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Abstract 

In this work, the primary investigation has been on the development of the laser 

pyrolysis setup and its optimization for the synthesis of nano-size VO2-x films. 

More specifically the focus was on making VO2-x depositions using various laser 

pyrolysis parameters and establish in this way (1) an optimum laser wavelength 

threshold for the photon induced dissociation of the molecular precursors while 

the thermal contribution was kept minimal by using low power density (laser 

energy of 30 W) and (2) the lower threshold for pure thermal contributions by 

working with wavelengths far from resonance in order to minimize pure photon 

induced contributions. The interest in synthesizing nano-size VO2-x materials 

stems from the low metal-insulator transition temperature at near room 

temperature with opto-electronic and thermo-electronic properties that can be used 

in specialised applications. 

A large number of samples were synthesized under various conditions and 

annealed under argon atmosphere for 17 hours. XRD analysis identified the     

VO2 (B) and/or β-V2O5 vanadium oxide phases characteristic for certain samples 

grown under optimum conditions. Raman spectroscopy also confirmed these 

vanadium oxide phases with bands observed at 175, 228, 261, 303, 422 and 532 

cm-1. SEM analysis revealed a plethora of different nanostructures of various size 

and shapes. The particles have a range of sizes between 55 nm to 185 nm in 

diameter. The particles showed morphologies which included nano-rods, nano-

spheres and nano-slabs. An interesting phenomenon was observed on the samples 

synthesized with high power density, which was observed and reported by Donev 
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et al. EDS analysis on the particles was also used to probe the elemental 

composition of the sample. Optical studies were performed on the samples which 

showed transitions in the visible and infrared region in accordance with the ones 

observed in the international literature using different nano-synthesis methods. 
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Chapter 1: Literature Review 

1.1 Nanoscience and nanotechnology 

1.1.1 Overview  

"I want to build a billion tiny factories, models of each other, which are 

manufacturing simultaneously… The principles of physics, as far as I can see, do 

not speak against the possibility of manoeuvring things atom by atom. It is not an 

attempt to violate any laws; it is something, in principle, that can be done; but in 

practice, it has not been done because we are too big.”  these were the words of 

the Physics Nobel prize winner, Richard P. Feynman, in his lecture in 1960. What 

Feynman supposed in his lecture is today called nanoscience. This is the study of 

the controlling of matter on an atomic and molecular scale. Nanoscience generally 

deals with structures of the size 100 nanometers or smaller in at least one 

dimension. The nano-structures can be manipulated to perform various or specific 

functions in devices or pharmaceutical products [1]. To be able to build these 

devices and make these pharmaceutical products, the knowledge of an 

interdisciplinary science in areas such as physics, chemistry, mathematics, 

biology, toxicology and environmental sciences is imperative [2].  

Prior to Feynman’s lecture in the 1950s minimal experiments were conducted on 

small metal particles. It was in 1956 that Uhlir et al [3] reported the observation of 

the first porous silicon but it was only in 1990 that fluorescence in room 

temperature was observed [3]. There were other groups (in the 1950s) which 

synthesized alkali metal nanoparticles by vaporising sodium or potassium metal 
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and condensing them on cooler materials [3]. In 1963 Wagner and Ellis proposed 

a mechanism by which particles act as seeds for one-dimensional growth, which 

they named the Vapour-Liquid-Solid (VLS) mechanism [4]. A further 

development of the VLS mechanism was done by Givargizov et al in 1975 [4]. 

This work expanded on the details of this process, describing the relevant 

processes involved and predicting the morphology expected from the relative 

importance of these processes under various conditions. The relevant processes 

were specified as the dissociation of supply material at the particle surface, 

incorporation of growth material into the particle, diffusion through the particle, 

and nucleation at the interface [4]. 

Although work has been done to understand the growth of nano-structures, it was 

only in the 1980s that research started to grow; this was due to the emergence of 

various synthesis methods introduced. The synthesis methods were the RF 

plasma, chemical methods, thermolysis and pulsed laser methods [3]. In the RF 

plasma method the starting metal is wrapped around high voltage RF coils, the 

metal is heated above its evaporation point forming high temperature plasma. The 

metal vapour is then collected on a cooler substrate; this is where the 

nanoparticles are formed. Chemical methods involve chemical reactions to 

synthesize the nanoparticles, this usually involves heating the mixture at a 

particular temperature and time. Thermolysis is used for solids with metal cations, 

and molecular anions or metal organic compounds, the solids are decomposed at 

high temperature to form nanoparticles. The material is placed in an evacuated 

tube and heated for some time. The pulsed laser method of thin film and 
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nanoparticle growth involves evaporation of a solid target in an ultra high vacuum 

chamber by means of short and high-energy laser pulses.  

 

1.1.2 The present and future state of nanoscience and 

nanotechnology 

Public authorities and enterprises invest billions of dollars worldwide in research 

and nanotechnology application because nanotechnology is regarded as the future 

key technology [5]. Nanotechnology is seen to have many applications in areas 

such as electronics, telecommunications, data processing, biotechnology, 

precision technology and material science [5]. The enhancement in technology 

will help people in their everyday lives, better medicine can be made, faster 

computers can be produced and smart windows can be manufactured. Research on 

nanotechnology is growing rapidly as seen from the number of nanotechnology 

publications which grew from 11 265 in 1991 to 64 737 in 2005 [6], shown in 

Figure 1.1.  

The United State of America (USA) and China are the leading countries in 

producing nanotechnology papers accounting 40% of the worlds production, 

Table 1.1 shows the 20 leading countries in the production of nanotechnology 

articles in 2005 [6]. 
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Figure 1.1: Science Citation Index (SCI) and Social Sciences Citation Index (SSCI) 

articles versus time total records retrieved [6].  

 

Nanotechnology research is still in its infancy in South Africa but the government 

is investing money in ‘nano-activies’ to make developments in nanotechnology 

[7]. In the year 2002 the South African Nanotechnology Initiative (SANi) was 

formed to create awareness to South Africans about nanotechnology. The group, 

together with the government, launched a 10 year plan for nanotechnology. 

Strategy for the first three years is shown in Table 1.2. [8]. 

In 2008/2009 the group decided to spend some of the R50 000 000 in the 

characterization equipment. The equipment is expensive but very important 

because it enables one to observe what has been synthesized. Vanadium dioxide 

(VO2) nanostructures are one example of the material that can be analysed from 

these instruments. 
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Table 1.1: Countries producing most nanoscience/nanotechnology articles (2005). 

Country Number of papers 
USA 14750 
People R China 11746 
Japan 7971 
Germany 5665 
South Korea 4098 
France 3994 
England 2786 
Italy 2297 
Russia 2185 
Taiwan 2165 
India 2103 
Spain 1700 
Canada 1579 
Netherlands 1130 
Poland 1105 
Australia 1048 
Singapore 1045 
Switzerland 1009 
Sweden 944 
Brazil 932 
 

Table 1.2: Estimated budget for the implementation of the nanotechnology strategy for 

the first 3 years [8]. 
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1.1.3 Objectives of the project  

The present research team, based at the Council for scientific and industrial 

research- National Laser Centre (CSIR-NLC) and the University of the 

Witwatersrand, has in the past synthesized vanadium oxide nano-structures using 

the laser pyrolysis (LP) and ultra-sonic spray pyrolysis (USP) techniques. 

Vanadium dioxide (VO2) is of interest because of its thermo-chromic property 

which has an application in energy efficient windows. In the past main focus in 

synthesizing these materials has been on the USP method. In this work our aim to 

achieve the following: 

i. Improve the laser pyrolysis setup and repeat systematically some of the 

experiments that have led this group to the discovery of VO2 nano-belts by 

laser pyrolysis and thermal annealing. 

ii.   Obtain thin films and powders by (a) varying laser power while keeping 

the laser wavelength constant and (b) varying wavelength and keeping 

power constant, in order to find the link between laser power on the VO2 

stoichiometry, structure, shape, and size of the particles. 

 

1.2 Vanadium dioxide (VO2) 

1.2.1 Vanadium in South Africa 

Vanadium is a soft, silvery grey and ductile transition metal with a high boiling 

and melting point, it is also considered toxic. China and the USA produce 

vanadium but South Africa is the major producer, producing about 40% of the 
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world’s vanadium. South Africa has five major vanadium mines; Brits Vanadium, 

Rhovan, Vantra, Highveldt Steel & Vanadium Mill and Vantech. Vanadium is 

usually produced as vanadium pentoxide (V2O5) and most of it (about 85 %) is 

used as a steel additive. It is also used as a catalyst in the production of sulphuric 

acid and used in the aerospace industry in titanium alloys [9]. 

 

1.2.2 VO2 particles and thin films 

Vanadium oxides have many phases with the general formulas VnO2n+1 and  

VnO2n-1 [10]. The most popular vanadium oxides that have been produced and 

reported on are vanadium trioxide (V2O3), vanadium pentoxide (V2O5) and 

vanadium dioxide (VO2). A noticeable difference in these oxides is their metal-to-

insulator transition (MIT) temperature: V2O3 has a transition temperature at about 

-123oC [11], V2O5 at about 375oC [12] and VO2 at about 68oC [13], as shown in 

Table 1.3. VO2 is of interest because its transition temperature, shown in Figure 

1.2, is closer to room temperature compared to V2O5 and V2O3. The transition 

temperature of VO2 can be lowered or increased using dopants such as tungsten 

and molybdenum depending on the application purpose. 
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Table 1.3: Transition temperature of vanadium oxide phases as a function of the oxygen 

to vanadium ratio.  

Vanadium phase Transition temperature (oC) 

VO -148 

V2O3 -123 

V5O9 -138 

VO2 (M) 68 

V6O13 -143 

V2O5 375 

 

 

Figure 1.2: Measured hysteresis curves during the insulator–metal transition of a thin VO2 

film for electrical resistance [13]. 
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Bulk VO2 crystals exhibit the metal–insulator transition (MIT) at a critical 

temperature of about 68 ◦C accompanied by a first-order structural phase 

transformation from a monoclinic (P21/c) to tetragonal (rutile—P42/mnm) 

structure, characterized by a small lattice distortion along the c-axis [13]. As a 

transition-metal oxide with narrow d-electron bands, this strongly correlated 

electron system is extremely sensitive to small changes in extrinsic parameters 

such as temperature, pressure, or doping [13].  

VO2 is electrically conducting at temperatures higher than 68oC and is electrically 

insulating at temperatures lower than 68oC. It also has an interesting optical 

property shown in Figure 1.3, at temperatures below the transition it allows more 

infrared radiation (IR) and above the transition temperature it allows less IR. The 

reason for this switching is because of the difference in structure of VO2 at low 

and high temperature. Figures 1.2 and 1.3 show hysteresis curves for electrical 

resistance and optical reflection, respectively, measured for typical thin films of 

VO2 of order 100 nm thicknesses. 

The driving mechanism of the transition is still not known but the theory suggests 

that it could be either electron correlation effects or structural instabilities. At low 

temperatures vanadium dioxide exhibits a monoclinic crystal structure and at high 

temperatures it exhibits a tetragonal crystal structure, shown in Figure 1.4. In the 

monoclinic phase the vanadium atoms arrange into pairs, but in the tetragonal 

phase (referred to as rutile) all V–V distances are equal and the symmetry is 

tetragonal [14]. 
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One of the limitations of VO2’s application in smart window technologies is the 

cracking of the film after a certain number of switching transitions. VO2 

nanoparticles and thin films are much better than bulk VO2 because they can 

survive the stress generated during repeated cycles of phase transition and their 

transition temperature can be modified to near room temperature by doping [15, 

16]. Because of its optical and electrical properties, together with its transition 

temperature that is near room temperature, VO2 thin films and nanoparticles have 

many technological applications which include thermochromic coatings, optical 

and holographic storage, fiber-optical switching devices, laser scanners, missile 

training systems and ultra-fast optical switching devices [16]. 

 

 

Figure 1.3: Measured hysteresis curves during the insulator–metal transition of a thin VO2 

film optical reflectivity at a wavelength of 2.0 µm [13]. 
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Monoclinic phase

Tetragonal phase

 

Figure 1.4: Crystal structure of the low-temperature monoclinic phase and the high 

temperature tetragonal phase [14]. 

 

VO2 nanoparticles can be formed in a fused silica host by implanting vanadium 

and oxygen ions in proper proportions and annealing in an argon atmosphere at 

1000oC, the nanoparticles showed a hysteresis width of up to 50oC [16]. A group 

has produced VO2 nanobelts using the laser pyrolysis technique; these nanobelts 

showed a hysteresis width of 83oC [17] which is the highest ever reported 

hysteresis for VO2. The previously highest reported hysteresis was of the order of 

15oC [16]. The enhancement was due to the small particles produced as it is 

believed that the smaller the particles the bigger the hysteresis width. 
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X-ray diffraction (XRD) has also been used to estimate particle size and to 

identify the vanadium phases. Figure 1.5 illustrates a typical room temperature   

x-ray scan obtained after annealing the V- and O-implanted specimen at high 

temperature for 30 min. In addition to the broad structure due to the amorphous 

SiO2 substrate, Bragg reflections at 2θ=27.81° and 57.67° were observed 

corresponding respectively to the (011) and (022) reflections of the VO2 

monoclinic phase [16]. VO2 (B) has XRD characteristic peaks at 2θ =15º, 29º and 

45º. 

The VO2 particle size can be estimated by using the Scherrer formula  

θβ
λ

cos

9.0=D ,        (1.1) 

where λ  is the x-ray wavelength used in the XRD study, β  is the line broadening 

at half the maximum intensity (FWHM) in radians and θ  is the Bragg angle. The 

Scherrer formula relates the crystallite size in the sample to the peak width of the 

spectrum.  

Raman spectroscopy has been used to identify the vanadium oxide phases. Figure 

1.6 shows a typical Raman spectrum of VO2. The spectrum is dominated by two 

sharp peaks at 192 cm-1 and 224 cm-1 and a broader peak at 614 cm-1 which 

belong to the Bg Raman modes [18]. The Raman modes at 224, 305 and 614 cm-1 

correspond to the Ag modes of VO2 [19]. It can also be noted that the Bg modes 

are generally stronger than the Ag modes.  
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Figure1.5: XRD patterns of VO2 thin films. The broad XRD peak in the region 15o-25o is 

due the amorphous glass substrate [16]. 

 

 

Figure1.6: A Raman spectrum of a VO2 thin film [18]. 
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1.3 Laser Pyrolysis (LP) 

VO2 thin films and nanoparticles have been produced using various methods such 

as sputtering [20], sol-gel [21], evaporation [22], pulsed laser deposition [23], 

chemical vapour deposition [24], ion implantation [16] and laser pyrolysis [17]. 

Laser pyrolysis has major advantages in producing thin films and nanoparticles 

over the mentioned techniques. Some of the advantages include the production of 

pure products since there is no contact with the chamber walls, the interaction 

volume is well defined, there is control of the nucleation rate, the growth rate and 

exposure times [25]. Although laser pyrolysis has many advantages it also has a 

few drawbacks. One of the drawbacks is imposed by the precursors: the desired 

elements must be present in vapor phase and at least one reactant should contain 

an infrared absorption band for the coupling of the energy with the laser beam 

[26]. 

The first laser pyrolysis experiment was performed by Bachmann between 1974 

and 1975 [27]. Figure 1.7 shows the trend of publications since 1974. The graph 

shows a steady increase in the number of publications from 1974 to 2010. This 

suggests that LP is gaining popularity as a method of producing nanostructures. 

As mentioned earlier, in 1974 Bachmann’s group were the first to synthesis BCl3 

particles using a CO2 laser, this process was named differently then. In 1977 

Bowden’s group proposed a model for laser-induced photo-chemical reaction. 

This model was designed based on a pulsed CO2 laser. In 1981 Haggerty’s group 

introduced the LP parameters such as flow rates. They were also the first group to 
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synthesis Si nano-powder using this technique. The graph also shows some of the 

materials that have been synthesized using the LP method. 
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Figure 1.7: Annual publications on laser pyrolysis from 1974 to mid 2010. 

 

Most of the laser pyrolysis experiments are performed using a CO2 laser. This 

technique has been used to synthesis nano-crystals [28], nano-wires [17, 29], 

nano-belts [17], nano-powders [30] and nanoparticles [31].  

In addition to the CO2 laser, there are other parameters that play a major role in 

attaining the desired particle size. These parameters are flow rates, pressure in the 

chamber and the nature of the carrier gases [32]. It has been shown that C2H4 gas 

is excited by IR radiation which transfers its vibrational energy to the precursor 
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molecules to make them dissociated, the mean diameter of the particles formed 

was 5 nm [33]. A group has recently reported the synthesis of iron ultrafine 

nanoparticles by laser pyrolysis and by using a coagulation model based on the 

aerosol theory [34]. They derived an equation describing an average particle size 

with time given by  
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where 0N  is the initial number of atoms in the gas per unit volume, 0V  is their 

volume, t  is the time of evolution of the average size and k  is given by 

6

1

002

1

3

2
4

6 














=
πρ
VNkT

k ,       (1.2) 

where T  is the average coagulation temperature [34]. 

Another important parameter in laser pyrolysis is the measurement of temperature 

at the reaction zone (where the laser beam interacts with the aerosols). The 

method of measurement has to be non-contact so there is no interference with the 

reaction. It has been shown that temperature measurements of a reaction zone can 

be performed using coherent anti-Stokes Raman spectroscopy (CARS) [35]. The 

dynamics of the reactions are not yet fully understood and more has to be done on 

this subject. The question on how to measure the temperature of the reaction is 

still open. 
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1.4 Multiphoton Infrared Excitation 

Multiphoton processes can be induced by intense radiation, and become extremely 

efficient if one or more resonance conditions are satisfied by the molecular energy 

levels. Vibrational levels are more or less equally spaced for the lowest levels of 

excitation, and so with infrared radiation of appropriate wavelength, multiphoton 

absorption can become highly significant. 

 

Firstly, the case of multiphoton infrared absorption by a diatomic molecule is 

considered, as there is only one vibrational frequency. The appropriate energy 

levels are shown in Figure 1.8, where the arrows represent the absorption of 

infrared photons with the same frequency. Note that spacing between adjacent 

levels in the vibrational state starts off fairly constant, but thereafter diminishes at 

an increasing rate. Also note that each vibrational level contains more closely 

spaced rotational levels. Because each of these levels has an associated linewidth, 

this results in a quasi-continuum of states, which is represented by the shaded 

region in Figure 1.8. Eventually, there is a limit at which point there is no longer 

any restoring force as the two atoms move apart, leading to dissociation [36]. 

 

The process of multiphoton absorption displays different characteristics over 

different regions of the energy scale, and the regions are commonly referred to as 

region I, II, and III as illustrated in Figure 1.8. In region I, the vibrational levels 

are widely spaced, and the spacing is greater than the overall absorption 

bandwidth. However, the spacing is non-uniform, and so the photon energy soon 

gets out of step, allowing for muliphoton processes. For example, in Figure 1.8, 
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the transitions 10 →=v , 21→ , 32 → , 43→  and 54 →  all require energies 

close to that of a single photon and lying within the overall bandwidth [36]. These 

transitions therefore all take place by the process of single-photon absorption. 

However, the energy required for the 65→  transition, is sufficiently different, 

that it lies outside the bandwidth and cannot take place by absorption of one 

photon. Excitation can still proceed up to the 10=v  level, as indicated by direct 

105→  transition involving four-photon absorption [36]. This is the main 

characteristic of region I that such concerted multiphoton processes take place on 

the way up the vibrational ladder. 

 

 

 

Figure 1.8: Energy levels and transitions involved in the multiphoton infrared dissociation 

of a diatomic molecule [36]. 
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Region II is characterized by a quasi-continuum behaviour resulting from the fact 

that vibrational energy level spacing has become less than the bandwidth. 

Successive photons can be absorbed here in a series of energetically allowed 

single-photon transitions. Since energy conservation is satisfied at every step, the 

molecule can at each point exist for a finite lifetime before absorbing the next 

photon. Therefore, excitation through this region does not necessitate the 

enormously large photon flux which might have first appeared. Once the level of 

excitation has reached the dissociation threshold, a true energy level continuum is 

encountered, and more photons can be absorbed in the short time before the atoms 

separate. The region where more photons can be absorbed in the short time before 

the atoms separate is known as region III behaviour [36]. 
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Chapter 2: Theory of VO2 transition 

2.1 Metal-insulator transitions 

2.1.1 Introduction 

Interest in the metal-insulator transition arose in Bristol at a conference in 1937. 

de Boer and Verwey pointed out that nickel oxide should be metallic according to 

Bloch-Wilson model because the eight electrons of the Ni+2 ion would only partly 

fill the d band [37]. Peierls, in the discussion, said he thought that must have been 

due to correlation and he gave a convincing description of how this could occur 

[37]. In the 1950s Mott described a metal-insulator transition by imagining a 

crystalline array of hydrogen-like atoms with lattice constant a  that could be 

varied [37]. The example of nickel oxide suggested that for large values of a  the 

material would be insulating, while the example for monovalent metals like 

sodium showed that for small values it would be metallic [37]. The question was, 

at what value of a  would a metal-insulator transition would occur? A value was 

obtained, namely  

2.03
1

≅Han ,         (2.1) 

where n  is the number of centres per unit volume and Ha  the hydrogen radius. 

This formula was applied to heavily doped semiconductors successfully. 

Moreover, the prediction was made that the number of free carriers must change 

discontinuously at the transition. This is because a small number of electrons and 
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holes attracting one another with a coulomb force must form neutral pairs; only if 

they are strongly screened by other carriers [37].  

 

2.1.2 The free electron model of metals 

Suppose all valence electrons are free, and do not interact with other electrons and 

with the atoms of the lattice. The electron can be described by a wave function  

rkiAe
rr

•=ψ ,         (2.2) 

which is identical to an electron in free space. The vector k  describes the 

momentum of the electron and unlike the electrons in free space the values that k  

can have are quantized. In a cube of side( )3LL =Ω , if we write 

zkykxkrk 321 ++=• rr
,       (2.3) 

then 1k , 2k , 3k  can have the values 
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where 1l , 2l , 3l  can be positive or negative integers. In k -space the number of 

states in a volume element ( )zyx kkkkd ddd3 =  is  
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and the number of states for which k , the modulus of k
r

, lies in the range k  to 

kk d+ is 

3

2

8
d4

π
π kkΩ  .        (2.6) 

The density of states per unit energy range and per unit volume, for a given spin 

direction, is written ( )EN , where E  is the energy. From (2.6), setting 3cm 1=Ω , 

we get  

( ) 3

2

8
d4d

π
π kkEEN = ,       (2.7) 

since the relationship between E  and k  is given by  

m

k
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22
h= ,         (2.8) 

Substituting for k  we find  
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.       (2.9) 

The free electron model came from combining it with Fermi- Dirac statistics 

which states that the number of electrons in each orbital state cannot be greater 

than two. At absolute zero of all temperatures all states are occupied up to a 

maximum energy FE  given by 

( )∫ =
FE

nEEN d2 ,        (2.10) 
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where n  is the number of electrons per unit volume. Substituting (2.9) into (2.10) 

gives  

n

mEF

=
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π
h ,        (2.11) 

where FE  is called the Fermi energy, and in most metals its magnitude is that of 

several volts. 

The kinetic energy of the electron gas increases as the temperature increased: 

some energy levels are occupied which were vacant at absolute zero, and some 

levels are vacant which were occupied at absolute zero [38]. 

The situation is illustrated by Figure 2.1, where plotted curves are of the function 

1

1
)(

)( +
= − TBkEe

Ef µ .        (2.12) 

This is the Fermi-Dirac distribution function: it gives the probability that a state at 

energy E  will be occupied in an ideal electron gas in thermal equilibrium. The 

quantity µ  is called the chemical potential and at absolute zero µ  is equal to the 

Fermi energy [38]. 
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Figure 2.1: Plot of the Fermi-Dirac distribution function )(Ef  versus µE , for zero 

temperature and for a temperature µ51=TkB . The value of )(Ef  gives the fraction of 

levels at a given energy which are occupied when the system is in thermal equilibrium 

[38]. 

 

2.1.3 Energy bands 

Electrons in crystals are arranged in energy bands, Figure 2.2, separated by 

regions in energy for which no electron energy states are allowed; such forbidden 

regions are called energy gaps or band gaps. If the number of electrons in the 

crystal is such that allowed energy bands either filled or empty, then no electrons 

can move in an electric field and the crystal will behave as an insulator. If all 

bands are entirely filled, except for one or two bands which are slightly filled or 
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slightly empty then the crystal is said to be a semiconductor. If one or more bands 

are partly filled, 10 to 90 percent filled, the crystal will act as a metal.  

Insulator SemiconductorMetal Semiconductor

E
n

e
rg

y

 

Figure 2.2: Schematic electron occupancy of allowed energy bands for an insulator, 

metal, and two semiconductors. The vertical extent of the boxes indicates the allowed 

energy regions; the shaded areas indicate the regions filled with electrons. 

 

On the free electron model the allowed energy values are distributed continuously 

from zero to infinity. It has been shown that  
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222
2

zyxk kkk
m

E ++= h
,       (2.13) 

where kE  is the energy eigenvalue of the state with wavevector k ; here 0=kE  

for 0=k . For boundary conditions over a cube of side L , 

0,, =zyx kkk ;  ;.....
4

;
2

LL

ππ ±±      (2.14) 

The free electron wavefunctions are of the form 
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rik
k eVr ⋅= 21)1()(ψ ,        (2.15) 

where 3LV =  is the volume; they represent running waves and carry momentum 

kp h= . 

Bragg reflection is a characteristic feature of wave propagation in crystals. It 

occurs also for electron waves in crystals and leads to energy gaps. That is, there 

may arise substantial regions of energy in which wave-like solutions of the 

Schrödinger equation do not exist, as in Figure 2.3. These energy gaps are of 

decisive significance in determining whether a solid is an insulator or a conductor. 

 

Figure 2.3: Plot of energy versus wavevector for an electron in a monatomic linear lattice 

constant a . The energy gap gE  shown is associated with the first Bragg reflection at 

ak π±= ; other gaps are found at anπ± , for integral values of n  [38]. 

 

Figure 2.4 (a) shows an insulator with an indirect gap. The gap may be decreased 

by some external parameters as in Figure 2.4 (b). The system will become 
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metallic; there will be a condensed gas of electrons in the conduction band and of 

holes in the valence band and the Fermi energy (FE ) will be as shown. 

∆E

(a)

EF

(b)

k k
 

Figure 2.4: Metal-insulator transition of band-crossing type. ( )kE  is plotted against k  in 

the (a) insulating and (b) metallic states. 

 

2.1.4 Metal-insulator transitions in compounds 

Materials such as VO2,V2O3 and NiS whether pure or alloyed with other oxides 

show transitions from insulator to metallic behaviour as the temperature is raised, 

or under pressure or with varying composition in systems such as (V1-xTix)2O3 

[37]. When a transition from an insulator to a metal takes place with increasing 

temperature, the driving force must be related to the entropy in the metallic phase 

[37]. This can be due to two causes: (1) softer phonons modes in the high-

temperature phase. This probably contributes a major part of the entropy in VO2 

and (2) the entropy of the electron gas [39].  
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2.1.5 Metal-insulator transitions in metal-oxides VO2 

The transition in vanadium dioxide (VO2) from a low-temperature semiconductor 

to a metallic phase at 340 K was first observed by Morin in 1959 [40]. In the high-

temperature phase VO2 has a rutile structure, the structure of metallic VO2 is 

based on a simple tetragonal lattice with space group ( )14
42  /4 hDmnmP , shown in 

Figure 2.5. The metal atoms are located at the Wyckoff positions 

( ) ( ) 








2

1
,

2

1
,

2

1
,0,0,0:2a  and the oxygen atoms occupy the 

positions( ) ( ) 






 −+±±
2

1
,

2

1
,

2

1
,0,,:4 uuuuf . The rutile structure can be visualized 

in terms of a body-centred tetragonal lattice formed by the metal atoms, where 

each metal atom is surrounded by an oxygen octahedron [41].  

Between 1971 and 1973 J. B. Goodenough proposed a n electronic band structure 

VO2 as a merger of the separate electronic band configurations of V4+ anion and 

O2- cation. These band structures were analyzed in both the room-temperature 

monoclinic phase and the high temperature tetragonal phase of VO2. In the 

monoclinic phase, the V-V pairing splits the narrow lld  band in two possibly due 

to electron correlations. The semiconducting character of the monoclinic phase 

requires that the *π  bands be raised above the FE  and the formation of V-V pairs 

stabilize V-V homo-polar orbitals below the FE  level. The band structure of the 

metallic phase of VO2 is shown in Figure 2.6. The t׀׀ band contains two electrons 

per V atom, so that, whether the two bands overlap or not, metallic conduction is 

to be expected [39]. 
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Figure 2.5: The rutile structure. Large and small spheres denote metal and ligand atoms, 

respectively [41]. 

 

 

Figure 2.6: Band structure of VO2 as suggested by Goodenough (1971). 

 

Below 340 K there is a distortion from the tetragonal structure to monoclinic 

symmetry. The monoclinic structure of VO2 is characterized by a simple 

monoclinic lattice with space group ( )5
21  /2 hCCP  [41], shown in Figure 2.7. The 

metal atoms as well as the two different types of oxygen atoms occupy the general 
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Wyckoff position ( ) ( ) 






 +−±± zyxzyxe
2

1
,

2

1
,,,,:4  [41]. In the low-temperature 

phase VO2 is a semiconductor and discontinuities as great as 104 have been 

observed in the conductivity at the transition. The low-temperature phase is not 

antiferromagnetic so the pairing of the V ions splits the t׀׀ band into two sub-

bands, each capable of accommodating one electron per cation [39].  

 

Figure 2.7: Monoclinic structure of VO2. Large and small spheres denote metal and 

ligand atoms, respectively [41]. 

 

Many models have been developed to explain the transition of VO2. Paquet and 

Leroux-Hugon presented a model of the VO2 phase transition which included both 

the electron-electron and electron-lattice interactions. This accounted for the 

presence of the two d  bands ( *π  and //d ) overlapping at the Fermi level of the 

metallic phase [41]. The electron-electron interactions were explained using the 
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functional-integral treatment of the Hubbard Hamilton and the electron-lattice 

interactions were treated by choosing the centre-of-gravity and the shape of the 

d -bands so that they depended on the lattice distortion [42].  

On the other hand, Vikhnin et al also proposed a VO2 phase transition by 

assuming that the phase transition is governed by charge transfer mechanism [42]. 

This mechanism has two competing phenomena-(1) the negative dielectric 

parameter ε  due to coulomb repulsion between the electron density (at the 

oxygen site) and the hole density (at the vanadium site) leading to electron-hole 

pair instability and (2) the electron-hole pair (exciton) effect due to the exciton’s 

interaction with the lattice leading to attraction and electron-hole stability charge 

transfer [42]. 

Despite several models being proposed, ranging from Peierls-to Mott-Hubbard-

type scenarios the origin of the phase transition is still not fully understood [41]. 

These models stress, to a different degree, the role of lattice instabilities, electron-

phonon interaction and electron-electron correlations. So far, neither of these 

approaches has been successful in explaining the broad range of phenomena 

occurring in vanadium dioxide [40]. So far a general, complete and accepted 

picture of the physics of this material has not yet been developed [41].  

 

2.1.6 Electrical properties of VO2 

In the semiconducting phase, the exponential behaviour of the resistivity can be 

explained by the thermal generation of free carriers. Because of the many 
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electronic defects inherent with the synthesis of the oxide, it is often treated as an 

extrinsic material in which the conductivity 
ρ

σ 1=  is directly proportional to the 

number of majority carriers. In the case of electrons (n-type semiconductor) [43], 

nnqµσ =          (2.16) 

where n  is the concentration of electrons in the conduction band, q  is the charge 

of an electron and µ is the carrier mobility. The temperature dependence is 

dominated by the one of the carrier concentration; 
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where cN  is the effective density of states, fE  is the energy of the Fermi level, 

cE  is the lowest energy available in the conduction band and k  is the Boltzmann 

constant. The expression for the conductivity is defined by introducing a pre-

exponential factor 0σ  and activation energyaE , 
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Chapter 3: Beam assessment from a CO2 laser 

3.1 Introduction 

A laser is a device that amplifiers light and produces a high-intensity beam that 

most often has a very pure frequency or wavelength. The word LASER is an 

acronym for Light Amplification by Stimulated Emission of Radiation. Albert 

Einstein formed the theoretical foundation for the laser in 1917 using Max 

Planck’s law of radiation. In 1953 Charles H. Towns and his co-workers produced 

the first microwave amplifier device operating on the principles of a laser. In 1960 

Theodore Maiman of Hughes Research Laboratories produced the first laser using 

a ruby crystal as the amplifier and a flash lamp as the energy source. In 1961 Ali 

Javan and his co-workers constructed the first gas laser using a mixture of helium 

and neon gases. The first carbon dioxide (CO2) laser was invented by Kumar Patel 

of Bell Labs in 1964. This laser is of interest because of its high power output thus 

giving it applications in the industry for cutting and welding. It is has also been 

used in the synthesis of nanostructured materials, shown in Figure 1.5, this is our 

primary interest.  

 

3.1.1 Gaussian beam propagation  

Gaussian beams have interesting properties, one of them being that if the beam 

has a Gaussian transverse profile at one location then it will have a Gaussian 

transverse profile at all other locations, unless optical elements introduce a 
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distortion that is [44]. A simple Gaussian beam has a transverse distribution of the 

radial intensity described by  

2
22

0
w

r

eII
−

=          (3.1) 

where 0I  is the maximum intensity and w  is the beam radius. The Gaussian beam 

minimum waist 0w  occurs either at a point of focus after having passed the lens 

or in the region between two mirrors, such as within the optical resonator [44]. 

The beam then expands and diverges from that location. The beam radius at a 

distance of z  from the minimum beam waist is described as  
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where 0z  is the Rayleigh range and is given by  

λ
π 2

0
0

w
z = ,         (3.3) 

where λ  is the wavelength of the beam. The Rayleigh range is described as the 

distance from the beam waist before the beam begins to diverge significantly (or 

the distance which the beam propagates from the waist before the area of the 

beam doubles). Figure 3.1 illustrates the propagation of the Gaussian beam and 

the position of the Rayleigh range. 

 



35 

 

Intensity
Intensity

0=z

0z

0w 20w
( )zw

Beam waist

θ

 

Figure 3.1: Variation of the spot size )(zw  of a Gaussian beam. 

 

3.1.2 Gaussian beam focusing  

Before we discuss Gaussian beam focusing, let us briefly look at how the beam 

size expands in the far field. It is known that the beam size expands linearly with 

distance as shown in Figure 3.2. The spot size )(zw  for the field amplitude in the 

far field for a Gaussian beam coming from a waist with spot size 0w  is given by  

0

0)(
w

z

z

zw
zw

R π
λ=≈ ,  ( Rzz >> )     (3.4) 

which gives the relation  

π
λz

ww =×∞ 0)( ,        (3.5) 

connecting the spot sizes at the waist and in the far field [45]. 
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Figure 3.2: A Gaussian beam spreads with a constant diffraction angle in the far field. 

 

Gaussian beam focusing is the opposite of Gaussian beam propagation in the far 

field. Instead of the beam spreading out it is focused to a spot. Gaussian beam 

focusing is important in many applications such as recording data on optical 

videodisks and drilling holes in razor blades [45]. A collimated Gaussian beam 

focused by a lens of focal length f  is shown in Figure 3.3. The focusing lens can 

be viewed as being the far field at fz ≈ . The relationship as in equation (3.5) can 

be written as 

π
λf

wzw =× 0)( .        (3.6) 
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Figure 3.3: Focusing of a Gaussian beam to a small spot size. 

 

3.2 Carbon Dioxide (CO2) Laser 

The carbon dioxide laser falls under the category of molecular gas lasers. These 

are the middle and far infrared lasers which occur on rotational-vibrational 

transitions or pure rotational transition [44]. Carbon dioxide lasers are one of the 

most powerful and efficient lasers available. They operate in the mid-infrared 

region on rotational-vibrational transition in the 9 µm and 11 µm wavelength 

region. Both pulsed and continuous wave (cw) laser output occurs in several 

different types of gas discharge configurations in a mixture of carbon dioxide, 

nitrogen, and helium gases [44]. The most useful CO2 laser is a cw version 

producing power in the kilowatts range. Some applications of the CO2 lasers are 

in the industry of cutting and welding, and in the medical uses such as laser 

surgery, skin resurfacing and dermabrasion. 
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The electronic energy levels and the quantization of vibrational and rotational 

states of the CO2 molecules are of major importance to the CO2 laser. The CO2 

molecule is a tri-atomic, linear and symmetric molecule consisting of two oxygen 

atoms covalently bonded to a central carbon atom, O-C-O. The individual atoms 

are bound by a force which acts like that of the force due to a spring - Hooke’s 

law. The molecules can rotate and spin because they are in a gaseous state. They 

have two stretching vibrational modes and a bending mode: the vibrational 

symmetric mode is were two oxygen two atoms vibrate against each other; the 

vibrational asymmetric mode is were the two oxygen atoms oscillate against the 

carbon atom; and the bending mode is where the carbon moves out the molecular 

axis thus bending the molecule, Figure 3.4 illustrates these different types of 

modes. The first number is the excitation number of the symmetric mode, the 

second number is the excitation number of the bending mode and the third 

number is the excitation number of the asymmetric mode. 

Figure 3.5 illustrates the vibrational energy levels showing the energy transfer 

from the Nitrogen (N2) molecule to the CO2 molecule that is relevant for laser 

action. Nitrogen is excited with energy from the discharge (produced by a high 

potential difference across the N2, CO2 and Helium (He) gas mixture) and the first 

vibrational energy level of that molecule provides a pump energy level that 

matches the upper lasing level in the CO2 molecule (001,asymmetric mode) [46]. 

The energy of the N2 is transferred to the CO2 molecules and results in populating 
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Figure 3.4: A schematic diagram illustrating the vibrational modes of a CO2 molecule. 

 

their upper levels. The transition between two vibrational energy levels in the CO2 

molecule results in lasing. The CO2 molecule (001) can de-excite in two ways: it 

can decay to a lower energy level related to the symmetric stretch of the molecule 

(100) and it can decay to a lower energy level related to the bending mode of the 

molecule (020). The (001) molecule emits at 10.6 µm wavelength and the (020) 

molecule emits at 9.6 µm wavelength. The (100) and (020) molecule modes can 

decay further to lower energy levels emitting photons of different wavelengths 

until the ground state is reached. The Helium gas helps the population inversion 
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process to occur once the electrons get to the ground state. The gas also serves to 

conduct heat from the discharge to the walls of the tube. Water is used to cool the 

CO2 laser but it is also used to reduce the thermal population of the lower energy 

levels close to the ground state. Figure 3.6 shows a picture of a typical CO2 laser. 

 

 

Figure 3.5: A schematic diagram of energy levels in the CO2 laser. 
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Gas mixture      Discharge 

Figure 3.6: A picture of an Edinburgh instruments cw CO2 laser (model PL-6). 

 

3.3 Experimental procedure 

There are several techniques used for beam-profiling: the scanning slit method, 

the scanning knife edge method, the scanning pinhole method, the scanning 

Ronchi ruling and the (charge-coupled device) CCD camera method. In this study 

the scanning slit and the CCD camera were the preferred methods. Figure 3.7 (a) 

and (b) illustrates the optical layout of the scanning slit and CCD camera methods. 

A continuous wave (cw) CO2 laser from Edinburgh instruments (Model PL-6) 

was characterised. The Helium-Neon (HeNe) laser beam was aligned co-linearly 

with the CO2 laser beam since the CO2 laser beam emits light in the infrared 

region which is invisible. A spectrum analyzer (Optical Engineering Inc, model 

16A) was used to measure the wavelength of the laser at varying laser powers. A 

polarisation based attenuator was used to allow power variability, as well as to 

monitor the polarisation state of the laser output.  
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Figure 3.7: A schematic layout of (a) the scanning slit method to determine the beam 

parameters and (b) the CCD camera method to determine the beam parameters. 

 

3.3.1 Laser output and wavelength 

A laser enables the selection of the desired wavelength from any of the rotational 

lines of the CO2 molecule by means of a diffraction grating in the CO2 laser 

cavity. By changing the angle of the grating it was possible to tune the wavelength 



43 

 

of the laser beam from one rotational line to another. This is done by adjusting the 

micrometer attached to the grating. 

 

3.3.2 Laser beam quality and size 

As mentioned earlier, two methods were employed to determine the beam quality 

and size (beam parameters) of the laser beam. In both methods the beam 

parameters were determined by focusing the beam with a 1 m radius of curvature 

mirror. The scanning slit method involves a narrow finite slit (0.1 mm) passed 

between a laser beam and measuring the power transmitted at each point of the 

slit. Provided the slit width is known, it is not necessary for it to be less than 1/10 

or 1/20 of the beam width [47]. The scanning slit method measurements results in 

a two dimensional profile in one dimension. The slit scans were performed at 

several propagation distances,z , from the focusing mirror and the resulting beam 

profiles were recorded. The beam resembled a Gaussian profile and the values for 

the beam radius ( )zw  were determined by fitting a Gaussian function 

( )
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to the experimental data, where 0y  is the baseline offset, A  is the total area under 

the curve from the baseline, 0x  is the centre of the peak, and w  is the width of the 

Gaussian. The CCD camera method was also used to determine the beam 

parameters. The CCD camera method provides a more accurate and rapid two 

dimensional profile information [45]. 
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3.3.3 Laser beam attenuation 

As mentioned before, attenuator is used to allow power variability, as well as to 

monitor the polarisation state of the laser. In this experiment we determined the 

polarization of the laser beam by rotating the laser beam attenuator and measuring 

the beam power transmitted through as a function of the rotational angle. From the 

data we determined which fraction was horizontally polarized and which fraction 

was vertically polarized. Figure 3.8 shows a schematic diagram of the attenuator. 

The attenuator is made up of two Zinc Selenide (ZnSe) windows mounted at 

Brewster’s angle.  
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Figure 3.8: A schematic diagram of the propagation of a laser beam through two ZnSe 

windows at Brewster’s angle. 

 

The incident beam propagates through the air, with a refractive index n1, to the 

first surface T1 of the ZnSe window with a refractive index n2. The laser beam 

strikes the surface T1 at an incident angle θi and is refracted by an angle θt in the 

ZnSe window. The beam then strikes the surface T2 of the ZnSe windows at the 

angle θt and leaves at an angle θi. The beam then propagates from the surface T2 at 

an angle θi to surface T3, it is then refracted by an angle θt. The beam finally 
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leaves the windows at an angle θi. The windows are fixed at Brewster’s angle and 

as a consequence the angle of incidence equals Brewster’s angle. The beam strikes 

the windows at Brewster’s angle right through the rotation which means that only 

the plane of the light is affected. By varying the angle of the plane of the light we 

vary the transmission of the laser beam.  

Fresnel equations of reflection and refraction describe the behaviour of light when 

moving between media of different refractive indices. Assuming that there is no 

absorption in the windows the reflectance (R) and transmittance (T) is given by  

1=+ TR ,         (3.8) 

and the transmittance for parallel and perpendicular light are given by 

//// 1 RT −= ,         (3.9) 

⊥⊥ −= RT 1 ,         (3.10) 

where the intensity coefficients //R  and ⊥R  of the windows for the parallel and 

perpendicular polarized light to the plane of incidence are given by 
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The total transmittance of the system is the multiple of the transmittance T1 

through T4 of the window surface of the attenuator, this is given by  

//4//3//2//1// TTTTTT = ,        (3.13) 

and 

⊥⊥⊥⊥⊥ = 4321 TTTTTT .        (3.14) 

We now consider the incident beam on the attenuator window to be propagating 

in the z-direction and the polarization transmission axis of the attenuator to be in 

the y-direction. Assuming the polarisation transmission axis makes an angle α  

with the beam then the beam is partially polarized in the direction of the 

polarization transmission axis, Figure 3.9. The electric field vector (E ) of the 

laser beam can be separated into components as it passes through the windows. 

We get the parallel component //E  and the perpendicular component ⊥E  where  

αcos0// EE = ,        (3.15) 

and 

 

αsin0EE =⊥ ,        (3.16) 

 

where 0E  is the amplitude of the electric field. 
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Figure 3.9: Polarization is composed of a parallel and perpendicular component. 

 

Intensity is proportional to the square of the electric field and the intensities are 

given by  

α22
0//

2
//// cosETETI TT ×=×= ,      (3.17) 

and 

α22
0

2 sinETETI TT ×=×= ⊥⊥⊥ .      (3.18) 

 

The total transmittance intensity of the Brewster windows is calculated by 

summing the two intensities of the parallel (3.17) and the perpendicular (3.18) 

polarization, this is given by 

⊥+= III // .         (3.19) 
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Figure 3.10: Total transmittance intensity of the parallel polarized light through ZnSe the 

windows. 
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Figure 3.11: Total transmittance intensity of the perpendicularl polarized light through the 

ZnSe windows. 

 

Figures 3.10 and 3.11 shows the theoretical curves of the parallel (3.12) and 

perpendicular (3.13) polarized light respectively. 
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3.4 Results and discussion 

The results of the Gaussian profiles from the scanning slit method at different 

propagation distances are shown in Figure 3.12. Figure 3.12 shows the 

experimental data (black) with the Gaussian fits (red), plotted as a function of slit 

position. The results indicated that the beam has a Gaussian profile at propagation 

distances less than 55 cm. After the focus point of 55 cm, the beam has a different 

profile which means that equation 3.7 cannot be used to fit the experimental data. 

This means that the beam parameters cannot be determined using this method. We 

now use the CCD camera method to determine the beam parameters. 
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Figure 3.12: Some of the Gaussian beam profiles measured at various propagating 

distances after the focusing mirror. 

 

A PyrocamTM III pyroelectric array camera is used in imaging the laser beam 

profile at different propagation distances. Figure 3.13 shows the images of the 

laser beam at different propagation distances.  
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Figure 3.13: Images of beam size at different propagation distances from the focusing 

mirror. 

 

The beam radius ( )zw values are extracted from each of these images and are 

squared. A plot against the distance at which the imaging is performed is done. A 

quadratic polynomial (red) is fitted to the experimental data (black) shown in 

Figure 3.14. The quadratic polynomial given by  

( ) 164.84302.010736.2 24 +−×= − zzzw      (3.20) 

is extracted from the fit. The beam waist ( )zw  , the position of the waist 0z  and 

the beam quality factor 2M  are determined by comparing an expansion of the 

beam propagation equation (3.2) to the polynomial fit equation (3.20). The beam 

parameters are given in Table 1. 
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Figure 3.14: A plot of distance (z) versus the beam radius squared (W2). 

 

Table 3.1: Beam parameter measurements of a beam focused by a focal length of 

cmf 50= . 

Beam Parameter Measurement  

Beam waist ( 0w ) 1.05±0.14 mm 

Beam quality ( 2M ) 4.93 

Position of beam waist (0z ) 616±43.1 mm 
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A beam quality of 4.93 means that the beam profile is not a perfect Gaussian, a 

perfect Gaussian profile has a beam quality of 1. 

The results for the laser output power measured at each rotational line of the CO2 

molecule is plotted against the wavelength, Figure 3.15 illustrates. The 

wavelength range of the spectral line is between 9.19 µm to 10.84 µm and the 

highest laser power output is 60.5 W at the 10P (22) line corresponding to a 

wavelength of 10.6 µm. The 9R, 9P, 10R and 10P are the emission bands of the 

CO2 laser.  
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Figure 3.15: A plot of the laser power output versus wavelength. 

 

As mentioned earlier in section 3.3.3, the polarization of the laser beam can be 

determined by rotating the laser beam attenuator and measuring the beam power 
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transmitted. Figure 3.16 shows the results of the laser power transmission as a 

function of the angle of the attenuator. 
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Figure 3.16: Experimental data for the power transmission as a function of the angle of 

the attenuator. 

 

The result in Figure 3.16 show that maximum power transmittance is found at 

angles 0o, 180o and 360o and the minimum power transmission is found at about 

92o and 270o. The laser powers are the sum of the parallel and perpendicular 

polarization, equation (3.19). From calculations we find the maximum 

transmittance to be 73 and find the minimum transmittance to be 9, so the total 

transmittance is 82. The percentage for parallel polarization is 89% and the 

percentage for perpendicular polarization is 11%. 
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Chapter 4: Characterisation Techniques: Principles and 

Instrumentation 

4.1 Introduction 

It is all good and well to synthesize thin films but it is futile if the composition, 

the structure and properties of the material are not known. Characterisation 

techniques help in determining the chemical and physical properties of the 

material. In this chapter the different characterisation techniques, how they work 

and what information they provide us about the material, are discussed.  

4.1.1 Reaction chamber 

A reaction chamber, shown in Figure 4.1, is a compartment where the interaction 

of a laser beam and the aerosol takes place. 

The chamber has six arms; two of the arms are where the laser beam propagates, 

the other two arms are for spectroscopic purposes. These arms are used for 

collection of the light emissions from the reaction in order to study the dynamics 

of the reaction and also to determine the temperature of the reaction. The other 

two arms are for the nozzle and the substrate holder. The reactant gases enter the 

chamber perpendicular to the laser beam through a system of three concentric 

tubes shown in Figure 4.2, at a controlled pressure. The gases are used to carry the 

aerosols to the reaction zone where reactions occur and products are formed. The 

gases further transport the product to a substrate where it is deposited.  
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Figure 4.1: A Photograph of a six arm pyrolysis chamber.  
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Figure 4.2: A schematic diagram showing a multiflow nozzle. The nozzle has an Argon, 

Oxygen and Acetylene outlet.  

 



58 

 

l

Bw

0z

Nozzle

Substrate holder

Ar

C2H2

Reaction zone

 

Figure 4.3: Schematic diagram showing the reaction zone inside the reaction chamber. 

 

The red line in Figure 4.3 shows a focusing beam with a small beam waist and 

results in a small reaction zone but a high power density. On the other hand the 

black line shows a focusing beam with a large beam waist, this result in a large 

reaction zone but a low power density. 

 

4.2 Microscopy techniques 

There are three known types of microscopy: optical, electron and scanning probe. 

Optical microscopy involves using visible light and a system of lenses to magnify 

images of small samples; it is the oldest and simplest of the microscope. Electron 

microscopy uses a beam of electron to light up the specimen and create a 

magnified image of it. This microscope has a great resolving power as compared 

to the light microscope because electrons have much smaller wavelengths. The 
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scanning probe microscopy uses a physical probe that scans the sample to form 

images. This technique can reach atomic resolution. 

 

4.2.1 Scanning electron microscope (SEM) 

The scanning electron microscope (SEM) has little in common with the 

transmission electron microscope (TEM) apart from the use of the electron gun 

and a condenser lens system [48]. The column has only three lenses with no 

lenses after the specimen, Figure 4.4 shows this. 
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Figure 4.4: A Schematic diagram illustrating the principles of the SEM. 
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The diagram shows how the lenses produce a focused electron spot on the 

specimen. Table 4.1 shows the different types of electron sources. The electron 

gun for SEM is smaller than that of TEM because it produces a lower accelerating 

voltage (around 30 to 40 kV). The electrons from the source travel to the 

condenser magnetic lenses. The condenser magnetic lenses used in SEM are 

smaller than those used in TEM because they do not have to generate a strong 

magnetic field. The condenser lens system is used to produce a focused electron 

beam. 

Unlike TEM which uses a stationary beam, the SEM incident beam is scanned 

horizontally across the specimen in two perpendicular directions (xandy ) [49]. 

The x -scan is fast and is generated by a sawtooth-wave generator operating at a 

line frequency xf . The y -scan is much slower and is generated by a second 

sawtooth-generator operating at a frame frequency n
ff x

y =  where n is an integer. 

The whole process is called the raster scanning and causes the beam to cover the 

entire rectangular area on the specimen. 

The image magnification on SEM is defined by equation 4.1 

specimen on the distancescan 

image in the distancescan =M .      (4.1) 

This is achieved by making the x - and y -scan distances on the specimen a small 

fraction of the size of the displayed image [49]. The magnification can be 

controlled over a range of x10 to x500 000. 
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The specimen of SEM is thick compared to that of TEM, so electrons do not 

transmit through the specimen. The accelerated electrons are scattered elastically 

(by electrostatic interaction with atomic nuclei) and inelastically (by interaction 

with atomic electrons) when they enter the solid. During the impact secondary 

electrons are emitted with energies of a few eV and re-emission of high-energy 

backscattered electrons from the primary beam occurs.  

Table 4.1: Types of electron sources 

Type of source Tungsten 

thermionic 

LaB6 

thermionic 

Schottky 

emission 

Cold field 

emission 

Material  W LaB6 ZrO/W W 

ϕ (eV) 4.5 2.7 2.8 4.5 

T(K) 2700 1800 1800 300 

E(V/m) Low Low ≈108 >109 

Je(A/m2) ≈104 ≈106 ≈107 ≈109 

β (Am-2/sr-1) ≈109 ≈1010 ≈1011 ≈1012 

ds(µm) ≈40 ≈10 ≈0.02 ≈0.01 

Vacuum (Pa) <10-2 <10-4 <10-7 ≈10-8 

Lifetime 

(hours) 

≈100 ≈1000 ≈104 ≈104 
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∆E (eV) 1.5 1.0 0.5 0.3 

 

Auger electrons and x-ray photons are also emitted from the specimen during the 

bombardment of the specimen. The secondary electrons are collected by a 

detector and translated into a signal. The signal is then amplified, analysed and 

translated into an image of the topography being investigated. The backscattered 

electrons can also be used for imaging but this type of imaging is used to 

distinguish one material from another. The Auger electrons and x-ray emissions 

can be used for elemental analysis. This will be discussed more in the next 

section. 

SEM is used to image the morphology and topology of the specimen being 

studied. Figure 4.5 shows an image from SEM. 

 

Figure 4.5: A picture of a SEM image showing VO2 nano-rods [17].  

 



63 

 

4.2.2 Energy Dispersive X-Ray spectroscopy (EDAX or EDS) 

Although energy dispersive x-ray spectroscopy (EDS) is not a microscopy 

technique but a spectroscopy technique, I will discuss it in this section because it 

is often found on the SEM or TEM microscope. The EDS technique detects x-rays 

emitted from the specimen (Figure 4.4) during electron bombardment to 

characterise and quantify the elemental composition of the specimen at that 

volume. 

The technique uses a semiconductor detector to classify x-ray radiation according 

to energy rather than wavelength [48]. The semiconductor detector is an energy 

dispersive device fabricated from a single crystal of silicon or germanium [49]. 

The detector converts the energy of the incident x-ray photons into pluses of 

current proportional to the photon energy [49]. These pulses are amplified, 

digitised and finally fed to into a multichannel analyser which stores them in a 

location appropriate to the pulse height [49]. The final spectrum is then displayed 

on a monitor which can be monochrome or colour. Figure 4.6 shows an example 

of an EDS spectrum. Each peak in the spectrum represents an element present 

within a known region of the specimen [49]. 
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Figure 4.6: A typical EDS spectrum of a vanadium oxide sample. 

The atom of every element releases x-rays with unique amounts of energy during 

the transfer process. So by measuring the amount of energy of the x-rays being 

emitted by the specimen during electron bombardment, the identity of the atom 

can be known.  

Figure 4.7 shows a diagram of an atom with shells, the shells are labelled K, L, M, 

N from innermost to outermost because of the differing binding energy levels of 

the electrons around the nucleus. If a primary electron knocks out an electron on 

the K-shell then the electron on the L-shell will de-excite to the K-shell releasing 

an x-ray, Figure 4.8 illustrates. 
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Figure 4.7: A schematic diagram showing the energy content of X-Rays emitted by their 

electrons as transfer from a higher-energy electron shell to a lower-energy electron shell. 
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Figure 4.8: A schematic diagram showing the emission of an X-ray. 
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4.3 Spectroscopy techniques 

Spectroscopy is the use of radiation, sound and particle emission to study matter. 

There are different methods of spectroscopy: electromagnetic spectroscopy which 

involves interaction of electromagnetic radiation with matter, electron 

spectroscopy which involves interaction of electron beams with matter and 

acoustic spectroscopy which involves interaction of frequency of sound with 

matter. In this section: Raman spectroscopy, x-ray diffraction, photoluminescence 

spectroscopy and ultraviolet-visible spectroscopy will be discussed. 

4.3.1 Raman Spectroscopy 

When a photon of light is incident on a specimen, the photon can be absorbed or 

scattered. For absorption to occur the energy of the incident photon must be equal 

to the energy difference between two states of the molecule and the transition 

between the two states must be accompanied by a change in the dipole moment. If 

these conditions are not met the photon can be scatted in two ways, elastically or 

inelastically. A process when photons scatter elastically is called Rayleigh 

scattering. In Rayleigh scattering, the incident energies of the photons are the 

same as the energies of the scattered photons. On the other hand, a process when 

photons scatter inelastically is called Raman scattering. In this process the 

incident energies of the photons are different from the energies of the scattered 

photons.  

So when monochromatic radiation of wavenumber 0v  is incident on a specimen 

and interacts with the specimen then new pairs of wavenumbers of the type 

Mvvv ±= 0  are observed [50]. In the molecular systems the wavenumbers Mv  are 
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found to lie in the ranges associated with transitions between rotational, 

vibrational and electronic levels [50]. These new wavenumbers are called Raman 

lines and collectively they form a Raman spectrum. Raman lines at wavenumbers 

less than the incident wavenumber ( Mvv −0 ) are called Stokes lines and those 

greater than the incident wavenumber ( Mvv +0 ) are called anti-Stokes lines, Figure 

4.9 shows an illustration of this. It can be noticed in Figure 4.9 that the Stokes and 

anti-Stokes lines are equally displaced from the Rayleigh line. This is because in 

either case one vibrational quantum of energy is lost or gained. It can also be 

noticed that the Stokes line is more intense than the anti-Stokes line. This is 

because only molecules that are vibrationally excited prior to irradiation can give 

rise to the anti-Stokes line, so only the more intense Stokes lines are measured. 

 

Figure 4.9: A schematic diagram showing how a Raman spectrum may appear. 

A block diagram in Figure 4.10 shows the components of the equipment 

necessary for the observation of Raman spectra [50]. These components include a 

source of monochromatic radiation, a sample device, a dispersing system and a 

detection device. Each of these components will be discussed. 
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Figure 4.10: A block diagram of equipment for observation of Raman Spectra. 

 

The requirements for the source are that it must be highly monochromatic and 

capable of giving a high irradiance at the sample. Gas lasers meet these 

requirements and provide radiation which is self-collimated and plane polarized 

[50]. Helium Neon (HeNe) laser, Krypton (Kr) laser, Argon (Ar) laser and Kr/Ar 

laser are examples of gas lasers that can be used as a source of excitation. The 

sample device is responsible for the illumination of the sample and collection of 

the scattered radiation for subsequent dispersion. The sort of the dispersing system 

depends on whether it is to be used for the resolution of individual lines in 

rotation and vibration-rotation Raman lines or for the study of vibrational lines 

under conditions of moderate resolution [50], the two kinds of study call for 

different design features. In both studies the dispersing system is described as a 

spectrograph. The last component, the detection device, is where data is acquired 
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and a curve fitted. In modern spectrometers the detectors are a charge-couple 

device (CCD). Figure 4.11 shows an example of a Raman spectrum obtained from 

the spectrometer. 
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Figure 4.11: A typical Raman spectrum of a vanadium oxide thin film. 

 

4.3.2 X-Ray diffraction (XRD) 

X-ray diffraction (XRD) is a non-destructive analytical technique for 

identification and quantitative determination of the various crystalline forms of 

compounds present in solid materials and powders. Identification of an unknown 

compound is achieved by comparing the samples diffraction pattern with an 

internationally recognised data base containing reference patterns for many 
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phases. XRD also gives information on the crystallography of the sample from 

studying the interaction of monochromatic x-rays with a periodic crystal lattice. 

In X-ray diffraction the incident X-ray radiation is scattered by the atom in all 

directions, Figure 4.12 illustrates. So when a monochromatic X-ray beam with 

wavelengthλ , on the order of lattice spacing d, is projected onto a crystalline 

material at an angleθ , XRD peaks are produced by constructive interference of 

monochromatic beam scattered from each set of lattice planes at specific angles. 
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Figure 4.12: A diagram showing diffraction of X-rays in a crystal. 

 

From Bragg’s law given by  

θλ sin2dn =          (4.2) 
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where λ  is the wavelength, d  is the lattice spacing and θ  is the angle of incident. 

The diffraction peaks can be determined from constructive interferences. By 

varying the angle θ , the Bragg’s law conditions are satisfied by different d -

spacing in polycrystalline materials. 

Figure 4.13 shows a schematic layout of a diffractometer which has a 4 slit 

arrangement. The X-rays are produced in the source and propagate through the 

diffraction slit (DS) whose function is to define the irradiated sample area. (A 

narrower slit gives a slightly lower noise). The X-rays then diffract at the sample 

and propagate through the scattering slit (SS) which has a similar function to the 

DS. From the SS the X-rays travel to the receiving slit (RS) which optimizes the 

incoming radiation because a small slit will cut down on the incoming signal and 

a large slit will decrease the signal/noise ratio and broaden the peaks. The X-rays 

will then go through the receiving slit monochromator (RSM) to the detector. 

Figure 4.14 shows an example of an XRD spectrum. 
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Figure 4.13: A schematic diagram of a diffractometer. 
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Figure 4.14: An XRD spectrum of VO2 deposited on glass [15]. 

 

4.3.3 Ultra violet-Visible-Near infrared spectroscopy (UV-VIS-NIR) 

Ultra violet-Visible-Near infrared (UV-VIS-NIR) spectroscopy probes the 

electronic transitions of molecules as they absorb light in the ultraviolet (UV), 

near-infrared (NIR) and visible (VIS) regions of the electromagnetic spectrum. 

This technique is capable of measuring absorbance, transmittance and reflectance 

of both liquid and solid (thin films) samples from around 175-3300 nm. 

The spectrophotometer measures the intensity of light passing through the sample 

( )I , and compares it to the intensity of light before it passes through the sample 
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( )0I . The ratio 
0I

I
 is called transmittance and is expressed as a percentage (%T ). 

The absorbance, A, is based on the transmittance and is given by  

( )100%
%log TA −=         (4.3) 

A basic spectrophotometer is shown in Figure 4.15. The basic components are a 

light source, a holder for the sample, a monochromator (to separate the different 

wavelengths of light) and a detector. Figure 4.16 shows an example of a UV-VIS-

NIR spectrum. In Figure 4.16 there are three transmittance T(λ) curves at         

UV–Vis–NIR wavelengths. Insulator state T(λ) is pretty much the same at longer 

wavelengths for both samples, only there is 5% higher transmittance below 

1200nm in the polycrystalline film deposited at higher oxygen pressure. In the 

metal state, the transmittance curves are almost identical. Insulator state T(λ) data 

was reasonably fitted with Lorentz multiple oscillator model with RMSE < 0.5 

[51]. 
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Figure 4.15: A schematic diagram of UV-VIS-NIR spectrophotometer. 
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Figure 4.16: A UV-VIS-NIR spectrum of VO2 [51]. 
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Chapter 5: Deposition Parameters 

5.1 Introduction 

As mentioned in chapter 1, the laser pyrolysis technique has the ability to 

synthesis pure products [23]. For this reason it was chosen in this work instead of 

the other techniques. This work is a follow up on B. Mwakikunga et al [17] report 

on the deposition of VO2 nanostructures using a CO2 laser beam at a wavelength 

of 10.6 µm at a constant power of 50 W.  

In the present study the focus was on making VO2-x depositions using the laser 

pyrolysis technique: (1) while the laser power was kept constant at 30 W and the 

laser wavelength varied at eight allowed lines, and (2) while the laser wavelength 

was kept constant at 10.6 µm and the power varied from between 0-65 W. The 

aim was to investigate the effect of wavelength and laser power in the formation 

of VO2-X nanostructures. 

 

5.1.1 Power dependent and wavelength dependent VO2-x depositions using 

unfocused CO2 laser beam 

A wavelength tuneable Continuous Wave (CW) CO2 laser (Edinburgh 

Instruments, PL6) was used to pyrolyse the vanadium ethoxide liquid precursor. 

The precursor was prepared by dissolving 1 g of vanadium trichloride (VCl3) 

powder (97 % Sigma-Aldrich) into 100 ml of ethanol (CH3CH2OH) (≤ 99.8 % 

Sigma-Aldrich). The solution was stirred for 3 hours using a magnetic stirrer and 
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then left for 3 days for the reaction to complete. In Figure 5.1 the green solution 

indicates the +3 oxidation state of vanadium and this occurs when the VCl3 is 

dissolved in ethanol. The blue solution indicates the +4 oxidation state of 

vanadium and occurs after 3 days. The vanadium ethoxide solution was placed in 

a nebuliser holder (Medel, family silver), sprayed into the reaction zone through 

the nozzle (Figure 4.2) and collected on the substrate. Corning® glass was used as 

a substrate for the deposition of the vanadium oxide. The dimensions of the glass 

substrate were about 1 cm by 1 cm.  

The samples were annealed at 500oC for 17 hours in an argon environment. 

A set of eight different samples (VEW1-VEW8) of thin VO2-x films were 

synthesized utilising different deposition parameters shown in Table 5.1. The flow 

rates for C2H2, Ar and O2 gases were kept constant at 30, 50 and 5 ml/min 

accordingly. For this set the laser beam was kept unfocused and at a constant 

power of 30 W. 

An additional set of twelve different samples (VEP1-VEP12) of the thin VO2-x 

films were also synthesized at different deposition parameters tabulated in Table 

5.2. The flow rates for C2H2, Ar and O2 gases were kept constant at 30, 50 and 10 

ml/min accordingly. For this set the laser beam was kept unfocused and at a 

constant wavelength of 10.6µm. 
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a)

b)

 

Figure 5.1: Photographs of the VCl3 in ethanol solution a) before 3 days and b) after 3 

days. 
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Table 5.1: Laser pyrolysis deposition parameters at a constant power of 30 W of an 

unfocused beam. 

Sample 

number 

Wavelength 

(µm) 

C2H2 flow rate 

(ml/min) 

O2 flow rate  

(ml/min) 

Ar flow rate 

(ml/min) 

VEW 1 9.22 30 5 50 

VEW 2 9.32 30 5 50 

VEW 3 9.48 30 5 50 

VEW 4 9.70 30 5 50 

VEW 5 10.16 30 5 50 

VEW 6 10.36 30 5 50 

VEW 7 10.48 30 5 50 

VEW 8 10.82 30 5 50 
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Table 5.2: Laser pyrolysis deposition parameters at a constant wavelength of 10.6 µm of 

an unfocused beam. 

Sample 

number 

Power (W) Power 

density 

(W/cm2) 

C2H2 flow 

rate 

(ml/min) 

O2 flow 

rate  

(ml/min) 

Ar flow 

rate 

(ml/min) 

VEP 1 10 16.825 30 10 50 

VEP 2 15 25.237 30 10 50 

VEP 3 20 33.650 30 10 50 

VEP 4 25 42.063 30 10 50 

VEP 5 30 50.475 30 10 50 

VEP 6 35 58.888 30 10 50 

VEP 7 40 67.300 30 10 50 

VEP 8 45 75.713 30 10 50 

VEP 9 50 84.125 50 10 50 

VEP 10 55 92.538 30 10 50 

VEP 11 60 100.950 30 10 50 

VEP 12 65 109.363 30 10 50 
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Figure 5.2: Optical layout of the laser pyrolysis experiment showing the delivery of the 

CO2 laser beam into the reaction chamber. 

 

5.1.2 VO2-x deposition using a 30 W focused CO2 laser beam at 10.6 µm 

wavelength 

A non-tuneable CO2 laser (Synrad, D48-2-115) was used to pyrolyse the 

vanadium ethoxide liquid precursor. This laser has a fixed wavelength of 10.6 µm 

and a maximum power of 30 W. The same solution (VCl3 in ethanol) mentioned 

earlier was used as the precursor and the product was collected on a Corning® 

glass substrate. Figure 5.3 shows the experimental setup. Depositions where made 

at a constant laser power and laser wavelength, Table 5.3 shows the parameters 

used for the deposition. 

PL6, CO2 laser 
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Figure 5.3: Optical layout of the laser pyrolysis experiment showing the delivery of the 

focused CO2 laser beam into the reaction chamber. 

 

Table 5.3: Laser pyrolysis deposition parameters for a focused beam 

Sample 

number 

Power      

(W) 

Wavelength 

(µm) 

Beam waist 

(mm) 

C2H2 flow 

rate (ml/min) 

Ar flow rate 

(ml/min) 

VB 30 10.6 0.89 15 12 

 

 

 

Synrad, CO2 laser 
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Chapter 6: Results and Discussions 

6.1 Introduction 

In this section the morphology, structure and optical properties of the thin films 

synthesized under the different conditions tabulated in Table 5.1 to Table 5.3 are 

discussed. It can be seen that by changing the laser pyrolysis parameters such as 

laser wavelength, laser power and power density, the morphology and optical 

properties of the samples are affected. 

 

6.2 X-ray diffraction (XRD) 

The crystal structure of the three set of samples synthesized under the different 

growth conditions shown in Table 5.1 to Table 5.3 have been investigated using a 

Phillips (PANalytical) X-ray diffractometer using Cu Kα (k = 1.54 Å) radiation 

source  

The XRD spectra (scanned from 5o to 90o) corresponding to samples VEW1-8, 

synthesized at different wavelengths and constant laser power of 30 W are shown 

in Figure 6.1 (a). The diffraction spectra indicate that the samples synthesized at 

wavelengths between 9.32 µm and 10.86 µm are amorphous as no distinct peaks 

were observed. The above does not apply to sample VEW1 which has been 

synthesized at a wavelength of 9.22 µm. The corresponding XRD spectrum for 

this is shown in Figure 6.1 (b). Interestingly, two peaks at 2θ=29.1o and 2θ=44.3o 

are visible, and correspond to the VO2 (B) compound [52]. These diffraction 
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peaks can be indexed to the VO2 (B) monoclinic structure with lattice constants of 

a = 2.03 Å, b = 3.693 Å and c = 6.42 Å, and β = 106.6° (JCPDS # 31 -1438). The 

spectrum also exhibits a broad hump at around 2θ=22o-40o which is due to the 

SiO2 in the glass substrate. 

No peaks of any other phases or impurities are observed, demonstrating that 

almost pure VO2 (B) nano-materials could be obtained using the laser pyrolysis 

process.  

It is important to note that by having kept the laser power density at relatively low 

levels, it made it possible to assess the significance of the laser wavelength alone 

in terms of its contribution to the different growth mechanisms involved within 

the reaction volume. 

There is an inverse relationship between the energy of a photon (E) and the 

wavelength of the light (λ) given by the equation,  

λ
hc

E = ,         (6.1) 

where h  is Planck's constant and c  is the speed of light. The above inverse 

relationship means that light consisting of high energy photons has a short 

wavelength and light consisting of low energy photons has a long wavelength. In 

the case where the wavelength is varied from 9.22 µm to 10.86 µm it is observed 

that only the 9.22 µm sample is crystalline and the product is VO2 (B). The 

formation of the product could be due to the high energy (eV) photons for this 

wavelength (9.22 µm) as described in equation (6.1).  
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It is possible that, at wavelengths longer than the 9.22 µm the laser beam do not 

dissociate the molecular bonds which form VO2 (B) crystalline products but 

merely excite those bonds. The laser beam wavelengths could be far from 

resonance to form the desired product, i.e. bondondissociatidesiredlaserbeam   λλ >> . In that 

case other non-crystalline vanadium oxide products might be formed which are 

invisible to XRD analysis because they are non-crystalline. 

From the formula VO2-x and the XRD results presented above, we can 

hypothesize the value of x to be x = 0 since XRD revealed the phase of the sample 

to be VO2 (B). However, the best technique to verify this would be X-ray 

photoelectron spectroscopy (XPS). 

The XRD spectra (scanned from 5o to 90o) of samples VEP1-VEP12 synthesized 

at different laser powers are shown in Figure 6.2. The spectra show the absence of 

XRD peaks from the 10 W to 40 W laser powers indicating that the samples are 

amorphous. For laser powers above the 45 W a peak at 2θ=18.4o is observed 

which corresponds to the β-V2O5 [52] vanadium oxide phase. Above the 45 W 

laser power the samples shows a polycrystalline state and below the 45 W powers 

the samples shows an amorphous state. Figure 6.3 shows a spectrum of the 65 W 

laser power with peaks at 2θ=12.5o and 2θ=18.4o corresponding to β-V2O5 [52, 

53] while the 2θ=29.1o peak observed corresponds to the VO2 (B) [52]. This 

indicates that the sample exhibits mixed phases of vanadium oxides.  

The VO2 (B) phase is gradually formed by the thermal decomposition of V2O5 

during the annealing process [54]. V2O5 is the most stable of the vanadium oxides 
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but when it is in a high temperature reducing environment such as in a furnace it 

can transform from V2O5 to VO2. 
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Figure 6.1: (a) X-ray diffraction patterns of VO2-x deposited at different wavelengths. (b) 

X-ray diffraction pattern of VO2-x deposited at a wavelength of 9.22 µm. 
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Having kept the wavelength constant at a value of 10.6 µm, which is situated 

further away from the rather optimum value of 9.22 µm which corresponds to the 

wavelength threshold at which photolysis-photochemistry related mechanism is 

triggered, a second set of samples was produced as a function of varying laser 

power density. In this manner, one can now assess the contribution of the purely 

thermal induced processes within the reaction volume and a lower power density 

threshold can be established. 
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Figure 6.2: X-ray diffraction patterns of VO2-x deposited at different laser powers. 
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Figure 6.3: X-ray diffraction patterns of VO2-x deposited at 65 W. 

Also, from the results we have just presented we can hypothesize the value of x, 

from the formula VO2-x, to be x = 2.5 in some instances and x = 0 in another. The 

reason for these differences is because of the mix phases of vanadium oxide 

present in the sample (VO2 (B) and β-V2O5). In some areas the sample is made up 

of β-V2O5 while in others it is made up of VO2 (B). Again XPS would be the best 

technique to employ to determine the exact value of x. 
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XRD analysis (spectrum scanned from 5o to 90o) is also performed on a sample 

(VB) synthesised with higher power density (2.2 kW/cm2) and 10.6 µm laser 

wavelength is shown in Figure 6.4. The spectrum shows a distinct peak at 

2θ=44.1o which corresponds to VO2 (B). The absence of the other peaks might be 

caused by the size of the particles. The small broadness of the peak corresponding 

to bulk material (very narrow peak at ~ 43o) confirms that the particles are indeed 

nano in size. The spectrum also shows no evidence of other phases of vanadium 

oxide present in the sample. The spectrum hump at around 2θ=22o-40o is due to 

the SiO2 in the glass substrate. 
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Figure 6.4: X-ray diffraction patterns of VO2 (B) observed in the VB sample. 
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6.3. Morphology of the thin films 

Morphological studies and analysis are performed using the LEO 1525 field 

emission scanning electron microscope (SEM). The elemental composition is also 

investigated by using the Energy Dispersive X-Ray spectrometer (EDS) which is 

attached to the SEM instrument.  

The morphology of sample (VB) synthesized with a focused beam at a power 

density of 2.2 kW/cm2, a laser power of 30 W and a laser wavelength of 10.6 µm 

is shown in Figure 6.5. Rod-like nanostructures scattered all over the sample are 

observed. The observed structures have an average diameter of 55 nm and an 

average length of 400 nm. There are other nano-structures present in the sample 

but the dominant structures are the nano-rods.  

It is important to note that such VO2 nano-rods of this particular cylindrical 

geometry and rather small size have not been produced before. There are reports 

of course from various groups in the relevant literature on larger nano-

platelets/nano-belts structures synthesised with different techniques including 

laser pyrolysis [17, 29]. B. Mwakikunga et al. [17] have reported on VO2 nano-

belts formation using similar synthesis conditions. The large morphological 

differences between those structures and the VO2 nano-rods grown in the present 

studies indicate that even extremely subtle parameter variation during the laser 

pyrolysis method, such as intensity, wavelength, residence time within reaction 

volume and annealing conditions, can have an enormous effect. 

EDS analysis, shown in Figure 6.6 (a), indicates the presence of vanadium, 

oxygen, carbon, calcium, silicon, potassium and sodium atoms. The X-ray peaks 



90 

 

due to Ca, Si, K and Na are associated with the impurities being present in the 

substrate, shown in Figure 6.6 (b), while the oxygen peak is attributed to 

contributions from both the substrate and precursors. Since glass is not 

conducting, the sample was coated with a carbon layer in an evaporation vacuum 

chamber to make it conductive. 

 

2 µm

 

Figure 6.5: A SEM micrograph showing the morphology of the sample VB synthesized 

using a focused laser beam at 30 W power, 10.6 µm wavelength and a flow rate of 15 

ml/min. 
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Figure 6.6: (a) A SEM micrograph showing the morphology and the EDS spectra of the 

sample VB synthesized using a focused laser beam 30 W power, 10.6 µm wavelength and 

a flow rate of 15 ml/min. (b) EDS spectrum of the glass substrate. 

 

Sample VEW1 showed a different morphology to sample VB as shown in Figure 

6.7. Islands with cracks are observed with each individual micro-crack [Figure 6.7 
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(b)] harbouring self assembled nanostructures [Figure 6.7 (c)] which unveiled to 

be 70 nm nano-rods , nano-slabs and what seemed to be nano-spheres [Figure 6.7 

(d)]. EDS analysis, Figure 6.8, shows the same atoms as in Figure 6.6. The 

analysis shows the presence of the vanadium, oxygen, carbon, calcium, silicon, 

potassium and sodium atoms. Here also, the Na, K, Ca and Si originate from the 

glass substrate. The quantities of these atoms in percentages are shown in Table 

6.1. Vanadium and oxygen atoms accounted 11.57 % and 36.99 % respectively. 

Although oxygen shows a large percentage, the contribution originates from both 

the glass substrate and the precursor. 

100 µm 2 µm

1 µm 1 µm

a) b)

d)c)

 

Figure 6.7: SEM micrographs of sample VEW1 VO2-X structures (a) islands with cracks 

(b) nanostructures growing with each micro-crack at a magnification of x10000 (c) 

nanostructures growing with each micro-crack at a magnification of x35000 and (d) nano-

rods, nano-slabs and nano-spheres at a magnification of x55000. 
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Table 6.1: EDS quantitative analysis on the VEW1 sample. 

Element C O Na Mg Si Ca V 

Atomic % 23.52 36.99 7.95 1.09 16.91 1.98 11.57 
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Figure 6.8: A SEM micrograph showing the morphology and the EDAX spectra of the 

VEW1 VO2-X synthesized using a non-focused laser beam. 

 

Sample VEP12 shows a similar morphology to sample VEW1 as shown in Figure 

6.9 (a). The difference in this sample is that three types of morphologies are 

observed. Micro-sized islands shown in Figure 6.9 (b) reveal what seem to be 

agglomerated and crystalline particles with sizes in the micron range. Alongside 
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the islands, micro-sized “crystals” of different shapes are observed, Figure 6.9 (c). 

These “crystals” are also agglomerated. In between the “crystals” and the islands 

nanostructures are observed, Figure 6.9 (d), these nanostructures have different 

sizes and shapes. 

Figure 6.10 (a) shows another area of the sample that has cracks. This area is rich 

with nano-rods and what looks like nano-spheres; Figure 6.10 (b), (c) and (d). The 

rods have an average diameter of 140 nm and an average length of 850 nm while 

the spheres have an average diameter of 100 nm. EDS analysis shows the same atoms 

as in Figure 6.6 and Figure 6.8. 

Sample VB shows only one type of morphology throughout the sample. The 

sample also shows the smallest particles compared to samples VEW1 and VEP12. 

This means that the conditions, Table 5.3, used to synthesise these VO2-x 

nanostructures are ideal. A high power density might be the reason for the 

different morphologies. 
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Figure 6.9: SEM micrographs of sample VEP12 VO2-x structures (a) islands with cracks 

(b) surface of the island (c) “crystal” like structures and (d) nanostructures growing with 

each micro-crack.  
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Figure 6.10: SEM micrographs of VO2-x structures (a) islands with cracks (b) nano-rods at 

a magnification of x4500 (c) nano-rods at a magnification of x6250 and (d) nano-rods at a 

magnification of x23500. 



96 

 

6.4 Raman Spectroscopy 

Raman spectroscopy is carried out using a Jobin–Yvon T64000 Raman 

spectrograph with a 514.5 nm line from an argon ion laser. The T64000 is 

operated in single spectrograph mode, with the 1800 lines/mm grating and a 20×  

objective on the microscope. 

The Raman spectrum of sample VEP12, synthesized at a laser power of 65 W, 

showed bands at 175, 228, 261, 303, 422 and 532 cm-1. Figure 6.11 show that the 

bands have high intensities. The 175, 228 and 303 cm-1 bands could be assigned to 

VO2 (B) while the bands at 261 and 422 cm-1 could be assigned to β-V2O5. The 

peak at about 228 cm-1 is assigned to the low frequency modes of VO2 while the 

characteristic peak of single silicon at 532 cm-1 is from the glass substrate. The 

303 cm-1 band could be assigned to the external modes. 
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Figure 6.11: A Raman spectrum of sample VEP12 synthesized at a wavelength of 10.6 

µm and power of 65 W. 

 

Figure 6.12 shows a Raman spectrum of the VB sample. The weak spectral 

feature did not show any strong vanadium oxide signature. A similar rather 

structure less spectrum is also observed by Donev et al [55]. In their single-

nanoparticle study the group measured the Raman response of 150 nm particles. 

They were unable, however, to detect a usable Raman signal from arrays of VO2 

nanoparticles smaller than about 100 nm in diameter. A scanning electron 

micrograph (SEM) of one such array on a silicon (Si) substrate is shown in Figure 

6.13(a) and its Raman spectrum in Figure 6.13(b). Despite the long integration 

time (60 min) and relatively large average nanoparticles size (110 nm), only 
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Raman peaks belonging to the Si substrate stand out distinctly above the 

background. The weak spectral feature just below 200 cm−1, while indeed 

attributable to the 195 cm−1 mode of VO2, was indistinguishable from noise in the 

Raman spectra of arrays of smaller VO2 nanoparticles. In fact, it was not until 125 

nm nanoparticles were measured (not shown) that clear, though weak, VO2 peaks 

emerged [55]. 

Raman scattering cross sections are typically 14–15 orders of magnitude smaller 

than fluorescence cross sections Raman scattering becomes increasingly less 

favourable for smaller nanoparticles, since their reduced volume and elastic 

scattering efficiency weaken the interaction with the pump light even further. 

However, electromagnetic field enhancements associated with the localized 

surface plasmons of noble-metal nanostructures can greatly increase the 

interaction strength between an analyte and optical radiation. In surface-enhanced 

Raman scattering (SERS), the analyte, which may even consist of single 

molecules, is placed within a few nanometers of or in contact with the signal 

enhancer (usually made of Ag or Au), which can be a roughened metal substrate, 

granular metal film, colloidally dispersed or lithographically patterned metal 

nanoparticles [55].  

In our case the particles have an average diameter of 55 nm as shown in Figure 

6.5. The same reasons presented by Donev et al (above) for their shape of the 

spectrum also apply to our Raman studies and spectra from samples with less than 

100 nm particle sizes. 
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Figure 6.12: Raman spectrum of the VB sample.  

 

 

 

Figure 6.13: (a) SEM images (2r ≡ VO2 NP diameter; f ≡ VO2 areal coverage) and (b) a 

room-temperature Raman spectrum from arrays [55]. 
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6.5 UV-VIS-NIR transmittance spectroscopy 

Optical transmittance studies are performed on the samples synthesized under 

various conditions using a Varian Cary 500 UV–Vis–NIR spectrophotometer in 

the wavelength range from 200 nm to 3000 nm. 

As a way of example, the film’s optical transmittance (%) as a function of 

wavelength (nm) for the sample VEW1 synthesized at a wavelength of 9.22 µm, 

is shown in Figure 6.14. The sample exhibits thermochromism as can be seen in 

the different transmittance curves obtained at 25oC and 70oC. These show a rather 

small but clear difference in transmittance from the visible to the infrared regions. 

The sample displayed a lower optical transmittance within the visible region 

whereas the infrared region shows a higher transmittance at both 25oC and 70oC 

temperatures. It was also noted that the transmittance decreased in the visible and 

IR region as the temperature was increased.  

Figure 6.15 shows the film’s optical transmittance (%) as a function of 

wavelength (nm) of sample VEP12 which was grown with higher power intensity. 

A large amount of switching is observed compared to sample VEW1, Figure 6.15. 

The spectral transmittance of low temperature (25oC) and high temperature (70oC) 

shows a large difference in the visible and infrared (IR) region. The low 

temperature measurement shows a high transmittance in the infrared region of 

about 93 %. The value of the transmittance decreased to about 65 % upon the 

heating of the sample to 70oC. The low temperature measurement also shows a 

sudden drop (from 82% to about78%) in the transmittance between the 800nm 

and 900 nm wavelength region. A similar drop in transmittance is also observed at 
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high temperature measurements, though not as pronounced as at 25oC. The visible 

region exhibits a lower optical transmittance which also decreases further as the 

temperature of the sample increases. The cause of the high transmittance could be 

due to the mixed phases of vanadium oxide in the sample.  
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Figure 6.14: The optical transmission as a function of wavelength for the VEW1 sample 

at different temperatures.  

 

The differences in the transmittance of samples VEW1 and VEP12 at different 

temperatures might be due to the different phases of the vanadium oxides 

indentified by the XRD. Sample VEW1, which was synthesized at a wavelength 

of 9.22 µm, was identified as VO2 (B) by the XRD analysis and it exhibits a low 
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transmittance both at high and low temperatures compared to sample VEP12. 

Sample VEP12, which is synthesized at a power of 65 W, is identified as a 

mixture of β-V2O5 and VO2 (B) from the XRD analysis and exhibits a high 

transmittance compared to sample VEW1. This mixture might be the reason for a 

high transmittance. 
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Figure 6.15: The optical transmission as a function of wavelength for the VEP12 sample 

at different temperatures. 

 

Figure 6.16 shows the film optical transmittance (%) as a function of wavelength 

(nm) of the sample VB, which is grown using a focused laser beam. The spectral 

transmittance of low temperature (25oC) and high temperature (70oC) shows a 

difference in the visible and infrared (IR) region. The low temperature 

measurement shows a high transmittance in the infrared region while the high 
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temperature measurement shows a slightly lower transmittance in the infrared and 

visible region. It must be noted that the features in the 800 nm and 1200 nm are 

not absorption peaks but are merely features caused by the instrument as the 

detectors change.  

The VB spectrum resembles that of the VEW1 sample. This is expected as both 

samples are identified as VO2 (B). In this case the differences in the transmittance 

might be caused by the morphology of the samples. 
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Figure 6.16: The optical transmission as a function of wavelength for the VB sample at 

different temperatures. 
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Chapter 7: Conclusion and future work 

7.1 Summary 

In this study the synthesis of vanadium oxide nano-structures was carried out 

using laser pyrolysis technique. The focus was on making VO2-x depositions using 

various laser pyrolysis parameters and establish in this way (1) an optimum laser 

wavelength threshold for the photon induced dissociation of the molecular 

precursors while the thermal contribution was kept minimal by using low power 

density (laser energy of 30 W) and (2) the lower threshold for pure thermal 

contributions by working with wavelengths far from resonance in order to 

minimise pure photon induced contributions. In addition, VO2-x nano-particles 

were synthesized using similar laser pyrolysis conditions as Mwakikunga et al 

[17] at much higher power density. A total number of 21 samples were produced 

and annealed at 500oC in an argon atmosphere for 17 hours.  

A high wavelength threshold of 9.22 µm has been discerned at which the XRD 

spectra of the VEW set exhibits clear peaks of interest at 2θ=29.1o and 2θ=44.3o 

corresponding to the VO2 (B) compound.  

The XRD analysis for the VEP set, where the power density started to increase 

from very low values (~16 W/cm2), has pointed out a lower power density 

threshold for the pure thermally induced dissociation occurring at ~110 W/cm2. 

At this power density the spectra begin to show relevant peaks of interest at 

2θ=12.5o and 2θ=18.4o corresponding to β-V2O5 while the 2θ=29.1o peak 
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observed corresponds to the VO2 (B). This sample, at around the lower power 

density threshold, show also mixed phases of vanadium oxide. 

Interestingly, from morphological point of view, VO2-x nano-structures have been 

observed in all samples VEW1, VEP12 and VB irrespective of power density and 

wavelength. At the highest wavelength threshold (sample VEW1) showed micro-

sized cracks (average size of 100µm) with nano-structures inside the cracks have 

been observed. These nano-structures have different morphologies such as nano-

rods (70 nm), nano-slabs and nano-spheres which in many respects are different to 

VO2 nanostructures observed by other groups. At the lower power density 

threshold (sample VEP12) micro-sized cracks have also been the dominant 

morphological feature with existing nano-rods of average size 140 nm and nano-

spheres of (average size of 100 nm) inside the cracks. At the high power density 

regime (sample VB) a rather uniform film with nano-rods of an average diameter 

of 55 nm dispersed throughout the sample is formed. The structures were 

determined by using the LEO 1525 field emission scanning electron microscope 

(SEM). 

Raman spectroscopy on the samples VEW1, VEP12 and VB showed some 

correlation to the XRD results. Samples VEW1 and VEP12 showed bands at the 

175, 228 and 303 cm-1 which corresponds to the VO2 (B) bands. Sample VEP12 

showed additional bands at 261 and 422 cm-1 which correspond to the β-V2O5.  

The Raman spectrum at the high power density sample is mostly featureless. This 

confirms similar results of Donev et al and it is attributed to the very small 

particle size of the nano-structures. 
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The optical transmittance studies regarding the VEW1, VEP12 and VB samples 

were performed using the Varian Cary 500 UV–Vis–NIR spectrophotometer. 

Samples VEW1, VEP12 and VB showed a decrease in transmittance in the visible 

and IR region as the temperature was increased from 25oC to 70oC. VEP12 

showed a greater transmittance than VEW1 and VB. Measurements at 25oC 

showed a sudden decrease in transmittance between the 800nm and 900 nm 

wavelength region for the VEP12 sample. This feature smoothed out at 70oC 

measurements.  

 

7.2 Future work 

The high power density (2.2 kW/cm2) and slow flow rates have shown the 

potential of synthesizing uniform and nano-structured material as in sample VB. 

One of the aspects that could be investigated is the effect of even higher power 

densities to assess the relation of the uniformity of the film to the stoichiometry of 

the product and the size of the product. 

Since our heating stage was designed to reach a temperature of 80oC, we could 

design another heating stage that could reach negative temperatures. This could be 

used to study the transition temperature of the VB sample. Once the transition 

temperatures are known possible applications in sensors and devices can be 

identified. 
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Appendix A 

List of publications 

International conference peer reviewed papers 

1. Lerato Shikwambana, Malcolm Govender, Bonex Mwakikunga, Elias Sideras-

Haddad, and Andrew Forbes (2011), A review of the laser pyrolysis technique 

used to synthesize vanadium and tungsten oxide thin films, Advanced Materials 

Research, vol. 227, pp 80-83. 

National conference peer reviewed papers 

1. Lerato Shikwambana, Malcolm Govender, Bonex. Mwakikunga, Andrew 

Forbes, and Elias Sideras-Haddad (2010), Optimization of the laser pyrolysis 

parameters to synthesis vanadium oxide (VO2+x) nanostructures, In proceedings of 

55nd South African Institute of Physics Conference, Condensed matter Physics 

and Material Science. 

Other publications 

1. Malcolm Govender, Lerato Shikwambana, Bonex Wakufwa Mwakikunga, 

Elias Sideras-Haddad, Rudolph Marthinus Erasmus and Andrew Forbes (2011), 

Formation of tungsten oxide nanostructures by laser pyrolysis: stars, fibre and 

spheres, Nanoscale research letters, vol. 6, no. 166, pp. 1-8 
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Abstract: A laser pyrolysis (LP) technique was used to synthesisVO2+x nanostructures at a wavelength of 10.6 µm and 
power density of 2.4 kW/cm2. Scanning electron microscopy (SEM) showed nano-rods with lengths of 185 nm and 
diameters of 53 nm. Energy dispersive x-ray (EDX) analysis established the presence of vanadium oxide.  
 

1. Introduction  
 
Vanadium dioxide (VO2) shows a reversible metal-to-semiconducting transition at 68oC [1]. This reversible feature 
provides potential and important applications which include data storage, intelligent window coatings, and infrared 
modulators. Laser pyrolysis is the preferred method of VO2 synthesis because it has a well defined interaction volume 
and produces pure product [2, 3]. [2] demonstrated how a resonant interaction between a laser beam and a precursor 
(liquid or gaseous) could lead to a desired product. Laser pyrolysis parameters; beam waist, beam quality, power density 
and flow rates determine what products and structures are formed during the reaction, so it is of the essence that these 
parameters be studied fully so as to know which structures and products will be formed during certain conditions. In this 
work we report on the experimental conditions used to obtain VO2+x nano-rods. 
 
2. Results 
 
A continues wave CO2 laser beam with a beam waist of 0.89 mm and power density of 2.4kW/cm2 was used to synthesis 
VO2+x nanostructures. Argon and acetylene carrier gases had flow rates of 12 ml/min and 15 ml/min respectively. 
Depositions were made for 20 minutes and the resulting thin film was annealed under argon atmosphere for 17 hours at 
500oC. SEM showed nano-rods with lengths of 185 nm and diameters of 53 nm. EDX analysis confirmed the presence 
vanadium oxide. 
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Figure 1:SEM micrographs of VO2+x nano-rods and EDX 
analysis of the nanostructures at X10000 magnification. 

 

Figure 2:SEM micrographs of VO2+x nano-rods and EDX 
analysis of the nanostructures at X25000 magnification. 

 


