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ABSTRACT

The e ffects  of various manoeuvres on the handling of 59pe labelled heat 

damaged red c e lls  (59pe HDRC) by the reticu loendothe lia l system were 

studied in ra ts . The study demonstrated that prior sa tu ra tion  of 

t ra n s fe r r in  w ith ora l carbonyl iron had l i t t l e  e ffe ct on splenic 

re le a se  o f 59pe but markedly inh ib ited  hepatic release. Splenic 

re lease  was, however, in h ib ite d  by the p r io r  adm in istra tion  of 

unlabelled HDRC. The combination of carbonyl iron and unlabelled HDRC 

exerted a sim ilar e ffe c t. When carbonyl iron was administered with 

unlabelled free haemoglobin, the pattern of 59Fe d is tr ibu tion  was the 

same as tha t observed when carbonyl iron was given alone. 59pe 

fe r r it in  was id en tif ie d  in  the serum after the administration of 59pe 

HDRC but the size of the fraction  was not affected by prior saturation 

of transfe rrin . S izing column analyses of tissue extracts from the 

spleen at various times after the administration of 59pe revealed a 

progressive s h if t  of 59pe from haemoglobin to fe r r it in ,  with only small 

amounts of 59pe present in a small molecular weight fraction . The 

small molecular weight fraction  was greater in hepatic extracts, with 

the difference being marked in  animals that had received prior carbonyl 

iro n . The increased hepatic re te n t io n  o f 59pe associated with 

saturation of transferrin  was reduced by a hydrophobic ferrous chelator 

(2,2' b ipyrid ine), by a hydrophilic fe r r ic  chelator (desferrioxamine) 

and by an e x tra c e llu la r  h yd ro p h ilic  f e r r ic  che la tor (d ie thy lene 

tr iam inepen ta -ace tic  a c id ) . Transmembrane iron transport did not 

appear to be a ra te  l im it in g  fa c to r in  iron  re le a se , s ince no



d iffe rences in 59pe membrane fractions were noted in the d iffe rent 

experimental settings. These findings are consistent with a model in 

which reticu loendothe lia l c e lls  release iron from catabolized red ce lls  

at a re la t iv e ly  constant ra te . When t ra n s fe r r in  is  saturated a 

s ig n ific an t proportion of the iron is  transported from the spleen to 

the live r in small molecular weight complexes or in fe r r it in .  While a 

saturated t ra n s fe r r in  has no e f fe c t  on the release of iron from 

reticu loendothe lia l c e lls ,  prior loading with HDRC does condition them 

to release less iron.
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PREFACE

Internal iron exchange involves a c ir c u it  in which iron is  released 

from c e lls  of iron procurement (gut mucosal c e lls ,  reticu loendothe lia l 

c e lls ,  hepatic parenchymal c e lls  and placental ce lls )  to the transport 

protein transferrin  and is  delivered to erythroid precursors and other 

active ly  growing c e lls .  Senescent red blood c e lls  are taken up by 

re t ic u lo e n d o th e lia l c e l ls  and the iron  so re leased  is  re cyc led  

(Bothwell et a l , 1979; Morgan, 1981; Huebers and Finch, 1987). While 

the processes involved in transferrin  iron delivery to erythroid and 

other c e lls  have been well characterized (Morgan, 1981; Huebers and 

Finch, 1987) l i t t l e  is  known of the mechanism of and factors regulating 

re t ic u lo e n d o th e lia l iron  metabolism and re le a se . Previous work 

in v o lv in g  the parentera l in fu s io n  o f elemental iro n  to  b lo ck  

transferrin  binding s ites  for iron has suggested that ce llu la r iron 

release is  inh ib ited  in the presence of a highly saturated transferrin  

( L ip s c h itz  e t a l , 1971c; Bergamaschi et a l , 1986). The current 

investigation aims to define the e ffects of various manoeuvres on 

in te rn a l iron  exchange. These manoeuvres inc lude  an increased 

transferrin  saturation after enteral carbonyl iron  adm in is tra tion , 

p r io r  adm in is tra tion  of heat damaged e ry th rocy tes , venesection, 

haptoglobin depletion and the administration of various c la sses  of 

chelators. Through these manoeuvres i t  is  hoped to obtain further 

ins ight in to  not only the regulation of internal iron exchange but also 

the nature of reticu loendothe lia l iron release. A knowledge of the 

mechanisms and nature of iron release may shed further lig h t on the
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pathogenesis o f d iso rders o f iron  overload such as id io p a th ic  

haemochr omatosi s .

In chapter one, an overview of the factors involved in internal iron 

exchange is  presented. Chapter two deals w ith the methods and 

materials u t il iz e d  in th is  investigation. In chapter three the resu lts 

of the investigation are presented. Chapter four contains a discussion 

of the resu lts  obtained and concludes with a model of internal iron 

exchange formulated from the re su lts  of th is  investigation.
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CHAPTER ONE

AN OVERVIEW OF THE FACTORS INVOLVED IN INTERNAL IRON EXCHANGE
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1 .1 . INTRODUCTION

Iron is  an essential element of nearly a ll liv in g  c e lls  and organisms 

and p a r t ic ip a te s  in  numerous m etabolic pathways (Morgan, 1981; 

Crichton and Charloteaux-Waters, 1987). The major portion of body iron 

in man is  in the iron porphyrin complexes haemoglobin, myoglobin and a 

v a r ie ty  of haem containing enzymes. There are also many non-haem 

enzymes which either contain iron or which require i t  as a co-factor 

(Bothwell e t a l , 1979). Haemoglobin and myoglobin function as 

revers ib le  binders of molecular oxygen, with haemoglobin transporting 

oxygen to resp ir ing  tissues and myoglobin serving as an oxygen store in 

skeletal muscle. The haem and non-haem enzymes p a r t ic ip a te  in  

reactions ranging from activation  of oxygen, nitrogen, and hydrogen to 

the control of electron flow through numerous bio-energetic pathways 

(Bothwell et a l , 1979).

Iron is  also stored w ith in the body as fe r r it in  and haemosiderin which 

are designed for holding iron in a re la t iv e ly  non-reactive form. About 

35 to 40 mg per kg of tota l body iron is  present in the functional iron 

compounds in man and depending on the iron status of the ind iv idua l, 

between 0 and 20 mg per kg of total body iron may be present in the 

storage iron compartment of man (Bothwell et a l , 1979). In total the 

iron content of man is  approximately 50 mg per kg.

Despite the fact that iron is  the fourth most abundant element and the 

second most abundant metal in the earth 's crust, in the environment
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iron ex ists almost exclusively in the oxidised state, a factor that 

greatly reduces it s  a c c e s s ib ilty  (Bothwell et a l , 1979). Man in  

particu la r finds iron d if f ic u l t  to obtain and absorbs each day only 1­

2% of the amount that other mammals achieve (Finch and Huebers, 1982). 

For th is  reason the body exhib its great economy in it s  handling of 

iron, and internal iron k in e t ic s  are la rg e ly  concerned w ith the 

continuous red is tr ibu tion  of iron w ith in the body.

Internal iron exchange involves the c ir c u it  of iron release from ce lls  

o f iron  procurement, namely gut mucosal c e lls ,  reticu loendothe lia l 

c e lls ,  hepatic parenchymal c e lls  and placental c e lls ,  to the transport 

p ro te in  tran s fe rr in , the delivery of transferrin  iron to erythroid 

precursors and other active ly  growing c e lls  and f in a lly  the recycling 

of e ry th ro id  c e l l  iron  by the re t ic u lo e n d o th e lia l and hepatic 

parenchymal ce ll (Bothwell et a l , 1979; Morgan, 1981; Huebers and 

F inch , 1987). F e r ro k in e t ic  analyses have shown that the largest 

fraction  of plasma iron (24. mg per day) is  destined for the synthesis 

of haemoglobin in  developing erythrocytes, w h ilst about 5 mg per day is  

exchanged between transferrin  and parenchymal tissues (Bothwell et a l , 

1979).

The factors involved in  internal iron exchange are presented in th is 

chapter. Plasma transport of iron is  described in section 2. In 

section 3, iron delivery to erythropoietic c e lls ,  the regulation of 

iron uptake by e ry th ro p o ie t ic  c e l ls  and ery th rocyte  ageing are 

d is c u s s e d .  S e c t io n  4 d e a ls  w ith  the  i r o n  e n t r y  in t o
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r e t i c u lo e n d o t h e l ia l  c e l l s ,  haem oglobin d eg rada tio n  in  the 

reticu loendothe lia l c e ll and iron metabolism in the reticu loendothe lia l 

c e l l .  Hepatocyte iron uptake is  covered in  section 5 and the proteins 

of iron storage are d iscussed in  section  6. Iron re le a se  from 

reticu loendothe lia l c e lls  and hepatocytes is  discussed in  section 7, 

and the low molecular weight iron pool is  covered in  section  8. 

Section 9 deals with chelatable iron and chelating agents.

1.2. PLASMA TRANSPORT OF IRON

1.2.1. Introduction

Iron is  the fourth most abundant metal in the earth 's crust (Bothwell 

et a l , 1979). However, iron ex ists almost exclusively in the fe r r ic  

state in the external environment. Its  existence in the fe r r ic  state 

is  a factor which greatly reduces the a c ce ss ib ility  of iron to liv in g  

organisms. This is  because fe r r ic  iron is  unstable in solution at 

neutral pH and is  rap id ly  hydrolysed to in s o lu b le  or so lub le  but 

b io lo g ica lly  unavailable forms of fe r r ic  hydroxide . This problem has 

been overcome by l iv in g  organisms in  th e ir  development of iron  

complexing agents. These agents serve to so lu b ilize  iron in the 

ex trace llu la r f lu id  and are involved in the transport and delivery of 

iron to c e lls .
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In ve rteb ra tes , over 95% of plasma iron is  normally bound to the 

transport protein apotransferrin which provides the mechanism by which 

the needs of the individual body tissues for iron can be sa tis fied  

(Bothwell et a l , 1979). The remainder of plasma iron  is  known 

co lle c t iv e ly  as non-transferrin bound iron and is  complexed to other 

iron compounds which are present in plasma in much smaller quantities 

than transfe rrin . Such compounds include haptoglobin, haemopexin and 

fe r r it in .  Non-specific binding of iron to plasma proteins and low 

molecular weight complexes, as occurs in s ituations where the spec ific  

iron binding s ites  of t ra n s fe r r in  are saturated w ith iro n , a lso  

constitutes non-transferrin bound iron.

The fo llow ing section w ill describe transferrin  and non-transferrin- 

bound iron.

1.2.2. Transferrin

1.2.2.1. Chemistry

Transferrin is  a glycoprotein with an e llip s o id  shape (Morgan, 1981; 

Huebers and Finch, 1987). I t  consists of a single polypeptide chain 

tha t has two s im ila r  domains, each of which constitutes ha lf the 

molecule and each of which contains one iron binding s ite  (Morgan, 

1981). The 2 binding s ites are the acid la b ile  N terminal and the acid 

stable C terminal s ite  (Huebers and Finch, 1982). The polypeptide 

chain is  composed of 678 amino acid residues which, together with 2 N-
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linked oligosaccharide chains gives i t  a molecular weight of 80000 D 

(MacG illivray et a l , 1983). The function of these two oligosaccharide 

chains, which are loca lized  to the carboxy ha lf of the transferrin  

molecule, is  unknown (Morgan, 1981; Huebers and Finch, 1987).

The two iron binding s ites  of transferrin  each bind iron independently 

(Morgan, 1981; Huebers and Finch, 1987). The transferrin  pool is  not 

homogenous and transfe rrin  c ircu la tes in plasma and in te r s t it ia l f lu id  

in four forms depending on i t s  degree o f sa tu ra tion  w ith iro n . 

Transferrin may ex is t as the d ife r r ic - ,  monoferric a-, monoferric b-, 

or apotransferrin form. These forms may ex ist simultaneously in plasma 

(Bothwell et a l , 1979; Finch and Huebers, 1982; Huebers et a l , 1984). 

There is  no evidence that the demonstrable differences in in v itro  

behaviour of the two binding s ites  on transferrin  have any sign ificance 

insofar as physiologic iron transport is  concerned (Van der Heul et a l , 

1981; Huebers et a l , 1981; Delaney et a l , 1982). D ife r r ic  

transferrin  does however appear to deliver iron more e ff ic ie n t ly  to 

t is su e s  than does m onoferric tra n s fe rr in  (Huebers et a l , 1983a). 

Loading of transferrin  with iron appears to occur at random so that i t  

is  possible to predict the d is tribu tion  of d ife r r ic ,  monoferric and 

unloaded molecules at various saturations of transfe rrin  w ith iron  

(Finch and Huebers, 1982).

Transferrin is  sim ilar to two other iron-binding glycoproteins, namely 

la c to fe rr in  and conalbumin. A ll three proteins have sim ilar molecular 

weights, length of polypeptide chains, carbohydrate moieties, iron­
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binding s ites and some shared amino acid sequences (Aisen and Leibman, 

1972; Metz-Boutigue et a l , 1984). However, they d iffe r in th e ir  

immunologic p rop e rt ie s , their function and their s ites of highest 

concentration. The maximal iron-binding capacity of these d iffe ren t 

proteins is  highly pH dependent. Whereas transferrin  binds iron most 

avid ly at a neutral to a lka line  pH, conalbumin binds iron  at an 

a lka line  pH and la c to fe rr in  binds iron at an ac id ic  pH (Montreuil et 

a l , 1960; Weinberg, 1984). L a c to fe r r in  cannot provide iron  to 

re t ic u lo c y te s  (Brock and Esparza, 1979). When present in plasma, 

d ife r r ic  la c to fe rr in  is  c lea red  by re t ic u lo e n d o th e lia l c e l ls  and 

hepatocytes.

1.2.2.2. Transferrin synthesis

The p rinc ipa l s ite  of serum transfe rrin  production is  the hepatocyte 

(Morgan, 1981). The other major s ite  of transferrin  production is  the 

la c ta t in g  mammary gland (Jordan and Morgan, 1969). Regulation of 

transferrin  production has been close ly  linked with the status of iron 

stores. Transferrin production is  increased with iron store depletion 

and decreased with iron store rep le tion  (L ipsch itz et a l , 1974).

I t  has not yet been elucidated exactly what molecular events regulate 

transferrin  gene expression in iron deficiency (Idzerda et a l , 1986). 

Studies on the liv e rs  of iron de fic ien t chicks and ra ts  showed them to 

contain elevated leve ls of transferrin  mRNA (Mcknight et a l , 1980a; 

Idzerda et a l , 1986). In ra t hepatocytes, the elevated levels of
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transfe rrin  mRNA were found to re su lt from induction of transferrin  

gene transcrip tiona l a c t iv ity  ra ther than from the re g u la t io n  of 

translationa l a c t iv ity  (Idzerda et a l, 1986).

Stimulation of transferrin  synthesis also occurs in  pregnancy and 

during the administration of oestrogens (Bothwell et a l , 1979; Morgan, 

1981). The e ffects of oestrogens a lso  appear to be re la te d  to 

increased mRNA tra n s c r ip t io n  (Mcknight et a l , 1980b). Plasma 

transferrin  concentration is  decreased in protein depleted s ta te s , 

probably as a re su lt  of depletion of the amino acid protein synthesis 

pool (Morgan, 1981).

1.2.2.3. Iron exchange with transfe rrin

As mentioned above, there are two spec ific  metal binding s ite s  on 

transfe rrin , each of which binds one iron atom (Morgan, 1981). The 

binding o f iron  to t ra n s fe r r in  re q u ire s  the a sso c ia t io n  of the 

t ra n s fe r r in  molecule with carbonate or bicarbonate anions (Morgan, 

1981). These anions function to secure the iron in to  place in the 

transfe rrin  molecule by serving as a bridging ligand between iron and 

the protein (Huebers and Finch, 1987). The anions also appear crucia l 

in iron release from transfe rrin  (Egyed, 1973). While in v itro  studies 

appear to ind icate that both ferrous and fe r r ic  iron serve as the 

source of transferrin  iron, i t  is  s t i l l  unknown whether iron in vivo is  

presented to the transferrin  molecule in the fe r r ic  or the ferrous form 

(Crichton and Charloteaux-Wauters, 1987; Huebers and Finch, 1987).
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Iron binding by transfe rrin  in v itro  is  pH dependent and is  maximal 

above pH 7 (Morgan, 1981). While iron is  bound to transfe rrin , the 

d iffu s ion  properties and rate  of penetration of iron through ce llu la r 

membranes such as the cap illa ry  wall have the characteristic  features 

of it s  carrying protein transfe rrin  rather than the features of a small 

molecule or ion. Thus, when iron is  bound to transfe rrin , iron loss 

from the body by passage through surface membranes, as occurs in the 

kidney is  greatly reduced. Another major consequence of transferrin- 

iron binding is  that the free iron concentration in body flu id s  is 

extremely low, thereby avoiding the harmful e ffects of adsorption of 

iron to c e ll membranes. In addition, transferrin  minimizes iron losses 

from the body by depositing surplus iron in tissues designed for iron 

storage (Bothwell et a l , 1979).

As a r e s u lt  o f the high a f f in i t y  o f t ra n s fe r r in  fo r iron , the 

spontaneous d issociation  of iron from transferrin  cannot occur at a 

s ig n ific a n t rate (Aisen and Leibman, 1968). The consequence of th is is 

that either the whole transfe rrin -iron  complex must be broken down to 

supply iron to c e lls ,  or special mechanisms for the detachment of iron 

from transferrin  must ex is t. The mechanism of iron delivery to c e lls  

by transferrin  has been described in  deta il recently , and is  discussed 

in section 1.3.1. A review of current knowledge on the subject of 

iron release from reticu loendothe lia l and hepatic c e lls  to transferrin  

is  presented in section 1.7. The experimental findings of th is  study 

with regard to th is  subject are presented in  chapter 4.
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1 .2 .2 .4 .  The r o le  o f  t r a n s f e r r in  in  in t e s t in a l  i r o n  a b so rp t io n

Besides being found in serum, mammalian transferrins have been found at 

other s ite s  in the body. One such s ite  is  the small in testine, where 

transfe rrin  is  thought to be involved in the process of inorganic iron 

absorption.

Transferrin has been found in  the lumen of the small in testine , on the 

mucosal surface and inside the mucosal c e l ls  of the duodenum and 

jejunum (Huebers et a l , 1976). The source of th is  transferrin  is

uncertain. I t  has been claimed that small in te s t in a l ep ithe lium  

contains an iso transfe rr in  which is  secreted in to  the gastrointestinal 

lumen in a sim ilar manner to the secretion of siderophores by bacteria 

(Huebers et a l , 1976; 1983b; Pollack and Lasky, 1976). The iron-

transferrin  complex formed in the in tes tina l lumen may then enter the 

in tes tin a l epithelium by a process of receptor mediated endocytosis. 

This hypothesis is  supported by the find ing of a high molecular weight 

elutable factor in the lumina of iron de fic ien t ra ts which appears to 

promote iron absorption (Huebers et a l , 1976). A further poss ib ilty  on 

the source of the transfe rrin  found intra lum ina lly in the intestine is  

that i t  may be derived from b il ia ry  secretion of plasma transferrin .

Recent evidence against the mucosal production of an iso transferrin  

involved in  in tes tin a l iron absorption has been the in a b i l i t y  to 

demonstrate transferrin  mRNA in gastro intestina l mucosal c e lls  (Idzerda 

et a l , 1986).

10



Further doubt on the ro le  of transferrin  in  in testina l iron absorption 

has recently been cast by the in a b il ity  to demonstrate with the use of 

immunocytochemical tests the presence of transferrin  receptors on the 

luminal surface of mucosal c e lls  (Parmley et a l , 1985) and on the brush 

border of mucosal c e lls  (Banerjee et a l, 1986). The in a b ility  to 

demonstrate an enhancing e ffe c t of transferrin  on iron absorption in 

achlorhydric subjects (Bezwoda et a l, 1986) may be seen as further 

evidence disputing the ro le  played by mucosal t ra n s fe r r in  in  iron  

absorption.

While there is  evidence disputing the d irect ro le  transferrin  may play 

in in tes tin a l iron absorption, transferrin  may function in an as yet 

undetermined manner to increase iron absorption in iron deficiency. 

Th is hypothesis is  supported by the f in d in g  o f an in c re a se d  

concentration of in tes tina l transfe rrin  in ra ts when iron deficiency is 

present (Hal 1 iday et a l , 1976) and by the find ing of an increased 

concentration of b il ia ry  transfe rrin  in iron de fic ien t ra ts (Huebers et 

a l,  1983b).

1.2.2.5. The transferrin  receptor

In it s  delivery of iron to c e lls ,  iron carrying transferrin  binds to 

sp ec ific  receptor s ites on the c e ll membrane. The transferrin  receptor 

is  a transmembrane glycoprotein which is  coded for on human chromosome 

3q 21-25 (Yang et al , 1984; Rabin e t a l , 1985). I t  conta ins 

approximately 5% carbohydrate by weight (Seligman et a l, 1979). The
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recepto r is  a dimer w ith  a disulphide linkage and each component 

monomer is  capable of binding a d ife r r ic  transferrin  molecule (Morgan, 

1981; Huebers and Finch, 1987). Each monomer has a molecular weight 

of approximately 90000 D ( Enns and Sussman, 1981). The transferrin  

receptor has a small in tra ce llu la r  amino terminal domain and a large 

ex trace llu la r car boxy terminal domain consisting of 672 amino acids 

(Schneider et a l , 1984). Like other receptor proteins, the transferrin  

receptor is  amphipathic.

The binding process of transferrin  carrying iron to the transferrin  

receptor is  very e ff ic ie n t .  Binding of transfe rrin  to it s  receptor is  

calcium dependant (Hemmaplardh and Morgan, 1977), and maximal at pH 7.8 

(van Bockxmeer et a l , 1978).

The iron status of the transfe rrin  molecule exerts an important e ffect 

on the a f f in ity  of the molecule for it s  receptor. The transferrin  

receptor has a very high a f f in ity  for d if fe r ic  transferrin  ^Trowbridge 

et a l , 1984). Monoferric transferrin  and apotransferrin respectively 

have less a f f in ity  for the transfe rrin  receptor at physiological pH 

(Huebers et a l , 1983a).

The development o f monoclonal antibodies with sp e c if ic ity  for the 

transferrin  receptor has allowed for the immunological demonstration of 

transfe rrin  receptors on ce ll surfaces (Schneider et a l, 1982), and 

transferrin  receptors have been found to be d istributed on almost a ll 

human c e l l  types evaluated. Receptor a f f in ity  for transferrin  by
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d iffe ren t tissues of an organism appears to be constant (Trowbridge et 

a l, 1984).

Regulation of transferrin  receptor expression by c e lls  is  not fu lly  

understood. Transferrin receptor expression on ce ll membranes appears 

to be regu la ted  la rge ly  by the in tra ce llu la r  chelatable iron pool 

(Bridges and Cudkowicz, 1984; Bottomley et al , 1985). Evidence

supporting  th is  f in d in g  is  tha t increased t ra n s fe r r in  receptor 

expression occurs when the iron supply to c e l ls  is  dim inished by 

chelating agents or by growing c e lls  in iron de fic ien t media (Bottomley 

et a l , 1985). I t  appears that the synthesis of the t ra n s fe r r in  

receptor is  under t ra n s c r ip t io n a l co n tro l.  However recent data

suggests that iron may down-regulate transfe rrin  receptor expression by 

a mechanism s im ila r  to the one by which i t  induces increased 

translation  of fe r r it in  mRNA (Casey et a l , 1988). What is  clear is  

th a t non r e p l ic a t in g  c e l ls  appear to have a s tab le  number of 

t ra n s fe r r in  re cep to rs . In con tra s t to th is ,  c e l ls  undergoing 

m u ltip lica tion  markedly increase the ir number of transferrin  receptors 

(Trowbridge and Omary, 1981). The find ing of so many t ra n s fe r r in  

receptors on rap id ly  growing c e lls  and on malignant c e lls  ra ises the 

p o s s ib ility  that the transfe rrin  receptor may play a r o le  in  host 

defence against neoplasia. The exact mechanism by which th is  may occur 

has not been fu l ly  elucidated. The increase in transferrin  receptor 

number on m u lt ip ly in g  c e l ls  occurs because tra n s fe rr in -ce ll- iro n  

in teraction  is  important in the regulation of c e l lu la r  growth and 

p ro life ra t io n . Evidence for th is  has been the find ing that transferrin
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is  e ssen tia l fo r cu ltu red  c e l ls  to grow in serum-free conditions 

(Barnes and Sato, 1980). The p ro life ra t io n  of cu ltu red  c e l ls  is  

in h ib ite d  i f  th e ir  receptors are blocked by monoclonal antibodies 

sp e c ific  for transferrin  binding s ite s , as well as i f  the c e lls  are 

deprived of transfe rrin . I t  would appear that the transferrin  receptor 

interaction  is  the important component in growth regulation and that 

the e ffe c t may be independent of the iron content of transferrin  (May 

and Cuatrecasas, 1985).

1.2.3. Non-transferr in-bound iron

1.2.3.1. Haptoglobin and haemopexin

Haemoglobin, present in the plasma as the re su lt  of intravascular 

haemolysis or the ly s is  of red c e ll precursors in the marrow, normally 

co n s t itu te s  approximately 2% of plasma iron. This haemoglobin is  

complexed in the plasma by a spec ia l haemoglobin c a r r ie r  c a lle d  

haptoglobin which is  synthesized prim arily in the liv e r (Bothwell et 

a l , 1979). In the plasma, haemoglobin d issociates into dimers and each 

haptog lob in  molecule binds two of these dimers (Nagel and Gibson, 

1971). The binding of haemoglobin to haptoglobin is  irreve rs ib le , and 

s in ce  haptog lob in  production is  not stepped up in response to an 

increased haemoglobin load, the plasma concentration of haptoglobin 

prov ides an in d ic a t io n  of the amount o f ongoing in travascu la r 

haemolysis (Bothwell et a l , 1979). Haemoglobin bound to haptoglobin is
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transported to the liv e r where i t  is  taken up by hepatocytes (see 

section 1.5.3.1.).

When haemoglobinaemia exceeds the haptoglobin binding capacity of 

plasma, oxidation of the iron in the haemoglobin molecule permits the 

haem moiety to d issociate from it s  polypeptide chain and a second iron 

transport protein present in  plasma ca lled  haemopexin binds the haem 

which is  liberated (Bothwell et a l , 1979). Haemopexin is  synthesized 

in the liv e r and the haem haemopexin complexes are also removed from 

the c ir c u la t io n  by hepatocytes (see sec tion  1 .5 .3 .1 .) .  Since 

haemopexin production, lik e  haptoglobin production, does not increase 

in response to an increased demand, it s  plasma concentration has a 

sim ilar s ig n if ic a n ce  to the plasma concen tra tion  o f haptoglob in 

(Muller-Eberhard et a l , 1968). I f  the haemopexin is  exhausted, haem 

binds to albumin un til fresh haemopexin is  synthesized (Bothwell et a l , 

1979).

1.2.3.2. Serum fe r r it in

Small amounts of fe r r it in  (usually less than 1% of serum iron) are 

found c ircu la ting  in the plasma of normal ind iv idua ls (Bothwell et a l , 

1979). W h ile  under normal circum stances the serum f e r r i t in  

concentration is  a function of the size of the body iron stores (Finch 

et a l , 1986), i t s  fu l l  physiological s ign ificance is  not yet en tire ly  

understood.
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Serum f e r r i t i n  is  discussed more fu lly  in section 1.6.3. and the 

hepatic clearance of serum fe r r it in  is  discussed in section 1.5.3.2.

1.2.3.3. Low molecular weight plasma iron complexes

While in normal ind iv idua ls the plasma concentration of iron complexed 

w ith  low m olecular weight compounds such as ascorbate, carbonate, 

certa in  amino acids and plasma proteins such as albumin is  extremely 

small, much higher concentrations of tota l iron in plasma in th is  form 

have been found c ircu la t in g  in  patients with severe iron  overload 

(Hershko et a l , 1978b; Anuwatanakulchai et a l , 1984; Gutteridge et 

a l , 1985; Wang et a l , 1986). This may occur as a re su lt  of saturation 

of the binding capacity of transfe rrin  (Brissot et a l , 1985). While 

hepatic t ra n s fe r r in  recep to rs  have been found to be reduced in 

haemochromatosis, the underlying defect remains unknown (Sciot et a l, 

1987). The highly e f f ic ie n t  hepatic uptake process of th is  form of 

iron (discussed in  section 1.5.3.3.), together with the high plasma 

leve ls found in  haemochromatosis have led many researchers to suggest 

that the low molecular weight complexes not bound to transferrin  may be 

prim arily responsible for the hepatic iron loading and tox ic ity  that 

characterizes haemochromatosis and other iron loading states (Hershko 

et a l , 1978b; B rissot et a l , 1985; Wright et a l , 1986; 1988).

Low molecular weight iron complexes have been shown to promote the 

formation of free hydroxyl rad ica ls  and to accelerate the peroxidation 

of membrane lip id s  in v itro  (Gutteridge et a l , 1985). The a v a ila b ility
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of th is  non-transferrin plasma iron for chelation by therapeutic agents 

such as desferrioxamine is  important as i t  serves as a route whereby 

the le ve l o f iron  sto res can be reduced and also as a means of 

decreasing the amount of iron in  iron-loaded c e l ls  (Jacobs, 1977; 

Hershko and Weather a l l ,  1988).

1.3. THE ERYTHROCYTE

1.3.1. Iron delivery to erythropoietic c e lls

1.3.1.1. Introduction

As d iscussed prev iously , the major function of transferrin  is  the 

transport of iron from wherever i t  enters the plasma to the developing 

erythroblasts of the marrow. Iron is  u t il iz e d  by the erythroblasts in 

haemoglobin synthesis (Fairbank and Beutler, 1983). On morphological 

grounds, a number of stages in the development of the erythrocyte have 

been described. The successive morphological a lterations observed as 

the  p ro e ry th rob la s t develops in to  the ery th rocy te  r e f le c t  the 

functional spec ia liza tion  of these c e lls  and their maturation (Bessis 

et a l,  1983). Studies u t i l iz in g  rad io labe lled  iron have shown that 

iron is  taken up from the plasma by a ll erythrocyte precursors in the 

bone marrow (Myhre, 1964; Ward et a l , 1966). Maximal iron uptake is  

observed at the ea r lie r stages of red ce ll precursor development. 

However, even after loss of the nucleus, the immature erythrocyte or
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re ticu locy te  as i t  is  known is  s t i l l  able to u t i l iz e  plasma iron for 

haemoglobin synthesis (Jandl e t al , 1959). The m a jo r ity  of 

investigations concerned with the mechanism of iron exchange between 

t r a n s f e r r in  and e r y th r o id  c e l l s  have been perform ed us ing  

re ticu locy tes. This is  due to the fact that these c e lls  are obtained 

with re la t iv e  ease from peripheral blood. However, most of the data 

presented a lso  ap p lie s  to nucleated e ry th ro id  c e l ls  and to non 

erythroid c e lls .

While in i t ia l  studies suggested that transferrin  iron was delivered to 

and released at the erythroblast membrane (Jandl and Katz, 1963), a 

great deal of evidence now indicates that the release of iron from 

transferrin  occurs w ithin the c e ll i t s e l f .  The uptake of transferrin  

iron by receptors and i t s  in tra ce llu la r  cycle have been described in 

deta il recently  (Dautry-Varsat et a l , 1983; Klausner et a l , 1983).

The steps invo lved  in  the uptake o f tran sfe rrin -bound  iron  by 

re ticu locy tes and nucleated erythroid precursors are: (1) transferrin

binding to sp e c ific  receptors on the ce ll membrane, (2) transferrin  

entry in to  the c e l l ,  (3) iron release from transferrin  and (4) release 

of transferrin  from the c e l l .

1.3.1.2. Transferrin-receptor interaction

D ife rr ic  transfe rrin  binds to sp e c ific  transferrin  receptors on the 

ce ll surface. The nature of these receptors has already been dealt
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w ith  (see sec tion  1 .2 .6 .) .  The b ind ing  of transferrin  to the 

transferrin  receptor is  revers ib le  and exhib its saturation k in e t ic s  

(van Bockxmeer et a l , 1978; van Bockxmeer and Morgan 1977; 1979).

Approximately 80000 t ra n s fe r r in  molecules can be bound by each 

r e t ic u lo c y te .  As re t ic u lo c y te s  mature, there is  progressive 

disappearance of functional transferrin  receptors (Pan and Johnstone, 

1984).

As mentioned previously, the binding of transferrin  to it s  receptor is  

dependent on pH, the presence of calcium ions and the iron content of 

t r a n s f e r r in .  Ev idence  fo r  t h is  in c lu d e s  the f in d in g s  that 

apotransferrin has a lower a f f in ity  for the transferrin  receptor than 

does d i f e r r ic  t r a n s fe r r in  (Morgan, 1981), and that incubation of 

re ticu locy tes with calcium chelators causes inactivation  of receptors 

and lo ss  of iron  uptake (Hemmaplardh and Morgan, 1977). Further 

evidence that ce llu la r  uptake of iron from transfe rrin  is  dependent on 

the b ind ing  o f t ra n s fe r r in  to  the t ra n s fe r r in  receptor is  that 

fo llow ing the p ro teo ly tic  d igestion  of re t ic u lo c y te s ,  there is  a 

reduction of transferrin  binding to receptors and a decrease in the 

rate of iron uptake by the c e lls  (Hemmaplardh and Morgan, 1976).

1.3.1.3. Di fe r r ic  transfe rrin  in te rna liza tion

Once bound to the transfe rrin  receptor on the ce ll surface, d ife r r ic  

transfe rrin , together with it s  receptor, is  taken into the ce ll by a 

process of receptor mediated endocytosis (Morgan, 1981; May and
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Cuatrecasas, 1985; Wileman et al 1985; Bomford and Munro, 1985; 

Stahl and Schwartz, 1986). b ind ing  to the ce ll membrane appears to be 

e ssen t ia l fo r endocytosis to occur, since other proteins such as 

albumin and IgG for which there are no sp ec ific  binding s ites are not 

endocytosed by reticu locy tes (Hemmaplardh and Morgan, 1977).

Substances other than transferrin  are also taken into c e lls  by receptor 

mediated endocytos is . These inc lude  c h o le s te ro l,  vitam in B^2> 

epidermal growth factor, p la te le t-d e r iv ed  growth fa c to r ,  in s u l in ,  

gonadotrophins, toxins such as diphtheria and pseudomonas toxin, and 

viruses such as influenza (Stahl and Schwartz, 1986). The receptors 

for these molecules are found in  c la th rin  coated p its , c la th rin  being a 

protein that supports the receptors in the c e ll membrane. I t  appears 

tha t a number o f ligands enter the c e ll via the same coated p it  

(Carpentier et a l , 1982).

Once the ligand has bound to it s  receptor, the c la th rin  coated p it  

invaginates, loses the c la th rin  and forms a prelysosomal endosome, 

known as a receptorsome. The receptorsome is  then transported by 

sa ltatory motion w ith in the c e l l  cytoplasm along m icrotubule and 

microfilament tracts (May and Cuatrecasas, 1985). The process appears 

to be energy dependent and is  also sensitive to changes in temperature. 

Almost no endocytosis occurs at 4°C, with endocytosis increasing as the 

temperature is  ra ised. Endocytosis is  inh ib ited  at temperatures above 

40°C (Morgan, 1981). The mechanism responsible for th is  may be the 

denaturation of membrane prote ins invo lved  in  endocytos is . That
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t ra n s fe r r in  endocytosis is  blocked by a variety of inh ib ito rs of 

ce llu la r metabolism such as dinitrophenol and rotenone is  evidence that 

endocytosis is  linked to a supply of metabolic energy (Morgan, 1981).

Factors inducing in te rna liza tion  of the transferrin  receptor, other 

than t ra n s fe r r in ,  include monoclonal antibodies to the transferrin  

receptor (McArdle and Morgan, 1984) and the phorbal esters. These 

e s te rs , which are s t ru c tu ra lly  unre lated  to tra n s fe r r in , induce 

in te rna liza tion  of the transferrin  receptor, even in the absence of 

transferrin  (May et a l , 1984; 1985). These esters are thought to act

by stimulating the production of calcium dependent protein kinase C. 

P ro te in  kinase in  turn appears to phosphorylate the transferrin  

receptor.

May and coworkers (1985) showed that cytoskeleton inh ib ito rs  could 

in h ib it  transferrin  receptor in te rna liza tion  induced by phorbol esters 

without in h ib it in g  transfe rrin  receptor phosphorylation. This suggests 

that phosphorylation of the transfe rrin  receptor is  not the only factor 

involved in  stimulating receptor endocytosis. Endocytosis can also be 

blocked by microtubular and microfilament inh ib ito rs  such as the vinca 

a lk a lo id s  and co lch ic ine (Hemmaplardh et a l , 1974). The foregoing 

discussion indicates that transferrin  receptor in te rna liza tion  involves 

complex interactions between ce ll membranes, c la th rin  coated p its , the 

cy to ske le ton , m icrotubu les and m icro filam ents and the enzymes 

regu lating phosphorylation of these structures.
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1 .3 .1 .4 .  Iron  r e le a s e  from  t r a n s f e r r in

After endocytosis of the d ife r r ic  transferrin  receptor complex, the 

in te r io r of the endocytic vesic le  becomes a c id if ie d . This occurs by an 

active protonation process which is  energy dependent (Wileman et a l , 

1985). The a c id if ie d  vesic le  is  known as the compartment of uncoupling 

of recepto r and ligand  (CURL) (G o ldste in  e t a l , 1979). Iron 

d is so c ia te s  from transferrin  in  the a c id if ie d  vesic le , leaving the 

iron-free apotransferrin in the vesic le . The e f f ic ie n t  translocation of 

iron through the membrane barrier between the s ite  of i t s  release from 

transfe rrin  in the a c id if ie d  vesic le  and the s ite  of it s  u t il iz a t io n , 

is  by a re c e n t ly  described high a f f in i t y  c a r r ie r  mediated iron 

transport system present in  the membrane of the vesic le  (Egyed, 1988).

Iron d e liv e ry  to c e l ls  can be in h ib ite d  by in terfering  with the 

a c id i f ic a t io n  of the endocytic v e s ic le .  Weak bases such as 

chloroquine, ammonium ch loride and methylamine d iffuse across membranes 

in to  c e l ls  in  th e ir  uncharged, l i p id  so lu b le  forms. They can 

accumulate in the endocytic vesic le  where they become protonated. This 

in turn can buffer the endocytic vesic le  against a c id if ic a t io n  (Wileman 

et a l , 1985).

Iron delivery to c e lls  can also be disturbed by inh ib ito rs  of energy 

metabolism. The mechanism of th is  also appears to be interference with 

endosomal a c id if ic a t io n  (K a ilis  and Morgan, 1974). An example of such 

a substance is  the metabolic inh ib ito r 2,4 d in itro-pheno l.
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1 .3 .1 .5 .  T r a n s fe r r in  r e le a s e  from  the  c e l l

The endocytosis of most receptor-ligand complexes re su lts  in  the ir 

in tra ce llu la r catabolism w ith in secondary lysosomes which are formed as 

a re su lt  of the fusion of the endocytic vesicle  with in tra ce llu la r 

lysosomes. An example is  that of epidermal growth factor whose 

receptor undergoes digestion in the endocytic vesicle  (Wileman et a l , 

1985). This is  not the case for transfe rrin  and it s  receptor which are 

recycled. The variable pH dependent a f f in i t i e s  o f d i f e r r ic -  and 

a p o tra n s fe r r in  fo r the t ra n s fe r r in  recepto r is  fundamental to 

transfe rrin  recyc ling  through the c e l l .

As mentioned, a c id i f ic a t io n  o f the endocytic vesic le  resu lts  in 

d is s o c ia t io n  o f iron  from t r a n s fe r r in ,  leav ing  the iro n  fre e

apotransferr in in  the vesic le . Apotransferr in has a low a f f in ity  for

the transfe rrin  receptor at physiological pH. However, in the acid ic 

environment of the endocytic ves ic le , apotr ansferr in has very high 

a f f in ity  for the receptor. This has been shown in  hepatoma c e l ls  

(Dautry-Varsat et a l , 1983), in re ticu locy tes (Morgan, 1983b) and in 

erythroleukaemia c e lls  (Klausner et a l , 1983). After release of the 

iron  from the endocytic ves ic le , the vesic le  returns to the ce ll 

surface where i t  fuses with the c e ll membrane. In the process, the

contents of the vesic le  are exposed to physiological pH. At th is  pH,

the apotr ansferr in receptor d is so c ia te s  from the receptor and is  

ava ilab le for further iron transport.
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1 .3 .2 .  R e g u la t io n  o f  ir o n  uptake by e r y t h r o p o ie t ic  c e l l s

The rate of iron uptake by immature erythroid c e lls  is  affected by both 

ex trace llu la r and in tra ce llu la r  factors.

The major ex trace llu la r determinant of iron uptake is  the supply of 

transferrin-bound iron. The rate  of iron uptake by reticu locytes in 

v itro  increases as the concentration of transfe rrin -iron  is  ra ised, 

u n t i l  sa tu ra tion  o f the iron  uptake process occurs. At iron  

concentrations below the saturating leve l, the supply of iron to c e lls  

w i l l  be submaximal and cou ld be the ra te  l im it in g  fa c to r for 

haemoglobin synthesis (Morgan, 1981).

Ce llu la r factors a ffecting  the rate of iron uptake are the degree of 

maturation of c e lls  and the regulatory e ffects of in tra ce llu la r free 

haem. More mature c e lls  show slower rates of uptake of iron. This is 

probably re la ted  to the number of transferrin  receptors on the c e ll.  

With maturation of the erythroid precursors, there is  a decrease in the 

number of transfe rrin  receptors and thus a decrease in the capacity for 

iron uptake by the c e ll (van Bockxmeer and Morgan, 1979).

The concentration of free haem in re ticu locy tes may act as a regulator 

of iron  uptake. The addition of haem to reticu locytes stimulates 

globin synthesis (London et a l , 1964) but in h ib its  haem synthesis and 

iron  uptake by the re ticu locy te  (Ponka and Neuwirt, 1969; 1971).

Inh ib ition  of haem synthesis with ison ico tin ic  acid hydrazide resu lts

24



in  increased iron uptake by c e lls ,  while inh ib it ion  of globin synthesis 

reduces iron uptake by c e lls ,  probably as a re su lt  of the accumulation 

of free haem in the c e lls  (Ponka and Neuwirt, 1969; 1971). Haem does

not appear to in h ib it  transfe rrin  uptake by the c e l l ,  but probably acts 

by blocking iron d issociation  from transferrin  (Ponka et a l , 1974).

1.3.3. Erythrocyte ageing

Normal human erythrocytes survive in the c ircu la tion  for about 120 

days. Senescent and damaged erythrocytes are se lective ly  removed from 

the c ircu la t ion  by the reticu loendothe lia l system, in particu lar by 

macrophages in  the spleen and liv e r (Bennett and Kay, 1981). This 

se le c t iv ity  implies that the macrophage can recognize age or damage- 

dependent changes on the surface of the red c e l l .  While considerable 

data ex is t describing the mode of destruction of abnormal red c e lls ,  

re la t iv e ly  l i t t l e  is  known about red c e ll ageing and the mode of 

destruction of senescent red c e lls .  The major obstacle to solving th is 

problem has been the lack of su itable methods for separating young 

c e lls  from old c e lls  (Bunn, 1972). In sp ite of th is a variety of 

changes have been described in  the red c e l l  as i t  ages. Their 

s ign ificance , i f  any, in the fin a l destruction of the ce ll is  unknown.

The uniform ity of the lifespan of the erythrocyte suggests that it s  

destruction is  the re su lt  of age dependent factors. The essential 

steps of erythrocyte senescence occur in the cytosol (Bocci, 1981). In 

the anucleated e ry th rocy te , there is  a progressive dec lin e  of
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metabolism, as evidenced by a f a l l  of ATP concentration (Bunn, 1972). 

ATP depletion is  followed by a progressive increase of in tra ce llu la r 

calcium and i t  has been suggested that th is  increase in calcium may be 

the crucia l event triggering an irreve rs ib le  change in the cytoskeletal 

system of the erythrocyte and a profound red is tr ibu tion  of integral 

membrane proteins (Sheetz and Singer, 1977; Shotton et a l , 1978). The 

changes of the erythrocyte  membrane occurring as a re su lt of the 

cy toso lic  events mentioned may be detected by macrophages and may 

account for the removal of senescent red c e lls  from the c ircu la tion .

The formation of fragments or vesicles as the erythrocyte ages also 

leads to important changes of the erythrocyte membrane which may be 

responsible for removal of senescent red c e lls  from the c ircu la tion . 

Weed and Reed (1966) defined fragmentation as "loss from the ce ll of a 

piece of membrane which may or may not contain haemoglobin". The loss 

of portions of the red c e ll membrane during ageing is  associated with 

an a lte ra tion  of the lip id -p ro te in  ra t io  of the erythrocyte membrane 

and accounts fo r changes in the a c t iv it ie s  of membrane associated 

enzymes found in the erythrocyte (Kadlubowski and Agutter, 1977). Also 

th is  membrane loss may account for decreased membrane f lu id ity  and 

deformabi1ity  (Shiga et a l , 1979). Since the v ia b il ity  of the red ce ll 

in  the c ircu la t io n  is  dependent on it s  a b il it y  to withstand changes in 

it s  shape (Weed, 1970), the decreased membrane deformability consequent 

upon loss of portions of the erythrocyte membrane as i t  ages may be an 

explanation for red c e ll destruction with ageing. In addition, i t  

appears that older red c e lls  are smaller than younger ones and they
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have an increased density (Ganzoni et a l , 1971). This may be another 

reason why older red c e lls  are more r ig id  and less able to withstand 

changes in the ir shape.

I t  has been reported that older red c e lls  contain less s ia l ic  acid than 

do young red c e lls  (Aminoff et a l , 1980; Bocci, 1981). Red ce lls  

depleted o f s i a l i c  a c id  enzym atica lly  have been found to have a 

shortened survival (Durocher et a l , 1975). I t  was thus suggested that 

the decrease in s ia l ic  acid content of older red c e lls  may be a factor 

responsible for erythrocyte destruction. However th is  has been a 

c o n t r o v e r s ia l  is su e  w ith  d ivergen t re s u lt s  being obtained in  

experiments involving a r t i f i c ia l  desialyation of red c e lls .  The reason 

fo r th is  may be that senescence of red c e lls  induces changes more 

complex than those obtained by a r t i f i c ia l  desialyation of red c e lls  and 

the re fo re  the p h y s io lo g ica l meaning of those resu lts  is  doubtful 

(Bocci, 1981). The facts of the matter are that during ageing loss of 

carbohydrate with portions of the red c e ll membrane are occurring. 

Th is may r e s u lt  in  a decreased s i a l i c  a c id  co n ten t o f o ld e r 

e ry th ro c y te s ,  but the s u r fa ce -ch a rg e  d e n s ity  and hence the 

e le c tro p h o re t ic  m o b ility  o f the e ry th rocyte  remains unchanged 

throughout the whole lifespan of the erythrocyte (Luner et a l , 1977; 

Seaman et a l , 1977).

Though the loss of s ia l ic  acid residues from the membranes of mature 

red c e lls  may not a lte r the surface charge density of the c e l l ,  the 

cleavage o f these s ia l ic  acid residues may mediate the removal of
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senescent red c e lls  from the c ircu la tion  by another mechanism. I t  has 

been suggested  th a t  younger re d  c e l l s  exp ress  te rm ina l N- 

acetylneuraminic acid residues on the glycoproteins of their surface 

membranes, whereas older red c e lls  appear to lack such s ia l ic  acid 

residues on the ir glycoproteins (Alderman et a l , 1981). The loss of 

the terminal s ia ly l residues may reveal Ig-binding s ite s  on these 

desialyated glycoproteins. Antibodies, for example IgG, are directed 

against these binding s ite s  (Kay, 1975). The antibody-coated senescent 

red c e lls  are then opsonized and subjected to phagocytic removal by 

re ticu loendo the lia l macrophages. I t  may be tha t the an tibod ies 

accumulate on the red c e ll surface as the c e ll ages and that upon 

reaching a c r it ic a l concentration, the red c e ll may be su ff ic ie n t ly  

coated w ith  an tibod ies  to be recognised by the macrophage and be 

phagocytosed (Kay, 1975). In addition macrophages are well documented 

as e x h ib it in g  an a s ia lo g ly co p ro te in  recepto r on th e ir  surfaces 

(Hamilton et a l , 1984).

Advanced glycosylation endproducts (AGE) on erythrocyte c e ll surfaces 

have recently been shown to promote the clearance of aged erythrocytes 

(Vlassara et a l,  1987). The advanced glycosylation endproducts, formed 

as a re su lt  of the nonenzymatic reaction of glucose with amino groups 

of proteins (including haemoglobin), accumulate in ex trace llu la r and 

membrane proteins as a function of time and glucose concentration  

(Brownlee e t a l , 1984). A recently id en tified  membrane-associated 

macrophage receptor that recognizes proteins modified by th is  process 

of long term nonenzymatic AGE formation has been implicated in the
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preferentia l removal of senescent macromolecules (Vlassara et a l , 1984; 

1985) and may also mediate the endocytosis o f e ry th rocy tes w ith 

advanced glycosylation endproducts formed on the ir surface (Vlassara et 

a l,  1987).

The loss of membrane l ip id  during the lifespan of mature red c e lls  has 

also received attention as a possible cause for the destruction of 

senescent red c e lls .  Reticulocytes are r ich  in membrane lip id s  and 

th is  excess l ip id ,  present both in  in tra ce llu la r organelles and plasma 

membranes is  lo s t  during re ticu locy te  maturation (Shattil and Cooper, 

1972).

Recently a new technique has been developed in  an attempt to identify  

the basis for se lective elim ination of senescent red blood c e lls  by 

macrophages. Th is technique involves the use of IC-21 c e lls ,  an 

established line  of Simian v iru s  40-transformed mouse peritonea l 

macrophages (Walker et a l,  1984). These macrophages bind and ingest 

populations of homologous red c e lls  that are aged in vivo by seria l 

hyper transfusion. I t  is  hoped that by a lte ring  the aged red ce lls  in 

various ways, the IC-21 macrophage lin e , used with the in vivo aged 

erythrocytes, w ill a fford  a model system for iden tify ing  more precisely 

the mechanisms of macrophage mediated phagocytosis of senescent red 

c e lls  (Walker et a l , 1984).
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1.4 THE RETICULOENDOTHELIAL SYSTEM (RES)

1.4.1. Introduction

The RES is  made up of the scattered and h is to lo g ica lly  heterogeneous 

c e lls  in the body which have in common the property of phagocytosis. 

There are three main components of the RES. They are the reticulum 

c e lls  which produce re t ic u lin  fib re s , the phagocytic endothelial c e lls  

lin in g  the blood ca p illa r ie s  of the liv e r ,  splenic sinusoids, lymph 

nodes, bone marrow, adrenal and p itu ita ry  glands and the macrophages of 

tissues, also known as h is tio cy tes, and of blood, known as monocytes. 

After leaving the bone marrow, mononuclear phagocytes travel through 

the blood as monocytes before reaching those target tissues where they 

constitute the re s id e n t macrophage popu la tion . Resident t issu e  

macrophages or h is t io c y te s  e x is t  in  protean forms, including the 

hepatic kupffer c e l l ,  alveolar macrophage of the lung, giant ce ll of 

granulomas, dermal Langerhans c e l l ,  m icrog lia l c e ll of granulomas, 

peritonea l and p leu ra l macrophage and probably the os teoc la st 

(Abramson et a l , 1977; C line et a l , 1978). Although macrophages, 

endothelial c e lls  and fib rob lasts  are anatomically associated in the 

RES, these c e ll types are not developmentally re lated. Macrophages are 

derived from marrow haemopoietic progenitors, whereas endothelial c e lls  

and f ib ro b la s ts  are somatic c e l ls  derived from the entoderm and 

mesenchyme respective ly.
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The RES plays an important ro le  in the internal iron economy of the 

body. This function is  effected by the uptake and catabolism of effete 

and senescent red c e lls ,  the removal of iron from the haemoglobin and 

the return of th is  iron to the plasma where i t  is  bound by transferrin  

and transported to the bone marrow (Lynch et a l , 1974). In the bone 

marrow, the iron is  u t i l is e d  in haemoglobin synthesis. In addition to 

being the main source of iron entering the plasma, the RES is  also 

concerned with the storage of iron which is  not immediately required 

fo r the synthesis of m etabolically active compounds. Under normal 

circumstances, the reticu loendothe lia l c e lls  of the spleen, live r and 

bone marrow are those most concerned with iron metabolism.

The fo llow ing section w ill deal with 3 aspects of reticu loendothe lia l- 

iron in teractions, namely iron entry into re ticu loendothe lia l c e lls ,  

haemoglobin degradation and iron metabolism in  re t ic u lo e n d o th e lia l 

c e lls .

1.4.2. Iron entry into reticu loendothe lia l (RE) c e lls

The RES derives most of it s  iron d ire c tly  from catabolised haemoglobin. 

Two-thirds of th is  iron comes from red blood c e lls  sequestered by the 

RES at the end of the ir lifespan. The remainder is  derived from 

haem oglobin re le a s e d  as a r e s u lt  o f c e l lu la r  wastage during 

erythropoiesis and from non-haem iron that has been removed from viable 

erythrocytes (Cook et a l , 1970).
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Extrace llu la r haemoglobin present in plasma does not reach the RES. I t  

is  largely bound to haptoglobin and haemopexin and is  removed from the 

c irc u la t io n  by hepatocytes (see section 1.5.3.1.) or by the kidney 

(Noyes et a l , 1960). Small quantities of fe r r it in  w ithin erythrocytes 

transferred d ire c t ly  to RE c e lls  also provide source of iron for the 

RES (Deiss and Cartwright, 1970).

Another source o f iron  entering the RE ce ll is  transferrin  iron. 

Transferrin receptors have been found on human macrophages and i t  has 

been shown that transferrin  iron is  taken up by these c e lls .

1.4.2.1. Phagocytosis of aged, abnormal or damaged erythrocytes

Senescent, damaged and abnormal red blood c e lls  are se lective ly  removed 

from the c ircu la t io n  and catabolised by c e lls  of the RES, in particu lar 

by macrophages in the spleen, liv e r and to a lesser extent by c e lls  in 

the bone marrow (Bennett and Kay, 1981). The most commonly used method 

of the study of the s ite s  of phagocytosis of red c e lls  involves the 

infusion of damaged red c e lls ,  usually labe lled  with rad io iron . This 

is  followed either by surface counting or by d ir e c t  counting of 

extripated organs to iden tify  s ites  of concentration of the isotope 

(Deiss, 1983). Several modes of c e ll damage have been used, including 

ageing, heat damaging and chemical and immune injury to the c e ll.  As 

discussed previously, the actual a lterations in senescent red ce lls  

tha t determine the end of the ir lifespan have not yet been fu lly  

e lu c ida ted  (sec tion  1 .3 .3 .) .  While the phagocytic function  of
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mononuclear phagocytes is  genera lly  acknowledged, the mechanisms 

resposib le for the ingestion of aged erythrocytes remain a matter of 

debate.

Most of the phagocytosis of senescent red c e lls  occurs in the sinusoids 

of the liv e r and spleen which are large capacitance systems. Thus the 

slow passage of blood through these sinusoids, combined with the 

presence of large numbers o f phagocytes w ith extended d e n d r it ic  

processes provides favourable conditions for macrophages to recognise 

and phagocytose c e lls  (Kay, 1975).

The contact between the erythrocyte and the macrophage induces the 

subsequent events. A small area on the surface of the erythrocyte 

in i t ia l ly  attaches to the macrophage. This is  followed by sphering of 

the red c e ll and it s  envelopment by a hyaloplasmic v e il from the 

phagocyte (Lynch e t a l,  1974). A fte r the d is integration of the 

erythrocyte, the haemoglobin is  in i t ia l ly  located mainly in endocytic 

vacuoles known as phagosomes. These then merge with primary lysosomes 

which supply ly t ic  enzymes capable of degrading haemoglobin (Lynch et 

a l, 1974).

1.4.2.2. Transferrin receptor a c t iv ity  on macrophages

I n it ia l ly  i t  was believed that iron entered the RES exclusively by the 

phagocytosis of red c e lls  and the ir waste products. However, i t  became 

clear that RE c e lls  could also take up transferrin-bound iron in v itro .
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Macsween and coworkers (1969) were the f i r s t  to demonstrate that 

pulmonary and peritoneal macrophages and Kupffer c e l ls  a ss im ila ted  

transferrin-bound iron from a prepared medium. These findings are in 

keeping with subsequent observations of the p rog ress ive  uptake of 

transfe rrin  by cultured macrophages (Summers and Jacobs, 1976; Wyllie, 

1977; Sizemore and Bassett, 1984; Baynes et a l , 1987c).

Macrophages appear to be heterogeneous in  th e ir  expression o f 

transfe rrin  receptors. Human monocytes and resident and a c tiva ted  

macrophages have absent or diminished transferrin  receptor expression. 

Transferrin receptor expression appears to be enhanced on responsive 

macrophages and cultured macrophages (Ancfr*eesen et al 1983; Parmley et 

a l , 1983; Hamilton et a l , 1984). The resident tissue macrophage 

represents a quiescent c e ll in  that i t  does not respond to lymphokine 

or endotoxin by becoming cy to ly t ic  . A responsive macrophage is  one 

that becomes cy to ly t ic  when exposed to endotoxin after prior lymphokine 

stim ulation. An activated macrophage is  fu l ly  cy to ly t ic .

Until recently iron uptake by cultured macrophages has been assumed to 

be by receptor-mediated endocytosis. There was however l i t t l e  d irect 

evidence for th is . A recent study by Baynes and colleagues (1987c) 

confirmed the existence of d i f f e r ic  t ra n s fe r r in  recepto rs on the 

surface of cultured human blood monocytes and demonstrated the receptor 

mediated uptake of transfe rrin  iron by cultured macrophages. Th is 

uptake was shown to be by an endocytic pathway very sim ilar to that 

noted in erythroid precursors.
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The reason for the existence of such a pathway in RE c e lls  is  unclear, 

since these c e lls  acquire large amounts of iron from the haemoglobin of 

e ffe te  and senescent c e lls .  I t  may be that the interaction  between 

transfe rrin  iron and macrophages p lays a r o le  in  re g u la t in g  the 

d iffe ren tia t io n  and p ro life ra t ion  of resident macrophages (Andreesen et 

a l , 1983; Galbraith et a l , 1980; May et a l , 1985).

1.4.3. Haemoglobin degradation

Fo llow ing  phagocytosis and red  c e l l  ly s is ,  haemoglobin (Fe2+) is  

converted in to  methaemoglobin (Fe2+). After globin is  s p l it  from

methaemoglobin i t  is  hydrolysed to it s  constituent amino acids, which 

mix with the general amino acid pool (Ehrenreich and Cohn, 1968). Iron 

is  re leased from the haem (Fe2+) by the action of microsomal haem 

oxygenase (Tenhunen, 1972). Th is enzyme is  demonstratable in 

peritoneal macrophages, blood monocytes, Kupffer c e lls ,  macrophages of 

the bone marrow and lung, in  b ra in  g l ia l  c e l l s ,  as w ell as in  

hepatocytes and renal tubular ep ith e lia l c e lls .  A c t iv ity  of haem 

oxygenase is  highest in the spleen, followed by the bone marrow and 

then the liv e r (Tenhunen et a l , 1970). A c t iv ity  in a l l  these c e lls  may 

be induced by exposing them to haem compounds.

Microsomal haem oxygenase u t i l is e s  molecular oxygen and NADPH in it s  

degradation of haem. The NADPH is  generated through an NADPH dependent 

cytochrome c reductase (Elder, 1980). Haem oxygenase disrupts the 

alpha carbon bridge of the te trapyrro lic  haem molecule. For every
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m olecule o f haem thus degraded one molecule of bi liv e r din and one 

molecule of carbon monoxide re su lt. The bi l iv e r  din is  promptly 

converted to b iliru b in  by a second enzyme, b iliv e rd in  reductase, which 

is  present in  the so lu b le  f r a c t io n  of the same c e l ls  in  which 

b iliv e rd in  is  formed from haem (Tenhunen, 1972).

1.4.4. Iron metabolism in the RE ce ll

Once iron is  freed from haemoglobin, i t  may either return to the plasma 

or become incorporated in iron stores. The proportion fo llow ing each 

route is  influenced by various factors. The incorporation of iron into 

iron stores is  covered in  section 1.6. and the factors influencing iron 

release from c e lls  is  discussed in section 1.7.

In it ia l studies showed that after the release of iron from haem, part 

of the red c e ll iron processed by the RE ce ll is  rap id ly  returned to 

the plasma, and another portion exchanges with RE stores and is  slowly 

re u t il is e d  (Noyes et a l , 1960; L ipsch itz et a l , 1971c). This gave 

r is e  to the concept of the early release pool, also known as the "pre­

re lease” pool or the la b ile  iron pool, and a slow storage pool. The 

k in e t ic s  o f these pools were further characterized by F i l l e t  and 

coworkers (1974), who showed tha t in  dogs there was an i n i t i a l  

processing  period  w ith in  the RE c e l l  o f ra d io iro n  derived from 

labe lled , heat damaged red c e lls .  After th is  the rad io iron was either 

ra p id ly  retu rned  to the c ir c u la t io n  (t*/2 = 34 minutes) or was 

transferred to a slowly exchanging pool of storage iron w ithin the RE
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ce ll ( t i/2  release to plasma of 7 days). These pathways were of equal 

magnitude in the normal dog.

While the presence of an intermediate " la b ile  iron pool" had been 

postulated, i t  is  on ly re c e n t ly  tha t th is  pool has been better 

characterized. This la b ile  iron pool or low molecular weight iron pool 

as i t  is  now known is  dealt with in section 1.8.

The passage o f iro n  through the RE c e l l  can be summarized 

diagramatically (figure 1; May and W illiams, 1980). The input flux 

re fe rs  to iron  en te ring  the c e l l  as a r e s u lt  o f catabolism  of 

haemoglobin from e ffe te  or senescent red c e lls .  This iron enters the 

rap id ly  exchangeable iron pool which is  made up of low molecular weight 

and la b ile  protein- or polypeptide-bound iron. Most of the "chelatable 

iron" in ce ll cytoplasm is  derived from th is  rap id ly  exchangeable iron 

pool. The slowly exchangeable iron pool represents fe r r it in .  Iron may 

also be taken up by the c e ll from transfe rrin , or may be donated to 

transfe rrin .
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Figure 1. Schematic diagram of the passage of iron through the RE 

c e l l .
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1.5 HEPATOCYTE IRON UPTAKE

1.5.1. Introduction

V irtu a lly  a l l aspects of iron metabolism are represented in  the liv e r . 

The liv e r is  the p rinc ipa l organ of iron storage in fe r r it in  (Kondo et 

a l , 1988 ) .  I t  c o n t a in s  two m ajor c e l l  t y p e s ,  nam ely

v reticu loendothe lia l c e l ls ,  also known as Kupffer c e lls ,  and parenchymal 

c e l ls  or hepatocytes. The Kupffer c e l l ,  l ik e  other c e lls  of the 

reticu loendothe lia l system, is  capable of processing and re leasing iron 

acquired by phagocytosis of red blood c e lls ,  and is  a major s ite  for 

restoring iron from senescent erythrocytes to the c ircu la tion  (Kondo et 

a l,  1988).

The hepatic parenchymal c e ll is  second only to the erythroid bone 

marrow in it s  capacity for iron exchange w ith  plasma t ra n s fe r r in  

(Morgan and Baker, 1986). Hepatocytes take up transfe rrin  iron, haem- 

haemopexin iro n , haptoglobin-haem oglobin iron  and f e r r i t in  iron  

(Hershko et a l , 1972). Another transferrin  iron uptake pathway has 

been described which involves the interaction  of desialated transferrin  

with non-specific asia loprote in  receptors on hepatocyte surfaces (Young 

et a l,  1983; Dekker et a l , 1985; Tavassoli et a l , 1986; Rudolph and 

Regoeczi, 1988). Recently attention has focused on hepatic clearance 

of the small pool of low molecular weight iron complexes (Wright et a l , 

1988).
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The fo llow ing section w il l  deal with the various routes u t iliz e d  by 

hepatocytes in the ir acqu is ition  of iron.

1.5.2. Uptake of transferrin-bound and asialotransferrin-bound iron

Plasma transfe rrin  is  thought to be the most s ig n ific an t source of iron 

for the hepatocyte, with some 10-20% of plasma iron turnover in rats 

being directed at the hepatocyte (Page et a l , 1984). A number of 

mechanisms are responsible for hepatocyte iron uptake from transferrin . 

These include a combination of receptor mediated endocytosis, which is  

most e ffe c tive  at lower transfe rrin  concentrations, and non-saturable 

transfe rrin  binding which occurs mainly at higher concentrations of 

t r a n s fe r r in  (Page e t a l ,  1984; Trinder e t a l , 1986). Since 

transfe rrin  iron uptake by hepatocytes is  in h ib ite d  by the energy 

metabolism blocking agent cyanide (Thorstensen and Romslo, 1986), a 

large part of th is  uptake must involve energy dependent processes.

Recent work has indicated that when compared to erythroid precursors 

hepatocytes have much higher concen tra tions o f surface membrane 

ferro-reductase a c t iv ity . This observation may suggest that in the case 

of hepatocytes, after d ife r r ic  transferrin  has bound to the surface 

receptor, the iron may be liberated at the c e ll surface and reduced to 

the ferrous state whereafter transmembrane transport of th is  iron can 

occur (Thorstensen, 1988). After transferrin -iron  is  taken up by 

normal cu ltu red  hepatocytes, approx im ate ly  tw o - th ird s  o f the 

endocytosed iron accumulates in fe r r it in  (Trinder et a l , 1986).
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The mechanism whereby a s ia lo t r a n s fe r r in  d e liv e rs  i t s  iron  to 

hepatocytes is  complex and incom plete ly  understood. There is  

disagreement as to whether the asia l otransferr in is  taken into the 

hepatocyte via the conventional d i f e r r ic  t ra n s fe r r in  receptor or 

whether i t  enters the hepatocyte via an asia loprotein  receptor (Young 

et a l , 1983; Dekker et a l , 1985; Rudolph and Regoeczi, 1988). The 

hepatocyte appears to have an asia loprotein  receptor known as the 

asialoglycoprotein-binding le c t in  which seems to be concerned with the 

removal o f d e s ia la ted  p ro te in s  from the c ircu la tion  (Ashwell and 

Harford, 1982). Tavassoli and coworkers (1986) showed tha t hepatic 

endothelium possesses the a b il it y  to transport endocytosed transferrin  

from the vascular lumen to the hepatocyte side of the endothelium. In 

the process the transfe rrin  was desialated and was subsequently taken 

up by hepatic asia loprote in  receptors. Young and coworkers (1983) 

suggested tha t a s ia lo t r a n s fe r r in  can be endocytosed by suspended 

hepatocytes via either the transferrin  receptor or the asialoprotein 

receptor. They concluded that the net uptake of as ia lo transferrin  was 

the sum of both pathways. Another group of investigators (Dekker et 

a l , 1985) proposed that iron uptake from ra t  as ia lo transfe rrin  occurs 

via transfe rrin  receptors, and that when taken up by the asialoprotein 

receptor, the transfe rrin  is  recycled without unloading it s  iron. More 

re c e n t ly  i t  has been proposed tha t the a s ia lo p ro te in  receptor 

fa c i l it a te s  capture of the as ia lo transfe rrin  by the same binding sites 

that are normally ava ilab le  fo r t ra n s fe r r in  ra ther than tha t i t  

functions as an alternate pathway (Rudolph and Regoeczi, 1988).
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1 .5 .3 .  Uptake o f  n o n - tra n s fe r r in -b o u n d  ir o n

Under normal circumstances, non-transferrin-bound iron represents only 

a minor source of hepatocyte iron when compared with transferrin , but 

the quantitative s ign ificance  of th is  form of iron increases in various 

settings.

1.5.3.1. Haptoglobin and haemopexin

Haemoglobin in troduced  in to  the plasma fo llo w in g  in travascu la r 

haemolysis binds to haptoglobin, or to haemopexin i f  the haptoglobin 

binding capacity of the plasma is  exceeded as occurs when intravascular 

haemolysis increases greatly in haemolytic diseases and those disorders 

associated with high leve ls of in e ffe c tive  erythropoiesis (Morgan and 

Baker, 1986). Both haptoglobin-haem oglobin and haem-haemopexin 

complexes are taken up by hepatocytes (Hershko et a l , 1972). This 

uptake process appears to be by receptor mediated endocytosis, with the 

process showing several s im ila r it ie s  to that of transfe rrin -iron  uptake 

(Smith and Morgan, 1981). Within the hepatocyte, these complexes are 

catabolized and iron is  released from the porphyrin ring  of haem by 

haem oxygenase. The iron then enters an in tra ce llu la r  pool common to 

that derived from transferrin  and fe r r it in  (Morgan and Baker, 1986). 

Haem bound to albumin as methaemalbumin is  also taken up by hepatocytes 

but without binding of the albumin to the c e lls .  I t  is  l ik e ly  that the 

uptake mechanism involves transfer of the haem to haemopexin, which is
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then taken up by the hepatocyte in the usual fashion (Morgan and Baker,

1986).

1.5.3.2. Serum fe r r it in

As is  discussed in  section 1.6.3. small quantities of fe r r it in  are 

present in  plasma under normal conditions, and higher amounts are 

present in plasma when iron stores are increased. I t  has been shown 

that fe r r it in  introduced in to  the plasma is  rap id ly  cleared from the 

c ircu la t ion  by hepatocytes. This is  a receptor-mediated process (Mack 

et a l,  1983; Morgan and Baker, 1986) and probably involves endocytosis 

fo llow ed  by fu s ion  o f the endocytic v e s ic le s  with lysosomes and 

degradation of the protein (Unger and Hershko, 1984). Plasma fe r r it in  

w ith  a high iron  content, as occurs under cond itions of tissue 

necrosis, has to be considered as a potential source of iron uptake by 

the liv e r (Bacon and T a v ill,  1984). Also, in pathological conditions 

in which iron stores are elevated, plasma fe r r it in  probably represents 

an important source of hepatocyte iron and contributes to parenchymal 

iron overload (Morgan and Baker, 1986).

Recent experim en ts suggest th a t  in  ad d it io n  to i t s  ro le  in  

in tra ce llu la r iron storage, fe r r it in  may also serve as an intrahepatic 

carrie r of iron between Kupffer c e lls  and hepatocytes (Kondo et a l , 

1988; S ib i l le  et a l , 1988). The av id ity  with which hepatocytes take 

up fe r r it in  released from Kupffer c e lls  may explain the su scep tib ility  

of the liv e r to iron overload (S ib il le  et a l , 1988).
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In contrast to the conservation of transferrin  during it s  interaction 

with hepatocytes, the protein shell of the fe r r it in  molecule is  rap id ly  

degraded in to  tr ich lo ra ce t ic  acid-soluble fragments (S ib ille  et a l , 

1988).

1.5.3.3. Low molecular weight iron complexes

Although most of the iron in  plasma is  bound to transfe rrin , there is  

increasing evidence that low molecular weight iron complexes present in 

plasma are an important source of iron for the ra t live r (Brissot et 

a l , 1985; Wright et a l , 1986). The plasma concentration of th is  form 

of iron, which is  thought to consist of a mixture of iron complexes 

with ascorbate, carbonate, certa in  amino acids and to a lesser extent 

plasma p ro te in s  such as album in, is  extremely small in  normal 

ind iv idua ls . However much higher concentrations have been reported in 

iron overload when the sp ec ific  iron binding s ites  of transferrin  are 

saturated and iron added to the plasma cannot bind to transferrin  (see 

section 1 .2.3.3.).

Hepatic clearance of low molecular weight plasma iron complexes appears 

to be an extremely e f f ic ie n t  process, with 58-75% removed in a single 

pass through the liv e r  (Brissot et a l , 1985). Autoradiography has 

confirmed that most iron  removed in  th is  process is  c lea red  by 

parenchymal c e lls  (Brissot et a l,  1985).
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Unlike uptake of transferrin, hepatic uptake of these low molecular 

weight iron complexes is not reduced by iron loading (Wright et a l , 

1986). In addition, this transport mechanism appears to be carrier- 

mediated as evidenced by saturation, competitive inhib ition by other 

transition metal ions and temperature dependence. Iron uptake by this 

mechanism is  a lso strongly calcium dependent and is  re la t iv e ly  

insensitive to inhib itors of ce llu lar energy metabolism (Wright et a l , 

1986).

The very high effic iency of hepatic uptake of this form of iron far 

exceeds the rate of transport of physiologic ions in serum (Wright et 

a l, 1988). The basis for this high effic iency is largely unknown. 

Recent data has confirmed that hepatic uptake of these low molecular 

weight iron complexes is mediated by a membrane carrier in the rat 

liver and strongly suggests that uptake occurs by an electrogenic 

transport mechanism that is driven by the potential difference across 

the liver ce ll membrane (Wright et a l , 1988). Hepatic accumulation of 

other transition metal ions such as copper, zinc, and manganese may be 

driven by similar forces since there is evidence that these ions share 

a common carrier with iron (Brissot et a l , 1985; Weight et a l , 1986).
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1.6 STORAGE IRON

1.6.1. Introduction

Iron tha t is  not immediately needed to mediate one of it s  many 

b io log ica l functions in c e lls  and that is  present in excess quantities 

in  the ce ll is  diverted into iron stores. This surplus iron is  stored 

in one of two re la ted  forms, namely a soluble mobile fraction  known as 

fe r r it in ,  or as insoluble aggregates known as haemosiderin (Worwood, 

1982). The ro le  of fe r r it in  in d iffe ren t c e ll types includes both 

sp e c ia liz e d  fu n c tion s  and in t ra c e l 1 u la r housekeeping functions. 

Examples o f s p e c ia liz e d  fun c tion s  are the re c y c lin g  o f iron  in  

macrophages and short and long term iron storage as in red c e lls  of

embryos or hepatocytes of adults. In trace llu la r housekeeping functions
(

in c lude  p rov id ing  a reserve of iron for cytochromes, nitrogenase, 

ribonucleotide reductase, and for detox ifica tion  of excess iron that 

may enter the c e ll (The il, 1987). Recently i t  has been suggested that 

fe r r it in  may serve as an intrahepatic carrier of iron between Kupffer 

c e l ls  and hepatocytes (Kondo et a l , 1988: S ib i l le  et a l , 1988).

Although the iron in haemosiderin is  not as immediately accessible to 

the ce ll as is  the iron from fe r r it in ,  i t  is  read ily  mobilisable in the 

face of increased body needs (Bothwell et a l , 1979; Halliday and

Powell, 1984). Iron stored as fe r r it in  in  the parenchymal c e lls  of the 

liv e r accounts for approximately a th ird  of the tota l storage iron 

(Powell and Halliday, 1982). The remainder of the body's reserve iron 

is  stored as haemosiderin w ithin the c e lls  of the reticu loendothe lia l
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system in the l iv e r ,  spleen, bone marrow and skeletal muscle (Bothwell 

et a l , 1979; Powell and Halliday, 1982).

1.6.2. F e r r it in

1.6.2.1. Structure

The f e r r i t i n  m olecule comprises a g lobu la r prote in  shell ca lled 

apo fe rr it in , with a central cav ity  w ith in  which iron  accumulates 

(H a rr is o n ,1980). A p o fe r r it in  is  a co lo u r le ss  molecule, whereas 

fe r r it in  has a deep red-brown colour when i t  carries a fu l l  compliment 

of iron (Bothwell et a l , 1979; Worwood, 1980). Apo ferritin  has a 

molecular weight of between 450-480000 dal ton, is  water soluble and 

re la t iv e ly  heat stable (Harrison et a l , 1980). I t  is  composed of 24 

polypeptides or subunits arranged in  a symmetrical fashion to form the 

ho llow , almost sphe rica l shell (Harrison, 1980). Hydrophobic and 

hydrophilic channels ex is t between the subunits. Small m olecules, 

in c lu d in g  iron  and sucrose enter in to  the central cavity of the 

molecule through these channels (Crichton and Charloteaux-Wauters,

1987). Up to 4500 iron atoms can be included in  the core along with 

variable amounts of phosphate (Mann et a l , 1986).

F e r r i t in  is  not a homogeneous protein, but consists of up to 20 

is o fe r r it in s  (Bomford and Munro, 1980). The evidence for th is  has been 

the find ing that fe r r it in  from d iffe ren t organs isofocuses over a pH 

range of 4.8 to 5.8 and gives several bands of is o fe r r it in s  (Drysdale

47



e t a l , 1977 ; A ro s io  e t a l , 1978). On sodium sulphate or 

polyacrylamide gel e le c tro p h o re s is , two major subunit bands are 

evident. I t  is  variations in the proportions of these two subunits, 

which d iffe r  in s ize , amino acid com position, surface charge and 

im m unoreactivity tha t g ive r i s e  to the heterogeneity of fe r r it in  

(Drysdale, 1977). The two subunits are designated H and L respectively 

and have molecular weights of 21000 and 19000 (Arosio et a l , 1978). 

The range of is o fe r r it in s  found varies from tissue to tissue (Worwood, 

1980). Iso fe rr it in s  from the heart, lymphocytes and red blood ce lls  

consist mainly of H subunits and are re la t iv e ly  ac id ic  in nature, while 

is o fe r r it in s  from the liv e r ,  spleen and placenta consist mainly of L 

subunits and are more basic (Worwood, 1986). The ac id ic  H subunits 

appear to contain a higher proportion of iron r ich  molecules (Treffrey 

et a l , 1984). The H and L subunits are synthesized as independent

polypeptide chains (Watanabe and Drysdale, 1981). While i t  has been

discovered that the H and L subunits are coded fo r by genes on 

chromosomes 11 and 19 respective ly (Worwood et a l,  1985), H and L 

sequences have also been found on other chromosomes (Cragg et a l , 1985; 

M cg ill et a l , 1987).

1.6.2.2. Synthesis

The stim uli for fe r r it in  synthesis are decreasing leve ls of fe r r it in  in 

the c e ll and excess iron that enters the c e ll (Finch et a l , 1986). For

fe r r it in  to f u l f i l  i t s  ro le  of storing excess iron, there must be a

mechanism whereby the excess iron can be rap id ly  incorporated into
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fe r r it in  so as to protect the c e ll from tox ic leve ls of iron. While 

some of the iron is  incorporated into pre-existing apo fe rrit in , the 

high leve ls of in tra ce llu la r iron induce fe r r it in  synthesis in a unique 

fashion (Bomford and Munro, 1980).

There ex ists a cytoplasmic store of fe r r it in  L and H subunit mRNA. In 

response to increased in tra ce llu la r leve ls of chelatable iron, there is  

movement o f t h is  f e r r i t i n  mRNA from r ib o n u c le o p ro te in s  to 

polyribosomes, with resu lt ing  increased fe r r it in  mRNA translation  (Aziz 

and Munro, 1986; Hentze et a l , 1987; Rogers and Munro, 1987; Casey 

et a l , 1988; Dickey et a l , 1988; Leibold and Munro, 1988). Recent 

s tud ies  have shown tha t the tra n s la t io n a l regulation of fe r r it in  

synthesis in storage c e lls  is  achieved by the interaction  of iron with 

a so lu b le  p ro te in  mediator that is  attached to the fe r r it in  mRNA 

(Leibold and Munro, 1988). The area to which the protein mediator is  

attached is  c a lle d  the iron  responsive element. I t  is  a highly 

conserved stem loop structure on the 5 '-untranslated region of the 

fe r r it in  mRNA and as a re su lt  of the attachment of iron to the protein 

mediator, the mediator is  removed from the iron responsive element 

(Hentze et a l,  1987; Aziz and Munro, 1987). The unmasked region that 

resu lts  then in teracts with a high a f f in ity  s ite  on the polyribosome 

and translation  of the mRNA occurs. Recent evidence would seem to 

ind icate that enhanced transcrip tion  may also play a minor ro le  in the 

indu ction  o f f e r r i t in  subunit synthesis by iron (White and Munro,

1988).
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However, because fe r r it in  functions both as a housekeeping protein 

(iron stored for in tra ce llu la r use) and a spec ia lized -ce ll p ro te in  

( iron  stored  for use by other c e lls ) ,  mechanisms of regulation of 

fe r r it in  synthesis may vary depending on the c e ll type (The il, 1987). 

In contrast to storage c e lls  which contain abundant fe r r it in  mRNA that 

iron re c ru its  for transla tion , in non-specialized c e l ls  which only 

require fe r r it in  for metabolic needs, the concentration of fe r r it in  

mRNA is  low and increased in tra ce llu la r  iron induces a change in the 

mRNA concen tra tion  by enhancing transcrip tion  or by a lte ring  mRNA 

s ta b il ity  (Cairo et a l , 1985; Dickey et a l , 1987).

1.6.2.3. Iron incorporation and release

The exact mechanism whereby iron is  incorporated in to  and released from 

a p o fe r r it in  in  vivo has not been elucidated (Hal 1 iday and Powell, 

1984). Iron is  taken up in to  the a p o fe r r it in  sh e ll through i t s  

structural channels (Harrison et a l, 1980). In v itro  studies have 

shown that th is  iron is  in  the ferrous form and tha t i t  is  then 

oxidized to fe r r ic  iron (Bothwell et a l , 1979). The apo fe rritin  shell 

catalyses th is  reaction  in  which molecular oxygen functions as the 

electron acceptor (Bomford and Munro, 1980). Following hydrolysis the 

iron is  deposited in the in te r io r of the apo fe rrit in  shell in the form 

of inorganic hydrated fe r r ic  oxide phosphate m icelles (Harrison et a l , 

1980). These m icelles form a nucleation centre upon which further 

m icellar growth takes place, the amount of iron taken up by fe r r it in  

being determined by the ava ila b le  surface area o f the iron  core
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(Harrison et a l,  1980). This has been confirmed by k ine tic  studies 

which have shown th a t iro n  uptake by a p o f e r r i t in  in c re a se s  

progressively un til a 25% saturation level is  approached after which 

time iron uptake decreases (Harrison et a l , 1980).

Iron contained in  fe r r it in  is  read ily  availab le for use in functional 

iron compounds when required (Bothwell et a l , 1979). Iron release from 

the iron core occurs such that the iron atoms are stripped o ff the iron 

core layer by layer, with the iron atoms on the outermost layer being 

the most ava ilab le for release (Harrison et a l,  1980). Studies where 

rad io iron  incorporated onto fe r r it in  la s t  is  the f i r s t  to be released 

have confirmed th is  " la s t- in - f irs t-o u t"  concept of iron mobilization 

from fe r r it in  (Hoy et a l , 1974).

Iron release from fe r r it in  may occur by reduction of fe r r ic  iron to 

ferrous iron in  the presence of the appropriate chelator, or i t  may 

occur by d irect chelation of fe r r ic  iron (Crichton and Charloteaux- 

Wauters, 1987). In v itro  studies have shown that fe r r it in  iron release 

by reduction of fe r r ic  iron to the ferrous forms occurs more rap id ly  

than does the d ir e c t  ch e la t io n  o f f e r r i c  iro n  (C r ich to n  and 

Charloteaux-W auters, 1987). Reduced fla v in  nucleotides have been 

implicated as the chelators which may mediate the fe r r ic - fe r ro u s  

reduction of iron (Harrison et a l , 1980). I t  is  thought that the 

reduced fla v in s , with the ir small diameters of 1.3 nm, are capable of 

traversing the channels of the apo fe rrit in  shell and reacting with the 

iron contained w ithin the c ry s ta llin e  la t t ic e  (Hoy et a l , 1974).
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However doubt has been cast on the ro le  played by reduced flav ins in 

iron  re le a se  from f e r r i t i n  by the f in d in g  th a t  in  v iv o  the 

in tra ce llu la r  concentration of free flav in s  is  very low (Crichton and 

Charloteaux-Wauters, 1987).

1.6.2.4. F e r r it in  catabolism; haemosiderin

Apo ferritin  has a f in it e  lifespan and must constan tly  be renewed 

(Bothwell et a l , 1979). When laden with iron, the protein has a ha lf 

l i f e  of only a few days. Studies u t i l iz in g  ra t liv e r apo fe rrit in  have 

shown a h a lf l i f e  of 50-75 hours for th is  fe r r it in  (Drysdale and Munro, 

1966).

T issue f e r r i t i n  appears to be taken up and degraded by the live r 

(Siimes and Dallman, 1974; Unger and Hershko, 1974), probably by a 

process of receptor mediated endocytosis (Mack et a l, 1983; Morgan and 

Baker, 1986). The fe r r it in  is  degraded by lysosomes, either to it s  

c o n s t itu t iv e  amino acids or to form haemosiderin (Bothwell et a l , 

1979). Thus haemosiderin appears to be the degradation product of 

fe r r it in .  I t  is  formed w ith in secondary lysosomes by the protease 

induced decomposition of the fe r r it in  molecule (R ichter, 1984). Within 

the lysosomes, the so lu b iliz in g  protein coat of fe r r it in  is  degraded, 

resu lting  in the water insolub le aggregates of hydrated iron oxide and 

organic constituents that make up haemosiderin (Bothwell et a l,  1979; 

Harrison et a l , 1980). Recently i t  has been shown that ascorbate can
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delay the t ra n s it io n  o f f e r r i t i n  in to  haemosiderin (Bridges and 

Hoffman, 1986).

The r a t io  o f f e r r i t i n  to haemosiderin in  storage organs varies 

according to the amount of iron present. At lower concentrations, 

fe r r it in  predominates but at higher concentrations most iron is  found 

as haemosiderin (Shoden et a l , 1958). Haemosiderin deposits are used 

as a h is to log ic  means of assessing the size of the body iron stores.

1.6.3. Serum fe r r it in

I t  was not surprising to find  fe r r it in  present in the c ircu la tion  in 

s ituations of damage to organs containing large amounts of fe r r it in ,  

for example hepatic necrosis (Bothwell et a l , 1979; Worwood, 1986). 

The development of sen s itive  immunological techniques to measure 

fe r r it in  brought with them the find ing of fe r r it in  in  the c ircu la tion  

of normal healthy ind iv idua ls (Addison et a l,  1972; Worwood, 1986). 

This serum fe r r it in  has been shown to be d iffe ren t from tissue fe r r it in  

in a number of ways.

Serum f e r r i t i n  has a very low iron  content. Immunologically i t  

resembles liv e r or spleen fe r r it in  and is  r ic h  in  L subunits (Worwood, 

1986). I t  has been found that a high proportion of fe r r it in  in  normal 

serum binds to concanavalin A, a le c t in  which forms complexes with 

polysaccharides and glycoproteins (Worwood et a l,  1979). This finding 

suggests that the range of is o fe r r it in s  of serum fe r r it in  is  the re su lt
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of g lycosylation of fe r r it in  and isnot due to variable proportions of H 

and L subunits, as is  the case for tissue fe r r it in  (Worwood, 1986). 

Another point of d ifference between serum fe r r it in  and tissue fe r r it in  

is  the ir rate of clearance from the c ircu la t ion , with serum fe r r it in  

being c lea red  from the c ir c u la t io n  at a slower rate than tissue 

fe r r it in  (Worwood, 1982). This d ifference too may re su lt  from the fact 

that serum fe r r it in  is  glycosylated.

The orig in  of serum fe r r it in  is  not c le a r .  While a l l  body c e l ls  

probably secrete fe r r it in ,  the liv e r and RES appear to be the main 

source of serum fe r r it in  production (Mack et a l , 1981). The orig in  of 

serum fe r r i t in  and the is o fe r r it in s  present in serum also d iffe r in 

d iffe ren t states of health. In normal ind iv idua ls much of the serum 

fe r r it in  is  glycosylated and th is  suggests secretion of fe r r it in  is  

possib ly from phagocytic c e lls  degrading haemoglobin (Worwood, 1986). 

A re ticu loendothe lia l c e ll o r ig in  is  supported by experiments performed 

in ra ts in which the entry of fe r r it in  into the plasma was followed 

with rad io iron  (Siimes and Dallman, 1974). However, in conditions of 

tissue damage another mechanism becomes important, that of the d irect 

release of ce llu la r  fe r r it in  through damaged ce ll membranes (Prieto et 

a l , 1975). Supporting th is  is  the f in d in g  in  p a t ie n ts  w ith  

fe r r it in a e m ia  due to liv e r necrosis, of very l i t t l e  of the plasma 

fe r r it in  binding to concanavalin A (Worwood et a l , 1979).
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Serum fe r r it in  appears to be cleared exclusively by hepatic parenchymal 

c e lls .  This occurs by a sp ec ific  receptor mediated process (Mack et a l , 

1983; Morgan and Baker, 1986).

Under normal circumstances the amount of fe r r it in  secreted into the 

c ircu la t io n  is  thought to be representative of the amount of fe r r it in  

synthesized in  the major iron storage s ites  of the body, namely the RES 

and the live r (Finch et a l , 1986). This close re la tionsh ip  between 

serum fe r r it in  leve ls and the amount of storage iron in the body is 

used c l in ic a l ly  in that, taken in conjunction with other parameters, 

measurement of serum fe r r it in  allows for d iscrim ination between simple 

iron depletion, iron de fic ien t e ry th ropo ies is  and iron  d e fic ien cy  

anaemia (Bothwell et a l,  1979). Also, i t  provides a non-invasive and 

moderately accurate way of assessing the tota l amount of iron stored in 

the body (Worwood, 1980).

The c h ie f  r e s t r ic t io n  to the c l in ic a l use of the plasma fe r r it in  

concentration for assessing iron nutrition  is  the fa c t  tha t i t  is  

influenced by other factors. Concentrations higher than ju s t if ie d  by 

the amount of stored iron are found in  acute and chronic in fections 

(Baynes et a l,  1986a; 1986b), inflammation (Baynes et a l, 1986a;

Baynes et a l , 1987a), neoplastic conditions (Bezwoda et a l , 1985; 

Worwood, 1986), heavy alcohol ingestion (Meyer et a l, 1984), liv e r 

disease (Worwood, 1986) and after unusually heavy exercise (Taylor et 

a l , 1987). A ra ised serum fe r r it in  concentration is  thus a re la t iv e ly  

non-specific find ing in c l in ic a l s itua tions. However, a low plasma
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f e r r it in  concentration of less than 12 ug/1 can only be due to iron 

deficiency.

1.6.4. The fe r r it in  receptor

The fe r r it in  receptor has been described in  guinea pig reticu locytes 

(Pollack and Campana, 1981; B ligh t and Morgan, 1983), ra t  hepatocytes 

(Mack et a l , 1983) and human placental c e lls  (Takami et a l, 1986). 

However it s  precise physiological ro le  remains unclear. I t  has been 

suggested that the fe r r it in  receptor may transfer iron from fe r r it in  to 

haem in the mitochondria (U lv ik, 1982).

Most re ce n t ly  i t  has been suggested that the fe r r it in  receptor on 

hepatocytes may serve to take up fe r r it in  released from Kupffer ce lls  

(Kondo et a l , 1988; S ib i l le  et a l,  1988). In th is  setting fe r r it in  

may function as an intrahepatic ca rrie r of iron between Kupffer ce lls  

and hepatocytes. I t  can also be seen that the fe r r it in  receptor on the 

hepatocyte, by binding fe r r it in  released by the Kupffer c e l l ,  may 

account for the resistance of the liv e r  to iron deficiency, as well as 

the su scep t ib ility  of the live r to iron overload (S ib il le  et a l , 1988).

1.6.5. Red ce ll fe r r it in

While erythrocytes contain both H and L is o fe r r it in s ,  the fe r r it in  

w ithin erythrocytes has been found to be approximately ten times more 

re a c t iv e  w ith  antibody to heart fe r r it in  than to spleen fe r r it in
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(Peters et a l , 1983). The two is o fe r r it in s  appear to have d iffe rent 

metabolic functions w ithin erythroid c e lls .  The ac id ic  H is o fe r r it in  

appears to be an intermediate in the transfer of iron from the plasma 

membrane to the mitochondria for incorporation into haem (Cazzola et 

a l , 1983). The basic L is o fe r r it in  w ithin the erythrocyte acts as an 

in tra ce llu la r depot of iron which is  in excess of that required for 

haem synthesis. I t  also re f le c ts  changes occurring in tissues in iron 

deficiency and iron overload (Cazzola et a l , 1983; Peters et a l,  

1983).

1.7 IRON RELEASE FROM RETICULOENDOTHELIAL (RE) CELLS AND HEPATOCYTES

1.7.1. Introduction

Under normal circumstances, the amount of iron transferred from plasma 

to c e lls  each day is  balanced by an equal amount returning in the 

opposite d irection  (Morgan, 1981). Compared to what is  known about 

iron uptake by c e lls ,  re la t iv e ly  l i t t l e  is  understood about the events 

and mechanisms o f iron  re lease from c e lls ,  and about the factors 

in fluencing th is  iron re lease.

The major source  o f iro n  r e tu r n in g  to  the plasma is  the 

reticu loendothe lia l system (Morgan, 1981). Thus much of the research 

into iron release from c e lls  has been performed using the RE c e ll.  The
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l i v e r  and g a s tro in te s t in a l mucosal c e l ls  make a sm aller but

s ig n if ic a n t  co n tr ib u t io n  to plasma iron  (Morgan, 1981). This 

d iscuss ion  w i l l  concentrate on iron  re le a se  from RE c e l ls  and 

hepatocytes to transfe rrin .

1.7.2. Iron release to apotransferrin

After donation of it s  iron to c e lls  by a process of receptor mediated 

endocytosis, transfe rrin  is  released as apotransferrin from the c e lls  

to which i t  has donated it s  iron (Morgan, 1981; Huebers and Finch, 

1987). Apotransferrin is  then availab le to bind iron and be involved 

in many more plasma to c e ll cycles, as is  indicated by it s  long plasma 

ha lf l i f e  of 7-10 days (Katz, 1961). Transferrin iron is  p rin c ip a lly  

directed to red c e ll precursors in the bone marrow. Iron released from 

RE c e lls  in vivo is  bound randomly by any availab le vacant transferrin  

iron-binding s ite , both on monoferric transferrin  and apotransferrin 

(Groen et a l , 1982). Iron released from iso lated  ra t  hepatocytes also 

binds randomly to any empty iron-binding s ites  on transferrin  (Young, 

1982). Since d ife r r ic  transfe rrin  is  a better iron donor in v itro  than 

monoferric transferrin  (Huebers et a l , 1983a), i t  is  l ik e ly  that in 

vivo, transferrin  must acquire 2 atoms of iron before i t  becomes an 

e ffe ctive  iron donor (Young and Bomford, 1984).

Much debate ex ists as to whether apotransferrin binds iron at the ce ll 

membrane or ex tra ce llu la r ly  at a s ite  d is ta l to the c e ll membrane. 

C lin ic a l observations are in favour of an active mechanism regulating
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iron release from c e lls ,  since iron is  released from RE c e lls  and ce lls  

of the gastro in testina l tra c t in proportion to body needs. However 

iron is  retained in RE c e lls  and gut mucosal c e lls  in the anaemia of 

chronic disorders despite a low plasma iron and transferrin  saturation 

(Roeser, 1980; Lee, 1983). In contrast, proportionately small amounts 

of iron are held up in the RE c e lls  and gut mucosal c e lls  re la t iv e  to 

the s tr ik in g  overload of parenchymal c e lls  and plasma transferrin  in 

id io p a th ic  haemochromatosis (B rin k  e t a l , 1976). These two 

disturbances of ce llu la r  iron handling appear to suggest that iron 

release or retention is  an active process since in both of them iron is  

re ta in ed  or re leased  from c e l ls  despite s ig n ific an t concentration 

gradients.

The mechanism of iron release from the liv e r was investigated using the 

iso lated perfused ra t  liv e r and ra t  hepatocyte suspensions (Baker et 

a l , 1977). I t  was found that the addition of apotransferrin to a 

transfe rrin -free  medium produced an increase  in  the ra te  of iron  

release from both types of preparations. However, other iron chelators 

such as c itra te  and desferrioxamine were also shown to be e ffective  as 

m obilizers of ce llu la r  iron. This suggested that transferrin  may be 

function ing  in  a n o n -sp e c if ic  way by p rov id ing  an iron -b ind ing  

component in the ex trace llu la r f lu id  which can bind iron after it s  

release from the c e l l .  A lte rna tive ly , the c itra te  and desferr ioxamine 

may aid iron release by a d iffe ren t mechanism than that of transferrin  

(see section 1.9.).
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In favour of apotransferrin acting as a passive acceptor of iron, was 

the find ing of no spec ific  receptors for apotransferrin on hepatocytes 

(Young and Aisen, 1981), a conclusion also reached by others using the 

in tac t perfused ra t liv e r (Baker et a l , 1980). However, s p e c if ic  

a p o tra n s fe r r in  recep to rs  have been id e n t i f ie d  on cu ltu red  r a t  

peritoneal macrophages (Nishisato and Aisen, 1982; Saito et a l , 1986). 

Iron b-inding to these recep to rs  was not in fluen ced  by d ife r r ic  

transfe rrin  but was displaced by cold apotransferrin (Nishisato and 

Aisen, 1982). In addition i t  has been reported that the incubation of 

iron loaded macrophages in  media containing apotransferrin resulted in 

the progressive saturation of the apotransferrin with iron (Saito et 

a l , 1986). The im plication of these studies was that apotransferrin 

receptors existed to which apotransferrin bound in  it s  acquis ition  of 

iron from c e lls .  In these studies, macrophages were found to release 

considerable amounts of iron as fe r r it in ,  ra is in g  the question as to 

whether the resu lts  obtained were consequent upon leakage occurring 

from the c e lls  as a re su lt  of their decreased v ia b il ity .  Indeed a 

recent study fa i le d  to  id e n t ify  the presence of apo tran s fe rr in  

receptors at physiological pH of 7.4 on cultured human blood monocytes 

(Baynes et a l , 1987b). In th is  study i t  appeared that the small amount 

o f  a p o t r a n s fe r r in  b in d in g  tha t d id  occur re su lte d  from iron  

contamination. I t  is  possible that the discrepancy between these 

find ings and the previous findings of apotransferrin receptors on ra t 

peritoneal macrophages may be due in  part to minor degrees of iron 

contamination in  the la tte r studies.
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On current evidence i t  seems un like ly  that apotransferrin receptors are 

required in the normal transport of iron from RE c e lls  to plasma. Were 

apotransferrin receptors to be of physiological s ign ificance , i t  might 

be antic ipated that they would be present on RE c e lls  in large numbers, 

since RE c e lls  deliver as much iron da ily  into the plasma as is  removed 

by erythroid precursors (Baynes et a l , 1987b).

1.7.3. The e ffe c t of a saturated transferrin

Since transfe rrin  is  the major iron binding protein in the plasma, 

studies have been performed whereby the saturation of transferrin  has 

been a ltered in  an attempt to further elucidate factors a ffecting  iron 

release from c e lls .  These studies have also attempted to determine the 

ro le  played by transfe rrin  in iron release from c e lls .  Such studies in 

the past have u t il iz e d  the parenteral in fusion of elemental iron to 

saturate transferrin  and thus block transferrin  binding s ite s  and iron 

release. The re su lts  of these studies have not been in agreement with 

one another. In one study, iron as iro n -n it r ilo t r ia c e t ic  acid was 

administered to ra ts  in amounts which exceeded the availab le binding 

s ites  of transfe rrin  (L ipsch itz et a l , 1971c). This resulted in marked 

hyperferraem ia and d im in ished re le a se  by RE c e l ls  of iron from 

subsequently infused damaged red c e lls .  Studies in dogs found that 

there was l i t t l e  d ifference in the pattern of iron release from RE 

c e lls  after heat damaged erythrocytes were injected into control dogs 

and dogs in which the plasma transferrin  was saturated by in jecting  

fe r r ic  ammonium c itra te  ( F i l le t  et a l , 1974). In a th ir d  study,

61



fe rrous ammonium sulphate was infused into ra ts  to saturate plasma 

transferrin  and in that study the in a b il ity  of RE c e lls  and hepatocytes 

to re le a se  iron  in  the tra n s fe r r in -s a tu ra te d  animal was again 

demonstrated (Bergamaschi et a l , 1986).

In addition to discordant resu lts  being obtained, another problem of 

these studies has been the ir use of infused elemental iron to saturate 

transfe rrin . This method of saturating transferrin  is  unphysiological 

and may re su lt  in super saturation o f t ra n s fe r r in  w ith consequent 

c ircu la t in g  free iron present in the plasma. Thus the resu lts  of these 

studies must be viewed with suspicion.

One aspect o f the experimental work of th is  thesis is  aimed at 

saturating transfe rrin  in  a more physiological fashion and evaluating 

the re g u la t io n  o f RE and hepatic parenchymal iron release in the 

presence of a physio log ica lly  saturated transfe rrin .

1.7.4. The ro le  of caeruloplasmin and ascorbic acid

Release of iron from c e lls  may also be dependent upon the a v a ila b ility  

of caeruloplasmin. When the liv e rs  from copper-deficient baby pigs or 

adult dogs were perfused with serum free solutions containing human 

apotransferrin, l i t t l e  or no iron was released to the protein. However 

incorporation of caeruloplasmin in to  the perfusing medium resulted in a 

ra p id  e ff lu x  of iron from the liv e rs , the iron appearing bound to 

transferrin  (Osaki et a l , 1971). Although the deleterious effects of
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copper deficiency on iron metabolism and the capacity of caeruloplasmin 

to correct these e ffects have long been appreciated, the mechanism by 

which caeruloplasmin acts remains controversial (Williams et a l , 1974). 

I t  may be that iron release from c e lls  depends on it s  oxidation from 

the fe rrous to the f e r r ic  form, the ox ida tion  s ta te  bound by 

transfe rrin , and that th is  change is  dependent upon the ferroxidase 

a c t iv ity  of caeruloplasmin (Frieden and Osaki, 1974).

Ascorbic acid also appears necessary for the release of iron  from 

c e lls ,  possibly by maintaining iron in  i t s  appropriate oxidation state 

to be bound by transfe rrin . Ascorbate deficiency exerts a marked 

e ffe c t on the metabolism and storage of iron, as evidenced by c lin ic a l 

studies in  scorbutic Black patients (Bothwell et a l , 1964), as well as 

in  guinea pigs (Banerjee and Chakrabarty, 1965; L ipsch itz et a l,

1971a). These studies showed that scurvy resu lted in a block in  RE 

iron release associated with a s h if t  of iron stores from fe r r it in  to 

haemosiderin and a reduction in serum iron leve ls . Ascorbate treatment 

in  scorbutic patients resulted in a dramatic increase in serum iron 

concentration (Bothwell et a l , 1964) followed by an increase in serum 

fe r r it in  leve ls (Cohen et a l, 1981; Chapman et a l,  1982). Other 

studies i l lu s t r a t in g  the r o le  tha t a sco rb ic  a c id  p lays in  iron  

metabolism showed that while the plasma iron concentration is  elevated 

in Black South Africans with dietary s iderosis, such patients that had 

coexistent ascorbic acid deficiency were found to have normal or even 

low plasma iron concentrations. Hyperferraemia occurred promptly 

fo llow ing administration of ascorbic acid to these patients (Wapnick et
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a l , 1970). The ascorbate deficiency in iron overload resu lts  from it s  

accelerated oxidative catabolism (Lynch et a l , 1967).

Recent in v itro  studies in K562 c e lls  have shown that ascorbate delays 

the trans ition  of f e r r i t i n  iron  in to  the in s o lu b le  haemosiderin 

compartment, and provided evidence that th is  delay is  associated with 

expansion of the chelatable low molecular weight in tra ce llu la r iron 

pool (Bridges and Hoffman, 1986).

1.8 THE LOW MOLECULAR WEIGHT (LMW) INTRACELLULAR IRON POOL

1.8.1. Introduction

There is  a considerable amount of information availab le on the ce llu la r 

acqu is ition  of iron, the release of iron from it s  transport protein 

transfe rrin , and i t s  incorporation into it s  f in a l biochemical form. 

However the pathway that iron actua lly  fo llows after it s  release from 

transfe rrin  and prior to it s  reaching it s  target in the ce ll is  not 

well understood. I t  appears tha t iron  passes through a la b i le ,  

in tra ce llu la r  iron pool at least p a rt ia lly  comprised of low molecular 

weight complexes, and that th is  pool can be tapped by extrace llu lar 

complexing agents. The concept of an in tra ce llu la r pool of LMW iron 

ligands is  appealing as i t  serves to ra t io na lize  in tra ce llu la r iron 

exchange (Jacobs, 1977). However d irect evidence for th is  pool has 

un til recently  been largely speculative.
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1.8.2. Characterization

In d ire c t evidence for a highly chela table form of iron which is  a 

normal metabolic intermediate in reticu loendothe lia l c e lls  was provided 

by a number o f s tud ies  using the che la to r desferrioxamine (DFO) 

(Cumming et a l , 1967; Karabus and F ie ld ing , 1967; L ipsch itz et a l , 

1971b). A reduction in iron flow through the reticu loendothe lia l ce ll 

produced by suppression of erythropoiesis reduced the amount that could 

be chelated (L ipsch itz et a l,  1971b) and an increase in iron flow 

induced by haemolysis increased chelation (Cumming et a l , 1967). Rat 

experiments confirmed that fe r r it in  and haemosiderin were not important 

d irect donors of iron to DFO and that compounds in the pathway between 

storage compounds and transfe rrin  are the probable source of the iron 

chelated by DFO (L ipsch itz et a l , 1971b).

Within the erythrocyte, evidence was found for the existence of short­

lived  nonhaem intermediates. Zail and coworkers (1964) presented 

serum-bound S^Fe to cu ltu re s  o f human marrow c e l ls  and found a 

non ferritin  non-haemoglobin precursor from which iron  was ra p id ly  

removed for haem synthesis. In marrow cultures from iron-defic ien t 

patients there was a transient lab e llin g  of the intermediate fraction  

before complete in co rp o ra tion  in to  haemoglobin took place. The 

presence of th is  soluble in tra ce llu la r iron compound in erythroid c e lls  

tha t served as a source of iron for haemoglobin and fe r r it in  was 

confirmed by other workers (Primosigh and Thomas, 1968).
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More recent data regarding the in tra ce llu la r  la b ile  iron pool in non- 

erythroid c e lls  was obtained from experiments using cu ltu red  Chang 

c e lls  as a model system. About 30% of the iron taken up by these ce lls  

from transferrin  is  membrane bound and the remainder is  found in the 

cytosol. Chang c e lls  synthesize fe r r it in  active ly  in response to an 

iron load and most of the cytosol iron is  present in th is  form (White 

e t a l , 1976a). However about 35% of th is  iron is  in a non-haem, 

non fe rritin  d ia lyzable form (White et a l , 1976a). Gel f i l t r a t io n  of 

the membrane-free supernatant after centrifugation of the sonicated 

Chang c e lls  showed that the LMW fraction  could be read ily  chelated by 

DFO, EDTA or transfe rrin . When Chang c e lls  were labe lled  with 59Fe 

transfe rrin  so that the rad io iron  was normally d istributed through the 

c e l l  f r a c t io n s ,  subsequent tran s fe r o f the cu ltu re  to a medium 

containing DFO resu lted in rap id  iron depletion of the ce ll (White et 

a l , 1976b). The 59pe fe r r it in  content f e l l  more rap id ly  than did the 

LMW 59p6j but as Qpo has been shown not to chelate fe r r it in  iron 

d ire c t ly , m obilization presumably occurred via the LMW pool. Similar 

m obilization of in tra ce llu la r iron was observed when the c e lls  were 

incubated with transfe rrin , the amount removed being inversely re lated 

to the transferrin  saturation (White et a l , 1976b).

The incubation of pure cultures of human polymorphonuclear leukocytes, 

lymphocytes and monocytes under the same conditions as those used in 

Chang ce ll experiments showed that despite wide differences between the 

d iffe ren t c e ll types and variations in disease states, "cytosol" iron 

was present in both fe r r it in  and n o n - fe r r it in  forms (Summers and
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Jacobs, 1976). Thus, while a variety of c e lls  appeared to contain th is 

LMW iron pool which was eas ily  ava ilab le for uptake by fe r r it in ,  haem, 

transfe rrin  and chelators, the evidence for i t s  existence was ind irect 

and it s  chemical nature was poorly characterized un til recently.

1.8.3. Chemical nature of the LMW pool

For a long while the chemical nature of the intermediate or la b ile  iron 

pool was unknown. I t  appeared to be a low molecular weight complex of 

iron or a mixture of such complexes (Jacobs, 1977). The ligands in 

th is  LMW pool could have included almost any of the LMW species present 

in the cytosol (Pollack et a l , 1985). A reducing agent has been found 

to be necessary in the transfer of iron from transferrin  to fe r r it in  

(M ille r and Perkins, 1969) and i t  was postulated that th is  agent was to 

be found in  the LMW pool. The reducing agent functions to form an 

intermediate ferrous chelate with iron once iron has been freed from 

transfe rrin . I t  ensures that the iron is  availab le in the ferrous 

state for uptake by fe r r it in  (M ille r and Perkins, 1969). Ascorbic acid 

appears to f u l f i l  th is  ro le  e ffe c t iv e ly  and c itra te , sugars, amino 

acids and nucleotides may a l l  function as intermediate ligands in iron 

transfer. Id en tifica tion  of these intermediate iron compounds not only 

depends on the ir chemical characterization but also depends on their 

a b il it y  to display the appropriate functions. While fe r r ic  c itra te  can 

be u t il iz e d  d ire c t ly  by the re ticu locy te  and the same is  true for a 

number of LMW chelates such as n itr ilo a ce ta te  (Morgan, 1971), these 

chelates are however nonphysiologic.
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The f i r s t  d irect demonstration of a LMW iron pool in the ce ll was by 

Pollack and Campana (1980). This was achieved using a buffer with 

minimal a f f in ity  for metal and without adding chelate. This LMW iron 

in the re ticu locy te  has recently been characterized (Pollack et a l , 

1985). On thin layer chromatography th is  LMW iron is  distinguishable 

from the iron complexes of a variety of nucleotides, sugars and amino 

acids. On paper chromatography i t  comigrates with a 250nm absorbing, 

o rc ino l-pos itive  m aterial. The eluted count peak contains phosphorous. 

Continuously gassing the buffer used in  these experiments with nitrogen 

improved recovery of the LMW iron, suggesting that the iron is  in the 

ferrous oxidation state (Pollack et a l , 1985). One of the aims of the 

present investigation is  to further characterize the nature of the iron 

in th is  la b ile  intermediate pool.

1.8.4. C lin ica l s ign ificance

The in t r a c e l lu la r  LMW iron  pool occupies a fo ca l p o s it io n  in 

in tra ce llu la r  iron metabolism. I t  provides iron for mitochondria which 

are the s ite  of haem synthesis either for mitochondrial cytochromes, 

fo r extram itochondrial cytochromes such as cytochrome P450 and for 

specia lised proteins such as haemoglobin or myoglobin (Jacobs, 1977; 

Bomford e t a l , 1986). A wide variety of processes, such as DNA

synthesis (Hoffbrand et a l , 1976) are inh ib ited  by DFO and may be 

assumed to depend on the a v a ila b ility  of iron in the LMW iron pool. In 

addition a l l  c e lls  contain non-haem enzymes which appear to depend on 

an adequate tissue iron status for the ir function (Finch et a l , 1976),
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and presumably such enzymes must depend on the m etabolically functional 

in tra ce llu la r la b ile  iron pool.

In addition fe r r it in  synthesis is  induced by enlargement of th is  iron 

pool (Lynch et a l , 1974; Young et a l , 1985; Bomford et a l , 1986), a 

find ing that is  addressed by the present investigation. The ce llu la r 

basis for the regu lation of fe r r i t in  synthesis has re c e n t ly  been 

delineated (see section 1.6.2.2. previously). This may provide an 

explanation for the find ing  that enlargement of the LMW pool appears to 

be a transien t phenomenon, as evidenced by the fact that with the 

passage of time, less iron is  present in th is  form and more is  present 

in the form of functional and storage compounds (Bridges and Cudkowicz, 

1984; Young et a l , 1985; Bomford et a l , 1986).

F in a l ly ,  the in te ra ction  of th is  small molecular weight pool with 

ex trace llu la r transfe rrin  and thus sim ilar pools in  other t issues 

provides a mechanism whereby an equilibrium  can be established not only 

between the various metabolic processes in the c e ll but also between 

d iffe ren t organs in the body (Jacobs, 1977).
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1.9 CHELATABLE IRON AND CHELATING AGENTS

1.9.1. Introduction

Evo lu tion  has provided e f f i c ie n t  mechanisms for the acqu is ition, 

transfer and storage of iron, but has not provided mechanisms for 

promoting the excretion of excess iron. The c lin ic a l consequence of 

continued iron accumulation is  the abnormal function of a number of 

organs, the most important of which are the heart, liv e r  and pancreas. 

While the manifestations of chronic iron overload are p o te n t ia lly  

curable by the e ffe ctive  m obilization of storage iron by phlebotomy 

(Easley et a l , 1972; Short et a l , 1981), the e ffective  administration 

of iron chelators such as desferrioxamine can prevent and even reverse 

the c l in ic a l manifestations of iron overload (Hershko and Weatherall, 

1988).

In normal subjects, most of the body iron is  unavailable for chelation. 

Iron in haemoglobin, representing over two th irds of a l l  iron, is  

unavailable for chelation and transferrin-bound-iron is  a poor source 

of iron for chelation. The most l ik e ly  sources of chelatable iron 

include that stored in  tissues in the form of fe r r it in  or haemosiderin 

and the la b ile  iron compartment constitu ting  the LMW iron pool that is  

in  e q u ilib r iu m  w ith fe r r it in  (Hershko and Weatherall, 1988). The 

increased a v a ila b ility  of iron for chelation found in conditions of 

increased catabolism of fe r r it in  and haemoglobin-bound iron (Cumming et 

a l , 1967; Karabus and F ie ld ing , 1967; L ipsch itz et a l , 1971b) lent
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support to the existence of a LMW chelatable iron pool. That th is  pool 

rather than fe r r it in  or haemosiderin is  the most lik e ly  source of iron 

bound by chelators has been confirmed by ra t  experiments (Lipsch itz et 

a l , 1971b). A consequence of the a cce ss ib ility  of the LMW pool to 

che la to rs  is  tha t knowledge of the mechanism o f action of these 

chelators can be u t il iz e d  in an attempt to characterize the nature of 

the iron in th is  LMW pool. I t  is  against th is  background that various 

chelators have been employed in the investigations performed in th is  

thesis. What fo llows is  a short overview of the chelators u t iliz e d  in 

th is  study.

1.9.2. Desferrioxamine (DFO)

DFO is  a co lou rless c ry s ta llin e  substance produced by Streptomyces 

P ilosus. I t  consists of a chain of three hydroxamic acids terminating 

in  a free amino acid group, which enables i t  to form sa lts  with organic 

and inorganic acids (Keberle, 1964). I t  is  capable of combining with 

fe r r ic  iron at a 1:1 molar ra t io  and with a s ta b il ity  constant of 10 1̂. 

The a f f in it y  of DFO for ferrous iron and other metal ions such as zinc, 

copper, magnesium and calcium is  much lower.

There are fundamental differences in  the behaviour of DFO as compared 

to ferrioxam ine, the DFO-iron complex. As a re su lt of the change in 

configuration fo llow ing interaction  with iron, ferrioxamine becomes an 

extremely stable compound res is tan t to enzymatic degradation (Meyer- 

Brunot, 1967). In contrast to DFO which is  capable of penetrating
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various tissues, ferrioxamine is  d istributed  in  the extrace llu la r space 

and is  unable to penetrate c e lls .

DFO is  able to in te ra c t  in  v it r o  w ith iron  located in cultured 

hepatocytes (White et a l , 1978; Octave et a l , 1983; O'Connell et a l , 

1985), cardiac c e lls  (Sciortino et a l, 1980; Link et a l,  1985) and 

monocytes (Esparza and Brock, 1981). D irect evidence for the ce llu la r 

uptake of DFO is  ava ilab le only in hepatocytes (O'Connell et a l, 1985) 

where i t  in teracts in s itu  with hepatocellular iron which is  then 

excreted via the b il ia r y  tract. The contribution of RE c e lls  to DFO- 

induced iron excretion is  lim ited (Hershko et a l , 1973; Pippard et a l , 

1982; Kim et a l , 1985), and i t  is  not en tire ly  clear as to whether RE­

derived iron is  chelated by DFO w ith in RE c e lls  or fo llo w in g  i t s  

release into the plasma (Pippard et a l,  1982). The iron derived from 

the RES by DFO is  subsequently excreted via the urine. Urinary DFO is  

excreted by both glomerular f i l t r a t io n  and tubular secretion, whereas 

ferrioxamine is  partly reabsorbed fo llo w in g  glomerular f i l t r a t io n  

(Peters et a l , 1966).

The gastro in testina l absorption of both DFO and ferrioxamine is  poor 

(Keberle, 1964). Oral administration of DFO is  e ffective  in blocking 

the in tes tina l absorption of inorganic iron but has only a small e ffect 

on urinary excretion. The in tes tin a l absorption of o ra lly  administered 

iron is  inh ib ited  by the parenteral administration of DFO.
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The rap id  clearance of DFO from plasma, it s  e ffective  catabolism and 

it s  active tubular secretion severely lim it  the effectiveness of single 

bolus in jections given at long in te rva ls. However the fact that i t  is  

d istribu ted  in over 60% of the tota l body volume indicates that i t  has 

access to in tra ce llu la r  compartments in diseases where interaction  with 

chelatable in tra ce llu la r iron is  benefic ia l (Hershko and Weatherall, 

1988).

1.9.3. Pi ethylenetriamine penta-acetic acid (DTPA)

DTPA is  a synthetic compound belonging to the group of polyanionic 

amines. I t  was f i r s t  used for the treatment of iron overload in  humans 

by Fahey and coworkers (1961). I t  was subsequently shown to be as 

e ffe c tive  as DFO in promoting urinary iron excretion (Bannerman, 1962). 

I t  is  highly soluble in water but is  unable to penetrate c e lls .  Iron 

chelated by DTPA is  derived from RE c e lls  and is  excreted so le ly  in the 

u r in e  (Hershko e t a l , 1978a). I t  is  in e f f e c t iv e  by o ra l 

adm inistration. Its  highest a f f in it y  is  for fe r r ic  iron (Bridges and 

Cudkowicz, 1984). Calcium-DTPA is  well to lerated when administered by 

slow subcutaneous or intravenous in fusion. Zinc depletion after 

prolonged DTPA treatment is  a s ig n if ic a n t ' problem, but i t  can be 

prevented by oral zinc supplementation.
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1 .9 .4 .  2 , 2 'b ip y r id i  ne

Th is is  a hydrophobic iron  che la to r which p a r t it io n s  into ce ll 

membranes and binds ferrous iron as i t  passes through th is  l ip id  

environment (Nunez et a l , 1983; Morgan, 1983a). The b ipyrid ine-iron 

complex is  however hydrophilic and unable to cross c e l l  membranes 

(Nunez et a l , 1983; Morgan, 1983a; Bridges and Cudkowicz, 1984). 

2 ,2 'bi pyridine is  also able to lim it  erythroid iron uptake by blocking 

transmembranous ferrous iron transport from the a c id if ie d  endocytic 

vesic le  in to  the c e ll cytosol and returning the bipyrid ine-ferrous iron 

h y d ro p h ilic  complex back to the ex trace llu la r environment (Morgan, 

1983a; Baynes et a l , 1988a). The iron-chelator is  released from the 

c e ll by a process which is  very sim ilar to that of transferrin  release 

from c e lls  with respect to k ine tics  and s e n s it iv ity  to incubation  

temperature and the e ffe cts  of metabolic inh ib ito rs  and other chemical 

reagents (Morgan, 1983a).

There is  some disagreement as to whether 2 ,2 'b ipyrid ine acts w ithin the 

cytosol in  it s  chelation of ferrous iron. Morgan (1983a) hypothesized 

that 2 ,2 'b ipyrid ine blocked ce ll iron uptake by gaining entrance to the 

cytosol, chelating ferrous iron and then d iffu s ing  out of the c e ll.  

The r e s u lt s  o f in v e s t ig a t io n s  by Nunez and coworkers (1983) were 

incompatible with the hypothesis of 2 ,2 'b ipyrid ine chelating iron from 

the cytosol compartment. They showed that the chelator pa rtit ions into 

the membrane compartment of re ticu locy tes, chelates membrane-associated 

iron and then ex its into the ex trace llu la r m ilieu without entering the
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c e l l  cy toso l in  the process. The change in so lu b ility  when the 

chelator binds iron affords an explanation for the fast onset of the 

in h ib it io n  of iron uptake (Nunez et a l , 1983).
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CHAPTER TWO

METHODS AND MATERIALS



2.1. Introduction

Much is  known of the nature of transferrin  iron delivery to erythroid 

and other c e lls  (Morgan, 1981; Huebers and Finch, 1987). In contrast 

there is  a paucity of knowledge of the factors regulating RE iron 

metabolism and release. The rate of return of red ce ll derived iron, 

l ib e ra te d  from ca tab o lized  haemoglobin in  the RE c e l l ,  to the 

c ircu la t ion  is  governed by partition ing  between an early release pool 

and a slow storage pool (Noyes et a l, 1960). The factors regulating 

th is  partition ing  are incompletely understood. Previous work involving 

the parenteral in fusion of elemental iron to block transferrin  binding 

s ites for iron suggested that ce llu la r  iron release was inh ib ited  in 

the presence of a highly saturated transferrin  (L ipsch itz et a l, 1971c;

Bergamaschi et a l , 1986). A c r it ic ism  of th is  work is  that the use of 

a p a re n te ra l in fu s io n  o f iro n  to  s a tu ra te  t r a n s f e r r in  is  

unphysiological in that i t  may have resu lted in super saturation of 

transferrin  with consequent c ircu la t in g  free iron being present.

In the current investigation the enteral administration of carbonyl 

iron  (Huebers et a l,  1986) was employed in  an attempt to saturate 

transfe rrin  in  a more physiological fashion. In addition, the effects 

on serum iron of sing le and repeated transfusions of heat damaged red 

c e lls ,  and of haemoglobin were investigated.

Radioiron-tagged heat damaged red c e lls  were employed for the study of 

RE behaviour in the s e tt in g  o f a lte re d  t ra n s fe r r in  sa tu ra tion s ,
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enhanced erythropoiesis, prior in jection  of non-tagged haemoglobin and 

infusion of homologous tissue fe r r it in .  The nature of the rad ioiron 

derived from the heat damaged red c e lls  and held up in the RES as a 

consequence of a highly saturated transferrin  was characterized  by 

chromatographic analyses of splenic and hepatic extracts. Chelators 

with various modes of action were included in sp lenic and hepatic 

preparations to further characterize the in tra ce llu la r chelatable pools 

of rad io iron . F in a lly , the findings of the in v itro  inc lus ion  of 

ch e la to rs  in  sp len ic  and hepatic preparations were confirmed by a 

series of in vivo chelator studies.

A ll investigations included in  the study have been approved by the 

Animal Ethics Committee of the University of the Witwatersrand.

2.2. Sprague-Dawley ra ts

The study u t il iz e d  normal male Sprague-Dawley ra ts , weighing 250-300g 

each. A ll ra ts  were maintained on a standard commercial cube d iet 

(Epol, Johannesburg, South A fr ica ).

2.3. Carbonyl iron

2.3.1. Background

Carbonyl iron  is  a small p a r t ic le  preparation of highly purified  

m eta llic  iron. I t  is  in e rt and incapable of reacting with strong
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chelators of iron such as transferrin  and desferrioxamine (Huebers et 

a l , 1986). The manufacturing process involves the heating of gaseous 

iron  pentacarbonyl (Fe(C0)5)> which resu lts  in the deposition of 

m eta llic  iron as submicroscopic crysta ls that form microscopic spheres. 

The term "carbonyl" describes the abovementioned manufacturing process 

and not the composition of the iron p a rtic le s . When adm inistered 

o ra lly , carbonyl iron is  much less tox ic than ionized forms of iron 

such as ferrous sulphate (Crosby, 1978). The reason for th is  and the 

manner in  which the m e ta llic  pa rtic le s  of carbonyl iron are made 

ava ilab le for absorption and u t il iz a t io n  was not fu l ly  understood. A 

study recently undertaken to determine the mechanism of carbonyl iron 

absorption and the reason for i t s  lower to x ic ity  (Huebers et a l , 1986) 

revealed that so lu b iliza t io n  of carbonyl iron by gastric acid is  a 

prerequisite for i t s  subsequent absorption and that the slow rate of 

s o lu b i l iz a t io n  o f carbonyl iro n  re su lte d  in  i t s  more prolonged 

absorption and i t s  low to x ic ity . Once i t  has been so lub ilized  , the 

subsequent pathway of absorption of carbonyl iron by the in testina l 

mucosa and the amount absorbed is  sim ilar to that of ferrous ammonium 

sulphate (Huebers et a l, 1986). L i t t le  or no carbonyl iron is  absorbed 

in v itro  and in vivo unless i t  is  exposed to a pH of less than 2 

(Huebers et a l,  1986).

2.3.2. Administration

The carbonyl iron used was 3 to 4 /im in  p a rt ic le  s ize , of SF grade and 

was obtained from GAF Corporation, New York. Each dose of carbonyl
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iron  was adm in istered in  1 ml a c id if ie d  sa line pH 2.0. It was 

introduced into the stomachs of fasted ra ts  w ith an o liv e  tipped 

canula. On day 1, after an overnight fa s t during which time they had 

free access to water, the animals were fed 400mg of carbonyl iron, 

fo llow ed by 200mg carbonyl iron 24 hours la te r. The animals were 

fasted during th is  24-hour period, but had free access to water. Two 

animals were exsanguinated by cardiac puncture under anaesthesia at 

various time in terva ls after the f i r s t  and second doses of carbonyl 

iro n . The blood was separated by centrifugation and serum iron, 

unsaturated iron-binding capacity, tota l iron binding capacity and 

percentage sa tu ra tion  o f t ra n s fe r r in  were measured (International 

Committee for Standardization in Haematology (Iron Panel), 1978 a; b). 

The time period when near complete steady state transferrin  saturation 

occurred was determined.

2.4 Heat Damaged Red Ce lls  (HDRC)

Sim ilar time dependent studies examining the e ffects  of HDRC on serum 

iron concentration and transfe rrin  saturation were performed.

2.4.1. Preparation

HDRC were prepared after the method of L ipsch itz and coworkers (1971b). 

Blood removed from a donor ra t  was centrifuged at 2000 rpm for 20 

minutes, with the removal of plasma. The red c e lls  were washed twice 

in normal sa line and were then suspended in four times their volume of
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a 1:1 mixture of isoton ic sa line and ACD (5g c i t r i c  acid, 13.8g sodium 

c itra te  and 13g dextrose per l i t r e  of so lu tion). The red c e lls  in the 

r e s u lt in g  s o lu t io n , w ith a haematocrit of ZQ%, were denatured by 

heating for 20 minutes in a water bath at 40°C.

2.4.2. Transfusion

The HDRC were transfused  v ia  the t a i l  vein w ith in  one hour of 

preparation. The e ffe c t of a sing le  transfusion of a 3 ml/kg 20% 

haematocrit so lution of heat damaged homologous erythrocytes and of 3 

repeated transfusions of 6 ml/kg of a sim ilar solution on serum iron, 

unsaturated iro n -b in d ing  capacity, tota l iron-binding capacity and 

percentage saturation of transferrin  was determined (In te rna tiona l 

Committee for Standardization in Haematology (Iron Panel), 1978a; b).

Animals were again exsanguinated by cardiac puncture under anaesthesia.

2.5. Radioiron tagging of erythrocytes

The haemoglobin of ra t  red c e lls  was uniformly labe lled  by repeated 

in jections of rad io iron  (59pe). These radioiron-tagged erythrocytes 

were then heat damaged as described and were employed for the study of 

RE and hepatic iron handling in various experimental settings.

Radioiron tagging of red c e lls  in vivo was accomplished as fo llows. 

Rats whose erythropoiesis was stimulated by removing 4 ml of blood by 

cardiac puncture on the sixth and f i f t h  days p r io r  to the f i r s t
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in jection  of rad io iron , were given an in i t ia l  intravenous in jection  of 

200yuCi 59pe as fe r r ic  ch loride. 50/uCi of 59pe as fe r r ic  chloride was 

administered every week thereafter. After su ff ic ie n t time had elapsed 

to permit uniform tagging, these ra ts  were bled under anaesthesia to 

obtain rad io labe lled  erythrocytes for the preparation of HDRC. Each 

animal was not venesected more than once a month.

2.6. Serum iron (SI) concentration

The SI concentration was determined u t i l iz in g  the method recommended by 

the International Committee for Standardization in Haematology (ICSH, 

1978a). I n it ia l ly  the plasma was a c id if ie d  with a mixture of 1 molar 

HC1 and 10% t r ic h lo r a c e t ic  acid in  order to d issociate the iron- 

transferrin  complex and to p rec ip ita te  proteins. The simultaneous 

addition of a 3% th io g ly c o llic  acid so lution ensured complete reduction 

o f the d is s o c ia te d  t r a n s f e r r in  ir o n  to  the fe r ro u s  form . 

Deproteinization is  an important step in measuring serum iron as i t  

removes substances such as haemoglobin, b iliru b in  and plasma lip id s  

which would otherw ise increase the optica l density of the plasma 

(Bothwell et a l , 1979). The op t ica lly  clear supernatant was then 

treated with buffered bathophenanthroline sulfonate and the absorption 

of the ferrous complex was measured at 535 nm. Two ml of a standard 

iron solution containing 40/jmol/l iron in 5 mmol/1 HC1» and two ml of 

d is t i l le d  water for a blank were treated in the same way as the serum 

samples. The serum iron  concen tra tion  was then ca lcu la te d  by
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m ultip ly ing by 40 the ra t io  of the d ifferences of the absorption of the 

test sample and the blank to the standard sample and the blank.

2.7. Unsaturated iron-binding capacity (UIBC)

This was measured u t i l iz in g  the method recommended by the International 

Committee for Standardization in  Haematology (ICSH, 1978b), and 

involved an adsorbent method in  which iron in excess of the binding 

capacity of transfe rrin  is  added. The compound used to saturate 

t ra n s fe r r in  was ra d io - la b e lle d  f e r r ic  ch lo r id e  in  a d ilu te  HC1 

so lution. Magnesium carbonate which strongly adsorbs the unbound ion ic 

iron was added, and the samples were centrifuged to remove the iron. 

The unsaturated iron-binding capacity was measured d ire c tly  by counting 

the r a d io a c t iv it y  present in  the supernatant. The ra t io  of the 

rad ioactive counts in the test sample to those o f two ml of the 

sa tu ra tin g  iron  so lu t io n  yie lded the UIBC value, after background 

a c t iv ity  was subtracted.

2.8. Total iron-binding capacity (TIBC)

The TIBC was calculated by summing the values obtained for serum iron 

concentration and UIBC. The TIBC re f le c ts  the level of transferrin  and 

gives the tota l number of iron binding s ites on the transport protein, 

while the serum iron concentration re f le c ts  the number of iron atoms 

actua lly  bound (Kimber et a l , 1983).
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2 .9 .  Percen tage  s a tu r a t io n  o f  t r a n s f e r r i n

Percentage saturation was calculated by m ultiplying the ra t io  of serum 

iron to tota l iron binding capacity (TIBC) by 100.

2.10. Analytica l 59pe organ d is tribu tion

Radioiron tagged HDRC were in jected in to  both control ra ts and into 

experimental ra ts  via the t a i l  vein w ithin one hour of preparation. 

The volume of tagged HDRC used was 3 ml/kg o f a 20% haematocrit 

so lu tion. This corresponded to a dose of iron of approximately 0.8 

mg/kg. At various time in terva ls after the in jection  of the tagged 

HDRC, ra ts  were anaesthetized, exsanguinated by cardiac puncture and 

washed out with normal sa line. The percentage d is tribu tions of 59pe n-n 

the l iv e r ,  spleen, blood, kidneys, and marrow was determined. The 59Fe 

a c t iv ity  of one ml of blood, both kidneys, one femur, and the spleen 

and l i v e r  were counted  in  a Packard Autogamma s c in t i l la t io n  

spectrometer model 5650 (Packard Autogamma Co., Downers Grove, 

I l l in o is ) .  Total marrow a c t iv ity  was estimated by m ultiplying the 

counts of one femur by 13 (Hershko et a l,  1972). The a c t iv ity  of the 

blood was calcu lated from the one ml of blood counted, assuming that 

the tota l blood volume of a ra t  is  65 ml/kg.

The organ d is tr ibu tion  of 59pe was assessed in experiments conducted 

both shortly after the in i t ia l  dose of carbonyl iron and at a time when 

steady state increased transferrin  saturation had been achieved. Organ
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d is tr ibu tion  of rad io iron  was also studied in animals that had enhanced 

erythropoiesis prior to tagged-HDRC in jec tion . The e ffe c t of prior 

in je c t io n ,  one hour before tagged HDRC infusion, of an equivalent 

amount of non-tagged free haemoglobin on organ d is tribu tion  of 59pe was 

also assessed. Studies were also conducted after concomitant infusion 

of homologous tissue fe r r it in  together with the tagged HDRC.

2.11. Enhanced erythropoiesis

Er ythropoiesis was stimulated by removing 4 ml of blood via cardiac 

puncture under anaesthesia on the s ix th  and f i f t h  days p r io r  to 

commencement of the study. Enhanced erythropoiesis was confirmed by 

re ticu locy te  counting.

2.12. Free haemoglobin production

Free haemoglobin was produced by the method of Pippard and coworkers 

(1982). Blood removed from a donor ra t  was centrifuged at 2000 rpm for 

20 minutes, with the removal of plasma. To the resu lting  red c e lls  was 

added 4 times the volume of s te r ile  water. The resu lting  solution was 

centrifuged at 1000 rpm for 10 minutes to remove ce ll debris, and the 

resu lt ing  solution containing free haemoglobin was u tiliz e d .
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2 .13 . Homologous t i s s u e  f e r r i t i n

Homologous tissue fe r r it in  was produced by the method of Huebers and 

coworkers (1976). Donor ra ts  were anaesthetized, exsanguinated by 

cardiac puncture and washed out using normal saline perfusion. The 

l iv e r s  o f these  r a t s  were removed and su b je c te d  to  coarse  

homogenization in 4 times the ir volume of cold d is t i l le d  water. The 

homogenate was heated to 75-80°C in a waterbath with constant s t ir r in g . 

After heating for 10 minutes, the homogenate was cooled on ice and was 

centrifuged at 2000 rpm for 20 minutes. The resu lting  supernatant, 

with pH corrected to 4.9 by the addition of 25% acetic acid, was stored 

at 4°C for 12 hours, after which time i t  was again centrifuged at 2000

rpm for 20 minutes. To the resu lting  supernatant was added an equal

volume of saturated ammonium sulphate. After standing for a further 12 

hours at 4°C, the solution was centrifuged at 2000 rpm for 20 minutes. 

The resu lting  p e lle t was dissolved in the smallest volume of normal 

sa line and was dialysed against 2 l i t r e s  of normal saline for 36 hours. 

The normal sa line was changed every 12 hours during the 36 hour period.

After th is  time the dialysate was centrifuged for 10 minutes at 1000

rpm and the resu lt ing  supernatant was u t il iz e d  as the homologous tissue 

f  err i t i  n.

A lim u lus ly sa te  assay for endotoxin was performed by Sabax Ltd, 

Johannesburg on th is  tissue fe r r it in  preparation.
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2 .14 . S i z in g  column chromatography

H ep a tic  and s p le n ic  t is s u e  was p repared  fo r  s iz in g  column 

chromatography in  an attempt to characterize the nature of 59Fe, 

derived from prior in fusion of tagged HDRC, which was present in the RE 

c e lls  of the spleen and the RE and parenchymal c e lls  of the liv e r in 

the presence and absence of a highly saturated transferrin  and after 

prior transfusion with non-tagged HDRC. In an attempt to define the 

nature of iron released from RE c e lls ,  whole sera obtained after tagged 

HDRC infusion in to  animals with normal and saturated transferrins were 

also fractionated on AcA 44 column chromatography.

The buffer and column procedure were those of Pollack and coworkers 

(1985), namely an AcA 44 ultrogel column (LKB, Bromma, Sweden) and a 

0.05 M s a lin e ,  0.02 M hepes b u ffe r ,  pH 7.0. The precautionary 

procedure of bubbling nitrogen through the buffer to prevent iron- 

oxygen complexes from forming was employed as described (Pollack et a l , 

1985). The hydrophobic fe rrous che la to r 2 ,2 'b ip y r id in e  and the 

hydrophilic fe r r ic  chelator desferrioxamine were included in hepatic 

and sp lenic preparations to characterize the in tra ce llu la r chelatable 

pools of 59pe. At each time interval studied, a sample of live r and a 

sample of spleen was subjected to coarse homogenization in running 

buffer (0.05 M NaCl; 0.02 M Hepes; pH 7) containing soybean trypsin 

in h ib ito r  (100/jg/m l) and e ith e r desferrioxam ine (5 mg/ml) or 

2 ,2 'b ipyrid ine (1.39 mg/ml). The homogenized sample was centrifuged at 

1000 rpm for 10 minutes, after which time the resu lting  supernatant,
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which contained near sing le c e ll suspensions, was sonicated with 3 

bursts of ultrasound of 30 seconds each at medium in tens ity  from an 

M.S.E. u ltrasonicator (Crawley, Sussex, U.K.). Post sonication the 

sample was subjected to u ltracentrifugation  at 25000 rpm for 40 minutes 

at 4°C. The resu lting  supernatant, a membrane and cytosol enriched 

sample, was fractionated on AcA 44 u ltro g e l chromatography. The 

fra c t io n s  c o lle c te d  were counted fo r r a d io a c t iv ity  in a Packard 

Autogamma s c in t i l la t io n  spectrometer model 5650. Prior to it s  use, the 

s iz in g  column was c a lib ra te d  w ith  ra d io la b e lle d  f e r r i t in  and 

tran sfe rrin . Between each sample application the column was washed 

with 12 ml 1% t r ito n  X-100 and 12 ml 0.1 M EDTA. At least 3 volumes of 

buffer were then run through the column prior to the next sample 

app lication .

Detergent so lub ilized  preparations of hepatic and splenic tissue were 

also subjected to s iz ing  chromatography on an AcA 44 ultrogel column. 

Coarse homogenization of sp lenic and hepatic tissue in running buffer 

containing soybean trypsin inh ib ito r but no chelators was followed by 

centrifugation of the homogenized samples at 1000 rpm for 10 minutes. 

Running buffer containing 2% tr ito n  X-100 was added to the resu lting  

p e lle t. After ag ita tion  at 4°C for 2 hours, the sample, representing a 

membrane enriched fraction , was subjected to u ltracen trifugation  at 

20000 rpm for 1 hour at 4°C. The supernatant was fractionated on an 

AcA 44 ultrogel chromatography column, and the fractions co llected were 

counted for rad io a c tiv ity  as before.
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The colours of the various fractions were also of use in confirming the 

nature of the peaks. The fe r r it in  peak (confirmed by quantitative 

immune prec ip ita tion) was brown in  colour and appeared at the void 

volume. This was followed by the haemoglobin peak which was red in 

colour. The small molecular weight desferrioxamine (brown) or 2,2' 

b ip y r id in e  (pink) peaks were the la s t  59pe containing fractions to 

elute from the column. Immune p rec ip ita tion  was by the methods of 

Morrow and co-workers (1986) and Enler and co-workers (1985) (see 

section 2.16. below).

2.15. In vivo chelator studies

These studies were conducted to confirm the fractionation  findings of 

the in vivo inclusion of chelators in  hepatic and splenic preparations. 

2 ,2 'b ipyrid ine and desferrioxamine were administered in  doses of 50 

ml /kg intramuscularly one hour, 3 hours, 5 hours, and 7 hours after the 

intravenous in jection  of tagged HDRC to normal ra ts  and ra ts whose 

transfe rrin  had been saturated with carbonyl iron. The hydrophilic 

e x t r a c e llu la r  f e r r ic  che la to r diethylenetriam ine penta-acetic acid 

(DTPA) was also used in  the in vivo studies. I t  was administered by 

the intravenous route. In between in jections the ra ts were kept in 

metabolic cages. At the end of 8 hours, the ra ts  were exsanguinated by 

cardiac puncture and were perfused with normal sa line. The percentage 

d is tr ibu tion  of 59pe in the l iv e r ,  spleen, blood, kidneys, marrow, and 

u rine  and faeces c o lle c te d  over the p e r io d  s in c e  c h e la to r  

administration began was determined as was done previously.
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2 .16 . Immune p r e c i p i t a t i o n

Immune p rec ip ita tion  was by the methods of Morrow and co-workers (1986) 

and Enler and co-workers (1985).

A solution containing 0.5 ml of sample in running buffer (0.02 M Hepes; 

0.05 M NaCl; pH 7), 0.5 ml 0.2 M EDTA, 0.2 ml ra t  fe r r it in  (2 mg/ml) 

and 0.5 ml Ig G solution was incubated for one hour at 37°C. PEG 

solution (12% PEG 6000 in  0.2 M EDTA; pH 8.5) was added to a fin a l 

concentration of 3%. The resu lt ing  solution was le f t  to stand overnight 

at 4°C. The fo llow ing day i t  was centrifuged for 20 minutes at 2000 

rpm. The p e lle t was washed with 3% PEG solution and was counted in a 

Packard Autogamma s c in t i l la t io n  spectrometer model 5650.

2.17. S ta t is t ic a l analyses

These were by means of Student t  tests. Bonferroni corrections were 

applied when mare than two groups were compared. When ana lys is  

variance was ap p lied , an F value was generated. The level of 

s ta t is t ic a l s ign ificance was taken to be 0.05.
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CHAPTER THREE

RESULTS



3 .1 .  Serum i r o n  and unsa tu ra ted  i r o n  b in d in g  c a p a c i t y  f o l lo w in g :

3.1.1. Carbonyl iron administration

The time dependent e ffe c t of the oral administration of carbonyl iron 

to ra ts  on SI and TIBC is  shown in figure 2. I t  can be seen that a 

single dose of 400 mg of carbonyl iron resu lted in  a transient increase 

in  the percentage saturation of transfe rrin . A second dose of 200 mg 

of carbonyl iron 24 hours later resu lted in  a more protracted elevation 

in  the percentage sa tu ra tion  o f tran s fe rr in . The fact that the 

percentage saturation of transferrin  never exceeded 100% when estimated 

e it h e r  p u re ly  co l or im etr i c a l l y  or by a com b ina tion  o f SI 

co lo rim etrica lly  and unsaturated iron binding capacity by rad io isotop ic 

assay indicated that the carbonyl iron was not causing super saturation 

of transfe rrin  with consequent c ircu la ting  free iron.

3.1.2. HDRC infusions

The time dependent e ffects of a single 3 ml /kg infusion of HDRC and 3 

repeated 6 ml/kg infusions of HDRC on the same iron re lated parameters 

are also indicated on figure 2. The single 3 ml /kg HDRC infusion was 

followed by a transient increase in  transfe rrin  saturation maximal at 3 

hours post in fusion. The f i r s t  of the repeated 6 ml/kg infusions was 

followed by a sim ilar increase in the transferrin  saturation. The 

subsequent two infusions had no e ffe c t on transferrin  saturation.
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bar) o f 2 doses of carbonyl iron (top frame), a single 

in fusion of 3 ml/kg HDRC (middle frame) and 3 repeated 

infusions of 6 ml/kg HDRC (bottom frame).
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3.2 . A n a ly t ic a l  organ d is t r ib u t io n  o f 59pe HDRC in  various 

experimental settings

3.2.1. Two doses of carbonyl iron

The e ffe c t of two doses of carbonyl iron (24 hours apart) on the fate 

of tagged HDRC (3 ml/kg of a 20% haematocrit solution) administered 

four hours a fte r  the second dose of carbonyl iron is  shown as a 

function of time post in fusion of the c e lls  in  Table I. In the control 

group of animals, the rate of clearance of HDRC was rap id, with greater 

than 60% o f HDRC cleared by 30 minutes. The organ spec ific  59pe 

a c t iv ity  was greatest in the spleen early on. With the passage of time 

there was a progressive loss of rad io iron  from the spleen with a 

concomitant r is e  of 59Fe a c t iv ity  in the blood and marrow. Whether 

th is  was due to d irect transfer of iron from RE c e l ls  to marrow 

erythroid precursors could not be answered d ire c tly  from the control 

data.

In animals w ith  satu rated  t ra n s fe r r in s ,  the sp len ic  pattern of 

rad io iron  uptake and release was almost iden tica l to the control group 

of animals. By contrast though, the rad io iron  present in the blood and 

marrow was s ig n if ic a n t ly  reduced when compared to control animals, and 

there was a s ig n if ic a n t ly  increased amount of 59Fe present in the 

l iv e r .  This suggests that there is  a s ig n ific a n t pathway o f iron  

tran sp o rt from spleen to liv e r ,  p a rticu la rly  in the presence of a 

saturated transfe rrin .
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TABLE I COMPARISON OF THE FATE OF 59FE HDRC IN 3 EXPERIMENTAL SETTINGS

Time post Marrow Liver Spleen Blood
infusion 
(hours)

0.5 3.2 (0.1) 16.6 (0.9) 45.1 (9.7) 35.2 (10.5)

1.5 6.3 (0.7) 26.0 (1.8) 47.8 (3.5) 19.9 (3.0)

Control 4.0 16.4 (1.2) 22.9 (2.1) 37.8 (1.7) ;22.9 (1.7)a

8.0 26.7 (1.2) 29.0 (3.2) 29.3 (2.7) 13.4 (1.4)

24.0 26.9 (1.8) 14.6 (3.3) 33.9 (1.5) 24.7 (0.1)

0.5 3.8 (2.2) 19.7 (4.2) 30.1 (2.7) 46.5 (0.7)

Carbonyl 1.5 6.7 (0.8) 39.0 (2.2)a 40.9 (3.3) 11.1 (2.9)

iron 4.0 10.4 (1.3)c 44.0 (3.9)c 36.3 (2.5) 9.3 (2.4)

8.0 15.7 (1.2)c 48.1 (1.8)a 28.6 (1.9) 7.6 (0.7)c

24.0 14.7 (1.0)d 43.7 (4.3)d 33.2 (5.2) 8.6 (0.1)d

0.5 5.8 (1.0) 26.6 (6.8) 56.7 (2.8) 11.1 (4.9)

Heat damaged 1.5 7.0 (0.4) 25.6 (0.4) 63.6 (0.6)b 3.8 (0.2)

red c e lls 4.0 11.3 (3.0) 29.5 (2.2) 53.5 (5.4)a 11.3 (0.3)

8.0 18.0 (0.8) 21.6 (3.9) 52.2 (2.6)a 8.3 (0.6)

Note. 59pe HDRC (3 ml /kg) were infused in to  control ra ts , into animals 
in  which the transferrin  saturation had been maximally ra ised by 2 prior 
oral administrations of carbonyl iron and into ra ts  which had received a 
pretransfusion of heat damaged red c e lls  (6 ml/kg). Mean (+_ SEM) organ 
counts o f 59pe at  various times are expressed as percentages of 
recovered counts.

a S ta t is t ic a lly  d iffe ren t (p < 0.05) from the other two groups which 
are s ta t is t ic a l ly  sim ilar

b S ta t is t ic a lly  d iffe ren t from group given carbonyl iron (p < 0.05) 
c S ta t is t ic a lly  d iffe ren t from control group (p < 0.05) 
d F ir s t  2 groups d iffe ren t at 24 hours (p < 0.05)
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3 .2 .2 .  P r e t r a n s fu s io n  o f  HDRC

The e ffects  of an infusion of unlabelled HDRC (6ml/kg) 8 hours prior to 

the infusion of the regular dose of 59pe HDRC on the organ d istribu tion  

of 59fe are also shown in  Table I.

In contrast to the resu lts  obtained fo llow ing the administration of 

carbonyl iron where there was hold up of rad io iron  in  the l iv e r ,  

pretransfusion of HDRC was associated with a hold up of HDRC derived 

S^Fe in  the spleen and a consequent reduction of blood and marrow 

a c t iv ity .  The fact that less than 1.5% of recovered counts were 

present in  the kidney in d ica ted  tha t s ig n if ic a n t  in travascu la r 

haemolysis of the HDRC had not occurred. This finding of sp len ic  

retention of iron is  in keeping with the observation that follow ing 

HDRC in fusions, only the f i r s t  in fusion of HDRC was associated with a 

r i s e  in  t ra n s fe r r in  saturation . The lack of r is e  in transferrin  

saturation fo llow ing subsequent infusions of HDRC is  due to the fact 

that the RES is  conditioned by the f i r s t  load of HDRC to store iron 

rather than release i t  into the c ircu la t ion .

3.2.3. Single dose of carbonyl iron

That the altered organ d is tribu tion  was not a function of a protracted 

(>24 hours) increased transferrin  saturation was demonstrated when 

tagged HDRC were infused into ra ts  1 hour after the f i r s t  feeding of 

oral carbonyl iron and the animals were sa c rificed  four hours la ter.
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The organ d is tr ibu tion  was sim ilar to that noted when a high percentage 

saturation was maintained for greater than 24 hours with two doses of 

carbonyl iron, namely reduced marrow and blood 59Fe with a strik ing  

increase in hepatic 59pe a c t iv ity  (Table II) .

3.2.4. Enhanced erythropoiesis

In the next s e r ie s  o f experim en ts the e f f e c t  o f enhanced 

e ry th ro p o ie s is ,  induced by p r io r  venesection, on the 59pe organ 

d is tr ibu tion  4 hours after the infusion of tagged HDRC was assessed. 

The enhanced erythropoiesis was confirmed by c ircu la t in g  re ticu locy te  

counts in the region of 20% compared to controls of less than 2%. The 

e ffe c t of the increased erythropoiesis was to markedly increase 59Fe 

counts in the blood and marrow. This was at the expense of the spleen 

predominantly, the 59pe content of which was s tr ik in g ly  reduced. The 

59Fe content of the liv e r  was l i t t l e  changed (Table I I I ) .  The e ffect 

of th is  enhanced e ry th ro p o ie t ic  ra te  was n u l l i f ie d  by the ora l 

a dm in is tra t ion  o f the 2 doses o f carbonyl iron. In the la tter 

experiments, although the re ticu locy te  count was again increased to the 

level of approximately 20%, transfe rrin  saturation was increased to the 

region of 90-95% by the 2 doses of carbonyl iron. This resulted in the 

organ d is t r ib u t io n  o f 59pe not  being s ig n ific a n t ly  d iffe ren t from 

animals w ith  normal e ry th r o p o ie s is  and enhanced t r a n s f e r r in  

sa tu ra t io n s . These experiments were terminated at 4 hours post 

infusion of tagged HDRC.
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TABLE II THE FATE OF 59FE HDRC 4 HOURS AFTER THEIR INFUSION INTO 
CONTROL ANIMALS AND ANIMALS WHOSE TRANSFERRIN SATURATION WAS 
TRANSIENTLY ELEVATED BY THE ORAL ADMINISTRATION OF CARBONYL IRON ONE 
HOUR PRIOR TO HDRC INFUSION.

Marrow Spleen Liver Blood

Control ra ts 16.4 (1.2) 37.8 (1.7) 22.9 (2.1) 22.9 (1.7)

Rats with 
saturated 
transferrin

5.9 (0.7) 28.1 (4.6) 59.8 (3.8) 6.2 (0.1)

t  value 5.2555 2.5469 9.0742 9.6970

p value <0.0005 <0.0314 <0.0001 <0.0001

Note: Results are shown as means (SEM) of percentage recovered counts 
by organs
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TABLE III COMPARISON OF THE FATE OF 59FE HDRC INFUSED INTO CONTROL RATS 
AND ANIMALS WITH ENHANCED ERYTHROPOIESIS

Marrow Liver Spleen Blood

Control 16.4 (1 .2 ) 22.9 (2 .1 ) 37.8 (1 .7) 22.9 (1 .7 )

Control plus
carbonyl iron 10.4 (1 .3 ) 44.0  (3 .9) 36.3 (2 .5) 9.3 (2 .4 )

Venesection 27.3 ( l . l ) a 18.6 ( 6 . 8 ) c 23.8 ( 3 . 0 ) a 30.4 ( 2 . 7 ) b

Venesection plus
carbonyl iron 11.4 ( 1 . 8 ) c 44.6 ( 1 . 9 ) c 34.2 ( 3 . 6 ) c 10.0 ( 0 . 2 ) c

Note. 59Fe labe lled  heat damaged red c e lls  were infused into control 
ra ts  and in to  animals which had been venesected of 4 ml blood 6 and 5 
days prior to the study. A further control and venesected group were 
fed two prior doses of oral carbonyl iron to increase the percentage 
saturation of transfe rrin . Mean (+_ SEM) 59Fe organ counts are expressed 
as percentages of recovered counts at 4 hours after the infusion.

a S ign ifican tly  d iffe ren t from the control group (p < 0.01) 
b Not s ig n if ic a n t ly  d iffe ren t from the control group (p < 0.08) 
c Not s ig n if ic a n t ly  d iffe ren t from the appropriate control group.
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3 . 2 . 5 .  P r i o r  c a rb o n y l  i r o n ,  p r e t r a n s fu s io n  w ith  untagged HDRC, a

combination of both, and prior carbonyl iron plus free haemoglobin 

infusion 8 hours after 59Fe HDRC in jection

In an attempt to further define the pathways in  internal iron exchange, 

the organ d is tr ibu tion  of 59Fe HDRC at 8 hour was tested in several 

groups of 3 animals each. The groups included a control group, one 

which had received prior carbonyl iron, one which had received prior 

unlabelled HDRC, one which had received both and one which had received 

prior carbonyl iron and unlabelled free hemoglobin (Table IV). The 

prior administration of both carbonyl iron and unlabelled HDRC was 

associated with splenic retention, which is  the pattern obtained in  a 

previous experiment when HDRC were given alone (Table I). In contrast, 

when p r io r  carbonyl iro n  and free  haemoglobin were administered 

together, the pattern of increased hepatic counts was sim ilar to that 

obtained with carbonyl iron alone. Marrow and blood a c t iv ity  were 

reduced by a l l  the manoeuvres and the adm in is tra tion  o f fre e  

haemoglobin was associated with an increase in kidney counts.

3.3. S izing column chromatography

3.3.1. Introduction

In an attempt to understand the e ffects of a saturated transferrin  and 

prior transfusion on re ticu loendothe lia l and parenchymal c e l l  iron  

processing  from HDRC, sp len ic and hepatic cy toso lic  extracts were

100



TABLE IV THE EFFECTS OF PRIOR CARBONYL IRON, PRETRANSFUSION WITH 
UNLABELLED HDRC, A COMBINATION OF BOTH, AND PRIOR ORAL CARBONYL IRON 
PLUS AN INFUSION OF FREE HAEMOGLOBIN ON THE ORGAN DISTRIBUTION OF 59FE 8 
HOURS AFTER THE INJECTION OF 59FE LABELLED HEAT DAMAGED RED CELLS.

Marrow Spleen Liver Blood Kidney

Control 35.4 (3.9)d 20.6 (2.3) 35.0 (5.0)b 9.0 (0.2)a 2.2 (0.7)

Carbonyl
iron

18.0 (0.6) 23.5 (1.0) 52.1 (0.7) 6.4 (0.7) 2.9 (1.4)

HDRC 15.7 (0.7) 39.1 ( l. l)C 40.9

_
Q

•
CSJ 4.3 (1.0) 1.2 (0.9)

Carbonyl 
iron plus 
HDRC

15.9 (1.6) 34.2 {7. 0)c 45.2 i(6.3) 4.7 (0.3) 3.3 (1.4)

Carbonyl 
iron plus 
free
haemoglobin

20.7 (1.4) 20.6 (1.0) 54.4 (2.1) 4.3 (0.5) 5.5 (0.2)

Note. Mean (+ SEM) organ counts of 9̂Fe 8 hours after the in jection  are 
expressed as percentages of recovered counts

a S ta t is t ic a lly  d iffe ren t from the other groups which are 
s ta t is t ic a l ly  equivalent (F = 34.9; p < O.OOOl) 

b S ta t is t ic a lly  sim ilar but d iffe ren t from the other groups 
(F = 12.7; p < 0.006)

c S ta t is t ic a lly  sim ilar but d iffe ren t from the other groups which 
were sim ilar (F = 24.0; p < 0.0006) 

d S ta t is t ic a lly  d iffe ren t from the other groups which were 
s ta t is t ic a l ly  equivalent (F = 61.7; p < 0.0001)
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subm itted to s iz in g  chromatographic an a ly s is  on AcA 44 ultrogel 

chromatography. The nature of the 59pe peaks obtained o ff the column 

was id e n t if ie d  by comparison to ca lib ra tion  with known iron transport 

and storage proteins, by immune p rec ip ita tion  and by u t il iz a t io n  of the 

characte ris tic  colours of fe r r it in ,  haemoglobin, ferrioxamine and the 

2,2' b ipyrid ine-iron  complex. The re la t iv e  sizes of these peaks were 

calcu lated as a percentage of the counts recovered from the column. The 

2,2' b ipyrid ine-iron  peak was of s lig h t ly  lower molecular size (sh ifted 

to the r ig h t  of) than the ferrioxam ine peak. R ep resen ta tive  

chromatograms for sp lenic and hepatic cy toso lic  preparations and for 

hepatic detergent extracted membrane enriched fractions compared to 

ca lib ra tion  of the column, are shown in figure 3.

3.3.2. Time dependent fractionation  of splenic extracts

The re su lts  of the time dependent an a ly s is  o f sp le n ic  c y to so lic  

preparations in terms of 9̂Fe from HDRC as a function of a normal 

transfe rrin , a saturated transfe rrin  or prior transfusion are shown in 

Table V. In a l l  groups there was a progressive s h if t  of 59pe from the 

haemoglobin pool in to  the fe r r it in  pool with a re la t iv e ly  consistent 

small m olecular weight component. Overa ll there were no major 

differences between groups in the percentage d is tribu tion  of the iron 

peaks. The c la im  tha t the con tro l group was one with a normal 

transferrin  saturation is  somewhat of an o v e rs im p lif ic a t io n  since 

infusion of the HDRC per se did produce an increase of transferrin  

saturation as the iron (roughly 0.8 mg/kg) from these red c e lls  was
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Ferritin Calibration

Figure 3. Representative chromatograms for splenic (second frame) 

and hepatic (th ird  frame) cytoso lic  preparations and for 

hepatic detergent extracted membrane enriched fraction  

(bottom frame), compared to ca lib ra tion  of the column 

with fe r r it in  and transferrin  (top frame).
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TABLE  V T IM E  DEPENDENT FR A C T IO N A T IO N  OF S P L E N IC  EXTRACTS

Time F e r r i t i n
pos t  i n f u s i o n  

(min)

Haemoglobi n
Small  mo le cu la r  we igh t  

F e r r i c  Fe r rous

Contro l 1.6 (0.5) 88.1 (0.5) 6.0 (0.2) -

Carbonyl i r o n 30 1.9 (0.2) 86.9 (0.9) 4.0 (0.4) -

Heat damaged red c e l l s 4.0 (1.3) 87 .9 (2.3) 6.1 - 2.4 (0.1)

Cont ro l 9.9 (1.1) 80.7 (1.3) 5.7 (1.5) 2.7 (0.2)
Carbonyl  i r o n 90 11.9 (0.4) 75.0 ( 1 . 4 ) a 8.5 (0.7) 7.6 (2.1)
Heat damaged red ce l 1 s 12.5 (1.3) 79.7 (1.2) 3.7 (0.1) 2.3 (0.2)

Cont ro l 19.2 ( 2 . 8 ) b 62.7 (3.6) 4.8 (0.3) 5.2 (0.2)
Carbonyl  i r o n 240 37.2 (3.3) 51.4 (3.1) 5.6 (0.8) 3.6 (0.4)
Heat damaged red c e l 1 s 42.0 (2.4) 51.4 (3.0) 3.4 (0.3) 2.1 (0.2)

Cont ro l 73.8 (3.7) 18.5 (3.5) 3.6 (0.3
Carbonyl i r o n 480 86.0 (1.9) 9.5 (1.5) 2.5 (0.1) -

Heat damaged red c e l l s 72.7 (0.9) 22.7 (1.2) 2.4 (1.5) 2.2 (0.9)

Note. S p l en i c  t i s s u e  was f r a c t i o n a t e d  i n t o  f e r r i t i n ,  haemoglobin and smal l  m o l e cu l a r  we igh t  
peaks a f t e r  the g i v i n g  o f  59Fe l a b e l l e d  HDRC. The groups i n c l u d e  c o n t r o l  r a t s ,  an ima l s  
which had r e c e i v ed  p r i o r  o r a l  carbo/iv l i r o n  and those whi ch had r e c e i ved  p r i o r  u n l a b e l l e d  
HDRC. Mean (+ SEM) organ counts  o f  59Fe a t v a r i o u s  t imes are expressed as pe rcentages  of  
recovered  counts .  S t a t i s t i c a l  compar i sons  r e f e r  on l y  to f e r r i t i n  and hemoglobin as the 
smal l  m o l e cu l a r  we igh t  c h a r a c t e r i s a t i o n s  were per formed on on ly  smal l  numbers o f  samples.

a
b

S t a t i s t i c a l l y  d i f f e r e n t  from co n t r o l  group (p < 0.05)
S t a t i s t i c a l l y  d i f f e r e n t  from ca rbony l  i r o n  and heat  damaged red c e l l  groups 
(p < 0.05)



processed ( f i gu re  2). C lea r l y  t h i s  may have led to a somewhat 

exaggerated f e r r i t i n  peak on c y to so l i c  59Fe analysis of splenic 

material in the a llegedly normal saturation animals.

3.3.3. Time dependent fractionation  of hepatic extracts

Time dependent hepatic cy toso lic  59pe analysis post HDRC infusion in 

animals o f normal t r a n s f e r r i n  sa tu ra t io n , increased t r an s fe r r i n  

saturation and prior infusion of HDRC are shown in  Table VI. There 

were s tr ik in g  differences between splenic fractionation  (Table V) and 

hepatic f r a c t io n a t io n .  At the times studied the liv e r contained 

s tr ik in g ly  less haemoglobin 59Fe but more fe r r it in  and small molecular 

weight 59Fe than d id  the sp leen. The carbonyl i ron group had 

s ig n if ic a n t ly  more hepatic small m olecular weight i ron,  (both in 

percentage and absolute terms) than the normal or pretransfusion groups 

while 59pe fe r r it in  was increased in  both the carbonyl iron and prior 

transfused groups.

3.3.4. Fractionation of so lub ilized  c e ll and membrane pe lle ts

In an attempt to investigate the ce llu la r  level at which the saturated 

transferrin  was exerting it s  e ffe c t, detergent so lub ilized  extracts of 

hepatic and splenic c e ll and membrane p e lle ts  obtained 90 minutes after 

HDRC in f us ions  i nto  con tro l animals and animal wi th saturated 

transferrins were fractionated for 59pe a c t iv ity  on AcA 44 ultrogel 

s iz ing  column chromatography (Table VII). These detergent extracts
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TABLE  VI T IM E  DEPENDENT FR A C T IO N A T IO N  OF H E P A T IC  EXTRACTS

Small  m o l e cu l a r  we igh t

Time F e r r i t i n Haemoglobi  n F e r r i c Fer rous

Cont ro l

pos t  i n f u s i o n  

(min)

5.0 (0.6 )a 61.9 ( 3.5 )6 17.3 (2.4) 17.9 (0.9)

Carbonyl  i r o n 90 20.0 (1.9 ) a 42.2 (3.3) 28.3 (4.8) 24.9 (0.9)

Heat damaged red c e l l s 36.3 ( 1 . 8 ) a 38.8 (2.0) 15.9 (0.3) 16.0

Contro l 47 .4 (2.7) 17.8 (3.6) 18.5 (5.6) 20.8 (3.7)

Carbonyl  i r o n 240 51.4 (7.1) 10.8 (1.5) 22.0 (9.6) 28.4 (11.9)

Heat damaged red c e l l s 81.2 ( 8.2 )c 7.1 (3.0) 6.9 4.3

Note. Hepa t i c  t i s s u e  was f r a c t i o n a t e d  i n t o  f e r r i t i n ,  haemoglobin and smal l  m o l e cu l a r  we igh t  

peaks a f t e r  the g i v i n g  o f  9̂Fe l a b e l l e d  HDRC. The groups i n c l u d e  c o n t r o l  r a t s ,  an ima l s  

which had re c e i v ed  p r i o r  o ra l  carbony l  i r o n  and those which had r e c e i ved  p r i o r  u n l a b e l l e d  

heat damaged red c e l l s .  Mean ( + SEM) organ counts  o f  5®Fe a t v a r i o u s  t imes  are expressed 

as pe rcentages  o f  recovered  counts .  S t a t i s t i c a l  compar i sons r e f e r  on ly  to f e r r i t i n  and 

hemoglobin peaks as the smal l  m o l e cu l a r  we i gh t  compar i sons  were per formed on smal l  numbers 

of  samples.

a Each s t a t i s t i c a l l y  d i f f e r e n t  from the o t he r  2 groups (p < 0.05)

b S t a t i s t i c a l l y  d i f f e r e n t  from the o the r  2 groups (p < 0.05)

S t a t i s t i c a l l y  d i f f e r e n t  from co n t r o l  group (p < 0.05)c



TABLE V II  FRACTIONATION OF SOLUBILIZED CELL AND MEMBRANE PELLETS

High molecular Mid-range Haemoglobin 
weight peak 59Fe a c t iv ity  peak

Control 32.4 (3.6) 29.6 (2.7) 27.4 (4.6)

Li ver

Carbonyl iron 45.9 (1.5) 19.0 (4.9) 26.5 (2.7)

Control 13.6 (1.5) 10.8 (3.6) 69.0 (7.2)

Spleen

Carbonyl iron 19.1 (2.0) 13.8 (3.1) 61.9 (2.9)

Note. The mean (+ SEM) percentage d is tr ibu tion  of 59Fe hepatic and 
splenic a c t iv ity  in so lub ilized  c e ll and membrane pe lle ts  90 minutes 
a fte r  the adm in is tra tion  of 59pe labe lled  HDRC in controls and in 
animals which had received prior oral carbonyl iron. The pe lle ts  were 
s o l u b i l i z e d  with tr ito n  and fractionated on an AcA ultrogel sizing 
column.
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revealed 3 regions of 59pe a c t iv ity , namely a high molecular weight 

(void) fraction , a haemoglobin fraction  and a midrange fraction  between 

these two peaks. No s ta t is t ic a l ly  s ig n ific an t differences were noted 

between the tota l 59Fe a c t iv ity  in the p e lle ts  (not shown in table) or 

in the d is tribu tion  between the r ad i o i r on  peaks, in cont ro l s  as 

compared with animals in which the transferrin  saturation had been 

ra ised by prior administration of carbonyl iron.

3.4. Parenteral adm inistration of chelators

In an attempt to further e lucidate the spleen to l iv e r  cyc le of 

rad io iron , the e ffe c t of various chelators on the organ d is tribu tion  of 

59Fe 8 hours after the infusion of labe lled  HDRC into control animals 

and animals with increased transferrin  saturations was studied. The 

chelators employed were desferrioxamine, an in tra ce llu la r hydrophilic 

fe r r ic  chelator, DTPA, an extrace llu la r hydrophilic fe r r ic  chelator and 

2,2' b ipyrid ine, a membrane hydrophobic ferrous chelator.

The e f f e c t s  o f the p a re n te ra lly  adm in istered che la to rs  on the 

d is tr ibu tion  of 59Fe HDRC are shown in Table VIII.  In the control 

animals a l l 3 chelators caused a modest but s ta t is t ic a l ly  in s ign ifican t 

reduction in the 59Fe hepatic pool. In control animals given carbonyl 

iron the size of the hepatic pool was increased and the che lators 

caused a s i g n i f i c a n t  reduct ion in i t s  s i ze .  Marrow uptake was 

s ig n if ic a n t ly  decreased by 2,2' bi pyridine in the control group and 

there was a concomitant increase in blood a c t iv ity . A s im ila r, though
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TABLE V I I I THE EFFECT OF VARIOUS CHELATORS ON THE DISTRIBUTION OF 59FE IN ORGANS

Che l a t o r Marrow L i v e r Spleen Blood Non-recovered

None 20.0 (2.3) 20.8 (3.6) 24.3 (3.4) 9.7 (1.7) 25.3 (2.7)

Cont ro l 2 ,2 '  b i p y r i d i n e 5.7 (0.4 )b 15.1 (1.7) 15.6 (0.3) 22.3 ( 3 . 4 ) b 41.4 (3.5)

D e s f e r r i  oxami ne 20.8 (2.2) 14.6 (1.7) 22.0 (0.5) 10.7 (1.1) 31.6 (4.1)

DTPA 14.0 (3.2) 17.4 (2.0) 14.5 ( 2 . 0 ) b 9.8 (1.3) 43.3 (8.3)

P r i o r None 13.3 (3.4) 34.0 (3.5) 18.2 (1.1) 6.4 (0.2) 28.2 (3.9)

carbony l 2 ,2 '  b i p y r i d i n e 6.4 (2.0) 16.9 ( 0 . 3 ) a 18.2 (0.9) 19.0 ( l . l ) b 39.6 (0.4)

i ron O e s f e r r i  oxamine 9.8 (0.2) 17.4 { 0.2 ) a 20.2 (0.5) 5.8 (1.2) 46.9 (1 • 7 )b

DTPA 7.5 (0.5) 21.0 { 3.8)  a 14.8 (3.3) 7.3 (1.0) 49.5 ( 0 . 0 ) b

Note. The e f f e c t  o f  v a r i o u s  c h e l a t o r s on the 8 hour organ di  s t r i  bu t i on o f  59 Fe 1a b e l 1ed HDRC i n

c o n t r o l  r a t s  and in  an ima l s  which had r e c e i v ed  p r i o r  o ra l  ca rbony l  i r o n .  The c h e l a t o r s  were 

adm in i s t e r e d  p a r e n t e r a l l y  s t a r t i n g  1 hour a f t e r  the i n f u s i o n  o f  the red c e l l s .  Mean (+ SEM) organ 

counts  are expressed as pe rcen tages o f  recovered  counts .

a A l l  three  s t a t i s t i c a l l y  e q u i v a l e n t  but  t oge t he r  s i g n i f i c a n t l y  d i f f e r e n t  from l i v e r  counts i n  the 

carbony l  group which d id  not  r e c e i v e  any c h e l a t o r s  ( f  = 23.5; p < 0.005) 

b S i g n i f i c a n t l y  d i f f e r e n t  from the a p p r o p r i a t e  group which d id  not  r e c e i v e  any c h e l a t o r  (p < 0.05)



less marked trend was noted in the carbonyl group. DTPA s ig n ifican tly  

reduced the splenic pool in the control group and a sim ilar but not 

s ig n if ic a n t reduction was noted in  the animals given prior carbonyl 

iron.

3.5. Fractionation of serum

Serum obtained 30 minutes after the administration of the 59pe HDRC was 

fractionated on AcA 44 u ltrogel chromatography. Organ d is tribu tion  in 

the control and carbonyl iron groups was sim ilar. The transferrin  

saturations were 51.0 (SEM 1.5)% and 91.3 (SEM 5.5)% respectively. In 

the serum of the control animals there was an equal d is tribu tion  of 

rad io iron  between fe r r it in  and transfe rrin , while in the animals which 

had received carbonyl iron the transferrin  peak was very small (Figure 

4).
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Figure 4. Fractionation on an AcA 44 ultogel column of equal volumes 

of whole serum 30 min post 59pe HDRC infusion in normal ra ts 

(middle frame) and in rats given prior oral carbonyl iron 

(bottom frame). Calibration of the column for fe r r it in ,  

transferrin  and haemoglobin is  shown in the top frame.

I l l



CHAPTER FOUR

DISCUSSION



4.1. The e ffe c t of a saturated transferrin

In the current investigation the enteral administration of carbonyl 

iro n  proved to be an e f fe c t iv e  way o f producing an increased 

transferrin  saturation without the r is k  of supe rsa tu ra tion . This 

manoeuvre was used as the method fo r eva lua ting  the e f fe c t  of 

transfe rrin  saturation on the regulation of the internal exchange of 

erythrocyte derived iron.

The re su lts  of previous work have shown that saturation of transferrin  

w ith iron  causes a marked reduction  in  iron  re lease  from the 

reticu loendothe lia l system (L ipsch itz et a l , 1971c; Bergamaschi et a l , 

1986). In the present study re su lts  were somewhat d iffe ren t, possibly 

due to the fact that transferrin  saturation was produced in a more 

physiological way. Whereas both acute and more sustained increases in 

transfe rrin  saturation had no e ffe c t on the splenic retention of iron 

derived from HDRC, an increase in hepatic retention of iron was noted.

The heat damaged red c e ll in fusion did per se re su lt in a transient 

increase in transferrin  saturation which may to a degree have modified 

the pattern of internal iron exchange in animals with the so ca lled  

control transferrin  saturation. Splenic retention of rad io iron  was 

however enhanced by the prior infusion of unlabelled HDRC. This la tter 

observation was supported by another experiment in which the percentage 

saturation of transferrin  was measured after repeated in jections of
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HDRC. Only the f i r s t  infusion was associated with a r is e  in the 

t ra n s fe r r in  sa tu ra t io n . The lack  o f any subsequent r is e s  was 

presumably due to a conditioning of the reticu loendothe lia l c e lls  by 

the f i r s t  load of HDRC to store the released iron rather that to 

deliver i t  back to the plasma.

Stimulation of erythropoiesis by venesection in animals that had not 

received carbonyl iron caused a m obilization of iron from both live r 

and spleen and i t s  tra n s fe r to red  c e l l  precursors. Saturating 

transferrin  by the prior administration of carbonyl iron prevented th is  

enhanced ce llu la r  iron release despite the increased erythropoietic 

acti vi ty .

4.2. The nature of iron transport from the spleen to the liv e r

An attempt was made to explain the nature of the iron transport from 

sp leen  to l iv e r ,  p a r t ic u la r ly  in  the presence o f a saturated 

transfe rrin . Prior infusion of an equivalent amount of haemoglobin as 

free haemoglobin did not a lte r the red is tr ibu tion  of 59Fe from spleen 

to liv e r in carbonyl treated ra ts . This argues strongly against th is  

c i r c u i t  be ing  a h ap tog lob in -h aem og lob in  one consequent upon 

intravascular haemolysis in the spleen (Bergamaschi et a l , 1986). I f  

the haptoglobin-haemoglobin pathway was the explanation i t  s t i l l  would 

not explain why intravascular haemolysis should be increased in the 

setting of the increased transfe rrin  saturation and why the major hold-
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up should s t i l l  not be in  the spleen i f  haemolytic ra te s  were 

equivalent.

The splenic and hepatic fractionation  studies gave a further clue as to 

the nature of the splenic-hepatic c ir c u it .  The fractionation  studies 

showed that while in both organs there was a progressive s h if t  of 59Fe 

from haemoglobin in to  fe r r it in ,  possibly through a small molecular 

weight chelatable pool, at any given time the haemoglobin fraction  in 

the liv e r was s ig n if ic a n t ly  smaller than that in  the sp leen. By 

contrast the small molecular weight and fe r r it in  peaks were much larger 

at any given time in the liv e r .  The question then is  whether the 

nature of the 59pe transport was as fe r r it in  or some small molecular 

weight non-transferrin bound form of iron.

In th is  regard recent work has shown that iso la ted  macrophages release 

iron in the form of fe r r it in  (S ib il le  et a l , 1988) and that th is  

fe r r it in  is  rap id ly  taken up by iso lated  hepatocytes (S ib il le  et a l , 

1988) presumably by a receptor mediated pathway (Mack et a l , 1983). 

Non-transferrin iron has also been shown to be very e ffe c tive ly  taken 

up by hepatocytes (Wright et a l , 1988). The fractionation studies 

in d ic a te ,  in  abso lu te terms, that in the presence of a saturated 

transfe rrin , at 90 minutes, 8% of recovered counts were present in 

fe r r i t in  and roughly 10% in the small molecular weight pool in the 

liv e r .  This compares to roughly 1% and 4.5% in the control animals. 

By 240 minutes these values were 22.5% and roughly 11% in  the saturated
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transfe rrin  group while the control group had values of 11% and roughly 

4.5%.

To further evaluate whether the 59pe transport from spleen to liv e r was 

as fe r r it in  or as some small molecular weight non-transferrin bound 

form o f iro n , in je c t io n s  of homologous r a t  tissue fe r r it in  were 

administered an hour prior to and 2 hours post HDRC administration. 

Organ d is tr ibu tion  of 59pe was assessed at 8 hours post HDRC infusion. 

The re su lts  showed that both control and saturated transferrin  groups 

of animals exhibited marked splenic 59pe retention with l i t t l e  59Fe 

being released into the blood and transported to the l iv e r .  The 

explanation for th is  re la ted  to consistently high t it re s  of endotoxin 

being detected on limulus lysate assay of the homologous ra t  tissue 

fe r r it in  preparation. Endotoxin i t s e l f  causes major perturbations of 

internal iron transport (Torrance et a l , 1978).

Whole serum fractionation  studies at 30 minutes post HDRC infusion 

showed that there was no increase in the c ircu la ting  fe r r it in  59Fe peak 

in the animals with saturated transfe rrin . Since th is  was evaluated in 

systemic blood rather than portal blood the p o ss ib ility  s t i l l  exists 

that enhanced hepatic fe r r it in  clearance might have lim ited a r is e  in 

the c ircu la t in g  fe r r it in  peak. The existence of such a c ircu la ting  

59Fe f e r r i t i n  peak a fte r  HDRC in fu s io n  has previously been well 

documented (Siimes and Dallman, 1974). In the animals with a saturated 

t ra n s fe r r in  whole serum fractionation  indicated an absence of the 

transfe rrin  59pe peak.
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The study involving various classes of chelators shed some further 

lig h t  on possible iron release mechanisms and the nature of the spleen 

to liv e r iron pathway. In animals with normal transferrin  saturations, 

the ex trace llu la r hydrophilic chelator DTPA markedly enhanced splenic 

iron release. Th is, together with the studies on animals with enhanced 

erythropoiesis, suggests that re ticu loendothe lia l iron release can be 

enhanced by increased unsaturated iron binding capacity. The finding 

tha t in  con tro l an im als, the membranous fe rrous che la tor 2,2' 

b ipyrid ine was associated with an increased amount of 59pe -jn the blood 

and reduced 59pe j n the marrow is  compatible with the observation that 

2,2' b ipyrid ine decreases iron uptake from d ife r r ic  transferrin  by a 

number of c e ll types, including erythroid precursors (Morgan, 1983; 

Nunez et a l , 1983; Baynes et a l , 1988a; 1988b). The increased

hepatic retention of iron derived from 59pe labe lled  HDRC noted in 

animals with saturated transferrins was reduced by a l l  three chelators. 

Each, however, must have obtained it s  iron from a d iffe ren t pool. 2,2' 

b ipyrid ine presumably removed ferrous iron from splenic or hepatic 

c e llu la r  membranes or both, DTPA obtained fe r r ic  iron released by the 

spleen, while desferrioxamine procured it s  iron from a fe r r ic  pool 

predominantly in hepatocytes (Pippard et a l,  1982).

There was one further point of in te rest. Fractionation of so lub ilized  

membrane enriched fractions from spleens and liv e rs  after the infusion 

of 59Fe HDRC did not show any accumulation of rad io iron a c t iv ity  in the 

hepatic membranes of animals with a saturated t ra n s fe r r in .  Th is
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find ing suggests that membrane transport is  not a rate lim it ing  step in 

iron release from the liv e r .

4.3. The small molecular weight la b ile  iron pool

The findings of th is  study have contributed to the knowledge of the 

nature of the small molecular weight la b ile  iron pool. The cytoso lic 

fractionation  studies confirmed that the iron in th is  pool appears to 

be of a low molecular weight and illu s tra te d  that the iron in th is  pool 

is  made up of both ferrous and fe r r ic  components. Enlargement of th is  

pool fo llo w in g  the infusion of HDRC into animals with a saturated 

transferrin  appears to be a transient phenomenon, as evidenced by the 

find ing that with the passage of time, less iron was present in th is 

form and more was present in the form of fe r r it in .  The transient 

nature of th is  pool has been documented by others (Young et a l,  1985; 

Bomford et a l , 1986).

There are in v itro  and in vivo data to suggest that enlargement of the 

in t r a c e l lu la r  small m olecular weight iron  pool is  a tran s ien t 

phenomenon because th is  iron induces a red is tr ibu tion  of cytoso lic 

fe r r it in  mRNA from being free w ithin the cytosol to being attached to 

polyribosomes (Aziz and Munro, 1986; Rogers and Munro, 1987). This 

resu lts  in enhanced fe r r it in  mRNA translation  and in increased fe r r it in  

synthesis, which in turn would tend to reduce free low molecular weight 

iron by incorporating th is  iron into the newly synthesized fe r r it in .
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The f in d in g  in  th is  investigation of an increase in in tra ce llu la r 

fe r r it in  59Fe content soon after the infusion of HDRC into animals with 

saturated transferrins is  in keeping with the observation that new 

f e r r i t i n  production is  mediated at a translationa l level in iron 

storage c e lls  (Aziz and Munro, 1986). The red is tr ibu tion  of fe r r it in  

mRNA has re c e n t ly  been demonstrated to be mediated by an iron 

responsive element on the fe r r it in  mRNA which e ffects the s h if t  of the 

cytoplasmic fe r r it in  mRNA to the polyribosomes (Aziz and Munro, 1986; 

Rogers and Munro, 1987; Hentze et a l , 1987; Leibold and Munro, 1988; 

Casey et a l , 1988; Dickey et a l , 1988).

4.4. Implications of th is  investigation

The findings of th is  investigation can be seen as further evidence of 

the important ro le  that non-transferrin iron has to play in internal 

iron exchange, especia lly  in conditions of a saturated transferrin .

The documentation by others (Hershko et a l , 1978; Anuwatanakulchai et 

a l , 1984; Gutteridge et al,1985; Wang et a l , 1986) of the presence of 

much higher concentrations of tota l iron c ircu la t in g  in the form of low 

molecular weight complexes not bound to transferrin  in the plasma of 

patients with severe iron overload, together with the documentation of 

the highly e f f ic ie n t  hepatic clearance of th is  form of iron (Brissot et 

a l , 1985) have highlighted the importance of th is  form of iron in the 

hepatic iron loading and to x ic ity  that characterizes many of the iron 

load ing  sta tes. In the current investigation, the resu lts  of the
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fra c t io n a t io n  studies of hepatic extracts from control animals and 

those with saturated transferrins suggest tha t d iffe ren ce s  in  the 

amount of iron present in the form of low molecular weight complexes 

are contributing to the altered organ d is tribu tion  of iron derived from 

HDRC. These resu lts  also serve to confirm and emphasize the central 

ro le  that the low molecular weight complexes are p lay ing  in  the 

ae tio lo gy  o f hepatic iron  load ing, especia lly  in conditions of a 

saturated transfe rrin .

While i t  is  known that fe r r it in  is  rap id ly  cleared from the c ircu la tion  

by hepatocytes, probably by a receptor mediated process (Mack et 

al,1983; Morgan and Baker, 1986), what proportion of non-transferrin 

iron fe r r it in  constitutes and the ro le  i t  may play in hepatic iron 

load ing  is  s t i l l  not c lear. Recently i t  has been suggested that 

fe r r it in  may serve as an intrahepatic carrie r of iron between Kupffer 

c e lls  and hepatocytes (Kondo et al,1988; S ib i l le  et a l , 1988) and that 

th is  may explain the su scep t ib ility  of the liv e r to iron overload.

While serum fractionation  studies performed in th is  investigation were 

unable to show an increase in c ircu la ting  fe r r it in  in animals with 

saturated transfe rrin s, th is  was evaluated in systemic blood rather 

than portal blood. The p o s s ib ility  ex ists that fe r r it in  may be playing 

an important part in iron transport from the spleen to the liv e r in 

conditions of a saturated transferrin  and may be partly responsible for 

hepatic iron loading. Enhanced hepatic fe r r it in  clearance may lim it  a 

r is e  in c ircu la t in g  f e r r i t i n  le v e ls ,  but fra c t io n a t io n  o f serum
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obtained from the po rta l vein by i t s  cannu lation  may shed more 

information on the ro le  that fe r r it in  has to play in iron transport 

from the spleen to the liv e r .

4.5. A model of internal iron exchange

Based on the resu lts  of the investigations carried out in th is  study, a 

model to exp la in  the regu lation  of the internal exchange of HDRC 

derived iron was arrived at.

The re ticu loendothe lia l c e ll typ ifie d  by the splenocyte catabolizes 

haemoglobin at a re la t iv e ly  constant ra te . I t  also releases it s  iron 

at a constant ra te . This is  in agreement with previous data of Noyes 

and coworkers (1960). The iron is  transported across the ce ll membrane 

as ferrous iron. Ex tra ce llu la r ly  i t  undergoes redox state change to 

fe r r ic  iron.

This fe r r ic  iron is  taken up by either transferrin  or a non-transferrin 

iron binding mechanism. This non-specific ity  of binding is  in keeping 

w ith  previous work from th is  laboratory showing the absence of a 

sp ec ific  apotransferr in-macrophage interaction  (Baynes et a l , 1987b). 

A fe r r ic  chelator is  also able to gain access to the released iron.

The ra te  of release of iron from the splenocyte is  not modified by a 

saturated transfe rrin . The reason for th is  may re la te  to the well 

documented re la t iv e  lack of transferrin  receptors on tissue macrophages
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(Hamilton et a l,  1984). The rate of release can be increased by 

increasing extrace llu la r unsaturated iron binding capac ity . P r io r 

transfusion, by moving more iron through the reticu loendothe lia l ce ll 

is  able to enhance splenocyte iron storage capacity.

D ife r r ic  t ra n s fe r r in  re s u lt in g  from splenocyte iron release then 

undergoes t is su e  s p e c if ic  d is t r ib u t io n  in  d ir e c t  r e la t io n  to 

t ra n s fe r r in  recepto r density on tissues, with the major rec ip ien t 

tissue being the erythroid marrow. Non-transferrin iron (re leased 

largely in the setting of saturated transferrin) is  rap id ly  cleared by 

the hepatocytes. F e rr it in  release from splenocytes and uptake by 

hepatocytes may contribute to the spleen to liv e r c ir c u it  in animals 

with a saturated transfe rrin . F e rr it in  has been shown to contribute to 

the c i r c u i t  between the spleen and the l iv e r  in  circumstances 

associated with red c e ll breakdown, but it s  quantitative sign ificance 

is  not clear (Siimes and Dallman, 1974). Once the iron reaches the 

liv e r i t  is  retained there in the setting of a saturated transferrin . 

This d ifference between the hepatocyte and reticu loendothe lia l ce ll in 

the handling of iron in the setting of a saturated transferrin  may 

r e la te  to the w ell developed t ra n s fe r r in  receptor system on the 

hepatocyte (Page et a l , 1984; Trinder et a l , 1986). The mechanism 

whereby transfusion increases re ticu loendothe lia l iron storage capacity 

and whereby a saturated transferrin  increases hepatocyte iron storage 

capac ity  more than l ik e ly  invo lves increased in t ra c e llu la r  iron 

e ffecting  a s h if t  of cytoplasmic fe r r it in  mRNA to the polyribosomes by 

the iron responsive element (Aziz and Munro, 1986; Rogers and Munro,
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1987; Hentze et a l , 1987; Leibold and Munro, 1988; Casey et a l , 

1988; Dickey et a l , 1988).

The apparent d iscrepancy between the cu rren t data and those of 

Bergamaschi and co-workers (1986) in re la tio n  to increased transferrin  

saturation increasing splenocyte iron retention may re la te  to these 

worker's use of infused iron which supersaturated the animals sera and 

may have resulted in depletion of the non-transferrin iron binding 

capacity.
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