifuged at 1300 x g for            

10 minutes at room temperature. During the subsequent erythrocyte lysate preparation 

steps, one tube of separated blood (and resulting samples) was kept at 25 
o
C while the 
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other tube (and resulting samples) was kept at 35 
o
C using a Labnet AccuBlock Digital Dry 

Bath (Labnet International, Inc., USA).  

 

Following centrifugation, the upper plasma layer and buffy coat were discarded and fifteen  

50 µl aliquots of packed erythrocytes were pipetted from each tube into 1.5 ml 

microcentrifuge tubes containing 200 µl ice-cold distilled water. The samples were gently 

mixed and centrifuged at 10 000 x g for 15 minutes at 4 
o
C. The erythrocyte lysate 

supernatant (100 µl) was pipetted into clearly labelled 1.8 ml CryoTubes and frozen at    

-80 
o
C.  

 

After two weeks of storage, the 30 erythrocyte lysate samples were thawed and the GPx 

activity in the samples was then determined using a Glutathione Peroxidase Assay Kit as 

described in section 2.1. During the thawing and assay preparation steps, one set of 15 

erythrocyte lysate aliquots was kept at 25 
o
C while the other was kept at 35 

o
C using the 

Labnet AccuBlock Digital Dry Bath.  

 

2.3.4.2 Serum CC16 

 

Venous blood was collected from two volunteers into two 6 ml BD Vacutainer tubes 

containing Clot Act. During the subsequent serum sample preparation, thawing and assay 

preparation steps, one tube of blood (and resulting serum samples) was kept at 25 
o
C while 

the other tube (and resulting serum samples) was kept at 35 
o
C using a Labnet AccuBlock 

Digital Dry Bath.  
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The collected bloods were left to coagulate (at the different temperature) for 10 minutes 

and then centrifuged at 1300 x g for 10 minutes at room temperature. Fifteen aliquots of  

50 µl serum were collected from each tube of separated blood into clearly labelled 1.8 ml 

CryoTubes and frozen at -80 
o
C.  

 

Following two weeks of storage, the 30 serum samples were thawed and the CC16 

concentration in the serum samples was then determined using a Clara Cell Protein Human 

ELISA Kit as detailed in section 2.2.  

 

2.3.5 The effect of storage duration 

 

2.3.5.1 Erythrocyte GPx 

 

Venous blood was collected from two volunteers into two 6 ml BD Vacutainer


 tubes 

containing Lithium heparin. The bloods were immediately centrifuged at 1300 x g for            

10 minutes at room temperature. The upper plasma layer and buffy coat were discarded 

and 60 aliquots of 50 µl packed erythrocytes were pipetted into 1.5 ml microcentrifuge 

tubes containing 200 µl ice-cold distilled water. After gentle mixing, the samples were 

centrifuged at 10 000 x g for 15 minutes at 4 
o
C. The erythrocyte lysate supernatant      

(100 µl) was pipetted into clearly labelled 1.8 ml CryoTubes. Fifteen erythrocyte lysate 

aliquots were assayed immediately. The remaining 45 erythrocyte lysate aliquots were 

stored at -80 
o
C for three, six, and nine weeks respectively. At the end of the specified 

storage period, 15 frozen erythrocyte lysate aliquots were thawed at room temperature 

(approximately 25 
o
C) and the GPx activity in the samples was then determined using a 
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Glutathione Peroxidase Assay Kit as described in section 2.1. As a result each frozen 

erythrocyte lysate aliquot was assayed and then discarded.  

 

2.3.5.2 Serum CC16  

 

Venous blood was collected from two volunteers into two 6 ml BD Vacutainer tubes 

containing Clot Act. The bloods were left to coagulate at room temperature for ten minutes 

and then centrifuged at 1300 x g for 10 minutes at room temperature. Sixty aliquots of     

50 µl serum were pipetted into clearly labelled 1.8 ml CryoTubes. Fifteen serum aliquots 

were assayed immediately. The remaining 45 serum aliquots were stored at -80 
o
C for 

three, six, and nine weeks respectively. At the end of the specified storage period, 15 

frozen serum aliquots were thawed at room temperature (approximately 25 
o
C) and the 

CC16 concentration in the serum samples was then determined using a Clara Cell Protein 

Human ELISA Kit as detailed in section 2.2. As a result each frozen serum aliquot was 

assayed and then discarded.  

 

The results obtained from the optimization experiments were then used to develop 

Standard Operating Procedures (SOPs) for the handling, processing and analysis of GPx 

CC16 samples. The SOPs are attached as Appendix I and J, respectively.  
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2.4 Field work 

 

2.4.1 Study design 

 

2.4.1.1. Study population 

 

The study population consisted of volunteer male underground mine workers at a 

Goldfields gold mine in North West province, South Africa. 

 

2.4.1.2. Study sample 

 

The sample consisted of volunteers who met the inclusion criteria for the study.  

 

2.4.1.3. Inclusion criteria 

 

���� Adult males 

���� Volunteers 

���� Underground mine workers 

���� New employees or returning from two or more weeks leave at the time of study 

recruitment 
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2.4.1.4. Exclusion criteria 

 

���� Difficult to contact telephonically to arrange follow-up visits 

���� Taking medication for pulmonary tuberculosis  

���� Unwilling to give blood specimens 

 

The HIV sero-status of the volunteers was not sought since the second phase of the project 

had previously shown that GPx and CC16 levels were not affected by HIV sero-status, or 

by the taking of ARV treatment.  

 

2.4.1.5. Study design 

 

A series of cross-sectional studies of 80 mine workers exposed to low and high levels of 

dust (determined by current job description as described in section 2.4.6).   

 

2.4.2 Recruitment of participants 

 

Prior to commencing the recruitment of the study participants, written permission was 

obtained from the management of the mine involved to be able to conduct the study on 

their premises without hindrance. A meeting was also held with the representatives of all 

the Unions active in the mine who expressed their satisfaction and support for the study.  
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Additional assistance for the recruitment of participants and collection of field work 

samples was provided by Professor Brendan Girdler-Brown (a qualified medical 

practitioner) who was responsible for blood sample collection and by Miss Lerato Kaphe 

and Miss Thoko Ndlovu (Diploma in Technology students) who assisted with language 

interpretation. 

 

All miners undergo an induction course after their annual leave that includes a routine 

medical examination (including chest radiography) and training or re-training, which takes 

place at the mines’ Training Academy. For the current study, a temporary field laboratory 

was set up in a room in this Training Academy. Every morning (between 9 am and 1 pm) 

the employees undergoing training were given a brief multi-lingual presentation informing 

them about the project and its requirements and that their participation was voluntary. 

Those who agreed to participate were asked to meet the research team in the temporary 

laboratory at their convenience, but prior to their return to underground work. 

 

Volunteers who agreed to participate were asked to review a short information sheet 

(Appendix K), sign a consent form (Appendix L) as well as to complete a short 

questionnaire (Appendix M) (figure 2.4.2). Those volunteers, who agreed to have their 

photographs taken to be used in scientific publications and reports, were asked to sign an 

additional consent form (Appendix N). Thereafter, 15 ml of venous blood, representing the 

returning from leave (ex-leave) sample, was drawn by the qualified medical practitioner 

who is registered as such with the Health Professions Council of South Africa (HPCSA).  
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Figure 2.4.2: Prof Girdler-Brown, (left) and Miss Kaphe (middle) help a volunteer (right) to 

fill out the consent form and questionnaire. The photograph was taken after obtaining written 

consent. 

 

A total of 80 volunteers were recruited between the period of February and April 2007. 

 

2.4.3 Collection of specimens from volunteers 

 

The project protocol called for the collection of two sets of blood specimens from the 

volunteers, return from leave (ex-leave) and return to work (follow up) specimens. The 

purpose of this collection procedure was to examine the levels of GPx and CC16 before 

and after occupational exposure to crystalline silica. 

 

As stated in section 2.4.2, the return from leave (ex-leave) specimens were collected from 

the volunteers at the time of recruitment when the volunteers had been on leave for a 

period of at least two weeks. Venous blood was collected from volunteers into three 6 ml 

BD Vacutainer tubes, two containing Lithium Heparin and one containing Clot Act. 
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Once ex-leave blood specimens were collected from a total of 80 volunteers, the same 

volunteers were contacted telephonically to arrange the collection of the return to work 

(follow up) specimens. Collection of follow up samples was carried out between May and 

August 2007.  Due to the complexity of the follow up specimen collection procedure, the 

time between the collection of the ex-leave and follow up samples (i.e. the time of 

exposure to crystalline silica-containing dust) could not be kept constant. The silica 

exposure time therefore ranged from 8 to 25 weeks (i.e. two to six months).  

 

The collection of the follow up specimens was carried out at the mine shafts in a 

designated room (figure 2.4.3). The shafts in operation at the mine during the study period 

were shafts one, three, four, seven and eight. In order to make the collection of follow up 

samples efficient, the volunteers were grouped according to the shaft at which they worked 

and a timetable of which shafts would be visited on which dates was prepared. Since the 

original protocol stated that the return to work specimens would be collected from each 

volunteer on a Monday (pre-shift), a Wednesday (pre- and post-shift), and a Friday (post-

shift), it was decided that one full week would need to spent at each shaft. The first two 

weeks were spent at shafts one and three. During that time, even though they had been 

informed and had agreed at the time of recruitment, all but one volunteer decided that they 

were not willing to give a blood specimen four times in one week. Because of the difficulty 

experienced, the specimen collection procedure was then revised so that specimens were 

collected either on a Monday (pre-shift), a Wednesday (pre- and post-shift), or a Friday 

(post-shift). When the miners were contacted and informed of the dates the research team 

would be at their shaft, they were asked whether they would be prepared to give two 

specimens on a Wednesday (pre- and post-shift). Those who said they were not prepared to 

do so were randomly (by tossing a coin) allocated to a single specimen collected either on 
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a Monday (pre-shift) or on a Friday (post-shift). There was only one volunteer from whom 

a return to work sample was collected on a Monday, Wednesday and Friday and three 

volunteers from whom a return to work sample was collected on two of the days. With the 

exception of the few volunteers who worked afternoon or evening shifts, the pre-shift 

samples were collected between 4:30 am and 7:30 am while the post-shift samples were 

collected between 12 noon and 3 pm. 

 

The collection of the follow up specimens involved the collection of venous blood into two     

6 ml BD Vacutainer tubes, one containing Lithium Heparin and the other containing Clot 

Act. 

 

 

Figure 2.4.3: Prof Girdler-Brown, (left) draws a follow up blood sample from a volunteer 
(right) in the mine shaft computer room. The photograph was taken after obtaining written 

consent. 
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2.4.4 Processing of specimens 

 

2.4.4.1 Processing of bloods 

 

Immediately after blood collection, the BD Vacutainer tubes containing Lithium Heparin 

were centrifuged at 1300 x g for 10 minutes at room temperature. The upper plasma layer 

and buffy coat were discarded and triplicate aliquots of 0.3 ml packed erythrocytes were 

added to 1.2 ml cold distilled water in 1.5 ml microcentrifuge tubes. The samples were 

inverted gently to mix and centrifuged at 10 000 x g for 15 minutes at 4 
o
C. Aliquots of      

1 ml erythrocyte lysate (i.e. the supernatant) were pipetted in triplicate into clearly labelled 

1.8 ml CryoTubes and shock frozen in a Dewar tank of liquid nitrogen. The erythrocyte 

lysate was used to determine GPx activity.  

 

After being left to clot for 10 minutes, the BD Vacutainer tube containing Clot Act was 

centrifuged at 1300 x g for 10 minutes at room temperature. Aliquots of 300 µl serum were 

pipetted in triplicate into clearly labelled 1.8 ml CryoTubes and shock frozen in a Dewar 

tank of liquid nitrogen.  The serum was used to determine CC16 concentration.  

 

2.4.4.2 Transport and storage of samples 

 

The samples were placed in cooler boxes with ice packs (± 4 
o
C), transported back to the 

NIOH laboratory within 1 hour and placed in a -80 
o
C freezer (as recommended by the 

assay kit manufacturers and optimization experiment results) until assayed in batches. 
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2.4.4.3 Assay of Glutathione Peroxidase (GPx) 

 

Following storage for four to six weeks, the triplicate erythrocyte lysate samples were 

thawed and assayed using the Glutathione Peroxidase Assay Kit as described in section 

2.1. In the assay, the samples and controls were randomly allocated to wells using a table 

of random numbers.  

 

2.4.4.4 Assay of Clara Cell protein 16 (CC16) 

 

After storage for eight to ten weeks, the triplicate serum aliquots were thawed and assayed 

using a Clara Cell Protein Human ELISA Kit as described in section 2.2. For the assay the 

standards, samples and controls were randomly allocated to wells using a table of random 

numbers.  

 

2.4.5 Chest radiography 

 

The volunteers signed a consent form (Appendix L) giving the research team permission to 

examine their most recent chest radiographs collected at the Occupational Health Centre. 

The radiographs were obtained as digital images and were independently assessed for 

silicosis by two experienced readers (Prof A Solomons and Prof D Rees of the National 

Institute for Occupational Health) with the aid of DigiRad Imaging Solutions software. 

International Labour Organisation (ILO) category scores of 1/1 or greater were considered 

to be indicative of silicosis for the purpose of this study.  
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2.4.6 Dust exposure classification of jobs 

 

The volunteers were asked to sign a consent form (Appendix L) giving the research team 

permission to access their occupational history, in particular their job title and code, from 

the human resources department.  

 

In a previous study carried out by Aurum Health Research (Pty) Ltd at a similar gold mine 

[Churchyard et al., 2003], the mine jobs were classified into high, medium and low dust 

exposure categories based on the judgment of two experienced hygienists who were 

familiar with the mine.  The lists of jobs and corresponding dust exposure levels, used for 

that study, were obtained by personal correspondence with Professor G. Churchyard. The 

lists were used to classify the jobs of this study’s volunteers into high or low dust exposure 

categories as summarised in table 2.4.6.  

 

It is important to note that using current job descriptions to classify dust exposure levels is 

not a reliable or accurate measure of a volunteers personal dust exposure. Therefore, in the 

current study, these job classifications were merely used as an indication of dust exposure 

levels and all results based on these classifications should be treated with caution. 
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Table 2.4.6: Summary of the job categories and corresponding dust exposure levels of 

volunteers in the study 

 

Occupation 
Dust exposure level 

High=H, Low=L 
n 

Aquajet operator H 2 

Banksman L 1 

Chief safety officer L 1 

Developer H 1 

Electrician L 5 

Fitter and turner L 2 

General miner H 11 

Grade officer L 1 

Loader operator H 2 

Loco Driver L 6 

Mine overseer L 1 

Night shift cleaner H 3 

Onsetter L 1 

Plant manager L 1 

Pump attendant L 3 

Rigger L 3 

Safety officer L 1 

Scraper winch driver H 3 

Section engineer L 1 

Senior surveyor (uncertified) L 1 

Shaft and construction timberman  L 1 

Shaft foreman L 1 

Shift boss L 6 

Stoper H 12 

Survey leading hand L 1 

Surveyor (uncertified) L 3 

Wining engine driver (U/G) L 2 
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2.5 Ethical issues 

 

This study protocol was approved by the University of the Witwatersrand Human Research 

Ethics Committees (Clearance number: R14/49 Makinson) (Attached as Appendix O). 

 

The study was funded in full by the Mines Health and Safety Council and was approved by 

employers, government and labour union representatives. 

 

Participation was entirely voluntary.  

 

Volunteers were given an information leaflet and a copy of the informed consent form in 

the language of their choice (English, Afrikaans or Zulu) to keep. The participant 

information leaflet advised participants that the test results had no diagnostic value and that 

individual results could not be used to indicate (in an absolute sense) their individual dust 

exposure levels.  

 

All venesections were performed by a medical practitioner registered with the HPCSA and 

there was 24 hour medical attention available for miners who might have suffered 

discomfort or anxiety following the venesection (none did). There was no testing of blood 

for HIV, neither were participants asked about their HIV infection status at any time. If any 

volunteer had medical questions they were generally answered by the medical practitioner 

who drew their blood specimen and they were told to obtain medical follow up. In cases 
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where abnormalities were detected on the chest radiographs, the identities of the miners 

concerned were communicated to the mines medical staff for follow-up. 

 

Individual results were kept confidential and were not divulged to any person other than 

the individual miner at his specific request. When requested, the meaning of their 

individual results was carefully explained and it was emphasized that each person has his 

own “normal” level for biomarkers tested and that no individual result could be used to 

indicate disease, freedom from disease, or over or under-exposure to silica either 

chronically or acutely. 

 

A feed-back session for participating miners, accompanied by a lunch, was held on the 24
th

 

November 2007 and again on 8
th

 December 2007. During these sessions miners were 

provided with a summary of the findings, and the overall results were explained. Miners 

who wanted their individual results were supplied with their results (in writing) along with 

a one-to-one explanation regarding interpretation at the time of the feed-back session.  

 

When a photograph(s) of a volunteer was taken, their written permission was obtained 

beforehand on a consent form that also indicated whether they were willing to have the 

photograph(s) published.  
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2.6 Statistical methods 

 

The data provided in the questionnaire by the volunteers were entered into Microsoft Excel 

and exported to Stata version 9 (StataCorp LP, USA) where all the statistical analyses were 

performed. The data were manually double-checked for the correctness of entries. Any 

data observation which was greater than 2.IQR (interquartile range) above or below the 

median was considered an outlier and was excluded from the data set.  

Unless otherwise stated, for hypotheses tests the critical value for rejecting a null 

hypothesis was adopted as p ≤ 0.05. 

Box-plots were used to portray the data distributions.  

 

When the data sets being compared showed compatibility with having been drawn at 

random from a normally distributed population based on the results of the Shapiro-Wilk W 

test [Shapiro and Wilk, 1965], t-tests were used to evaluate differences between means 

provided.  

 

Paired t-tests were performed for paired data (for example for comparisons of the ex-leave 

specimens with the follow up specimens as well as for comparisons of the Wednesday pre-

shift and Wednesday post-shift specimens). For paired t-tests, before the test was carried 

out, the differences were first checked by means of the Shapiro-Wilk W test to ensure that 

they were compatible with having been drawn at random from a normally distributed 

population. The Bonferroni adjusted critical alpha-value (α*) was then manually 

calculated, as α*= 0.05/x where x= k!/2!*(k-2)! (for example, for three pair wise 
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comparisons α* = 0.05/3 = 0.017) [Pagano and Gauvreau, 2000], and used to determine 

the level of significance for the pair-wise comparisons. 

 

Unpaired t-tests were performed where data were not from the same miner (for example 

comparisons of the Monday pre-shift and Friday post-shift specimens). The F-test (Stata 

command “sdtest”) was used to assess the equivalence of sample variances prior to 

performance of the unpaired t-tests. In cases where the sample variances were unequal, the 

variation of the t-test for samples with unequal variances was used. Interpretation of these 

tests with unequal variances was carried out using Satterthwaite’s method [Satterthwaite, 

1946]. 

 

In cases where the data were not compatible with having been drawn at random from a 

normally distributed population, comparisons were carried out using the two sample rank-

sum test for unpaired data (Stata command “ranksum”), or the signed-rank test (Stata 

command “signrank”) for paired data as applicable. If possible, the data were also 

transformed to achieve a normal distribution and allow parametric tests to be performed.  

 

Where multiple comparisons were made (for data that were compatible with being drawn 

at random from normally distributed populations) ANOVA was used with Bonferroni-

adjusted p-values being used for interpretation of individual pair-wise comparisons. The 

Kruskal-Wallis test of equality of populations was used for multiple comparisons in 

instances in which the sample data were not compatible with having been drawn at random 

from a normally distributed population [Kruskal and Wallis, 1952a; Kruskal and Wallis, 

1952b].  
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Since only a single set of ex-leave and follow-up samples were collected for each volunteer 

and due to the high variability of some biomarker levels it was not possible to reliably 

compare biomarker levels on an individual basis. As a result all analysis involved 

population-based average readings and all individual results were treated with caution. 
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Chapter 3: 

RESULTS 

 

This third phase of the project on biomarkers consisted of two parts: 

The first part involved optimisation of the operational parameters for the establishment of 

the Standard Operating Procedures (SOPs). Four separate experiments were performed in 

which the effects of storage temperature, a delay in time between blood collection and 

separation, ambient laboratory temperature and storage duration on the levels of 

erythrocyte GPx activity and serum CC16 concentration were investigated (the results are 

presented in section 3.1). 

 

The second part involved field work during which adult male miners were recruited from a 

gold mine in North West province, South Africa. Blood specimens were collected from the 

mine volunteers after their return from leave (at the time of recruitment), and then again 

after their return to work on a Monday (pre-shift), a Wednesday (pre- and post-shift), 

and/or on a Friday (post-shift) (the results of which are presented in section 3.2).  
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3.1 Optimization of the operational parameters 

 

These optimization experiments were performed with the intention of developing SOPs for 

the handling, processing and analysis of GPx and CC16 samples to ensure optimum 

precision and reproducibility during the field work and also during future research. (The 

SOPs are attached as Appendices I and J). 

 

3.1.1 Effect of storage temperature  

 

The effect of storage temperature on erythrocyte GPx activity and serum CC16 

concentration was evaluated by storing erythrocyte lysate and serum samples, collected 

from two volunteers, at 4 
o
C, -20 

o
C and -80 

o
C for 3 weeks. The GPx activity of the 

erythrocyte lysate samples was then determined using a Glutathione Peroxidase Assay Kit 

and the CC16 concentration of the serum samples was determined using a Clara Cell 

Protein Human ELISA Kit. 

 

3.1.1.1 Erythrocyte GPx 

 

For volunteer one and two, there was a slight decrease in median GPx activity as the 

storage temperature was lowered (figure 3.1.1.1 below). 

 



  

 

 96 

0
5

0
0

1
,0

0
0

1
,5

0
0

1 2

four negtwenty

negeighty

G
P

x

Graphs by Volunteer

 

Figure 3.1.1.1: GPx activity of erythrocyte lysate samples (from two volunteers) stored for 3 

weeks at 4 
o
C, -20 

o
C and -80 

o
C. The GPx activity was measured (in a total of 15 replicates per 

condition) using a Glutathione Peroxidase Assay Kit. The CV ranged from 18.7%-28.5% for 

volunteer 1 and 49.5%-69.0% for volunteer 2. In the box-and-whisker plot the line through the 

middle of the boxes represents the median GPx activity. The top and bottom of each box is the 75th 

and the 25th percentile, respectively. The top and bottom of each bar is the 90th and 10th percentile, 

respectively. The solid dot represents a data observation greater than 1.5 IQR above or below the 

median. 

 

 

Analysis revealed that, for both volunteers, the differences between the mean GPx 

activities of the samples were compatible with a normal distribution (Shapiro-Wilk W test 

for normal data, p > 0.05). This allowed paired t-tests to be used to compare the mean GPx 

activities of the samples and the results of those tests are summarised in table 3.1.1.1 

below.  
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Table 3.1.1.1: P-values obtained from the pair-wise comparison of the mean erythrocyte GPx 

activity of samples stored at various temperatures (level of significance is p ≤≤≤≤ 0.017)  

 

 

 

 

The pair-wise comparison of the means (table 3.1.1.1) revealed that the slight decrease in 

mean GPx activity observed at the lower storage temperatures (figure 3.1.1.1) was not 

statistically significant (p > Bonferonni adjusted α of 0.017).  

 

It was therefore concluded the temperature at which the erythrocyte lysate samples were 

stored had no significant effect on the GPx activity of the samples.  

 

 

3.1.1.2 Serum CC16 

 

As observed in figure 3.1.1.2 below, for both volunteers there was a decrease in the median 

CC16 concentration with a decrease in storage temperature.  

 

Volunteer 4 
o
C -20 

o
C -80 

o
C 

   4 
o
C p = 1.00   

-20 
o
C p = 0.13 p = 1.00  1 

-80 
o
C p = 0.09 p = 0.74 p = 1.00 

   4 
o
C  p = 1.00   

-20 
o
C  p = 0.47  p = 1.00  2 

-80 
o
C  p = 0.78  p = 0.77 p = 1.00 
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Figure 3.1.1.2: CC16 concentration of serum samples (from two volunteers) stored for 3 

weeks at 4 
o
C, -20 

o
C and -80 

o
C. The CC16 concentration was measured (in 15 replicates per 

condition) using a Clara Cell Protein Human ELISA Kit. The CV ranged from 8.5%-9.6% for 

volunteer 1 and 8.3%-11.4% for volunteer 2. In the box-and-whisker plot the black line through the 

middle of the boxes represents the median CC16 concentration. The top and bottom of each box is 

the 75
th
 and the 25

th
 percentile, respectively. The top and bottom of each bar is the 90

th
 and 10

th
 

percentile, respectively. The solid dots represent data observations greater than 1.5 IQR above or 

below the median. 

 

  

 

 

The differences between the mean CC16 concentrations of the samples were compatible 

with a normal distribution, for volunteer one and two (Shapiro-Wilk W test for normal 

data, p > 0.05). The mean CC16 concentrations of the samples were therefore compared 

using the paired t-test, the results of which are summarised in table 3.1.1.2 below. 
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Table 3.1.1.2: P-values obtained from the pair-wise comparison of the mean CC16 

concentration of samples stored at various temperatures (level of significance is p ≤≤≤≤ 0.017)  

 

Volunteer 4 
o
C -20 

o
C -80 

o
C 

   4 
o
C        p = 1.00   

-20 
o
C     p = 0.00* p = 1.00  1 

-80 
o
C     p = 0.00* p = 0.46 p = 1.0 

   4 
o
C       p = 1.00   

-20 
o
C p = 0.05 p = 1.00  2 

-80 
o
C   p = 0.00* p = 0.38 p = 1.0 

* Indicates p-value less than level of significance 

 

 

The pair-wise comparison of the means (table 3.1.1.2) indicated that the mean CC16 

concentration of the samples collected from volunteer one and stored at 4 
o
C was 

significantly higher than the mean CC16 concentration of the samples stored at -20 
o
C and 

-80 
o
C (p = 0.00 for both). It also indicated that there was a significant difference between 

the mean CC16 concentration of the samples collected from volunteer two and stored at    

4 
o
C and those stored at -80 

o
C (p = 0.00). For both volunteers there was no significant 

difference between the mean CC16 concentration of the samples stored at -20
o
C and -80

o
C 

(p > Bonferonni adjusted α of 0.017).  

 

Unlike the GPx results, these results indicated that the temperature at which the serum 

samples were stored did have a significant effect on the CC16 concentration of the 

samples. 
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3.1.2 Effect of a delay in time between blood sample collection 

and separation 

 

In order to determine the effect of a delay in time (between blood sample collection and 

separation) on erythrocyte GPx activity and serum CC16 concentration, blood samples 

were collected (from two volunteers) and left to stand for 0, 1 and 2 hours prior to 

separation. The resultant erythrocyte lysate and serum samples were frozen at -80 
o
C for    

2 weeks.  The GPx activity of the erythrocyte lysate samples was then measured using a 

Glutathione Peroxidase Assay Kit while the CC16 concentration of the serum samples was 

measured using a Clara Cell Protein Human ELISA Kit. 

 

3.1.2.1 Erythrocyte GPx 

 
 
An increase in delay time between blood sample collection and separation caused an 

increase in the median GPx activity of samples collected from volunteer one and a 

decrease in the median GPx activity of samples collected from volunteer two, as shown in 

figure 3.1.2.1 below.  
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Figure 3.1.2.1: GPx activity of erythrocyte lysate samples (from two volunteers) obtained 

from blood samples separated 0, 1 and 2 hours after collection.  The GPx activity was 

measured (in a total of 15 replicates per condition) after 2 weeks of storage at -80 oC using a 

Glutathione Peroxidase Assay Kit. The CV ranged from 11.2%-15.2% for volunteer 1 and 15.8%-

22.2% for volunteer 2. In the box-and-whisker plot the black line through the middle of the boxes 

represents the median GPx activity. The top and bottom of each box is the 75th and the 25th 

percentile, respectively. The top and bottom of each bar is the 90
th
 and 10

th
 percentile, respectively. 

The solid dots represent data observations greater than 1.5 IQR above or below the median. 

 

 

 

The differences between the mean GPx activities of the samples were compatible with a 

normal distribution (Shapiro-Wilk W test for normal data, p > 0.05), except for the 

difference between the mean GPx activity of the one and two hour samples of volunteer 

two (p = 0.00). As a result, the Wilcoxon signed-rank test was used to compare the mean 

GPx activities of the one and two hour samples of volunteer two while the paired t-test was 

used to compare the mean GPx activities of the other samples. The results of these 

comparisons are summarised in table 3.1.2.1 below.   
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Table 3.1.2.1: P-values obtained from the pair-wise comparison of the mean erythrocyte GPx 

activity of samples prepared after various delay times (level of significance is p ≤≤≤≤ 0.017)  

 

Volunteer 0 hour 1 hour 2 hour 

0 hour p = 1.00   

1 hour p = 0.78 p = 1.00  1 
2 hour p = 0.78 p = 0.88 p = 1.00 

0 hour p = 1.00   

1 hour p = 0.76 p = 1.00  2 
2 hour p = 0.03 p = 0.05 p = 1.00 

 

 

 
The pair-wise comparison of the mean GPx activities (table 3.1.2.1) indicated that the 

changes in mean GPx activity observed in figure 3.1.2.1 were not statistically significant  

(p > Bonferonni adjusted α of 0.017).  

 

It was therefore concluded that leaving the blood specimens to stand for up to two hours 

before their separation did not have a significant effect on the GPx activity of the resulting 

erythrocyte lysate samples. 

 

3.1.2.2 Serum CC16 

 

For volunteer one and two, a decrease in median CC16 concentration was observed with an 

increase in delay time from zero to two hours (figure 3.1.2.2 below).  
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Figure 3.1.2.2: CC16 concentration of serum samples (from two volunteers) obtained from 

blood samples separated 0, 1 and 2 hours after collection.  The CC16 concentration was 

measured (in 15 replicates per condition) after storage of the serum samples at -80 
o
C for 2 weeks 

using a Clara Cell Protein Human ELISA Kit. The CV ranged from 20.3%-40.2% for volunteer 1 

and 26.8%-47.5% for volunteer 2. In the box-and-whisker plot the black line through the middle of 

the boxes represents the median CC16 concentration. The top and bottom of each box is the 75
th
 

and the 25th percentile, respectively. The top and bottom of each bar is the 90th and 10th percentile, 

respectively. The solid dots represent data observations greater than 1.5 IQR above or below the 

median. 
 

 

 

The differences between the mean CC16 concentration of the samples were compatible 

with a normal distribution (Shapiro-Wilk W test for normal data, p > 0.05), except for the 

difference between the mean CC16 concentration of the zero and one hour samples 

collected from volunteer two (p = 0.03). As a result, the mean CC16 concentration of the 

zero and one hour samples collected from volunteer two were compared using the 

Wilcoxon signed-rank test while the mean CC16 concentration of the other samples were 

compared using the paired t-test. The results of these comparisons are shown in table 

3.1.2.2 below.  
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Table 3.1.2.2: P-values obtained from the pair-wise comparison of the mean CC16 

concentration of samples prepared after various delay times (level of significance is p ≤≤≤≤ 0.017)  

 

Volunteer 0 hour 1 hour 2 hour 

0 hour p = 1.00   

1 hour p = 0.06 p = 1.00  1 
2 hour p = 0.02 p = 0.67 p = 1.00 

0 hour p = 1.00   

1 hour p = 0.92 p = 1.00  2 
2 hour p = 0.11 p = 0.15 p = 1.00 

 

 

The pair-wise comparison of the mean CC16 concentrations (table 3.1.2.2) indicated that 

decrease in mean CC16 concentration observed in figure 3.1.2.2 was not statistically 

significant (p > Bonferonni adjusted α of 0.017).  

 

Similar to the GPx results, these results indicated that a delay time of up to two hours had 

no significant effect on the CC16 concentration of the serum samples.   

 

 

3.1.3 Effect of ambient laboratory temperature 

 

The effect of ambient laboratory temperature on erythrocyte GPx activity and serum CC16 

concentration was determined, for two volunteers, by processing one set of blood samples 

and resulting erythrocyte lysate and serum samples at 25 
o
C and another set at 35 

o
C. After 

storage for 2 weeks at -80 
o
C, the GPx activity of the erythrocyte lysate samples was 

determined using a Glutathione Peroxidase Assay Kit and the CC16 concentration of the 

serum samples was determined using a Clara Cell Protein Human ELISA Kit.  
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3.1.3.1 Erythrocyte GPx 

 
 
As demonstrated in figure 3.1.3.1, an increase in ambient laboratory temperature (from    

25 
o
C to 35 

o
C) caused an increase in the median GPx activity of samples collected from 

volunteer one and a slight decrease in the median GPx activity of samples collected from 

volunteer two.  
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Figure 3.1.3.1: GPx activity of erythrocyte lysate samples (from two volunteers) processed at   

25 
o
C and 35 

o
C. The GPx activity was measured (in a total of 15 replicates per condition) after 2 

weeks of storage at -80 oC using a Glutathione Peroxidase Assay Kit. The CV ranged from 11.0%-

16.6% for volunteer 1 and 12.1%-19.9% for volunteer 2. In the box-and-whisker plot the black line 

through the middle of the boxes represents the median GPx activity. The top and bottom of each 

box is the 75th and the 25th percentile, respectively. The top and bottom of each bar is the 90th and 

10
th
 percentile, respectively. 

 

 

The difference between the mean GPx activities of the samples prepared at different 

laboratory temperatures was compatible with a normal distribution for both volunteer one 
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and two (Shapiro-Wilk W test for normal data, p > 0.05). The mean GPx activities of the 

samples were therefore compared using the paired t-test and the results summarised in 

table 3.1.3.1.  

 

Table 3.1.3.1: P-values obtained from the pair-wise comparison of the mean erythrocyte GPx 

activity of samples prepared at different temperatures (level of significance is p ≤≤≤≤ 0.05)  

 

Volunteer 25 
o
C 35 

o
C 

25 
o
C p = 1.00  

1 
35 

o
C   p = 0.00* p = 1.00 

25 
o
C p = 1.00  

2 
35 

o
C p = 0.37 p = 1.00 

* Indicates p-value less than level of significance 

 

For volunteer one, pair-wise comparison of the means (table 3.1.3.1) indicated that the 

increased GPx activity observed at the higher ambient laboratory temperature of 35 
o
C was 

statistically significant (p=0.00). For volunteer two, however, pair-wise comparison of the 

means indicated that the decreased GPx activity observed at the higher ambient laboratory 

temperature was not statistically significant (p=0.37).  

 

Therefore, the results of the current study suggest that the laboratory temperature at which 

the erythrocyte lysate samples are processed may affect the GPx activity. 

 

3.1.3.2 Serum CC16 

 

The median CC16 concentration of the samples prepared at an ambient laboratory 

temperature of 35 
o
C was higher than that of the samples prepared at 25 

o
C for both 

volunteers (figure 3.1.3.2 below).  
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Figure 3.1.3.2: CC16 concentration of serum samples (from two volunteers) processed at      

25 
o
C and 35 

o
C. The CC16 concentration was measured (in 15 replicates per condition) after 

storage of the serum samples at -80 
o
C for 2 weeks using a Clara Cell Protein Human ELISA Kit. 

The CV ranged from 10.3%-11.8% for volunteer 1 and 7.5%-16.2% for volunteer 2. In the box-

and-whisker plot the black line through the middle of the boxes represents the median CC16 

concentration. The top and bottom of each box is the 75
th
 and the 25

th
 percentile, respectively. The 

top and bottom of each bar is the 90
th
 and 10

th
 percentile, respectively.  

 

 

Since the differences between the mean CC16 concentrations of the samples prepared at 

different laboratory temperatures were compatible with a normal distribution for both 

volunteers (Shapiro-Wilk W test for normal data, p > 0.05), the mean CC16 concentrations 

of the samples were compared using paired t-tests. The results of these comparisons are 

presented in table 3.1.3.2 below. 
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Table 3.1.3.2: P-values obtained from the pair-wise comparison of the mean serum CC16 

concentration of samples prepared at different temperatures (level of significance is p ≤≤≤≤ 0.05)  

 

Volunteer 25 
o
C 35 

o
C 

25 
o
C p = 1.00  

1 
35 

o
C   p = 0.01* p = 1.00 

25 
o
C p = 1.00  

2 
35 

o
C p = 0.10 p = 1.00 

* Indicates p-value less than level of significance 

 

For volunteer one, pair-wise comparison of the means (table 3.1.3.2) indicated that the 

mean CC16 concentration of the samples processed at 35 
o
C was significantly higher        

(p = 0.01) than that of the samples processed at 25 
o
C. On the other hand, for volunteer 

two, pair-wise comparison of the means indicated that there was no significant difference 

(p = 0.10) between the mean CC16 concentration of the samples processed at 25 
o
C and   

35 
o
C.  

 

Therefore, the current investigation also indicated that the temperature at which the serum 

samples are processed may have a significant effect on the CC16 concentration of the 

samples.  

 

 

3.1.4 Effect of storage duration 

 

The effect of storage duration on erythrocyte GPx activity and serum CC16 concentration 

was determined by storing erythrocyte lysate and serum samples, collected from two 

volunteers, at -80 
o
C for 0, 3, 6 and 9 weeks. The GPx activity of the erythrocyte lysate 

samples was then measured using a Glutathione Peroxidase Assay Kit while the CC16 
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concentration of the serum samples was measured using a Clara Cell Protein Human 

ELISA Kit and 

 

3.1.4.1 Erythrocyte GPx 

 

Except for a decrease in the median GPx activity of the three week samples collected from 

volunteer two, an increase in storage duration appeared to have no effect on the median 

GPx activities of the samples collected from volunteer one and two (figure 3.1.4.1). 
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Figure 3.1.4.1: GPx activity of erythrocyte lysate samples (from two volunteers) stored at      

-80 
o
C for 0, 3, 6 and 9 weeks. The GPx activity was measured (in 15 replicates per condition) 

using a Glutathione Peroxidase Assay Kit. In the box-and-whisker plot the black line through the 

middle of the boxes represents the median GPx activity. The CV ranged from 49.5%-63.7% for 

volunteer 1 and 46.1%-126.3% for volunteer 2. The top and bottom of each box is the 75th and the 

25
th
 percentile, respectively. The top and bottom of each bar is the 90

th
 and 10

th
 percentile, 

respectively. The solid dots represent data observations greater than 1.5 IQR above or below the 

median. 
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Since the difference between the mean GPx activity of the zero and six week samples of 

both volunteers were not compatible with a normal distribution (Shapiro-Wilk W test for 

normal data, p = 0.03 for both), the mean GPx activities of these samples were compared 

using the Wilcoxon signed-rank test. The paired t-test was used to compare the mean GPx 

activities of the other samples since the differences between the mean GPx activities were 

all compatible with a normal distribution (p > 0.05). These comparison results are shown in 

table 3.1.4.1.  

 

Table 3.1.4.1: P-values obtained from the pair-wise comparison of the mean erythrocyte GPx 

activity of samples stored for various durations (level of significance is p ≤≤≤≤ 0.008)  

 

Volunteer 0 weeks 3 weeks 6 weeks 9 weeks 

0 weeks p = 1.00    

3 weeks p = 0.95 p = 1.00   

6 weeks p = 0.25 p = 0.11 p = 1.00  1 

9 weeks p = 0.02 p = 0.05 p = 0.82 p = 1.00 

0 weeks p = 1.00    

3 weeks p = 0.14 p = 1.00   

6 weeks p = 0.83 p = 0.07 p = 1.00  2 

9 weeks p = 0.78 p = 0.15 p = 0.54 p = 1.00 

 

The pair-wise comparison of the mean GPx activities (table 3.1.4.1) indicated that there 

was no significant difference between the mean GPx activity of the samples assayed 

immediately and those assayed 3, 6 and 9 weeks after storage (p > Bonferonni adjusted α 

of 0.008) for both volunteers.  

 

It was therefore concluded that the erythrocyte lysate samples could be stored for up to 

nine weeks without there being a significant effect on the GPx activity of the samples. 
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3.1.4.2 Serum CC16 

 
 
As illustrated in figure 3.1.4.2 below, there was a decrease in median CC16 concentration 

between the samples assayed immediately (the 0 week samples) and those stored for 3, 6 

and 9 weeks, for both volunteers.  
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Figure 3.1.4.2: CC16 concentration of samples (from two volunteers) stored at -80 
o
C for 0, 3, 

6 and 9 weeks. The CC16 concentration was measured (in 15 replicates per condition) using a 

Clara Cell Protein Human ELISA Kit. The CV ranged from 9.6%-26.2% for volunteer 1 and 8.3%-

12.2% for volunteer 2. In the box-and-whisker plot the black line through the middle of the boxes 

represents the median CC16 concentration. The top and bottom of each box is the 75
th
 and the 25

th
 

percentile, respectively. The top and bottom of each bar is the 90
th
 and 10

th
 percentile, respectively. 

The solid dots represent data observations greater than 1.5 IQR above or below the median. 
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The difference between the mean CC16 concentration of the three and nine week samples 

collected from volunteer one and the zero and three week samples collected from volunteer 

two were not compatible with a normal distribution both volunteers (Shapiro-Wilk W test 

for normal data, p = 0.023 for both). As a result the mean CC16 concentrations of these 

samples were compared using the Wilcoxon signed-rank test. Since the rest of the 

differences between the mean CC16 concentration of the samples were compatible with a 

normal distribution (p > 0.05), paired t-tests were used to compare the mean CC16 

concentrations of those samples. The results of these comparisons are presented in table 

3.1.4.2. 

  

Table 3.1.4.2: P-values obtained from the pair-wise comparison of the mean CC16 level in 

serum samples stored for various durations (level of significance is p ≤≤≤≤ 0.008)  

 

Volunteer 0 weeks 3 weeks 6 weeks 9 weeks 

0 weeks p = 1.00    

3 weeks   p = 0.00* p = 1.00   

6 weeks   p = 0.00* p = 0.37 p = 1.00  1 

9 weeks p = 0.06 p = 0.14 p = 0.03 p = 1.0 

0 weeks p = 1.00    

3 weeks p = 0.10 p = 1.00   

6 weeks p = 0.01 p = 0.12 p = 1.00  2 

9 weeks p = 0.69 p = 0.20   p = 0.01* p = 1.0 

* Indicates p-value less than level of significance 

 

For volunteer one, pair-wise comparison of the means (table 3.1.4.2) indicated that the 

mean CC16 concentration of the samples stored for 0 weeks was significantly higher than 

the mean CC16 concentration of the samples stored for 3 and 6 weeks (p = 0.00 for both). 

There was, however, no significant difference between the mean CC16 concentrations of 

the samples assayed immediately (0 weeks) and those stored for 9 weeks (p > Bonferonni 

adjusted α of 0.008). 



  

 

 113 

For volunteer two, pair-wise comparison of the means (table 3.1.4.2) indicated that there 

was no significant difference between the mean CC16 concentration of the 0 week samples 

and those stored for 3, 6 or 9 weeks (p > Bonferonni adjusted α of 0.008). There was, 

however, a significant difference between the mean CC16 concentration of the samples 

stored for 6 weeks and the samples stored for 9 weeks (p = 0.00). 

 

It was therefore concluded that the CC16 concentration of the serum samples may have 

been affected by the duration of storage. 
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3.2 Field work 

 

As previously described in section 2.4 and in the introduction to chapter 3, the field work 

was conducted with adult male miners recruited from a gold mine in North West province, 

South Africa. Blood specimens were collected from the volunteers after their return from 

leave (at the time of recruitment), and then again after their return to work on either a 

Monday (pre-shift), a Wednesday (pre- and post-shift), and/or a Friday (post-shift). It is 

important to state at this point that it was not possible to collect return to work blood 

specimens (also referred to as follow up samples) from all of the initial volunteers for a 

number of reasons. The field work sample collection procedure and the reasons why follow 

up samples were not collected from all of the initial volunteers are detailed in figure 3.2.1 

below.  

 

The demographics of the group of volunteers are summarised in the next section. The 

influence of age, race group, cigarette smoking habit and silicosis on the levels of 

erythrocyte GPx activity and serum CC16 concentration were then evaluated and the 

results are presented in sections 3.2.2 and 3.2.3. The subsequent comparison of the GPx 

and CC16 results obtained for the return from leave (ex-leave) and return to work (follow 

up) are summarized in sections 3.2.4. Finally, the effect of the estimated level and duration 

of crystalline silica exposure on the changes in GPx activity and CC16 concentration was 

evaluated and these results are presented in section 3.2.5.  

 

 

 

 



  

 

 115 

 

 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Figure 3.2: Outline of the field work sample collection procedure. The initial group of 80 

volunteers were sorted into two groups according to whether the researchers were able to collect a 

follow up sample from the volunteer. Follow up samples were collected on either a Monday (pre-

shift), Wednesday (pre- and post-shift) or Friday (post-shift) during morning, afternoon and 

evening shifts. The reasons why follow up samples were not collected from some volunteers are 

also described (*For example the volunteer was the only miner working a night shift at a particular 

shaft and it was therefore logistically difficult and expensive to collect that one specimen).   
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3.2.1 Demographics of the study population 

 

At the time of recruitment, the volunteers were requested to complete a general 

questionnaire (regarding their age, smoking history and current working conditions) and 

these results are summarised in table 3.2.1.a. In order to determine if there were any 

demographic differences between the group of volunteers who agreed to give follow up 

samples and the group from whom no follow up sample could be collected, the 

demographic data for the whole group of volunteers was sorted into two groups according 

to this follow up status. The characteristics of these two groups are also presented in table 

3.2.1.a.  

 

Table 3.2.1.a: Demographics of the study population as a whole as well as for those volunteers 

from whom follow up samples could and could not be collected  
 

Characteristic Whole group 

Group from 

whom follow up 

sample collected 

Group from whom 

no follow up 

sample collected 

Age (years) mean (± SD) 39.97 (± 9.09) 40.44 (± 8.50) 39.09 (± 10.21) 

% Black 72.5 69.8 77.8 
Race group 

% White 27.5 30.2 22.2 

% Current smokers 31.7 35.8 23.1 

% Ex-smokers 24.0 18.9 34.6 Smoking 

% Non-smokers 44.3 45.3 42.3 

% Low dust exposure 56.0 58.5 50.0 Job 

classification  % High dust exposure 44.0 41.5 50.0 

Silicosis 

(grade ≥≥≥≥ 1/1) 
% Silicosis 11.1 9.4 15.8 

Ex-leave GPx 

activity  

(U/g Hb) 

mean (± SD) 26.30 (± 6.50) 26.51 (±5.41) 25.56 (±6.99) 

Ex-leave CC16 

concentration 

(ng/ml) 

mean (± SD) 6.82 (±2.83) 6.89 (±2.65) 6.78 (±2.94) 
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As shown in table 3.2.1.a, the group of volunteers as a whole (n = 80) had an average age 

of 40 years, consisted of a majority of black individuals, had an approximately equal 

number of non-smokers and ever smokers (current and ex-smokers), consisted of an 

approximately equal number of individuals in high and low dust exposure jobs, and had a 

radiological silicosis prevalence of 11%.   

 

 While the overall prevalence of radiological silicosis is given in table 3.2.1.a above, table 

3.2.1.b below gives more detailed results of the radiological silicosis assessments.  As 

previously described in section 2.4.5, chest radiographs were obtained for the study 

volunteers and assessed for silicosis (defined as an ILO category score of 1/1 or greater) by 

two experienced readers. 

 

Table 3.2.1.b: Number of study volunteers in each ILO category, as diagnosed by chest 

radiographs read by two readers (with silicosis defined as ILO ≥≥≥≥ 1/1) 
 

Reader 1 

ILO category 0 1 2 3 Total 

0 64 3 0 0 67 

1 1 1 0 0 2 

2 0 1 1 0 2 

3 0 0 0 1 1 

R
ea

d
er

 2
 

Total 65 5 1 1 72 

 

The agreement between the two readers, in terms of silicosis classification, was determined 

by means of the kappa score which had a value of 0.64 indicating good agreement. 

 

 

 



  

 

 118 

In order to determine if there had been a selection bias in the miners from whom follow up 

blood specimens were collected (n = 53) and those from whom no follow up blood 

specimen could be collected (n = 27), the characteristics of the two groups were compared 

by statistical analysis to detect any significant differences.  

 

The age data for the two groups as well as the return from leave GPx activity and CC16 

concentration data for the group of volunteers who did not give follow up samples were 

compatible with having been drawn at random from a population with a normal 

distribution (Shapiro-Wilk W test for normal data, p > 0.5). The data were therefore 

compared using the t-test. On the other hand, the return from leave GPx activity and CC16 

concentration data for the group of volunteers who gave follow up samples were not 

compatible with having been drawn at random from a population with a normal 

distribution (Shapiro-Wilk W test for normal data, p = 0.01 and p = 0.04 respectively) and 

therefore these data were compared using the two-sample Wilcoxon rank-sum test.  

 

It was thereby determined that there was no significant difference between the group of 

volunteers who donated follow up samples and the group who could not donate follow up 

samples in regards to age (t-test with equal variances, p = 0.54), race group composition 

(chi square p-value = 0.45), current smoking status (chi square p-value = 0.25), ex-

smoking status (chi square p-value = 0.12), job classification (chi square p-value = 0.50), 

silicosis prevalence (chi square p-value = 0.45), return from leave GPx activity (two-

sample Wilcoxon rank-sum test, p = 0.34) or return from leave CC16 concentration (two-

sample Wilcoxon rank-sum test, p = 0.71). Since there were no significant differences 

between the characteristics of two groups, it was concluded that there was no selection bias 

in the miners who donated follow up blood specimens. This in turn, allowed the ex-leave 
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results obtained from the two groups of miners to be combined to investigate the 

parameters affecting GPx activity and CC16 concentration (sections 3.2.2 and 3.2.3, 

respectively).  The combined ex-leave results were also used later to compare those levels 

of GPx activity and CC16 concentration to those obtained from the miners who donated 

the follow up samples (sections 3.2.4).  

 

 

3.2.2 Parameters affecting GPx activity in ex-leave miners 

 

In order to determine if the age, race group, or cigarette smoking habits of the study 

volunteers (n = 80) had influenced the results obtained in section 3.2.4, the effect of these 

factors on the levels of erythrocyte GPx activity was investigated. In addition, the effect of 

the presence of radiological silicosis on the levels of GPx activity was examined.  

 

3.2.2.1 Age 

 

The return from leave (ex-leave) GPx activity data collected from all of the initial 80 study 

volunteers were used to determine the effect of age on GPx activity. This ex-leave GPx 

activity data were not compatible with having been drawn at random from a population 

with a normal distribution (Shapiro-Wilk W test for normal data, p=0.00), however the age 

data were compatible with a normal distribution (p=0.08).  

 

When the age data were compared with the GPx activity data, no significant correlation 

was found (Spearman’s correlation r = -0.08, p = 0.47). This non-significant result was 

confirmed by parametric tests performed on the log transformed data (Pearson’s 
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correlation r = -0.03, p = 0.78). These results indicate that the GPx activity of the ex-leave 

samples was not affected by the age of the study volunteers.   

 

3.2.2.2 Race group 

 

The mean return from leave GPx activities of the study volunteers, sorted according to 

apparent race group, are summarised in table 3.2.2.2.  

 

Table 3.2.2.2: Mean GPx activity of the return from leave samples collected from the black 

and white study volunteers 
 

 

Race group n Mean GPx activity (U/g Hb) Standard deviation 

Black 58 26.19 6.97 

White 22 26.60 5.12 

 

The ex-leave GPx activity data of the black race group were not compatible with having 

been drawn at random from a population with a normal distribution (Shapiro-Wilk W test 

for normal data, p = 0.00) while that of the white race group were compatible (p = 0.56).  

 

Although a slight increase in mean GPx activity between the black and white race groups  

(0.41 U/g Hb) was observed (table 3.2.2.2) this increase was not statistically significant 

(two-sample Wilcoxon rank-sum test, p = 0.58). This non-significant result was confirmed 

by parametric tests performed on the log transformed data (two-sample t test, p=0.61).  

 

These results indicate that the GPx activity of the ex-leave samples was also not affected 

by the race of the study volunteers. 
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3.2.2.3 Cigarette smoking 

 

Table 3.2.2.3 illustrates the mean return from leave GPx activities of the study volunteers 

sorted according to their cigarette smoking habits. 

 

Table 3.2.2.3: Mean GPx activity of the return from leave samples divided into three groups 

according to the cigarette smoking status of the volunteer at the time of sample collection 
 
 

Smoking status n Mean GPx activity (U/g Hb) Standard deviation 

Current smoker 25 27.48 7.13 

Ex-smoker 19 25.58 5.89 

Non-smoker 35 25.64 6.33 

 

The ex-leave GPx activity data of the non-smoker group were not compatible with having 

been drawn at random from a population with a normal distribution (Shapiro-Wilk W test 

for normal data, p = 0.00) while that of the current smoker and ex-smoker groups were 

compatible (p = 0.19 and p = 0.99, respectively).  

 

The decrease in the mean GPx activity between the current smokers and the ex-smokers 

and non-smokers (table 3.2.2.3) was not statistically significant (Kruskal-Wallis test,         

p = 0.52). This non-significant result was confirmed by parametric tests performed on the 

log transformed data (one-way analysis of variance with comparisons of the means,           

p = 0.61).  

 

These results indicate that the GPx activity of the ex-leave samples was also not affected 

by cigarette smoking. 
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3.2.2.4 Silicosis 

 

The mean return from leave GPx activities of the study volunteers with and without 

radiological silicosis (of ILO grade ≥ 1/1) are shown in table 3.2.2.4.  

 

 
Table 3.2.2.4: Mean GPx activity of the return from leave samples collected from the study 

participants with and without radiological silicosis (of ILO grade ≥≥≥≥ 1/1)  
 

Silicosis n Mean GPx activity (U/g Hb) Standard deviation 

No silicosis 64 26.68 6.72 

Silicosis   8 21.42 2.31 

 

 
 

The ex-leave GPx activity data of the group with no signs of radiological silicosis were not 

compatible with having been drawn at random from a population with a normal 

distribution (Shapiro-Wilk W test for normal data, p = 0.01) while that of the group with 

silicosis were compatible with a normal distribution (p = 0.41).  

 

As illustrated in table 3.2.2.4, the mean GPx activity of the individuals with no silicosis 

was higher that the mean GPx activity of the individuals with silicosis (approximately    

5.3 U/g Hb). It was determined that this difference was statistically significant (two-sample 

Wilcoxon rank-sum test, p = 0.01) and the result was confirmed by parametric tests 

performed on the log transformed data (two-sample t test with unequal variances,               

p = 0.00).  

 

These results indicate that the GPx activity of the ex-leave samples was significantly 

affected by the presence of radiological silicosis (of ILO grade ≥ 1/1) in the study 

volunteers. 
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3.2.3 Parameters affecting CC16 concentration in ex-leave 

miners 

 

The effect of age, race, cigarette smoking and silicosis on the levels of serum CC16 

concentration was examined to determine if these factors may have influenced the results 

obtained in section 3.2.4.  

 

  

3.2.3.1 Age 

 

Similar to the GPx activity results, the return from leave (ex-leave) CC16 concentration 

data were used to determine the effect of age on CC16 concentration. The ex-leave CC16 

concentration data for the whole group were not compatible with having been drawn at 

random from a population with a normal distribution (Shapiro-Wilk W test for normal 

data, p = 0.01) while the age data were compatible with a normal distribution (p = 0.08). 

 

When the age data were compared with the CC16 concentration data, no significant 

correlation was found (Spearman’s correlation r = 0.11, p = 0.35). This non-significant 

result was confirmed by parametric tests performed on the log transformed data (Pearson’s 

correlation r = 0.06, p = 0.58).  

 

These results indicate that the CC16 concentration of the ex-leave samples was not 

affected by the age of the study participants.  
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3.2.3.2 Race group 

 

Table 3.2.3.2 summarises the return from leave CC16 concentration data for the two main 

race groups involved in the study. 

 
 

Table 3.2.3.2: Mean CC16 concentration of the return from leave samples collected from the 

black and white study volunteers 
 

Race group n Mean CC16 concentration (ng/ml) Standard deviation 

Black 58 6.80 3.00 

White 22 6.84 2.36 

 

The ex-leave CC16 concentration data of the white race group were not compatible with 

being drawn at random from a population with a normal distribution (Shapiro-Wilk W test 

for normal data, p = 0.01) while that of the black race group were compatible (p = 0.05).  

 

As shown in table 3.2.3.2, there was a slight increase in mean CC16 concentration between 

the black and white race groups (0.04 ng/ml), however it was not statistically significant 

(two-sample Wilcoxon rank-sum test, p = 0.85). This non-significant result was confirmed 

by parametric tests performed on the log transformed data (the two-sample t test with 

unequal variances p = 0.53).  

 

These results indicate that the CC16 concentration of the ex-leave samples was also not 

affected by the race of the study volunteer. 
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3.2.3.3 Cigarette smoking 

 

The mean return from leave CC16 concentrations of the ex-leave samples collected from 

the current smokers, ex-smokers and non-smokers who volunteered for the study are 

shown in table 3.2.3.3.  

 

Table 3.2.3.3: Mean CC16 concentration of the ex-leave samples divided into three groups 

according to the cigarette smoking status of the volunteer at the time of sample collection 
 

Smoking status n Mean CC16 concentration (ng/ml) Standard deviation 

Current smoker 25 6.59 2.50 

Ex-smoker 19 7.63 2.74 

Non-smoker 35 6.50 3.10 

 

The ex-leave CC16 concentration data of the non-smoker group were not compatible with 

having been drawn at random from a population with a normal distribution (Shapiro-Wilk 

W test for normal data, p = 0.01) while that of the current smoker and ex-smoker groups 

were compatible with a normal distribution (p = 0.09 and p = 0.37, respectively).  

 

As shown in table 3.2.3.3, the mean CC16 concentration of the group of ex-smokers was 

higher than that current smokers and non-smokers. However, analysis revealed that the 

difference between the mean CC16 concentration of the three groups was not statistically 

significant (Kruskal-Wallis test, p = 0.15). This non-significant result was confirmed by 

parametric tests performed on the log transformed data (one-way analysis of variance with 

comparisons of the means, p = 0.32).  

 

These results indicate that the cigarette smoking habits of the study volunteers did not 

affect the CC16 concentration of the ex-leave samples. 
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3.2.3.4 Silicosis 

 

The return from leave CC16 concentration results for the study volunteers with and 

without signs of radiological silicosis (of ILO grade ≥ 1/1) are illustrated in table 3.2.3.4.  

 

 
Table 3.2.3.4: Mean CC16 concentration of the return from leave samples collected from the 

study participants with and without radiological silicosis (of ILO grade ≥≥≥≥ 1/1)  
 

Silicosis n Mean CC16 concentration (ng/ml) Standard deviation 

No silicosis 64 6.59 2.77 

Silicosis   8 8.61 3.12 

 

The ex-leave CC16 concentration data of the group with no signs of radiological silicosis 

were not compatible with having been drawn at random from a population with a normal 

distribution (Shapiro-Wilk W test for normal data, p = 0.01) while that of the group with 

silicosis were compatible with a normal distribution (p = 0.44).  

 

The increase in the mean CC16 concentration between the individuals with no silicosis and 

those with silicosis (2.02 ng/ml) observed in table 3.2.3.4 was just statistically significant 

(two-sample Wilcoxon rank-sum test, p = 0.05). This significant result was contradicted by 

parametric tests performed on the log transformed data (two-sample t test, p = 0.10).  

 

These results indicate that the CC16 concentration of the ex-leave samples may have been 

affected by whether the study volunteers had radiological silicosis (of ILO grade ≥ 1/1). 
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3.2.4 Comparison between biomarker levels in the return from 

leave (ex-leave) and return to work (follow up) samples  

 

Blood specimens were collected from the study volunteers after their return from leave (at 

the time of recruitment), and then again 8 to 25 weeks after their return to work on either a 

Monday (pre-shift), a Wednesday (pre- and post-shift), or a Friday (post-shift). In order to 

determine the effect of crystalline silica exposure on the levels of erythrocyte GPx activity 

and serum CC16 concentration, the levels of these biomarkers in the ex-leave and follow 

up samples were statistically compared.  

 

3.2.4.1 Erythrocyte GPx 

 

The median erythrocyte GPx activity results obtained for the ex-leave and follow up 

samples are illustrated in figure 3.2.4.1.a below. In addition, the mean erythrocyte GPx 

activities of the different groups and a statistical comparison of the differences between the 

mean GPx activities of the groups are given in table 3.2.4.1.a and table 3.2.4.1.b, 

respectively.  
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Figure 3.2.4.1.a: Erythrocyte GPx activities of the ex-leave and follow up samples (collected 

after 8 to 25 weeks on either a Monday, Wednesday (pre- and post-shift), or Friday). The GPx 

activity was measured using a Glutathione Peroxidase Assay Kit. In the box-and-whisker plot the 

line through the middle of the boxes represents the median GPx activity. The top and bottom of 

each box is the 75
th
 and the 25

th
 percentile, respectively. The top and bottom of each bar is the 90

th
 

and 10
th
 percentile, respectively.  

 

 

Table 3.2.4.1.a: Mean erythrocyte GPx activities of the ex-leave samples and the follow up 

samples (combined and individually) 

Group n 
Mean GPx activity 

(U/g Hb) 

Standard 

deviation 

Ex-leave  80 26.30 6.49 

Combined follow up  53 22.48 5.78 

Monday  18 21.23 4.09 

Wednesday pre-shift 23 23.01 7.02 

Wednesday post-shift  22 23.78 7.42 

Friday  16 21.68 4.72 
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Table 3.2.4.1.b: Comparison between the mean erythrocyte GPx activities of the ex-leave and 

follow up samples (the level of significance is p ≤≤≤≤ 0.01) 

Groups being compared 

Difference between  

mean GPx activities 

(U/g Hb) 

Significance  

(p-value) 

Ex-leave versus combined follow up -3.82  0.00* 

Ex-leave versus Monday -5.07  0.00* 

Ex-leave versus Wednesday (pre-shift) -3.29  0.01* 

Ex-leave versus Wednesday (post-shift) -2.52  0.00* 

Ex-leave versus Friday -4.62  0.00* 

Monday versus Wednesday (pre-shift)  1.78 0.27 

Monday versus Wednesday (post-shift)  2.55 0.18 

Monday versus Friday  0.45 0.94 

Wednesday (pre-shift) versus Wednesday (post-shift) -0.77 0.91 

Wednesday (pre-shift) versus Friday -1.33 0.64 

Wednesday (post-shift) versus Friday -2.10 0.38 

*Indicates p-value less than level of significance 

  

As observed in figure 3.2.4.1.a, the median GPx activity of the ex-leave samples was 

higher than the median GPx activities of all of the follow up samples. The same results 

were observed in tables 3.2.4.1.a and 3.2.4.1.b with regards to the mean GPx activities. 

 

The differences between the mean GPx activity of the ex-leave samples and the follow up 

samples (including the combined follow up data) were all compatible with having been 

drawn at random from a population with a normal distribution (Shapiro-Wilk W test for 

normal data, p > 0.05). The paired t-test (with Bonferonni adjusted α of 0.01) was 

therefore performed to compare the mean GPx activity of the ex-leave samples with that of 

the Monday, Wednesday (pre- and post-shift) and Friday samples. The test indicated a 

significant decrease between the mean GPx activity of the ex-leave samples and the 

Monday, Wednesday (pre- and post-shift) and Friday follow up samples (table 3.2.4.1.b). 
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These results indicated that exposure to crystalline silica caused a decrease in the level of 

erythrocyte GPx activity. 

 

The GPx activities of the follow up samples were then compared with each other to 

determine any significant differences. The GPx activity data for the Wednesday (pre-shift) 

and Friday follow up samples were not compatible with having been drawn at random 

from a population with a normal distribution (Shapiro-Wilk W test for normal data, p = 

0.02 and p = 0.04 respectively), while the data for the Monday and Wednesday (pre-shift) 

follow up samples were compatible (p > 0.05). The two sample t-test indicated that there 

was no significant difference between the mean GPx activities of the Monday and 

Wednesday (post-shift) and the Wednesday pre-shift and post-shift follow up samples 

(table 3.2.4.1.b). The two-sample Wilcoxon rank-sum test (for unmatched data) indicated 

that there was no significant difference between the mean GPx activities of the Monday 

and Wednesday (pre- shift), the Monday and Friday, and the Wednesday (pre-and post-

shift) and Friday follow up samples (table 3.2.4.1.b). These non-significant results were 

confirmed by parametric tests (two-sample t-test) performed on the log transformed data. 

There were therefore no significant differences between the GPx activities of the follow up 

samples. 

 

The non-significant result obtained for the comparison of the mean GPx activities of the 

different follow up samples enabled a mean GPx activity to be determined for all the 

follow up samples combined.  The paired t-test (with Bonferonni adjusted α of 0.01) was 

performed to compare the mean GPx activity of ex-leave samples with that of the 

combined follow up samples. The test indicated a significant decrease between the mean 

GPx activity of the ex-leave samples and the combined follow up samples.   
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The results presented in figure 3.2.4.1.a and tables 3.2.4.1.a and 3.2.4.1.b are combined 

results for all the volunteers. Since there were three miners from whom more than one set 

of follow up samples were collected, it was possible to illustrate the ex-leave and follow up 

results for these individual volunteers. Figure 3.2.4.1.b below compares the GPx activity of 

the ex-leave and follow up samples collected from these three miners.   
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Figure 3.2.4.1.b: Erythrocyte GPx activities of three volunteers from whom ex-leave and 
multiple follow up samples were collected. The follow up samples were collected 11 to 13 weeks 

after the ex-leave samples on a Monday, Wednesday (pre- and post-shift) and/or Friday.                                 

(Miner 8         ; miner 11          ; miner 43        ). All three volunteers had low dust exposure job 

classifications and only Miner 43 had a silicosis score ≥ 1/1.  

 

 

As was observed with the group of volunteers as a whole, the three individual volunteers 

all showed a decrease in mean GPx activity between their ex-leave and follow up samples 

(figure 3.2.4.1.b). While there was a large increase in mean GPx activity between the 

Monday and Friday samples of miner 8, there was a large decrease in the mean GPx 

activity between the Wednesday and Friday samples of miner 11. These individual results 

cannot, however, be considered an accurate representation of the effect of silica exposure 

on GPx activity since they are based on single samples which show high variation. 
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3.2.4.2 Serum CC16 

 

The median serum CC16 concentration results obtained for the ex-leave and follow up 

samples are illustrated in figure 3.2.4.2.a.  
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Figure 3.2.4.2.a: CC16 concentrations of the ex-leave and follow up samples (collected after 8 
to 25 weeks on either a Monday, Wednesday (pre- and post-shift), or Friday). The CC16 

concentration was measured using a Clara Cell Protein Human ELISA Kit. In the box-and-whisker 

plot the line through the middle of the boxes represents the median CC16 concentration. The top 

and bottom of each box is the 75
th
 and the 25

th
 percentile, respectively. The top and bottom of each 

bar is the 90
th
 and 10

th
 percentile, respectively.  

 

 

In addition, the mean serum CC16 concentrations of the different groups and a statistical 

comparison of the differences between the mean CC16 concentrations of the groups are 

given in table 3.2.4.2.a and table 3.2.4.2.b, respectively.  
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Table 3.2.4.2.a: Mean CC16 concentrations of the ex-leave and the follow up samples  

Group n 
Mean CC16 

concentration (ng/ml) 

Standard 

deviation 

Ex-leave  80 6.82 2.83 

Monday  18 6.97 2.55 

Wednesday pre-shift 23 6.75 3.96 

Wednesday post-shift  22 5.15 3.10 

Friday  16 5.59 2.23 

 

 

Table 3.2.4.2.b: Comparisons of the mean CC16 concentrations of the ex-leave and follow up 

samples (level of significance is p ≤≤≤≤ 0.01) 

Groups being compared 

Difference between  

CC16 concentrations 

(ng/ml) 

Significance 

(p-value) 

Ex-leave versus Monday  0.15 0.74 

Ex-leave versus Wednesday (pre-shift) -0.07 0.52 

Ex-leave versus Wednesday (post-shift) -1.67   0.00* 

Ex-leave versus Friday -1.23 0.02 

Monday versus Wednesday (pre-shift) -0.22 0.12 

Monday versus Wednesday (post-shift) -1.82 0.04 

Monday versus Friday -1.38 0.11 

Wednesday (pre-shift) versus Wednesday (post-shift) -1.60   0.01* 

Wednesday (pre-shift) versus Friday -1.16 0.76 

Wednesday (post-shift) versus Friday  0.44 0.31 

* Indicates p-value less than level of significance 

 

There was increase in median CC16 concentration (figure 3.2.4.2.a) and mean CC16 

concentration (table 3.2.4.2.a and 3.2.4.2.b) between the ex-leave and Monday follow up 

samples and a decrease in median CC16 concentration (figure 3.2.4.2.a) and mean CC16 

concentration (table 3.2.4.2.a and 3.2.4.2.b) between the ex-leave and Wednesday (pre- 

and post-shift) and Friday follow up samples.  
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Unlike the differences between the mean CC16 concentration of the ex-leave samples and 

the Monday and Wednesday (pre-shift) follow up samples which were compatible with 

having been drawn at random from a population with a normal distribution (Shapiro-Wilk 

W test for normal data, p > 0.05), the differences between the mean CC16 concentrations 

of the ex-leave and Wednesday (post-shift) (p = 0.02) and Friday (p = 0.02) follow up 

samples were not compatible. As a result, the paired t-test (with Bonferonni adjusted α of 

0.01) was used to compare the mean CC16 concentration of ex-leave samples with that of 

the Monday and Wednesday (pre-shift) follow up samples, and the Wednesday pre-shift 

and post-shift samples. The Wilcoxon signed-rank test (for matched data) was used to 

compare the mean CC16 concentration of ex-leave samples with that of the Wednesday 

(post-shift) and Friday follow up samples. As demonstrated in table 3.2.4.2.b, the tests 

indicated a significant difference between the mean CC16 concentration of the ex-leave 

samples and the Wednesday post-shift (p = 0.00), but no significant difference between the 

mean CC16 concentration of the ex-leave samples and the Monday, Wednesday (pre-shift) 

or Friday follow up samples (p > 0.01).   

 

The CC16 concentration data for the Wednesday (pre- and post-shift) follow up samples 

were not compatible with having been drawn at random from a population with a normal 

distribution (Shapiro-Wilk W test for normal data, p = 0.01 and p = 0.00 respectively), 

while the data for the Monday and Friday follow up samples were compatible (p > 0.05). 

As shown in table 3.2.4.2.b, there was no significant difference between the mean CC16 

concentration of the Monday and Wednesday (pre- and post-shift) samples, the Wednesday 

(pre- and post-shift) and Friday samples (the two-sample Wilcoxon rank-sum test for 

unmatched data, p > 0.01) or the Monday and Friday samples (two-sample t-test, p > 0.01). 

There was however, a significant difference between the mean CC16 concentration of the 
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Wednesday pre-shift and post-shift samples (the Wilcoxon signed-rank test for matched 

data, p = 0.01).  

 

The significant results obtained for some of the comparisons between the mean CC16 

concentrations of the different follow up samples meant that a mean CC16 concentration 

could not be determined for all the follow up samples combined.  

 

The results presented in figure 3.2.4.2.a and tables 3.2.4.2.a and 3.2.4.2.b are a 

combination of all the results obtained. Since there were three miners from whom more 

than one set of follow up samples were collected, it was possible to examine the ex-leave 

and follow up results for these individual volunteers. Figure 3.2.4.2.b below compares the 

CC16 concentration of the ex-leave and follow up samples for these three miners.  
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Figure 3.2.4.2.b: Serum CC16 concentrations of three volunteers from whom ex-leave and 
multiple follow up samples were collected. The follow up samples were collected 11 to 13 weeks 

after the ex-leave samples on a Monday, Wednesday (pre- and post-shift) and/or Friday.                                 

(Miner 8         ; miner 11          ; miner 43        ). All three volunteers had low dust exposure job 

classifications and only Miner 43 had a silicosis score ≥ 1/1.  
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As illustrated in figure 3.2.4.2.b, for miner 43, there was a decrease in CC16 concentration 

between the ex-leave and Monday follow up samples and the CC16 concentration 

continued to decrease throughout the week. For miner 8 there was a decrease in CC16 

concentration between the ex-leave and Friday samples, which was in accordance with the 

results obtained for the entire group of volunteers (figure 3.2.4.2.a), however there was an 

increase in CC16 concentration between the ex-leave and Monday samples. A similar 

contradictory result was observed for miner 11 in that the CC16 concentration increased 

between the ex-leave and Wednesday (pre-and post-shift) samples and between the ex-

leave and Friday samples. As with the GPx results, these individual results should be 

treated with caution as they are based on single samples which show high variation. 

 

 

3.2.5 Effect of crystalline silica exposure on the change in 

biomarker levels 

 

In an attempt to explain the changes in GPx activity and CC16 concentration (between the 

ex-leave and follow up samples) observed in section 3.2.4, the correlation between the job 

classification (an estimate of the level of crystalline silica exposure) of the study volunteers 

and the changes in biomarker levels was investigated. In addition, the correlation between 

the duration of crystalline silica exposure (i.e. the time between the collection of the ex-

leave and follow up samples) and the changes in biomarker levels was examined.   
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3.2.5.1 Erythrocyte GPx 

 
As previously stated in section 3.2.4, the mean GPx activity for the combined follow up 

samples was determined. The changes in mean GPx activity for the volunteers with high 

and low dust exposure job classifications are presented in table 3.2.5.1.a. 

 

Table 3.2.5.1.a: Change in mean GPx activity (between the ex-leave and combined follow up 

samples) divided into two groups according to the job classification of the study volunteers  

 

Job classification n 
Change in mean GPx 

activity (U/g Hb) 
Standard deviation 

Low dust exposure 31 -5.12 4.04 

High dust exposure 22 -2.91 5.40 

 

The change in GPx activity data of the groups with low and high dust exposure jobs were 

compatible with having been drawn at random from a population with a normal 

distribution (Shapiro-Wilk W test for normal data, p > 0.05).  

 

Although the change in mean GPx activity was greater for the group of volunteers with 

low dust exposure jobs than those with high dust exposure jobs (table 3.2.5.1.a), the 

difference proved not to be statistically significant (two-sample t test, p = 0.09).  This was 

confirmed by the finding of no significant correlation between the job dust exposure 

classification and the change in GPx activity (Pearson’s correlation r = -0.23, p = 0.09).  

 

These results indicate that the changes in GPx activity (between the ex-leave and follow up 

samples) observed in the current study were not affected by the job classification (i.e. the 

estimated dust exposure level) of the study volunteers. 
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To determine if there was a connection between the duration of crystalline silica exposure 

and the observed changes in GPx activity, the change in GPx activity results were sorted 

according to the duration of exposure .These results are presented in table 3.2.5.1.b. 

 

Table 3.2.5.1.b: Summary of the change in GPx activity (between the ex-leave and combined 

follow up samples) arranged according to the crystalline silica exposure duration   
 

Crystalline 

silica exposure 

duration 

(weeks) 

 

 

n 

GPx activity of 

ex-leave samples, 

mean ±±±± SD 

(U/g Hb) 

GPx activity of combined 

follow up samples,  

mean ±±±± SD 

(U/g Hb) 

Change in mean  

GPx activity,  

mean ±±±± SD 

(U/g Hb) 

8 1 30.21 (± 0.00) 34.79 (± 0.00)   4.58 (± 0.00) 

9 2 28.32 (± 4.04) 22.82 (± 3.93) -5.49 (± 0.10) 

11 2 20.86 (± 1.44) 16.97 (± 2.40) -3.88 (± 0.96) 

13 6 25.98 (± 4.33) 21.93 (± 2.46)   -4.05 (± 2.71) 
14 2 29.68 (± 3.59) 17.67 (± 0.08) -12.01 (± 3.68) 

15 5 22.55 (± 3.15) 22.38 (± 4.84)   -0.17 (± 3.12) 

16 5 25.81 (± 8.99) 20.56 (± 9.31) -5.25 (± 1.38) 
17 3 28.30 (± 5.41) 23.52 (± 2.64) -4.78 (± 2.77) 

18 9 25.39 (± 5.59) 22.72 (± 6.96) -2.68 (± 5.76) 

20 4 26.10 (± 5.34) 21.73 (± 1.75) -4.36 (± 7.04) 
21 4 31.00 (± 4.72) 21.75 (± 4.16) -9.25 (± 2.75) 

22 2 19.79 (± 4.25) 22.68 (± 8.10)   2.88 (± 3.84) 

23 3 24.84 (± 0.85) 19.93 (± 3.07) -4.91 (± 3.62) 
25 5 34.50 (± 9.46) 28.23 (± 7.52) -6.27 (± 3.10) 

 

 

There was no apparent trend between the change in GPx activity and the duration of 

exposure to crystalline silica (table 3.2.5.1.b). This was confirmed by the finding of no 

significant correlation between the crystalline silica exposure duration and the change in 

GPx activity (Pearson’s correlation r = 0.14, p = 0.33).  

  

 



  

 

 139 

3.2.5.2 Serum CC16 

 

Because the mean CC16 concentrations of all the follow up samples could not be 

combined to form a single follow up CC16 concentration variable, the change in CC16 

concentration (between the ex-leave and follow up samples) was calculated for each of the 

follow up groups separately. The changes in mean CC16 concentration for the volunteers 

with high and low dust exposure job classifications are presented in table 3.2.5.2.a. 

 

Table 3.2.5.2.a: Change in mean CC16 concentration (between the ex-leave and follow up 

samples) sorted according to the job classification of the study participants 
 

Job 

classification 

Change in mean 

CC16 level for 

the Monday 

follow up group, 

mean ±±±± SD 

(ng/ml) 

Change in mean 

CC16 level for 

the Wednesday 

(pre-shift) follow 

up group, mean ±±±± 

SD (ng/ml) 

Change in mean 

CC16 level for 

the Wednesday 

(post-shift) follow 

up group, mean ±±±± 

SD (ng/ml) 

Change in mean 

CC16 level for 

the Friday follow 

up group, mean 

±±±± SD (ng/ml) 

Low dust 

exposure 
 0.44 (± 1.93) -0.81 (± 2.64) -2.13 (± 2.25) -1.76 (± 2.50) 

 

High dust 

exposure 
-0.53 (± 2.81) -0.51 (± 1.45) -1.53 (± 1.73) -0.98 (± 2.06) 

 

 

There was a slight increase in the mean CC16 concentration between the ex-leave and 

Monday follow up samples for the group of volunteers with low dust exposure jobs and a 

slight decrease for the group of volunteers with high dust exposure jobs (table 3.2.5.2.a), 

however, the difference between the change in mean CC16 concentration in the two dust 

exposure groups was not significant (two-sample t test, p = 0.41).  This was confirmed by 

the finding of no significant correlation between the job dust exposure classification and 
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the change in mean CC16 concentration for the Monday follow up group (Pearson’s 

correlation p = 0.41).  

 

 

Although the decrease in CC16 concentration between the ex-leave and Wednesday (pre-

shift), Wednesday (post-shift) and Friday follow up samples was greater for the group of 

volunteers with low dust exposure jobs than those with high exposure jobs (table 3.2.5.2.a), 

the difference between the change in mean CC16 concentration in the two dust exposure 

groups was not significant (two-sample t test p = 0.64, two-sample Wilcoxon rank-sum           

p = 0.53 and p = 0.52 respectively).  This was confirmed by the finding of no significant 

correlation between the job classification and the change in mean CC16 concentration for 

the Wednesday (pre-shift), Wednesday (post-shift) and Friday follow up groups (Pearson’s 

correlation p = 0.64 and p = 0.49 and Spearman’s correlation p = 0.54, respectively).  

 

These results indicate that the change in CC16 concentration (between the ex-leave and 

follow up samples) was more than likely not affected by the job classification (i.e. the 

estimated dust exposure level) of the study volunteers. 

 

Similar to GPx, the change in mean CC16 concentration results (for each follow up group) 

were sorted according to the duration of crystalline silica exposure to establish if there was 

a connection between the duration of exposure and the observed changes in CC16 

concentration. These results are presented in table 3.2.5.2.b below. 
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Table 3.2.5.2.b: Summary of the change in CC16 concentration (between the ex-leave and 

follow up samples) arranged according to the duration of crystalline silica exposure  
 

Crystalline 

silica 

exposure 

duration 

(weeks) 

Change in mean 

CC16 level for 

the Monday 

follow up group, 

mean ±±±± SD 

(ng/ml) 

Change in mean 

CC16 level for the 

Wednesday (pre-

shift) follow up 

group, mean ±±±± SD 

(ng/ml) 

Change in mean 

CC16 level for the  

Wednesday (post-

shift) follow up 

group, mean ±±±± SD 

(ng/ml) 

Change in mean 

CC16 level for the  

Friday follow up 

group, mean ±±±± SD 

(ng/ml) 

8 - - - -1.01 (±0.00) 

9 - -1.43 (± 0.66) -1.67 (± 1.32) - 

11 -1.04 (± 3.71) -3.72 (± 0.00) -7.84 (± 0.00) -7.23 (± 0.00) 

13  2.38 (± 0.70)  2.45 (± 1.52) -0.11 (± 0.08) -0.47 (± 2.14) 

14 -  0.37 (± 0.00)   0.54 (± 0.00) -0.32 (± 0.00) 

15 -1.83 (± 0.19)  0.46 (± 5.01) -2.53 (± 0.86) -4.96 (± 0.00) 

16  3.69 (± 0.00)  0.90 (± 1.19) -0.44 (± 0.87) - 

17  0.81 (± 0.00) -2.43 (± 0.00) -4.38 (± 0.00) -0.34 (± 0.00) 

18 - -0.36 (± 1.33) -1.06 (± 1.38) -0.59 (± 0.74) 

20 -1.43 (± 0.00) -0.19 (± 0.92) -1.54 (± 0.40) -0.67 (± 0.00) 

21 -0.52 (± 1.03) -1.09 (± 0.00) -3.22 (± 0.00)   0.93 (± 0.00) 

22 -3.47 (± 0.00) -1.94 (± 0.00) -3.83 (± 0.00) - 

23 -0.15 (± 1.63) - - -4.65 (± 0.00) 

25  0.53 (± 0.23) -1.65 (± 2.43) -2.44 (± 1.54) -2.03 (± 0.00) 
 
 

 

There was no apparent trend between the change in CC16 concentration (between the ex-

leave and follow up samples) and the duration of exposure to crystalline silica. This was 

confirmed by the finding of no significant correlation between the duration of exposure to 

crystalline silica and the change in CC16 concentration between the ex-leave and Monday, 

Wednesday (pre-shift), Wednesday (post-shift) and Friday follow up samples (Pearson’s 

correlation p = 0.34 and p = 0.46, Spearman’s correlation p = 0.28 and p = 0.93).  

 

Therefore, the changes in GPx activity and CC16 concentration observed in the current 

study could not be correlated to the estimated dust exposure level (job classification) or the 

duration of crystalline silica exposure. 
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Chapter 4: 

DISCUSSION 

 

Despite the dust control methods currently being employed, silicosis continues to pose a 

significant threat to the health of South African gold miners. This is possibly due to 

inadequate occupational exposure limit enforcement and unreliable methods of 

determination of personal dust exposure. In addition, due to the long latency period of 

silicosis, the chest radiographs that are used to diagnose silicosis are a late indicator of 

harmful dust exposure and therefore do not provide an effective way to measure and 

control the dust exposure.   

 

It is therefore clear that a more effective means of monitoring dust control methods is 

needed if silicosis is to be eliminated. One promising field is that of biomarkers of effect, 

which are measurable changes within an organism that may indicate either early processes 

preceding disease or predict the advance and presence of disease [Bennett and Waters, 

2000]. 

 

As a result, a project on biomarkers was initiated which aimed to identify and 

operationalise biomarkers for crystalline silica dust exposure that could then be used to 

assess the success of the implemented dust exposure control measures in South African 

mines. The project was not intended to produce a diagnostic test for silicosis in individuals 

as biomarkers identified would probably be too non-specific for such a definitive 

diagnostic purpose [Aitio, 1999].  
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The current investigation is the third phase of this project on biomarkers and is aimed to 

confirm the levels of and further analyze erythrocyte glutathione peroxidase (GPx) and 

serum Clara cell protein 16 (CC16) in miners exposed to crystalline silica dust. Prior to 

their analysis in blood specimens collected from these miners, the optimal operational 

parameters for these biomarkers were investigated and the relevant Standard Operating 

Procedures (SOPs) were established.  

 

4.1 Optimization of the operational parameters 

 

In order to limit pre-analytical variability as a result of storage conditions and sample 

processing, the effect of different operational parameters on the levels of GPx activity and 

CC16 concentration was investigated.  

 

Firstly, the effect of temperature and duration of storage on the levels of GPx activity and 

CC16 concentration needed to be determined as the assay of these two biomarkers were 

time intensive and could not be performed immediately under field conditions. Secondly, 

the effect of a delay in time between blood sample collection and separation needed to be 

investigated due to the fact that the follow up samples were collected at different times 

from different mine shafts and were then transported back to the temporary laboratory for 

their separation. Lastly, the effect of ambient room temperature on GPx activity and CC16 

concentration needed to be determined because, despite the availability of heaters and fans, 

the temporary field laboratory did not have an adequate air conditioning system to ensure 

constant ambient temperature. Each of these investigations was performed with blood 

specimens obtained from two volunteers with no history of exposure to crystalline silica. 
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4.1.1 Effect of storage temperature 

 

In order to determine the effect of storage temperature on the levels of GPx activity and 

CC16 concentration, replicate erythrocyte lysate and serum samples were stored at 4 
o
C 

(common fridge temperature), -20 
o
C (common freezer temperature) and -80 

o
C 

(specialised freezer temperature) before being assayed. 

 

4.1.1.1 Erythrocyte GPx 

 

For both volunteers there was a decrease in mean GPx activity with a decrease in storage 

temperature however, the decrease was not statistically significant. This indicated that the 

temperature at which the GPx samples were stored after separation did not have a 

significant effect on the GPx activities.  

 

The results obtained were not expected as a number of studies have shown that GPx 

activity decreases with an increase in storage temperature. For instance, Zhang and 

colleagues [1986] examined the effect of storage temperature and storage duration on 

swine plasma GPx activity. They found a significant decrease in GPx activity after storage 

for two days and more at either 4 
o
C or -15 

o
C, with the decrease in GPx activity much 

greater in samples stored at 4 
o
C than in those stored at -15 

o
C. Saint-Denis and co-workers 

[1998] investigated the effect of storage temperature on GPx activity (of the cytosolic 

fraction) in the Earthworm Eisenia fetida andrei. They found that while storage for two 

months at 4 
o
C caused a decrease in GPx activity, the GPx activity of samples stored at      

-20 
o
C was relatively stable (although there was a slight decrease of activity). The GPx 

activity of the samples stored at -80 
o
C was the most stable. Other studies have also 



  

 

 145 

suggested that the GPx activity of samples is more stable when the samples are frozen 

rather than refrigerated [Wahdati et al., 1992, Miranda et al., 2004]. 

  

An additional observation with our results was that the mean GPx activity in the 

erythrocyte lysate samples from volunteer two was approximately three times lower than 

that of volunteer one. Since the two volunteers were both females of similar age, the 

difference observed may just have been due to lifestyle factors [Andersen et al., 1997] or 

hormonal differences [Pinto and Bartley, 1969]. 

 

4.1.1.2 Serum CC16 

 

The concentration of CC16 measured in the serum of both volunteers decreased with a 

decrease in storage temperature, with the largest statistically significant decrease occurring 

in the samples stored at -80 
o
C compared to those stored at 4 

o
C. On the other hand, no 

statistically significant difference could be observed between the mean CC16 concentration 

of the samples stored at -20 
o
C and -80 

o
C.  

 

The higher CC16 concentration measured in the serum samples stored at 4 
o
C was not 

expected. Changes in volume observed in these samples, possibly due to evaporation 

despite the use of sealed CryoTubes, could have resulted in the higher concentrations of 

CC16 measured in these samples.  

 

Therefore, although the present investigation could not confirm the results of reported 

studies, a storage temperature of -80 
o
C was chosen for the erythrocyte lysate and serum 
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samples as it was the temperature recommended by the GPx and CC16 assay kit 

manufacturers and it was the temperature used in other investigations of erythrocyte GPx 

activity [Engelen et al., 1990, Ho et al., 2005, Borm et al., 1986] and serum CC16 

concentration [Halatek et al., 2004, Wang et al., 2007].  

 

4.1.2 Effect of a delay in time between blood sample collection 

and separation 

 

During the field work, the blood specimens could be left for up to two hours before being 

separated and therefore the effect of this delay in time on the levels of GPx activity and 

CC16 concentration was investigated. 

 

4.1.2.1 Erythrocyte GPx 

 

As the time interval between blood sample collection and separation increased (from zero 

to two hours), there was a slight increase in mean GPx activity of the erythrocyte lysate 

samples obtained from volunteer one and a slight decrease in mean GPx activity of the 

samples collected from volunteer two. However statistical analysis revealed that, for both 

volunteers, these observed changes in GPx activity were not statistically significant.  
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4.1.2.2 Serum CC16 

 

There was a decrease in mean CC16 concentration as the time between sample collection 

and separation increased (from zero to two hours) for both volunteer one and two. 

However statistical analysis revealed that, for both volunteers, the decrease observed was 

not statistically significant. In another study on the effect of time between blood collection 

and centrifugation, the researchers found no significant difference between samples 

separated immediately and samples left for 30 minutes, 24, 48 and 96 hours before 

separation [Kenis et al., 2002]. 

 

It was therefore decided that the blood samples collected during the field work could be 

left for up to two hours (at approximately 25 
o
C) before being separated without a 

significant effect on the GPx activity of the resulting lysate samples or on the CC16 

concentration of the resulting serum samples. 

 

4.1.3 Effect of ambient laboratory temperature 

 

The levels of GPx activity and CC16 concentration were assessed in samples processed at     

25 
o
C (the common laboratory temperature) and 35 

o
C (a temperature close to 

physiological temperature) to establish the effect of ambient laboratory temperature.  
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4.1.3.1 Erythrocyte GPx 

 

For volunteer one, processing of the erythrocyte lysate samples at the higher laboratory 

temperature of 35 
o
C, rather than the common laboratory temperature of 25 

o
C, caused a 

significant increase in the mean GPx activity of the samples. A similar result was found by 

Saint Denis and colleagues [Saint-Denis et al., 1998] who showed that maximum GPx 

activity occurred at a temperature of 40 
o
C.  Since the normal human physiological body 

temperature is approximately 37 
o
C, one would expect enzymes such as GPx to function 

optimally at that temperature or temperatures close to it. 

 

In contrast, for volunteer two there was a slight decrease in mean GPx activity at the higher 

laboratory temperature, however this decrease was not statistically significant.   

 

4.1.3.2 Serum CC16 

 

For both volunteer one and two, there was an increase in the mean CC16 concentration 

when the serum samples were processed at the higher laboratory temperature of 35
o
C. This 

increase was statistically significant for volunteer one and only just non-significant for 

volunteer two.  

 

The significant results obtained for volunteer one indicated that the laboratory temperature 

at which the samples are processed may affect the GPx activity and CC16 concentration of 

the samples. It was therefore important that the erythrocyte lysate and serum samples be 
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processed and assayed at a constant temperature to ensure reproducibility and allow the 

GPx activity and CC16 concentration of the samples to be reliably compared. Although a 

higher GPx activity and CC16 concentration was found at a temperature of 35 
o
C, the GPx 

and CC16 assay kit instructions recommended an assay temperature of 25 
o
C. It was 

therefore decided that during the field work the ambient temperature of the temporary field 

laboratory and the NIOH laboratory would be maintained as close to 25 
o
C as possible.  

 

4.1.4 Effect of storage duration 

 

The effect of increasing duration of storage on the levels of GPx activity and CC16 

concentration was investigated as the erythrocyte lysate and serum samples could not be 

assayed immediately after their preparation.  

 

4.1.4.1 Erythrocyte GPx 

 

Although there was a slight increase in mean GPx activity with an increase in storage 

duration for volunteer one, analysis revealed that, for both volunteers, there was no 

significant difference between the mean GPx activities of the samples stored for increasing 

storage durations. A non-significant effect of storage temperature on GPx activity was also 

found by Andersen and colleagues [1997] who stored erythrocyte lysate samples at -80 
o
C 

for six months. 
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It was therefore decided that the erythrocyte lysate samples, collected during the field 

work, could be stored for up to nine weeks without there being a significant effect on the 

GPx activity of the samples.  

 

Similar to the results obtained with the effect of storage temperature (section 4.1.1.1), 

storage duration also affected differently the GPx activities of the erythrocyte lysate 

samples collected from two different donors in that the mean GPx activity of the samples 

obtained from volunteer two were almost double that of the samples obtained from 

volunteer one.  In this latter experiment however, the volunteers were of different sexes 

and the differences in mean GPx activities observed may therefore be attributed to gender 

differences as confirmed by observations by Bolzan et al [1997]. 

 

4.1.4.2 Serum CC16  

 

For both volunteer one and two, the mean CC16 concentration of the samples decreased 

after three and six weeks but then recovered slightly after nine weeks of storage. While the 

decrease in the mean CC16 concentrations between the zero week and the three and six 

week samples was significant for volunteer one it was not significant for volunteer two.  

 

Since there was no significant difference between the mean CC16 concentration of the 

serum samples assayed immediately and those stored for nine weeks, for both volunteers, it 

was decided that the serum samples collected during the field work would be stored for 

approximately nine weeks before being assayed.  This decision was also based on the 
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recommendations of the kit manufacturers which claimed that the serum CC16 samples 

could be stored for up to two years at -80 
o
C.  

 

4.1.5 Comparison of GPx activity and CC16 concentration 

results of NIOH volunteers with results reported for 

healthy adults 

 

As previously mentioned in section 2.1.8, the haemoglobin concentration of the 

erythrocyte lysate samples used in the GPx optimisation experiments was not measured 

because the replicate samples were prepared from the same blood specimen. The GPx 

activity results obtained for the GPx optimisation experiments were therefore reported as 

nmol/min/ml. The GPx activity levels, obtained in the optimisation experiments, ranged 

from 20.4 to 1726.8 nmol/min/ml (or 0.002 to 1.727 Units). Using the average 

haemoglobin concentration obtained for the miner’s erythrocyte lysate samples (0.05 g 

Hb/ml); the GPx activity results for the optimisation experiments were estimated to be 

between 0.42 and 35.36 U/g Hb.  A study on the biological variability of erythrocyte GPx 

[Guemouri et al., 1991], conducted in France, reported erythrocyte GPx activity levels of 

between 22.5 and 67.0 U/g Hb in healthy adult males and between 24.4 and 68.1 U/g Hb in 

healthy adult females.  In terms of the South African population, Janse van Rensburg et al 

[2005] reported erythrocyte GPx levels of 22.1 ± 3.5 U/g Hb in healthy adult controls; 

however their sample numbers were low. Therefore, although some of the NIOH 

volunteers had estimated GPx activity results well below the reported ranges for healthy 

adults, the majority of the volunteers had estimated GPx activity results within the lower 
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end of the ranges. The mean GPx activity of the healthy volunteers in the study by Borm et 

al [1986] were also low (2.86 U/g Hb) despite the use of a different assay procedure.  

 

In addition, the GPx optimisation experiments showed a within-subject coefficient of 

variation (CV) of between 11.4% and 126.3% (with a mean of 39.0%). However, the 

Glutathione Peroxidase Assay Kit manufacturer reported a much lower intra-assay CV of 

5.7% when they assayed a larger sample size [CaymanChemical, 2004]. One reason for the 

high CVs obtained in the current study is the stringent criteria used to reject outliers. Only 

data observations greater than 2.IQR above or below the mean were considered outliers 

and therefore some replicate values that were much lower or higher than the other replicate 

could not be excluded from the data sets. The high CVs obtained in the current study may 

also indicate that the assay is not as reproducible as reported.  

 

In the CC16 optimisation experiments the CC16 levels ranged from 0.59 to 8.30 µg/l with 

a mean of 5.81 µg/l. Other studies have reported serum CC16 levels of between 6.6 and 

23.2 µg/l in healthy adult males and between 3.7 and 22.9 µg/l in healthy adult females 

[Shijubo et al., 2003]. Similar to the GPx results, some of the NIOH volunteers had CC16 

levels well below the reported ranges for healthy adults while the majority of the 

volunteers had CC16 levels within the lower end of the ranges. The results of the current 

study were, however, consistent with the CC16 levels obtained for the healthy controls 

(5.77 ± 1.64 µg/l) in the second phase of the project [Murray et al., 2006]. The lower CC16 

and GPx levels in the healthy South African population therefore warrants further 

investigation. 
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The CC16 optimisation experiments showed a within-subject coefficient of variation (CV) 

of between 7.5% and 47.5% (with a mean of 17.2%). The CVs may have been lower if less 

stringent criteria were used to determine outliers.  

 

 

4.2 Field work 

 

 

During the field work portion of this project, a total of 80 volunteer miners were recruited 

upon their return from leave (a period of little or no crystalline silica exposure) and blood 

samples were collected. Follow up blood samples were then collected from 53 of the 

volunteers after they had returned to work (and had been exposed to crystalline silica dust). 

Due to various reasons (for example the refusal to continue with the study or the inability 

to be contacted telephonically) there were 27 volunteers from whom no follow up samples 

could be collected.  

 

The follow up samples were collected 8 to 25 weeks (2 to 6 months) after the volunteers 

had returned to work. This variation in the duration of exposure to crystalline silica 

allowed the effect of exposure duration on the change in biomarker levels (between the ex-

leave and follow up samples) to be investigated (the results of which are discussed in 

section 4.2.4). As previously detailed in section 2.4.3, the original protocol for the follow 

up sample collection procedure was revised so that blood specimens were collected on 

either a Monday (pre-shift), a Wednesday (pre- and post-shift), or a Friday (post-shift). 

This adaptation of the study design due to the lack of participation by volunteers resulted 

in a reduction in the number of samples obtained (only 16 Monday, 24 Wednesday, and 16 

Friday follow up samples were collected) and therefore a decrease in the power of the 
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results. In addition, it limited the ability to examine inter-individual changes in the 

biomarker levels over time.   

 

4.2.1 Demographics of the study population  

 

The entire group of volunteers had a mean age of 40 years, consisted of a majority of black 

individuals and had prevalence of radiological silicosis of 11%. Additionally, the group 

consisted of an approximately equal number of individuals in high and low dust exposure 

jobs.  

The characteristics of the group of volunteers who donated follow up samples were then 

compared to those of the group of volunteers who did not donate follow up samples. It was 

found that there was no significant difference between the two groups in terms of age, 

apparent race group, smoking habits, job classification (an estimate of dust exposure level), 

silicosis prevalence, return from leave GPx activities or return from leave CC16 

concentrations. It was therefore concluded that there was no selection bias in the miners 

who donated follow up blood specimens. 
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4.2.2 Parameters affecting biomarker levels in ex-leave miners 

 

4.2.2.1 Erythrocyte GPx 

 

As indicated earlier, GPx is a marker of oxidative stress. The effect of age, race, cigarette 

smoking, and silicosis on the levels of erythrocyte GPx activity (in specimens collected 

from miners upon their return from leave) was therefore assessed because oxidative stress 

has been associated with aging [Habif et al., 2001], silicosis [Ghio et al., 1990] and 

cigarette smoking [Quinlan et al., 1994]. The effect of race on GPx activity was also 

investigated as any effect would influence the recruitment of study volunteers in future 

projects.  

 

The current study showed no significant correlation between age and erythrocyte GPx 

activity. These findings were in agreement with those reported in phase II of the project 

[Murray et al., 2006] as well as with those reported in other investigations [Andersen et al., 

1997, Habif et al., 2001]. On the other hand, a significant positive correlation between age 

and GPx activity [Ceballos-Picot et al., 1992, Bolzan et al., 1997] and a negative 

correlation between GPx activity and an age of 60 years or older [Ho et al., 2005, 

Guemouri et al., 1991] have been reported. The lack of significant correlation between 

GPx activity and age observed in our results may therefore be explained by the mean age 

of our group being below 60 years. 
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The current study also found that, although the GPx activity of the group of white 

individuals was slightly higher than the group of black individuals, there was no significant 

effect of race on GPx activity. Due to the lack of convincing literature regarding race 

differences in GPx activity, further investigation into possible effects of race group on GPx 

activity is required. 

 

In addition, no significant effect of cigarette smoking on erythrocyte GPx activity was 

found. These results confirm those reported in the second phase of the project [Murray et 

al., 2006] and in other investigations [Toth et al., 1986, Guemouri et al., 1991, Habif et al., 

2001, Bolzan et al., 1997].  However, a few studies have indeed shown a significant 

decrease in erythrocyte GPx activity in smokers versus non-smokers [Duthie et al., 1991, 

Kondo et al., 1994, Ho et al., 2005]. It should be noted that the participants in the current 

study who described themselves as smokers only smoked a relatively low number of 

cigarettes per day and this may have contributed to the lack of a significant finding. 

 

Finally, the level of GPx activity in the group of volunteers with silicosis was significantly 

lower than in the group with no signs of silicosis. Despite the small number of subjects in 

our silicotic group, larger studies involving silicotic patients and controls have also shown  

a decrease in erythrocyte GPx activity [Borm et al., 1986, Zhou et al., 1999]. 

 

4.2.2.2 Serum CC16  

 

When the effect of age on serum CC16 concentration was investigated in the current study, 

no significant correlation was observed. Similar findings were also reported in phase II of 
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the project [Murray et al., 2006] and in a study by Hermans et al [1998] which also 

assayed CC16 by means of ELISA. In studies using latex immunoassay as the assay 

method, a significant correlation between age and CC16 concentration was found and it 

was attributed to age-related structural and functional changes in the lung or a decline in 

renal function [Robin et al., 2002, Bernard et al., 1994b].   

 

In addition, no significant effect of race on serum CC16 concentration was found. Similar 

to GPx activity, no studies could be found that examined the effect of race on CC16 

concentration and therefore further research into this field is required.   

 

The current study also showed that, although the smokers (current and ex-smokers) had 

higher CC16 concentration than the non-smokers; there was no significant effect of 

cigarette smoking on serum CC16 concentration. These findings were in agreement with 

the findings of phase II of the project [Murray et al., 2006] and a study by Wang et al 

[2007] which involved silica exposed workers and controls.  

  

Lastly, the volunteers in the current study with radiological silicosis (of ILO grade 1/1 or 

greater) had higher CC16 concentrations than the volunteers with no silicosis. Although 

the non-parametric statistical test indicated that the increase was just significant, the 

parametric tests performed on the transformed data indicated that there was no significant 

effect of silicosis on CC16 concentration. The contradicting results were likely due to the 

small number of subjects with silicosis. An earlier study involving silica-exposed workers 

in China found no significant difference between the participants with and without silicosis 

[Wang et al., 2007].   A more comprehensive investigation into the effect of silicosis on 

serum CC16 concentration is therefore required.  
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4.2.3 Comparison between biomarker levels in the return from 

leave (ex-leave) and return to work (follow up) samples  

 

As previously mentioned, ex-leave samples were collected from miners after a period of no 

crystalline silica exposure and follow up samples were collected, throughout the week, 

following 8 to 25 weeks of crystalline silica exposure. The levels of erythrocyte GPx 

activity and serum CC16 concentration in the ex-leave samples were then compared to 

those in the follow up samples to determine the effect of 8 to 25 weeks (2 to 6 months) of 

crystalline silica exposure. In addition, the levels of erythrocyte GPx activity and serum 

CC16 concentration in the Monday, Wednesday and Friday follow up samples were 

compared to each other to determine the effect of short term crystalline silica exposure.  

 

4.2.3.1 Erythrocyte GPx 

 

A significant decrease was found when comparing the mean GPx activity of the ex-leave 

samples with that of the Monday, Wednesday (pre- and post-shift) and Friday follow up 

samples.  The statistical comparisons were paired so that ex-leave GPx activity levels were 

compared with the follow up GPx activity levels in the same individual.  A significant 

decrease in GPx activity was also found when the mean GPx activity of the ex-leave 

samples was compared to that of the follow up groups combined (26.30 U/g Hb versus 

22.48 U/g Hb,   p = 0.00). Since the ex-leave samples were collected after a period of leave 

(usually four weeks), the results suggest that GPx levels decrease after two to six months 
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of chronic exposure to silica dust and then increase or even recover to normal during a 

period of leave.  

 

When the mean GPx activity levels of the Monday (pre-shift), Wednesday (pre- or post-

shift) and Friday (post-shift) follow up samples were compared to each other, no 

significant differences were found.  It was therefore suggested that the GPx levels remain 

decreased throughout the week and do not recover over a weekend away from work.  

 

The decrease in mean GPx activity, upon exposure to crystalline silica dust, found in this 

phase of the project therefore confirms the findings of the second phase of the project 

[Murray et al., 2006]. A significant decrease in GPx activity as a result of exposure to 

silica containing dust has also been demonstrated in studies of silicosis patients [Borm et 

al., 1986, Zhou et al., 1999], coal miners [Nadif et al., 2001], and cement workers [Orman 

et al., 2005]. In addition, significant decreases in GPx activity have been observed in other 

diseases or exposures in which oxidative stress has been implicated: such as COPD 

[Kluchova et al., 2007], asthma [Powell et al., 1994], and cadmium exposure [Babu et al., 

2006].  

 

A possible explanation for the observed decrease lies in the fact that the study participants 

were chronically exposed to respirable crystalline silica. Acute exposure to crystalline 

silica can cause an increase in erythrocyte GPx levels as a result of increased antioxidant 

action to counteract the oxidative stress induced by the crystalline silica particles 

[Vallyathan et al., 1995]. On the other hand, chronic exposure to crystalline silica could 

cause the antioxidant system to be overwhelmed leading to a decrease in GPx activity. 
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4.2.3.2 Serum CC16 

 

The mean CC16 concentration of the ex-leave samples was very similar to those of the pre-

shift follow up samples collected on Monday and Wednesday but higher than those of the 

post-shift follow up samples collected on Wednesday and Friday. The decrease in CC16 

concentration between the ex-leave and Wednesday (post-shift) samples was statistically 

significant while the decrease between the ex-leave and Friday samples was only just not 

significant (when Bonferonni adjusted alpha was used as the level of significance). Since 

the ex-leave samples were collected in the morning, the majority of the pre-shift follow up 

samples were collected in the morning and the majority of the post-shift follow up samples 

were collected in the afternoon (refer to figure 3.2), the results indicate a significant 

decrease between the CC16 levels in the morning and afternoon samples. This was 

confirmed by the comparison of the different follow up samples which showed a 

significant decrease between the Wednesday (pre- and post-shift) CC16 levels. Although a 

significant difference between the CC16 levels of the Monday (pre-shift) and Wednesday 

(post-shift), the Friday and Monday and the Friday and Wednesday (pre-shift) samples was 

also expected, the comparisons were unpaired and therefore not as accurate as a paired 

comparison.   

 

One possible explanation for results observed in the current study is that CC16 levels fall 

quite rapidly during the period of a work shift but return to near normal levels during the 

16 hours between shifts. This implies that CC16 levels may be a marker of recent silica 

exposure.  Similar results were found in studies of workers exposed to welding fumes 

[Halatek et al., 2004] and nitric oxides [Halatek et al., 2005]. Both studies measured CC16 

levels on a Monday morning, Monday afternoon (after an eight hour shift) and a Friday 
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afternoon.  While the study of welders found a significant decrease between the Monday 

morning and the Monday afternoon and Friday afternoon samples, the study of nitric oxide 

exposed workers found a similar but non-significant result. From these results the authors 

suggested that depletion in CC16 levels as a result of exposure to welding fumes and nitric 

oxides can already be seen after a single eight hour shift.  

 

On the other hand, the results of the current investigation may have been influenced by 

time-dependent diurnal variation in CC16 levels that have been observed in other studies. 

When Anderson et al [2007] and Helleday et al [2006] investigated diurnal variation of 

CC16 in serum samples they found a decrease in serum CC16 concentrations over the day 

with the highest CC16 concentration occurring in the morning sample and the lowest in the  

afternoon sample. In addition, Helleday et al. [2006] proposed the use of an equation 

(∆CC16 = 0.032t
2
 – 0.582t) to describe the relationship between time of day and CC16 

levels. Although the exact times at which specimens were collected were not recorded in 

this study; the Helleday equation could be used to estimate the expected change in CC16 

levels due to diurnal variation.  Assuming average shift duration of 8 hours, it was 

estimated that diurnal variation could cause CC16 levels to drop an average of 2.6 ng/ml 

between morning and afternoon samples. In the present study, the decreases in CC16 

concentration observed between the ex-leave and follow up samples and between the pre- 

and post-shift follow up samples (table 3.2.4.2.b) were well within this expected fall of 

2.61 ng/ml. Therefore, we cannot fully attribute the declines in CC16 levels observed in 

this study to the effects of crystalline silica exposure during the shift as these declines may 

also be due to diurnal variation. 
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In unpublished results of the Phase II study by Wilson et al. (Appendix A), the miners 

exposed to crystalline silica had a mean CC16 level of 5.6 ng/ml while the non-exposed 

controls had a mean CC16 level of 6.6 ng/ml. Since the majority of the Phase II specimens 

were collected at similar times, the decrease in CC16 levels (due to crystalline silica 

exposure) observed in that study were unlikely to be due entirely to diurnal variation. 

 

It is therefore proposed that the current study results are compatible with the results 

reported in phase II of the project [Murray et al., 2006] and exposure to crystalline silica 

dust more than likely contributed to the reduction in CC16 levels observed.   

 

A decrease in serum CC16 levels, as a result of crystalline silica exposure, has also been 

observed in studies involving silica-exposed mine workers and controls [Bernard et al., 

1994a, Wang et al., 2007]. The authors proposed that the decrease in CC16 levels in serum 

were as a result of a decreased secretion or production of CC16 due to the destruction of 

Clara cells by silica. They suggested that the number or integrity of Clara cells might be 

compromised by 1) direct damage of Clara cells (which are sensitive to attack from 

pneumotoxic chemicals) by silica particles; 2) damage caused by cytotoxic mediators 

released from activated macrophages after they have engulfed silica particles and 3) 

prevention of the renewal of Clara cells (since Clara cells have been implicated in the 

renewal of bronchiolar epithelium). They concluded that changes in the serum CC16 

concentration likely reflects early toxic effects of silica on Clara cells (before significant 

effects on the lungs can be detected by chest x-ray examination) and therefore that serum 

CC16 is a sensitive marker which might improve the ability to detect exposure to silica in 

the respiratory tract.  
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4.2.4 Effect of crystalline silica exposure on the change in 

biomarker levels  

 

An attempt was then made to establish whether the observed decrease in GPx activity and 

CC16 concentration was correlated to either the job classification (an estimate of dust 

exposure level) of the volunteers or the duration of crystalline silica exposure (the duration 

between the collection of the ex-leave and follow up samples). 

 

4.2.4.1 Erythrocyte GPx 

 

It was determined that the decrease in GPx activity observed was not significantly related 

to the job classification (dust exposure level) or the duration of crystalline silica exposure. 

These results confirm that GPx may be a marker of early effect from crystalline silica 

exposure since the GPx levels decrease upon exposure to crystalline silica, following a 

period of leave, and do not change significantly as the duration of exposure increases.  

 

4.2.4.2 Serum CC16 

 

Similar to GPx activity, no significant correlation was found between the changes in CC16 

concentration observed and the job classification (dust exposure level) of the volunteers or 

the crystalline silica exposure duration.  
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It is, however, important to treat these results with caution since the dust exposure level 

classifications were based on current job descriptions and were therefore not a reliable or 

accurate measure of the volunteers personal dust exposure. In addition, the duration of dust 

exposure observed in the current study was short and the number of observations in each 

duration group was small. Therefore, although the current investigation found no 

correlation between the change in GPx activity and CC16 concentration levels and the 

level or duration of dust exposure, it does not mean that a correlation does not exist. 
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4.3 Limitations of the study 

 

The study participants were all volunteers and therefore no attempt should be made to 

generalise these findings to all miners, in particular in respect of establishing what 

constitutes normal baseline biomarkers levels for unexposed miners. 

 

Three main limitations arose during the study: 

 

Firstly, the original project plan involved the collection of the return to work specimens 

from each volunteer on a Monday (pre-shift), a Wednesday (pre- and post-shift), and a 

Friday (post-shift). This collection procedure proved difficult to achieve as volunteers were 

not willing to give four specimens in one week. The specimen collection procedure was 

then revised so that miners were asked whether they would be prepared to give two 

specimens (a pre- and post-shift specimen) on a Wednesday. Those who said they were not 

prepared to do so were allocated to a single specimen collected either pre-shift on a 

Monday or post-shift on a Friday by randomization. This adaptation of the study design 

due to the lack of participation by volunteers resulted in a reduction in the number of 

follow up samples obtained and therefore a decrease in the power of the study to detect 

differences.   

 

Secondly, the dust exposure level classifications used were based on current job 

descriptions and were therefore an unreliable indication of the volunteer’s personal dust 

exposure. It would have been better to determine the personal dust exposure level of the 



  

 

 166 

volunteer by performing 8-hour full-shift personal dosimetry and measuring the amount of 

respirable crystalline silica by X-ray diffraction (XRD) spectroscopy.   

 

Thirdly, since the levels of GPx (a general marker for oxidative stress) and CC16 (a 

general lung damage marker) are both affected by a number of toxicants they are not 

specific for crystalline silica exposure. Although in occupational exposure settings it is 

often possible to exclude other factors affecting the biomarker levels and therefore a 

relative specificity is possible [Aitio, 1999], the question remains whether the observed 

changes are only due to respirable crystalline silica exposure.  
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4.4 Future research & recommendations 

 

1. The effect of diurnal variation of CC16 levels needs to be further investigated in 

silica-exposed subjects. Helleday et al developed a second-degree polynomial 

mathematical model (with the formula ∆CC16 = -0.582t + 0.032t
2
) to explain the 

decrease in serum CC16 due to diurnal variation. In future studies, the baseline 

morning CC16 concentration should be determined so that the model can be used to 

compensate for the diurnal variation and therefore any remaining decrease could be 

interpreted as an effect of the silica exposure. This factor was not taken into account 

in the design of the current study since the relevant paper had not yet been published. 

It would probably also be wise to investigate the possibility of diurnal variations of 

the GPx levels in non-exposed workers.  

 

2. Although the GPx activity was found to decrease after two to six months of 

crystalline silica exposure, the point in time (after the return to work) at which the 

decrease in GPx activity actually occurs (a dose response curve) needs to be further 

investigated.  

 

3. Although a great deal of research indicates that both GPx and CC16 could be markers 

of silica exposure it would be worthwhile, as a precautionary step, to examine this 

issue further by measuring these biomarkers in miners with no silica exposure. If  this 

research finds no change in GPx or CC16 levels (i.e. confirm the specificity of these 

biomarkers for crystalline silica exposure) then the next question that needs to be 

answered is whether there exists a threshold of silica exposure at which the 
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biomarker levels fall, and whether this threshold (if it exists) correlates with 

dosimetric silica measurements.  

 

4. The baseline levels of GPx and CC16 for individuals with no history of crystalline 

silica exposure needs to be determined. A study could be conducted in which new 

recruits (with no previous silica exposure) are followed up periodically over a 

number of years to establish the changes occur in the levels GPx and CC16. 

 

5. It is possible that silica-induced damage to Clara cells may be permanent or that it 

might take longer than one month (the duration of the leave periods) for them to 

recover or for destroyed Clara cells to be replaced. It would therefore be interesting 

to study CC16 levels in ex-miners who have been away from the mines for longer 

than one month to determine whether there is any observable increase in CC16 levels 

with time, and, if so, how long this might take. 

 

6. The drawing of blood, although not as invasive as BAL, is still considered an 

invasive procedure. Although not possible for GPx, it would be wise to investigate 

the possibility of using non-invasive methods (for example urine, breath or saliva) to 

assay CC16.  This would facilitate routine sampling in human studies and may 

overcome ethical issues [Waterfield and Timbrell, 2000]. In fact, a correlation 

between serum CC16 and urine CC16 has been found [Andersson et al., 2007] and 

the use of urinary CC16 (U-CC16) as an alternative to serum CC16 as a biomarker of 

airway toxicity has been investigated [Timonen et al., 2004]. Therefore, further 

consideration and investigation into the use of urine CC16 as an alternative to serum 

CC16 in silica exposed subjects is recommended. 
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7. The inter-assay and intra-assay variations of the Glutathione Peroxidase Assay Kit 

and Human Clara Cell Protein ELISA Kit used in the current study should be 

investigated in healthy South African controls.  
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Chapter 5:  

CONCLUSION 

 

Despite dust control measures in place to limit the inhalation of crystalline silica, silicosis 

continues to pose a significant threat to the health of South African gold miners. It would 

therefore be invaluable if biomarkers of effect of crystalline silica exposure were identified 

and validated as they could be used to detect early adverse effects of silica exposure and 

evaluate the success of dust control methods. 

 

An earlier phase of this project on biomarkers identified two potential biomarkers, 

erythrocyte glutathione peroxidase (GPx) and serum Clara cell protein 16 (CC16), which 

were significantly affected by crystalline silica exposure. This third phase of the project 

seemed to confirm the results of the earlier phase in that a decrease in the levels of GPx 

activity and CC16 concentration was observed following exposure to crystalline silica.     

 

Regarding the levels of GPx, the results suggest that GPx levels decrease after two to six 

months of chronic exposure to crystalline silica dust and remain decreased (throughout the 

working week and over a weekend) and then increase or even recover to normal levels 

during a period of leave. It was therefore concluded that GPx activity levels rise and fall, in 

response to crystalline silica dust exposure, gradually and over periods of some time, 

possibly months.  

 

The CC16 results were, however, less promising. It was found that, after two to six months 

of exposure to crystalline silica, there was a significant decrease in serum CC16 
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concentration on a Wednesday afternoon following an 8-hour shift and during the duration 

of a shift. In addition, there is the possibility that the observed changes were due to a time-

dependent diurnal variation in the CC16 levels.   

 

In conclusion, the results of the current phase warrant further research into the use of 

erythrocyte GPx and serum CC16 as biomarkers of early effect from crystalline silica 

exposure. 
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APPENDICES 
 
 

Appendix A: Abstract for poster presented by Mrs K. Wilson at the 2008 

EPICOH conference. 

 

Predictors of Clara Cell Protein (CC16) level: an investigation of CC16 as a silica 

exposure biomarker. 

 

Kerry Wilson, 
1,2

, Jill Murray
1,2

, Brendan Girdler-Brown
3
, Paul Borm

4
, Ken Donaldson

5
, 

Val Vallyathan
6
, Vincent Castranova

6
 and Mary Gulumian

1,2
. 

 
1
National Institute for Occupational Health, 

2
University of the Witwatersrand, 

3
University 

of Pretoria, 
4
Centre for life Science, 

5
ElEGI, 

6
NIOSH 

 

Introduction: Clara cell protein (CC16) is a protein that is mainly produced by Clara cells 

in the respiratory epithelium. CC16 can be measured in bronchoalveolar lavage specimens, 

serum, urine and sputum. Clara cells and CC16 may play a role in protecting the lung from 

oxidative stress. A change in CC16 reflects chronic damage to Clara cells and may 

therefore be a useful biomarker for crystalline silica induced lung damage. This paper 

presents an analysis of predictors of CC16 in gold miners exposed to silica and unexposed 

controls. 

 
Methods: 118 African male volunteers participated in this cross-sectional study. They were 

recruited from a gold mine (silica exposed, n= 64), a blood donor service (silica non-

exposed n= 37) and a hospital HIV clinic (silica non-exposed n= 18). Data were collected 

on age, work history, smoking habits and HIV status. CC16 was assayed in the serum 

using an ELISA kit. Multiple linear regression was performed with post-regression 

residuals analysis to identify the factors that might explain the observed variation in CC16.  

 

Results: Arithmetic mean (AM), geometric mean (GM) and geometric standard deviation 

(GSD) for the whole group CC16 level were 6.0ng/ml, 5.27ng/ml and 1.67ng/ml.  AM, 

GM, and GSD for the silica exposed group were 5.56, 4.87 and 1.69, and for the 

unexposed group were 6.49, 5.77 and 1.64. The CC16 results were log-normally 

distributed. Tests for unpaired data with equal variance indicated a crude relationship 

between silica exposure and CC16 levels, p = 0.074; and smoking and CC16 levels, p = 

0.0001. Multiple regression with the factors investigated in this study explained 20% of the 

variation (coefficient of determination r = 0.19) and the model identified exposure to silica 

as a significant risk for a lower level of CC16 (p = 0.024) smoking was no longer 

significant (p = 0.082).   

 

Conclusion: CC16 levels were lowered in silica exposed subjects and were not affected by 

HIV status. CC16 is a suitable candidate for further research.  Factors that further explain 

the variance in CC16 levels need to be identified before it can be confidently used as a 

biomarker for silica dust exposure. 
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Appendix B: Copy of KC4 report obtained from the assay of the GPx 

activity of samples 31 to 34.  
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Appendix C: Analysis page from the Cayman Chemical Company workbook entitled “GSHasesTriple” 

 

The values in the cells are taken from the KC4 results printout (Appendix B) from the analysis of the erythrocyte lysate samples of 

volunteer 31 to 34 

ASSAY 

 

1            

             

LAYOUT 1 2 3 4 5 6 7 8 9 10 11 12 

A BLANK                       

B CTRL 1:1                     

C Smpl31 1:30                     

D Smp32 1:30                     

E Smpl33 1:30                     

F Smpl34 1:30                     

G                         

H                         

             

TIME 0:00 1 2 3 4 5 6 7 8 9 10 11 12 

A 0.4090 0.4100 0.414                   

B 0.3690 0.3690 0.378                   

C 0.5250 0.5300 0.54                   

D 0.5610 0.5640 0.561                   

E 0.5310 0.5360 0.538                   

F 0.5440 0.5640 0.558                   

G                         

H                         

TIME 1:00             

A 0.3980 0.4010 0.405                   

B 0.3280 0.3330 0.344                   

C 0.4840 0.4870 0.497                   

D 0.5270 0.5290 0.53                   

E 0.4980 0.5090 0.508                   

F 0.5190 0.5350 0.525                   
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G                         

H                         

TIME 2:00             

A 0.3880 0.3900 0.395                   

B 0.2860 0.2940 0.307                   

C 0.4390 0.4420 0.454                   

D 0.4940 0.4940 0.498                   

E 0.4670 0.4800 0.481                   

F 0.4890 0.5030 0.495                   

G                         

H                         

TIME 3:00             

A 0.3770 0.3800 0.384                   

B 0.2420 0.2530 0.225                   

C 0.3940 0.3980 0.411                   

D 0.4610 0.4590 0.465                   

E 0.4360 0.4500 0.453                   

F 0.4590 0.4710 0.465                   

G                         

H                         

TIME 4:00             

A 0.3670 0.3690 0.372                   

B 0.1970 0.2100 0.225                   

C 0.3500 0.3540 0.368                   

D 0.4270 0.4230 0.432                   

E 0.4050 0.4200 0.424                   

F 0.4280 0.4380 0.436                   

G                         

H                         

TIME 5:00             

A 0.3560 0.3580 0.361                   

B 0.1530 0.1670 0.182                   

C 0.3080 0.3110 0.326                   

D 0.3930 0.3880 0.356                   

E 0.3740 0.3870 0.396                   

F 0.3970 0.4060 0.406                   
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G                         

H                         

             

Time BLANK CTRL Smpl31 Smp32 Smpl33 Smpl34             

0 0.4110 0.3720 0.5317 0.5620 0.5350 0.5553             

1 0.4013 0.3350 0.4893 0.5287 0.4980 0.5263             

2 0.3910 0.2957 0.4450 0.4953 0.4760 0.4957             

3 0.3803 0.2400 0.4010 0.4617 0.4463 0.4650             

4 0.3693 0.2107 0.3573 0.4273 0.4163 0.4340             

5 0.3583 0.1673 0.3150 0.3790 0.3857 0.4030             

y-int= 0.4117 0.3738 0.5320 0.5651 0.5325 0.5563       

slope= -0.0106 -0.0415 -0.0435 -0.0358 -0.0292 -0.0306       

R
2
= 0.9994 0.9957 0.9999 0.9952 0.9973 0.9999       

Rxn Rate= 0.0105 0.0409 0.0328 0.0261 0.0193 0.0199       

             

Time                         

0                         

1                         

2                         

3                         

4                         

5                         

y-int=             

slope=             

R
2
=             

Rxn Rate=             

             

RESULTS GPx Dilution Activity GPx Dilution Activity       

 Smpl31 30 2506.17             

 Smp32 30 1991.69             

 Smpl33 30 1477.21             

 Smpl34 30 1523.06             
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       Ctrl 1 104.25       

       Activity in nmol/min/ml       

             

             

             

FILENAME 
GSHasesTriple - M31-Al to 

M34-Al           

             

VERSION 2004D314           
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Appendix D: Graph page from the Cayman Chemical Company workbook 

entitled “GSHasesTriple” 

 

The graphs were automatically constructed by the workbook using the values entered into the 

Analysis page (see Appendix C) for volunteer 31 to 34. 
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Appendix E: Certificate of analysis for CC16 
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Appendix F: Copy of KC4 report obtained from the assay of the CC16 

concentration of samples 1 to 26 
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Appendix G: Information sheet for NIOH volunteers 

 

 

     MINE HEALTH AND SAFETY COUNCIL  

                                  and the 

      NATIONAL INSTITUTE for 

              OCCUPATIONAL HEALTH 

 
 
Subject Information Sheet for volunteers 
 

Hello, my name is Kerry Makinson, I am a researcher at the National Institute of Occupational 

Health (NIOH), and my contact number is 011 712 6469. My co-worker is Professor Brendan 

Girdler-Brown. 

 

I would like to invite you to participate in our study. We are looking for a new blood test that 

might be used to see if silica dust levels at the gold mines are a danger to workers.  

However, before we conduct experiments on the miners’ blood we need to determine the best 

conditions for handling, storage and assaying of the samples. In order to do this we need to do 

experiments with blood from volunteers.  

 

If you decide to participate, I would like to explain to you what will happen. First you need to 

sign a consent form. Then we will need to draw 15ml of blood (3 teaspoons) from your arm. 

This will not take long. After we take your blood it will be kept frozen at the National Institute 

for Occupational Health and will only be used for these optimization experiments. It will not 

be used for any other purpose without your written permission. 

 

Your personal information and results will be kept confidential and will not be shown to any 

other person.   

 

If you decide not to take part in this study it will not affect you or your job in any way. The 

only risk to you from taking part in this study will be a little discomfort when the blood 

specimen is taken and for a short time afterwards.  

 

Thank you  

Kerry Makinson 
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Appendix H: Consent form for NIOH volunteers 

 

 

     MINE HEALTH AND SAFETY COUNCIL  

                                  and the 

      NATIONAL INSTITUTE for 

              OCCUPATIONAL HEALTH 

 

 
  106 Joubert Street Ext ● PO Box 4788 Johannesburg 2000 South Africa ● Tel: 27 11 712 6400 ● 

  Fax: 27 11 712 6545 

 

 

Validation of biomarkers for assessment of exposure to silica dust. 

 

The information sheet about this study has been read to me and I understand what will be 

required of me if I take part in the study. My questions concerning this study have been 

answered by…………………........................ (Name of study member). 

 

My participation in this study is voluntary; I understand that if I do not wish to take part it will 

have no effect on me or my job.  

 

I ____________________________________________________________ agree to take part 

in the study. I agree to give 15ml of blood. I understand that all individual and personal 

information will be kept confidential.  

 

Signed_______________________________________Date_____________ 
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Appendix I: Standard Operating Procedure (SOP) for the analysis of 

erythrocyte glutathione peroxidase activity using the Cayman Chemical 

Glutathione Peroxidase Assay Kit 
 

 
Objective: To describe the Standard Operating Procedure (SOP) for the collection, handling and 

storage of blood samples from volunteer miners and for assaying the amount of Glutathione Peroxidase 

(GPx) activity in the samples using the Cayman Chemical Glutathione Peroxidase Assay Kit 

 
Principle: Glutathione peroxidase (GPx) catalyzes the reduction of organic hydroperoxides (including 

hydrogen peroxide) by reduced glutathione and functions to protect the cell from oxidative damage
 

[Ursini et al., 1985]. The Cayman Chemical Glutathione Peroxidase Assay Kit measures GPx activity 

indirectly by a coupled reaction with glutathione reductase (GR). Oxidized glutathione (GSSG), 

produced upon reduction of hydroperoxide by GPx, is recycled to its reduced state by GR and NADPH 

[Ursini et al., 1985]: 

 

R-O-O-H + 2GSH           
GPx

             R-O-H + GSSG + H2O 

 

GSSG + NADPH + H
+
       

GR
            2GSH + NADP

+ 

 

The oxidation of NADPH to NADP
+
 is accompanied by a decrease in absorbance at 340 nm. Under 

conditions in which the GPx activity is rate limiting, the rate of decease in the A340 is directly 

proportional to the GPx activity in the sample [Paglia and Valentine, 1967]
. 
The Cayman GPx Assay 

Kit can be used to measure all of the glutathione-dependent peroxidases in plasma, erythrocyte lysates, 

tissue homogenate, and cell lysates [Cayman Chemical Company, 2004]. 

 

Sensitivity: The range of the assay is limited only by the accuracy of the absorbance measurement. 

Most plate readers are linear to an absorbance of 1.2. Samples containing GPx activity between 50-344 

nmol/min/ml can be assayed without further dilution or concentration. This GPx activity is equivalent 

to an absorbance decrease of 0.02 to 0.135 per minute. [Cayman Chemical Company, 2004]. 

 

Precision: When a series of seventy-seven GPx measurements were performed on the same day by the 

manufacturer, the intra-assay coefficient of variation was 5.7%. When a series of seventy-seven GPx 

measurements were performed on five different days under the same experimental conditions (by the 

manufacturer), the inter-assay coefficient of variation was 7.2%. [Cayman Chemical Company, 2004].  

 

Interferences:  
1. Samples that have a high intrinsic absorbance at 340 nm may exceed the absorbance maximum of 

the plate reader. Therefore, samples with an initial absorbance >1.2 should be diluted with Sample 

buffer until the absorbance is lowered. 

2. Samples containing high levels of GSSG or NADPH consuming enzymes will cause the GPx levels 

to be overestimated. A blank containing no cumene hydroperoxide can be performed to assess non-

specific oxidation of NADPH.  

3. The following reagents have been shown to interfere with the assay: Chymostatin (a protease 

inhibitor) and 2-Mercaptoethanol. [Cayman Chemical Company, 2004].
 

 

Storage and Expiration of Kit: The Kit is stored at -20
o
C. Under these conditions the Kit is stable 

until the expiration date (indicated on the label of the box). 

 
Primary sample: Human erythrocyte lysate 
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Container of storage: 1.0 ml CryoTubes 

 

Equipment needed: 
 

1. A microplate reader with a 340 nm filter. 

2. Adjustable pipettes to deliver 10-1000 µl and disposable tips. 

3. A centrifuge capable of 1300 x g and 10 000 x g.  

4. Microcentrifuge tubes for diluting the samples. 

5. Multichannel pipette to deliver 20-100 µl. 

 

 

Reagents needed: 

 

1. The Cayman Chemical Glutathione Peroxidase Assay Kit.  

2. HPLC-grade water. 

 

Safety Precautions: See attached MSDS. 

 

Quality control: A Glutathione Peroxidase control (provided in the kit) is run in triplicate with the 

samples. 

 

Supplier Details: 

 

The Cayman Chemical Glutathione Peroxidase Assay Kit (Catalogue number 703102). 

Cayman Chemical Company 

Ann Arbor,  

Michigan, 

United States of America 

Customer Service Department: (734) 975-3999 (USA) 

Technical Service Staff: (734) 975-3888 (USA) or techserv@caymanchem.com 

 

Local Supplier:  

 

Calicom Trading 262 (PTY) LTD  

Tel: +27 11 472-7300 

Email: keith@katmedical.com 

 

 

A. SOP FOR THE COLLECTION OF BLOOD SAMPLES FROM VOLUNTEER MINERS 

 

 

1. Draw venous blood into two 6 ml BD Vacutainer tubes containing lithium heparinate as an 

anticoagulant. 

 

2. The blood should be drawn and handled at room temperature (25
o
C). 

 

 

B. SOP FOR THE SEPARATION OF THE COLLECTED BLOOD SAMPLES 

 

 

1. The bloods should be separated within 2 hours of being collected. 
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2. To separate the blood, centrifuge the tube of blood at 1300 x g for 10 minutes at room 

temperature. 

 

3. Remove the upper plasma layer and discard. 

 

4. Remove the buffy coat (leukocytes) above the packed erythrocytes. 

 

5. Pipette 0.3 ml of erythrocytes into a 1.5 ml Eppendorf tube, in triplicate. 

 

6. Add 1.2 ml of ice-cold deionised water to each aliquot to lyse the erythrocytes. 

 

7. Close the lids of the Eppendorf tubes and gently invert a few times to mix. 

 

8. Centrifuge the Eppendorf tubes at 10 000 x g for 15 minutes at 4
o
C. 

 

9. During centrifugation, the ruptured erythrocyte membranes pellet to the bottom of the 

Eppendorf tubes and the contents of the erythrocytes (including the enzyme GPx) are 

suspended in the supernatant (known as the erythrocyte lysate). 

 

10. Following centrifugation, remove 1 ml of the erythrocyte lysate from each Eppendorf tube and 

place it in separate 1.5 ml CryoTubes (that are clearly labelled).  

 

 

C. SOP FOR THE STORAGE OF THE ERYTHROCYTE LYSATE 

 
 

1. Ensure that the lids of the CryoTubes are securely fastened. 

 

2. Shock freeze the CryoTubes by using a pair of tongs to lower the CryoTubes into a Dewar tank 

of liquid nitrogen. 

 

3. Transport the frozen CryoTubes back to the National Institute for Occupational Health (NIOH) 

in a cooler box containing enough ice packs to ensure that the CryoTubes remain frozen. 

 

4.  As soon as the CryoTubes arrive at the NIOH transfer them to a clearly labelled container. 

 

5. Place the container in the -80
o
C Freezer. 

 

6. Record the sample in the Sample Log Book. 

 

 

D. SOP FOR OPERATING THE MICROPLATE READER AND ACCOMANYING 

SOFTWARE 

 

 
The microplate reader needs to be set up before beginning the assay as the absorbance of the assay 

microplate needs to be read as soon as the initiating reagent (Cumene Hydroperoxide) is added. 

 

1. To measure the absorbance in the wells of the microplate during the assay, an ELx800 

Automated Microplate reader (Bio-Tek) is used and the accompanying software is KC4
TM

v3.4 

(Bio-Tek). 
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2. Plug in the microplate reader and switch it on (the ON/OFF switch is located on the right hand 

side of the machine). 

 

3. The reader will go through an automatic self-test to ensure it is functioning properly. 

 

4. Wipe down the surface of the microplate reader with a damp paper towel. 

 

5. Connect the laptop loaded with the KC4 software to the microplate reader and to the printer. 

 

6. Switch on the laptop and open the KC4 program. 

 

7. Click on the ‘Protocol’ tab and select the ‘Wizard’ option 

 

8. In the ‘Plate settings’ box select the ‘Description’ box. 

 

9. In the ‘Plate description parameters’ box fill in the necessary prompts (for example the 

experiment name or the name of the experimenter). These are optional. 

 

10. Click ‘OK’ 

 

11. In the ‘Plate settings’ box select the ‘Reading Parameters’ box 

 

12. Select the ‘Kinetic’ reading type. 

 

13. Click on the small box labelled ‘Kinetic’. A box will appear. Fill in a Run time of 5 minutes 

(00:05:00) and an Interval of 1 minute (00:01:00). Click “OK’ 

 

14. Select the ‘Meas. Filter’. Click the down arrow on the side of the white box next to the Meas 

Filter option. Select a wavelength of 340 nm. 

 

15. Click the down arrow on the side of the white box next to the Plate type and select a ‘96 Well 

Plate’. 

 

16. Fill in the wells that are being used on the plate in the ‘First well’ and ‘Last well’ boxes (For 

example if the whole plate is being used the first well is A1 and the last well is H12). 

 

17. Click “OK’ 

 

18. In the ‘Plate settings’ box select the ‘Layout’ box 

 

19. A layout for a 96 Well Plate will appear in a box labelled ‘Plate layout’. Select the type of 

sample being assayed (for example a blank (background), control or sample) by clicking the 

down arrow on the side of the white box next to the ‘Type’ option. Once you have selected the 

type of sample, click on the well that sample will occupy in the microplate. The name of the 

sample will then appear in that well. (For example, select the Blank as the type of sample and 

click on the well labelled A1. The word Blank will then appear in well A1).  

 

20. Once the plate layout has been filled in click ‘OK’ 

 

21. Select the ‘Output’ tab. 
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22. In the ‘Output’ box select the ‘Report’ box 

 

23. In the ‘Available data’ box click on the name of the type of data that is wanted in the final 

report of the results (for example the template). Click on the small box labelled ‘Add’. The 

name of the data that was selected will then appear in the ‘Selected data’ box. Continue this 

process until all the data that is wanted in the report is listed in the ‘Selected data’ box.(If a 

data type is added that is no longer wanted click on the small box labelled ‘Remove’ and the 

data name will be removed from the ‘Selected data’ box). 

 

24. The only data type that must be selected is ‘M 340’ (The absorbance values obtained for the 

samples at 340 nm). In order to add this data type one first needs to select the ‘Table’ format. 

The name of the first and last wells of the plate that need to be assayed must also be filled in 

the white boxes next to the ‘From’ and ‘To’ kinetic readings. 

 

25. Once all the data needed has been selected click ‘OK’ 

 

26. Click ‘OK’ 

 

27. Save the protocol under a chosen name. 

 

28. Select the ‘Read’ Box in the tool bar. 

 

29. Fill in the necessary prompts and any comments.  

 

30. Do not click on the ‘Start Reading’ box. This is only done once the plate is ready to be read. 

 

31. Perform the assay as described below. 

 

 

E. SOP FOR ASSAYING THE AMOUNT OF GPx ACTIVITY IN THE ERYTHROCYTE 

LYSATE 
 

 

1.  The erythrocyte lysate samples (stored in CryoTubes in the -80
o
C freezer) should be assayed 

no later than 9 weeks after they were collected. 

 

2. The amount of GPx activity in the RBC lysate samples will be assayed using a Glutathione 

Peroxidase Assay Kit purchased from Cayman Chemical Company (USA). 

  

3. When not in use, store the kit at -20
0
C in a freezer. 

 

4. To use the kit, remove from the fridge and allow the contents of the kit to come to room 

temperature (25
o
C). 

 

5. To prepare the 1 X assay buffer, pipette 2 ml of 10 X Assay buffer concentrate (provided in the 

kit) into a clearly labelled sterile 50 ml Falcon tube. Add 18 ml of HPLC-grade water to the 

assay buffer and mix gently. The diluted assay buffer is stable for 2 months if stored at 4
o
C. 

 

6. To prepare the 1 X sample buffer, pipette 2 ml of 10 X Sample buffer concentrate (provided in 

the kit) into a clearly labelled sterile 50 ml Falcon tube. Add 18 ml of HPLC-grade water to the 

sample buffer and mix gently. The diluted sample buffer is stable for 1 month if stored at 4
o
C. 
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7. To prepare the Co-substrate mixture (provided in the kit); add 2 ml of HPLC-grade water to 

the vial provided and vortex gently to mix. Three vials of Co-substrate mixture are provided in 

the kit and each reconstituted vial is enough for 40 wells. It is therefore only necessary to 

reconstitute the number of vials needed to supply the number of wells that will be used. The 

reconstituted Co-substrate mixture is stable for 2 days if stored at 4
0
C. 

 

8.  Remove the erythrocyte lysate samples that will be assayed from the -80
o
C freezer and allow 

them to thaw at room temperature (25
o
C). 

 

9.  In 1.5 ml Eppendorf tubes, pipette the amount of 1x Sample buffer necessary to dilute the 

erythrocyte lysate sample 30 X. If the erythrocyte lysate sample is being assayed in singlet 

pipette 145 µl of 1 X Sample buffer into the Eppendorf tube. If the sample is being assayed in 

duplicate pipette 290 µl of 1 X Sample buffer into the Eppendorf tube etc. 

 

10. Ensure that 1 X Sample buffer has been added to all the Eppendorf tubes needed before any 

erythrocyte lysate sample is added. 

 

11. Gently tap the CryoTubes containing the thawed erythrocyte lysate sample to mix. 

 

12. Pipette 5 µl of the mixed RBC lysate sample into the 1x sample buffer in the Eppendorf tube 

and aspirate to mix.  

 

13. Repeat for all the samples using a clean pipette tip for each sample. 

 

14. To prepare the Glutathione Peroxidase control (provided in the kit), add 10 µl of GPx control 

to 490 µl of 1 X sample buffer in a 1.5 ml Eppendorf tube and aspirate to mix. Keep the GPx 

control on ice (it is stable for 4 hours). 

 

15. A microplate containing 96 wells is provided in the kit. In each plate there are 12 columns 

(Columns 1 to 12) each consisting of 8 wells (Rows A to H).  

 

16. Pipette 120 µl of 1 X assay buffer into 3 wells of the microplate (if using the whole kit use 

wells A1, A2 and A3). These wells are the background wells (non-enzymatic wells). 

 

17. Pipette 100 µl of 1 X assay buffer into 3 wells of the microplate (if using the whole kit use 

wells A4, A5 and A6). These wells are the positive control wells. 

 

18. Pipette 100 µl  of 1 X assay buffer into the number of wells needed for the number of samples 

that will be assayed (For example if a total of 30 samples are being assayed in singlet, add    

100 µl of 1 X assay buffer into 30 wells). These wells are the sample wells. 

 

19. Add 50 µl reconstituted Co-substrate mixture into each of the wells being used. 

 

20. Gently tap the Eppendorf tube containing the diluted GPx control (positive control) to mix. 

Pipette 20 µl of GPx control into each of the 3 positive control wells. 

 

21. For each sample, gently tap the Eppendorf tube containing the diluted erythrocyte lysate 

sample to mix. Pipette 20 µl of each diluted sample into one of the sample wells. 

 

22. Carefully place the microplate into the designated holder in the microplate reader. 
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23. Add 20 µl of Cumene Hydroperoxide (provided in the kit) to each well. The Cumene 

Hydroperoxide initiates the reaction. 

 

24. If more than three rows of the plate are being used, only add 20 µl Cumene Hydroperoxide to 

two rows of the microplate and then read the absorbance of those two rows. Repeat for the next 

two rows until all the rows with sample have been read. 

 

25. Carefully shake the microplate for a few seconds to mix the contents in the wells. 

 

26. Select the ‘Start Reading’ box that is displayed in the KC4 program. 

 

27. The absorbance at 340 nm is automatically measured five times at one minute intervals in each 

of the microplate wells being used.  

 

28. Once the microplate reader has finished measuring the absorbance of the plate, click on the 

‘Save’ box in the toolbar and save the report under a chosen name. If one requires the report to 

be printed, click on the ‘Print’ box in the toolbar. 

 

29. Remove the microplate from the microplate reader 

 

30. Wipe down the microplate reader with a damp paper towel. 

 

31. Switch off the microplate reader and unplug. 

 

 

F. SOP FOR CALCULATING THE GPx ACTIVITY FROM THE ABSORBANCE DATA 

OBTAINED BY THE ASSAY  

 

 

A. Electronically using a worksheet 
 

Cayman Chemical Company supplies a tool on their website that allows one to calculate the GPx 

activity from the absorbance values obtained. 

 

1. Open the website for Cayman Chemical Company: www.caymanchem.com 

 

2. Under the heading ‘Products’ (on the right hand side of the page), select ‘Analysis tools’. 

 

3. Under the heading ‘Non-EIA tools’, select ‘Glutathione Enzyme (GSHases)’. 

 

4. Under the heading ‘Download’, click on ‘GSHases Triple’ to start downloading. 

 

5. Save the file in a chosen location. 

 

6. Open the file. 

 

7. In the worksheet labelled ‘Analysis’ fill in the necessary information about the sample number 

and dilution (a 1:30 dilution was used) in the designated boxes.  

 

8. Also in the ‘Analysis’ worksheet, fill in the absorbance values obtained for the background, 

positive control and RBC lysate samples at times 0 to 5 minutes as indicated.  
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9. The GPx activity is automatically calculated for the background, positive control and 

erythrocyte lysate samples and displayed in a table labelled ‘Results’ at the bottom of the 

worksheet. 

 

10. The corresponding graphs of absorbance versus time for each sample are also automatically 

constructed and illustrated in the worksheet labelled ‘Graphs’. 

 

11. Save the workbook under a chosen name. 

 

B. Manually using formulas 

 

1. Determine the change in absorbance (∆A340) per minute by: 

a. Plotting the absorbance values as a function of time to obtain the slope (rate of the 

linear portion of the curve – or-  

 

b. Selecting two points on the linear portion of the curve and determining the change in 

absorbance during that time using the following equation: 

 

∆∆∆∆A340/ min = (A340 (Time 2) – A340 (Time 1)) / (Time 2 (min) – Time 1 (min)) 
 

(Method b is the most preferred, with Time 2 being 5 minutes and Time 1 being 0 minutes) 

 

2. Determine the rate of ∆A340/min for the background wells and subtract this rate from the rate of 

the sample wells. 

 

3. Use the following formula to calculate the GPx activity: 

 

GPx Activity = ((∆∆∆∆A340/ min)/ 0.00373 µµµµM
-1

) x (0.19 ml/0.02 ml) x Sample Dilution = nmol/min/ml 
 

Where: 

0. 00373 µM
-1 

is the NADPH extinction coefficient 

0.19 ml is the final volume of the assay in each well 

0.02 ml is the volume of sample in the well 

The sample dilution is 30 X 

 

References: 
 

Cayman Chemical Company. (2004). Glutathione Peroxidase Assay Kit Instruction Insert, Cayman 

Chemical Company, Ann Arbor, USA. pg 1-22, 2004. 

 

Paglia, D.E. and Valentine, W.N. Studies on the quantitative and qualitative characterization of 

erythrocyte glutathione peroxidase. (1967). Journal of Laboratory and Clinical Medicine, 70, 158-

169. 

 

Ursini, F., Maiorino, M., and Gregolin, C. (1985). The selenoenzyme phospholipid hydroperoxide 

glutathione peroxidase. Biochimica et Biophysica Acta, 839, 62-70. 
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Appendix J: Standard Operating Procedure (SOP) for the analysis of serum 

Clara Cell Protein 16 (CC16) using the BioVendor Human Clara Cell 

Protein ELISA  

 
 

Objective: To describe the Standard Operating Procedure (SOP) for the collection, handling and 

storage of blood samples from volunteer miners and for assaying the amount of Clara Cell Protein 16 

(CC16) in the samples  

 
Intended Use of the BioVendor Human Clara Cell Protein ELISA: It is a biotin labelled antibody 

based sandwich enzyme liken immunoassay for the quantitative measurement of human Clara Cell 

Protein in serum, plasma, tissue culture medium and bronchoalveolar lavage fluid. It is intended for in 

vitro research use only. [BioVendor Laboratory Medicine, 2006]. 

 

Principle: Human Clara Cell Protein (CC16) belongs to a family of secretoglobins and is a secreted 

product of non-ciliated bronchiolar Clara Cells. It has been proposed as potential peripheral marker of 

respiratory epithelial injury. 

In the BioVendor’s Human Clara Cell Protein ELISA, calibrators or samples are incubated with rabbit 

polyclonal anti-human Clara Cell Protein antibody, which is coated in microtiter wells. After one-hour 

incubation and a washing, biotin-labelled polyclonal anti-human Clara Cell Protein antibody is added 

and incubated with captured Clara Cell Protein. After one hour incubation and washing, streptavidin-

horseradish peroxidase conjugate is added. After one hour incubation and the last washing step, the 

remaining conjugate is allowed to react with the substrate H2O2-tetramethylbenzidine. The reaction is 

stopped by addition of acidic solution and absorbance of the resulting yellow product is measured at 

450 nm. The absorbance is proportional to the concentration of Clara Cell Protein. A Standard curve is 

constructed by plotting absorbance values versus Clara Cell Protein concentrations of calibrators, and 

concentrations of the unknown samples are determined using the standard curve.
 
[BioVendor 

Laboratory Medicine, 2006]. 

 

Storage and Expiration of Kit: The Kit is stored at 2-8
o
C. Under these conditions the Kit is stable 

until the expiration date (indicated on the label of the box).
 
[BioVendor Laboratory Medicine, 2006]. 

 

Limitations of the Assay: Results exceeding Clara Cell Protein level of 100 ng/ml should be repeated 

with diluted samples. Dilution factors then need to be taken into consideration in calculating the Clara 

Cell Protein concentration.
 
[BioVendor Laboratory Medicine, 2006]. 

 

Sensitivity: The limit of detection is defined as follows: 

Analytical Limit of Detection: It is calculated from the real human Clara Cell Protein values in the 

wells and it has a value of 20 pg/ml 

Assay sensitivity: It takes the dilution of the samples into consideration and is calculated using the 

formula: Assay sensitivity = Analytical Limit of Detection x sample dilution (20 pg/ml x 25) and has a 

value of 500 pg/ml. [BioVendor Laboratory Medicine, 2006]. 

 

Specificity: The antibodies in the Human Clara Cell protein ELISA kit are highly specific for human 

Clara Cell Protein with no detectable cross reactivities to the cytokines that may be present in human 

serum. 

 

 

 

 



  

 

 195 

Precautions: 
 

1. For in vitro research use only. 

2. The Kit contains components of human origin. The materials were found to be non-reactive for 

HbsAg, HCV antibody and for HIV ½ antibody and antigen. However, the materials should be handled 

as potentially infectious. 

3. Avoid contact with the acidic Stop Solution and Substrate Solution which contains hydrogen 

peroxide. Wear gloves and eye protection when handling these reagents. In the case of contact with the 

Stop Solution and the Substrate Solution, wash the skin thoroughly with water and seek medical 

attention if necessary. 

4. Wear gloves and laboratory coats when handling immunodiagnostic materials. 

5. Do not pipette materials by mouth. 

6. Do not mix reagents with different lot numbers. 

7. Do not use reagents beyond the indicated expiration date.
 
[BioVendor Laboratory Medicine, 2006]. 

 
Primary sample: Human serum (Stable for 2 years when stored at -70

o
C) 

 

Container of storage: 1.0 ml CryoTubes 

 

Equipment needed: 
 

1. A centrifuge capable of 1300 x g. 

2. A microplate reader with a 450 nm filter. 

3. Adjustable pipettes to deliver 10-1000 µl and disposable tips. 

4. Multichannel pipette to deliver 100 µl. 

5. Glassware (graduated cylinder and bottle for the Wash solution). 

6. Microcentrifuge tubes for diluting the samples. 

7. Micro titration plate washer. 

8. Software package facilitating data generation and analysis. 

 

Reagents needed: 
 

1. The BioVendor Human Clara cell Protein ELISA Kit 

2. Distilled water. 

 

Quality control: A Clara Cell Protein Master Calibrator is included in the kit. The Clara Cell Protein 

Master calibrator is a 16 kDa dimerism protein that is purified from human urine. It is reconstituted to 

a concentration of 100 ng/ml. Serial dilutions of the master calibrator are performed to generate 

standards with Clara Cell Protein concentrations of 40 ng/ml, 20 ng/ml, 10 ng/ml, 5 ng/ml and 2 ng/ml. 

These standards and the master calibrator and run in duplicate along with the samples. A Quality 

Control High and a quality Control Low are also included in the kit. They are also run in duplicate 

along with the standards and samples. The CC16 concentrations obtained for the standards and Quality 

controls are compared to the expected concentrations, as indicated in the certificate of analysis 

included in the kit. 

 

 

Supplier Details: 

 
The BioVendor Human Clara cell Protein ELISA Kit (Catalogue number RD191022200). 

BioVendor Laboratory Medicine, Inc. 

CTPark Modrice 



  

 

 196 

Evropska 873 

664 42 Modrice 

Czech Republic 

e-mail: info@biovendor.com 

http://www.biovendor.com 

 

Phone: +420-549 124 185 

 

Local Supplier:  

 

Calicom Trading 262 (PTY) LTD  

Tel: +27 11 472-7300 

Email: keith@katmedical.com 

 

 

A. SOP FOR THE COLLECTION OF BLOOD SAMPLES FROM VOLUNTEER MINERS 

 

 

1. Draw venous blood into a 6 ml BD Vacutainer tube containing Clot Act. 
 

2. The blood should be drawn and handled at room temperature (25
o
C). 

 

 

B. SOP FOR THE SEPARATION OF THE COLLECTED BLOOD SAMPLES 

 

 

1. The blood samples should be separated within 2 hours of being collected 

 

2. To separate the blood, centrifuge the tube of blood at 1300 x g for 10 minutes at room 

temperature. 

 

3. Pipette 300 µl of the upper serum layer into a 1.5 ml CryoTubes, in triplicate. 

 

 

C. SOP FOR THE STORAGE OF THE SERUM 

 

 

1. Ensure that the lids of the CryoTubes are securely fastened. 

 

2. Shock freeze the CryoTubes by using a pair of tongs to lower the CryoTubes into a Dewar 

flask of liquid nitrogen. 

 

3. Transport the frozen CryoTubes back to the National Institute for Occupational Health (NIOH) 

in a cooler box containing enough ice packs to ensure that the CryoTubes remain frozen. 

 

4.  As soon as the CryoTubes arrive at the NIOH transfer them to a clearly labelled container. 

 

5. Place the container in the -80
o
C Freezer. 
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D. SOP FOR OPERATING THE MICROPLATE READER AND ACCOMANYING 

SOFTWARE 

 

 
The microplate reader needs to be set up during the last step of the assay (after addition of the 

substrate) as the absorbance of the assay microplate needs to be read no longer than 15 minutes after 

adding the stop reagent. 

 

1. To measure the absorbance in the wells of the microplate during the assay, an ELx800 

Automated Microplate reader (Bio-Tek) is used and the accompanying software is KC4
TM

v3.4 

(Bio-Tek). 

 

2. Plug in the microplate reader and switch it on (the ON/OFF switch is located on the right hand 

side of the machine). 

 

3. The reader will go through an automatic self-test to ensure it is functioning properly. 

 

4. Wipe down the surface of the microplate reader with a damp paper towel. 

 

5. Connect the laptop loaded with the KC4 software to the microplate reader and to the printer. 

 

6. Switch on the laptop and open the KC4 program. 

 

7. Click on the ‘Protocol’ tab and select the ‘Wizard’ option 

 

8. In the ‘Plate settings’ box select the ‘Description’ box. 

 

9. In the ‘Plate description parameters’ box fill in the necessary prompts (for example the 

experiment name or the name of the experimenter). These are optional. 

 

10. Click ‘OK’ 

 

11. In the ‘Plate settings’ box select the ‘Reading Parameters’ box 

 

12. Select the ‘End reading’ reading type. 

 

13. Select the ‘Meas. Filter’. Click the down arrow on the side of the white box next to the Meas 

Filter option. Select a wavelength of 450 nm. 

 

14. Click the down arrow on the side of the white box next to the Plate type and select a ‘96 Well 

Plate’. 

 

15. Fill in the wells that are being used on the plate in the ‘First well’ and ‘Last well’ boxes (For 

example if the whole plate is being used the first well is A1 and the last well is H12). 

 

16. Click “OK’ 

 

17. In the ‘Plate settings’ box select the ‘Layout’ box 

 

18. A layout for a 96 Well Plate will appear in a box labelled ‘Plate layout’. Select the type of 

sample being assayed (for example a blank (background), control or sample) by clicking the 
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down arrow on the side of the white box next to the ‘Type’ option. Once you have selected the 

type of sample, click on the well that sample will occupy in the microplate. The name of the 

sample will then appear in that well. (For example, select the Blank as the type of sample and 

click on the well labelled A1. The word Blank will then appear in well A1). The standards and 

their corresponding concentrations must also be put into the layout. 

 

19. Once the plate layout has been filled in click ‘OK’ 

 

20. Select the ‘Basic Analysis’ tab. 

 

21. In the ‘Basic Analysis’ box select the ‘Curve Description’ tab. 

 

22. Select ‘M450 Corrected’ as the ‘Data to Interpolate’. 

 

23. Select the ‘Current plate’ as the ‘Curve origin’. 

 

24. In the ‘Basic Analysis’ box select the ‘Curve Fit’ tab. 

 

25. Select ‘4 Parameters’ as the ‘Curve fit’. 

 

26. Click ‘OK’ 

 

27. Select the ‘Output’ tab. 

 

28. In the ‘Output’ box select the ‘Report’ box 

 

29. In the ‘Available data’ box click on the name of the type of data that is wanted in the final 

report of the results (for example the template). Click on the small box labelled ‘Add’. The 

name of the data that was selected will then appear in the ‘Selected data’ box. Continue this 

process until all the data that is wanted in the report is listed in the ‘Selected data’ box.(If a 

data type is added that is no longer wanted click on the small box labelled ‘Remove’ and the 

data name will be removed from the ‘Selected data’ box). 

 

30. The data types that must be selected are ‘M 450’, ‘M450 corrected’, ‘Standard curve’, 

‘Sample concentrations’. 

 

31. Once all the data needed has been selected click ‘OK’ 

 

32. Click ‘OK’ 

 

33. Save the protocol under a chosen name. 

 

34. Select the ‘Read’ Box in the tool bar. 

 

35. Fill in the necessary prompts and any comments.  

 

36. Do not click on the ‘Start Reading’ box. This is only done once the plate is ready to be read. 

 

37. Perform the assay as described below. 
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E. SOP FOR ASSAYING THE CONCENTRATION OF CC16 IN THE SERUM 
 

 

1.  The serum samples (stored in CryoTubes in the -80
o
C freezer) should be assayed no later than 

9 weeks after they were collected. 

 

2. The concentration of CC16 in the serum samples will be assayed using a Human Clara Cell 

Protein ELISA Kit purchased from BioVendor Laboratory Medicine, Inc. (Czech Republic). 

  

3. When not in use store the kit at between 2 and 8
0
C in a fridge. 

 

4. To use the kit, remove the kit from the fridge and allow the contents of the kit to come to room 

temperature. 

 

5. To prepare the 1 X Wash solution, dilute 100 ml of Wash Solution Concentrate (10 X) 

(provided in the kit) with 900 ml of deionised water in a 1L Schott bottle. Invert the bottle 

gently to mix. The diluted Wash Solution is stable for 1 month if stored between 2 and 8
o
C. 

 

6. To prepare the Human Clara Cell Protein Master Calibrator, reconstitute the Clara Cell Protein 

Master Calibrator (provided in the kit) with 0.5 ml of Dilution buffer (provided in the kit). 

Invert gently to mix. The concentration of the human Clara Cell Protein in the stock solution is 

100 ng/ml. The reconstituted master calibrator should be stored at -20
o
C until its expiration 

date. 

 

7.  A series of standards/calibrators are then prepared from the 100 ng/ml Clara Cell Protein stock 

by means of serial dilutions. A total of five standards are prepared from the 100 ng/ml stock 

with final concentrations of 40 ng/ml, 20 ng/ml, 10 ng/ml, 5 ng/ml and 2 ng/ml. The prepared 

standards should be stored at -20
o
C until the expiration date of the kit. 

 

8.  To prepare the 40 ng/ml Clara Cell Protein standard, pipette 300 µl of Dilution buffer into a 

clearly labelled 1 ml Eppendorf tube and add 200 µl of the 100 ng/ml Clara Cell Protein stock. 

Gently mix.  

 

9.  To prepare the 20 ng/ml Clara Cell Protein standard, pipette 200 µl of Dilution buffer into a 

clearly labelled 1 ml Eppendorf tube and add 200 µl of the 40 ng/ml Clara Cell Protein 

standard. Gently mix. 

 

10. To prepare the 10 ng/ml Clara Cell Protein standard, pipette 200 µl of Dilution buffer into a 

clearly labelled 1ml Eppendorf tube and add 200ul of the 20ng/ml Clara Cell Protein standard. 

Gently mix. 

 

11. To prepare the 5 ng/ml Clara Cell Protein standard, pipette 200 µl of Dilution buffer into a 

clearly labelled 1 ml Eppendorf tube and add 200 µl of the 10 ng/ml Clara Cell Protein 

standard. Gently mix. 

 

12. To prepare the 2 ng/ml Clara Cell Protein standard, pipette 300 µl of Dilution buffer into a 

clearly labelled 1 ml Eppendorf tube and add 200 µl of the 5 ng/ml Clara Cell Protein standard. 

Gently mix.  

 

13. Determine the number of 1.5 ml Eppendorf tubes needed to accommodate the number of 

standards and controls that will be run in the assay. It is recommended that the six Clara Cell 
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Protein standards, the Clara Cell Protein High control and the Clara Cell Protein Low control 

be assayed in duplicate (a total of 16 tubes). 

 

14. In each clearly labelled 1.5 ml Eppendorf tube, pipette the amount of Dilution buffer necessary 

to dilute the standards and controls 25 X. If the standards and controls are being assayed in 

duplicate pipette 240 µl of Dilution buffer into the Eppendorf tube. 

 

15. To dilute the Clara Cell Protein standards, pipette 10 µl of gently mixed 100 ng/ml Clara Cell 

Protein stock into the clearly labelled 1.5 ml Eppendorf tube containing 240 µl Dilution buffer 

and aspirate to mix. Repeat the above procedure to dilute the 40 ng/ml, 20 ng/ml, 10 ng/ml,     

5 ng/ml and 2 ng/ml Clara Cell Protein standards using a clean pipette tip for each standard. 

Do not store the diluted standards.  

 

16. To dilute the Clara Cell Protein High Control, pipette 10 µl of the Clara Cell Protein High 

Control (provided in the kit) into the clearly labelled 1.5 ml Eppendorf tube containing 240 µl 

Dilution buffer and gently mix. Do not store the diluted control.  

 

17. To dilute the Clara Cell Protein Low Control, pipette 10 µl of the Clara Cell Protein Low 

Control (provided in the kit) into the clearly labelled 1.5 ml Eppendorf tube containing 240 µl 

Dilution buffer and gently mix. Do not store the diluted control. 

 

18.  Remove the serum samples that will be assayed from the -80
o
C freezer and allow them to 

thaw at room temperature. 

 

19.  Determine the number of 1.5 ml Eppendorf tubes needed to accommodate the number of 

samples that will be run in the assay.  

 

20. In each clearly labelled 1.5 ml Eppendorf tube, pipette the amount of Dilution buffer necessary 

to dilute the serum sample 25 X. If the serum sample is being assayed in singlet pipette 120 µl 

of Dilution buffer into the Eppendorf tube. If the sample is being assayed in duplicate pipette 

240 µl of Dilution buffer into the Eppendorf tube etc. 

 

21. Ensure that Dilution buffer has been added to all the Eppendorf tubes needed before any serum 

sample is added. 

 

22. Gently tap the CryoTubes containing the thawed serum sample to mix. 

 

23. Pipette 5 µl of the mixed serum sample into the Dilution buffer in the Eppendorf tube and 

gently mix (if the sample is being assayed in duplicate add 10 µl of serum sample instead of    

5 µl).  

 

24. Repeat for all the samples using a clean pipette tip for each sample. Do not store the diluted 

samples. 

 

25. A microplate containing 96 wells is provided in the kit. In each plate there are 12 columns 

(Columns 1 to 12) each consisting of 8 wells (Rows A to H).  

 

26. Pipette 100 µl Dilution buffer into two wells of the microplate (if using the whole kit use wells 

A1 and A2). These wells are the background wells (non-enzymatic wells). 
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27. Pipette 100 µl of 25 X diluted 100 ng/ml Clara cell Protein Standard into two wells of the 

microplate (if using the whole kit use wells B1 and B2).  

 

28. Pipette 100 µl of 25 X diluted 40 ng/ml Clara cell Protein Standard into two wells of the 

microplate (if using the whole kit use wells C1 and C2). 

  

29. Pipette 100 µl of 25 X diluted 20 ng/ml Clara cell Protein Standard into two wells of the 

microplate (if using the whole kit use wells D1 and D2). 

  

30. Pipette 100 µl of 25 X diluted 10 ng/ml Clara cell Protein Standard into two wells of the 

microplate (if using the whole kit use wells E1 and E2).  

 

31. Pipette 100 µl of 25 X diluted 5 ng/ml Clara cell Protein Standard into two wells of the 

microplate (if using the whole kit use wells F1 and F2).  

 

32. Pipette 100 µl of 25 X diluted 2 ng/ml Clara cell Protein Standard into two wells of the 

microplate (if using the whole kit use wells G1 and G2). 

 

33.  Pipette 100 µl of 25 X diluted Clara cell Protein High Control into two wells of the microplate 

(if using the whole kit use wells H1 and H2). 

 

34. Pipette 100 µl of 25X diluted Clara cell Protein Low Control into two wells of the microplate 

(if using the whole kit use wells A3 and A4). 

 

35. Pipette 100 µl of each of the 25 X diluted serum samples into a separate well of the microplate.  

 

36. Cover the plate with foil and incubate the plate at room temperature (25
o
C) for 75 minutes. 

 

37. Remove the foil and carefully wash the plate five times with the 1 X diluted Wash Solution. 

(After washing gently tap the plate on a piece of paper towel to ensure it is dry).  

 

38. Pipette 100 µl Biotin Labelled Antibody (provided in the kit) into every well being used.  

 

39. Cover the plate with foil and incubate the plate at room temperature (25
o
C) for 75 minutes. 

 

40. Remove the foil and carefully wash the plate five times with the 1 X diluted Wash Solution. 

(After washing gently tap the plate on a piece of paper towel to ensure it is dry).  

 

41. Pipette 100 µl Streptavidin- HRP Conjugate (provided in the kit) into every well being used.  

 

42. Cover the plate with foil and incubate the plate at room temperature (25
o
C) for 75 minutes. 

 

43. Remove the foil and carefully wash the plate 5 times with the 1 X diluted Wash Solution. 

(After washing gently tap the plate on a piece of paper towel to ensure it is dry).  

 

44. Pipette 100 µl Substrate Solution (provided in the kit) into every well being used (this step 

should be performed out of direct sunlight).  

 

45. Cover the plate with foil and incubate the plate at room temperature (25
o
C) for 10 minutes (if 

the room temperature is below 20
o
C the incubation time should be increased up to 20 minutes). 
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46. Pipette 100 µl Stop Solution (provided in the kit) into every well being used to stop the colour 

development.  

 

47. Carefully place the microplate into the designated holder in the microplate reader. 

 

48. Carefully shake the microplate for a few seconds to mix the contents in the wells. 

 

49. Select the ‘Start Reading’ box that is displayed in the KC4 program. 

 

50. The absorbance at 450 nm is automatically measured in the specified microplate wells.  

 

51. Once the microplate reader has finished measuring the absorbance of the plate, click on the 

‘Save’ box in the toolbar and save the report under a chosen name. If one requires the report to 

be printed, click on the ‘Print’ box in the toolbar. 

 

52. Remove the microplate from the microplate reader. 

 

53. Wipe down the microplate reader with a damp paper towel. 

 

54. Switch off the microplate reader and unplug. 

 

 

 

 

References: 

 
BioVendor Laboratory Medicine. (2006). The Human Clara Cell Protein ELISA Kit Instructions Insert; 

BioVendor Laboratory Medicine, Inc; Czech Republic, pg 1-24. 
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Appendix K: Subject information sheet for volunteers  

 

     MINE HEALTH AND SAFETY COUNCIL  

                                  and the 

      NATIONAL INSTITUTE for 

              OCCUPATIONAL HEALTH 

 
 

Subject Information Sheet for Volunteers 
 

Hello, my name is Kerry Makinson, I am a researcher from the National Institute of 

Occupational Health (NIOH) in Johannesburg, and my contact numbers are 011 712 6469 and 

082 494 1392. My co-worker is Professor Brendan Girdler-Brown. 

 

I would like to invite you to participate in our study. It is an independent study commissioned 

and funded by the Mine Health and Safety Council (SIMRAC) and carried out at the National 

Institute for Occupational Health (NIOH).We are looking for a new blood test that might be 

used to see if silica dust levels at your workplace are a danger to workers. We believe that if 

workers breathe in too much silica dust then their bodies will react by making certain 

chemicals that we can detect in blood samples taken from those workers.  

 

If you decide to participate, I would like to explain to you what will happen. First your 

answers to a short questionnaire are needed (this will take about 5 minutes). Then we need to 

look at your last X-ray. If you agree the nurse will show us your x-ray. We will also need to 

draw a small amount of blood (about 3 teaspoons) from your arm on 5 different occasions over 

a 3-4 week period. This will also only take about five minutes each time. These tests will not 

tell us if you are sick. In addition we will only be able to tell if the silica dust levels are too 

high in the future if we test a large number (say, 10 people) of workers and look at all their 

results together. It is unlikely that the blood tests will be able to tell if an individual miner has 

been exposed to too much silica dust. After we take your blood it will be kept frozen at the 

National Institute for Occupational Health and will only be used for this study. It will not be 

used for any other purpose without your written permission. We will not be testing for HIV.  

 

Your personal information and results will be kept confidential and will not be shown to any 

other person.  We will be coming back to the mine to talk about our results this year and you 

will be invited to come and ask any questions that you may have. At that time we will also 

give you your own individual results in writing (if you want them) along with an explanation 

of what they mean. 

 

If you decide not to take part in this study it will not affect you or your job in any way. By 

taking part you will be helping miners and future employees of mines, so that fewer people get 

sick. The only risk to you from taking part in this study will be a little discomfort when the 
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blood specimen is taken and for a short time afterwards. There will be a medical doctor 

present to take your blood specimens.  

 

Thank you  

Kerry Makinson 

 

The contact details for the Wits Human Research Ethics committee are: Ms Anisa Keshav 

(011 717 1234) 
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Appendix L: Consent form for volunteers 

 

     MINE HEALTH AND SAFETY COUNCIL  

                                  and the 

      NATIONAL INSTITUTE for 

       OCCUPATIONAL HEALTH 

 

 
106 Joubert Street Ext ● PO Box 4788 Johannesburg 2000 South Africa ● Tel: 27 11 712 6400 ●  

Fax: 27 11 712 6545 

 

 

Validation of biomarkers for assessment of exposure to silica dust 

 

The information sheet about this study has been read to me and I understand what will be required of 

me if I take part in the study. My questions concerning this study have been answered 

by…………………........................ (Name of study member). 

My participation in this study is voluntary; I understand that if I do not wish to take part it will have no 

effect on me or my job. At any time I may leave this study without any bad effect on my job or my 

health care. 

 

I ____________________________________________________________ agree to take part in the 

study. I am happy to allow my most recent X-rays to be given to Ms Kerry Makinson. I am happy to 

allow my personal silica dust exposure history to be told to Ms Kerry Makinson by the Human 

Resources department. I agree to give 15ml of blood on each of 5 times spread over 3-4 weeks. I 

understand that all individual and personal information will be kept confidential and I know that I can 

leave at anytime. 

 

Signed _______________________________________ Date __________________ 
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Appendix M: Questionnaire administered to volunteers 

 

STUDY NUMBER STICKER: 

 

 

 

 

 

 TO BE COMPLETED BY INTERVIEWER CODING 

   
RECRUITMENT CENTRE:   

   
DATE: dd Mm yyyy  

   SHIFT:   

   
SHAFT:   

   

JOB:  
 

 

   

JOB HISTORY:  

 

 

 

   
CURRENT SMOKER?: YES NO  

   
PREVIOUS SMOKER?: YES NO  

   
CONTACT NUMBER:   

     
X-RAY DATE: dd Mm yyyy  

   
SILICOSIS SCORE: /  

   
CURRENT TB Rx:   

 

 

Group: 
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DATE OF BIRTH: dd Mm yyyy  
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Appendix N: Consent Form for Photographs 

 

     MINE HEALTH AND SAFETY COUNCIL  

                                  and the 

      NATIONAL INSTITUTE for 

      OCCUPATIONAL HEALTH 

 

106 Joubert Street Ext ● PO Box 4788 Johannesburg 2000 South Africa ● Tel: 27 11 712 6400 ●  

Fax: 27 11 712 6545 

 

 
Validation of biomarkers for assessment of exposure to silica dust 
 

Please indicate (by means of a tick) which of the below reports you are willing to have your 

photograph and/or name published in: 

 

                                           Report                                                                                       Photograph Name 

A report for the South African Mine Health and Safety Council.   

The newsletter for the National Institute for Occupational Health (NIOH).   

A Scientific Journal (International or National) that will be read by 

medical and scientific personnel. 

  

Visual presentations at conferences (International or National).   

On the Internet on Occupational Health or Toxicology related sites.   

In Kerry Makinson’s MSc research dissertation.   

Annual reports for The University of the Witwatersrand, the University of 

Pretoria and the NIOH. 

  

 

I _____________________________________________ agree that my photograph can be 

taken and that my photograph and/or name can only be used for the purposes indicated above. 

I understand that if I do not agree to have my photograph and/or name published in any of the 

above papers that it will have no effect on me or my job.  

 

 

Signed _______________________________________ Date __________________ 
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Appendix P: Individual GPx and CC16 ex-leave and follow up results 
 

 
Table 1: Mean erythrocyte GPx activities (in U/g Hb) of the ex-leave and the follow up samples of 

the individual volunteers. 

 

Volunteer Ex-leave  Monday  
Wednesday  

(pre-shift)  

Wednesday  

(post-shift)  
Friday  

1 34.86 27.99       

4 32.25       20.22 

5 24.57   22.22 22.06   

6 19.54 17.90 16.34     

7 19.70   20.95     

8 26.03 20.47     25.48 

10 36.42   27.00 28.92   

11 26.93   24.29 25.20 19.91 

12 35.62   25.36 33.58   

14 32.00 25.99       

15 28.19   23.58 23.92   

17 24.18 19.12       

19 25.05 19.28       

20 30.28 19.55       

21 35.38       25.30 

22 17.89       15.88 

23 32.22   14.14 21.09   

24 17.85   13.95 12.11   

25 36.31     33.11   

26 25.80 17.35       

30 29.69   21.41 18.46   

31 49.92   41.35 41.34   

32 30.64 26.36       

33 31.48   20.42 20.71   

36 26.24 29.32       

37 16.79 16.95       

40 22.30   25.99 20.94   

41 17.66       18.25 

42 24.55       23.33 

43 21.87 18.51 18.18 18.86 19.12 

44 23.99   21.41 25.71   

45 23.10         

46 22.80   29.53 27.28   

47 24.24   23.01 19.87   

48 20.28 23.55       

50 22.94       22.88 

51 19.61   14.87 13.62   

52 20.41   14.58 14.30   

53 22.04   25.00 20.46   

59 22.57 17.30       
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60 28.88   39.14 36.88   

61 25.46   19.68 20.39   

62 32.14 22.99       

63 27.59       22.07 

65 27.14       17.73 

66 31.17   26.83 24.37   

68 19.84 15.28       

74 28.14       18.19 

75 34.44       26.49 

76 27.37       19.78 

77 23.04 21.62       

79 26.23 22.64       

80 30.21       34.79 

 

 
 

Table 2: Mean serum CC16 concentrations (in ng/ml) of the ex-leave and the follow up samples 

of the individual volunteers.  

 

Volunteer Ex-leave  Monday 
Wednesday  

(pre-shift) 

Wednesday  

(post-shift) 
Friday 

1 5.18 8.86       

4 5.84       6.77 

5 5.87   5.93 4.51   

6 6.12 8.01 9.71     

7 6.64   7.09     

8 7.93 9.97     5.95 

10 9.15   8.06 5.94   

11 3.63   6.66 3.58 4.68 

12 15.70   16.74 13.08   

14 7.30 7.99       

15 2.46   3.18 2.30   

17 7.47 6.17       

19 8.42 8.63       

20 4.25 3.01       

21 6.61       4.57 

22 10.74       10.85 

23 2.24   1.87 2.78   

24 2.69   2.56 1.86   

25 4.59     3.15   

26 5.85 6.85       

30 6.68   5.84 4.86   

31 9.43   6.06 5.90   

32 5.63 5.99       

33 4.30   4.76 3.04   

36 4.41 2.71       

37 7.34 3.87       

40 5.29   2.21 3.37   

41 8.70       3.74 
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42 12.07       7.42 

43 12.37 8.71 8.65 4.53 5.14 

44 12.65   16.64 9.50   

45 12.34         

46 7.24   5.30 3.41   

47 9.49   7.06 5.11   

48 4.94 3.51       

50 7.88       7.21 

51 6.18   8.39 6.73   

52 2.72   3.34 2.67   

53 9.46   8.39 8.92   

59 10.38 8.41       

60 11.71   9.87 11.69   

61 4.59   2.69 1.99   

62 4.08 6.26       

63 8.02       7.52 

65 2.94       2.62 

66 5.19   4.22 4.45   

68 9.98 11.56       

74 6.54       6.68 

75 6.15       6.49 

76 5.85       4.43 

77 6.10 9.52       

79 4.55 5.35       

80 2.90       1.90 
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