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ABSTRACT 
The detection of hierarchically nested structure in a semi-arid savanna as predicted by 

complex systems theory requires a method that detects context specific multi-scaled 

pattern in a proxy that represents the net effect of system processes. Statistical 

assumptions preclude the use of many traditional methods in the detection of 

hierarchical structure in heterogeneous landscapes so to circumvent statistical barriers 

to inference I developed a linear scale-space based application to represent multi-

scaled woody vegetation structure in a spatially explicit manner. Analysis of a scale-

space representation of woody cover across multiple scales explicitly recognizes 

landscape context and emergent pattern due to the causality principle inherent linear 

scale-space generation. As a proxy for process in scale and space I utilize the merge 

events of woody canopy cover, which should theoretically be considered the point at 

which processes shift domain.  

Scale-space representations were analyzed using a spatially explicit discontinuity 

analysis that compares the distribution of structure across the dimension of scale to 

that of a neutral model specific to the landscape in question. The application was 

tested for rigor and ability to detect multi-scaled, context dependent pattern in test 

datasets. The effects of fire and herbivory on the multi-scaled structure of a semi-arid 

savanna landscape were compared using the merge events from scale-spaces 

generated from a 33 year herbivore browser exclosure.  

No more hierarchical structure is present in real world savannas than can be expected 

from random. Hypotheses put forward to explain the results include: procedural and 

philosophical bias, errors in the application, or that the landscapes are not 

hierarchically nested. Each hypothesis is discussed in the light of the evidence and 

after synthesis I discuss that savanna landscapes may have more randomness within 

the pattern and process than previously acknowledged.   
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GLOSSARY OF TERMS 
Absolute space: a term coined by Marceau (1999), to mean a fixed geometric 

scheme used to partition a geographic space to define the relevant units 

Annihilation event: A linear scale space event that depicts the point at which 

significant data structure (A BLOB) is no longer evident at higher scales. 

Bonferroni adjustment: A correction that can be used to correct confidence intervals 

in a test due to multiple comparisons increasing the likelihood of a rare event being 

witnessed. 

BLOB: A Binary Large Object (BLOB) is an object which represents the structure of 

interest at the sampled scale within a scale-space. For the objectives of this thesis, 

BLOBs represent woody tree cover at a particular scale of observation. 

Causality: Used primarily in this text in reference to the principle of causality, an 

important characteristic of a linear scale-space. No new information is created 

through the convolution of a dataset with a Gaussian kernel (Koenderink, 1984, 

Florack et al., 1994, Lindeberg, 1994).The importance for this thesis is that in a linear 

scale-space, analyzed in the manner done so here structure at higher scales can only 

have been generated by structure at lower scales. Causality of pattern is an important 

characteristic when testing for hierarchically nested woody vegetation structure and is 

the backbone of the spatially explicit discontinuity analysis technique developed. 

Cross scale morphology: Pattern measured at and compared across multiple scales 

of observation is called the cross-scale morphology of a system (Holling, 1992, 

Allen, 2006, Stallins, 2006). 

Discontinuity: Discontinuities are discontinuous distributions in a considered pattern 

when compared across scales of observation. Discontinuity research is in direct 

contrast to the traditional approaching of analyzing continuous distributions, (Allen 

2006). 

Entrainment: The capture of the spatio-temporal frequency of a pattern-process 

interaction and/or expression by that of another. This enforces similar spatial and/or 

temporal frequencies of pattern and process in the landscape. 

Ecological memory: The degree to which an ecological process is shaped by its 

history is the strength of  the ecological memory of that process (Peterson, 2002). 

 

Extent: The largest possible range over which the samples are taken. 

Grain: The smallest unit of measurement, often linked to the pixel size or resolution 

of an image. 

Hierarchical Patch Dynamics Paradigm: The Hierarchical Patch Dynamics 

Paradigm (HPDP) is an integration of Patch Dynamics Theory and Hierarchy Theory, 
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first described by  Wu and Louks (1995). HPDP takes the concept of patches as a 

relatively discrete spatial pattern (White and Pickett, 1985) and makes it explicit that 

the patchiness observed is dependent on one's scale of observation, nested in a 

hierarchical manner. 

Holon: A fundamental unit of a complex system in which a region of the system is 

relatively more coupled to each other than to the rest of the system(Koestler, 1967). 

Kolmogorov-Smirnov test: A non-parametric statistical test which compares two 

distributions for similarity. The KS test statistic is calculated as: K= max(|F1(x)-

F2(x)|) and is compared to the alpha value in a standard hypothesis test. The null 

hypothesis is that the two distributions, F1 and F2 may be considered from the same 

continuous distribution. 

Landscape context: Landscape context reflects that even at similar scales, different 

drivers may be responsible for different patterns under different landscape contexts, 

or configurations of processes (viz. Levick 2011).  

Linear scale-space: Linear scale-space is a three dimensional representation of a 

dataset generated through the convolution of a Two dimensional X-Y dataset with a 

Gaussian Kernel of an ever  increasing bandwidth/ The derived datasets are stacked 

sequentially on top of one another and structural units are linked between scales to 

generate the third dimension of scale (Z). 

MAUP: The Modifiable Area Unit Problem (MAUP) is a sampling problem in 

spatial statistics in which changing the shape and/or size of the units on which data 

are mapped can change the resulting patterns or statistical models generated from the 

data (Dungan et al., 2002). 

Merge Event: A linear scale space event that depicts where to regions of significant 

structure ( BLOBS) merge into a single unit at higher scales of analysis. 

Neutral models: A neutral theory in ecology is regarded as a set of rules which apply 

to all agents equally, which allows the variation of random chance to be understood 

and factored out (Hubbell, 2001). Neutral theory is the attempt to understand the 

amount of pattern that can be generated at random without needing to invoke the 

influence of process. Neutral models are often used as the basis of comparison in 

landscape ecology in which the ability to find control plots are limited. 

Orthophotos: Orthorectified photographs, refer to images generally taken from an 

aircraft which are subsequently georeferenced (placed in a geographic coordinate 

system) and corrected to account for the distortion resulting from a single point of 

observation, on the aircraft.  

Process domain: A range of scales over which a process operates and or dominates 

(Wiens, 1989). 
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Reify: To treat an abstraction as something with matrial existancy, in the context of 

this thesis it is when a throy set or conceptual framework is assumed to be real. 

Relative space: Space that is not independent of the mass and energy within it and so 

any property is measured within the context of the spatial configuration of entities 

and the processes in the system (Marceau, 1999). 

Scale: Scale has multiple meanings to a variety of people in different disciplines. I 

define scale for the purpose of this thesis as: the spatio-temporal extent over which 

pattern and processes operate. 

Scale-space events: In a linear scale-space four types of scale-space events occur in 

which an object of interest undergoes a fundamental transition. This can be by way of 

splitting into two or more objects, merging into one, disappearing in an annihilation 

event or being created. The merge events, are used as the primary proxy for process 

in this thesis. 

Stationarity: Spatial stationarity is the assumption that the mean and variance of the 

sample remain consistent across the entire data set (Fortin et al., 2005). The 

underlying assumption of stationarity is that the data structure is the same no matter 

where in the sample one observes a datum (Wagner and Fortin, 2005), thereby 

inferring that the process encapsulated by this pattern is equivalent. 



Chapter 1 : GENERAL INTRODUCTION; THE PROBLEM AND 

A PROPOSED SOLUTION 
Landscape ecology as a research field invokes a number of conceptual frameworks and 

models to understand landscape pattern and infer process. However, few if any, are actually 

rigorously tested for their legitimacy in real world systems (Levick and Rogers, 2008). This 

thesis is about validating a hypothesis, no different to testing whether or not exponential 

growth is an adequate description of animal population dynamics within a sampled 

population. Landscapes are visualized as complex systems, but are patterns predicted by 

complex systems theory an adequate description of a semi-arid savanna landscape? 

1.1.  THE IMPORTANCE OF THIS RESEARCH 

Ecology as a science has very few predictive models that can be applied with confidence to 

landscapes. Complications introduced by scale and the contingency of pattern and variable 

processes render reductionist based techniques somewhat ineffectual. Landscape ecology 

requires a system level approach to allow for individual components to come and go, while 

retaining system level integrity, a central tenet to resilience theory (Gunderson, 2000).  

System-level models in landscapes require an understanding of the relationship between 

feedbacks and spatial scale (Rietkerk et al., 2004) and current system level approaches 

proposed for ecosystems rely on measuring the variation in pattern in real-world landscapes 

between scales of analysis (HilleRisLambers et al., 2001, Rietkerk et al., 2002, Allen, 

2006).  

In these real world landscapes, as opposed to modeled systems, evidence of systems 

properties which can be used to make system level predictions have only been inferred 

from a handful of systems. For instance; power law distributions in vegetation patch size 

are inferred as evidence of self-organization (Scanlon et al., 2007) and deviations from 

these power law distributions can indicate imminent system change (viz. Kéfi et al., 2007a, 

Scanlon et al., 2007).  

So far these power law models are confined to relatively homogenous landscapes such as 

the Kalahari Sands (viz. Scanlon et al., 2007) over large spatial extents, where I would 

argue, the entire landscape is affected by relatively similar processes. Other examples were 
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investigated over small spatial extents where it is unlikely that too much spatial 

heterogeneity will affect the processes (viz. Kéfi et al., 2007a).  

The potential of holistic, predictive models is large for application in system conservation. 

However spatial heterogeneity precludes the extrapolation of these models to more variable 

landscapes because the underlying processes are different across the sample and large scale 

pattern will not emerge. Evidence of this is  to be found in the increasing awareness of 

context specific pattern–process relationships (Levick and Rogers, 2011). 

Are there predictable system level properties in a system where there are varied processes 

interacting across space and across scale? There is as yet no theory which allows predictive 

powers from models similar to power law analysis to be applied to heterogeneous 

landscapes in a spatially explicit manner.  

There are, however, predictive models for heterogeneous landscapes that are not spatially 

explicit. For example, the discontinuous distributions of parameters such as body mass can 

reflect “discontinuities” in the scale at which processes operate. Discontinuities are gaps in 

a considered pattern when compared across scales of observation. The position of 

individual components relative to these discontinuities has been shown to provide 

predictive power, indicating components of the system that are likely to change. 

 Discontinuities across a range of scales and systems have been used to assess system 

resilience (Allen et al., 2005)  as well as a determinant of extinction or invasion (Allen et 

al., 1999, Sundstrom, 2009, Sundstrom et al., 2012). But as yet this model, known as the 

Textural Discontinuity Hypothesis (Holling, 1992), has not been made spatially explicit. 

My broader research focus is primarily aimed at developing a spatially explicit predictive 

model for a heterogeneous landscape system. Before this can be done, however, an 

understanding of multi-scaled, spatially explicit pattern must be made, which is the focus of 

this thesis.  

Much progress still needs to be made before a complete holistic theory can even be 

proposed, never mind applied to landscapes; especially one that encompasses the 

heterogeneity inherent in landscapes such as savannas. But to make headway in the quest 
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for system level predictability, one must first test our representations of how the 

fundamentals of system dynamics translate into system level properties.  

The configuration of any system that is by default only observed as a sample, is the result 

of a history of interactions that are contingent on one another, and a healthy dose of 

chance(Ulanowicz, 2008). Biophysical systems evolve through a combination of self-

organization and natural selection (Kauffman, 1995). This interactive process of system 

evolution is encapsulated in the framework of ecosystems as complex adaptive systems 

(Levin, 1998).  

Complex systems contain flows of energy which provide the interconnection between 

agents of the system (Levin, 1998). A differential distribution of interactions occurs across 

a system in space and time which results in parts of the system that are relatively more 

coupled to each other than to the rest of the system. Regions of similar rates which are 

tightly coupled to one another are termed holons (Koestler, 1967), the ecological unit at the 

scale of observation (Burnett and Blaschke, 2003).  

Understanding and dissecting a landscape is unfortunately not as simple as measuring 

process rates and delineating holons. At different scales rates of processes may differ and 

these are termed levels of organization (Wu and Loucks, 1995). Current theory stipulates 

that holons and levels of organization are the structural units of a complex system and 

should form a nested hierarchy (Reynolds and Wu, 1999, Wu and Loucks, 1995, Wu, 

1999). 

 In the hierarchy, the degree of looseness of  vertical (between levels of organization) and 

horizontal (between holons) coupling is the reason for the decomposability of complex 

systems (Wu and David, 2002). In landscapes, the evidence of coupling in processes can be 

gathered via the distribution of patches in space and time. This has been formalized into the 

conceptual framework of the Hierarchical Patch Dynamics Paradigm (Wu and Loucks, 

1995). 

1.2. THE HIERARCHICAL PATCH DYNAMICS PARADIGM 

The Hierarchical Patch Dynamics Paradigm (HPDP) is an integration of Patch Dynamics 

theory and Hierarchy theory (Wu and Loucks, 1995). HPDP takes the concept of patches as 
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a relatively discrete spatial pattern (White and Pickett, 1985) and makes it explicit that the 

patchiness observed is dependent on one's scale of observation. Holons aggregate together 

as extent increases into separate levels of organization, which can themselves be considered 

as a holon at the next level (Figure 1.1).  

The usefulness of HPDP is that it explicitly emphasizes the link between scale and 

heterogeneity and a patch is considered a fundamental structural and functional unit of the 

landscape. As patches should constitute holons (Burnett and Blaschke, 2003), applying 

HPDP should theoretically decompose the complex system of the landscape into 

fundamental units. Landscape dynamics and thus system dynamics due to changes in 

processes are then quantified as changes in ecosystem patches through time.  

It is important to acknowledge that although the HPDP is proposed as a conceptual 

framework, fundamental units are argued to exist in complex systems (Reynolds and Wu, 

1999). Reynolds and Wu (1999) do acknowledge that there is no generic recipe with which 

to simplify landscapes as yet, but point out that decomposition of a system into holons and 

levels of organization should be made at natural disjuncts and should reflect the self-

organized nature of the pattern. In the following chapter I argue that by woody tree canopy 

cover I encapsulate just such a disjunct. 

Many complex systems have been modeled as hierarchical patches. In non-landscape 

complex systems behavioral frequencies, relaxation time, cycle time, or response time (Wu 

and David, 2002) are used to decompose systems into their constituent parts. Spatially 

explicit patches of succession have been modeled in serpentine grasslands, where gopher 

mounds create islands of homogeneity and create a patch mosaic of different stages of 

succession (Wu and Levin, 1994). 

 In another practical landscape example the hierarchical patch dynamics conceptual 

framework was used to model the Arctic tundra (Reynolds et al., 1996). In the hierarchical 

tundra model the landscape was broken up into plant, patch, flow path and region. The 

smallest spatial unit was the individual plant, which was considered relatively 

homogeneous to one another due to various plant-soil-atmosphere-animal processes, such 
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as soil water uptake, transpiration, herbivory, and nutrient uptake. Higher levels of 

organization units were patches and higher still were flow paths. 

 Process rates were used to dissect the landscape into fundamental units, inferring the 

degree of connectedness via the rates of transfer across the boundaries of the patches. The 

vectors of the material and energy flux between patches are water, atmospheric turbulence 

and animals. The tundra model dissects the landscape into a hierarchical patch mosaic of 

regions with higher homogeneity or coupling of materials/energy through various 

processes.  
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Figure 1.1: The conceptual framework of the Hierarchical Patch Dynamics Paradigm. At low 

levels of organization (L1), regions of tighter coupling called holons (h1-h3) interact non-linearly 

and emerge into higher levels of organization (L2). These levels of organization themselves interact 

with holons at the same level and subsequently create emergent entities at higher levels (L3-L4).  

Image adapted from Gillson (2004). 

Another example more pertinent to this thesis; in an analysis of a savanna landscape, levels 

of organization have been inferred from differences in pollen carbon isotope assemblages in 

sediments which indicate that vegetation change is different at different scales (Gillson, 

2004). It is clear that HPDP provides a useful framework to contextualize problems and to 

explain pattern in hindsight, but can it be reified?  “The challenge is to find these scales and 

properly link processes and pattern” (Reynolds and Wu, 1999 pg. 289).  

It is at this juncture that I fear the theory sets leave the scientist wanting and this is where 

this thesis aims to add value. Where do we delineate these gaps to ensure that the pattern 

we are measuring can be confidently attributed to the processes? 
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1.3. THE PROBLEM 

 “Pattern- be it spatial or temporal- is inseparable from scale”(Reynolds and Wu, 1999 

pg.289). Because there will be tighter coupling among processes and components with 

similar process rates and overlapping spatial scales (Holling, 1992, Levin, 1992, O'Neill et 

al., 1989), scale is inextricable from a fundamental understanding of complex systems. In 

fact, one of the major elements of the HPDP is the pattern-process-scale-perspective. 

Processes may create, modify or maintain pattern and the pattern may constrain or modify 

the processes (Wu and Loucks, 1995) resulting in different processes dominating across 

different scales of observation (Wiens, 1989). These processes should be evident in distinct 

differences in pattern and the conceptual framework of HPDP predicts multi-scaled 

structure.  

In this thesis I test whether or not there is hierarchically structured woody vegetation 

pattern in a landscape, as predicted by Complex Systems theory and emphasized in 

the application of Hierarchical Patch Dynamics Paradigm (Wu and Loucks, 1995).  

The solution seems simple; simply take a landscape and assuming that vegetation patches 

can be considered as holons (an argument that will be much expanded upon in Chapter 2), 

if there is a hierarchically nested structure found, it would provide evidence that the HPDP 

is in fact a realistic representation of a savanna landscape. However the problem of 

generating unbiased descriptions of systems via the distribution of multi-scaled vegetation 

patterning is a lack of a method which can accurately describe the multi-scaled structure of 

a landscape while remaining ecologically meaningful.  

Assumptions inherent in many methods render the results invalid, or at best, simply a 

reflection of the whim of the researcher. If a method becomes available to truly measure the 

multi-scaled structure of a landscape it becomes possible to test for complex system derived 

pattern explicitly. Evidence of holons in the landscape which are different across different 

scales will infer levels of organization and further our understanding of the relationship 

between spatial scales and positive feedbacks. The applicability of the HPDP to the 

landscapes in questions can then be discussed, or our understanding of the HPDP can be 

calibrated, or expanded upon.  
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Whether or not a conceptual framework or model can be reified is possibly “…a disaster of 

naïve realism” (Allen, 2011 pers. comm). However, the logic flow is as follows: system 

level models in landscapes require an understanding of the relation between feedback and 

spatial scale (Rietkerk et al., 2004).  Multi-scaled analyses are now commonplace and there 

is a heightened awareness of the importance of multi-scaled study (Schneider, 2001). The 

scales selected, however, are generally arbitrary (Wheatley and Johnson, 2009).  

Decisions about scale and extent and the hierarchical units to be studied may be done in a 

systematic and consistent way, but they are necessarily subjective (Kay and Schneider, 

1994). They reflect the viewpoint of the analyst about which connections are important to 

the study at hand and which can be ignored.  No observation is completely objective 

(Tainter and Lucas, 1983) and one cannot observe an absolute truth as it doesn’t exist 

(Allen et al., 2001). However, rather than arbitrarily assigning scales, scales of observation 

should be justified within the context of the conceptual framework/model being utilized 

(Allen, 1998). It is not the reification of a conceptual framework that is important, but the 

validation that the framework being utilized is in fact applicable in the first place.  

I aim to validate the framework of HPDP used in landscape analysis by testing for whether 

or not reifiying the HPDP is valid and combining it with a cross scale model that is used to 

predict systems change. 

1.4. THE PRESENTED SOLUTION AND WHY IT IS NOVEL 

The problem addressed in this thesis is whether or not a hierarchically nested patch 

mosaic provides an accurate representation of a real world landscape. There are no 

methods available to test for hierarchical structure in a landscape while remaining 

ecologically meaningful. The solution to the problem, therefore, is to develop such a 

method, validate it, and subsequently test for hierarchical structure in a prototypical 

system in which the conceptual model of HPDP has been used. 

To generate such a method I turn to the image processing literature, particularly the linear 

scale-space literature which is focused on generating multi-scaled representation of scenes 

through methods that do not introduce any user defined bias into the analysis and allow 
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patterns to emerge themselves. The novelty of this research is the use of linear scale-space 

to infer pattern-process relationships in a prototypical complex system.  

Moreover I alter the traditional linear scale-space methods to allow for analysis of woody 

vegetation structure in a statistically unbiased sense. The novelty of the application and its 

differences from currently available techniques is explained in Chapter 2. It must be 

stressed, however, that this is a practical ecological research question, opposed to an 

academic study into image processing. 

1.5. OUTLINE AND STRUCTURE OF THE THESIS 

The bulk of the thesis, bar this introductory chapter is divided into three major sections; 

each with particular objectives:  

Chapter Two: Literature review, Theory and Synthesis aims to:  

1. Develop an argument as to: Why multi-scaled hierarchically nested structure is 

expected in landscapes. 

2. Develop an argument as to: Why a semi-arid savanna landscape is a good study 

system to use to investigate the expression of complex systems properties. 

3. Describe: What methods are available for multi-scaled pattern detection, and why 

they are not valid for the purposes of this thesis. 

4. Synthesize the literature review into a proposed solution; build a conceptual 

framework and present testable hypotheses. 

Chapter Three: Analysis and test for nested hierarchical structure in a semi-arid savanna 

has four main objectives, comprising the bulk of the thesis: 

1. Objective 1: Generation of baseline landscape datasets. 

2. Objective 2: Linear scale-space generation. 

3. Objective 3: To demonstrate outputs of the linear scale-space application and to 

validate the linear scale-space application for repeatability of the algorithm and in 

detecting the scale of pattern expression. 

4. Objective 4: Determine whether evidence of process can be detected in the 

'Nwashitsumbe landscape? 



 

10 
 

Objective four is the culmination of the thesis in which  I use the theory and 

methods developed up until this point to test whether or not complex systems 

pattern, expressed as hierarchically nested structure, can be detected in the woody 

canopy cover distribution in the 'Nwashitsumbe semi-arid savanna landscape. 

 

Chapter Four: General Discussion discusses the findings of Chapter Three in the 

context of the broader ecological literature.  
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Chapter 2 : LITERATURE REVIEW, THEORY AND 

SYNTHESIS 
  In this thesis I present a test of whether or not a hierarchically nested patch mosaic is an 

accurate representation of a real world landscape. Before I do so, I briefly discuss 

complex systems theory and the concept of scale. I review the literature to explain why it is 

expected that hierarchical structure should be found in complex systems. I present the study 

system used in this thesis and I review why it would be expected to find hierarchical 

structure in such a landscape. I explore what methods are available for multi-scaled analysis 

and I review theory sets concerned with the detection of scales at which processes operate.  

I highlight many of the shortcomings of these methods in the context of this thesis and 

explain why a novel method to detect hierarchical structure in a landscape is needed.  I then 

synthesize the findings and present the concept of scale as a dimension and the use of linear 

scale-space as a method to measure pattern across scale that are developed in the methods 

Chapter 3. 

Chapter Two objectives: 

Chapter Two aims to review the literature in order to: 

1. Develop an argument as to: Why multi-scaled hierarchically nested structure is 

expected in landscapes. 

2. Develop an argument as to: Why a semi-arid savanna landscape is a good study 

system to use to investigate the expression of complex systems properties. 

3. Describe: What methods are available for multi-scaled pattern detection and why 

they are not valid for the purposes of this thesis. 

4. Synthesize the literature review into a proposed solution; build a conceptual 

framework and present testable hypotheses. 

2.1. OBJECTIVE 1:  WHY MULTI-SCALED HIERARCHICALLY NESTED STRUCTURE 

IS EXPECTED IN LANDSCAPES:  

The reason we expect hierarchically structured pattern in landscapes is because landscapes 

are prototypical complex systems. Hierarchical structure is inherent in complex systems; 

inputs of solar energy and energy flows, within the constraints imposed by limitations 
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within the landscape, will force the system away from thermodynamic equilibrium (Kay 

and Schneider, 2000) through the process of ascendancy and the adaptive process (Levin, 

1998). Through selection based on the trade-off between efficiency and redundancy and a 

healthy dose of chance (Ulanowicz, 2008) hierarchical structure is generated to minimize 

the energy gradient (Jørgensen et al., 1998).  

This is the current understanding of landscapes as systems, from which many theories, 

predictive models and frameworks have been developed and added to. This is contrary to 

the aged equilibrium theory. My question is whether or not this model can be reified into 

hierarchically nested patches of woody vegetation and used as a predictive tool. I argue 

here that it should. If it can be reified we have a ready measure of spatially explicit 

landscape process and can utilize this to make inference to resilience of the system to 

perturbation. 

2.1.1.  LANDSCAPES AS COMPLEX SYSTEMS, FEEDBACK LOOPS AND THE GENERATION 

OF FUNDAMENTAL UNITS:  

Landscapes are spatially explicit ecosystems and ecosystems are considered prototypical 

examples of complex systems (Levin, 1998). I have already briefly referred to ecosystems 

as complex systems and that a conceptual framework used to dissect this complexity into 

manageable units is the Hierarchical Patch Dynamics (Section 1.2. ). It should be born in 

mind that there is no single complex systems theory, but rather an amalgamation of 

commonalities from fields such as mathematics, computer science, physics, ecology, 

biology, epidemiology, economics and social sciences.  

The literature is vast and the intricacies many, so for the purposes of generating context for 

why we expect hierarchical pattern, I draw together aspects of various research fields in a 

précis of landscapes as complex systems. 

Historically, ecology has been primarily a descriptive science (Hobbs and Morton, 1999). 

Determining the processes that underlay the pattern we observe in nature is considered a 

fundamental goal in ecology (Habeeb et al., 2005). This is done through hypothesis testing 

to determine the rule sets or “laws” that may describe the interaction. These laws are not 

necessarily complicated; as Murray Gell-Mann (2007) so pertinently states: “You don’t 
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need something more to get something more”, and much of the complicated and complex 

patterns that are present on the planet may in fact be explained by a few simple rule sets.  

Complex systems theory describes how if free energy is available, dissipative structures 

will form to take advantage (Nicolis et al., 1989). As energy is added to an open system the 

system shifts away from equilibrium, dissipating energy and entropy until the prevailing 

chaos gives way to new patterns of coherent events, order, and creating a new metastable 

equilibrium (Naveh, 2000). In other words, there is an inherent tendency for self-

organization given the right conditions. (Gibson et al., 2000).  

In the context of complex systems theory, ecosystems are understood as systems evolving 

in a self-organizing way towards a more efficient use of energy, to minimize the energy 

gradient created through the input of energy (Jørgensen et al., 1998). These systems are not 

necessarily spatially explicit, but the nature of self-organization and emergent pattern in 

dissipative systems has been put forward as an explanation of why there is life on earth, 

ecosystems development and patterns of biological evolution. 

 In fact, life has been termed “…a manifestation of the second law of thermodynamics…”, 

and that ecosystems should “…increase their total dissipation, develop more complex 

structures with more energy flow, increase their cycling activity, develop greater diversity 

and generate more hierarchical levels, all to abet energy degradation.” (Schneider and 

Kay, 1994).  

The importance in this line of study for scientists is that the very systems in which we live 

are complex systems and are thereby prone to sudden unpredictable shifts, regime changes, 

nonlinear dynamics and a resistance to reversal of change brought about by hysteresis 

(Levin, 1998, Kéfi et al., 2007b). The changes have major impacts on livelihoods and 

predicting these changes remains an avid field of research. 

Many systems are termed to be on the edge of chaos and this reflects the tendency of the 

metastable systems to undergo rapid transitions and reorganize around another set of 

feedback loops. For example, overgrazing or climate change can push vegetated systems 

into a new metastable domain (desertification); generating  positive feedback loops that 

maintain high temperatures and low water and nutrients and reinforce this state (Limburg et 
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al., 2002, O'Neill and Kahn, 2000). It is translating this knowledge into predictive models 

that is imperative for our understanding and successful management of systems.  

 

I have already suggested that the long term research goal is for a spatially explicit 

mechanism to measure system resilience. Non-spatially explicit models already exist and 

have been applied in landscapes, particularly the semi-arid to arid systems. Of particular 

interest is the concept of catastrophic shifts in ecosystem states, where a system reorganizes 

around a separate set of feedback loops, which may have devastating consequences for the 

occupants of that system.  

 

Much research has gone into developing these predictive models and understanding state 

shifts in arid and semi-arid areas (Rietkerk and van de Koppel, 1997, HilleRisLambers et 

al., 2001, Rietkerk et al., 2002, van de Koppel et al., 2002, Rietkerk et al., 2004, Kéfi et al., 

2007a). I will expand upon this in Section 0The organization of a system around the 

fundamental units of and the ability to use the positive feedback loops to predict change is 

at the heart of predictive systems models in ecology.  

2.1.2.  COMPLEX SYSTEMS BASED CONCEPTUAL FRAMEWORKS IN LANDSCAPE 

ECOLOGY 

Landscapes themselves have been investigated using a number of conceptual models and 

paradigms. The field of rangeland ecology parallels landscape ecology in the transition 

from an equilibrium based paradigm through to one embracing non equilibrium dynamics 

inherent in complex systems. Many researchers in rangeland ecology use state and 

transition models to simplify landscape complexity (Milton and Hoffman, 1994, 

Bestelmeyer et al., 2003, Briske et al., 2008, Bestelmeyer et al., 2009).  State and transition 

models, in the context of vegetation, are representations of alternative system “states” 

which are indicative of a number of environmental characteristics such as soils, vegetation 

type and each has a probability of transition to another state, which is then modeled under a 

variety of scenarios (Westoby et al., 1989, Bestelmeyer et al., 2010). 

State and transition models are an interesting research field, however in this thesis I focus 

particularly on how the hierarchical nature of the complex system is investigated using 
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Hierarchy Theory (Allen and Starr, 1982, Allen and Wyleto, 1983, Urban et al., 1987, 

Kotliar and Wiens, 1990).Of particular relevance to my investigation, is the conceptual 

framework of Hierarchical Patch Dynamics Paradigm (HPDP) (Wu and Loucks, 1995). 

Before I defer to the Hierarchical Patch Dynamics Paradigm I investigate the basic 

framework of complex systems upon which these models are built. 

Within a complex system, it is flows of energy that provide the interconnection between 

agents of the system (Levin, 1998). A differential distribution of interactions occurs across 

a system in space and time, resulting in parts of the system which are relatively more 

coupled to each other than to the rest of the system. These relatively tightly coupled 

components of a system are termed holons (Koestler, 1967) and can be considered the 

structural and functional units of a complex system (Blaschke et al., 2002, Wu and David, 

2002).  

The result is hierarchically structured complex systems, termed constitutive hierarchies 

(Gibson et al., 2000). Constitutive hierarchies are nested hierarchies composed of elements 

that interact non-linearly to emerge at higher levels of organization. 

Urban and O’Neill (1987) describe how components in a hierarchical system are organized 

into levels according to a functional scale which reflects the natural frequency at which 

processes operate. The rates of interactions and processes are the key component in 

building hierarchical models of complex systems. The degree of coupling is used to 

decompose a system into holons (Wu and Marceau, 2002), with patches being spatially 

discrete entities whose internal structure or function is significantly different from its 

surroundings (Gillson, 2004).  

According to HPDP landscapes have both a vertical structure that is composed of levels of 

organization and a horizontal structure that consists of holons (Wu and Loucks, 1995). 

Levels and holons exhibit space-time separability (Burnett and Blaschke, 2003 pg. 238), 

meaning that they are separated by the rates and strengths of interactions in space and time. 

It is the vertical and horizontal loose coupling or feedback that is the reason for the 

decomposability of complex systems (Wu and Marceau, 2002). Holons are not simply an 

abstract concept; for instance “…when translating hierarchy theory to landscape ecology, 
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holons are synonymous with patches: the ecological unit at a particular scale…” (Burnett 

and Blaschke, 2003 pg. 238). The system is decomposed into fundamental units, which in 

an investigation of a landscape, are patches of difference pattern and process with the scale 

at which they are observed explicitly recognized by the HPDP (Wu and Loucks, 1995).  

HPDP utilizes the concept of discrete patches, that differ in size, shape and successional 

stage and considers them the fundamental unit of a prototypical complex system. Each 

patch is scale and context dependent, lower scaled processes may be nonlinear and emerge 

into higher level pattern, reflected in pattern at higher levels of organization.  

A fundamental premise of this thesis is that patches can be considered as fundamental units 

in a complex system and the multi-scaled nature of these patches to make inference around 

the nature of landscapes as complex systems. The fundamental units of the landscape are 

created through positive feedback loops in which pattern and process recursively interact. 

Such agents, which create agent-mediated nonlinear responses in a system, are often termed 

ecosystem engineers (Stallins, 2006). (The term “ecosystem engineer” has multiple 

definitions and so I limit my discussion to this particular definition). There are multiple 

mechanisms which generate ecosystem engineers; in order to illustrate a practical example 

of how a patch of vegetation is a fundamental unit, I use a semi-arid savanna landscape 

example.  

Water infiltration is increased under canopies due to differences in soil porosity induced by 

root penetration. Shading reduces water loss from the soil and increased water runoff 

branches and stems during precipitation events increases the local moisture content. The 

increased available soil moisture increases the rate of nutrient cycling (Schlesinger et al., 

1996, Agnew, 1997, Whitford et al., 1997). In addition, the accumulation of autochthonous 

leaf litter and sediments through wind trapping increases the local nutrient concentration, as 

does the use of vegetation by herbivores, which deposit dung in the vicinity of the tree 

either during foraging or during time spent ruminating in the shade (Agnew et al., 1993, 

Agnew, 1997).  

The result is an increase in the growth of woody tree cover, creating feedback loops in 

which the conditions favorable for tree growth are facilitated by the tree growth itself. This 
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is not just a local scale phenomenom; local forest patches facilitate their own well-being 

within the context of a regional non-forest supporting climate potential. As long as it is 

above a particular equilibrium area threshold (Da Silveira and Sternberg, 2001) the plants 

have engineered their own environment. However, control mechanisms may be in place to 

dampen feedback loops, such as if animal trampling under a tree reduces the nutrient 

cycling, water infiltration or growth mediated feedback loops of the tree itself. 

2.1.3.  BUT WHERE DOES SCALE FEATURE? 

In landscape ecology, which is the focus field I am concerned with, an explosion of 

research occurred in the eighties and nineties. “Pattern, generated by processes at various 

scales, is the hallmark of a landscape” (Urban et al., 1987pg. 1). Research of scale in 

landscape ecology has a focus on the characteristic spatial and temporal scale of ecological 

events and how landscapes complexity can be simplified by using frameworks such as 

hierarchy theory and derivatives thereof (Allen and Starr, 1982, Allen and Wyleto, 1983, 

O'Neill et al., 1989, Kotliar and Wiens, 1990, Wu and Loucks, 1995). 

Nowadays ecologists generally realize that it is of fundamental importance to recognize 

how patterns change across scales and how phenomena at different scales influence one 

another (Levin, 1992). Multi-scaled studies are now commonplace in landscape ecology 

and there is a heightened awareness of the need to account for the potential confounding 

effects of scale when interpreted out of context (Schneider, 2001). But what is scale really?  

As an explanation of the importance of scale and how to link it to process, I utilize the 

concepts of incorporation and metastability discussed in the seminal HPDP paper (Wu and 

Loucks, 1995). If an ecologist is focused on individual trees there may be almost random 

fluctuations in the removal or recruitment of the trees. However, when looked at from a 

landscape perspective this is incorporated into a pattern that is “…shifting mosaic steady 

state…” (Watt, 1947). What we may observe is that the whole patch or landscapes may 

maintain a relatively constant average, but the individual components come and go.  To 

obtain an adequate understanding of what is happening, therefore, it is vital to link the scale 

of observation to the processes under investigation.  
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Levick (2008) illustrated that in Northern Kruger National Park the overall percentage 

woody cover was stable over time, but dynamics were highly variable at smaller scales and 

displayed distinct spatial trends across the landscape. These were attributed to variable 

dominance of different drivers at similar scales but different positions in the landscapes, 

referred to as the “context dependency” to pattern. 

 

Scale is not simply a consideration of the sample design and hindsight interpretation of 

pattern and process. Scale and the patterns at multiple scales have been proposed as one of 

the methods to generate a systems level model- one that measures a systems level property, 

while allowing the individual components to come and go. For instance, local level 

facilitation by plants is a positive feedback loop at relatively small spatial scales, which if 

left unperturbed can result in a measurable system level property.  

 

This local level facilitation combined with resource competition, such as competition for 

water in semi-arid savanna systems, can result in power law relationships between woody 

vegetation cover and scale. As an example; in the Kalahari Sands it was shown that 

comparisons of vegetation cover versus scale of observation revealed power laws (Scanlon 

et al., 2007). The measured power laws are inferred to be evidence of self-organization 

(Rietkerk et al., 2002, Scanlon et al., 2007). This power law type analysis in landscapes is 

paralleled in many systems; scaling relationships provide interesting insight into many 

ecological phenomena.  

 

The debate surrounding the supposed presence of allometric relationships such as the ¾ 

power of mass with metabolic rate, or the ¼ power law of time scales and/or sizes have 

been put forward as models  which can be used to explain macro-ecological pattern from 

micro-ecological constraints (West et al., 1997, Brown et al., 2002, West and Brown, 

2005). 

 

In a separate landscape-vegetation cover study over a much smaller range of scales in the 

Mediterranean, vegetation patch size versus scale of observation also revealed power laws. 

Importantly though, it was shown that a power law relationship between patch size and 
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scale of observation began to break down under increased grazing pressure (Kéfi et al., 

2007a). This illustrates that if the feedback loop is unperturbed and self-organization 

occurs, the local level interactions result in a power law. However, if the interaction of 

process in space or time is perturbed, the self-organized pattern will break down over a 

range of scales, or it can flip into an alternate system state.  

Flipping to an alternate state has been illustrated in the coupling between vegetation and 

drivers such as local climate change, fire and the hydrological conditions  which favour 

forests versus savannas (Staver et al., 2011, Higgins and Scheiter, 2012). What this means 

is that a change in the amount of cover below a threshold can cause a catastrophic shift to 

savannas as opposed to a forest. 

2.1.3.1. What is scale? Explaining concepts and defining terms. 

Within the literature there are various definitions and interpretations of the term scale, the 

result of which is a somewhat multifaceted perception of scale. The term scale constitutes a 

meme, information that is copied from person to person along with subtle variations 

(Dawkins, 1989, Heylingen and Chielens, 2009). It is not my intention to redefine scale, but 

rather to explore a facet of the science of scale (Wu and Qi, 2000, pg.2) which is of interest 

in this thesis. Scale has been the subject of numerous papers over the last fifty years, a 

rather eloquent treatise of the scale problem by Marceau (1999) divides the problem into 

two fundamental questions: 

1.  What is the appropriate spatial scale for the study of a particular geographical 

phenomenon? - which is directly linked to space and the association between 

measurement and process, and; 

2. How can we adequately transfer information from one spatial scale to another? - 

which is a subject known as scaling. In the following text I exclude scaling as a 

point of discussion as it is a technical process rather than an ontological argument. 

To continue the eloquent framework of Marceau (1999), scale is defined in the context of 

one of two spatial frameworks. Firstly; absolute space; is a fixed geometric scheme used to 

partition a geographic space and define the relevant units. Interpreting scale in the context 

of absolute space is relatively straightforward and familiar to most people as the scale bar 

on a map. Although important, I am not concerned with absolute scale in this thesis, save 
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for use during initial data handling. Secondly; relative space; harks back to Einstein’s 

theory of relativity in which space is not independent of the mass and energy within it and 

so any property is measured within the context of the spatial configuration of entities and 

the processes in the system. Interpreting scale in the context of relative space is much more 

fundamental to the analysis of complex systems derived pattern, as “…scale becomes a 

variable intrinsically linked to the spatial entities, patterns, forms, functions, processes and 

rates under investigation…” (Marceau, 1999, pg 1.).  

Based on this understanding of relative space, scale is similarly defined as the “…spatial, 

temporal, quantitative, or analytical dimensions used to measure and study any 

phenomenon…” (Gibson et al., 2000, pg.218);  “…the spatial dimensions at which entities, 

patterns, and processes can be observed and characterized…”  (Marceau, 1999, pg.2); “… 

or the observer's measuring stick or viewing window size, a spatial or temporal 

characteristic of an ecological pattern or process, or a fundamental framework in which 

diverse ecological phenomena can be more effectively studied and understood individually 

and collectively…” (Wu et al., 2000, pg.1).  

This understanding of scale pertaining to relative space is the reason that we as ecologists 

may choose plots of a few meters in extent to study nutrient cycling within, but plots many 

hundreds of meters in extent to study fire effects on the landscape. The goal is to link the 

window of observation to the scale at which the process operates to allow for inference. 

An important philosophical consideration is that because the scale at which an observation 

is made is defined by the filter or measuring tool with which a system is viewed and 

quantified (Allen and Starr, 1982, Hay et al., 2002); observations inherently contain an a 

priori assertion by the researcher as to the spatial and or temporal extent over which he/she 

measures or observes the world (Figure 2.1). In landscape ecology this assertion defines the 

grain and by proxy, the extent of data (Wu and Qi, 2000). The term scale is then often 

simply regarded as the grain and extent over which organisms perceive their environment 

(viz. Fritz et al., 2003), or over which we as ecologists take measurements.  

 

As a result, the concept of scale has become focused on how relationships between 

measurements at different grains may vary. It is now widely accepted that in an ecosystem, 
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patterns measured vary across scales of observation (Weaver, 1995, Gaston, 2000, Levick 

and Rogers, 2008), but the reasons for the variability in pattern at different scales may or 

may not be ecological in nature.  

 

Figure 2.1: The pattern observed varies at different scales of observation. In image A, the patches 

of green will be observed as larger patches at higher scales, indicated as blue patches. At even 

higher scale the patches will be even larger, indicated as red patches.  The scale of observation and 

therefore the pattern detected is the choice of the observer, which is somewhat arbitrary. If one 

considers scale as an explicit dimension (Image B), the patterns observed are simply slices across a 

continuous dimension of pattern. In this context it becomes explicit that pattern, and therefore 

process are only evident over a range of scales and that this range of scales may or may not be 

constant across space, thereby addressing issues of landscape context. 

2.1.3.2. So scale is a consideration, but why? 

A realization that scale is an important consideration in analysis and understanding of 

pattern and process has been evident in the literature for over seventy years. Earlier 

statements regarding scale were primarily statistical in nature; primarily concerned with the 

artifacts introduced by aggregating data at different spatial and/or temporal extents. For 

example, the Modifiable Areal Unit Problem (MAUP) represents the sensitivity of 

analytical results to the definition of data collection units (Hay et al., 2001).  

Changing the shape and/or size of the units on which data are mapped can change the 

resulting patterns or statistical models generated from the data  (Dungan et al., 2002). The 

potential for error in the analysis of spatial data resulting from the MAUP is significant 

(Fotheringham and Wong, 1991, Jelinski and Wu, 1996) and researchers need to be 
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cognizant  of issues relating to extrapolating relationships between scales of observation. 

However, the MAUP is an artifact and is not an inherent property of the system itself.  

Considerations regarding the ecological inference that can be made from images that are 

bound by a particular gr 

ain and extent are very important. Grain refers to the smallest possible unit of measurement, 

often linked to the pixel size of the image, but can just as well be linked to the sampling 

unit in a transect based field sample . Extent on the other hand is the largest possible space 

over which the samples are made (Allen and Hoekstra, 1991), for instance, the boundaries 

of the image or the length of the sample transect. How much inference can be made from a 

sample within these bounds remains a challenge to landscape ecologists and is of particular 

importance in this thesis. 

I note here that the technicalities and difficulties of measuring and linking patterns at 

varying scales while avoiding statistical assumptions generated from sampling problems 

such as the MAUP are referred to as scaling, which is the science of extrapolating 

information up or down scales (Wu, 1999, Wu and Qi, 2000). Although interesting and of 

concern in methodology- scaling is not the primary focus of this thesis. 

2.1.3.3. How the reification of the HPDP leads to a spatially explicit predictive 

model 

The reification of the HPDP is part of the answer to the search of a spatially explicit 

measure of system for resilience. How do I intend to generate a predictive model 

therefrom?  

For that I turn to resilience theory and the Textural Discontinuity Hypothesis (Holling, 

1992, Holling, 2001) which uses the pattern of a system proxy measured across scales to 

make predictions regarding the likelihood of change in components of the system (Allen 

and Holling, 2002, Allen et al., 2005, Allen and Holling, 2008).  

A generally accepted concept in many landscapes is that dominant processes are different at 

different scales and that this influences the observable pattern (Turner et al., 2001, Gillson, 

2004). I consider this the how/what of scale; the statement does not infer why this 

phenomenon occurs. The how/what of scale is that patterns vary with scale of observation. 
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In this thesis I define this how/what aspect of scale as the spatio-temporal extent over 

which pattern and processes operate. However, this pattern process relationship is an effect 

of something more fundamental. Why do these differences in pattern (and because pattern 

is a proxy for process, the underlying process) occur in the first place? I am well aware that 

it is because there are specific scales at which processes operate, but WHY do they only 

operate among limited ranges of scales in the first place?  

 

The tighter coupling among processes and components with similar process rates and 

overlapping spatial scales (O'Neill et al., 1989, Holling, 1992, Levin, 1992) has resulted in 

scale being termed: “…the time and space constants whereby it (a structure) receives and 

transmits information…” (Allen, 1998,  pg.17). I want to highlight that certain processes 

have a scale-related component and this affects the evolutionary potential of certain system 

components.  

 

This co-dependency of scale at which process can influence the landscape and vice versa 

creates distinct ranges of scales over which pattern and process operate and ranges of scale 

where they do not. The ranges of scale over which different processes operate have been  

termed “process domains” (Wiens, 1989).  

 

By way of illustration I revisit  the example used by Allen (1998) of why there are no 

elephant-sized water striders.  Although this anecdote was aimed at clarifying conceptual 

issues of scale versus level of organization, the example presents a profound insight into 

systems evolution. At the spatial extent experienced by an individual water strider, 

electrostatic forces are influential enough to allow the strider to be supported by the surface 

tension of water. The pressure of the water strider is ameliorated by the feathered structure 

of its feet dispersing its weight and the local pressure exerted by the insect does not 

overcome the cohesive electromagnetic forces which create the resistive surface tension of 

the water. However, if the water strider was the size of an elephant, the same would not be 

true -  the local pressure would overcome the surface tension and the insect would sink.  
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The scale at which processes are interacting allows the system (the insect) to persist and is 

the root cause of a selection pressure against it, creating a boundary in the scale dimension 

across which the system cannot evolve. System interactions are not equivalent across scales 

and this heterogeneous distribution of interactions has implications for the potential of the 

system to evolve into various forms. 

 

A further example  of a boundary in the scale over which a system cannot evolve is that 

larger mammals have evolved with locomotor limb postures in which they move in an 

upright fashion relative to their smaller counterparts (Biewener, 1989) due to the relatively 

constant tensile strength of bone. The limbs of elephants are orientated so that the force is 

normal to the ground in order to increase load bearing, whereas a mouse has limbs that are 

at an angle from the pectoral and pelvic girdle in order to increase speed.  

 

They may seem disparate, but the effect of water surface tension and the strength of 

calcium phosphate bones on the evolution of animal forms are qualitatively no different to 

the effects of certain ecosystem drivers on vegetation. In the context of physical constraints 

on individual trees for example; the above ground architecture of plants is influenced by 

environmental variables, for instance the wood density and the hydraulic architecture are 

affected by biomechanical demands such as canopy support and subsequent wind loading 

(Gartner, 1991).  

 

Physiological responses which affect tree size and its ability to exploit resources include 

susceptibility to cavitation, which is the introduction of air embolisms into xylem 

conductive tissue. Increased hydraulic efficiency with increased vessel diameter increases 

vulnerability to cavitation (McElrone et al., 2004). Moreover, dense, larger diameter xylem 

may be more hydraulically efficient but is weaker mechanically than xylem dominated by 

smaller conduits (Tyree et al., 1994). This physical constraint of size of xylem and the risk 

of cavitation and weakening of structure, means that there is a risk in getting too big, as 

there are a host of physiological requirements that will not be met. As a result there have 

been a host of evolutionary responses (Meinzer et al., 2001). 
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The feedback between pattern and process in many systems makes these physiological 

relationships slightly more complicated, but still not fundamentally different. If there is a 

component of scale in the processes, it will be reflected in the evolutionary potential of 

particular forms of the system. The mechanisms driving the effects of process at various 

scales may be a seemingly absolute boundary imposed by the level of organization below 

such as the water strider example (although the boundary is not absolute and would be 

contingent on water temperature).  

 More pertinent to landscape ecology: if the transmission of energy forms a positive 

feedback loop which is constrained within the bounds of a specific scale, the coupling of 

processes and pattern through non-linear interactions can create positive feedback loops. 

These “…self-reinforcing assembly states…” (Stallins, 2006) can go by a variety of 

synonyms: “attractors” (Thompson et al., 2001, Baas, 2002, Harrison et al., 2006), 

“stability domains” (Gunderson, 2000) or “domains of scale” (Wiens, 1989) but in general, 

all of these terms refer to regions of scale in which pattern and process are tightly coupled 

relative to the other scales of the system.  

The discontinuous nature of process in the system can be reflected and thereby measured in 

the patterns expressed. The Textural Discontinuity Hypothesis (TDH) proposes that certain 

keystone processes can entrain the spatial and temporal frequencies of the other processes 

in a system (Holling, 1992), which explains why this occurs in the first place. The 

entrainment creates a limited set of frequencies in both space and time at which drivers 

affect the landscape. According to the TDH, the limited scales at which processes are 

influential creates attractors in the scale domain that are reflected in the discontinuous 

distribution of pattern across scales (Figure 2.2).  
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Figure 2.2: The Textural Discontinuity Hypothesis predicts that the entrainment of processes by 

keystone processes results in a limited spatio-temporal frequency of pattern: expressed in the 

system. These self-reinforcing regions are termed structural attractors   (a) the areas between them 

are discontinuities, (b) regions where pattern is not expressed. Projected onto the spatial axis, the 

pattern can be viewed as a discontinuous distribution of pattern. This image is adapted from (Allen 

and Holling, 2002) in which Bird Body mass distributions are the dataset. 

Predictions of the system components with increased likelihood of change are made relative 

to the edge of a discontinuity (Allen et al., 2005). I, should therefore,  be able to detect 

process domains in a spatially explicit manner using a technique  which can measure the 

pattern across scales (the cross scale morphology of a system) in a meaningful manner that 

reflects holons and process domains i.e. hierarchically structured vegetation as per the 

HPDP. I can perform a spatially explicit discontinuity analysis on the data and test whether 

or not it is possible to make predictions on where there are likely to be dynamics relative to 

other components. That is a long way off still, first one must detect hierarchical structure.  

 



 

27 
 

OBJECTIVE 2: WHY A SEMI-ARID SAVANNA LANDSCAPE IS A GOOD STUDY 

SYSTEM TO USE TO INVESTIGATE THE EXPRESSION OF COMPLEX SYSTEMS 

PROPERTIES 

There is a vast amount of literature concerning the nature of vegetation pattern and 

representation of landscapes as complex systems. Much of the work on which this thesis is 

built derives from the fields of dry land ecology and the study of patterns in arid systems. 

Of particular interest in dry land ecological research is how systems may shift from one 

state to another and experience a hysteresis in the feedbacks, which means that even if the 

system is returned to the starting point, these non-reversible changes are often explored in 

the state and transition models (viz. Briske et al., 2005).  

A major focus of dry land ecology is the presence of alternative stable states and the 

possibly catastrophic shifts from one state to another which have profound implications for 

livelihoods in marginal environments and the ability to manage such systems (Rietkerk and 

van de Koppel, 1997, Rietkerk et al., 2004, van de Koppel et al., 2002). Modeled systems 

(HilleRisLambers et al., 2001) and distinctive vegetation patterning (Rietkerk et al., 2002, 

Rietkerk et al., 2004) have been used to infer evidence of self-organized states and states 

that are possibly near a critical transition point. The self-organized nature of the system is 

inferred to be due to the spatial interactions such as the spatial exchange in water in 

maintaining an arid landscape (Van der Koppel 2004).  

Models for alternative stable states in savannas and arguments highlighting  the role of fire 

and herbivory in determining woody vegetation cover have been put forward (Sankaran et 

al., 2005, Sankaran et al., 2008, Staver et al., 2009, Staver et al., 2011), but not in such a 

spatially explicit context as the arid land models. For example, Higgins and Scheiter (2012) 

illustrate that increasing atmospheric CO2 levels may force a shift in local vegetation to a 

more wood dominated savanna system. Staver (2011) showed that in savannas that receive 

between 1,000-2,500mm of rainfall per annum,  two alternate states occur, those of open 

savanna and forest and that fire is the major controller  of these two.  

I refer to these models to illustrate that system model commonly uses woody vegetation 

cover as a proxy for process in the landscape which is used to infer system level properties. 

In the following section I review the feedback loops and processes that affect the woody 
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canopy cover of a savanna in order to illustrate why I use woody canopy cover as a systems 

proxy. 

2.1.4.  DRIVERS OF SAVANNA VEGETATION PATTERN 

The strength and the type of interaction in savannas varies in both time and space allowing 

a rich array of possible outcomes but no universal predictive model (Scholes and Archer, 

1997). Woody and graminous plants interact by many mechanisms, both competitive and 

facilitative. There is abundant information on the drivers of tree-grass interactions in 

savanna systems, yet despite the large body of information, most investigations are still 

single driver focused, or investigate the combination of a few major drivers (viz. Bond and 

Keeley, 2005, Staver et al., 2009).  

Although the outcome of particular drivers and driver interactions are well understood, the 

results and interpretations of pattern in savannas are plagued with issues of scale, 

exceptions and contingencies (Levick and Rogers, 2008, Levick and Rogers, 2011) leading 

to very few hard and fast rules in savanna dynamics. 

Despite the lack of a universal predictive savanna model, there are some generalities which 

can be made, particularly when savannas are considered at broad spatial extents. The  

current understanding of the determinants of woody cover in African savannas is that 

systems  which receive below 650mm ± 135mm of mean annual precipitation are 

constrained by water availability. In these “stable” systems, water availability constrains 

maximum woody cover and allows trees and grass to co-exist. It is disturbances such as fire 

and herbivory that influences the amount and distribution of woody cover, reducing it to 

below this potential maximum. These semi-arid systems are contrasted with mesic savanna 

systems in which it is the disturbances from fire and herbivory which allow the co-

existence of trees and grass. (Bond and Keeley, 2005, Sankaran et al., 2005).  

Fire and herbivory are two of the major disturbances/drivers which influence savanna 

dynamics, limiting tree cover and facilitating the co-existence of trees and grasses (Scholes 

and Archer, 1997, Eckhardt et al., 2000, D'Odorico et al., 2006, Staver et al., 2009). The 

general trend is that woody biomass usually increases with a decrease in fire frequency. 

Fire is inferred to play a role as a determinant of savanna structure through a reduction in 

young tree survival (Hoffmann and Jackson, 2000, Hoffmann et al., 2002). Herbivory too 
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can decrease woody biomass, either through direct consumption, or via interactions with 

fire. For example, grazing can result in an increase in woody cover, via a decrease in grass 

cover and the subsequent decrease in inter specific competition and the reduced occurrence 

of fires. (Scholes and Archer, 1997).  

Continuous fire may result  in stunted “Gulliver” trees  which stay in a stunted state for 

years until  given an opportunity to escape the fire trap (Higgins et al., 2000). A “browse 

trap” can also form in which medium sized herbivores reduce the success of transition from 

saplings to adults (Staver et al., 2009). 

Fire and herbivory are not the only drivers of savanna vegetation pattern and dynamics. The 

presence of termitaria (Levick et al., 2010), a history of human habitation (Scholes and 

Archer, 1997), the effect of nutrient cycling (Dougill et al., 1998, Hibbard et al., 2001, 

McCulley et al., 2004) or hydrological processes (Ludwig et al., 2005) are just a few factors 

which may influence the savanna vegetation distribution.  

 

Not only do different drivers affect the savanna landscape at different scales (Gillson, 

2004), but different drivers underlie vegetation dynamics in different landscape contexts 

(Levick and Rogers, 2011). Landscape context refers to multiple possible outcomes due to 

the configuration of numerous drivers of an inherently heterogeneous and complex system. 

For instance, in dry dystrophic savannas, Treydte, Heitkonig et. al (2007) recorded grass 

leaf N- and Pcontents up to 25% higher underneath tree canopies. However, there was no 

significant grass quality improvement by trees in moist and nutrient-rich savannas. In this 

example; the nutrient cycling was contingent on the available moisture of the soil.  

 

Another example from dry lands ecology taken from a study of water balance associated 

with patterns of tree cover density in topographically heterogeneous semi-arid woodland 

found that the effect of one variable on tree cover density depends on the value of the other 

variables. 

 

Any kind of synthesis of the dynamics of woody cover in savannas illustrates that many 

interactions are contingent on a number of factors, which themselves are part of feedback 
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loops; examples of which I discuss later in this chapter. The last forty years of research into 

savannas have been fruitful and narratives generated about possible interactions and 

outcomes of differences in systems drivers (Scholes and Archer, 1997, viz. Sankaran et al., 

2008, Staver et al., 2009). However, from a theoretical perspective, given the sensitivity of 

outcomes to initial starting conditions in complex systems (Kauffman, 1995) and given the 

possibly drastic effects of chance events (Ulanowicz, 2008); is a more holistic approach not 

better suited to the analysis of savanna systems? 

 

Systems analysis is a concept borrowed from information theory and has been applied to 

determining the origin of the savanna biome (Beerling and Osborne, 2006). It is a method 

for assessing potential feedback loops within a system. In any system where the propensity 

for a positive feedback loop exists, it is likely that the loop will form. The feedback loop 

will become more entrenched and start to acquire resources from the rest of the system, 

until some form of constraint impedes its ability to grow any more (Ulanowicz, 2008) . 

The systems representation presented below is by no means spatial, nor is it meant to be. In 

this thesis I utilize the spatial and scaled nature of woody cover to make an inference about 

the processes and feedback loops that affect the woody cover. The link between the 

system’s representation (outlined here) and the multi-scaled distribution of woody cover in 

the landscape is fundamental to my thesis. I take advantage of the fact that trees are sessile 

and that feedback loops either aid or inhibit their proliferation into patches. This means that 

the spatial and scaled nature of woody cover can be used to infer the nature of certain 

processes, specifically processes which create feedback loops which either facilitate or 

inhibit the proliferation of woody cover. In the following section I discuss feedback loops 

in savanna systems from the point of view of process flow. 

2.1.4.1. Feedback loops influencing savanna vegetation structure 

A qualitative systems analysis of the drivers and interactions which affect woody tree cover 

in a semi-arid savanna was synthesized from the literature (Figure 2.3). Not all possible 

interactions are incorporated, but they are rather limited to the feedbacks likely to affect a 

single hill slope unit. I have focused on those interactions likely to significantly affect the 

woody tree cover of the hill slope. In this representation, therefore, it is assumed that 
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climatic feedbacks such as CO2 concentration, regional precipitation and subsequent 

drought, cloud formation and fire ignition probability are constant across the site.  

 

In a simplified diagram, I qualitatively present the interactions that have the propensity to 

create a feedback loop resulting in an increase or decrease in woody biomass. Each loop is 

discussed independently in the context of the supporting literature. 

 

The interaction between fire, grass biomass and tree cover 2.1.4.1.1. 

(Figure 2.3; Pathway A→B→C→D)  

In a savanna, increased fire frequency reduces woody tree cover (Hoffmann et al., 2002). 

Grasses are likely to establish in the gaps between trees, as the grass patches expand they 

increase fire frequency as the grass biomass established in the wet season creates a plentiful 

fuel supply for dry season fires (Bond and Keeley, 2005, Keeley and Rundel, 2005, 

Beerling and Osborne, 2006). 

 

Figure 2.3: A qualitative systems analysis of interactions in a savanna system, focused on how the 

processes affect woody tree cover. Red arrows indicate a negative effect and green arrows indicate a 

positive effect. Letters label the interactions and feedbacks. Systems analysis allows for the 

detection of feedback loops, such as pathway A-B-C-D, in which an increase in fire frequency 
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causes a decrease in tree cover via an increase in tree mortality, which in turn increases the 

likelihood of grass biomass, which in turn increases the biomass available for combustion, closing 

the feedback loop. The diagram presented is not fully inclusive of all possible interactions; for 

example, fire may influence tree growth as well as tree mortality; these situations are however 

mutually reinforcing interactions and thus feedback loops will not be left out. 

 

The interactions between herbivory, fire and woody tree cover. 2.1.4.1.2. 

(Figure 2.3: pathway E→F→B→C→D)  

Interactions between fire and grazing are critical to structuring savanna landscape 

heterogeneity (Knapp et al., 1999, Fuhlendorf and Engle, 2001, Fuhlendorf and Engle, 

2004, Kerby et al., 2007). Herbivores, most notably ungulates, influence the fire regime by 

altering the quality and quantity of fuels available for combustion (Hobbs, 1996). Large 

ungulates selectively graze recently burned patches for the high-quality regrowth forage 

(Coppedge et al., 1998, Coppedge and Shaw, 1998, Archibald and Bond, 2004). Patches not 

burned recently accumulate dead biomass because of reduced foraging pressure when 

ungulates focus on more recently burned patches (Fuhlendorf and Engle, 2004). The rapid 

re-sprouting initiated by fire presents ungulates with highly palatable grazing that 

consistently attracts herbivores to the same areas, creating a positive feedback loop 

(Fuhlendorf and Engle, 2004, Zavala and Holdo, 2005)  which in turn reduces grass 

biomass and fire frequency.  

 

Fire frequency is reduced as recently burned and grazed patches are unlikely to ignite and, 

if ignited, are unlikely to support fire spread. In contrast, patches not recently burned are 

very likely to support fire spread if ignited (Hobbs et al., 1991). This positive feedback 

interaction can be thought of as a form of ecological memory. In order for spatial self-

organization to persist, there needs to be a relatively high level of ecological memory in a 

system (Peterson, 2002). In the absence of ecological memory a one-way relationship exists 

between landscape pattern and process (Peterson, 2008). This is an example of ecosystem 

engineering, a self-reinforcing pattern necessary for structural attractors to persist in the 

system. 

 

The feedback loops between soil-moisture, tree-growth and woody-cover.  2.1.4.1.3. 

(Figure 2.3: pathways H→J→G, H→J→O→D, H→I→K→G and H→I→K→O→D).  
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Water availability affects tree distribution at multiple spatial extents. At local scales; water 

infiltration is increased under canopies due to soil porosity changes induced by root 

penetration. Shading reduces water loss from the soil and stem flow increases the local 

moisture content as vegetation patches serve to obstruct runoff (Ludwig et al., 2005). The 

increased available soil moisture increases the rate of nutrient cycling (Schlesinger et al., 

1996, Agnew, 1997, Whitford et al., 1997), especially in the case of large trees (Treydte et 

al., 2009). In the space surrounding an individual tree; the accumulation of autochthonous 

leaf litter and sediments through wind trapping increases the local nutrient concentration, as 

does the use of vegetation by herbivores, which deposit dung in the vicinity of the tree 

either during foraging or during time spent ruminating in the shade (Agnew et al., 1993, 

Agnew, 1997).  

 

The increase in water availability and nutrient cycling locally increase the growth potential 

of the plant and subsequently woody tree cover of the environment. This constitutes a 

feedback loop in which the trees facilitate the hospitality of their own environment. This 

feedback loop is an example of a self-reinforcing assembly state of pattern and process in a 

real world complex system, expressed in the distribution of vegetation pattern. 

 

The effect of browsers on woody-cover 2.1.4.1.4. 

(Figure 2.3: pathway P→M→D, P→Q→S→G, P→N→G, P→N→O→D)  

Not all feedbacks are positive and constitute self-reinforcing assembly states. Browsers 

directly affect the woody tree cover. Mega-herbivores such as elephants (Loxodonta 

africana) and giraffes (Giraffa camelopardalis) as well as a host of ungulates and insect 

browsers alter the structure of woody vegetation (Higgins et al., 2000, Bond and Loffell, 

2001) through direct browsing or by increasing susceptibility of trees to fire (Holdo, 2007, 

Van Langevelde et al., 2008). An increase in browsing pressure will decrease the amount of 

available woody cover. This does not constitute a positive feedback loop but it is instead a 

density-dependent feedback between browsers and resource, a negative feedback. This will 

not create self-reinforcing assembly states. In traditional system models negative feedbacks 

can create an equilibrium state, cyclical response or even deterministic chaos, depending on 

the parameters of the response curves. 
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2.1.5.  THE 'NWASHITSUMBE ENCLOSURE SITE 

The northern portion of the Kruger National Park falls within a region of semi-arid/arid 

savanna systems (Figure 2.4). The study site chosen is the “'Nwashitsumbe semi-enclosure 

site”, situated in the northern area of the Kruger National Park, on basaltic soils with a 

gentle gradient. The site receives between 400-450mm rainfall p.a. The Aridity Index (AI) 

is 4.8, defined as:  

 

        , 

 

where T is the mean annual temperature and P is the mean annual precipitation ( 2≥ AI < 3, 

characterizes a semi-arid area, and AI>3 characterizes an arid system) (Kéfi et al., 2007a, 

Pueyo and Alados, 2007).  

2.1.6.  HISTORY OF HERBIVORY IN THE STUDY SITE 

The 'Nwashitsumbe enclosure is an experimental enclosure which excludes all mammals 

larger than a springhare (Pedetes capensis). Constructed in 1968, the enclosure was then 

extended in 1986 to include a riparian section alongside the adjacent first order stream. The 

study site selected was in the oldest section, which at the time of the photograph, depicted 

in the figure below, was 33 years old. The enclosures have not excluded herbivory 

completely, rather they can be considered as browse, and mega-herbivore exclosures. The 

enclosures have been used since their inception for the breeding of rare antelope species; 

roan antelope (Hippotragus equinuus), sable (Hippotragus niger) and Lichtensteins 

hartebeest (Alcelaphus lichtensteinii). Outside the enclosure the dominant herbivores (in no 

particular order) include elephant (Loxodonta africana), buffalo (Syncerus cafer), giraffe 

(Giraffa camelopardalis), white rhino (Ceratotherium simum), impala (Aepyceros 

melampus), Kudu (Tragelaphus strepsiceros), Nyala (Tragelaphus angasii), bushbuck 

(Tragelaphus sylvaticus), blue wildebeest (Connochaetes taurinus), steenbok (Raphicerus 

campestris) as well as a host of other antelope species. The herbivores represent a range of 

mixed feeders, specialized grazers, and specialized browsers of which there are both 

concentrate selector species and bulk feeders. 



 
 

Figure  
Figure 2.4: The location of the study site. The Kruger 

National Park, South Africa is within the savanna biome  (A). 

Within the Mopane shrub savanna (B) is the 'Nwashitsumbe 

enclosure (C). The enclosure is an experimental enclosure 

which excludes all animals  larger than a springhare and has 

been present for more than thirty three years at the time of 

image. 
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I acknowledge that the 'Nwatsitsumbe enclosure site is not a true herbivore exclusion site. 

Rather, the site has been used to breed rare antelope. Given that the herbivores within the 

enclosures are all concentrate selector species which are specialized grazers the assumption 

that they do not affect the woody vegetation via direct browsing is valid. Moreover, the 

enclosure site excludes mega-herbivores and abundant species such as nyala and impala and 

has done so for 33 years at the time of the photo. 

 

Mega-herbivores have a major role as ecosystem engineers, mega-herbivores can shape 

vegetation over landscape scales (Owen-Smith, 1987, Owen-Smith, 1992). The removal of 

this major driver should influence vegetation and there is evidence from high resolution three 

dimensional LiDAR comparisons that there herbivory has had marked effects on canopy 

when inside and outside the enclosure are compared (Asner et al., 2009). Unfortunately large 

enclosures which totally exclude herbivores and that have been present for a long time are 

few and far between for the study of landscape ecology. Nevertheless, with all browsers 

excluded and all mega-herbivores, the difference between inside and outside of the enclosure 

indicate a 33 year difference in herbivore pressure. 

2.1.7.  HISTORY OF FIRE IN THE STUDY SITES 

The 'Nwashitsumbe enclosure is divided into four burn treatments (Figure 2.5). The fire 

return frequency for each burn block has been accumulated from rangers’ diaries and aerial 

photographs (Table 1;(Govender, 2009, unpublished data). There is no obvious periodicity in 

the fire return intervals and although fire intensity interval does affect vegetation structure 

(Govender 2006), fire intensity data are not available. I ranked the four sites based on time 

since the last recorded fire event: NW, SW, NE and SE respectively. The area outside of the 

enclosures has a fire return interval of approximately three years. 
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Figure 2.5: The 'Nwashitsumbe herbivore enclosure site, a 33 year browser enclosure. The 

enclosure is dived into four blocks which I have named based on their locations: NW NE, SW and 

SE. Each block has a different fire regime, expanded upon in Table 5. The sizes of the blocks are 

indicated in hectares. The topography is a gentle slope with a total drop of ten metres over a 

distance of approximately 1,800m.  
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Table 1: Recorded fire events for the four burn blocks of the 'Nwashitsumbe enclosure. Time since 

fire (tsf) between each event is indicated, with the time since last fire at the time of the photograph in 

2001. 

NW  tsf NE tsf SW tsf SE tsf 

1976   1980   1978   1979   

1982 6 1985 5 1984 6 1981 2 

1985 3     1986 2 1985 4 

1987 2     1990 4 1988 3 

1990 3     1999 9     

1998 8             

Photo      2001 3 2001 16 2001 2 2001 13 

 

The 'Nwashitsumbe enclosure is situated on the uplands of a hill slope, dominated by  

Colophospermum mopane (Levick and Rogers, 2008). There is no steep incline or change in 

soil type within the site and differences in soil water availability are unlikely to be imposed 

by slope or aspect within the site. Changes have been documented with regard to the woody 

species composition and in the height class distributions of the wetland area adjacent to the 

sections of the enclosure used in this study (Levick and Rogers, 2008). Additionally, there 

has been a difference documented in the biomass accumulation within regions of the larger 

enclosure itself (Colgan, 2009, pers comm).  

 

There have been documented differences in the canopy height of the 'Nwashitsumbe 

enclosure and the surrounds. The presence of herbivores severely reduces the amount of 

biomass and alters the vertical distribution thereof (Asner 2009). However, these studies did 

not compare the spatial distribution of vegetation cover in a non-stationary manner. The 

relationship between vertical distribution and the spatial distribution of woody canopy are 

related, but do herbivores, specifically browsers, affect the spatial distribution of patches? 

There are very few spatially explicit studies that document the effect of herbivory on the 

spatial configuration of vegetation. Herbivory has been shown to affect the cross-scale 

morphology of vegetation pattern by segmenting large patches and ultimately creating a 

regime shift (Kéfi et al., 2007a), but it remains to be seen whether or not the location of 

vegetation is driven by herbivory. 

 

2.1.7.1. Synthesis of Objective Two 

Savannas are complex systems with multiple interactions between biotic and abiotic agents. 

Some interactions result in distributions of vegetation that are self-reinforcing assembly 

states, while other interactions constitute classic density dependence responses. The spatial 
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pattern of woody vegetation reflects the nature of feedback loops and has been used to infer 

system level properties. In addition, the distribution of vegetation is supposed to be affected 

at multiple scales by different drivers (Gillson, 2004). Vegetation distribution is a perfect test 

subject for complex systems properties as it should have multi-scaled pattern indicative of 

processes. By testing for hierarchically nested structure in a real world savanna system, it is 

possible to find the nested holons at varying levels of organization- from which further 

analyses may reveal system level properties commensurate with the power law type analyses 

but applicable to more heterogeneous landscapes. 

2.2. OBJECTIVE 3: WHAT METHODS ARE AVAILABLE FOR MULTI-SCALED PATTERN 

DETECTION AND WHY THEY ARE NOT VALID FOR THE PURPOSES OF THIS THESIS 

Ecologists strive to link spatial heterogeneity and ecological process; this requires a formal 

representation such as the Hierarchical Patch Dynamics Paradigm. In general, “…the spatial 

configuration and composition of this patch mosaic typically describes using an assortment 

of landscape metrics to quantitatively link the dynamics of process and structure…” (Castilla 

et al., 2008, pg. 1). However, there are a number of statistical artifacts and scale relationships 

inherent in the methods themselves which may preclude any ability to make ecologically 

meaningful inference. Linking datasets, or metrics between scales of observation has inherent 

bias which must be accounted for (O'Neill, 1986). Here I explain why.  

2.2.1.  STATISTICAL CONSIDERATIONS IN SPATIALLY EXPLICIT AND MULTI-SCALED 

ANALYSIS 

The spatial ecologist is confronted with a panoply of techniques which have been used to 

analyze the structure of landscape images. There are a multitude of caveats and possible 

errors introduced through linking pattern that have been captured through different windows 

of observation. I cannot hope to be completely comprehensive in the review, nor is it 

relevant, rather I review a subset of traditionally used methods for the purposes of generating 

an understanding of the pitfalls to be avoided in the process deriving the use of linear scale-

space as a method for completing these analyses.  

The traditional multi-scale methods in landscape ecology, which I review included; semi-

variance analysis (Wu et al., 2000), wavelet analysis (McGarigal and Cushman, 2005, 

Saunders et al., 2005, Murwira and Skidmore, 2006), fractal analysis (Nikora et al., 1999, 

Alados et al., 2005) and lacunarity analyses (Plotnick et al., 1993, Plotnick et al., 1996, Dale, 

2000, McIntyre and Wiens, 2000, Wu et al., 2000, Bastin et al., 2002). In addition I reviewed 
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spectral analysis techniques (Couteron et al., 2006), cluster analysis (Scanlon et al., 2007) and 

multi-scaled object-based analysis approaches that have been developed for use with 

remotely sensed data (Hay et al., 2001, Hay et al., 2002). The wide range of methods reflects 

the diversity of data sets (Dale et al., 2002, Perry et al., 2002) as well as the variety of 

disciplines from which these methods are derived and vary from the very simple and easily 

applied to the very complicated and cumbersome. Results of pattern analyses using various 

techniques can show large variations, despite similar data and objectives, highlighting the 

necessity of understanding the different methods before applying them to the task at hand 

(Johnson et al., 2005).  

2.2.1.1. Statistical considerations: 

Across this full spectrum of methods exists a conflict between the statistical rigor of many 

techniques, introduced by the mathematical assumptions underpinning them and the 

ecological reality of accepting those assumptions. Not all methods reviewed necessarily fall 

foul of all assumptions and these are not necessarily comparable methods as they are aimed at 

answering different questions, but the four major assumptions and their consequent artifacts 

which pervade the reviewed statistical methods are: stationarity, subjective a priori scale 

selection, anisotropic sampling schemes and the Modifiable Areal Unit Problem. I briefly 

review the ecological implications of these assumptions and artifacts as I derive the use of 

linear scale-space as a superior method of multi-scale landscape analysis. 

Table 2:  Summary of the intrinsic statistical assumptions of the reviewed multi-scaled analysis 

methods. The review is limited to two dimensional applications as one dimensional applications 

naturally assume a gradient. 

M
u

lt
i-

sc
al

ed
 

an
al

y
si

s 
te

ch
n

iq
u

e 

S
en

si
ti

v
e 

to
 t

h
e 

M
A

U
P

 

A
ss

u
m

es
 

S
ta

ti
o

n
ar

it
y

 

A
n

is
o

tr
o

p
ic

 

sa
m

p
li

n
g

 s
ch

em
e 

A
 p

ri
o

ri
 s

ca
le

 

as
su

m
p

ti
o

n
s 

E
as

e 
o

f 

im
p

le
m

en
ta

ti
o

n
 

R
et

ai
n

s 
lo

ca
l 

in
fo

rm
at

io
n
 

Semivariance Analysis Yes Yes If 1D No Simple No 

Lacunarity Analysis* Yes Yes If 1D No Simple No 

Fractal Analysis Yes Yes If 1D No Simple No 

Spectral Analysis* Yes Yes No No Simple using FFT No 

Cluster Analysis† No Yes No No Requires some level 

of statistical 

sophistication 

No 

Wavelet Analysis* No No If 1D No Not many Yes 
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applications 

available. 

Multi-scaled object based 

approaches
ф
 

No No No Yes Requires object 

based software  

Yes 

 

Methods and reviews from Saunders et al (2005) and Ares et al (2003)*,  Scanlon (2007)†, 

Dale et al (1998), Dale et al (2002), Dale (2000), Hay et al (2001)
ф
 and Wagner et al (2005). 

Stationarity 2.2.1.1.1. 

Spatial stationarity is the assumption that the mean and variance of the sample remain 

consistent across the entire data set (Fortin et al., 2005). The underlying assumption of 

stationarity is that the data structure is the same no matter where in the sample one observes a 

datum (Wagner and Fortin, 2005). Stationarity is the spatial statistics equivalent of the 

assumption of independence in parametric statistics and implies that any variation that one 

observes across a dataset is a result of an anomaly in the distribution, as opposed to any 

difference in the processes creating the pattern.  

 

The assumption of stationarity, however,  is rarely kept in real landscapes, due to the 

presence of local variability, patchiness, spatial gradients and interactions which themselves 

are contingent on the underlying environmental and controlling biotic factors (Brown et al., 

1996, Maurer, 1999, Fortin et al., 2003, Fortin et al., 2005). For instance, vegetation 

distributions in landscapes and in particular in semi-arid savannas are differentially 

influenced by different processes at different scales and at different places in the landscape 

(Gillson, 2004, Levick, 2008).  By way of illustration, in a semi-arid savanna system, it is 

inferred that mammalian herbivory is the major driver of vegetation loss on lowland alluvial 

soils, whilst shrub encroachment on the upland hill slopes stems from changes in fire regime 

and climate (Levick and Rogers, 2011).  

  

Stationarity cannot be assumed for landscape extent analyses which aim to extract pattern 

objectively in the context of patch delineation and process domains.  Rather, when the 

assumption of stationarity is not fulfilled and spatial characterization should be performed 

using local spatial statistics (Boots, 2002) or wavelet analysis (Bradshaw and Spies, 1992, 

Dale and Mah, 1998). Local statistics and wavelet analysis are methods which preserve local 

information. Linear scale-space analysis can be considered a specific type of wavelet analysis 

and also preserves local information. 
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A priori scale selection 2.2.1.1.2. 

The scale of observation represents the window of perception of the data set representing the 

real world and is defined by the filter or measuring tool with which a system is viewed and 

quantified (Hay et al., 2002). Viewing spatial pattern through a relatively large filter reflects 

data pattern dominant at that large spatial extent. Similarly, small filters only allow for the 

relatively smaller spatial information to be represented in the outputs. Landscapes are 

inherently heterogeneous and the degree of variation observed will depend upon the temporal 

and spatial window of observation (Dungan et al., 2002, Chave and Levin, 2003, Levick, 

2008). 

 

Real world objects, represented as a sampled data set in whatever form, only manifest across 

a finite range of scales (Hay et al., 2002). The object will only be observed to the extent 

permitted by the spatial extent of the chosen filter sizes and therefore it is vital to specify the 

scale of interest before any methods for geo-statistical or boundary analysis can be applied 

(Kent et al., 2006). The choice of filter size that determines the scale of observation is either a 

subjective decision of the researcher, or a practical constraint of the dataset. For instance, to 

analyze pattern in the woody tree cover from an image at multiple scales, the image must be 

partitioned into windows for analysis. The relative size of the windows defines the scales of 

the analysis (Couteron et al., 2006) and therefore the emergent pattern. However, to link 

pattern and process one must accurately define the actual pattern that emerges from real 

process interactions, not those constrained by the a priori selection of a starting scale and/or 

window sizes as is the case in most of the reviewed methods. 

 

Anisotropic sampling schemes 2.2.1.1.3. 

Anisotropy and isotropy refer to the direction of spatial analysis in a data set.  Isotropic 

patterns contain no underlying directionality or trends in the dataset, whereas anisotropy 

refers to the case where the data characteristics are different, depending on the direction the 

samples are taken in. For example, oblong rather than circular patches of vegetation can be 

caused by directional wind or water flow (Dale, 2000).  Transect based methods assume that 

any gradients or anomalies in the pattern will be parallel to the transect direction. Transect 

based methods present a bias in their application; in which direction does one place the 

transect? If one does not know anything about the nature of the process, choosing a direction  

may cause misinformation.  
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Many techniques applied to assess both spatial autocorrelation and spatial pattern assume 

anisotropic data  (Kent et al., 2006, Ares et al., 2003) and may not be effective in detecting 

multi-scaled data structure when the shapes of patches vary greatly and are elongated with 

different orientations (Wu et al., 2000). In studies describing multi-scaled structure of 

landscapes, one must avoid sampling schemes that rely on, or fall foul of assumptions of 

anisotropy if the true ecologically meaningful pattern is to emerge. 

 

The Modifiable Area Unit Problem 2.2.1.1.4. 

Remote sensing technologies are the primary data source for landscape analysis, but suffer 

from a sampling artifact termed the Modifiable Area Unit Problem (MAUP) (Hay et al., 

2001). Changing the shape and/or size of the units on which data are mapped can change the 

resulting patterns or statistical models generated from the data (Dungan et al., 2002). The 

potential for error in the analysis of spatial data resulting from MAUP is significant and has 

been recognized in a number of studies (Fotheringham and Wong, 1991, Jelinski and Wu, 

1996).  

 

As a result of remotely sensed data being sampled without necessarily considering the 

ecological meaning, the outcome of aggregation of the data can have a great effect on the 

estimated covariance structure (Wagner and Fortin, 2005). Covariance structure of datasets is 

what is used to make inference regarding the process as it is a measure of the variability in 

pixels within a sample. Consequently changes to covariance structure induced by changing 

aggregation schemes at different scales can lead to an improper association of pattern and 

process.  

 

A solution to the MAUP is to use object-based image analysis techniques (Hay et al., 2001), 

in which data are represented, not as an arbitrarily assigned association of pixels, nor in 

single pixels but in image objects which can be more ecologically meaningful than simple 

spectral representations (Baatz and Schäpe, 1999). 

 

Methods used to analyze for multi-scaled landscape structure are numerous and scaling of  

the data is the subject of the field of scaling (viz. Milne and Johnson, 1993, Wu, 1999, Wu 

and Qi, 2000). I return to the analysis of multi-scaled pattern in landscapes; firstly I highlight 
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a few other methods used to measure multi-scaled pattern  upon which I draw when I develop 

my method. 

2.2.2.  DISCONTINUITY ANALYSIS; THE SEARCH FOR BREAKS IN PATTERN ACROSS SCALE 

The Textural Discontinuity Hypothesis (TDH) predicts a discontinuous distribution of pattern 

in the cross-scale morphology of a system. According to the TDH the presence of a 

discontinuity is evidence that pattern and process entrain the scales over which one another 

are expressed. Entrainment refers to a dominant keystone process enslaving the spatio-

temporal frequency of another process, resulting in a limited number of spatial and temporal 

frequencies over which processes operate (Holling, 1992, Allen, 2006). A number of methods 

have been used to identify discontinuities in datasets, reviewed by Skillen and Maurer (2008).  

In general, analysis for discontinuities is  performed along the scale axis, comparing the size 

of the gaps between data points which reflect the scale at which processes are influential 

(Holling, 1992, Siemann and Brown, 1999, Allen et al., 2005, Stow et al., 2007). 

A discontinuity is a gap in pattern measured across the scale dimension. But when measuring 

discrete units, as is necessary to take the measurement, what constitutes a gap that is 

sufficiently large to be considered a discontinuity? When considering a proxy such as body 

mass (viz. Holling, 1992) a five gram difference between two shrew species is more 

meaningful that a five gram difference between deer species. This is due to comparison of 

data across scales and the data must be detrended before it can be analyzed for 

discontinuities. Once the data are transformed, they are considered comparable and are tested 

for discontinuous patterns across multiple scales.  

Most commonly the trend in scale is removed using a log10 transformation of the data 

(Holling, 1992, Holling, 2001, Allen and Holling, 2002, Allen et al., 2005, Allen, 2006, Allen 

et al., 2006, Stow et al., 2007, Skillen et al., 2008) or by transforming the data with a scaling 

factor (Holling, 1992). Earlier research into discontinuities utilized a body mass difference 

index:  

HI=(M(n+1)-M(n-1))/M(n))
γ, 

where γ=1.3 for birds and 1.1 for mammals (Holling, 1992).  

Siemann and Brown (1999) developed an index using SB=log10((M(n+1))/(M(n))). Both of 

these indices assume a single trend in the data, that is detrended by transformation exponent 

(1.3 or 1.1 in the case of Holling (1992) and log(10) in the case of Siemann and Brown 

(1999)). A discontinuity constitutes a gap between two values of greater than a user defined 

criterion. 
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In more objective approaches a number of resampling methods have been developed in an 

effort to analyze for the presence of discontinuities. The Gap Rarity Index (Restrepo et al., 

1997) utilizes a null model of uniform distribution that is repeatedly sampled as:  

gap(n) =log10(M(n+1))-log10(Mn). 

The resampling creates a hypothetical distribution of gaps against which the gaps within the 

real data are tested. This constitutes a Monte Carlo Simulation approach in which the sample 

is tested against a population taken from a number of random replicates of known 

distribution. Standard hypothesis testing techniques are then used to determine the 

significance of any discontinuities. 

 

A method developed by Stow et al. (2007) utilizes an overall discontinuity index, which 

indicates the “gappiness” in the dataset, done by calculating the vector norm of the dataset:                                                                                                                 

DI= √∑            
 
   

 
 

This discontinuity index (DI) is tested against a population of hypothetical discontinuity 

index values. The hypothetical population is created by resampling a hypothetical null 

distribution of uniform distances with the same sample size as the real dataset. The result of 

the test is a single value describing the probability that the discontinuity index of the data set 

is higher than that created through random chance.  

 

Hierarchical cluster analysis; classification and regression trees as well as the Bayesian 

version thereof (Chipman et al., 1998) have been put forward as methods to detect the 

location of discontinuities in data (Stow et al., 2007, Skillen et al., 2008). However, the 

determination of what constitutes a significant cluster is a contentious issue and Stow, Allen 

et al.(2007) advocate finding consensus using a number of methods.  

 

I must highlight here that detecting discontinuities in spatial data is novel at this point. In one 

dimensional datasets such as body mass distributions, a form of stationarity is assumed. It is 

implicitly assumed that the suite of processes affecting the body mass of all individuals of a 

species is equal throughout the sampled distribution. Therefore, any discontinuities in the 

data are assumed to be the result of an anomaly in process. In spatial data taken from a 

landscape however, stationarity assumptions are not valid. Contingency in landscape process 

and the resulting pattern renders this assumption of stationarity invalid. Detecting 

discontinuities in spatial data is novel and thus a novel method is needed to detect the 
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presence of discontinuities in the dataset, which I develop later in this thesis. Firstly, I review 

other examples of multi-scaled analysis of landscape pattern. 

2.2.3.  MULTI-SCALED ANALYSIS OF VEGETATION PATTERN 

The analysis of multi-scaled pattern and process found in a savanna landscape is by no means 

a novel field of research. A  variety of methods have been used to quantify the structure of 

landscape variables at multiple scales, often  involving some form of renormalization and 

scaling process in which data are sampled at multiple resolutions and variations in a quantity 

compared across resolutions (viz. Milne and Johnson 1993). I have divided the techniques 

used to analyze multi-scaled structure in datasets into four broad groups. Within the groups 

there are often a multitude of variations in the techniques which are not expanded upon here. 

I reiterate that the objective of this thesis is to detect hierarchically nested structure in woody 

vegetation cover of a semi- arid savanna.  

2.2.3.1.  The search for translational invariance in scale 

 A common technique in the search for multi-scaled structure in spatial data is the detection 

of regions of translational invariance in a comparison of scale of observation versus quantity 

of the observed variable. This type of analysis is often termed power-law analysis. The 

general form is: 

     where Y is a predicted variable, β is a normalization coefficient and α is the 

scaling exponent (Marquet et al., 2005).  

Power laws have been studied extensively in various fields and a number of power law 

relationships have been found in natural systems (West et al., 1997, Brown et al., 2002, 

Brown et al., 2004, West and Brown, 2005). 

Although the term power law has been used in a variety of similar ways, I confine the 

discussion of power laws to the analysis of the change in the measured value of a spatial 

attribute in a landscape as one changes the scale of observation. Power laws in this context 

are functions which define the relationship between the observed data across the scale axis. 

The philosophy of power law analysis is that the processes creating the pattern are constant 

across the entire range of observed scales. Any region across scale where a process 

predominates should follow a particular power law, implying that the same principles or 

processes are at work no matter what the scale of analysis.  

 

A power law relationship implies that there is translational invariance in scale. The search for 

translational invariance in the landscape is well documented, (Wu, 2004, Saura and Castro, 
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2007). The search for a nested hierarchy is simply the search for multiple regions of 

translational invariance along the scale axis. In and of itself this does not violate any 

ecological assumptions; rather the problems lie in the ways in which data are collected to 

compare scaling laws. A number of methods exist for the determination of power laws in the 

landscape, of which I discuss three: measures of spatial autocorrelation, fractal analysis and 

cluster analysis. 

 

Measures of spatial autocorrelation 2.2.3.1.1. 

Spatial autocorrelation exists when the process generating the pattern of interest is spatially 

weighted, there is a relationship between the pattern or strength of signal and the distance 

between points being compared. “Everything is related to everything else but near things are 

more related than distant things''. (Tobler, 1970). There is a tendency for observations which 

are spatially close to each other to be more similar than that of a random sample (Dale et al., 

2002, Rangel et al., 2006) i.e. variables co-vary in space (Kent et al., 2006). Spatially 

correlated data implies a coupling and dependence between pattern and process in the 

landscape. If one can determine the spatial extent at which the data no longer show 

dependency on one another, it is possible to determine the spatial extents at which process 

domains are evident in the landscape. 

 

A number of methods, which observe both local and global patterns in a dataset, are used to 

determine the extent of spatial autocorrelation in the landscape. One of the most widespread 

tools for detecting spatial or temporal scales of variability is the sample variogram or semi-

variogram (Dale et al., 2002). Variograms quantify the amount of spatial autocorrelation 

across differing lag distances, which typically increase from a theoretical zero until the spatial 

autocorrelation levels off at the maximum semi-variance, which occurs at and beyond a 

particular lag distance known as “the range”.  

1. Semi-variance measures 

The spatial autocorrelation in a dataset is quantified by comparing data points at increasing 

distances from one another. The range identifies the distance beyond which pairs of objects 

no longer exhibit spatial autocorrelation (Meisel and Turner, 1998) and in terms of vegetation 

as a process domains the distance at which the coupling between pattern and process no 

longer occurs, i.e the patterns are independent. Evidence of multiple lag distances can be 

evidence of hierarchical structure in the dataset. The semi-variogram has been widely used in 

landscape analysis and the search for multi-scaled patterning. For example, semi-variograms 
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have been used to study the correlation between scales of ungulate foraging strategies and 

resource availability in the landscape (Meisel and Turner, 1998),  changes in forest canopy 

spatial pattern (Aguilar-Amuchastegui and Henebry, 2006), the study of the scaled nature of 

soil organism distribution (Ettema and Wardle, 2002) and to determine the scale-dependent 

spatial heterogeneity of vegetation (Chen et al., 2002). 

 

The semi-variogram excels at describing a global pattern but fails in the detection of local 

features deviating from the mean (Bradshaw and Spies, 1992), due to the assumption of 

stationarity inherent in the method. In terms of the search for the presence of a nested 

hierarchy, besides issues concerning stationarity, the interpretation of the semi-variogram 

output becomes difficult when multi-scaled data is encountered (Bradshaw and Spies, 1992) 

Studies have indicated that in semi-variograms of real landscapes finescale variability can be 

affected by broadscale variability, so that multi-scale structure may be obscured (Meisel and 

Turner, 1998, Wu et al., 2000). In addition, the results of semi-variance analysis and their 

interpretations can also be significantly affected by changing the grain size, lag, and extent of 

the data sets, i.e. the MAUP (Dungan et al., 2002). 

 

2. Lacunarity analysis 

Lacunarity analysis is a “…scale dependent measure of heterogeneity or texture…” (Plotnick 

et al., 1996) and is used in landscape ecology to detect hierarchical structure within the data. 

There are many methods for calculating the lacunarity of an image, however a common 

method is the moving window method. This is done by calculating the mean and variance of 

the data of a gliding window over a number of filter sizes (scales of observation) (Plotnick et 

al., 1996, Dale, 2000, Saunders et al., 2005). Lacunarity analysis quantifies deviation from 

translational invariance by describing the distribution of gaps within the image at multiple 

scales of observation (Henebry and Kux, 1995, Cheng, 1999). The more lacunar an image, 

the more heterogeneous the spatial arrangement of data. In terms of landscape pattern, high 

degrees of lacunarity indicate a scenario in which different ecological processes generate 

pattern within restricted and strongly separated scaling regions (Keitt, 2000). 

 

Lacunarity analysis is similar to semi-variance analysis, instead of an increasing distance 

(lag) between sample points, the filter size is increased. Lacunarity analysis calculates the 

mean and variance of a data set sampled at differing scales of observation. An analysis of 

lacunarity index value versus the window size reveals the scales of the ranges of scales across 
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which the data structure is self-similar (Plotnick et al., 1996). It can provide power laws and 

be used similarly to the fractal dimensions in characterizing the regions of translational 

invariance.  

 

Lacunarity analysis has been applied to vegetation structure in a number of applications 

(Plotnick et al., 1996, McIntyre and Wiens, 2000, Alados et al., 2005, Frazer et al., 2005), 

often from satellite imagery (Malhi and Román-Cuesta, 2008). Theoretically the regions of 

scale invariance should reveal the scale domains present in the landscape, but there is a loss 

of local information in the calculation of the lacunarity index. Although lacunarity analysis is 

in itself robust to non-stationary data sets (Saunders et al., 2005)the loss of local information 

implies an assumption of ecological stationarity in the pattern extracted. One can obtain little 

more than the average patch size or range of self- similarity out of traditional lacunarity 

analysis. Although a useful technique it is difficult if not impossible to translate the 

information back onto the landscape itself. 

 

. Fractals and multi-fractal based methods 2.2.3.1.2. 

The fractal dimension (“D”) of the dataset is a parameter which describes the relationship 

between measured size and measured scale. For a formal mathematical explanation of fractals 

see Mandelbrot(1982). Fractal analysis has been utilized to measure landscape structure and 

scales of pattern expression for many years (Krummel et al., 1987, O'Neill et al., 1988, 

Palmer, 1988, Nikora et al., 1999, Li, 2000, Wu et al., 2000, Despland, 2003), allowing 

ecologists to view landscape patch patterns and dynamics at multiple spatial and temporal 

scales (Li, 2000).  

The essence of fractal theory is that it posits that concepts such as length (L), surface (L
2
) and 

volume (L
3
) are not discrete units as Euclidean geometry would have us believe, but that 

there is a continuum between the dimensions. Although it is intuitively easier to understand 

fractals in terms of lines, surfaces and volumes (D=1, D=2 and D=3;   for a point, surface and 

volume respectively) the data do not have to be physical and fractal analysis can be applied to 

statistical problems, which are a more common fractal problem in ecology.  

 

Fractal analysis compares the magnitude of the observation, be it the size of the outline or 

mass of the object, across a number of scales of the measurement. This involves using 

different sized filters on the dataset and measuring the magnitude of the observation of 

interest. If the change in both variables is constant across a log-log plot, the fractal dimension 
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(D) indicates the degree of self-similarity in the data (Jelinek et al., 2006), which in turn can 

be an indication of the underlying biological process that leads to the observed pattern. The 

ranges of scale across which the slope of the log-log plot is constant  implies that there is a 

single scale domain or dominant process or set of processes driving the pattern across this 

scale range (Keitt, 2000).  

 

It must be remembered though that biological organisms are not true fractals (Shenker, 1994), 

so biological forms are at best statistically self-similar over a limited range. This range is 

often not wide enough for fractal tools to be utilized (Chen et al., 2002, Halley et al., 2004). 

Purely fractal landscapes can be derived as null models against which to test the real data or 

model process (Hill and Caswell, 1999) and possible process domains can and have been 

detected in vegetation distribution patterns within a landscape using fractal analysis (Hartley 

et al., 2004).  A major use of fractal landscapes is as neutral models against which to test real 

world datasets, which I return to in the discussion of neutral landscapes (Section 2.2.4.   

 

Cluster Analysis 2.2.3.1.3. 

Cluster analysis analyses the distribution of connected clusters, defined by neighbourhood 

relationships. Scanlon, Caylor et al. (2007) demonstrated the prevalence of self-organized 

vegetation patterns across a regional rainfall gradient in Southern Africa  by finding 

translational invariance in the relationship between the cluster size of tree patches observed at 

differing observational window sizes. The method uses a cluster analysis technique in which 

the size distribution of connected patches of trees were calculated within a given lag distance 

(scale of observation) (Plotkin and Muller-Landau, 2002).  

 

The probability that a cluster was smaller than the assigned scale of observation was then 

plotted against the size of the window of observation. A function was fitted to the data set 

allowing the fit of the power law to be calculated.  A neutral model was developed to 

compare the observed power law against the power laws expected from a random with 

similar statistical properties. The results showed that the real world power laws infer a 

mechanistic understanding, implying that there is a suite of processes governing the scaling 

relationships within the study samples. The power law relationships were attributed by 

Scanlon, Caylor et. Al (2007) to internal feedbacks, rather than imposed spatial heterogeneity 

such as soil type differences or local topography.  
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2.2.3.2. Quantifying spatial frequency 

A group of analysis techniques originates from signal processing and dissects the data into its 

constituent wavelengths. In a two dimensional dataset such as an image, the wavelengths 

constitute spatial frequency or spatial pattern. Techniques originating from signal processing 

applications use functions with varying scale or frequency parameters to approximate the 

dataset. Dissection of the dataset by a function with a varying parameter renders the data into 

a set of co-efficients relative to the strength of the parameter in the signal. There are a number 

of ways in which the spectral signatures of data can be dissected. I concentrate on the two 

most frequently utilized transforms: the Fourier transform and the wavelet transform. 

 

 Fourier spectral analysis and textural ordination 2.2.3.2.1. 

Spectral analysis examines periodicity in the spatial pattern of data. Although there are a 

number of techniques to do this, the Fourier transform is most commonly used for landscape 

imagery (Legendre, 1998).  

1. Fourier transform 

Any spatial frequency can be approximated in terms of sine and cosine functions of varying 

wavelengths. The Fourier transform fits sine and cosine functions of increasing frequency to 

the data and indicates which wavelengths best fit the data (Ripley, 1978). A coarse texture 

may be expected from a limited number of periodic functions having large wavelengths, 

whilst a finer texture is likely to be better described by functions with smaller wavelengths. 

 

Spectral analysis can be useful in identifying multiple scales of heterogeneity and estimating 

the average patch size (Cullinan et al., 1997, Ares et al., 2003), but interpretation of the 

resulting spectral plots is difficult (Cullinan and Thomas, 1992). A major assumption of 

frequency analysis methods is that the spectra in the dataset are ecologically relevant; for 

instance, in a panchromatic image, the dark, low-value pixels are indicative of trees.  Spectral 

analysis by Fourier transform plays a prominent role in signal processing but has not been 

widely adopted for landscape structural analysis. This may be due to the fact spectral analysis 

is perceived as only useful for studying genuine periodicity, a property that is not expected in 

most regions of the earth surface (Couteron et al., 2006). Fourier transforms are also 

integrative across the entire signal, which results in the loss of spatial information in the 

outputs. This constitutes a true assumption of stationarity and cannot render spatially explicit 

local information easily. 
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2. Textural Ordination 

Textural ordination is a more sophisticated analysis method that has been developed 

incorporating Fourier analysis. The relative contribution to the Fourier approximation of large 

versus small wavelengths can be thought of as an expression of the relative importance of 

coarse versus fine textural components in a digital image (Couteron et al., 2006). A multi-

variate analysis such as Principle Component Analysis (PCA) is used to categorize the 

significant structure in the data. The PCA is used to compare many Fourier spectra, where 

each image subjected to a Fourier transform is considered a sample and the spectra derived 

are considered the quantitative variables. The output of the textural ordination depicts the 

principle spectra that create the landscape structure and spectral differences from different 

areas can be compared. Assuming that the spectral bands represent similar ecological 

meaningful entities across the analysed image, dominant spatial scales of vegetation pattern 

expression can be detected. 

 

Textural Ordination is a promising method in the analysis of multi-scaled data structure and 

can provide useful information in the search for the presence of a nested hierarchy. Textural 

ordination is superior to the global Fourier transform of an image, or even a windowed 

Fourier transform, which is used to try and avoid issues of stationarity. Textural Ordination 

does have a few problems in the detection of emergent vegetation patterns in the landscape. A 

major issue precluding its use in the search for a nested hierarchy is in the creation of the one 

dimensional spectra from the two dimensional Fourier transform. Couteron (2006) uses the 

notion of a radial spectrum, in which the spectra of all directions are averaged. Averaging all 

directions loses any directional information in the data and is mentioned as an area for future 

investigation.  

 

Another problem with using textural ordination is that any information extracted cannot be 

related back to a GIS system, other than as a general pattern for the sampled area. Inverse 

Fourier transforms could possibly be used (see Sommerfeld et al., 2000) to depict areas of 

predetermined greyscale value in the image which will allow for spatially explicit data to be 

created. As much potential as textural ordination offers, it still suffers from assumptions of 

stationarity in the original Fourier transformation. Processes in a landscape are non-stationary 

and so inference about the reality of pattern extracted is not ecologically meaningful in terms 

of context specific pattern. 
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Wavelet Analysis 2.2.3.2.2. 

Wavelet transforms are similar to the Fourier transform but use functions parameterized by a 

scale factor rather than sine and cosine functions. Wavelet analysis can be used to find scale 

dependent regularities in data (Cho and Chon, 2006). Wavelet analysis offers  distinct 

advantages over other methods when analysing non-stationary patterns (Keitt, 2000) as it 

preserves local information. Whereas the Fourier spectrum determines the magnitude of a 

certain frequency in the pattern, wavelet transforms decompose a pattern into a hierarchy of 

different scales of observation (Keitt, 2000). According to Chave and Levin (2003) 

“…wavelet analysis is a very natural tool to detect spatial scales in an image …”. 

 

 A formal explanation of wavelet theory is inappropriate here. For a mathematical dissection 

of wavelet theory see (Cho and Chon, 2006). In brief, a wavelet is a mathematical function 

which oscillates around zero and is dilated by a scaling factor. The wavelet of known 

bandwidth is used as a filter across the dataset, which in simplistic terms gives a measure of 

how well the data correlate with the wavelet at that particular location and at that particular 

scale. The major wavelet function, known as the mother wavelet can take a number of forms, 

depending on the needs of the analysis. For example (Bradshaw and Spies, 1992) use the 

Mexican Hat wavelet  to analyse tree canopies gap structure, while the Haar wavelet has been 

used to detect edges in natural images (Murwira and Skidmore, 2006). 

  

Increasingly, wavelet transforms have become the preferred method to analyse pattern and 

scale in environmental data (Bradshaw and Spies, 1992, Dale and Mah, 1998, Csillag and 

Kabos, 2002, Rosenberg, 2004, Murwira and Skidmore, 2006, Cazelles et al., 2008). Yet 

wavelet analysis has, until recently, been mostly limited to one dimensional applications in 

the analysis of transect data. In landscape ecology wavelets have been used to analyse canopy 

gap structure (Bradshaw and Spies, 1992), soil variability  (Lark and Webster, 1999), 

understory plant diversity (Brosofske et al., 1999, Chen et al., 1999, Perry et al., 2002, He et 

al., 2007), plant productivity (Csillag and Kabos, 2002), land cover (Dale and Mah, 1998) as 

well as to examine properties of neutral landscapes (Keitt, 2000). 

 

2.2.3.3. Object Based Image Analysis 

Pixel-based analysis deals with the three basic features of a single pixel, its position, its size 

and its value (De Kok et al., 2000). However, important semantic information necessary to 

interpret an image is not represented in single pixels but in meaningful image objects and 
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their mutual relations (Baatz and Schäpe, 1999). Pixels are simply the average spectral 

readings over a spatial area. These are often correlated with meaningful information;  for 

example a green colour in a true colour image is likely to infer vegetation, but the pixel is 

itself not an ecological reality. This is the scale problem of the MAUP, in which the pixel 

scales are arbitrarily defined and are not ecologically meaningful entities. Up-scaling these 

can therefore create decreased confidence in the meaningful interpretation of the outputs. 

 

A burgeoning field in landscape ecology is the use of image objects as an alternative to the 

traditional pixel based approaches (Baatz and Schäpe, 1999, Blaschke and Hay, 2001, Hay et 

al., 2001, Hay et al., 2003, Hay and Marceau, 2004). The concept is that instead of arbitrarily 

defined spatial units, the analysis is done on `basic entities'. For example, if we consider a 

tree-crown as a basic entity, it may be composed of, or is an aggregate of, leaves and 

branches, each of which individually belongs to classes  which are themselves basic entities. 

In object based analysis image-objects rather than arbitrary spatial units are the basis for 

analysis and scaling. Image-objects are considered to be perceptual entities that visually 

represent objects in an image which is composed of similar digital numbers/grey-tones and 

which model realworld entities.  

 

Such an object-based approach offers two main advantages. Object based analysis approaches 

reduce the effect of anisotropic data and avoid the MAUP. An additional advantage of the 

objectspecific approach is that it explicitly considers the hierarchical structure of the 

landscape by allowing the aggregation of smaller landscape components into the larger 

objects they are part of at their next scale of observation. In the method developed in Chapter 

Three of this thesis, I rely on an object-based approach. 

 

2.2.4.  NEUTRAL LANDSCAPES IN LANDSCAPE ECOLOGY 

Hypothetical landscapes are often used as comparisons to infer process, or to test the 

effectiveness of landscape analysis techniques (Gardner and Urban, 2007, Hagen-Zanker and 

Lajoie, 2008). For instance, a hypothetical landscape (Figure 2.6A) has been used as a 

comparison against which we can infer process in a search for self-organization in a semi-arid 

savanna landscape (Scanlon et al., 2007). In another example, to test semi-variance analysis 

applications Meisel an Turner (1998) overlaid patches of different sizes (Figure 2.6B) to 

represent the effect of process at different scales. 
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Figure 2.6: Two hypothetical landscapes that have been used in the validation of techniques used to 

detect multi-scaled structure in vegetation and subsequently infer process. Image  A - a Global 

constraint image; randomly dispersed trees of a single pixel in extent and fifty percent cover. The only 

constraint on pattern is the global extent of the image, the image is analogous to that of Scanlon et al. 

(2007). Image B - Hierarchical landscape structure image created through the overlaying of ‘Patches” 

of different sizes from Meisel and Turner (1998). These hypothetical landscapes were used as null 

models which have known pattern to allow for comparison to real world landscapes to allow for 

inference of process.  

 

In this thesis I use images or hypothetical landscapes with known structure to both test 

methods and as neutral models to make inference of process. A neutral theory in ecology is 

regarded as a set of rules which apply to all agents equally; which allows the variation of 

random chance to be understood and factored out (Hubbell, 2001). Neutral theory is the 

attempt to understand the amount of pattern that can be generated at random, without needing 

to invoke the influence of process in one’s argument. Deviations from predictions of a neutral 

model tell one where to look for the evidence of process (Hubbell, 2001). So, if the neutral 

model represents a process-free landscape and the real world data deviate from it, I can infer, 

given that all other statistical considerations are equal, it is due to the effects of process.  

Neutral models are, in contrast mechanistic models which model a system from known 

relationships. Mechanistic models can be used to run scenarios of what would happen if 

particular drivers were made more or less influential, or removed completely, such as a model 

of climate limited vegetation distribution in the absence of fire (Bond et al., 2005). These 

models, as with the state and transition literature, are useful, but does not serve the purpose of 

this thesis, which is to detect hierarchically structured woody canopy cover in a landscape. I 



 

56 
 

therefore do not discuss these mechanistic models in depth as I do not want to infer process a 

priori, but rather let the pattern emerge from the dataset.  

Neutral landscapes have been utilized extensively in landscape analysis of various kinds. 

Generally, in the analysis of multi-scaled pattern, neutral models take the form of fractal 

landscapes. This is because fractal methods are based on the notion that the pattern varies 

with the scale of observation in a consistent manner. Deviations therefrom can be inferred to 

be evidence of a scale dependent process. For example, Milne (1992), used a fractal measure 

of patches to test the allometry of resource utilization by herbivores. By generating a fractal 

neutral landscape and comparing species resource utilization against the patterns, it was 

possible to distinguish between random associations and those affected by ecological 

constraints. 

2.3. OBJECTIVE 4: SYNTHESIZE THE LITERATURE REVIEW INTO A PROPOSED 

SOLUTION; BUILD A CONCEPTUAL FRAMEWORK AND PRESENT TESTABLE 

HYPOTHESES 

In the previous two sections I have described why hierarchically nested structure is 

expected in a complex system such as a savanna ecosystem. I have described how 

vegetation pattern such as woody canopy cover can, and has been used to make inference 

about system properties. I have subsequently reviewed the methods available to measure 

these structures and illustrated a number of statistical problems which precludes the use 

of them as objective tests for the presence or absence of hierarchical structure in woody 

canopy cover.  

 

In this section I synthesize all these seemingly disparate bits and pieces of information 

into a method to test the theory. Firstly, I discuss the concept of scale as a dimension in 

which one would test for patches in scale no differently to testing for patches in space. I 

then describe a method that can be used to do this, while allowing for the context 

specific nature for the pattern to be assessed by retaining local information.  

 

I have articulated how fundamental units are the product of positive feedback loops and this 

occurs in space, time and scale. If fundamental units are patches, it is easy enough to analyze 

for patches in space, but how does one analyze for fundamental units in scale? Here I take the 

reader through the logic of using linear scale space to delineate patchiness in scale, no 
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differently to how it would be done in space.  In order to do this one must represent scale as a 

dimension. 

2.3.1.  REPRESENTING SCALE AS A DIMENSION 

Visualize a hypothetical graph: the axes of the graph describe the relative strength of 

coupling in space versus relative strength of coupling in scale (Figure 2.7). If process and 

pattern are not interdependent, random pattern is expected (Figure 2.7a). In this instance 

stochastic models would describe the system better. If feedback loops form in a landscape, 

patches will occur as fundamental units and lacking any scale-related entrainment, scale 

invariant patterns will occur (Figure 2.7b). If feedback loops persist in the scale dimension, 

either through entrainment of processes or through process-pattern feedback, multi-scaled 

discontinuous structure in the scale dimension of the system will evolve (Figure 2.7c).  

I propose that investigating the strength of coupling between pattern and processes in the 

system can explain much of the pattern we see in landscapes. 
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Figure 2.7: The conceptual framework of patterns generated by different amounts of coupling 

between processes. No persistent interaction in space or time results in random patterns (a); 

Coupling in space and time, without coupling across the scales investigated results in power law 

distributions as lower scale interactions’ determine the cross-scale patterns (b);  Coupling across 

scale-space and time results in hierarchically nested structures (c); So far it is not clear what will 

happen if there is coupling across scale and not space (d)  In all likelihood it will simply be a 

random pattern within bounds. 

 

The common thread that ties these terms together is the positive feedback, which I argue can 

generate the patchiness in scale that is necessary to generate discontinuous pattern. To 

explain the effect of a positive feedback loop in the dimension of scale I use the vehicle of 

“ecological memory” (Peterson, 2002, Peterson, 2008). The concept of ecological memory 

suggests that entrainment of pattern and process needs to occur for self-organization to take 

place. Entrainment is the co-dependency between pattern and process. The amount of 

entrainment can vary, but it has been shown that there needs to be a minimum amount of 

coupling between the pattern and the processes for the pattern to persist (Peterson, 2002) .  
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Just as there is a need for positive feedback loops to create patches in space, feedbacks 

between interactions between processes and between patterns and processes will affect the 

distribution of pattern across the dimension of scale. Put simply, I advocate that there can be 

patches in scale, in the same way there are patches in space. In some cases the distinctions of 

pattern among scales need not be sharp but may represent a continuous gradation across 

many orders of magnitude (Chave and Levin, 2003). But, if the pattern and process 

relationship has a scale component, discontinuities are likely to occur.  

The following descriptive model is based on an ecological memory model that uses a 

contagious disturbance such as fire spread (Peterson, 2002). I use this model as an example to 

show how the strength of interactions between pattern and process influence the persistence 

of a pattern in space and time. I then expand upon this model to illustrate how the same can 

be said about the generation of patchiness in scale. 

I generate a vector representing scale; S={Si…SN}. 

Each element of the vector follows the form of: 

Pr(Fire Spread|TSF)=(1+Pmax)(TSF/TPmax)
α
-1, TSF<TPmax 

and 

Pr(FireSpread|TSF)=Pmax, TSF>TPmax. 

And the model iterates through time t={1...5000}. 

The model contains an entrainment function which is a distribution which affects the 

independence of the pattern and process across scale. Disturbances are introduced (ignitions, 

considering it is a fire model) when the time since fire (TSF) has reached an arbitrary 

threshold (TPmax). This would correspond to sufficient biomass of woody material. 

For each value of S=1…N:  

Pr(disturbance|TPmax)=1, TSFs≥TPmax 

Pr(disturbance|TPmax)=0; TSF<TPmax 

However, the scale at which the disturbance happens, Sd is randomly sampled from a normal 

distribution with the mean of all scales (S),  
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For P(disturbance|TPmax=1) 

Sd~dnorm(S,β), 

Where; β is an indicator of the strength of the entrainment between scales.  

Sampling from a normal distribution implies that there is a higher likelihood that processes 

will be affected at scales near to scales that have already had processes affecting them, and 

the variance of this distribution is a measure of how tightly entrained the processes will be.  If 

there is a large β value this indicates a lack of any interaction between pattern and process at 

scale and the entire dimension of scale is independent.  

I developed this model to describe the concept of entrainment of pattern and process in time 

and in scale, not to calibrate and test it. If there is tight entrainment, there is consistent 

pattern; when the entrainment breaks down, the consistency of pattern is more stochastic in 

time and in scale. 

In Figure 2.8, at t=0, all of the scales of pattern are the same, randomly through time, patterns 

entrain one another and a relatively consistent set of patterns percolates through time, 

occasionally capturing another set of pattern and process, should they start to be found at the 

same scale. Whether or not this happens in reality is immaterial at the moment, the model is 

simply for the sake of explanation. Should the amount of variance break down (the image on 

the right) and there is a decrease in the amount of dependency between pattern and process, 

the individual patterns become much more stochastic in their behavior. Even more loss of 

entrainment results in almost random cross scale pattern, which is unstable through time 

(Figure 2.5). 
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Figure 2.8: An entrainment model to explain the development of discontinuous cross-scale 

morphology through time. In both images; at t=0 (top of y axis), all scales have the same pattern. 

Through time, through entrainment of pattern and process, there develop process domains across 

scale. Entrainment is important in the consistency of pattern through time. Should there be a sudden 

change in the amount of entrainment in the system (Image on the left, t=1500, A or t=3000, B), there 

would be a change in the cross scale dynamics of the system, the cross scale morphology changes and 

pattern would become more stochastic over time. 

The purpose of this model is to demonstrate how entrainment can affect the cross scale 

morphology of a system. Just as entrainment of pattern and process through time, termed 

ecological memory is necessary for patch structure to form and persist in space. Entrainment 

between pattern and process in scale is necessary for patchy structure in scale to persist. I 

advocate that this is the reason that systems generate what we term holons or process 

domains. This is why scale is represented as a dimension and linear scale-spaces are 

generated and this is why it is valid to look for patches in space and infer the entrainment of 

pattern and process in the dimension of scale. 

The implication of viewing scale as a dimension is that one explicitly realizes that scale is not 

an absolute. A twenty square metre sample may not be equivalent to a twenty square metre 

sample on another hill slope, or in another landscape. Suites of processes are not necessarily 

equivalent across equal spatial extents in the landscape. Corroborating evidence lies in the 

recent recognition of the importance of context in landscape analysis (Levick, 2008). In much 

of landscape ecology the scales of observation selected in most scale explicit analyses are 

generally arbitrary (Wheatley and Johnson, 2009). By recognizing scale as a dimension 

across which processes are dynamic, it becomes explicit that the researcher needs to compare 

fundamental units of complex systems rather than simply compare similar spatial extents. 
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I am well aware that there needs to be empirical data to back up this assertion- this will 

hopefully come in time with further exploration and analysis. However, the idea is not 

without precedent; for instance, it has been said that if scale is used as an independent 

variable, scale may provide a surrogate for constraints that modulate ecological processes at 

specific levels of organization  (Allen and Starr, 1982). Moreover, it is already advocated that 

to avoid the MAUP, investigators describe the fluctuations of spatial statistics across scale 

(Marceau and Hay, 1999) , which can only be done if analysed as a dimension. Visualizing 

scale as a dimension is conceptually simple, but transferring the philosophical argument into 

a practical experiment or statistical analysis requires the development of new tools in 

landscape ecology.  

2.3.2.  INVESTIGATING SCALE AS A DIMENSION 

Pattern in a landscape can be considered as a snapshot in time, a result of the net effect of 

processes in the landscape. If the property of the system to be measured is adequately 

assigned and reflects the net effect of processes acting upon it, the multi-scaled patchy nature 

of the proxy will give evidence into the multi-scaled nature of process in the landscape. I 

propose to use vegetation distributions in a semi-arid savanna landscape as a measure of the 

result of certain system processes. Vegetation has been used to infer evidence of feedback 

loops in many systems (Rietkerk et al., 2002, Kéfi et al., 2007a, Scanlon et al., 2007) and 

provides easily measurable patterns across multiple scales in the landscape. 

The method to do so at multiple scales while remaining spatially explicit is however another 

matter entirely. It may seem that if the assumptions of stationarity, ecologically relevant a 

priori scale selection, anisotropy are met or understood and the MAUP is avoided, the results 

from a landscape statistical analysis can remain valid. A philosophical circularity arises in 

that assumptions are based on a priori understanding of process in the landscape but there is 

not enough information available to say whether or not they are met. So in fact one sets out to 

test for pattern with the knowledge that the pattern will in fact be there.  

What happens when there is no knowledge? This problem is paralleled in the disciplines of 

image analysis, where object detection is needed but a priori information about size, shape 

and context of the object are not. In processing an image dataset for which no a priori 

information is available the first stage of the processes should be as uncommitted as possible 

(Lindeberg, 1994, Lindeberg et al., 1994). An uncommitted analysis assumes no prior 

knowledge and no preference for how to analyze a signal (Florack et al., 1994). The 
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researcher makes no assumptions and the pattern emerges out of the data. I advocate that if 

pattern and process are to be adequately linked in a heterogeneous environment, the structure 

must be allowed to emerge out of the data (Pickett et al., 1989), rather than be inferred by the 

user through assumptions made in the techniques used. Therefore if vegetation distribution is 

a reflection of landscape processes, a technique is required that objectively delineates the 

scaled hierarchy of vegetation distribution pattern, yet remains spatially explicit.  

2.3.3.  PHILOSOPHY OF UNCOMMITTED ANALYSIS FRAMEWORKS 

In the synthesis of previously used methods I have expanded upon the assumptions that make 

the use of the many methods invalid in an objective search for the presence of a nested 

hierarchy. Prior knowledge, which allows for valid assumptions to be made, is not always 

available regarding the dataset to be analysed, so how does one assign a filter to detect the 

data structure?  

In image processing and computer vision theory, when no a priori information is available, 

the first stages of visual processes should be as uncommitted as possible and have no 

particular bias (Lindeberg, 1994). The term “uncommitted framework” refers to observations 

made by a front-end vision system (i.e. an initial-stage measuring device) such as the retina 

or a camera that involves no knowledge or preference for anything (Hay et al., 2002). Not-

committed frameworks are not novel; “Deep Structure” was a phrase first coined by 

(Koenderink, 1984) and refers to the analysis of an image at all scales simultaneously. The 

underlying principle is that data structure emerges rather than being inferred by the observer.  

Deep structure analysis was inspired by the fact that human recognition uses a similar 

technique when viewing a world scene (Lindeberg, 1994). The analysis of the deep structure 

of images by investigating a multi-scale image representation has become a valuable tool for 

feature detection and extraction in images (Klein and Ertl, 2005). Applications involving the 

use of scale-space and deep structure analysis range as widely as the imaging of CAT scans 

to search for anomalous growth patterns (Cachia et al., 2003, Coulon et al., 2000), to 

matching separate images containing the same scenes (Brown et al., 2005, Dufournaud et al., 

2000, Rath and Manmatha, 2003). In recent years, ecologically focussed techniques are being 

developed (Hay et al., 2001, Hay et al., 2002, Castilla et al., 2008).  

 

To measure the distribution I use linear scale-space; a form of “deep structure analysis”.  

(Koenderink, 1984) which involves the analysis of all scales simultaneously, with no a priori 

assumptions about the scale of structure within data (Lindeberg, 1994, Lindeberg et al., 

1994). A method proposed for use on complex landscape images is “linear scale-space” (Hay 
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et al., 2002). Theoretically sound and mathematically rigorous, the highly mathematical 

nature of linear scale-space theory has precluded its use in the broader ecological community 

(Hay et al., 2002), of which an application for complex systems analysis in a semi-arid 

savanna landscape has been developed. Linear scale-space assumes no prior knowledge and 

no preference for how to analyze a signal (Florack et al., 1994), allowing emergent properties 

in the data to be delineated.  

If the component of the system serving as a proxy is assigned correctly and its distribution 

across the scale dimension is a reflection of process, then I hypothesize that a linear scale-

space representation can provide a means to objectively delineate woody vegetation structure 

in space and scale. By setting up experiments to change the configurations of the feedback 

loops in the landscape, it is possible to then test the effect of known perturbation of the 

fundamental units within a complex system.  

What governs the dynamics of pattern and process in the “ecological theatre” (Hutchinson, 

1965) remains a core question in ecology. Ecological processes occur over various scales of 

space and time (Wiens, 1989). “Pattern - be it spatial or temporal- is inseparable from scale. 

The challenge is to find these scales and properly link processes and pattern” (Reynolds and 

Wu, 1999 pg. 289).The use of linear scale-space should provide a mechanism to meet such a 

challenge in the face of ecological context (viz. Levick and Rogers, 2011). Given this 

mechanism, hopefully I will be able to provide insight into the question of “Does the 

landscape provide a discontinuous distribution of structure that is the theatre on which 

species interact?'' (Allen, 2006, pg. 6084).  

If it does, and we can measure it without violating ecological reality with our assumptions, 

then we are one step closer to finding spatially explicit predictive systems models.  

2.3.4.  USING LINEAR SCALE SPACE TO MEASURE SPATIALLY EXPLICIT MULTI-SCALED 

STRUCTURE 
I present linear scale theory and methods in detail in the following chapter; in which I take 

the reader through the logic behind my method. A linear scale space generates a dataset that 

tracks the evolution of image structure across scales in a spatially explicit manner. For 

instance when viewing Figure 2.1, I am interested about what range patches are red, blue or 

green. A scale space will track the evolution of the woody vegetation cover through the 

dimension of scale and merge events and indicate the points in space and scale where the 

change occurs.  
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The logic for the use of merge events is as follows: By definition a patch of trees comprised 

of patches of trees at smaller scales of analysis. Merge events indicate the scale and spatial 

location where image structure (limited to woody tree cover in this thesis) merges together to 

become a larger patch. The principle of causality means that the larger scale patches can only 

be generated through the merging of patches at smaller scales, or according to the reviewer 

the creation at higher scales, but these are ignores as they have little ecological meaning in 

the test for hierarchical structure. Therefore the analytical technique follows the philosophical 

framework which is being tested without user bias regarding where the patches are generated. 

The objectivity in the delineation if patches and merging of patches together at higher scales 

is the reason linear scale space is used. Hierarchical structure is being tested for and therefore 

the merge event becomes the event of choice. 

Assuming that the link between woody vegetation cover at different scales and differing 

process suites can be made, the merge events dictate the shift between process domains. In a 

stylized view of linear scale spaces of what would be woody canopy cover, I depict a 

hypothetical linear scale-space with three sets of hierarchically structured processes all 

created through different processes; Figure 2.9. By using a linear scale space in this manner, 

it becomes possible to trace which patches of woody cover merge to form larger patches, at 

what scales this occurs and where in the landscape this occurs. The merging of small patches 

of woody cover, synonymous with fundamental units, into larger patches can then be 

analyzed in a spatially explicit way and the spatial and scalar distribution of process debated. 

If landscape processes corresponded to a single domain, one would expect that a shift would 

occur at similar scales; however we know that processes across the landscape are likely to 

vary. 
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Figure 2.9: A stylized profile view of what a linear scale space would look like and how the scale at 

which patches of vegetation merge into other patches can be measured. A, B and C can be generated 

by different process suites and due to the local nature of the analysis, this information is retained. 

I use linear scale-space as opposed to the other previously reviewed methods because 

processes vary across space and the context of vegetation distribution has been shown to be 

highly important in the linking of pattern, process and scale (Levick and Rogers, 2008, 

Levick and Rogers, 2011).  Non-stationary comparisons are therefore needed to further 

understand the cross-scale morphology of the landscape. In Figure 2.9; if the distribution of 

vegetation patches in a landscape are context dependent, a nested hierarchy at an arbitrary 

location A in a landscape may not be created by the same process suite at the same scales as 

location B. Therefore there will not be hierarchical pattern evident at the same scales in a 

comparison between A and B. For instance A may correspond to the hilltop, B to the mid-

slope and C to the valley bottom (viz. Levick and Rogers, 2011).  

When the scales at which these merge events are represented on the scale axis (Figure 2.10), 

the merge events from individual primal sketches may be of discontinuous distribution, but 

the scales are overlapping and the integration of the entire dataset will result in a misleading 

signal. This mirrors the classic problem of Simpsons Paradox, in which grouped data can 

have different trends to the groups themselves (Simpson, 1951).This does not necessarily 
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constitute evidence that there is a lack of hierarchically structured data, but rather the effect 

of context dependent process.  

 

 

Figure 2.10. Individual nested hierarchies may be nested and projected on the scale axes (above). 

When overlaid and integrated (below), the merge event distributions’ results can be a misleading 

distribution (below). This is a classic problem of Simpson’s Paradox, in which dissection of a dataset 

can result in different trends. A local analysis approach is needed. 

It is for this very reason that I utilize a linear scale space and as I will articulate in a later 

stage, use a spatially discontinuous discontinuity analysis that compares each of these primal 

sketches to a neutral model. In doing so, I circumvent issues of context dependent pattern and 

process and make inference around the nature of the pattern in that primal sketch. 

A linear scale-space representation is purely a representation and makes no inference 

regarding process in the landscape. To make inference regarding process a comparison to a 
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linear scale-space influenced by known process is needed. So, before inference about the 

nature of multi-scaled process can be made, a set of well validated neutral models are needed. 

The patterns of linear scale-space events found in linear scale-spaces derived from semi-arid 

savanna systems can be compared to those of the null model and the effect of process then 

inferred. 

2.3.5.  TESTABLE HYPOTHESIS FOR CROSS-SCALE PATTERN IN LANDSCAPES 

Conceptualize a gradient between two end points; on one end there is a completely neutral 

landscape and pattern is completely random. On the other end of the gradient is a completely 

deterministic landscape, where the pattern is tightly constrained in space and in scale (Figure 

2.11, cross scale morphology indicated by Block 1, landscape images in Block 2). In a neutral 

landscape, it can be expected that the shape of the distribution of merge events measured 

across the dimension of scale will be described by a function of space versus scale of 

observation. There are simply less large independent observations to be made relative to 

small observations in any given area.  

The distribution of merge events will follow a form similar to f(m)~(scale)
-
 
γ
, where γ is a real 

number describing the shape of the curve (Figure 2.11 block 1, image A). On the other end of 

the gradient is a completely coupled pattern-process relationship in which the scale at which 

pattern is expressed at a few discrete scales (Figure 2.11 block 1, image B). This would be the 

case if there was some hypothetical driver that influenced process exactly and this process 

directly affected the spatio-temporal scale of the driver in return.  In a landscape the transition 

is unlikely to be over a single unit of scale, but will rather be confined to a range. I 

hypothesize that a pattern of this nature will result in a multimodal distribution of merge 

events, when viewed across scales of analysis (Figure 2.11 block 1, image C).  

When represented spatially (Figure 2.11, block 2), the end points are easily created; neutral 

landscapes are composed of randomly distributed vegetation (Figure 2.11, block 2, image A) 

and landscapes with strict coupling of pattern and process will have a perfect set type 

distribution of pattern (Figure 2.11, block 2, image B). The images representing multimodal 

distributions are somewhat more complex to develop; I depict an example here for the sake of 

completeness (Figure 2.11, block 2, image C), but the method used to generate these images 

is explained in the methods section.  

Where does a real world savanna landscape fit in? (Figure 2.11, block 3). A multi-modal 

distribution is evidence of lumpy cross-scale morphology and is what I expect from a scale 
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break due to discontinuous woody vegetation structure. It is important to remember that there 

may not necessarily be hierarchical structure in the entire landscape at the same time. 

 

Figure 2.11: The cross-scaled architecture of three hypothetical landscapes (Block 1). A neutral 

landscape, which is constrained by the extent of the image (Block 2, image A) is an example of a 

neutral landscape against which the semi-arid savanna landscape is compared, to infer the effects of 

process. On the other side of the gradient is a perfect set (Block 2, image B), representing perfect 

coupling of processes in space, which creates a perfectly nested set of patches. A multi-modal 

distribution of merge events which occur in ranges of scale (Block 2, image C) are more likely to be 
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what would be found in a landscape, but it is unknown where a savanna landscape would be situated 

along this hypothetical gradient (Block 3). 

 

I have reviewed the literature, generated an argument for the use of woody canopy cover as a 

proxy for system process and derived the use of linear scale space as the tool to do this. I 

have then presented a testable hypothesis for the detection of multi-scaled structure in woody 

canopy cover in a semi-arid savanna landscape. In the following chapter I outline the 

methods and how I aim to achieve this.  
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Chapter 3 ANALYSIS OF AND TEST FOR NESTED 

HIERARCHICAL STRUCTURE IN A SEMI-ARID SAVANNA 
 

The premise of this thesis is that patterns in complex systems are a reflection of the 

configuration of processes that create them (Ulanowics 2008).  Feedback loops between 

pattern and process and interdependencies of processes result in regions of a system which 

are more tightly coupled to one another than to the surrounding matrix, representing the 

fundamental units of the complex system (Reynolds and Wu, 1999). In the spatial and 

temporal dimensions of a landscape, some of these fundamental units are reflected as patches 

(Blaschke et al., 2002) and the hierarchical structure conceptualized in the Hierarchical Patch 

Dynamics Paradigm (HPDP) (Wu and Loucks, 1995). It should therefore be possible to 

detect hierarchically nested structure of vegetation in the landscape, if HPDP can be reified. 

Savanna landscapes and the interactions which affect vegetation distribution and persistence 

provide an avenue for research into system level properties and this has been used  in a 

number of studies. Different processes dominate at different scales (Wiens, 1989); process 

and pattern interact across scales and there is interdependence between processes at multiple 

scales (Holling, 1992, Allen, 2006). I propose that by investigating the hierarchically 

structured nature of a landscape it should be possible to attribute process to the pattern 

observed (if it is in fact there at all) and subsequently test the validity of the conceptual 

framework to develop spatially explicit predictive models.  

The Hierarchical Patch Dynamics Paradigm  makes scale an explicit consideration in 

landscape analysis; however, in practice, scale selection in landscape analysis is generally 

arbitrary (Wheatley and Johnson, 2009), possibly because to-date landscape ecology has 

lacked an adequate method to measure ecologically meaningful pattern at multiple scales in 

the landscape.  

The search for multi-scaled structure in image is a possible avenue for addressing this 

problem; a technique or framework to explore and quantify complex landscape structures at 

multiple scales should: 

 Generate a multi-scale representation of a scene from a single scale of fine resolution, 

remotely sensed, data; 

 Exhibit hierarchical (i.e. multi-scale) processing and evaluation capabilities; 
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 Be spatially tractable through all scales, meaning that local information cannot be 

averaged and/or integrated into global information as it precludes the re-projection of 

the information back onto the landscape; 

 Be mathematically sound and computationally feasible; 

 Be capable of automatically defining dominant multi-scale patterns within the scene 

which are not biased by class definitional constraints; this will allow for scaling 

between defined patterns; 

 Produce results that are spatially explicit and ecologically meaningful. 

The above points adapted from  (Hay et al., 2002) 

One such method is linear scale-space and, although well accepted in the image processing 

and engineering disciplines, linear scale-space analysis as a method to analyze multi-scaled 

landscape structure is still in its infancy. There is no simple off the shelf linear scale-space 

application, particular with regard to analyzing multi-scaled vegetation patterns. In this 

chapter, I outline the method used to generate a linear scale-space representation of 

vegetation in the landscape which tracks the development of patchiness across scale, without 

invoking the ecologically invalid assumptions and statistical artifacts of other analyses.  

The spatially explicit nature of this technique allows the scaled pattern to be projected back 

onto the landscape images and correlated with known distributions of drivers, hill slope units 

or experimental plots. For instance, I can now test if Hierarchical Patch Dynamics is an 

ontological characteristic of the landscape or simply a conceptual framework for savanna 

scientists. It should also be possible to dissect a landscape into regions of context specific 

pattern. To do so I can use the distribution of merge events in a linear scale-space to 

determine if in fact the vegetation in the landscape forms discrete process domains which 

correlate with known driver regimes, or if the patterns are inferred by the observer. 

3.1. OUTLINE OF THE METHODS 

To test for hierarchically nested vegetation structure in a semi-arid savanna system:  

Binary images depicting woody tree cover were generated for 8 x 800 m x 800 m, study plots 

from 2001 imagery of the 'Nwashitsumbe enclosure sites, (four inside and four outside the 

enclosures). Linear scale-space analysis was used to generate a three dimensional 

representation of the evolution of pattern through the scale dimension (as defined by 

increasing bandwidth of the Gaussian filter). I utilized merge events, the point at which 

pattern at smaller scales merges into pattern at larger scales, as the primary variable for 
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further analysis. The distribution of merge events across scales was compared against 

treatments of fire, browsers and no browsers and the control sites with both fire and browsers. 

Furthermore the samples were compared to neutral landscapes which served as proxies for 

landscapes with no process. If, therefore, the distribution of the real world landscapes differs 

from that of the neutral landscapes it can be considered as evidence of process or no process 

at the scale considered.  

Comparisons between the real world samples and between the real world landscapes and the 

neutral landscapes were made in two ways: firstly, the distribution of merge events was 

compared as a whole sample. Secondly, to avoid assumptions of stationarity and to implicitly 

test each and every part of the hierarchical structure, the individual patches and scales at 

which the lower scale pattern merges into larger pattern were tested against those of the 

neutral landscapes in a non-stationary manner. 

The linear scale-space application I develop in this chapter is different from traditional linear 

scale-space analysis and written specifically for this thesis. It needs to be validated, any errors 

quantified and rectified and the patterns from datasets with known scales of pattern 

expression used to ensure that the technique can in fact extract hierarchically structured data. 

This validation is the first process to be undergone, before analyses are undertaken on real 

world samples.  

3.2. CHAPTER STRUCTURE: 

This chapter is divided into four broad objectives, within each of which is nested a number of 

sub-objectives: 

1. Objective 1: Generation of baseline landscape datasets. 

Objective 1 focuses on the generation of the datasets, both hypothetical and real world, upon 

which the analysis presented in the rest of the chapter is based. There are three sub-

objectives; namely the: 

1.1. Generation of hypothetical landscapes with known cross scale structure; 

1.2. Generation of neutral landscapes; 

1.3. Extraction of tree canopy cover from aerial photographs. 

2. Objective 2: Linear scale-space generation. 

Objective 2 is focused on presenting the method used to generate linear scale-space 

representations of the datasets set out by objective 1. 
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3. Objective 3: To demonstrate outputs of the linear scale-space application and to validate 

the linear scale-space application for repeatability of the algorithm and in detecting the 

scale of pattern expression. 

Objective 3 focuses on demonstrating that the linear scale-space application works and is 

effective in detecting pattern that would be expected in a hierarchically structured 

landscape. 

 

4. Objective 4: Can evidence of process be detected in the 'Nwashitsumbe landscape? 

Objective 4  is the culmination of the thesis, in that I use the theory and methods 

developed up until this point to test whether or not complex systems pattern, expressed as 

hierarchically nested structure, can be detected in the woody canopy cover distribution in 

the 'Nwashitsumbe semi-arid savanna landscape. 
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3.3. METHODS 

The chapter is divided into four objectives, each of which has its own sub-objectives and 

methods associated with it. A general outline is given in Figure 3.1, nested within this are 

flowcharts for Objectives 2-4,( Figure 3.4, Figure 3.11 and Figure 3.15 respectively) which 

outline the specifics. 

Figure 3.1. A flow chart outlining the methods used in this thesis. Each objective has a separate flow 

diagram outlining the specific methods used to reach the objectives. 
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3.3.1.  OBJECTIVE 1: GENERATION OF BASELINE LANDSCAPE DATASETS 

Baseline datasets were used to validate methods or as neutral models to infer process; three 

types of baseline datasets are generated for use in this thesis. 

1. Datasets with known cross-scale morphology. These datasets were used late in the 

validation of the method and the application to illustrate that the method does in fact 

pick up multi-scaled pattern when expected. The datasets with known cross scale 

morphology are divided into three categories: 

a) Random Landscapes - these landscapes represent an ecologically “process-free” 

landscape in terms of vegetation distribution. They were used to analyze how 

parameters of the landscape such as tree size, density and image size affect the 

output in the validation of the process. 

b) Landscapes with discrete cross scale-morphology - these hypothetical landscapes 

represent a perfectly nested structure. 

c) Landscapes with multi-modal cross-scale morphology - hypothetical landscapes 

which are not perfectly nested were used to test how hierarchically nested 

structure at various scales will affect the cross-scale morphology of merge events 

of the primal sketch. 

2. Extraction of tree canopy cover from aerial photographs - this section defines how 

the baseline data for the 'Nwashitsumbe enclosures was extracted from the aerial 

imagery to generate binary images which were used to generate scale-space 

representations for multi-scaled analysis. 

3. Generation of neutral models- neutral models were generated to represent the 

'Nwashtsumbe landscapes in which the effect of process has been removed. 

3.3.1.1. Datasets with known cross scale morphology 

All landscapes are binary, with trees valued as zero and the matrix as 1. 

Random landscapes  3.3.1.1.1. 

Sixty eight hypothetical, neutral landscapes were generated with varying parameters of tree 

size, tree density and image size, with varying numbers of replicates (Table 3). The number 

of replicates was chosen based on the comparisons made in later sections. To generate a 

random landscape, the image size, the percentage canopy cover and tree size are defined. A 

uniform distribution was resampled to generate the X and Y locations in the image where the 

canopy cover is evident.  
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Table 3: Eleven neutral landscapes: Parameters of tree size, percentage woody cover and image size 

vary, with up to ten replicates per hypothetical landscape resulting in fifty eight individual landscape 

images which were analyzed. The merge events from the replicates are compared in various 

configurations to achieve objective 1. 
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a 10 25 500 5 

b 10 50 500 5 

c 10 75 500 5 

d 20 50 500 5 

e 5 50 250 10 

f 5 15 800 10 

g 5 25 500 10 

h 1 25 500 1 

i 1 50 500 1 

j 1 50 300 1 

k 5 50 500 5 

 

 Discrete cross-scale pattern 3.3.1.1.2. 

The creation of images with known variance surrounding the scale at which pattern is 

expressed is not a trivial problem and an analytical solution was not possible. Rather, a 

sample based approach was developed (O’Leary, Appendix). This sample based approach 

was developed specifically to create bottom up, controlled nested, structure while remaining 

top down constrained. The algorithm uses three scales of pattern generation: Z1, Z2 and Z3, 

each an order of magnitude greater than the next. Each predefined scale of pattern expression 

was allocated a certain amount of variance around each of these scales, also input by the user. 

Patches, and patches within the patches were then distributed based on sample distances from 

a center point within each patch. The distance from the center point was sampled randomly 

from a normal distribution with the user defined input variances. 

To generate images of discrete cross-scale pattern, two test images were created with the 

input variance around scale set as 0. These images represent woody cover in a non-woody 

matrix. Each hypothetical tree is perfectly nested within a hypothetical patch of woody cover 
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at a larger scale, which is in turn nested at a larger scale. This approximates the conceptual 

framework of a nested hierarchy, in which the patterns are nested at distinct scales. 

Multimodal cross-scale pattern 3.3.1.1.3. 

The same algorithm as was used for discrete pattern was used; three scales of pattern 

expression [Z1,Z2,Z3] were generated at 5, 50 and 500 pixels respectively for each test image. 

Variance was only allowed at one scale at a time for the purposes of understanding the cross-

scale pattern generated by such images. Images were generated with variance around Z1, Z2 

and Z3 of {0,0,0}- to create a perfect set and at {3,0,0} and {0,3,0} to create multimodal 

cross-scale pattern images with known variance.  The cross-scale morphology of an image 

with variance input of {3, 0, 0} and {0, 3, 0} should be approximated by Figure 3.2 A and B 

respectively.  
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Figure 3.2: The predicted cross-scale morphology of an image with input variances of {3, 0, 0} and 

{0, 3, 0}. The images are created using a sampling algorithm which generated variance around a 

“scale” of pattern expression. The distance of the trees from the center point is sampled from a normal 

distribution with the variance input by the user. 

3.3.1.2. Extraction of tree canopy cover from aerial photographs  

A set of orthorectified imagery of the Shingwedzi River Basin, within which the 

'Nwashitsumbe enclosure lies, taken during 2001 was used as a test dataset. The reason for 

using this dataset was that at the time of study, higher resolution imagery was being flown 

and the goal is to be able to eventually compare between the datasets over time. 

Imagery 3.3.1.2.1. 

The eight samples from the 'Nwashitsumbe enclosures and surrounds were extracted from  

the orthorectified images, taken in 2001 (Figure 3.3). The original imagery was digitized in 
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2006. Printed images were digitized by a flatbed scanner to yield a resolution of 0.85m from 

the 1:20000 photographs. Scanning was done using Microtek ScanWizard Pro and Adobe 

Photoshop software and all subsequent processing was done  using PCI Geomatics 

OrthoEngine Airphoto Edition version 8.0. (Bohenski, 2006). The “tiled” appearance of the 

image is due to unequalized images being stitched together during a mosaic, which 

complicated the process of extracting trees and resulting in the need for manual error 

correction in the woody canopy extraction, not an uncommon problem when dealing with this 

image set. 

 

Woody canopy extraction 3.3.1.2.2. 

 

 
 

Figure 3.3: The samples taken from the orthophotos of the 'Nwashitsumbe enclosure site. NW, NE, 

SW and SE indicate samples inside the enclosures, within each of the four burn treatments. A suffix 

of O indicates a sample from outside the enclosure, NEO, NWO, SEO, SWO respectively. The tiled 

appearance of the image is due to the unequalized imagers being stitched together in the mosaic. 
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Woody canopy cover was extracted from imagery using the object-based classification 

software Definiens Professional 5. Pixels were aggregated into objects composed of equal 

variance defined using the scale parameter within the software. The parameter is hard coded 

within the software, but is part of a Fractal Net Evolutionary Approach (FNEA) used in the 

object based image segmentation program Definiens. Notwithstanding that it is termed a 

“scale” parameter, the parameter is a highly subjective parameter as it does not select for any 

shape or form. There have been subsequent developments in the form of Estimations of Scale 

Parameter (ESP) tools that can be used to more objectively define the scale parameter 

relative to the scene level (Drǎguţ et al., 2010). However, these were not available at the time 

of analysis and their applicability to this particular segmentation procedure is limited. 

In short, in the process of image classification, the scale parameter is a user defined threshold 

which defines whether or not homogenous image objects are fused into one. A simplified 

outline of this process is discussed by Zhang and Maxwell (2006). The potential change in 

the spectral heterogeneity before and after merging are calculated, these are then weighted 

according to a user defined weighting and subtracted to generate a fusion value. The fusion 

value defines the potential of the objects to be merged into one and it is this fusion value that 

is compared to the scale parameter of Definiens and the decision is made to use into an object 

or remain separate.  

In the classification of woody canopy cover from the images, the homogenous units are 

pixels or groups of pixels that would be lumped together to what would be characterized by 

the user to be at least sub components of what is recognized visually as trees. Algorithms 

now exist  which use super groups that benefit from multispectral imagery to extract woody 

canopy cover from imagery (Levick, 2008). However the greyscale imagery and lack of 

equalization between merged image tiles make true computer based classification unreliable.  

To classify the orthorectified images into a tree binary image, the Definiens scale parameter 

was set very low to merge pixels into objects of similar spectral heterogeneity and shape 

heterogeneity at a spatial extent smaller than the individual trees. These small scale objects 

were then merged based on the mean spectral value of the objects associated with trees and 

visually checked for error. Once extracted from the original dataset, the woody canopy cover 

is assigned a value of 0 and “no trees” are assigned a value of 1. The binary image depicting 

woody canopy cover becomes the baseline dataset (I0) for the linear scale-space analysis. 
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3.3.1.3. Generation of Neutral Landscapes. 

The percentage woody canopy cover and average canopy size were measured for each of the 

eight 'Nwashitsumbe images from the BLOBs at scale = 1 in the linear scale-space stack.  

Based on the density of woody cover and the average size of woody canopy cover, ten neutral 

landscapes were generated. A uniform distribution was resampled to generate the X and Y 

locations in the image where the canopy cover is evident. 

3.3.2.  OBJECTIVE 2: LINEAR SCALE-SPACE GENERATION  

For every one of the datasets generated a linear scale-space was generated. The output is a 

dataset termed a primal sketch of the landscape that shows the evolution of vegetation 

structure across scale, tracing where and at what scale each and every patch of vegetation 

occurs. To generate a primal sketch I followed a sequence of five sub-methods (Figure 3.4), 

excluding any for visualization, the intricacies of which are not of concern in this thesis. 

 

Figure 3.4: A flow diagram of the methods used to generate a linear scale-space sketch and the 

associated primal sketch, which is the dataset used to represent linear scale-spaces in this thesis. Five 

sub-methods are used in sequence to generate a primal sketch for each image. 

The method I used in my thesis is different from traditional linear scale-space in a number of 

respects; I used only woody vegetation cover as my objects of interest, I utilized a linear 

sampling scheme of the scale space and I did not normalize the scale space stack. 
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3.3.2.1. Scale-space sample design 

Linear scale-space results from the convolution of the original dataset, image=I0, with a series 

of Gaussian kernels;    ⃗   , of increasing width (σ). The kernel is convoluted across each 

pixel across the original image I0 and each image in the resultant set has the same resolution 

as the original image. 

A two dimensional Gaussian kernel takes the form; 

   ⃗    
 

    
 

 ⃗  ⃗⃗⃗ ⃗
    

where σ is the standard deviation of the Gaussian kernel.  

Sampling the scale-space 3.3.2.1.1. 

Theoretically the standard deviation (σ) and therefore the scale of analysis is continuous, 

however it is practically necessary to sample the scale-space dataset at discrete intervals, i.e. 

σ = {σ1; σ2…σN}.  

Generally when sampling a linear scale-space, to increase computational efficiency, a 

dimensionless scale parameter is used (τ), and the sampling scheme is derived by setting: 

         , the lowest scale τ0, being equal to the resolution (ρ) of the 

original dataset I0  (viz. Platel, 2003).  

To calculate the scale of analysis (τ);        and so given ρ and σ;          , 

resulting in an exponential sampling scheme.   

 

The number of events occurring in the scale-space decreases logarithmically with the scale of 

sampling (Lindeberg, 1994). The exponential sampling of a scale-space’s scale axis is useful 

in image processing applications as it is computationally efficient. However,  if the analysis 

of hierarchically nested vegetation in the landscape is to be a completely objective a linear 

sampling design is better suited (Hay et al., 2002).  

 

I do not use an exponential sampling scheme as in other linear scale-space applications, 

rather I have chosen to use a sampling scheme which is linear across the scale dimension; 

τn=σn, the window of observation being equal to the standard deviation of the Gaussian 

kernel. I sample across the set of σ={σ0;σ1…σN}. The importance of the linear sampling 
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scheme is that I create a scale axis with exactly the same resolution as the spatial dataset. The 

maximum scale of analysis (τN) and therefore σN is dictated by the extent of the original 

image dataset I0. I set τN to half of extent of the original dataset to avoid overly large 

influences of edge effects, although these are still of concern and are discussed in section 

(3.5.2.2. ) 

 

3.3.2.2. The generation of a scale-space stack 

A linear scale-space is created through the convolution of the Gaussian kernel with the input 

image: 

      ⃗        

Convolution of the original image with Gaussian kernels parameterized by set σ results in a 

set of images I; 

  {        }  {   ⃗            ⃗           ⃗       } 

The standard deviation of the Gaussian kernel (σ) was set to increase in integers to allow for 

the same resolution in the scale dimension as in the spatial dimension. Each of the images in 

Set I represents the extracted woody canopy cover at the sampled scale.  The images of Set I 

were stacked sequentially on top of one another rendering a three dimensional volume with 

the three explicit dimensions being length (x), breadth (y) and scale (z) (Figure 3.5)  This 

theoretically continuous three dimensional volume of data is a linear scale-space; I refer to 

the sequentially sampled images as a scale-space stack. 
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Figure 3.5: The creation of a linear scale-space stack. After convolution of the original binary image 

I0 with the Gaussian kernel with standard deviation of set σ, the images of Set I are stacked 

sequentially on top of one another. By sampling σ in a linear fashion, the resolution of the scale 

dimension (τ) is the same as the spatial dimensions. 

3.3.2.3. BLOB feature detection 

This thesis is an ecological thesis, albeit primarily a theoretical one, as opposed to a study in 

image analysis. Linear scale-spaces of images for image recognition and image matching, 

MRI’s and complex image analyses of object orientated image analysis are different 

applications. The linear scale-space application I derive for use of analysis of woody canopy 

cover differs from these applications. I tested whether or not there was nested hierarchical 

structure within woody tree cover within a landscape. I therefore focus solely on the woody 

tree cover component and exclude other information. I discuss the implications further on in 

the text but must highlight here that the binary woody canopy cover classification remains the 

object of interest throughout. 

Each image in a linear scale-space stack can be viewed as a landscape itself, the length and 

breadth of the image representing the extent of the landscape and the pixel value creating a 

virtual landscape of hills, valleys and saddle points (Figure 3.6). A linear scale-space stack is 

therefore four dimensional as it comprises length (x), breadth (y), the sampled scale (σ) and 
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each image from Set I  has pixel values.  To remove this fourth dimension and link the data of 

interest across scales, the woody canopy cover is extracted in the creation of Binary Large 

Objects, BLOBS. I extract the regions of interest using the maximum attraction areas method, 

(Platel, 2003). 

In contrast to a number of linear scale-space applications I do not normalize the linear scale-

space stack. I do not feel it necessary in an application to trace woody vegetation cover 

through scales of analysis. The implications are discussed further at the end of this chapter. 

Delineation of the BLOBs is a two part process for each image in the scale-space stack (Set 

I): 

1. Local minima are derived from the image set, which indicates the locations of the 

valleys; and 

2. The area of attraction surrounding each local minima is delineated by finding the 

contour polygon of largest area surrounding the single minima point. 

 

Determining local minima 3.3.2.3.1. 

Critical points are where the local gradient equals zero (Florack et al., 1994), identified by the 

intersection of zero gradients of x and y ; where both  
   

  
   and  

   

  
   respectively; 

(Figure3.7)  

Local extrema such as local maxima, local minima or saddle points are identified with the 

second derivative test at each critical point.  Local minima, which represent the focus points 

of woody canopy cover in our analysis, are indicated by   
   
  

  
  and 

   
  

  
  . 
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Figure 3.6: The topography of an individual image in a scale-space stack. Each image in the scale-

space stack (Set I) has pixel values and can be viewed as a landscape of hills and valleys. This 

constitutes four dimensions in Set I, which must be reduced to three. To link the woody canopy cover 

across the scale dimension, the woody canopy cover needs to be extracted in the creation of Binary 

Large Objects (BLOBs). 
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Figure3.7: Critical points reveal basins of attraction used to detect objects of interest: Intersections 

of (∂Iτ/∂x = 0) and (∂Iτ/∂y = 0) yield the critical points in an image of Set I for scale of observation τ.  

The second derivative test indicates local minima, which represent woody canopy cover  in our 

analysis, and local maxima are indicated by (∂In/∂x)/∂x >0 and (∂Iτ/∂y)/∂y > 0.  

In this image the blue dots indicate local minima, which are of interest in the application of linear 

scale-space to woody canopy cover. The green dots indicate saddle points and the red dots indicate the 

local maxima. 

Delineating Areas of Attraction 3.3.2.3.2. 

Using the “areas of attraction” method, Platel (2003), for each critical minima point, a basin 

of attraction is delineated by defining the largest polygon which surrounds the single minima 

point (Figure 3.8A). The result is a number of image objects can be visualized as a flooded 

basin in the landscape of the image (Figure 3.8 B). Each of these objects represents a separate 

patch of woody canopy cover at the scale in question (Figure 3.8C) and is turned into a binary 

dataset as BLOB (Figure 3.8D). 
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Figure 3.8: Binary Large OBject (BLOB) extraction via the areas of attraction method, viz. Platel 

(2003). Visualizing the topography of each image in a scale-space stack, the largest contour area 

surrounding a single minima point delineates the extent of a BLOB (A). The BLOBs can be viewed as 

flooded valleys in the hills and valleys of the image topography (B). Each BLOB represents woody 

canopy cover at the scale in question and  each minima point is calculated separately, revealing the 

local structure in the image (C). Once all the BLOBs are calculated, the image is converted into a 

binary dataset, depicting woody canopy cover at the scale in question (D).   

3.3.2.4. Linking BLOBS across scales 

A scale-space primal sketch is a representation which gives a formal description of the 

hierarchical relations between structures at different levels of scale. The scale-space primal 

sketch is generally represented as three dimensional volumes of image structure, termed 

scale-space BLOBs or grey level BLOB volumes (Hay et al., 2002). Not only is the 

representation generated in this application not a typical grey level BLOB, but the three 

dimensional scale-space BLOBS are computationally cumbersome for our purposes, so I 

reduce the volumetric dataset of BLOBS into a three dimensional node graph which depicts 

what I term the primal sketch of the dataset in a linear scale-space. 

 

As an illustration; if I use a perfectly nested dataset set as a test dataset (Figure 3.9A) at some 

scale the individual trees, represented as black dots, will merge to form a patch (blue box). At 

a higher scale these patches will merge to form a larger patch (red box). Drawn as a three 

dimensional node graph it becomes possible to view the development of woody vegetation 
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structure across the dimension of scale (Figure 3.9B). Linear scale-space events such as 

merge events are indicated by the red dots (Figure 3.9B) which illustrate the points in space 

and scale where patches of woody vegetation merge into patches. 

 

Figure 3.9: The rendering of a primal sketch. A primal sketch is a representation of the evolution of 

a dataset through scale. If I view a perfect set test landscape (A), the black dots represent the trees. At 

some scale, the trees merge into a patch, illustrated by the blue boxes. At a higher scale still the 

patches merge into a larger patch still, illustrated by the red box. Viewed as a three dimensional data 

volume (B), the node graph illustrates how individual trees merge to form patches in a linear scale-

space. 

 

To construct the primal sketch each minima point (CR) is considered as a node in a three 

dimension scale-space and each node has an associated polygon depicting woody canopy 

cover at the spatial location and scale of analysis. The linking of regions of support is done by 

testing whether BLOBS at differing sampled scales share spatial support (Cachia et al., 

2003). I view each minima point as a node in the three dimensional scale-space of length (x), 

breadth (y) and scale (τ) and use the following basic element-wise algorithm. 

For each critical point of set Cr(τ,i); i={1….N}: 

1. Test for spatial overlap for the polygon representing point Cr (τ,i) and all polygons in 

set Cr(τ+1,.), beginning with the critical points closest to the one in question.  

2. If there is spatial overlap between polygons, the nodes representing the polygons are 

considered to be connected. 
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3.3.2.5. Cleaning of introduced errors 

In the early validation of the algorithm, errors were found in the primal sketches, which 

involved a break in the linkages between nodes in the linear scale-space. This break in 

linkage results in a break down in causality in the scale-space, small patches are no longer 

owned by large patches and later tests which do not assume stationarity would become 

impossible.  

 

Figure 3.10: A profile view of a primal sketch of a neutral landscape. The circles indicate errors in 

the linkage algorithm where joins should be evident, but are not. The error is introduced because 

spatial support between BLOBs at adjacent scales becomes nonexistent once the BLOB becomes sub-

pixel in extent. A simple cleaning algorithm was written to join the obvious gaps, but remains an 

avenue for future research. 

 

The linkage of BLOBs across scales into scale-space volumes remains the major challenge, 

even outside of this application. Linking BLOBs between scales has been termed 

“…practically difficult…” (Coulon et al., 2000, pg. 770). BLOBs are linked if they overlap in 

the spatial dimension. The linear sampling scheme used in this application reduces the 

amount of lateral drift of BLOBs, which increases the chance of spatial overlap between 
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BLOBs at adjacent scales. However, as the BLOB tends toward a scale-space merge event, 

the area of an individual BLOB tends toward zero. At some point the BLOBS are smaller 

than an individual pixel. These sub-pixel BLOBs are not likely to share spatial support, 

introducing errors in the primal sketches as links are not made when they should be. 

There are analytical methods which allow for the prediction of the linkage by using sub-pixel 

trajectories (Florack and Kuijper, 2000), however these techniques are based on true linear 

scale-spaces and not a scale-space optimized for binary imagery such as the imagery used 

here. Whether or not analytical methods are valid in these binary datasets which ignore the 

matrix structure is an avenue that needs further investigation and the errors and implications 

thereof are discussed in Section3.5.1.   To remove the obvious errors caused by the sub-pixel 

BLOB problem, I use the following cleaning routine: 

In an adjacency matrix which depicts a linear scale-space for a given image: 

1. Define all creation, split and annihilation events by finding nodes with a single 

connection. As creation events should not theoretically occur in the linear scale-

spaces of hierarchically structured vegetation, creation events above the first scale of 

analysis can be assumed to be a linkage error. 

2. Define creations and splits as those which are connected to a node which is the scale 

above; annihilation events are connected to a scale below. Create 2 nx3 matrices, one 

containing the x, y, z values of the annihilation events and the other of the creation 

events (C). 

3. For all error points (Ci…N): 

a.  Find the closest annihilation event (Ai...N) by calculating the Euclidean 

distance between the points in the xyz scale-space. 

b. If the distance is less than the criterion value (z x 0.05), the points are 

considered connected. 

c. Index the connected nodes in the two matrices back to the major adjacency 

matrix. 

 The value of  0.05 is to allow a five percent increase in search radius; however it does 

increase the chance of errors at higher scales. The cleaned adjacency matrix then becomes the 

matrix used for the rest of analysis. 

Reporting on the errors cleaned: 3.3.2.5.1. 
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During the cleaning process I report the number of errors removed and broken linkages 

corrected. 

3.3.2.6. Classification of scale-space events 

Data were stored as adjacency matrices, if only one node is connected to any given node, the 

node is an annihilation or creation event. If there are more than two nodes connected to any 

node, this constitutes a split or merge event. Further analysis of the scales of the connecting 

nodes allowed the events to be determined as either annihilations or merge events. To remove 

the distortion of edge effects the top thirty percent of the scale space stack was discarded. 

3.3.2.7. Graphic representation of Primal sketches 

I present the primal sketch outputs of a sample for the following datasets with known cross 

scale structure:  

a. Random landscape ( a sub-sample) 

b. Discrete cross scale pattern 

c. Multi-modal cross scale pattern 

d. Neutral landscapes. 

e. 'Nwashitsumbe examples. 

3.3.3.  OBJECTIVE 3: TO DEMONSTRATE OUTPUTS OF THE LINEAR SCALE-SPACE 

APPLICATION AND TO VALIDATE THE LINEAR SCALE-SPACE APPLICATION FOR 

REPEATABILITY OF THE ALGORITHM AND IN DETECTING THE SCALE OF PATTERN 

EXPRESSION 

Objective 3 focuses on demonstrating that the linear scale-space application works and is 

effective in detecting pattern that would be expected in a hierarchically structured landscape.  

The objective has been divided into three sub-objectives, each of which is aimed at answering 

a question (Figure: 3.11). For each of these objectives, a separate set of statistical tests are  

undertaken on the test datasets presented on page 76. 

The sub-objectives of Objective 3 aim to: 

1. Demonstrate the cross-scale morphology of landscapes of known cross-scale 

structure - does the cross scale morphology of landscapes with known cross-scale 

structure conform to the conceptual framework presented in section 4? 

2. Demonstrate repeatability - does the algorithm output show similar cross scale 

morphology for landscapes with similar scales of pattern expressions? 
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3. Demonstrate sensitivity to variations in vegetation size and density, to inform the 

neutral models - does tree size, tree density and the size of the input landscape dataset 

matter in the comparisons for neutral models? 

 

Figure: 3.11: A flow diagram of the methods used to achieve Objective 3. There are three sub-

objectives which allow the linear scale-space application to be validated for the purposes of 

generating detecting representations in woody vegetation structure. 

 

3.3.3.1. Sub objective 3.1: Does the cross scale morphology of the landscapes of 

known cross scale structure conform to the conceptual framework of Section 

4?Error! Reference source not found. 

I expect, based on the arguments of Chapter 2, that a multimodal cross scale morphology in 

merge events is evidence of hierarchically nested structure or distinct scales of process in the 

landscape. Landscapes without scaled processes however should display a negative 

exponential trend, inferring nothing more that the number of merges decreasing in relation to 

the area of analysis available.  
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Kernel density estimations are calculated on merge events of datasets with known cross scale 

structure, random datasets, discrete cross scale structure and multi-modal cross-scale 

structure. All primal sketches are grouped for the entire test landscape dataset. This 

constitutes a stationarity assumption as the pattern for the whole sample is integrated. Such 

an assumption is fair for the datasets of known structure; further analyses which do not 

assume stationarity are considered in later analyses. Kernel density bandwidth was kept to a 

single scale unit and the analysis bounded to the positive domain to allow for maximum 

resolution in the scale dimension. A diagram of the cross-scale morphology is presented  

below. 

3.3.3.2. Sub-objective 3.2: Demonstrate Repeatability; does the algorithm show 

similar cross scale morphology for landscapes with similar scales of pattern 

expression? 

Due to the lack of process the pattern of merge events across the random landscape can be 

assumed to be stationary. Merge events for all primal sketches within a landscape image are 

therefore grouped together to increase sample size and thereby sensitivity. The X and Y data 

are discarded, providing a distribution of scales where merges occur per replicate.  

Kolmogorov Smirnov (KS) tests were used to compare the empirical cumulative density 

functions of the merge event distributions. The KS test statistic is calculated as: 

K= max(|F1(x)-F2(x)|) 

 and is compared to the alpha value in a standard hypothesis test. The null hypothesis is stated 

as the two distributions F1 and F2  and can be considered from the same continuous 

distribution.  

Comparisons were made between replicates of six neutral landscapes, (Table 3: replicate 

groups a, b, c, e, f, g and k). For instance, for neutral landscape “e”, there are ten replicates 

and each is compared to the other, generating 45 unique comparisons which are each tested 

using the KS test, with the null hypothesis that the two distributions being compared  are 

from the same distribution (α=0.05).  

3.3.3.3. Sub-objective 3.3: Sensitivity to variation in vegetation; does tree size, tree 

density and the size of the input landscape dataset matter in comparisons? 
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Kolmogorov-Smirnov (KS) tests (explained above) were used to compare the empirical 

cumulative density functions of the merge event distributions. The null hypothesis being that 

the two distributions F1 and F2 can be considered from the same continuous distribution. 

For the purposes of demonstration, the cross scale morphology of the various datasets is 

presented, kernel density estimation of merge events, lumped for the entire landscape, 

bandwidth bounded to the positive domain and of a single scale unit in extent, are presented. 

1. Test the effect of tree size on the distribution of merge events across scale. 

Four neutral landscapes were compared, controlling for image size and canopy cover, but 

having varying tree sizes (Figure 3.12). The neutral landscapes with trees sizes of one pixel, 

five pixels, ten pixels and twenty pixels were compared to one another (a single replicate was 

used from each of the neutral landscapes Table 3; b, d, g and i ) totaling six comparisons of 

images with differing tree sizes. Scale values of the merge events were compared using 

Kolmogorov-Smirnov tests (α=0.05), the null hypothesis assuming that they were from the 

same continuous distribution. 

 

Figure 3.12: Images of neutral landscapes with differing tree sizes relative to the image extent, each 

image has fifty percent woody canopy cover overall but vary in pixel size. A, B, C and D represent 

trees of 1, 5, 10 and 20 pixels respectively. The distribution of merge events generated from these 

images are compared to one another, totaling six Kolmogorov-Smirnov tests (α=0.05), the null 

hypothesis assuming that they were from the same continuous distribution. 

 

 
2. Test the effect of image size on the distribution of merge events across scale. 

A neutral landscape of three hundred pixels (Figure 3.13A) was compared to a neutral 

landscape of five hundred pixels (Figure 3.13B) in extent. Scale values of the merge events 

were compared using Kolmogorov-Smirnov tests (α=0.05), the null hypothesis assumes that 

they are from the same continuous distribution. Only a single replicate was made to illustrate 

the point, as this is an expected and obvious difference.  
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Figure 3.13: Neutral landscapes with different extents; both images have single pixel trees and fifty 

percent cover. A is 300 pixels in extent and B is 500 pixels in extent. Linear scale-spaces are 

generated and the distribution of merge events across scale is compared via a Kolmogorov Smirnov 

test (α=0.05), the null hypothesis assumes that they are from the same continuous distribution.  

 

3. Test the effect of percentage woody cover (tree density) on the distribution of 

merge events across scale. 

The distribution of merge events from five neutral landscapes with twenty five percent cover 

(Table 3, replicate group A, example in Figure 3.14A) were compared to five neutral 

landscapes with fifty percent cover (Table 3 replicate group B, example in images. Figure B) 

and five with seventy five percent cover (Table 3 replicate group C, example in Figure 3.14). 

Scale values of the merge events were compared pair-wise using Kolmogorov-Smirnov tests 

(α=0.05), the null hypothesis assumes that they are from the same continuous distribution. 

This constitutes 75 comparisons between images containing different canopy cover, nested 

into three replicates. 
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Figure 3.14: Neutral landscape images with differing tree densities; A, B and C represent 25%, 50% 

and 75% woody canopy cover respectively. Images are of the same extent and the trees are of five 

pixels in size for all images. 

3.3.4.  OBJECTIVE 4: CAN EVIDENCE OF PROCESS BE DETECTED IN THE 

'NWASHITSUMBE LANDSCAPE? 

This objective is the crux of this thesis; to determine whether or not evidence of process can 

be detected in the woody cover of a real world savanna landscape in a way that can be 

considered to be nested hierarchical structure. 

Objective 4 is achieved by achieving three sub-objectives:  

1. General cross-scale morphology - to determine if the cross-scale morphology 

(determined by the scales at which mere events occur) of a real world landscape 

differs from a neutral landscape.  

2. Fire and Browse treatments - the effect of the manipulation of two major savanna 

drivers on the system cross-scale morphology. 

3. Spatially explicit discontinuity analysis - what I consider the point of this thesis, the 

section that all other sections have built toward, is to use the primal sketches of the 

'Nwashitsumbe landscapes to perform a spatially explicit discontinuity analysis of a 

complex system. Spatially explicit discontinuity analysis, as far as the author is aware, 

is a completely novel analysis technique.  

The process flow (Figure 3.15), outlines the tests structure of the tests  undertaken to 

answer the two sub-objectives. Spatially explicit discontinuity analysis is explained as a 

sequence of four sub-methods. The datasets used as inputs are the primal sketches of the 

'Nwashitsumbe landscape and the neutral landscapes. 
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Figure 3.15: The process flow outlining the methods used to achieve Objective 4. To answer the 

question; “Can evidence of hierarchically nested structure be detected in the 'Nwashitsumbe 

landscape?”  The objective has three sub-objectives, which are each tested using a specific method. 

Spatially explicit discontinuity analysis involves four sub-methods and a final comparison. The 

datasets used are the neutral landscapes and the woody canopy cover datasets presented in Objective 

1. 

3.3.4.1. Sub-objective 4.1: General cross scale morphology: Does the cross-scale 

morphology of 'Nwashitsumbe differ from a neutral landscape? 

The merge events for the entire landscape datasets were lumped together for this analysis. 

Kolmogorov-Smirnov tests (described in section 3.3.3.2. ) were used to compare the 
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distribution of the scales at which merge events occurred between the 'Nwashitsumbe images 

and the ten replicates of the neutral landscape (α=0.05). The null hypothesis states that the 

samples are from the same continuous distribution. I note here that the method here assumes 

that processes are equivalent across scales. 

3.3.4.2. Sub-objective 4.2: Fire and browse treatments: The effect of the 

manipulation of two major savanna drivers on systems cross-scale morphology. 

Comparisons of images under different treatments of fire and herbivory were undertaken. 

Kolmogorov-Smirnov tests (K= max(|F1(x)-F2(x)|) were performed on the distribution of 

merges for the eight samples from 'Nwashitsumbe and the surrounds, with three comparisons, 

described below. 

Samples with uncontrolled fire and herbivores 3.3.4.2.1. 

Kolmogorov-Smirnov tests of merge event distributions were conducted between samples 

from outside of the 'Nwashitsumbe enclosure (NEO, NWO, SEO and SWO). Pair-wise 

comparisons were made between each of the four samples, totaling six tests. The comparison 

tested for the effect of similar fire and herbivore intensity on the cross-scale morphology of 

woody vegetation in the landscape. The null hypothesis is that the samples come from the 

same continuous distribution (α=0.95). 

Samples with browser exclusion  3.3.4.2.2. 

Kolmogorov-Smirnov tests of merge event distributions were conducted on samples from 

inside and outside of the 'Nwashitsumbe enclosure (NE, NW, SE and SW tested against 

NEO, NOW, SEO and SWO); pair-wise comparisons were made between all inside samples 

and outside samples, totaling sixteen tests. This comparison tested the influence of the 

herbivore exclusion on the samples that have been protected from fire for longer periods of 

time. The null hypothesis is that the samples come from the same continuous distribution 

(α=0.95). 

Samples with a known fire regime 3.3.4.2.3. 

Kolmogorov-Smirnov tests of merge event distributions were conducted between samples 

from inside the 'Nwashitsumbe enclosure (NE, NW, SE and SW). Pair-wise comparisons 

were undertaken between each of the four samples totaling six tests.  This comparison tested 

the effect of fire without the influence of browsers on the system. The null hypothesis being 

that the samples come from the same continuous distribution (α=0.95). 

Any distributions considered from the same continuous distribution were correlated against 

the time since the last known fire and the time since the last known browsing. 
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3.3.4.3. Sub-objective 4.3:Spatially explicit discontinuity analysis: Does the cross-

scale morphology of 'Nwashitsumbe differ from a neutral landscape? 

I speculate that if discontinuous structure is evident due to the entrainment of pattern and 

processes in a landscape, then manipulation of the major drivers over a long period of time 

should result in changes in the discontinuities between treatments. But, given the importance 

of context in determining vegetation pattern–process relationships (Levick and Rogers, 

2011), I must exploit the local nature of linear scale-space analysis. 

Discontinuity analysis of a linear scale-space is novel and presents a number of unique 

challenges; analysis of scale-space events is not the equivalent to the analysis of the body 

mass distribution of species. To draw a parallel, a merge event is analogous to a single 

measure of an individual animal’s body mass, where the species is unknown and so one 

cannot average the data. Merge events represent the raw values of pattern expressed in the 

system. However, the principle of causality inherent in the linear scale-space application 

allows for a convenient solution to the issue of stationarity in landscape analysis. By testing 

each individual scale-space volume for the presence of discontinuities independently, it 

becomes possible to test each area of pattern in the landscape.  

This is the fundamental reason as to why linear scale-space is used; due to the principle of 

causality, structure at large scales can only have been created through the merging of 

structure at smaller scales. Each scale-space volume, described as a single connected node 

graph termed a primal sketch (Figure 3.16) contains merges specific to the hierarchically 

structured pattern in that region of the landscape. Each primal sketch is analyzed 

independently and the pattern at higher scales can only be generated from pattern at lower 

scales, stationarity is therefore not assumed. 
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Figure 3.16: Causality of pattern; the structure at larger scales can only have been created through 

the merging of structures at lower scales. Each separate node graph in the scale-space contains merges 

specific to the hierarchically structured pattern in that region of the landscape. These merges are 

tested as a set, indicated as different colors, for the presence of discontinuities in the scale dimension. 

Spatially explicit data derived from a linear scale-space introduce an additional trend to that 

due to scale. As methods are not available I developed one for use in this thesis. Based on 

resampling methods to detect discontinuities (Restrepo et al., 1997, Stow et al., 2007), I 

developed a method which allows for the probability that a gap between merge events from 

an individual primal sketch is larger than that predicted by random chance.  

 

This method was applied to each gap of every single individual primal sketch within the 

linear scale-spaces derived from input images. Once the presence or absence of 

discontinuities was determined in a landscape, I had a spatially explicit measure of the cross-

scale morphology of the system which indicates where and at what scales these occur. The 

discontinuities were then be overlaid over the original images to be depicted spatially. The 
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proportions of discontinuities were compared between the 'Nwashitsumbe samples and 

against the neutral landscapes to infer the effect of processes on the nature of discontinuities 

in the landscape. 

 

Spatially explicit discontinuity analysis is a novel technique. To perform the analysis I use 

the principle of causality and use each separate sketch in the 'Nwashitsumbe landscape and 

compare this to primal sketches of similar size, derived from the general form of the neutral 

landscapes. I reiterate, for the 'Nwashitsumbe samples I do not lump the dataset, rather each 

individual primal sketch is analyzed in the landscape. 

Spatially explicit discontinuity analysis  3.3.4.3.1. 

There are three steps in the spatially explicit discontinuity analysis: determination of the 

neutral model specific to the landscape , a Monte Carlo based simulation to detect 

discontinuities and the subsequent visualization of those that are found. 

1. Determination of the Neutral Model 

For the neutral landscapes applicable to each image, the merges were lumped and 

distributions approximated by using the frequency distributions of the scale value for each of 

the ten neutral landscape replicates.  

Kernel density estimation was used to calculate frequency distributions; with the kernel width  

kept to a single scale unit and analysis bounded to the positive domain to allow for maximum 

resolution in the scale dimension. To obtain the values for the null model comparison, the ten 

estimates were averaged and the upper and lower standard deviations are calculated. This 

constitutes the form of a neutral model, specific to the semi-arid savanna landscape image 

being analyzed, indicating what the cross-scale morphology of a similar landscape without 

the effect of process would be like. 

2. Monte-Carlo based simulation to find discontinuities 

Each primal sketch (p) is a vector of xyz values, depicting the locations in scale-space where 

merges occur. Each image contains a number of primal sketches; i.e.: P= {pi….pN}. 

For each individual primal sketch (pi) from the set of primal sketches derived from the test 

image (P), the following was performed on the scale-axis (the z-value) of the merge events; 
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1. The z value of the merge events for the test data set were ranked (let the z value of merge 

events from the primal sketch (p) be represented by µ) and the gaps between the merge 

events (γ), calculated as;                

2. The number of gaps in the primal sketch of interest were determined (  ); 

3. 5,000 hypothetical primal sketches were created by sampling from the known distribution 

of neutral landscapes created. Each neutral primal sketch has the same number of merge 

events as the test dataset (N) and was sampled with replication. 

4.  Each of the 5,000 neutral primal sketches was ranked, δ is equivalent to γ for process free 

images and the gap size between data points determined:         ; 

5.  For each rank   {   } , there are 5,000 samples, each a gap indicating the scale-

space blob lifetime of a primal sketch from a neutral landscape. For each rank an 

empirical cumulative distribution function (ecdf) is calculated, one per rank calculated 

from the 5,000 samples. 

6. The density value from the ecdf is a percentile; a measure of the proportion of the neutral 

samples that the real world gap is greater than. To generate a measure of the percentile of 

the gap relative to the null model the gap value of the test primal sketch is compared to 

the corresponding value in the ecdf for rank = i. 

 

The algorithm generated a percentile value for each gap, for each primal sketch, in each 

image. I have termed this value the Discontinuity Probability Value (DPV). The DPV is not a 

test statistic per se, but rather a proportion of gaps from the neutral sample that the test gap is 

larger than. The DPV is a measure of the proportion of gaps that it is greater than those gaps 

expected from random chance. Assuming that the same distribution will hold, a fair 

assumption given the 5,000 replicates, the DPV can be interpreted as a probability, analogous 

to a P–value. Gaps are considered to be discontinuities if their DPV value is greater than 

0.95. 

3. Visualizing discontinuities in the landscape 

Although projected as a spatial entity, it must be remembered that this patch represents a 

volume in the scale-space. To project the gap spatially, the BLOB of approximately twenty 

percent of the height in the scale-space volume is projected (Figure 3.17). Patches were 

considered to be the gaps with a DPV value greater than 0.9. Nested discontinuities, as in 

hierarchically nested structure, will be represented by multiple nested patches with high DPV 

values. 
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Figure 3.17: Spatially explicit discontinuity analysis; illustrating the re-projection of the 

discontinuities back onto the landscape. The scale-space volume (A) is represented by the BLOBs at 

20 percent of the lifetime of the scale-space blob, B. From a bird’s eye view this results in a 

hierarchically nested set of patches in the landscape (C-D).  
 

For the purposes of interpretation I present visualizations of the following test landscapes: 

1. A neutral landscape with 50% cover and single pixel trees analogous to the global 

constraint image of (viz. Scanlon et al., 2007). 

2. A neutral landscape generated with 25 % cover, 5 pixel canopy cover and 500 pixels in 

image extent. 

3. A perfectly hierarchically structured dataset. 

4. Discontinuities from all eight images depicting woody canopy cover, extracted from the 

'Nwashitsumbe enclosure sites are presented. 

 

 

A B 

C D 
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4. Test for robustness of the discontinuities 

Concurrence between discontinuities extracted from null analysis using the neutral landscape, 

defined by the average, the upper and lower standard deviations will demonstrate that the 

pattern is robust. All comparisons were made using the average and the average plus one and 

minus one standard deviation. 

Comparison of results from discontinuity analysis between images and to neutral 3.3.4.3.2. 

models 

Discontinuities were analyzed for neutral landscapes and the semi-arid savanna landscapes in 

all hierarchically structured datasets (as derived in Chapter Four). The proportion of all gaps 

in the dataset which are considered discontinuities (DPV>0.95) were calculated, for the 

average distribution of the neutral models and for the average plus one standard deviation and 

minus one standard deviation respectively. A box and whisker plot was used to compare the 

neutral landscapes and semi-arid savanna landscapes.  

3.4. RESULTS 

The results are presented per objective: 

3.4.1.  OBJECTIVE 1: GENERATION OF BASELINE LANDSCAPE DATASETS 

Baseline datasets were successfully generated; due to the large number of replicates, only a 

subsample is presented in the text. 

3.4.1.1. Datasets with known cross scale morphology 

Random Landscapes 3.4.1.1.1. 

Examples of the random datasets generated have already been used to illustrate the 

comparative analyses in images Figure 3.12, Figure 3.13 and Figure 3.14. Although it is not 

generally accepted to present results before the result section, for the sake of brevity and 

clarity of explanation I chose to do so. 

Discrete cross-scale pattern 3.4.1.1.2. 

Two separate images with discrete cross-scale structure were generated, one using an input 

variance of {0, 0, 0} with the algorithm derived by N. O’Leary (Figure 3.18A). The manually 

generated sample, used as an example already in this thesis is presented as comparison 

(Figure 3.18B). The images illustrate the perfectly nested sets of “trees” in a landscape of “no 

trees”. 
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Figure 3.18: Linear scale-space representations of two hypothetical landscapes of perfectly nested 

trees, created as perfect sets. Binary “trees” are situated in a landscape matrix; each hypothetical tree 

is perfectly nested within a set at a larger scale, which is in turn nested at a larger scale. This 

approximates the conceptual framework of a perfectly nested hierarchy, in which patterns are 

entrained at distinct scales of analysis. A constitutes a radial pattern, which is isotropic; B constitutes 

the classic perfect square. 

 

Multi-modal cross-scale pattern 3.4.1.1.3. 

Figure 3.19A was created using the O’Leary algorithm with input variance of {3, 0, 0}. 

Figure 3.19B, has input variance of {0, 30, 0}.  
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Figure 3.19: Images with three scales of pattern expression with allowed amounts of variance 

around the scales at which pattern is expressed. A has 3 units of variation around the first scale of 

pattern expression {3, 0, 0}; B has thirty units of scale around the second {0, 30, 0}. The inset images 

are zoomed in sections to illustrate the smaller scale pattern.  

 

Replicate images for Figure 3.19 (A and B) were created using the same input variances. In 

addition, three replicates of a similar image with 300 units of variance at the top scale were 

constructed (image not shown here). Linear scale-spaces were created, the scale at which 

merge events occurs extracted and their distributions compared visually.  

3.4.1.2. Extraction of tree canopy cover from aerial photographs  

Woody vegetation cover was successfully extracted from the orthorectified images from 

2001. The images are labeled according to their declination in the enclosure ( 

Figure 3.20) with the suffix “O” being reference to the sample located outside of the 

enclosure (Figure 3.21). 
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Figure 3.20: Binary images of woody canopy cover, extracted from inside the 'Nwashitsumbe 

enclosures. 
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Figure 3.21: Binary images of woody canopy cover, extracted from outside the 'Nwashitsumbe 

enclosures. 

 

3.4.1.3. Generation of Neutral Landscapes 

Neutral landscapes that can be used to compare against the 'Nwashitsumbe samples were 

successfully created. 

Measurement of tree size and woody cover density 3.4.1.3.1. 

The size class distributions of woody cover patches were determined from the first scale of 

BLOB detection in the scale-space stack, rendering a frequency distribution for each image, 

(Figure 3.22). Similarly the approximate percentage canopy cover was calculated for each of 

the samples (Table 4).  

SWO 

 

SEO 

 

NWO 

 

NEO 
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Figure 3.22: Size class frequency distributions for canopy size trees inside and outside of the 

'Nwashitsumbe enclosure. Red lines indicate patch size distributions from inside the 'Nwashitsumbe 

enclosure, while blue lines indicate samples from outside the enclosure. 
 

Table 4: Percentage canopy cover for semi-arid savanna samples, as determined from the first scale 

of BLOB extraction. 

‘Nwashitsumbe 

sample 

Approximate percentage canopy cover 

NE 25 

NEO 20 

NW 28 

NWO 23 

SE 24 

SEO 15 

SW 22 

SWO 21 
 

 

For seven of the eight 'Nwashitsumbe images, all parameters were within five percent and so 

a single set of ten process free images was used to compare those samples against. For a 

single process free image, the difference was greater than five percent in the average canopy 

cover and so a separate set of ten process free landscapes was generated. The size of woody 

canopy cover at the first scale of analysis was approximately 4 pixels in diameter. 
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Creation of neutral landscape images comparable to 'Nwashitsumbe samples 3.4.1.3.2. 

Based on the above results, ten images of twenty five percent canopy cover were created and 

ten images of fifteen percent canopy cover were created, with individual patches of 5 pixels 

in diameter. The images with 25% percentage canopy cover have less than 5% difference to 

seven of the samples from the 'Nwashitsumbe enclosures. A separate ten images with 15% 

cover were created to compare with the South East Outside sample, which had a 15% cover. 

This totals twenty sample process free images, ten for images of 25% cover, and ten for 

image of 10% cover. 

For the sake of brevity, images are not presented here as they are included as insets in the 

primal sketch images in section 3.4.2.3.  

3.4.2.  OBJECTIVE 2: LINEAR SCALE-SPACE GENERATION  

The following primal sketches are graphically represented here; these are not the entire 

dataset, rather samples for demonstration of the concept.  

1. Datasets with known cross scale morphology: 

1. Random landscape (a sub-sample). 

2. Discrete cross scale pattern (a sub-sample). 

3. Multi-modal cross scale pattern (a sub-sample). 

2. 'Nwashitsumbe Landscapes (a subsample). 

3. Neutral landscapes (a subsample). 

In the samples, the scale-spaces are represented as three dimensional node graphs, with 

merge events as red dots. The Z dimension represents the scale of sample (derived as the 

bandwidth of the Gaussian kernel) thereby tracing the evolution of woody tree canopy cover 

across scale. 

3.4.2.1. Datasets with known cross scale morphology 

Random landscapes  3.4.2.1.1. 

Linear scale-spaces were generated for all images but only four are presented here; four  

neutral landscapes with varying tree sizes from images with 1, 5, 10 and 20 pixels 

respectively (Figure 3.12). 
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Figure 3.23: Linear scale-space primal sketches of neutral landscapes with varying tree sizes from 

inset image (Figure 3.12). Woody canopy cover across scales is represented as primal sketches drawn 

as 3D node graphs from images with 1, 5, 10 and 20 pixel sized trees in A, B, C and D respectively. 

The size of the trees affects the number of trees possible in a landscape and thereby the number of 

primal sketches and merge events which are possible. Small trees relative to the image size have much 

more dense primal sketches in a given linear scale-space. 

Discrete cross-scale pattern 3.4.2.1.2. 

Primal sketches were generated of the hypothetical landscapes with perfectly nested tree 

structures (Figure 3.18 A and B). The primal sketch traces the evolution of pattern as scale 

increases. Trees merge into larger patches (Figure 3.24A, blue box), which themselves merge 

at larger scales into larger patches (Figure 3.24A, red box). This nested hierarchy of structure 

is illustrated in the three dimensional node graph of the primal sketch (Figure 3.24B) 
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Figure 3.24: A linear scale-space primal sketch of a hypothetical landscape containing multi-scaled 

structure perfectly nested. Trees merge into larger patches (A, blue box) and these in turn merge into 

larger patches (A, red box). This evolution of pattern across scale is explicitly measured in the primal 

sketch of the image (B).  

Multi-modal cross-scale pattern 3.4.2.1.3. 

The application succeeds in creating primal sketches of the hierarchically nested analysis. 

The primal sketches of the multi-modal distributions do differ from those from a perfect set 

as expected. The scales at which merge events occur are not confined to narrow a range of 

scales, resulting in asymmetry in the primal sketch itself (Figure 3.25). In a few instances, the 

merge events may not even occur, indicating that this structure is not actually part of the 

larger structure, but rather it annihilates out of existence and is not incorporated in larger 

scale pattern (Figure 3.26). 
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Figure 3.25: A linear scale-space primal sketch of a hypothetical landscape containing nested 

hierarchical structure. The input image Figure 3.19(A) was created by the algorithm developed by 

O’Leary (Appendix), with three units of variance around the lowest scale of pattern expression. Not 

all small scale pattern links into the larger patch. Some of the pattern terminates in annihilation 

events and does not merge. 
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Figure 3.26: A linear scale-space primal sketch of a hypothetical landscape containing nested 

hierarchical structure. The input image Figure 3.19 (B) was created by the algorithm developed by 

O’Leary (Appendix), with thirty units of variance around the middle scale of pattern expression. 

Almost the entire pattern merges into the larger scale structure, with very few annihilation events. 

 

 

3.4.2.2. Linear scale-spaces of 'Nwashitsumbe samples 

Linear scale-spaces were generated for all eight images of the Nwashitsumbe enclosures. 

Only the primal sketch of the North West sample of the Nwashitsumbe enclosure is presented 

here.  

The binary dataset depicting woody canopy cover (Figure 3.27 A) was extracted from aerial 

photographs, of the NW sample of the 'Nwashitsumbe enclosures (Figure 3.27A). A primal 

sketch was created after the linear scale-space creation, BLOB feature extraction and linking 

algorithms (Figure 3.27 C-E). The development of woody structure through scale was 

mapped in three dimensions. In  Figure 3.27 C, D and E represent progressively increasing 

zooms of the primal sketch, illustrating the level of detailed information in a linear scale-

space. Each individual tree and patch in the landscape was tracked across all scales and points 

at which trees merge with other trees to become larger patches and identified and marked 
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(Figure 3.27; Merges are indicated by red dots).  

Viewed in profile (Figure 3.28); the primal sketch of the semi-arid savanna demonstrates how 

the woody cover changes across the scale-dimension. Each tree canopy, or patch of trees, 

traces through the scale-space and shows evidence of significant pattern at the scale in 

question. Where a patch of trees is no longer of significance at the scale in question, the 

primal sketch line terminates in an annihilation event (Figure 3.28 A: Figure 3.28 B is a 

zoomed view).  

Where trees and patches merge, the primal sketch lines join (indicated by a red dot in Figure 

3.28 C; Figure 3.28 D is a zoomed view). In sections of any particular primal sketch there are 

“zigzags” evident (two examples of which are circled in Figure 3.28 B). These zigzags are 

simply a graphical artifact. To draw the three dimensional graph the critical points of the 

BLOBS are used. The analysis is not sub-pixel therefore the X and Y co-ordinates of the 

minima points are rounded to the nearest integer. Rounding error means it may change to one 

of the four corners of the pixel. When zoomed in and at an oblique angle, this appears as a 

wiggly line. This does not affect the analysis; it is simply apparent in the graphical 

representation. 
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Figure 3.27: A linear scale-space primal sketch of a semi-arid savanna in Kruger National 

Park, South Africa. The binary data representing canopy cover (A), is extracted from the 

orthophotos (B) of an experimental browser enclosure experiment. All the trees in the landscape 

have their evolution through scale traced as a primal sketch, C-E showing successive zoom into 

the dataset. Points in scale-space where woody cover merges into patches are indicated as red 

dots. 
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Figure 3.28 A profile view of the linear scale-space of a semi-arid savanna in the northern Kruger 

National Park, South Africa. The primal sketch is rendered from the same landscape image as Fig. 

3.27. The profiles (A & C) of the linear scale-space illustrate how woody vegetation cover evolves 

across the scale dimension. Scale-space events are represented as annihilations (green dots) and 

merges (red dots). Annihilations indicate the scale at which woody canopy cover is no longer 

significant. Merges indicate the scales at which trees merge to form patches of trees. B and D are 

zoomed in regions of the linear scale-space, illustrating the annihilation and merge events. The circle 

in B indicates a graphical artifact, where rounding errors move the node in three dimensions and 

create the impression of a “wiggly” line. This does not affect the analysis, simply the representation. 

3.4.2.3. Neutral landscapes 

Linear scale-spaces were created for all twenty neutral landscapes that were to be used in 

comparison; only one example is illustrated here.  
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Figure 3.29: A linear scale-space primal sketch of a hypothetical, neutral landscape (A), with 15% 

woody cover and an average “tree” size of five pixels in diameter. All the hypothetical canopies and 

patches in the landscape have their evolution through scale traced and represented as a primal sketch, 

B-D showing successive zoom into the dataset. Points in scale-space where woody cover merges into 

patches are indicated as red dots. 

3.4.2.4. The error cleaning algorithm 

There are errors prevalent in the data, the total numbers of connections which can be 

considered an error are up to three percent when summed (Table 2). These were removed 

using the clearing algorithm. 
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Table 5: The number of errors detected in the linear scale-spaces of the 'Nwashitsumbe samples and 

the process free landscapes used as neutral models. The raw numbers are indicated, as are the total 

number of nodes in a scale-space, to allow for perspective. The numbers of errors are very small 

relative to the total number of connections that have been made in a graph. Creations split events 

constitute connections to nodes above, but not below, violating the principles of causality and 

therefore being classified as an error. Floaters constitute nodes which have not been assigned a 

connection. These are all removed by linking them within to the closest node within bounds. 

 No. of  

nodes in 

the 

scale-

space 

No. of 

Creation 

events 

detected 

and 

removed 

No. of Split 

events 

detected 

and 

removed 

No. of Floaters 

detected and 

removed 

Summed 

errors as a 

proportion of 

the total 

Average for reps of 5 

pixel trees, 15% cover 

(n=10) 

98215.4 434.8 12.9 1170.5 

0.016476 
Average for reps of 5 

pixel trees, 25% cover 

(n=10) 

43949.6 413.2 2.4 769.2 

0.026958 
NE 122357 341 4 1465 0.014793 
NEO 113949 85 1 737 0.007223 
NW 117954 1263 6 2673 0.03342 
NOW 144190 380 3 1740 0.014724 
SE 95909 417 3 1128 0.01614 
SEO 79085 45 17 410 0.005968 
SW 98029 208 0 775 0.010028 
SWO 118649 288 4 1349 0.013831 

 

 

There are three percent less errors after the cleaning algorithm than before, this increases the 

likelihood of correct ownership of low scale BLOB’s by higher scale BLOBs. It is noted that 

the cleaning is not a hundred percent; not all of the errors are removed and a number of 

erroneous events may still occur.  Moreover, the error cleaning algorithm does not clean 

BLOB errors. 

3.4.3.  OBJECTIVE 3: TO DEMONSTRATE OUTPUTS OF THE LINEAR SCALE-SPACE 

APPLICATION AND TO VALIDATE THE LINEAR SCALE-SPACE APPLICATION FOR 

REPEATABILITY OF THE ALGORITHM AND IN DETECTING THE SCALE OF PATTERN 

EXPRESSION 

The application does extract the pattern expected from the conceptual framework.  There are, 

however, a number of errors in the application which may make interpretation of the results 

difficult. 
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3.4.3.1. Sub-objective 3.1: Does the cross scale morphology of the landscapes of 

known cross scale structure conform to the conceptual framework? 

I expect that nested hierarchical structure would have a multi-modal distribution of merge 

events in the cross scale distributions. Random datasets would have no particular scale of 

high distribution and would follow a negative exponential curve which reflects the 

relationship between space and scale of analysis. 

Random Datasets: 3.4.3.1.1. 

The cross-scale morphology of the discrete cross scale pattern images; illustrated as density 

of merge events against the scale of the merge events is multi-modal, as expected. The scales 

of merge events are constrained to scale 29 and between scale 145; 147 for the blue line, 

which illustrates the merges of the landscape presented in Figure 3.24. For the primal sketch 

illustrated in Figure.3.30 B the merges are all at scales 12; 13; 15; 16; 17; 19 and 204; 205. 

 

 

Figure.3.30: The cross-scale morphology of hierarchically structured landscapes is multi-modal. 

The blue line indicates the  distribution of merge events from the image presented in Figure 3.24 The 

red line illustrates the distribution from the inset figure B which is a hypothetical landscape generated 

to have zero variance around the modes of pattern expression. The algorithm can detect multi-modal 

structure in linear scale-spaces. 
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Multi-modal cross scale pattern 3.4.3.1.2. 

 

Figure 3.31: Scales at which merge events occur from images of nested hierarchies. The red line is a 

control plot, derived from an image with no variance around the scales of pattern expression 

(Figure.3.30, inset and red lines). The green line shows the scales of merges from an image with 

variance around the lowest scale of pattern expression (Figure 3.19 A, green box). The yellow line 

shows the scales of merges from an image with variation around the middle scale of pattern 

expression (Figure 3.19 B, yellow box) The distribution of the perfect set (red line) is distinctly multi-

modal. The green and yellow lines are not as distinctly multi-modal, as the scales at which pattern is 

expressed varies, but there are still regions of scale over which there are higher densities of merge 

events. 

 

The cross-scale morphology of the hierarchically structured landscapes shows a distinct 

multimodal pattern (Figure 3.31). Although not as neatly multi-modal as the perfect set, there 

are distinct zones in scale where merge events occur, with a larger amount of variation 

appearing as the zone becomes broader. Given that the cross-scale morphology of 

hierarchically structured datasets is multi-modal as expected, the application developed for 

this thesis can detect different configurations of hierarchically nested structure. 

3.4.3.2. Sub-objective 3.2: Demonstrate Repeatability; does the algorithm show 

similar cross scale morphology for landscapes with similar scales of pattern 

expression? 

P-values less than 0.05 indicate a rejection of the null hypothesis that the samples are from 

the same continuous distribution under a Kolmogorov Smirnov test. The majority of all the 

replicates demonstrated a low number of rejections (1/10 or 3/45; Table 6). However, there 
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are four rejections out of ten possibilities in group a (these are samples comparing of the ten 

pixel tree size, twenty five percent canopy cover and five hundred pixels in extent), indicating 

that the pattern is not repeatable for this sample (acceptance of α=0.05). A post hoc test 

revealed that all rejections are between replicate two and the other four replicates. 

Table 6: Replicate groups compared using Kolmogorov Smirnov tests. The null hypothesis is that 

they are from the same distribution. Each replicate group is a set of neutral landscapes, the 

distribution of scale values from merge events are compared pair-wise. The number of pair-wise 

comparisons within a replicate set is indicated and subsequently the number of times the null 

hypothesis is rejected, if rejected, the p-value is indicated. 

neutral 

landscape 

number of 

replicates 

number of 

comparisons 

number of 

rejections 

(α=0.05) 

P-values 

of rejections 

a 5 10 4 0.006; 0.024; 0.015; 

0.017 

b 5 10 1 0.024 

c 5 10 0 n.a 

e 10 45 3 0.003; 0.020; 0.014 

f 10 45 1 0.031 

g 10 45 3 0.005; 0.030; 0.039 

 

There was an error in the application to generate the linear scale-space and erroneous merge 

events were created as the same BLOBs were linked multiple times during the linkage section 

of the algorithm. The linkages at low scales were effectively cleaned by the linkage cleaning, 

however, the influence of edge effects is a problem at higher scales. The convolution of data 

from outside the image area generates inverted BLOBS at high scales.  

The result is important for two reasons; firstly, I realize that my application is not free of all 

error, even with the linkage cleaner. Secondly, although there is an error, it is not 

fundamental to the use of neutral landscapes as the patterns between all the other replicates in 

that sample were consistent.  

There were other errors noted in the tests for repeatability, (Table 6), which were not 

introduced by an error in the algorithm and require explanation. Alpha values for all analyses 

are set at 0.95 rather than higher values to avoid a type one error (false positives). There is a 

risk of incorporating a type two error (false negatives); however, in the context of 
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determining if a repeatable pattern is extractable from neutral landscapes it is more important 

to remove the likelihood of accepting different patterns as the same. Additionally, if forty five 

comparisons are made, each presenting an individual P-Value; by chance alone, between two 

and three samples are likely to reject the null hypothesis and be a false positive (a type one 

error). 

 In the right circumstances a Bonferroni adjustment can be used to remedy the effects of 

repeated measures (Rice, 1989). In cases where it is the global hypothesis of interest such as 

here, it is statistically valid. This analysis and application are a first attempt. Although 

statistically relevant, changing the P-value acceptance levels will not change the outcomes,  

but rather the audiences’ perceptions of them. It is more useful for further research to realize 

that there are errors in the application; but be explicit that the errors are in the application and 

not the philosophy of using linear scale-space.  

Given that some of the rejections (statistically most of them) of the null hypothesis (that the 

neutral replicates produce patterns that can be considered from the same distribution) may be 

due to chance alone; the application is remarkably repeatable. The errors that were brought to 

light by the lower acceptance values of alpha were generated by two sources, both of which 

pertain to the linkage algorithm responsible for linking BLOBs between scales into scale-

space volumes. 

3.4.3.3. Sub-objective 3.3: Sensitivity to variation in vegetation; does tree size, tree 

density and the size of the input landscape dataset matter in comparisons? 

Cross-scale morphology of the subsample of the various datasets is presented for illustration 

purposes: 

Test the effect of tree size on the distribution of merge events across scale. 3.4.3.3.1. 

The size of the trees in a hypothetical neutral landscape influences the distribution of merge 

event scale values (Figure 3.32). The larger trees (relative to the image extent) generate a 

right skewed distribution of merges relative to the relatively smaller trees.  
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Figure 3.32: Cross scale morphology; the density of merge events at scales of analysis of 

hypothetical neutral landscapes with different tree sizes. Red, yellow, blue and green lines indicate 

example images with trees of one, five, ten and twenty pixels respectively (Figure 3.13 A, B, C and 

D). 
 

The result of the Kolmogorov-Smirnov tests for all comparisons between images with 

differing tree sizes rejected the null hypothesis that they are from the same distribution 

(P<0.05). As the hypothetical trees increase in size relative to the pixels, the relative scales at 

which merges occur will be become skewed to the higher scales (Figure 3.32). The overall 

pattern may stay the same, but the lower and higher scales at which events occur will change 

relative to one another. This is an effect of arbitrarily changing the scale of interest, which is 

an example of the MAUP. 

Test the effect of image size on the distribution of merge events across scale. 3.4.3.3.2. 

The size of the image influences the distribution of merge event scale values (Figure 3.33). 

The distribution of merges from the larger five hundred pixel image (Figure 3.13) is more 

right-skewed than that from the smaller 300 pixel image. Kolmogorov-Smirnov tests of the 

distributions of the scales at which merge events occur reject the null hypothesis that the 

samples are from the same continuous distribution (P<0.05). This is an obvious and expected 

effect of changing size in image as the relative proportions of merge events will change when 

image extent changes. 
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Figure 3.33: Cross-scale morphology; the scales at which merge events occur for two images of 

different sizes. The distribution from the larger image of 500 pixels in extent (blue) is right skewed 

relative to the 300 pixel image (red). Both images have trees of a single pixel and fifty percent cover. 

 

 All comparisons between images of different extents reject the null hypothesis that they are 

from the same continuous distribution, under a Kolmogorov–Smirnov test (P<0.05). This 

makes intuitive sense and is expected, because as images increase in extent, merges will be 

found at relatively higher and higher scales, assuming that woody cover is found across a 

larger and larger extent (Figure 3.33). This is also an example of the MAUP. 

Test the effect of percentage woody cover on the distribution of merge events 3.4.3.3.3. 

across scale. 

The distribution of the scales at which merge events occur is influenced by the amount of 

vegetation cover in the image. The distribution becomes slightly right skewed under lower 

vegetation inputs (Figure 3.34). However, this is not ubiquitous (Table 7); Kolmogorov-

Smirnov tests of the distributions of the scales at which merge events occur, reject the null 

hypothesis that the samples are from the same continuous distribution (P<0.05) for 25 

samples in two of the three replicate groups. Samples with fifty percent cover and seventy 

five percent cover (b and c) are only significantly different in two of the twenty five 

comparisons made (P=0.03 in both rejected comparisons). In all other comparisons, there was 

a rejection of the null hypothesis and the samples can be considered different.  
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Figure 3.34: Cross-scale morphology; scales at which merge events occur compared between 

neutral images containing different percentage cover of woody vegetation. Red lines indicate three 

replicates of neutral images with seventy five percent woody cover; the blue lines represent a neutral 

landscape with fifty percent cover, and green lines indicate five replicate of neutral images with 

twenty five percent cover.  All images are of the same extent, the amount of woody cover affects the 

distribution of merges in the scale dimension of the linear scale-space, lower cover being more right 

skewed. 

Table 7: Results of Kolmogorov-Smirnov tests between distributions of the scales at which merge 

events occur between sets of replicates. Each replicate group has five replicates, and the number of 

rejections of the null hypothesis are indicated, H0 being that the samples are from the same continuous 

distribution. P values for rejections are indicated in red in the top right diagonal. 

Replicate group a b c 

a . P<0.001 0.03; 0.03 

b 25 . P<0.02 

c 2 25 . 

 

The percentage of woody canopy cover seemingly does not always affect the distribution of 

merge events. Despite that, comparisons of hypothetical landscapes  of seventy five percent 

cover with landscapes of fifty percent cover  yielded only two rejections (P=0.03). Other 

comparisons yielded rejections of the null hypothesis for all comparisons. Percentage canopy 

cover, at least under most circumstances, is an important consideration in the optimization of 

a neutral model. 
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Sub-objective Synthesis  3.4.3.3.4. 

Image size, tree size and percentage woody canopy cover affect the distribution of merge 

events relative to other neutral landscapes. Random landscapes of similar parameters do, on 

the whole, have repeatable patterns of the scales at which merge events are distributed. The 

replicates of the sample of twenty five percent cover resulted in four out of ten comparisons 

reject the null hypothesis that they are from the same continuous distribution. In these 

samples however, these four rejected comparisons were all between a single replicate and the 

other four, indicating that there may be an error with the replicate.  

3.4.4.  OBJECTIVE 4: CAN EVIDENCE OF PROCESS BE DETECTED IN THE 

'NWASHITSUMBE LANDSCAPE? 

The application, although successful at detecting discontinuous structure in test datasets, does 

not detect any more discontinuous structure in the 'Nwashitsumbe landscape than can be 

expected from random. This is under assumptions of both stationarity and non-stationarity. 

3.4.4.1. Sub-objective 4.1: General cross scale morphology: Does the cross-scale 

morphology of 'Nwashitsumbe differ from a neutral landscape? 

In the comparisons between each of the eight 'Nwashitsumbe samples and the ten neutral 

landscape replicates with fifteen percent woody cover and with twenty five percent woody 

cover respectively (Table 8), the Kolmogorov-Smirnov tests fail to reject the null hypothesis 

and they can be considered to be from the same distributions as the neutral landscapes 

designed to approximate the landscape characteristics (P>0.05). 

Table 8: Maximum and minimum K-stats of comparisons between the 'Nwashitsumbe enclosure 

samples and the replicated neutral landscapes. All samples fail to reject the null hypothesis that they 

are from the same continuous distribution (P>0.05). 

 Minimum K-stat Maximum K-stat 

 Neutral landscapes with 15% cover 

SE 0.224 0.257 

 Neutral landscapes with 25% cover 

NE 0.114 0.176 

NEO 0.090 0.144 

NW 0.142 0.215 

NWO 0.190 0.249 

SEO 0.080 0.110 

SW 0.072 0.131 

SWO 0.146 0.210 
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The data do not reflect that the samples can be considered to be from different distributions. 

This implies that there is no need to invoke the effect of process when making inference on 

the creation of multi-scaled pattern in woody tree cover in the savanna landscape. There are a 

number of hypotheses that may explain why this is the case, including error in the 

application, the implicit assumption of stationarity when lumping all the merge events 

together for a sample and that the effect of process is not there because the landscapes 

approximate randomness. Results are discussed collectively at the end of this chapter given 

that the results presented next allow for many of these hypotheses to be teased apart. 

3.4.4.2. Sub-objective 4.2: Fire and browse treatments: The effect of manipulation of 

two major savanna drivers on systems cross-scale morphology. 

Of a possible 27 different comparisons between distributions of merges from the 

'Nwashitsumbe sites, only three samples fail to reject the null hypothesis that they are from 

the same continuous distribution Table 9 (P>0.05). 

Table 9: Kolmogorov-Smirnov test of merge event distributions for the real world samples.  The 

bottom diagonal indicates a failure to reject (0) or rejection (1) of the null hypothesis that the 

compared distributions of merges are from the same continuous distribution. The upper diagonal 

contains the P-value for the K-S test. 

  NE NEO NW NWO SE SEO SW SWO 

NE x 0.19 0.01 0.00 0.01 0.00 0.01 0.02 

NEO 0 x 0.00 0.00 0.04 0.00 0.07 0.00 

NW 1 1 x 0.00 0.00 0.00 0.00 0.79 

NWO 1 1 1 x 0.00 0.00 0.00 0.00 

SE 1 1 1 1 x 0.00 0.92 0.00 

SEO 1 1 1 1 1 x 0.00 0.00 

SW 1 0 1 1 1 1 x 0.00 

SWO 1 1 0 1 1 1 1 x 
 

 

Within the treatments, the effects of fire and differing browser densities are investigated: 

Samples with uncontrolled fire and herbivores 3.4.4.2.1. 

Comparisons between outside samples (NEO, NWO, SEO and SWO) indicate that even 

under the supposedly similar driver suite found outside the enclosure, all comparisons have a 

significantly different distribution of merges compared across scale Table 9 (P<0.05).  

Samples with browser exclusion 3.4.4.2.2. 

Of the sixteen possible comparisons between samples from inside against those from outside 

the enclosures (NE, NW, SE and SW tested against NEO, NWO, SEO and SWO all 
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perturbations; four inside against four outside); two samples fail to reject the null hypothesis 

that they are from the same continuous distribution Table 9 (P>0.05). These are the 

comparisons between the NE and NEO sample, and between the SW and NEO sample. All 

other comparisons show significant differences Table 9 (P<0.05). 

Samples with a known fire regime 3.4.4.2.3. 

Comparisons between samples from inside the 'Nwashitsumbe enclosure (NE, NW, SE and 

SW all perturbations; 4+3+2+1 comparisons from inside enclosures equals 10), show no 

predictable pattern. Only one of the ten possible comparisons, the comparison between the 

SW and SE samples can be considered from the same continuous distribution Table 9, 

(P>0.05).  

Synthesis 3.4.4.2.4. 

All except four of the comparisons between real world savanna samples were significantly 

different, Table 9; (P<0.05). The distributions that can be considered the same are 

comparisons between the NE and NEO sample, between the SW and NEO sample, between 

the SW and SE sample and between the NW and SWO sample. There is no obvious similarity 

in the fire and herbivore regimes of samples that can be considered to be from the same 

continuous distribution Table 10. 

Table 10: Time since fire (TSF) in years and approximate time since herbivory (TSH) for the eight 

sample sites at the 'Nwashitsumbe enclosures. The “Similar to” column indicates which samples the 

KS test shows that the merge event distribution can be considered to be from the same continuous 

distribution. 

 

Sample TSF TSH  Similar to 

NE 12 33  NEO 

NEO ±3 0  NE and SW 

NW 4 33  SEO 

NOW ±3 0   

SE 13 33  SW 

SEO ±3 0  NW 

SW 2 33  SE 

SWO ±3 0   
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1. The samples from the NE and NEO are considered to be from the same continuous 

distribution, but have different herbivore regimes and a different time since the last 

recorded fire of twelve and three years respectively.  

2. The SW and NEO samples are considered to be from the same continuous distribution, 

but despite similar fire histories (three and two years respectively), the samples have 

experienced thirty three years of different herbivore pressures. This is to be seen in 

another example; the NW and SWO sample which are considered to be from the same 

continuous distribution, also have differing herbivore pressures for thirty three years and 

similar fire histories (four and three years respectively). 

3. The SW and SE are considered to be from the same continuous distribution, despite 

samples having similar herbivore pressure due to the enclosure; their fire regimes are 

markedly different (two and thirteen years respectively since the last recorded fires). 

The consistent difference between the samples indicates that there is no similarity between 

treatments, even those with similar drivers. There are a number of hypotheses that can be put 

forward to explain why, which I discuss in the chapter synthesis, including an error in the 

application, the nature of landscape context and that lumping of the samples implicitly 

assumes stationarity of the processes across the sample itself. These are discussed in the 

context of the next set of results which illustrate a non-stationary approach to the analysis of 

landscape patchiness. 

3.4.4.3. Sub-objective 4.2:Spatially explicit discontinuity analysis: Does the cross-

scale morphology of 'Nwashitsumbe differ from a neutral landscape? 

A spatially explicit test for discontinuous structure in the landscape is the crux of this thesis. I 

present here the determination of the neutral models and then the test.  

Spatially explicit discontinuity analysis  3.4.4.3.1. 

1. Determination of the Neutral Model 

The distribution of merge events derived from the ten neutral-replicates for images with 

twenty five percent woody cover approximates a Gamma distribution (Figure 3.37). The 

average and the upper and lower standard deviations of the distribution are highlighted in red 

and green respectively. These distributions subsequently become the null distributions against 

which the primal sketches in the landscapes are tested for discontinuous structure in the scale 

dimension. 
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Figure 3.35: Cross scale morphology of neutral landscapes; the distribution of merge events from 

the ten neutral landscape replicates was calculated with kernel density estimation, rather than 

histograms. The analysis window bounded to a single scale unit and the positive domain. The average 

is calculated and used as the neutral model for analysis of discontinuities (red line). The upper (blue 

line) and lower bound (green line) were calculated; defined by the average plus or minus one standard 

deviation. 

2. Monte-Carlo based simulation to find discontinuities 

The simulation successfully generated distributions for each gap which were selected at an 

acceptance level of 0.95. These are visualized spatially below. 

3. Visualizing discontinuities in the landscape 

I present the visualizations of discontinuities in a subset of the test landscapes and the eight 

semi-arid savanna landscapes analyzed. Discontinuous structure is ubiquitous throughout 

datasets: Figure 3.36; even neutral landscapes contain discontinuous structure. The 

hierarchically nested structure forms nested discontinuities as expected.  
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Figure 3.36: Discontinuities found in the neutral models. Global constraint image (left), a 

replicate of the neutral model used for the 'Nwashitsumbe comparisons (centre), and a perfectly 

hierarchically structured landscape (right). Discontinuous volumes are those whose gaps have a 

DPV value greater than 0.9 and are re-projected back onto the landscape. 
 

 

Figure 3.37: An example of discontinuities re-projected back onto a section of an analyzed semi-

arid savanna landscape. Circles represent what can be considered classic hierarchical structure, where 

small patches are nesting into larger patches. Errors are found at higher scales, where the influence of 

edge effects becomes apparent. Colors indicate the different DPV-values between 0.9 and 1 (green to 

red). 

I present an example of the results of this algorithm to allow for the interpretation of later 

examples: Figure 3.37. Hierarchically structured vegetation in real world landscapes is 

evident in certain primal sketches such as this sample section in Figure 3.37, highlighted in 
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the circles. Individual patches are seen to merge into larger and larger patches in the 

landscape in what could be considered classical hierarchical structure. However, there is a lot 

of structure, which, although considered discontinuous, is not necessarily hierarchically 

structured.  

The effect of errors at higher scales of analysis is the creation of anomalous patches (Figure 

3.37, marked as an “error”). These are easily distinguishable from the hierarchically 

structured patches in the landscape. These are errors that are introduced at high scales when 

the influence of edge effect becomes apparent. These are seen in the results that follow, but 

they are few and far between and are found at relatively large scales. 

Discontinuities are ubiquitous in all samples from the 'Nwashitsumbe enclosures, both inside 

and outside. Here I present all eight images with the discontinuities overlain (for these images 

a discontinuity is considered a gap with a DPV>0.9; Figure 3.38-Figure 3.45). All images 

presented here are real landscapes, with discontinuities in red derived by comparing to the 

average value from the neutral model, as opposed to the upper or lower standard deviation.  
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Figure 3.38: The north western sample from inside the 'Nwashitsumbe enclosure. The sample has 

been exposed to 33 years of herbivore exclusion and was taken four years after the last recorded fire 

event. The red patches indicate scale-space volumes that are considered to be discontinuities at an 

acceptance value of DPV>0.9. 
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Figure 3.39: Discontinuities from the image outside the north western portion of the 

'Nwashitsumbe enclosures. The landscape has been exposed to continuous herbivory exclusion and 

fires which have a return interval of approximately three years. The red patches indicate scale-space 

volumes that are considered to be discontinuities at an acceptance value of DPV>0.9. The large 

convoluted BLOB in the center of the image is an error created through an error in the linkage 

algorithm. 
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Figure 3.40:  Discontinuities from the sample from the north eastern portion of the 'Nwashitsumbe 

enclosures. The sample has had active herbivore exclusion for 33 years and it has 16 years since the 

last recorded fire event. The red patches indicate scale-space volumes that are considered to be 

discontinuities at an acceptance value of DPV>0.9. The large convoluted BLOB in the center of the 

image is an error BLOB created through an error in the linkage algorithm. 
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Figure 3.41: Discontinuities from the image outside the north eastern portion of the 'Nwashitsumbe 

enclosures. The landscape has been exposed to continuous herbivory exclusion and a fire return 

interval of approximately three years. The red patches indicate scale-space volumes that are 

considered to be discontinuities at an acceptance value of DPV>0.9. 
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Figure 3.42: Discontinuities from the sample from the south western portion of the 'Nwashitsumbe 

enclosures. The sample has experienced active herbivore exclusion for 33 years and it has been 2 

years since the last recorded fire event. The red patches indicate scale-space volumes that are 

considered to be discontinuities at an acceptance value of DPV>0.9. 
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Figure 3.43: Discontinuities from the image outside the south western portion of the 'Nwashitsumbe 

enclosures. The landscape has been exposed to continuous herbivory exclusion and fire frequency of 

approximately three year periodicity. The red patches indicate scale-space volumes that are 

considered to be discontinuities at an acceptance value of DPV>0.9. 
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Figure 3.44: Discontinuities from the sample from the south eastern portion of the 'Nwashitsumbe 

enclosures. The sample has experienced active herbivore exclusion for 33 years and it has been 13 

years since the last recorded fire event. The red patches indicate scale-space volumes that are 

considered to be discontinuities at an acceptance value of DPV>0.9. 
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Figure 3.45: Discontinuities from the sample from outside of the south eastern portion of the 

‘Nwashitsumbe enclosures. The sample has had no active herbivore exclusion and has an approximate 

fire return interval of 3 years. The red patches indicate scale-space volumes that are considered to be 

discontinuities at an acceptance value of DPV>0.9. 
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4. Test for robustness of the discontinuities 

The proportion of novel pattern generated, Table 11, using the different inputs are all below 

0.05, bar a single sample of ≈ 0.7. Additionally, the consistency of differences between 

samples indicates robust discontinuities. 

Table 11: Proportion of novel discontinuous structure. When using the average plus one standard 

deviation or the average minus one standard deviation as empirical comparison, only low amounts of 

novel structure are generated, compared to the average. The amount of novel pattern is generally very 

low. Secondly, the values are relatively consistent between samples indicating robust discontinuities. 

 

 avg + std avg - std 

NE 0.04 0.02 

NE O 0.05 0.02 

NW 0.05 0.01 

NW O ≈0.07 .01 

SE 0.04 0.02 

SE O 0.04 0.02 

SW 0.04 0.02 

SW O 0.04 0.02 
 

 

To illustrate that the pattern is robust, I present a sub-sample of discontinuities derived from 

the upper and lower standard deviations of the neutral model, in blue and green respectively; 

Figure 3.46,  this consistency of pattern is ubiquitous across all eight images.  
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Figure 3.46: Discontinuities determined by analysis using the upper (left image) and lower (right 

image) standard deviations of the null model. Volumes are considered to be discontinuities at an 

acceptance value of DPV>0.9. The proportion of new structures is reported in Table 11:  The 

distinctions are almost imperceptible, illustrating that the pattern of discontinuities is robust in the 

landscape. 

 

Comparison of results from discontinuity analysis between images and to neutral 3.4.4.3.2. 

models 

In hierarchically nested datasets, (Figure 3.36; right hand side image) the proportion of 

discontinuities is equal to one. However, when compared to a population of proportion values 

generated from the neutral landscape replicates, only the sample from the south west (SW) 

and the south east of the ‘Nwashitsumbe enclosure (SE) have a greater proportion of 

discontinuous structure than is expected from random. Both these samples fall within five 

percent of the upper extreme value of the neutral landscape ratios. The same pattern is found 

in the comparisons with the upper and lower standard deviations of the neutral null model. 
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Figure 3.47: Proportion of the gaps in the primal sketches of the samples that are discontinuous, at 

an acceptance value of DPV>0.95, analyzed against the average of the neutral landscapes. The ten 

replicates of neutral landscapes, both 15% cover and 25% cover landscapes, andcreate a population 

of ratios against which the semi-arid savanna landscape ratios are plotted.  

The distribution of the neutral landscape is plotted as a box and whisker plot; the red line indicates 

the median, upper and lower blue lines represent the upper and lower quartile respectively and the 

black lines indicate the extreme values.The semi-arid savanna samples are labeled by the letters 

indicating their coordinates, the O indicating a sample from outside the enclosure.  

Only the south eastern and south western samples have a higher proportion of discontinuities than 

expected from a neutral landscape, although it is less than five percent higher than the distribution 

of neutral landscapes. 

 

Discontinuous structure is evident in all the samples analyzed both in the hypothetical; Figure 

3.36 and in the semi-arid savanna samples; Figure 3.38 - Figure 3.45. All of the samples 

show some proportion of discontinuous vegetation structure. Comparisons of the proportions 

of discontinuities indicate that there is not a realistically larger proportion of discontinuous 

structure in semi-arid savanna landscapes than in process-free landscapes; Figure 3.47.   The 

south eastern and south western samples do have a slightly higher proportion of 

discontinuous structure than the process-free landscapes, but, this is less than a five percent 

difference from the maximum value in the random data. 

Although this can be inferred to be statistically meaningful, I do not regard it as ecologically 

meaningful. I conclude that, within the bounds of inference set by the scales analyzed, none 

of the semi-arid savanna samples have a much higher proportion of discontinuous structure 

than can be expected than random. There is consistency in that the outside sample always has 
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a lower amount of discontinuous structure than the paired sample from within the enclosure. 

The probability of this occurring by chance alone is ≈0.063 and begs explanation. 

3.4.5.   SYNTHESIS OF RESULTS: 

Objective 1: Generation of baseline landscape datasets: 

 The objective was met; hypothetical datasets were generated, woody vegetation cover 

extracted from orthophotos with acceptable levels of error and neutral models derived. 

Objective 2: Linear scale-space generation linear scale-spaces were successfully 

generated:  

A number of errors in the linkage algorithm and the introductions of errors through edge 

effects remain a major problem in the ability to make uncontested inference around 

ecological process. 

Objective 3: To demonstrate outputs of the linear scale-space application and to validate 

the linear scale-space application for repeatability of the algorithm and in detecting the 

scale of pattern expression.  

The cross scale morphology expressed by the distribution of merge events analyzed 

across scale generated the patterns as expected. Multi-modal distributions are evident in 

hierarchically structured landscapes and a randomly distributed landscape generated a 

cross-scale morphology approximated by a gamma function. Tree size, density and 

image size all affect the distribution of merge events and therefore are crucial variables 

in creating neutral models for real world comparison.  

Objective.4: Can evidence of process be detected in the 'Nwashitsumbe landscape? 

There are three major findings related to this objective: 

1. The cross-scale morphology of vegetation in semi-arid savanna landscapes is not 

significantly different to that of neutral landscapes. 

2. There is no discernible effect of changes in the processes and the cross-scale 

morphology of the landscapes.  

3. There is no more discontinuous structure in the landscape than expected from neutral 

landscapes when results from a spatially explicit discontinuity analysis are compared. 

Accordingly there is no evidence that process affects the cross-scale morphology of woody 

tree canopy cover in the semi-arid savanna landscape of the 'Nwashitsumbe enclosure sites. 

This finding is in the context of the linear scale-space method used and the possible errors 

and shortcoming therein. 
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3.5. CHAPTER DISCUSSION 

There are three options when faced with the results presented in this thesis; one can doubt the 

analysis method, one can doubt the philosophy of the investigation, or one can doubt the 

theory. More humbly put, rather than doubt the theory, we can at least realize that the 

preconceived ideas with which we as ecologists view savanna landscapes is unlikely to be 

able to explain all of the patterns that we see. 

In Chapter 4 I discuss the findings in the context of the wider ecological field; here I present 

hypotheses for why the results may be what they are. I have broadly categorized three 

alternate hypotheses. The expected multi-scaled hierarchical structure is not evident because: 

1. of procedural and philosophical bias introduced by the study design; 

2. of errors in the application itself; 

3. landscapes are not hierarchically nested. 

3.5.1.  PROCEDURAL AND PHILOSOPHICAL BIAS INTRODUCED BY THE STUDY DESIGN 

This thesis is premised on the fact that the linear scale-space of woody canopy cover data is 

an ecologically meaningful representation of multi-scaled structure in a landscape. 

Throughout the sequence of methods, an effort has been made to ensure that reification has 

been supported by the literature and that any assumptions, both philosophical and 

methodological, do not bias the outcome. The nature of the investigation and many of the 

methods used are novel, so the assumptions require revisiting in light of the results to aid 

interpretation and future research. 

3.5.1.1. Is woody canopy cover a valid proxy? 

The objectives of this thesis are to detect hierarchical structure in woody canopy cover; but is 

this necessarily the best proxy for making inference that challenges systems theory? 

Traditional linear scale-space analysis uses greyscale imagery (Lindeberg, 1994, viz. Hay et 

al., 2002) as a baseline dataset, the image is not classified a priori. It may be that by 

classifying the trees out of the image and discarding all other ancillary information from the 

image, imperative non-tree information is lost. This may give a different picture of the scalar 

dynamics of structure in the landscape.  

I do not, however, think so because although a large amount of information is lost, this is a 

measured action aimed at focusing pattern detection on the woody component. Woody 

components of a landscape have been used extensively as a reflection of processes in 
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landscapes. Furthermore, although further more detailed investigations are warranted which 

use the entire aerial photograph (or even a mosaic of photographs), the problem of the 

primary classification cannot be circumvented. At some point, be it during the process of 

capturing the data spectrally, or in a subjective classification, a data point must be observed 

and categorized. Everything in science is an observation and that comes with a classification; 

all we can do is interpret the patterns of classified observations in the light of our models to 

describe them. 

It may be that the two dimensional woody canopy cover in a savanna landscape may not 

actually be an adequate proxy for systems drivers. It may be the case that the entire argument 

presented in Chapter Two is in fact false and that tree distributions only give insight into 

system level properties in certain systems, such as the arid and Mediterranean systems used 

by Scanlon, Caylor et al (2007), Rietkerk, Dekker et al (2004), Van Der Koppel, Rietkerk et 

al (2002), Kefit, Rietkerk et al (2007) and the 'Nwashitsumbe landscape may not conform to 

such a model. It is perplexing that in my analysis the 'Nwashitsumbe sample shows no 

observable difference in the multi-scaled spatial pattern of woody canopy cover.  Asner et al 

(2009) demonstrated that the 'Nwashitsumbe enclosure has a significant difference in the 

vertical structure of the vegetation when the inside and the outside of the enclosures are 

compared. How does this finding marry with the findings in my thesis?  

My findings are seemingly contradictory; but Asner et al (2009) considered the vertical 

structure of the vegetation, integrated for the entire sample-not the spatial distribution of the 

patches. The lack of detectable change demonstrated in this thesis may be due to a number of 

factors: 

1. It may be possible that the spatial distribution of vegetation is robust to even 

relatively heavy herbivory. The difference between the inside and outside enclosures 

may not have been great enough to induce a change in the system level properties as 

expected. This is not all that unexpected and I envisage it as a kind of hysteresis; 

once a tree has established itself in favorable conditions, it continues to facilitate 

these favorable conditions through the feedback loop outlined in previous chapters. 

Herbivores affect the feedback loops via browsing, but it is only once the disturbance 

pressure is large enough to create a fundamental shift in the feedback loop that the 

entire tree may be lost. The hysteresis property and sudden system shift has been 

shown in other studies of vegetation in savannas at larger scales (Higgins 2012, 
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Staver 2011) but not at smaller scales. Further support for the spatial position of 

vegetation being a poor indicator of process is anecdotal evidence from experimental 

burn plots that show that tree size structure (height) is affected by fire, but not species 

composition.  Therefore once established, a tree can be smaller or larger due to fire, 

but the effect on the location (and there may be a less certain relationship with 

canopy size) will be small or negligible.  

2. The method just did not work- as discussed separately. 

3. It may be that the spatial distribution of patches in a savanna is not affected by 

herbivore impact and this may be influenced by fire and random assortment 

processes, while the vertical structure is affected by herbivore impact.  

4. It may be that there are patches but that they are at different successional stages. 

meaning that they are not necessarily fully indicative of the set of process suites that 

generate them. i.e there is a time lag. 

3.5.1.2. The original classification of woody cover is biased 

Definiens uses the Fractal Net Evolution Algorithm to generate areas of homogeneous 

variance that are then classified based on the scale parameter of Definiens professional. There 

is a danger in the use of such a method as the parameter is unrelated to the scene in question 

and simply classifies based on pixel values which are an average measure of spectral strength 

received. The resolution of the imagery is dictated by the instrument used and not the 

ecological phenomena in question therefore the accuracy of the original data may be 

questionable as non-tree may become biased.  This form of bias is reduced through the visual 

classification and comparison done during the data preparation process, outlined in section 

3.3.1.2. In addition, the use of square trees as test datasets may introduce a bias when 

compared to real world landscapes, this remains to be quantified and is likely not of huge 

concern, but remains a consideration. 

More importantly there is a philosophical circularity in that to generate an unbiased dataset, 

the user has to generate a biased classification of what they classify as woody cover. This is a 

point of departure between the traditional linear scale-space analysis and the application 

presented in this thesis. I am attempting to find complex systems derived pattern in a system 

proxy, this system proxy is woody cover and therefore there is already a classification made. 

I therefore attempt to use the smallest spatial units possible given the dataset. I acknowledge 

this bias, but the bias is made in order to allow for classification of the proxy of interest out of 

the image. 
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3.5.1.3. The use of merge events as a proxy of system process 

The application that I have developed in this thesis uses only woody tree cover to depict the 

change in pattern across scale and thereby makes an inference about the savanna system. This 

inference is made assuming that wood canopy cover and the merge events derived therefrom 

are an adequate proxy. 

Linear scale-spaces contain four critical events, I utilized only merge events. It is possible 

that no multi-scaled pattern was detected simply because merge events are not meaningful in 

ecological terms. I am doubtful that this is the case, the theory stating that scales at which 

patterns are evident is an inference of process, is well entrenched in the literature and has 

been well described in Chapter 2.  

A possibility would be to use the midpoint of a scale-space volume, that is between two 

critical points, this would include annihilation events and merges and allow for the scale at 

which maximum BLOB area is evident to be analyzed.  

My choice to use merge events follows the following logic: if woody canopy cover is a proxy 

for system process, as has been articulated and if in a linear scale space the merge event 

shows where patches merge to form bigger patches, which has been articulated and if HPDP 

dictates that patches are incorporated into other larger patches when process domains switch, 

then it follows that by using merge events of woody canopy cover I encapsulate the scale at 

which a process domain may occur, in a spatially explicit context. 

3.5.1.4. Sensitivity of analysis to variations between neutral models and real world 

samples 

Creation of the neutral models for this thesis is still in its infancy. Some questions which need 

further investigation are: how sensitive are the outputs are to the variations of the neutral 

landscape from reality? Also how sensitive is the result to the signal/noise ratio in the data? 

For instance, at present I accept a five percent difference in woody canopy cover density 

between the semi-arid savanna landscape density and the neutral model. This does not seem 

to affect the merge distribution and corroborating evidence is found in the determination of 

fits which illustrates that small differences in percentage canopy cover densities do not affect 

the distributions as much at tree size does.  

But, the fact still remains that some of the samples are being compared to a landscape which 

has four or five percent more vegetation than they do and this configuration of trees is 

random and the trees in a neutral landscape are all uniformly the same size as the average of 
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the real world landscape. How do these differences affect the statistical sensitivity of the 

outcome? The form of the semi-arid savanna landscapes still approximates random and I am 

confident of the results. However a more in-depth understanding of the statistical confidence 

that can be placed in various regions of the landscape would provide more insight and 

confidence in the findings. 

3.5.1.5. Simpsons Paradox 

The well-known statistical conundrum of Simpsons paradox describes how a trend appears in 

different groups of data, yet disappears when these groups are combined and the reverse 

occurs when data are aggregated (Simpson, 1951). Simpsons paradox disappears when causal 

relationships are linked to the data, yet without them the researcher is blinkered. In a 

landscape example; although the overall trend of the landscape woody vegetation cover can 

be relatively constant, upland and lowland vegetation dynamics can be vastly different from 

one another (Levick, 2008, Levick and Rogers, 2011). It has been proposed, through various 

discussions, that the lack of pattern detected could possibly be due to something similar, that 

different drivers dominate at different positions in the landscape and so one would not expect 

perfectly nested hierarchies.  

This is true, however, the spatially explicit discontinuity method uses a neutral landscape and 

tests against that, not against the dataset as a whole and so does not assume stationarity of the 

processes. The entire point of the spatially explicit discontinuity hypothesis is to test for 

pattern while acknowledging Simpsons paradox and the confounding effects of context 

specific pattern process relationships. The Monte-Carlo simulation uses the neutral 

landscapes as the control to allow for inference to be made on each scale-space volume 

without considering the others and thereby circumventing the statistical ramifications of non-

stationarity in landscape process.  

3.5.1.6. Lack of normalization of scale-space volumes 

When analyzing images for significant image structure normalization is an important step, 

which must be done to account for the structure inherent in the image. Hay et al (2002) 

normalize the scale space volumes of grey-level blobs by subtracting the mean volume of 

white-noise grey level volumes at each scale and then dividing by the standard deviation of 

white noise grey level BLOBS. White noise is a structure-less image in which there is no 

significant structure at any scale in particular. The mean and standard deviation are generated 

by analyzing a minimum of a hundred similar scale space BLOBS from a white noise image 

that are of the range in scales as the measured primal sketch to be normalized. The purpose of 
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the normalization is to account for the structure inherent in even random images. The premise  

is that if the BLOB in a real world image is larger than that found in a structure less image, 

then it can be considered to be a significant structure.  

It may be that by not normalizing the images, BLOBS which are insignificant are classified 

as significant and the extent of the structure in scale is exaggerated. However, in the 

application to analyze woody vegetation pattern, I do not deem the normalization of the 

scale-space stack important. I am interested in how the structure of woody vegetation evolves 

through scales, not in any other information. The non-normalized stacks successfully extract 

and depict the evolution of woody canopy cover across scales. These are then compared to 

similar scale primal sketches from neutral landscapes (analogous to the white noise) at a later 

stage to determine the significance of the structures relative to a neutral model. 

3.5.1.7. The scarcity of data at high scales due to the spatial nature of the data. 

When dealing with scale in a spatially explicit dataset, there is a confounding factor that the 

sample size decreases exponentially as one increases scale of observation. This is seen in the 

distribution of merge events in neutral landscapes following an approximate Gamma 

distribution. There are, by the very nature of hierarchical data, more small patches than large 

patches. The result is that comparisons at larger scales are inherently data deficient, 

especially when approaching the maximum extent of  one’s analysis.  

Comparisons of the data deficient scales render the possible errors much higher and 

confidence in the results lower. Using large Monte Carlo simulations, as utilized in this thesis 

is one possible way to circumvent this issue. This allows for a large hypothetical distribution 

to be generated against which the data in question can be compared. The most rigorous test 

would be to increase the maximum extent of analysis and analyze a subsample, but the 

argument is circular as one then encounters a maximum scale in the next sample, with the 

same limitations.  

3.5.1.8. The small spatial extent of the analysis. 

In this study I was limited by two major factors in the maximum possible size to analyze. 

Firstly, the maximum size of the burn blocks in the 'Nwashitsumbe enclosures and secondly, 

the maximum possible computational size feasible in the written application.  

The maximum size of a burn treatment in the 'Nwashitsumbe enclosures 3.5.1.8.1. 

The size of the burn plots is limited to approximately 65 hectares. However, when compared 

to other studies of the cross-scale morphology of the vegetation distribution this study 
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constitutes a comparable, if not larger spatial extent of analysis. Other studies of cross-scale 

morphology of savanna systems have studied 2 kilometre extent with 4m resolution (Scanlon 

et al., 2007) or between 32m and 16m (Kéfi et al., 2007a).   

My thesis presents analysis of all scales, in a spatially explicit manner, not assuming 

stationarity, between 0.81m
2
 and the maximum scales of merge events used in analysis which 

were approximately 99 225m
2
. This study is comparable to the other studies of cross-scale 

morphology in spatial extent and it is possible to expand the size of analysis with this 

application. However, larger experimental enclosures are not available. 

The maximum time scale of 'Nwashitsumbe enclosure experiment 3.5.1.8.2. 

 The time scale is 33 years which provides a relatively long term experimental set up, relative 

to other available landscape manipulation experiments. Longer time scale experiments of 

useful size for landscape analyses, be they limited to a relatively small extent, are not 

available in semi-arid savannas. 

The maximum feasible computational size 3.5.1.8.3. 

The application was written for proof of concept in MATLAB, a higher order language. 

Although the application does work and works well for its purposes, the application is by no 

means as efficient or mathematically refined as possible, most likely due to the fact that I 

have had no formal training in either coding or mathematics. The application remains very 

computationally expensive and depending on the density of vegetation in the landscape, will 

exceed the maximum memory allowed by most programs in an image exceeding 1500 pixels. 

It is ironic that four years later, normal computers could in all likelihood deal with the 

computational load without a problem. 

During the creation of the linear scale-space, convolution of the input image with the 

Gaussian kernel is easily transferred into a parallel computing application. The major 

memory problem at present lies in the creation of the adjacency matrices to analyze the three 

dimensional primal sketch datasets. Even using sparse matrices the data volumes of a large 

scale-space, in which every voxel constitutes a node, the data becomes cumbersome to 

analyze due to volume. Most of the analysis is, by its very nature, iterative and so the 

computational load becomes very time consuming. There are applications such as 

scalespaceviz (Kanters et al., 2004) which generate a linear scale-space, however the 

maximum image size possible still remains too limited for landscape analysis purposes.  
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From a more fundamental viewpoint, scalespaceviz and the different applications used by 

other researchers (Lindeberg, 1994, Florack and Kuijper, 2000, Hay et al., 2002, Platel, 2007, 

Kanters et al., 2004) are true linear scale-space applications. Critical paths can be calculated 

by analytical techniques such as the intersections of three dimensional iso-intensity surfaces 

and analytical techniques can be used to predict the position of critical points at sub-pixel 

level (Kuijper and Florack, 1999). The goal of this line of linear scale-space research is image 

segmentation and object identification, whereas the application written for this thesis is 

designed specifically for the detection and linking of woody vegetation. I ignore half of the 

original data in the image and thus many of the techniques designed and implemented in the 

true scale-space research, become invalid.  

The use of linear scale-space analysis in ecology is in its infancy. With advances in 

computing power and, if the use of linear scale-space is taken further, the involvement of 

mathematicians and computational experts to increase the computational efficiency of the 

algorithm, will allow for more time to be spent dissecting the ecological problems within the 

dataset, rather than with wrestling with the problems of the application itself 

3.5.2.  ERROR IN THE APPLICATION 

I have already discussed a number of philosophical or procedural issues which may have 

resulted in a lack of confidence in the results. These are a type of error, but in the next two 

paragraphs I confine the errors to those that are in the actual application which was written in 

MATLAB for this thesis, as opposed to an approach, such as normalization. There are two 

errors inherent in this application; errors in the linking of BLOBS between scales, and edge 

effects. 

3.5.2.1. Error in linking between BLOBs in space 

I have already briefly outlined the problem in Section 3.3.2.4. Linking BLOBs between 

scales has been termed “…practically difficult…” (Coulon et al., 2000, pg. 770). The current 

method used to link BLOBs across scale is to link those that share spatial support. However, 

as the BLOB tends toward a scale-space merge event, the area of an individual BLOB tends 

toward zero. At some point the BLOBS are smaller than an individual pixel. These sub-pixel 

BLOBs are not likely to share spatial support, introducing errors in the primal sketches as 

links are not made when they should be. I have used an error cleaning algorithm that removes 

these errors, however it will never be one hundred percent perfect unless the sampling scales 

of the scale-space become sub-integer, which is not practically possible. 
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The effect of missing a linkage is that woody cover at lower scales is no longer owned by 

larger patches of woody cover. Although this is of no concern when grouping merge events 

together in many of the analyses, it becomes a concern when undergoing spatially explicit 

discontinuity analysis. The entire point of the use of linear scale-space is causality, that 

pattern at larger scales is generated through the merging of pattern as smaller scales of 

analysis. The error in linkage violates this assumption as the larger scale pattern does not 

have all of the smaller scale data represented. This may mean that discontinuities are or are 

not detected erroneously. The proportion of these errors is low (between 0.007 and 0.033), 

particularly after the error cleaning algorithm has been run, but it is a source of noise in the 

signal, which, when combined with edge effects and sensitivity of the technique to 

signal/noise ratios may explain the lack of expected results. 

3.5.2.2. Edge effects 

At higher scales relative to the scale-space analysis, it happens that the data from outside the 

bounds of the sample will be introduced into the image and generate errors. This is noted in 

Figure 3.39 and Figure 3.40  as the irregular shape. It occurs at the point when the BLOB is 

inverted by the inclusion of zero data from outside the image where spatial support is 

assumed to be infinite. Edge effects occur in every spatial analysis where windows are used 

for calculations; in small spatial analyses such as the 800m samples used in the 

'Nwashitsumbe comparisons, the edge effects can be profound and to circumvent their 

inclusion, the top 30 percent of the scale-space stack was discarded.  

This effectively reduced the range of scales over which analysis is performed, which limits 

the scales over which inference can be made. Edge effects may also change BLOB shapes at 

larger scales, which will create noise in the signal at higher scales. The only solution to this 

problem is to have much larger images and analyze a sub-sample, however the size of the 

treatments was a limiting factor. 

3.5.3.  LANDSCAPES ARE NOT HIERARCHICALLY NESTED 

The next hypothesis to explain the results, is that the expected pattern was not detected 

because landscapes are not hierarchically nested, as expected and derived in the arguments 

within this thesis. The implications of this finding are discussed in the following general 

discussion in Chapter 4 in which I put this finding in the context of current ecological theory 

and the broader ecological context. Of particular interest is that patches which are seemingly 

obvious to the user are not necessarily significantly entities in the scale space; in Figure 3.38 
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there are a number of these supposed patches. I acknowledge that there are patches that 

would seem distinct in the image, however the point of the algorithm is to analyze the dataset 

without user inference. Is the reader sure that  those patches are really significantly different 

from what can be expected from random? And if not, is assigning a patch status not imposing 

a subjective assumption of process based on no evidence? 

The question then remains why people see the patterns in the landscape in the first place if 

they are not necessarily really there. If one views the images of discontinuities one sees very 

definite patches. But are they really there? How does one prove that a patch is actually a 

patch generated through process and cannot be explained through random change alone? The 

method developed in this thesis did just that and assuming it worked, then those patches are 

not more patchy than can be expected from random.  

Even if it is process related, yet can still be approximated through a neutral model- then why 

go through the trouble to invoke process at all? Let us assume that the algorithm is in fact 

sensitive enough and can in fact detect patches, something that the validation section does 

address. We must trust the data because the very fact that we are looking for patches as 

defined by the HPDP means that the observer cannot do so without being biased for patches.  

One cannot challenge the fact that patches are not found because the observer who has been 

primed to look for patches found them. I agree that there are stark differences between the 

patch structure expected by the author and the outputs of the algorithm, but is it the algorithm 

that is wrong or could it be that we view landscapes through HPDP tinted glasses? 

A possible explanation is that people have evolved to recognize pattern; it resides in our very 

consciousness. Psychological forcing is used by magicians to give the volunteer the illusion 

of free choice when they are in fact led down the road to the very end point selected by the 

magician himself. Our brains are full of pranksters  which are quite capable of generating 

patterns  that may not necessarily have any base in reality (Dennett and Weiner, 1993). The 

phenomenon of recognizing known patterns in inanimate objects is known as simulacrum; as 

children we find unicorns in the patterns of clouds, but not before we know what a unicorn is. 

Examples of simulacrum are plentiful when one looks at religious imagery. I unfairly pick 

Christianity as an example; this is simply due to the plethora of available examples rather 

than any bias in particular. How many inanimate objects have been hailed as holy? How 

many items from around the world have been claimed to contain the image of Jesus Christ 

himself?  To list a few: toast (cooltoast.com), wall plaster (goldenpalaceevents.com) (Figure 
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3.48 A&B), family pets (getbehindjesus.net), dental x-rays (firstcoastnews.com), marble 

stones in church grounds (Sakyi-Addo, 2004), bricks (clickorlando.com) and even landscapes 

themselves (newslite.tv) (Figure 3.48 C ).  

A simple web search of “Jesus in everyday objects” yields hundreds of such examples. This 

is simply the result of dogma, we are primed to look for an image, in these instances a 

religious icon and we subsequently find it. An extreme and somewhat comical example, but it 

makes the point; ecologists are told that there are hierarchically structured patches in the 

landscape and we find them, no matter what the landscape. The simple act of finding patches 

in a landscape is by its very nature biased by the concept of a patch; there will be hierarchical 

structure in randomly distributed trees simply through chance, there is not necessarily process 

involved in all patterns.  

 

Figure 3.48: Examples of pattern found in inanimate objects, a phenomenon known as simulacrum. 

Rising damp in the plaster surrounding a bath (A-B) (goldenpalaceevents.com), and a fire scar in a 
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landscape (C), (newslite.tv) when viewed at a particular scale superficially represents the face of Jesus 

Christ, even though there is no real religious significance to the image. 

Another point of interest from the discontinuity results is that there is a consistently higher 

amount of discontinuous pattern in paired samples (i.e NEO and NE etc). It could due to 

chance, but why the outside samples have consistently less discontinuous structure than the 

paired sample inside is indeed perplexing. This pattern would allow for the inference that 

herbivory may have an effect on the discontinuous nature of cross scaled pattern. Herbivory 

as a driver of landscape pattern is commonly recognized and the finding at the 

'Nwashitsumbe enclosures is in line with the findings of Asner, et. al.(2009).  

I cannot exclude the effect, but given the lack of understanding of the sensitivity of the 

analysis technique and that it is not significantly different from random, I am unwilling to 

make broad statements based on the pattern and this remains a casual reference. 

3.5.4.  FUTURE RESEARCH FOR THE APPLICATIONS 

3.5.4.1. Annihilation events 

This thesis focused simply on merge events in the landscape; however additional information 

regarding processes occurs in a linear scale-space of a savanna. Linear scale-space represents 

a tool to generate multi-scaled descriptions of woody vegetation cover and other objects in a 

landscape for that matter, in an ecologically meaningful way. I have chosen to use the merge 

events to analyze the cross-scale morphology of the system and subsequently make inference 

about the nature of process in the landscape.  

The possibilities for further analysis and generation of understanding of scale and space are 

immense. Annihilation events indicate the scale at which vegetation no longer persists and 

their distributions can be measured using Local Indicators of Spatial Autocorrelation (LISA). 

Preliminary tests using LISA statistics showed no pattern in the annihilation events for the 

'Nwashitsumbe datasets, corroborating the merge event findings. However this was by no 

means exhaustive and much work remains to be done to examine the patterns generated by 

annihilation events in linear scale-spaces of savanna systems. 

3.5.4.2. The use of traditional linear scale-space analysis to measure multi-scaled 

structure of woody canopy cover 

In this thesis I present a method focused solely on the distribution of woody canopy cover. 

By utilizing the binary dataset of woody canopy vs. not I assume that this is representative of 

the savanna process. There is other information in the non-woody component which may also 
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be hierarchical structures and information in the image  which is lost when the image is made 

binary.  

It would entail a completely different set of testable hypotheses and ways of analyzing the 

data, there may, however, be complimentary information gleaned from using the traditional 

linear scale space methods to analyze images of vegetation cover to ascertain whether or not 

there is hierarchically nested structure. Recently published literature on scale spaces may 

provide a promising avenue to this end (Hay, 2012).. 
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Chapter 4 GENERAL DISCUSSION 
This thesis presents a test of certain predictions made by complex systems theory applied to 

semi-arid savanna landscapes. I have tested whether or not the fundamental units of currently 

accepted models and conceptual frameworks from which we draw our knowledge are 

supported by empirical analyses. An argument from the available literature was built, 

expounding how scale can be viewed as a dimension across which ecological processes 

operate and, depending on the coupling of processes, may or may not result in structural 

attractors.  

To test this philosophy I developed a novel application in landscape ecology, using linear 

scale-space analysis to describe the multi-scaled vegetation distribution in open canopy 

savanna woodland.  

To understand the effect of process on patterns generated in a linear scale-space, I utilized 

neutral landscapes, by comparing the patterns in neutral landscapes against the semi-arid 

savanna datasets, the influence of process was inferred. In addition, comparisons of semi-arid 

systems exposed to different history of drivers were used to determine if there is any 

discernible effect of driver manipulation on the system. The cross-scale morphology of the 

scale-space was analyzed for the presence of discontinuities in a spatially explicit manner. 

This thesis has taken me as a researcher through a labyrinth of intricately intertwined theory, 

conceptual frameworks, models, and explanations of system dynamics. The fundamental 

paradox remains; in the semi-arid system of the northern Kruger National Park; hierarchical 

structure, predicted by complex systems theory and advocated by the currently used paradigm 

of HPD, is not evident within the scales analyzed. Put simply; predictions of process domains 

cannot be demonstrated within the scales analyzed, yet the scales which were analyzed 

should have some level of discontinuous structure given our understanding of landscape 

dynamics. 

I have explicitly looked for patterns of complex systems in a supposedly proto-typical 

complex system and I have not found it. The results contradict a widely accepted theory in 

landscape ecology and the results that the patterns observed in a landscape, need not be 

attributed to process is perplexing.  

In the previous chapter I presented three hypotheses for why these results may be:  

1. of procedural and philosophical bias introduced by the study design; 
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2. of errors in the application itself; 

3. landscapes which are not hierarchically nested. 

I have already discussed at length the first two points in Section 3.5. If there is a 

philosophical error or an error in the application, which I do not think there are enough of to 

completely disregard the findings, then this thesis has no implications for landscape ecology 

at large. However, if it is so that landscapes are not hierarchically nested, as I believe the data 

show, then it begs discussion. In the following discussion session let us assume that the 

perceived data are not influenced by the errors in the philosophy or algorithm itself. 

4.1. CRITIQUE OF THESE FINDINGS IN THE CONTEXT OF CURRENT LANDSCAPE 

ECOLOGY THEORY 

Not finding true hierarchical structure in a semi-arid savanna is in conflict with the currently 

accepted paradigm, but one must be cognizant of the limited nature of the study. The uplands 

of a single hill slope in the northern Kruger National Park are by no means representative of 

all landscapes. I must clarify that I am not dismissing hierarchical patch dynamics and 

constitutive hierarchies completely. There is a large body of evidence which dictates that 

hierarchical structure is the end point of complex system interactions.  

What I am proposing is that this is not always the case in all complex systems and most 

certainly not in these examples of semi-arid savannas. What I do highlight is that our 

confidence in our mechanistic understanding of savanna systems may be misplaced.  

There is profound insight in the question of Allen (2006, pg. 6064); “Does the landscape 

provide a discontinuous distribution of structure that is the theater on which species 

interact?”. If it does, this has implications for the evolution of systems and our ability to use 

discontinuities as predictive tools for assessing system resilience, if not…then why are 

datasets discontinuous?  

In the context of process domains; a discontinuous structure in the landscape would require 

the creation and maintenance of pattern by processes and the subsequent constraint of the 

processes by the generation by pattern. These concepts have been articulated in other, more 

theoretical works regarding system evolution (Ulanowicz 2008). But, just as the HPDP 

pattern-process-scale perspective asserts that these processes would need to be constant 

across the landscape, to create a discontinuous structure across the landscape would require 

that the processes that entrain pattern are entrained across similar scales.  
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Should the scales overlap spatially, then pattern and process becomes a local phenomenon, 

contingent on the particular suite of  processes affecting that particular patch and generic 

observations and rules become difficult to apply. The answer to Allen’s question is no, not in 

systems as heterogeneous as those found in the Northern Kruger National Park, and the same 

is likely for many other landscapes. 

Other research is coming to the fore, in the realization that landscapes are not necessarily 

nested in structure and that the context of each section of the landscape considered is unique 

(Levick, 2008, Levick and Rogers, 2011). Many samples from different landscapes are by 

their very nature incomparable when trying to compare the effect of processes on pattern. For 

instance, analysis of soil on landscapes of ages of erosion due to rainfall differences, has 

illustrated that the properties of the soil itself vary with hill slope form and age, which varies 

stream order, which by its very nature vary with spatial scale.  

The result is that as one increases scale one will not get an ontologically nested set of soil 

patches in a landscape, rather find that the soil properties are each contingent on a number of 

factors, which make them fundamentally different (Rogers pers comm, Khomo pers comm). 

In a thorough investigation of the woody vegetation cover across space and scale in the 

Northern Kruger National Park; Levick (2008) found that the results between response and 

explanatory variables differed in both magnitude and direction in different spatial contexts. 

This implies that the global model may not reflect the relationship evident at any point in the 

landscape (Foody, 2005). This finding called for a spatial exploration of how pattern and 

process relationships vary across the landscape (Levick, 2008, Levick and Rogers, 2011). 

Processes do affect the pattern of vegetation in landscapes, this is not in question. But, what I 

have come to understand is that processes do not affect the spatial distribution of a landscape 

consistently. I propose that the patches which are observed in this particular landscape are not 

always ontological units, brought about by the influence of process. Rather they may simply 

represent a time slice in randomly distributed trees, which do not necessarily infer anything 

about the processes.  

Patches are fluid in time under the influence of processes and cannot be used to infer either 

the effect of process or be explained by complex systems theory. If we are to reify patches as 

entities unto themselves, then we are assuming equilibrium in a different guise. This may be 

valid in particular instances, such as when ecological memory is high enough, in this instance 
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the notion of a holon holds true and reification of the conceptual framework is possible. 

However, just as often it may not be the case as reification of the patch is invalid.  

Complex systems theory has bounds to its application, it requires positive feedback loops in 

order for emergence to occur. What if the system in question is not replete with the feedbacks 

needed for holons to form? What if the feedback loops are disturbed before the emergence 

can in fact take place? The notion of holons and levels of organization have a strong 

undercurrent of equilibrium theory in them. That may be a heretical statement, but for holons 

to be reflected as patches and for ecologists to use patches as functional units, the pattern is 

assumed to be equilibrated to the processes. If not and ecosystems are actually a shifting 

mosaic of patches at various successional stages, then what specifics of process can be 

inferred from the pattern?  

4.2. CONCLUSION 

Hierarchical Patch Dynamics is a very good and useful framework; it is based on solid, 

empirically derived principles. However, it has not been demonstrated empirically in the very 

systems in which the conceptual framework is used. HPDP is left wanting in the ability to 

explain real world patterns in heterogeneous semi-arid savanna systems such as the Northern 

Kruger National Park. Contingency and context seem to be unshakeable companions in real 

world interpretation of pattern, rendering the pattern-process scale perspective ineffective at 

generating a working understanding (Levick, 2008).  

In my opinion it is not because HPDP is flawed, it is simply not used with a full 

understanding of the underlying assumptions. 

When considered from a fundamentalist viewpoint, the reification of patches in Hierarchical 

Patch Dynamics and the Textural Discontinuity Hypothesis can be viewed as a type of 

equilibrium theory. By looking for discontinuities and levels of organization we assume that 

the pattern and process have equilibrated to some steady state around a structural attractor. 

We assume that the feedback loop has reached the full potential of ascendancy and is in 

“equilibrium” with the other agents in the system.  

While this may be so, in heterogeneous environments does the system ever actually reach the 

equilibrium, “stable” state or do they simply chase the illusive attractor ad infinitum? I think 

that Robert Ulanowicz and his multiple works, synthesized in the book “The Third Window” 

(Ulanowicz, 2008)  has discovered something profound; that is the unrealized importance of 
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chance in ecosystem evolution- the Alleotoric he calls it. How does one reconcile the 

viewpoints of Gardner, Milne et. al. (1987) that assert that natural landscapes are not random, 

and those of Ulanowicz (2008) and the findings of this thesis. I am not so bold as to assume 

my thesis is unequivocal evidence, but my assertion is that there is a lot more random in the 

landscape than previously appreciated. 

4.3. A WAY FORWARD 

I have come to realize that to understand systems one must understand flows, not patterns. If 

information flow is what drives complex systems, we need to measure flow. After all, we are 

simply an ever changing association of atoms, there is no “we”. Process ecology is coming to 

the fore again  and the acknowledgement that pattern is nothing more than a configuration of 

processes can go a long way to answering perplexing questions in ecology(Ulanowicz et al., 

2006, Ulanowicz, 2008). Possibilities such as isotope and food web based methods (Fath et 

al., 2007, Ulanowicz et al., 2009) which trace the pathway of materials through a system have 

the potential to yield deep insight into the nature of information flow in ecosystems.  

As yet there are no methods of determining the nature of process feedbacks in a spatially 

explicit context, nor at large enough scales in a landscape to glean an understanding of flows. 

However, with remote sensing technologies reaching a point where nitrogen levels, water 

levels and carbon can be accurately measured remotely at ever increasing resolution, it seems 

only a matter of time before the measurement of process becomes main stream. To achieve 

this understanding of complex systems then does require that we as landscape ecologists 

shake the yoke of purely pattern centered inquiry. 
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Appendix 1 

Developed by Neil O’Leary 2009 to create truly hierarchical vegetation distributions in a hypothetical 

landscape through bottom up organization combined with top down constraint. 

I present the raw MATLAB code with the functions nested. 

%Crogan Algorithm 

%written by Neil O'Leary in October 2009 to create hierarchically  
%structured vegetation in a hypothetical landscape 

  

%inputs: input the values wanted into the square brackets, scales represented here are arbitrary. 
  

[scales] = create Scales([400,70,10],[4 5 4]); 

scaleVariance = [2,7,30]; 

%----------------------------------------------------- 

%% Create the Scales object and display the matrix 

displayMatrix = createDisplayMatrix(scales); 
figure(1); 

colormap(gray) 

imagesc(~displayMatrix) 
  

%% Move the scales randomly  

  
moveScales(scales,scaleVariance); 

displayMatrix = createDisplayMatrix(scales); 

figure(2); 
colormap(gray) 

imagesc(~displayMatrix) 

  
%% 

function displayMatrix = createDisplayMatrix(scales) 

displayMatrix = sparse(1500,1500); 

midPoint = 750; 

for k = 1:length(scales) 

    displayMatrix =setPointRec(scales(k),displayMatrix,midPoint); 
end 

  
function dispMatrix = setPointRec(obj,dispMatrix,normFactor) 

children = obj.getChildren; 

for k = 1:length(children) 
    if children(k).getLevel == 1 

       dispMatrix = children(k).setPoint(dispMatrix,normFactor); 

    else 
       dispMatrix=setPointRec(children(k),dispMatrix,normFactor); 

    end 

end 
 

%% 

function [topScale,displayMatrix] = createScales(scaleDistance,scales ) 

%CREATESCALES Create a scale-space 

%   Detailed explanation goes here 

  
%TODO pass these as input params 

  

%scaleDistance = [400,70,10]; %Make sure sum scalesDistance<midpoint 
%scales = [4 5 4]; 

angles = linspace(0,2*pi,scales(1)+1); 

  
%TODO, do we need to round here? 

  

  
for k = 1:4 

    [x,y] = pol2cart(angles(k),scaleDistance(1)); 

     
    topScale(k) = Scale(x,y,length(scales)); %#ok<AGROW> 

    topScale(k).addChildren(scales(2:end),scaleDistance(2:end)); 

end 

%% 

function moveScales(scales,movementVar) 

  
for k = 1:length(scales) 
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    moveScalesRec(scales(k),movementVar); 

end 
  

function moveScalesRec(obj,moventVar) 

%Move the point  
obj.movePoint(normrnd(0,moventVar(obj.getLevel))); 

%Move my children 

children = obj.getChildren; 
for k = 1:length(children) 

    moveScalesRec(children(k),moventVar); 

end 
%% 

classdef Scale<handle 

    %SCALE Summary of this class goes here 
    %   Detailed explanation goes here 

     

    properties 
         

        X = [];             % X position in space 

        Y = [];             % Y position in space 
        Children = [];      % Vector of children objects 

        Parent = [];        % Parent vector  

        ScaleLevel = 0;     % Value for N to 1 where N is the largest scale 
        ParentX = 0; 

        ParentY = 0;       %Index of where parents live to avoid recursive movement 

    end 
     

    methods 
        function this = Scale(x,y,scaleLevel) 

            this.X = x; 

            this.Y = y; 
            this.ScaleLevel = scaleLevel; 

        end 

        function addChild(this,child) 
            %ADDCHILD as a child scale 

            if isempty(this.Children) 

                this.Children = child; 
            else 

                this.Children(end+1) = child; 

            end 
            if isempty(child.Parent) 

                child.setParent(this); 

                child.setParentXY(this.X,this.Y); 
            end 

        end 

            
        function xValue = getX(this) 

           xValue = this.X;  

        end 
         

        function yValue = getY(this) 

            yValue = this.Y; 
        end 

         

        function xyValue = getXY(this) 
            xyValue = [this.X,this.Y]; 

        end 

         
        function level = getLevel(this) 

            level = this.ScaleLevel; 

        end 
         

        function setParent(this,parent) 

            this.Parent = parent; 
        end 

         

        function setParentXY(this,X,Y) 
            this.ParentX = X; 

            this.ParentY = Y; 

        end 
         

        function parent = getParent(this) 

            parent = this.Parent; 
        end 
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        function children = getChildren(this) 

            children = this.Children; 
        end 

         

        function addChildren(this,noChildren,distance) 
            %Create angles at which to place the children, add one and 

            %ignore, thinking about no angle itervals 

            angles = linspace(0,2*pi,noChildren(1)+1); 
            for k = 1:noChildren 

                %TODO, do we need to round here? 

                [childX,childY] = pol2cart(angles(k),distance(1)); 
                child = Scale(this.X+childX,this.Y+childY,this.ScaleLevel-1); 

                this.addChild(child); 

                child.setParent(this); 
                if this.ScaleLevel>2 

                    child.addChildren(noChildren(2:end),distance(2:end)); 

                end 
            end 

        end 

        %Method to move the points 
        function movePoint(this,distance) 

            if isempty(this.Parent) 

                offsetXY = [0 0]; 
            else 

                parentXY = this.getParent.getXY; 

                offsetXY = [this.ParentX,this.ParentY] - parentXY; 
            end 

             
            theta = cart2pol(this.ParentX-this.X,this.ParentY-this.Y); 

            [moveX,moveY] = pol2cart(theta,distance); 

            this.X = this.X+moveX+offsetXY(1); 
            this.Y = this.Y+moveY;+offsetXY(2); 

            %Move my children rec 

          
             

        end 

         
        function movePointXY(this,XY) 

            this.X = this.X+XY(1); 

            this.Y = this.Y+XY(2); 
        end 

         

        %Method to display the scales 
        function dispMatrix = setPoint(this,dispMatrix,normFactor) 

            dispMatrix((round(this.X)-2:round(this.X)+2)+normFactor,... 

                (round(this.Y)-2:round(this.Y)+2)+normFactor)=1; 
        end 

        end 

    end 
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