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Abstract

Despite considerable advances in missing data imputation techniques over the last three decades, the

problem of missing data remains largely unsolved. Many techniques have emerged in the literature

as candidate solutions, including the Expectation Maximisation (EM), and the combination of auto-

associative neural networks and genetic algorithms (NN-GA). The merits of both these techniques

have been discussed at length in the literature, but have never been compared to each other. This

thesis contributes to knowledge by firstly, conducting a comparative study of these two techniques..

The significance of the difference in performance of the methods is presented. Secondly, predictive

analysis methods suitable for the missing data problem are presented. The predictive analysis in

this problem is aimed at determining if data in question are predictable and hence, to help in

choosing the estimation techniques accordingly. Thirdly, a novel treatment of missing data for on-

line condition monitoring problems is presented. An ensemble of three autoencoders together with

hybrid Genetic Algorithms (GA) and fast simulated annealing was used to approximate missing

data. Several significant insights were deduced from the simulation results. It was deduced that for

the problem of missing data using computational intelligence approaches, the choice of optimisation

methods plays a significant role in prediction. Although, it was observed that hybrid GA and Fast

Simulated Annealing (FSA) can converge to the same search space and to almost the same values

they differ significantly in duration. This unique contribution has demonstrated that a particular

interest has to be paid to the choice of optimisation techniques and their decision boundaries.
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Another unique contribution of this work was not only to demonstrate that a dynamic programming

is applicable in the problem of missing data, but to also show that it is efficient in addressing the

problem of missing data. An NN-GA model was built to impute missing data, using the principle

of dynamic programing. This approach makes it possible to modularise the problem of missing

data, for maximum efficiency. With the advancements in parallel computing, various modules of

the problem could be solved by different processors, working together in parallel. Furthermore, a

method for imputing missing data in non-stationary time series data that learns incrementally even

when there is a concept drift is proposed. This method works by measuring the heteroskedasticity

to detect concept drift and explores an online learning technique. New direction for research, where

missing data can be estimated for nonstationary applications are opened by the introduction of this

novel method. Thus, this thesis has uniquely opened the doors of research to this area. Many

other methods need to be developed so that they can be compared to the unique existing approach

proposed in this thesis.

Another novel technique for dealing with missing data for on-line condition monitoring problem was

also presented and studied. The problem of classifying in the presence of missing data was addressed,

where no attempts are made to recover the missing values. The problem domain was then extended

to regression. The proposed technique performs better than the NN-GA approach, both in accuracy

and time efficiency during testing. The advantage of the proposed technique is that it eliminates

the need for finding the best estimate of the data, and hence, saves time. Lastly, instead of using

complicated techniques to estimate missing values, an imputation approach based on rough sets is

explored. Empirical results obtained using both real and synthetic data are given and they provide a

valuable and promising insight to the problem of missing data. The work, has significantly confirmed

that rough sets can be reliable for missing data estimation in larger and real databases.
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Preface

This thesis presents techniques for missing data estimation using computational intelligence. The

thesis gives new insights to the problem of missing data and new techniques are presented. It however,

remains difficult to lay down universal rules to govern the estimation of missing data. There are some

cases where conflicting arguments have been found in the literature. There were also some cases where

definitions from different researchers differed. For the purpose of this research, the definition more

applicable to the problem under investigation was used and as a result, may differ from the views

of other researchers. This does not necessarily imply dismissal of such definitions. The notation

has been kept as simple as it could possibly be done. For chapters that present complex ideas,

trivial work-through examples are given for demonstration purposes. Innovative ideas have been

proposed in this thesis and most of these developments are centered around ideas that seem not to

be fully explored. The author sincerely hopes that the findings of this research will trigger further

investigations that shall also contribute to the literature.

Fulufhelo V. Nelwamondo
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Chapter 1

Introduction

1.1 The Importance of Complete Data

Decision making processes are highly dependent on the availability of data, from which information

can be extracted. All scientific, business and economic decisions are somehow related to the informa-

tion available at the time of making such decisions. As an example, most business evaluations and

decisions are highly dependent on the availability of sales and other information, whereas advances

in research are based on discovery of knowledge from various experiments and measured parameters.

There are many situations in fault detection and identification where the data vector is partially

corrupt, or otherwise incomplete.

Many decision making processes use predictive models that take observed data as inputs. Such

models breakdown when one or more inputs are missing. In many applications, simply ignoring the

incomplete record is not an option. This is mainly due to the fact that ignorance can lead to biased

results in statistical modeling or even damages in machine control (Roth and Switzer III, 1995).

For this reason, it is often essential to make the decision based on available data. Most decision
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making tools such as the commonly used neural networks, support vector machines and many other

computational intelligence techniques cannot be used for decision making if data are not complete.

In such cases, the optimal decision output should still be maintained despite the missing data. In

cases of incomplete data vectors, the first step toward decision making is to estimate the missing

values. Once missing values have been estimated, pattern recognition tools for decision making can

then be used.

In most applications, solving the problem of missing data is a cumbersome task, which is usually

not the main focus in a decision making task. This therefore calls for quick and perhaps inefficient

techniques to handle the problem of missing data. This raises conceptual and computational chal-

lenges. Resources such as a theoretical framework and methodologies that can lead to an appearance

of completeness are therefore a necessity (Schafer and Graham, 2002). The use of inefficient tech-

niques is mainly caused by the fact that when incomplete datasets are observed, there is often a very

limited time during which it becomes more expensive to investigate better techniques for handling

missing data. As a result, inefficient techniques such as case deletions are used. Unfortunately some

of the most commonly used techniques do more harm than good by producing biased and unreliable

solutions (Allison, 2002).

1.2 Background on Missing Data

The challenge missing data pose to the decision making process is more evident in on-line applica-

tions where data have to be used almost instantly after being obtained. Computational intelligence

techniques such as neural networks and other pattern recognition techniques have recently become

very common tools in decision making processes. In a case where some variables are not measured,

it becomes difficult to continue with the decision making process. The biggest challenge is that the

2
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standard computational intelligence techniques are not able to process input data with missing values

and hence, cannot perform classification or regression.

Some of the reasons for missing data are sensor failures, omitted entries in databases and non-

response to questions in questionnaires. There have been many techniques reported in literature

to estimate the missing data for some applications. For most of the techniques that have been

discussed in the literature, knowing the reason why the data are missing become very helpful in

choosing the right technique to approximate missing data. In most applications, there is limited time

between the readings depending on how frequently the sensor is sampled. In both classification and

regression tasks, all decisions concerning how to proceed must be taken during this time period. This

necessitates a need for a fast imputation technique.

Various heuristics of missing data imputation such as mean substitution, which is the substitution of

the missing variable by the mean of the observed data for that data field and and hot deck imputation

have been discussed at length in the literature, but they also depend on the knowledge of how data

points become missing (Schafer and Graham, 2002). There are several reasons why data might be

missing, and these missing data may follow an observable pattern. Exploring the pattern is important

and may lead to the possibility of identifying cases and variables that affect the missing data (Schafer

and Graham, 2002; Allison, 2002). Having identified the variables that predict the pattern, a proper

estimation method can be derived.

There are three general ways that have been used to deal with the problem of missing data (Little and

Rubin, 1987). The simplest method is known as ‘listwise deletion’ and this method simply deletes

instances with missing values. The second common technique imputes the data by finding estimates

of the values and missing entries are replaced with these estimates. The estimates vary with problems

being solved. Various estimates have been used and these estimates include zeros, means and other

3
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statistical calculations. These estimations are then used as if they were the observed values. The

detection and classification accuracy of this approach depends on how accurate the imputations are.

The third general technique assumes some models for the prediction of the missing values and uses

the maximum likelihood approach to estimate the missing values (Little and Rubin, 1987). Data can

be missing in various patterns as shown in Figure 1.1.

Figure 1.1: Patterns of missing data in rectangular databases: (a) univariate pattern, (b) monotone

pattern, and (c) arbitrary pattern (Schafer and Graham, 2002)

In Figure 1.1, rows correspond to observational units whereas columns are variables (Schafer and

Graham, 2002). Univariate pattern occurs when data are missing from one variable as shown by Y

in Figure 1.1 (a). Monotone pattern occurs when data are missing from a number of variables, but,

missing data follows a particular pattern. Lastly, an arbitrary pattern occurs when data are missing

following some random pattern as shown in Figure 1.1 (c). The pattern that the data will follow

depends on the application. Sensor failure is more likely to follow the pattern in Figure 1.1 (a) or (b)

whereas for databases where information is recorded by different individuals as in medical database,

the pattern shown in (c) is most likely observed. The next section discusses the mechanisms of

missing data.

4
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1.3 Missing Data Mechanisms

Considering the notation used in Figure 1.1, let Y be the variable of interest, Ycomplete be the complete

dataset and Xobs be the observed values, then,

Ycomplete = f(Y, Xobs) (1.1)

Little and Rubin (1987) and Rubin (1987) distinguish between three missing data mechanisms. These

types are referred to as ‘Missing at Random’, (MAR), ‘Missing Completely at Random’, (MCAR)

and ‘Missing Not at Random’, (MNAR) and are described below.

1.3.1 Missing at Random

Missing at Random requires that the cause of missing data be unrelated to the missing values

themselves. However, the cause may be related to other observed variables. MAR is also known

as the ignorable case (Schafer, 1997) and occurs when cases with missing data are different from

the observed cases but the pattern of missing data is predictable from other observed variables.

Differently said, the cause of the missing data is due to external influence and not to the variable

itself. Suppose there are two sensors namely S and T. For MAR to hold, the probability of datum

d from a sensor S to be missing at random should be dependent on other measured variables in the

database.

5
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1.3.2 Missing Completely at Random

Missing Completely At Random refers to a condition where the probability of data missing is unre-

lated to the values of any other variables, whether missing or observed. In this mechanism, cases with

complete data are indistinguishable from cases with incomplete data. In this case, the probability of

sensor S values missing is independent of any observed data and the missing value is not dependent

on the previous state of the sensor nor any reading from any other sensor.

1.3.3 Missing Not at Random

Missing not at random (MNAR) implies that the missing data mechanism is related to the missing

values. A good example of data missing not at random can result from a situation where two

databases from different cities where merged. Suppose one database lacks some features that have

been measured on the other database. In this condition, why some data are missing can be explained.

However, this explanation is only dependent on the same variables that are missing and can not be

explained in terms of any other variables in the database.

Another example of MNAR will be when a sensor trips if the value read is above a certain threshold.

In this case the probability of Y missing is dependent on Y itself. MNAR is also referred to as the

non-ignorable case (Little and Rubin, 1987; Rubin, 1987; Schafer, 1997) as the missing observation

is dependent on the outcome of interest. In this case, the readings from S might be missing merely

because sensor T is not working.

6
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1.4 Historical Evolution of Missing Data Handling Techniques

Prior to 1970s, missing data were solved by editing (Schafer and Graham, 2002), whereby a missing

item could be logically inferred from other data that have been observed. A framework of inference

from incomplete data was only developed in 1976. Shortly afterward, Dempster, Laird and Rubin

(1977) formulated the Expectation Maximisation (EM) algorithm that led to the full use of Maximum

Likelihood (ML) techniques in the missing data problem. Only after a decade, Little and Rubin

(1987) and Rubin (1987) documented the shortcomings of case deletion and single imputations and

introduced Multiple Imputations (MI). Multiple Imputations would not have been possible without

the advancements in computational resources (Schafer and Olsen, 1998) as they are computationally

expensive. The years 1995 till today have discussed many techniques of solving the missing data

problem in different applications. Latest research is now beginning to analyse the sensitivity of the

results to the distribution of missing data (Verbeke and Molenberghs, 2000).

A great deal of research has recently been done to discover new ways of approximating the missing

values. Among others, Abdella and Marwala (2006) and Mohamed and Marwala (2005) used neural

networks together with Genetic Algorithms (GA) to approximate missing data. Qiao, Gao and

Harley (2005) used neural networks and Particle Swam Optimisation (PSO) to keep track of the

dynamics of a power plant in the presence of missing data. Dhlamini, Nelwamondo and Marwala

(2006) have used Evolutionary computing in condition monitoring of high voltage (HV) bushings in

the presence of missing data. In their study, auto-associative neural networks were used together

with GA or PSO to predict the missing values and also to optimise the prediction. On the other

hand, Yu and Kobayashi (2003) used semi hidden Markov models in prediction of missing data in

mobility tracking whereas Huang and Zhu (2002) used the pseudo-nearest-neighbour approach for

missing data recovery on random Gaussian data sets. Nauck and Kruse (1999) and Gabrys (2002)

7



1.4. HISTORICAL EVOLUTION OF MISSING DATA HANDLING TECHNIQUES

have also used neuro-fuzzy techniques in the presence of missing data. A different approach was

taken by Wang (2005) who replaced incomplete patterns with fuzzy patterns. The patterns without

missing values were, along with fuzzy patterns, used to train the neural network. In Wang’s model,

the neural network learns to classify without actually predicting the missing data. A thorough

review of existing methods for coping with missing data in decision trees is given by Twala (2005).

In his research, Twala (2005) found the implementation of multiple imputation using Expectation

Maximisation (EM) algorithms to be consistently the best of the existing methods investigated.

Nelwamondo, Mohamed and Marwala (n.d.) compared multiple imputation using EM algorithm to

the combination of neural networks and genetic algorithms (GA) and their findings showed that EM

algorithm is not any better.

Most recently, a great deal of doctoral research has been conducted, aimed at predicting missing

values in various applications. Twala (2005) and He (2006) investigated the problem using decision

trees. He (2006) used an ensemble approach that uses a well known bootstrap method. The drawback

of the bootstrap that He used is that if the not-so-accurate predictors were included in the imputation

equations or if very-accurate predictors were excluded from the imputation equations, the predicted

values using regression equations tend to have large errors, lowering accuracy in later classification

steps. This is mainly due to the fact that, at each step of imputation, a sensible choice of predictors

is required. He (2006) found that results obtained using her imputation method are better than the

results obtained when a complete dataset with no missing values was used. One would expect the

full dataset to be the best case that imputation is aimed at, and as a result, expect no imputation

method to do better than what the full dataset would yield. This phenomenon requires further

investigation. An ensemble approach that has been proposed by Nelwamondo and Marwala (2007d)

did not yield such an observation. Nguyen (2003) theoretically demonstrated the applicability of

imputation techniques to support fault-tolerant mechanisms for real-time signal control systems.
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His research did not, however, justify the claims made in his thesis by automating the imputation

techniques to estimate missing data in real-time systems. Like Nguyen’s work, the doctoral work

of McSherry (2004) runs short of the experimental evaluation. Kim (2005) has done an excellent

work to impute missing data in stochastic volatility models. Stochastic volatility models have been

commonly and successfully used to explain the behavior of financial variables such as stock prices

and exchange rates. Wasito (2003) used least squares approach to the problem of missing data,

but further recommended the comparison of least squares based techniques with a set of popular

imputation techniques based on a maximum likelihood principle such as the multiple imputation.

1.5 Research Objectives and Thesis Contribution

The contribution to knowledge of this thesis is in many folds, and will answer a number of questions

that have been left open to the literature, throughout the evolution of techniques for missing data

imputation. The objectives and the importance of this research are outlined as follows:

(a) Until today, no technique for missing data imputation can be deemed better than others.

Twala (2005) compared the implementation of many techniques for the problem of missing

data. He found the Expectation Maximisation algorithms to be the best of existing methods

investigated. A technique that uses a combination of auto-associative neural networks and

evolutionary optimisation techniques has emerged as one of the best methods in the literature.

This relatively new method has been presented by (Abdella and Marwala, 2006) and has been

used by (Dhlamini, Nelwamondo and Marwala, 2005) but remains not compared to the state-

of-the-art. The first objective of this thesis is to conduct such a comparison.

(b) The second objective of the thesis is to present hybrid techniques that combine a number of

9
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known techniques for missing data imputations. A great deal of research work has been done

to discuss strategies that can be used to combine classifiers mainly for classification problems.

Some missing data reconstruction techniques need data to have some dependencies between

missing and observed attributes. Extraction of these dependencies has been done in literature

in several ways. Although ensemble approaches have been proven to work better than single

networks approaches (Parik, Kim, Oagaro, Mandayam and Polikar, 2004), no attempt up-to-

date has been made to use an ensemble of regressors to estimate missing data. Not much work

has been done on discovering and explaining techniques for combining regression values. This

challenge leaves a vacuum in the problem of missing data reconstruction. This thesis aims at

filling this vacuum with sound research findings.

(c) One of the biggest challenges is handling missing data from dynamic signals such as those

collected from stochastic processes. This thesis will continue to contribute to knowledge by ad-

dressing this problem and by proposing suitable techniques for the prediction of missing data in

time series that exhibit non-stationary behavior. Many time series applications such as water

demand forecasting (Msiza, Nelwamondo and Marwala, 2007b; Msiza, Nelwamondo and Mar-

wala, 2007a), stock market prediction (Leke and Marwala., 2005; Lunga and Marwala, 2006)

and many others, would not be easy in presence of missing data. Another example of such data

is the vibration data taken from a rotational machinery such as the one used by (Nelwamondo,

Marwala and Mahola, 2006) in condition monitoring of roller bearings. Data in this application

can also be considered missing if there is high contamination by noise. Consecutive vectors are

expected to be somehow related to the previous observed samples in time series such as these.

However, dependency can not be quantified if the data are non-stationary and heteroskedas-

tic. Heteroskedasticity refers to a case where a sequence of observations forms a series with

different variances. Learning the pattern becomes an extremely difficult task mainly because
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the concept being learned is forever drifting away. This research will present a novel algorithm

that addresses this problem.

(d) Furthermore, attention will be given to the suggestion by Schafer and Graham (Schafer and

Graham, 2002) that the goal of statistical procedures should be, not only to estimate, predict,

or recover missing observations nor to obtain the same results that would have been seen with

complete data, but to take a sound decision. It is envisaged in this research that in some

applications, computational resources are utilised in predicting missing values when the same

results or decisions could have been achieved without wasting the resources and time in the

reconstruction of missing values. It is definitely not always the case that exact values are

required. Instead of acquiring exact values, ‘rough values’ can be estimated. The focus of this

part of the research is two fold; firstly, not to use any complicated technique to estimate missing

values and secondly to totally avoid the reconstruction of missing data. Granular computing

techniques will be investigated for this purpose.

1.6 Scope of the Thesis and Limitations

The imputation techniques generated in this work will be made general and suitable for any other

applications, other than those considered in this thesis. Missing data will, throughout the thesis,

be assumed ignorable. This assumption is based on the fact that no one knows the reason why

data are missing in all databases that are considered in this work. There is also no known method

that can test the validity of the assumption. The best that can be done thus far is to assume it

is ignorable and this assumption is recommended until more methods of testing this are available

(Schafer and Olsen, 1998). Relaxing this assumption will essentially imply a replacement with a

similar assumption, which cannot be tested. When data are missing for reason beyond the control
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of researchers, no one can tell if the assumption is still valid. Furthermore, data may be missing by

more than one mechanisms. It will therefore be assumed in this dissertation that departures from

MAR are minimal and will not cause a big degradation in the accuracies of the prediction.

1.7 Thesis Layout

The remainder of this thesis is structured as follows:

Chapter 2 presents predictive analytics techniques for the problem of missing data. Statistical

methods that can be of value to the problem of missing data are presented and discussed to

aid in data analysis.

Chapter 3 compares the expectation maximisation technique to the combination of artificial neural

networks and genetic algorithms in the missing data problem. In the investigation of this

chapter, a comparison of the two techniques is done using three real world applications. This

is aimed at proving or disproving the claim by many researchers that EM algorithm remains

the state-of-the-art. Conclusions are drawn from the comparison.

Chapter 4 investigates the use of an ensemble or committee of neural networks to approximate the

missing data for on-line learning applications. Techniques of combining various outputs from

the committee of networks will be investigated. In this chapter, hybrid techniques will also be

presented.

Chapter 5 introduces dynamic programming to the problem of missing data.

Chapter 6 proposes a novel technique aimed at estimating missing data for non-stationary time

series. This is achieved by measuring heteroskedasticity of the data segments and the technique

used is suitable for on-line learning.
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Chapter 7 presents the use of rough sets to estimate the missing values, with the hypothesis that

it is cheaper to obtain rough set estimates that are satisfactory.

Chapter 8 investigates and presents two approaches to avoid reconstructing the missing data, both

in classification and regression problems using FUZZY ARTMAP and neural networks.

Chapter 9 summarises the major findings of this research and recommendations for further research

directions are given.

Appendices: Appendix A presents a review of the most common techniques that have been used

to solve the problem of missing data. Appendix B presents detailed results of the predictive

analysis and data analysis. In Appendix C, a method to analyse time series data when there

are missing values is presented followed by an algorithm to simultaneously extract rules while

imputing for missing values using rough set theory in Appendix D. Lastly, Appendix D discusses

the structure and algorithm of the Fuzzy ARTMAP.

1.8 Road Map

While most chapters are stand-alone, the work is easier to follow and understand if read in the order

that it is presented in this thesis. Chapter 2 should be read first as it presents and discusses the

data. Chapters 3, 4 and 5 should be read in their sequential order. However, Chapters 6, 7 and 8

are stand-alone and can be read in any order. Lastly, Chapter 9 should be read when all the other

chapters have been read as it summarises the findings.
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Chapter 2

Predictive Analysis Before Imputation of

Missing Data

2.1 The Necessity of Predictive Analysis

Standard methods and techniques for missing data estimation have been developed and implemented.

These techniques can be categorised into case deletion, prediction rules, Maximum Likelihood (ML)

and least square approximation approaches as briefly discussed in Appendix A. A large number of

these techniques poses a challenge to the problem of missing data. One of the major challenges is

that it is difficult to choose the appropriate technique when faced with the challenge of missing data.

Some databases might even be characterised by missing data that can not be predicted. For this

reason, a lot of resources are used in a fruitless attempt to recover the missing data. This chapter

will present techniques for predictive analysis for missing data. Statistical techniques can play an

important role in predictive analysis and this chapter is devoted to this discussion, with applications

to three datasets.

14



2.2. FAILURE ANALYSIS FOR MISSING DATA SYSTEM

2.2 Failure Analysis for Missing Data System

Suppose there exists some system that collects data for decision making. It is very crucial to have

an analysis that evaluates the impact of missing data on the decision. Such systems allows a proper

missing data estimation technique to be implemented. These kinds of systems can be broken down

into parallel systems and series systems. Of particular interest to this work will be the series systems

where the entire process fails if at least one part of the system has failed. In the context of this work,

this translates to decisions being impossible to make if at least one of the input variables are missing.

Most computational intelligence techniques such as neural networks fail to give an output if at least

one of the inputs is not available.

2.3 Missing Data Analysis

Suppose there exists an incomplete database as represented in Table 2.1. The question mark (?)

symbol represents the missing values.

Complete data can be defined as a function of observed data and missing data such that,

Complete Data = Observed data + missing data (2.1)

More formally, this can be denoted as

Y = (Yobs, Ymis) (2.2)

where Y denotes the complete data, Yobs the observed data and Ymis the missing data. The next

few subsections will define what analysis need to be done, prior to the estimation of missing data.
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Table 2.1: An example of a table with missing values

Instances x1 x2 x3 D

1 1 ? 0.2 B

2 1 2 0.3 A

3 0 1 0.3 B

4 0 ? 0.3 B

5 0 3 0.4 A

6 0 ? 0.2 B

7 1 4 ? A

8 1 4 0.3 A

2.3.1 Data Type

Different types of data exist and all these types will require different methods of analysis. One of the

first steps to be conducted when one is exposed to the data, will be to look at whether the observed

data are qualitative, attributive or categorical data, as well as whether data are numeric or textual.

This can aid in determining the mechanism that caused the of missing data. As an example, suppose

a questionnaire with the following questions:

1. Do you have children?

2. If YES, how many?

The database compiled after this survey may contain both numeric and textual data. In this case,

the response to (2) might be missing mainly because the answer to (1) was a ‘NO’. Knowing this

information can help in determining the mechanism of missingness and hence, can help in selecting
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the appropriate method for collecting maximum information.

2.3.2 Mechanism of Missingness

Determining a mechanism that led to missing data is very important as this may reveal details as to

why data are missing. In many data analyses, it is almost impossible to determine the mechanism

that actually led to the missing data. Three mechanisms of missing data, namely Missing at Random

(MAR), Missing Completely at Random (MCAR) and Missing not at Random (MNAR) have been

discussed in Chapter 1. Knowing the mechanism may lead to the choice of an appropriate method

that can be used for imputation. Although it is important to know the mechanism of missing data,

at times, the best that can be done is to assume the mechanism to be ’ignorable’. Relaxing this

assumption will essentially imply a replacement with a similar assumption, which can neither be

tested. It will therefore be assumed in this thesis that departures from ’ignorable’ are minimal and

will not cause a large degradation in the accuracies of the prediction. There are also some cases

where, data may be missing by more than one mechanisms, and this cannot explicitly be proved.

2.3.3 Complete-case Analysis

Complete-case analysis refers to analysing only the cases with all variables recorded. Among other

advantages, complete-case analysis offers simplicity and applicability of standard statistical analysis

(Little and Rubin, 1987). However, the biggest drawback of this method is the amount of information

lost in the process. If there is a data set with 50 variables and each variable has a 2% probability of

being missing, then, there will be about 37% probability that there is an instance with a complete

observation of 50 variables. This will essentially imply that if there are 100 instances of recorded
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data and complete-case analysis has to be applied, only 37 instances are likely to be used. In their

research, Kim and Curry (1997) found that when 2% of the features are missing, and the complete

observation is deleted, up to 18% of the total data may be lost.

2.4 Data Pre-processing and Input Normalisation

Data preprocessing describes any type of processing performed on raw data, in preparation for another

procedure, by transforming the data into a format that will easily and effectively be processed in

the next stages. Data preprocessing is done because real world data are often characterised by

noise, and inconsistency. Some of the common techniques include, data cleaning, data integration,

data transformation, data reduction and data discretisation. Most of these techniques will be used

throughout this thesis and will only be discussed at length in the sections that they will be used.

In this context, the objective of data preprocessing is to correct data as to avoid using biased data.

Furthermore, the requirement is to have data in the format that will be easy to process, taking into

considerations that data not pre-processed may lead to the curse of dimensionality (Bishop, 2003).

It is therefore very important to design a pre-processing tool that ensures that much of the relevant

information is retained.

In some problems, the pre-processing stage may include the selection of features as well as the

elimination of cases with missing data or with outliers. If the amount of data missing is large enough

to affect the model constructed for decision making, it becomes advisable not to delete the case. In

this work, it is desirable to work with complete cases while some data are withheld and assumed

missing. This ensures that designed paradigms can be tested by evaluating how close the predicted

values are to the ‘real values’.
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Input normalisation is aimed at rescaling the magnitude of the input variables. There are many ways

that can be used for this normalisation (Bishop, 2003). Various architectures will require the data

to be in the range of their activation function and as a result, will require the data to be normalised

accordingly.

2.5 Predictive Analysis

Predictive analysis is a very vital study, aimed at determining the feasibility and applicability of

techniques under consideration to the dataset in the study. In doing this analysis, data has to be

studied and analysed to see if all parameters meet the requirements of the techniques in question.

The importance of this analysis in the problem of missing data is that there is no reward in trying

to estimate data that is ‘unpredictable’. For this reason, it is vital to see if the data is in the form

that can be recovered.

Although the problem of missing data has been under investigation for many decades, there has

been, seemingly, no study that first determines if the data is predictable. Furthermore, no study has

been done, that presents the techniques for data analysis, that can be used in the problem domain

of missing data. In this section, four techniques aimed at determining the predictive performance

of the data will be presented. Data that have been collected will also be analysed to determine if

various parts of the data differ significantly. The choice of the methods was strongly influenced by

the databases in the study and will be discussed next.
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2.5.1 Weight of Evidence (WoE)

This is a statistical technique that forms part of a single factor analysis. This analysis permits the

determination of predictive performance or strength of a variable in a dataset. Statistical WoE is a

quantitative evaluation of the data. In this analysis, the underlying concept is that, given the data,

which state is more likely to be observed. Consider the Table 2.1, with intention to calculate the

probability ratio of a decision variable, D. This would be done as follows:

Ratio =
P (A|Data)
P (B|Data)

(2.3)

More formally,

Ratio =
P (impact|Data)

P (no impact|Data)
=

P (Data|impact)
P (Data|no impact)

(2.4)

The WoE can be translated to knowing the probability of impact given by the data and is defined

as follows (Good, 1988):

WoE = 10× log(likelihood ratio) (2.5)

To compute this, a single variable is divided into a number of bins. For each bin, the WoE is

calculated. According, to Good (1988), the individual line of evidence may be interpreted as shown

in Table 2.2.
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2.5. PREDICTIVE ANALYSIS

Table 2.2: Interpretation of the WoE values

WoE Strength of Evidence

< 6.9 Weak

6.9-10 Moderate

> 10− 20 Moderate to strong

> 20 Strong

Next, the Attribute Strength (AS) and Character Strength (CS) are defined as follows:

AS = WoE × 100 (2.6)

CS =
1
10

Σi{ASi × (%Pi −%Ni)} (2.7)

where P and N are the number of positives and negatives in the bin i.

The CS in this thesis is interpreted as presented in Table 2.3.

Table 2.3: Interpretation of the Character Strength values

WoE Strength of Evidence

< IfCS < 50 The variable is not predictable

If 50 ≤ CS < 100 The variable is slightly predictable

If CS≥100 The variable is extremely predictable
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2.5.2 Using Gini-Style Indices to Evaluate Patterns

The Gini coefficient was developed by Corrado Gini (1912) to measure the income inequality in

society, but has now been used in other applications. The Gini coefficient is a measure of inequality

and is defined between 0 and 1 where zero implies perfect equality and one implies perfect inequality.

The Gini coefficient is most easily calculated from unordered size data by computing the ratio of the

relative mean difference between every possible pairs of individuals to the mean size. The classical

definition of the Gini coefficient is as follows:

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x

(2.8)

where x is an observed value, x is the mean value of x and n is the number of the observed values.

This parameter can be useful to determine, for instance, the inequality of the population risk to

the viral infection in HIV database analysis. This can tell if the data is biased and as a result, the

treatment of missing data can be dealt with accordingly.

2.6 Goodness of Fit

2.6.1 Kolmogorov-Smirnov (KS) Test

The Kolmogorov-Smirnov test determines if two datasets differ significantly (Massey, 1951). For

missing data imputations, this test can be used to determine if the distribution of the data is still

similar to the distribution of the data used when the estimation model was created. This can

essentially mean that a given model might not be suitable and as a result, a new model might be

22



2.6. GOODNESS OF FIT

necessary. The KS-test has the advantage of making no assumption about the distribution of data

(Brown, 1994; Gini, 1912).

Given N ordered data points, Y1, Y2, Y3, . . . , YN , the Cumulative distribution function is defined by

EN = n(i)/N, i = 1, 2, . . . , N (2.9)

where, n(i) is the number of points less than Yi when Yi is arranged in ascending order.

The KS is defined as:

KS = max1≤i≤N (T (Yi)−
(i− 1)

N
,

i

N
− T (Yi)), (2.10)

where T is the theoretical cumulative distribution being tested that needs to be continuous and not

discrete. More details on the KS test can be found in (Gini, 1912)

2.6.2 Divergence (D)

Divergence is the statistical tool that measures the effectiveness of the model in a variable. Suppose

there exists some model for separating positive from negative. Divergence for these is defined as:

D =
(µpos − µneg)2

(0.5δ2
pos + 0.5δ2

neg)
(2.11)

where µ is the mean and δ is the standard deviation. This test measures the effectiveness of the model

to a particular variable, where in this case, the model separates between negative and positive.
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2.7 Predictive Analysis: Application to Missing Data Imputation

All datasets used in this research were examined for predictability and all the tests discussed in this

section were applied to them. The next section presents the datasets that were used for testing.

2.7.1 Power Plant Data

The first data set used is the data of a 120 MW power plant in France (De Moor, 1998), under

normal operating conditions. This data set is composed of five inputs, namely gas flow, turbine

valves opening, super heater spray flow, gas dampers and air flow. The outputs are steam pressure,

main stem temperature and reheat steam temperature. Sampling of the data was done every 1228.8

seconds and a total of 200 instances were recorded. The relevance of this dataset to this study it that

dataset is stationary and is a real data set, that was compiled my measuring values in an experimental

setup described in (De Moor, 1998). The source of the data is reliable as it was measured and this

will differ significantly from a dataset with data collected through a questionnaire. An extract of the

data without any missing values is shown in Table 2.4.

Table 2.4: Set of power plant measurements under normal operating conditions.

Gas flow Turbine Heater Gas dampers Air flow

0.11846 0.089431 0.11387 0.6261 0.076995

0.10859 0.082462 0.11284 0.6261 0.015023

0.099704 0.19919 0.14079 0.62232 0.061972

0.092794 0.19164 0.12733 0.6261 0.059155

0.088845 0.30023 0.13768 0.6261 0.028169

0.087858 0.63182 0.074534 0.63052 0.079812
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2.7.2 HIV Database

Three datasets were considered and were obtained from the South African antenatal sero-prevalence

surveys of the years 2001, 2002 and 2003, respectively. The data for these surveys are obtained from

questionnaires answered by pregnant women visiting selected public clinics in South Africa. Only

women participating for the first time in the survey were eligible to answer the questionnaire. Unlike

the dataset presented in Section 2.7.1, the data were collected from a survey, and as a result were

not measured.

Data attributes used in this study are the HIV status, Education level, Gravidity, Parity, Age Group,

Age Gap and Health Registration. The HIV status is represented in a binary form, where 0 and 1

represent negative and positive respectively. The education level was measured using integers repre-

senting the highest grade successfully completed, with 13 representing tertiary education. Gravidity

is the number of pregnancies, successful or otherwise incomplete (terminated or miscarried) , ex-

perienced by a female, and this variable is represented by an integer between 0 and 11. Parity is

the number of times the individual has given birth and multiple births are considered as one birth

event. Both parity and gravidity are important, as they show the reproductive activity as well as

the reproductive health state of the woman. Age gap is a measure of the age difference between the

pregnant woman and the prospective father of the child. A sample of one of these datasets is shown

in Table 2.5.

2.7.3 Data From an Industrial Winding Process

The third dataset used here represents a test setup of an industrial winding process and the data

can be found at (De Moor, 1998). The major component of the plant is composed of a plastic web

that is unwound from the first reel (unwinding reel), and that goes over the traction reel and is
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Table 2.5: Extract of the HIV database used, without missing values

HIV Educ Gravid Parity Age Age Gap Health

0 7 10 9 35 5 14

1 10 2 1 20 2 14

1 10 6 5 40 6 1

0 5 4 3 25 3 2

finally rewound on the the rewinding reel as shown in Figure 2.1 (Bastogne, Noura, Richard and

Hittinger, 2002).

Figure 2.1: The graphical representation of the winding plot system (Bastogne et al., 2002)
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Reels 1 and 3 are coupled with a DC-motor that is controlled with input set-point currents I1 and

I3. The angular speed of each reel (S1, S2 and S3) and the tensions in the web between reel 1 and 2

(T1) and between reel 2 and 3 (T3) are measured by dynamo tachometers and tension meters. The

full data set has 2500 instances, sampled every 0.1 seconds. In this study, testing was done with 500

instances while the training set and the validation set for the neural network consisted of 1500 and

500 instances respectively.

The inputs to the winding system are the angular speed of reel 1 (S1), reel 2 (S2), reel 3 (S3), the set

point current at motor 1 (I1) and at motor 2 (I3) as shown in Figure 2.1. A more detailed description

of the data can be found in (Bastogne et al., 2002).

2.8 Data Analysis Results

This section presents the results obtained when the datasets were analysed. Firstly, the analysis

results of the HIV dataset will be presented, followed by the results for the winding process and the

power plant datasets respectively

2.8.1 HIV Database

From the three datasets (years 2000, 2001 and 2002), all outliers were removed and all data with

incomplete information were marked incomplete. In all tests done in this chapter, only complete

cases were used. It is from the complete cases that some data were withheld and assumed missing.

The reason for this is that it becomes possible to measure accuracy of the prediction if the real values

of the data being predicted is known. The three datasets were studied to see all cases, HIV positive

and HIV negative cases were well represented in the data. The aim of this study is to avoid having
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data that only belongs to one class, as this may bias the results and may lead to very inaccurate

models. This will help in determining the reliability of the data as well as the distribution of the

data. The results are shown in Table 2.6 below. The data was partitioned into various geographic

provinces of South Africa and the data was analysed for each province.

Table 2.6: Results showing how much of the data comes from the HIV negative class. Key: EC:

Easten Cape, FS: Free State, KZN: Kwazulu Natal, MP: Mpumalanga, NC: Northern Cape, LP:

Limpopo, NW: North West and GP: Gauteng

Province 2000: HIV+ (%) 2001: HIV+ (%) 2002: HIV+ (%)

EC 3.38 22.13 23.66

FS 4.78 30.00 28.82

KZN 5.43 40.82 36.69

MP 4.01 28.40 28.57

NC 5.12 16.43 18.82

LP 4.32 13.65 15.62

NW 3.65 25.44 26.32

WC 5.41 8.64 12.31

GP - 15.40 31.69

It was was observed that the database of 2000 does not represent all the provinces and as a result

was not used. Furthermore, the HIV positive cases are very low compared to those of the datasets

of 2001 and 2002. The datasets were analysed further, to determine if all demographics in terms of

race are well presented in the dataset. It was observed that over 90% of people belong to one race.

This is, however, justified as this is the majority race and is the race that uses public clinics and

hospitals more. Detailed results for the race breakdown are presented in Table B.1 in Appendix B.
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The datasets were also studied for the correlation between the variables. Positive correlation coeffi-

cient between variables A and B implies that B increases when A is increasing, whereas the negative

implies a decrease in B with an increase in A. The relevance of correlation is that one can see if one

variable can be determined from the other. If that is the case, it may be deduced that one variable is

redundant as it strongly correlates with another variable. The results of this analysis are presented

in Table B.2 in Appendix B. It can be observed that some variables such as gravidity and parity

are highly correlated as well as the woman’s age and the prospective father’s age. The results from

the correlation analysis can also be used to determine if data from various provinces, follows the

same distribution and patterns. Due to the unreliability of the 2000 dataset, only the 2001 and 2002

datasets were used. The combined dataset (2001 and 2002) was broken down into 20 arbitrary bins

of equal size. The objective here is to determine if the data from various regions fall within the same

distribution, and as a result, can use the same models. Results showing the attribute strength are

presented in Table B.3 in Appendix B.

The Character Strength was calculated and found to be 846, which is above a value of 100. The

Gini Coefficient was then computed, and and was found to yield a value slightly close to the 0 which

means that the dataset is well balanced and is close to the line of perfect inequality. The KS test also

approved that the datasets, from various regions which where compared do not differ significantly.

This was further confirmed by the correlation analysis presented in Appendix B. It is clear that the

various methods discussed in this chapter complement each other to determine if the data is still

following the same distribution.

For the power plant as well as the industrial winding process, there was no need to apply most of

the analysis presented in this chapter. This is mainly because most of the techniques are suitable for

classification task, as was the case with the HIV datasets. It was however, necessary to analyse the

data for correlation as this can reveal the dependencies of one attribute on the other.
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2.8.2 Correlation Analysis for the Industrial Winding process and the Power

Plant Datasets

Some results are presented in Tables 2.7 and 2.8. Detailed results can be found in Appendix B.

Table 2.7: Correlation between input parameters for the power plant data

Power Plant Data

Turbine Heater Gas dampers Air flow

Gas flow 0.65 0.71 -0.32 0.61

Turbine 0.48 -0.27 0.45

Heater -0.04 0.66

Gas Dampers -0.37

As mentioned in Section 2.7.3, the dataset for the industrial winding process contained 2500 records.

These records were divided into 10 bins, each bin with 250 records for the correlation analysis. Results

from one of the bins are presented in Table 2.8 below. Detailed results are presented in Appendix B.

Table 2.8: Correlation between input parameters for the industrial winding process

Industrial Winding Process Data

S2 S3 I1 I3

S1 -0.36 0.67 -0.12 0.00

S2 -0.06 0.00 0.05

S3 0.05 0.15

I1 -0.13
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2.9 Discussion

Predictive analysis is a useful tool that helps in deciding if it is necessary to impute the missing

data. It is essential for one to understand the data being dealt with, before using techniques that

might not be suitable in data with certain characteristics. The remainder of this thesis will use the

analysis discussed in this chapter as a basis and motivation for choice of certain techniques. It is

clear that there is a strong interdependence within attributes of various datasets. For this reason,

a method that will be implemented for estimating missing data should be chosen accordingly and

must be suitable for a given correlation coefficient.
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Chapter 3

Neural Networks Approach vs Expectation

Maximisation Techniques: A Comparative

Study

3.1 Introduction

When dealing with the problem of missing data, it is important to understand why data are missing.

This knowledge plays a major role in predictive analysis as presented in Chapter 2. Unfortunately,

there are some cases where such information can not be known. In such cases, it is important to

employ imputation methods that are suitable when such information is unavailable. Among these

methods, Expectation Maximisation (EM) algorithms and the auto-associative Neural Networks

combined with Genetic Algorithms (NN-GA) have emerged from the recent literature as candidate

solutions to the problem of missing data imputation. Both these techniques have been discussed indi-

vidually at length in the literature. However, up to this point in time, they have not been compared

with each other. The major drive behind this comparative study is that lately, some researchers
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have found EM to be the best method in their investigation (Twala, 2005), whereas the combination

of neural networks and genetic algorithms method was not part of their investigation. Unlike some

statistical methods such as mean substitution that have a high likelihood of producing biased esti-

mates (Tremp, Neuneier and Ahmad, 1995) or even make assumptions about the data that may not

be true, these two methods do not suffer this disadvantage. Computational intelligence techniques

and maximum likelihood techniques can capture the interrelationships between the observed data

and the missing data and as a result are important for imputation of missing data. This chapter

compares two approaches to the problem of missing data estimation. The first technique is based

on the current state-of-the-art approach to this problem, that being the use of Maximum Likelihood

(ML) through the Expectation Maximisation (EM) (Schafer and Graham, 2002). The second ap-

proach is the use of a system based on auto-associative neural networks and the Genetic Algorithm

as discussed by Adbella and Marwala (2006). This method will be referred to as the ‘NN-GA’ in this

thesis. The estimation abilities of both of these techniques are compared, based on three datasets

and conclusions are made.

3.2 Maximum Likelihood

The maximum likelihood approach to approximate missing data is a very popular technique (Little

and Rubin, 1987; Schafer and Olsen, 1998; Schafer, 1997) and is based on a precise statistical model

of the data. When the maximum likelihood method is applied for the task of imputing the missing

values, the commonly used model is the multivariate, Gaussian mixture model. Likelihood meth-

ods may be categorised into ‘single imputations’ and ‘multiple imputations’ (Schafer, 1997; Little

and Rubin, 1987). Maximum likelihood imputation of missing data can be viewed as a method to
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maximise the likelihood,

L(θ|Yobs) =
∫

f(Yobs, Ymis|θ)dYmis (3.1)

where Yobs and Ymis represent the observed data and the missing data respectively and θ here is some

control parameter of interest (Little and Rubin, 1987). Most of the ML methods, involve calculating

the matrix of second derivatives of the loglikelihood, which become very complex in the presence of

missing data (Little and Rubin, 1987). One method that does not require these second derivatives to

be calculated when a dataset is characterised by incomplete data, is the Expectation Maximisation

(EM) algorithm and is discussed hereafter.

3.2.1 Expectation Maximisation

The expectation maximisation algorithm was originally introduced by Dempster et al. (1977) and

was aimed at overcoming problems of complexity, associated with maximum likelihood methods.

Expectation maximisation combines statistical methodology with algorithmic implementation and

has gained much attention recently in various missing data problems. Expectation maximisation has

also been proven to work better than methods such as listwise, pairwise data deletion, and mean

substitution because it assumes that incomplete cases have data missing at random rather than

missing completely at random (Allison, 2002; Rubin, 1978). The distribution of the complete data,

Y , can be represented as follows:

f(Y |θ) = f(Yobs, Ymis|θ) = f(Yobs|θ)f(Ymis|Yobs, θ) (3.2)

where f(Yobs, Ymis|θ) is the density of the observed data and f(Ymis|Yobs) is the density of the missing

data, given the observed data (Little and Rubin, 1987). The loglikelihood of equation (3.2) is written

as follows:

l(θ|Y ) = l(θ|Yobs, Ymis) = l(θ|Yobs) + ln(f(Ymis|Yobs, θ)) (3.3)
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such that the objective is to optimise l(θ|Yobs, Ymis), using the control parameter, θ.

Let the current estimate of the parameter θ be denoted by θ(t). Optimisation of equation (3.3) is an

iterative process, of two steps, namely, the E-step and the M-step.

• The E-step determines the expected loglikelihood of the data, as if the parameter θ was truly

the current estimate, θ(t), as follows:

Q(θ|θ(t)) =
∫

l(θ|Y )f(Ymis|Yobs, θ) = θ(t)dYmis (3.4)

• The M-step, finds θt+1 by maximising equation (3.4) as follows:

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)),∀θ (3.5)

A different interpretation of the EM is a follows: Consider a complete data sample denoted by y

with y ∈ Y ⊆ Rm. Let the corresponding Probability Density Function (PDF) be py(y; θ), where, as

before, θ is an unknown parameter vector from the model. Suppose the samples y cannot be directly

observed, but instead, what can be observed are samples x = g(y) ∈ Xobs ⊆ Rl, l < m, with l and

m indicating the dimensionality of Y and Xobs, respectively. The corresponding PDF is denoted by

px(x; θ). The PDF of the incomplete data is given by (Theodoridis and Koutroumbas, 2006):

px(x; θ) =
∫

Y (x)
py(y; θ)dy (3.6)

The maximum likelihood estimate of θ is given by (Theodoridis and Koutroumbas, 2006)

θ̂ML :
∑

k

∂ ln(py(yk; θ))
∂θ

= 0 (3.7)
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where k is an index over the number of samples available. Since the parameter y is not available, the

EM algorithm maximises the expectation of the log-likelihood function conditioned on the observed

samples and the current iteration estimate of θ. The two steps of the algorithm are:

• E-step: At the (t + 1)th step of the iteration, where θ(t) is available, compute the expected

value [Q] as

Q(θ; θ(t)) ≡ E

[∑
k

ln(py(yk; θ|X; θ(t)))

]
(3.8)

This is the so called expectation step of the algorithm.

• M-step: Compute the next (t + 1)th estimate of θ by maximising Q(θ; θ(t)), that is

θ(t + 1) :
∂Q(θ; θ(t))

∂θ
= 0 (3.9)

This is the maximisation step, where differentiability has been assumed.

The implementation of the EM algorithm begins from an initial estimate θ(0) and iterations are

terminated if ‖θ(t + 1)− θ(t)‖ ≤ η for an appropriately chosen vector norm and η. The concept of

EM will be explained through an example.

3.2.2 Expectation Maximisation Through an Example

The example used here relates to the one used in (Dempster et al., 1977) and in (Little and Rubin,

1987). Suppose there is an observed data sequence,

Yobs = (a, b, c)

with the prior probability of observation given by:
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P (a) =
1
3
θ

P (b) =
1
7
− θ

P (c) =
6
7

+
4
6
θ

Suppose some y is defined such that

y = (y1, y2, y3, y4)

and has probabilities of observations of P (y) = (1
3θ, 1

7 − θ, 6
7 , 4

6θ). From this, it follows that

Yobs = (y1, y2, y3 + y4)

.

It follows that the maximun likelihood estimate of θ would be:

y1 + y4

y1 + y2 + y4

.

Calculating the expectation of the loglikelihood l(θ|Y ) given θ and Yobs will involve the same calcu-

lation as calculating the expectation of Y given θ and Yobs, and this fills the estimates of the missing

values (Little and Rubin, 1987). In this example, it can be deduced that:

E(y1|θ, Yobs) = a

E(y2|θ, Yobs) = b

E(y3|θ, Yobs) =
c(6

7)
6
7 + 4

6θ

E(y4|θ, Yobs) =
c(4

6θ)
6
7 + 4

6θ

37



3.2. MAXIMUM LIKELIHOOD

The E-step estimates θ(t) as follows:

y
(t)
4 =

c(4
6θ(t))

6
7 + 4

6θ(t)

during the t(th) iteration. The M-step determines:

θ(t+1) =
a + y

(t)
4

a + b + y
(t)
4

The EM algorithm is the iteration between the E-step and the M-step until convergence.

3.2.3 Expectation Maximisation for Missing Data Imputation

The EM algorithm is a general technique capable of fitting models to incomplete data and capitalises

on the relationship between missing data and the known parameters of a data model. If the missing

values were known, then estimating the model parameters would be straightforward. Similarly, if the

parameters of the data model were known, then it would be possible to obtain unbiased predictions

for the missing values. This interdependence between model parameters and missing values suggests

an iterative method where, firstly, the missing values are predicted based on assumed values for the

parameters and these predictions are used to update the parameter estimates, and the process is

repeated until convergence. The sequence of parameters converges to maximum-likelihood estimates

that implicitly average over the distribution of the missing values. In simple terms, EM operates by

using an iterative procedure that can be explained as follows (Little and Rubin, 1987):

1. Replace missing data with estimates;

2. Estimate the model parameters of interest;

3. Repeat steps (1) and (2) until convergence.
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The key idea that differentiates EM algorithms form any other iterative algorithms is that, missing

values themselves are not necessarily estimated by the EM. Instead, the EM only finds the conditional

expectations of the missing data using the observed and the estimated parameters (Little and Rubin,

1987).

3.3 Background: Autoencoder Neural Networks

Autoencoders, also known as auto-associative neural networks, are neural networks trained to recall

the input space. Thompson et al. (2002) distinguish two primary features of an autoencoder network,

namely the auto-associative nature of the network and the presence of a bottleneck that occurs in the

hidden layers of the network, resulting into a butterfly-like structure. Autoencoders have a remarkable

ability to learn certain linear and non-linear interrelationships such as correlation and covariance

inherent in the input space. Autoencoders project the input onto some smaller set by intensively

squashing it into smaller details. The optimal number of the hidden nodes of the autoencoder, though

dependent on the type of application, must be smaller than that of the input layer (Thompson et

al., 2002). Autoencoders have been used in various applications including the treatment of missing

data problem by a number of researchers (Abdella and Marwala, 2006; Mohamed and Marwala, 2005;

Dhlamini et al., 2006; Frolov, Kartashov, Goltsev and Folk, 1995).

In this chapter, auto-encoders are constructed using the multi-layer perceptrons (MLP) networks

and trained using back-propagation. MLPs are feed-forward neural networks with an architecture

composed of the input layer, the hidden layer and the output layer. Each layer is formed from small

units known as neurons. Neurons in the input layer receive the input signals ~x and distribute them

forward to the rest of the network. In the next layers, each neuron receives a signal, which is a

weighted sum of the outputs of the nodes in the previous layer. Inside each neuron, an activation
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function is used to control the input. Such a network determines a non-linear mapping from an input

vector to the output vector, parametrised by a set of network weights, which are referred to as the

vector of weights ~W . The structure of an autoencoder constructed using an MLP network is shown

in Figure 3.1.

Figure 3.1: The structure of a four-input, four-output autoencoder

The first step in approximating the weight parameters of the model is finding the appropriate ar-

chitecture of the MLP, where the architecture is characterised by the number of hidden units, the

type of activation function, as well as the number of input and output variables. The second step

estimates the weight parameters using the training set (Japkowicz, 2002). Training estimates the

weight vector ~W to ensure that the output is as close to the target vector as possible. The problem

of identifying the weights in the hidden layers is solved by maximising the probability of the weight
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parameter using Bayes’ rule (Thompson, Marks and Choi, 2002) as follows:

P ( ~W |D) =
P (D| ~W )P ( ~W )

P (D)
(3.10)

where, D is the training data, P (D| ~W ) is called the evidence term that balances between fitting the

data well and avoiding overly complex models whereas P ( ~W ) is the prior probability of ~W . The

input, ~x, is transformed to the middle layer, a, using weights Wij and biases bi as follows (Thompson

et al., 2002):

aj =
d∑

i=1

~Wji~xi + bj (3.11)

where j = 1 and j = 2 represent the first and second layer respectively. The input is further

transformed using the activation function such as the hyperbolic tangent (tanh) or the sigmoid in

the hidden layer. More information on neural networks can be found in (Bishop, 2006).

3.4 Genetic Algorithms

There are different optimisation techniques that are all aimed at optimising some variables to ad-

here to some target function. Some of these methods converge at local optimal solutions than the

required global optimal solutions. Although stochastic in nature, GA often converges to a global

optimal solution. GAs use the concept of survival of the fittest over consecutive generations to solve

optimisation problems (Goldberg, 1989). As in biological evolution, the fitness of each population

member in a generation is evaluated to determine whether it will be used in the breeding of the next

generation. In creating the next generation, the use of techniques (such as inheritance, mutation,
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natural selection, and recombination) common in the field of evolutionary biology are employed. The

GA algorithm implemented in this paper uses a population of string chromosomes, which represent

a point in the search space (Goldberg, 1989).

Solutions selected for reproduction are entered into a pool where mating is done at random. Each

pair of parent solutions dies after reproducing offspring’s deemed to be fitter than the parents.

Crossover is a process where genes of the father and those of the mother ‘cross-over’ to form a

new offspring. For example, if the father is denoted by a string 10101010, and the mother by the

string 00110011, then the new string can be 10100011 if crossover occurs at the middle of the two

parent strings. The mutation operation seldom occurs and it is an occasional random changing of

a bit from 0 to 1 or vice-versa (Shtub, LeBlanc and Cai, 1996). To optimise the operation of the

GA, the following parameters need to be well chosen: population size; crossover rate; mutation rate;

generation gap and chromosome type. The population approach and multiple sampling makes GA

less prone to becoming trapped at local minima than traditional direct optimisation approaches such

as constrained conjugate gradient (Davis, 1991). GA can navigate a large solution space with an

efficient number of samples. Although not guaranteed to provide the globally optimum solution, GA

has been shown to be highly efficient at reaching a very near optimal solution in a computationally

efficient manner. More details on GA can be found in (Davis, 1991) and (Holland, 1975).

In this work, GA parameters such as mutation rate, population size and type of mutation were

empirically determined using exhaustive search methods. GA is implemented by following three

main procedures which are selection, crossover and mutation. The algorithm in Figure 3.2 illustrates

how GA operates.
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BEGIN

1 Create an initial population beginning at an initial

generation, g=0.

2 for each population P, evaluate each population member

(chromosome) using the defined fitness evaluation function

possessing the knowledge of the competition environment.

3 using genetic operators such as inheritance, mutation

and crossover, alter P(g) to produce P(g+1) from the fit

chromosomes in P (g).

4 repeat (2) and (3) for the number of generations G

END

Figure 3.2: Structure of the genetic algorithm

3.5 Neural Networks Combined with Evolutionary Computing for

Missing Data

The method used here combines the use of auto-associative neural networks with an evolutionary

computing method. In this architecture, an autoencoder is trained from complete data. Genetic

Algorithms were used in this study, to approximate missing data as shown in Figure 3.3. This

method has been developed to approximate missing data in a database by Abdella and Marwala

(Abdella and Marwala, 2006). Other evolutinary computing methods have been investigated for this

problem by Dhlamini et al. (2006) and GA was found to be better than Simulated Annealing and

Particle Swarm optimisation in terms of speed of convergence. Due to this reason, in the comparative

study of this chapter, a genetic algorithm is used to estimate the missing values by optimising an
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objective function. The complete vector combining the estimated and the observed values is fed into

the autoencoder as input, as shown in Figure 3.3. Symbols Xk and Xu represent the known variables

and the unknown or missing variables, respectively. The combination of Xk and Xu represent the

full input space

Figure 3.3: Autoencoder and GA based missing data estimator structure

Considering that the method uses an autoencoder, one will expect the input to be very similar to

the output for a well chosen architecture of the autoencoder. This is, however, only expected on

a dataset similar to the problem space from which the inter-correlations have been captured. The

difference between the target and the actual output is used as the error and this error is defined as

follows:

ε = ~x− f( ~W, ~x) (3.12)

where ~x and ~W are input and weight vectors, respectively. To make sure the error function is always

positive, the square of the equation is used. This leads to the following equation:

ε = (~x− f( ~W, ~x))2 (3.13)
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Since the input vector consist of both the known, Xk and unknown, Xu entries, the error function

can be written as follows:

ε =


{

Xk

Xu

}
− f( ~W,

{
Xk

Xu

}
)


2

(3.14)

and this equation is used as the objective function that is minimised using GA.

3.6 Experimental Evaluation

3.6.1 Data Used

For this study, the EM and NN-GA approaches for approximating missing data are compared in

three different datasets. The reason for using three datasets is to evaluate the performance of the

methods when different datasets are used. The datasets used are described in Chapter 2 but are

summarised below.

1. Power Plant data is the first dataset used for this comparison and the dataset was obtained

from a 120 MW power plant in France (De Moor, 1998), under normal operating conditions

as discussed in Chapter 2. Sampling of the data was done every 1228.8 seconds and a total of

200 instances were recorded. The data was split into a training and a testing datasets. Due to

the limited data available, one seventh of the data was kept as the test set, with the remaining

consisting of the training data. For easy comparison with the neural network and genetic

algorithm combination (NN-GA), the training and testing data for the EM were combined into

a single file, with the testing data appearing at the end of the file. This separation ensured
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that both the EM and the NN-GA testing were compared using the same amount of testing

data and that their respective models are built from the same sample of training data.

2. HIV Database The HIV dataset of 2001, presented in Chapter 2 was used for this study. A total

number of 5776 instances was used and and the data were divided into two subsets, namely,

training and testing datasets as training was done in the Bayesian framework. Testing was

done with 776 instances.

3. Data From an Industrial Winding Process was used in this study and the data represents a test

setup of an industrial winding process and the data can be found in (De Moor, 1998). A more

detailed description of the data was given in Chapter 2 and can also be found in in (Bastogne

et al., 2002).

The data was transformed using a min-max normalisation to [0,1] using equation (3.15). This is to

ensure that the data are within the active range of the activation function of the neural network

(Bishop, 2003).

X =
X −Xmin

Xmax −Xmin
(3.15)

X is the transformed data of X, whereas Xmax and Xmin represent the maximum and minimum

values observed in the data.

3.6.2 Performance Analysis

The effectiveness of the missing data system is evaluated using the correlation coefficient and the

relative prediction accuracy. The correlation coefficient will be used as a measure of similarity between
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the prediction and the actual data. The correlation coefficient, r is computed as

r =
∑n

i=1(xi − xi)(x̂i − x̂i)
[
∑n

i=1(xi − xi)2
∑n

i=1(xi − xi)(x̂i − x̂i)2]1/2
(3.16)

where x̂ represents the approximated data, x is the actual data while x̄ represents the mean of the

data. The relative prediction accuracy is defined as

Error =
nτ

N
× 100% (3.17)

where nτ is the number of predictions within a certain tolerance percentage of the missing value. In

this study, a tolerance of 10% is used. The 10% was arbitrarily chosen with an assumption that it is

the maximum acceptable margin for error in the applications considered. This error analysis can be

interpreted as a measure of how many of the missing values are predicted within the tolerance and

the tolerance can be made to be any value depending on the sensitivity of the application.

3.7 Experimental Results and Discussion

This section presents the experimental results obtained by using both of the techniques under in-

vestigation in this chapter. The predictability of missing values within 10% of the target values is

evaluated. The evaluation is computed by determining how much of the test sample was estimated

within the given tolerance. The results of the test done using the power plant dataset are presented

first.

For the experiment with the power plant data, NN-GA system was implemented using an autoencoder

network trained with 4 hidden nodes for 200 training epochs. The GA was implemented using the
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floating point representation for 30 generations, with 20 chromosomes per generation. The mutation

rate was set to a value of 0.1. As mentioned earlier, the GA parameters were empirically determined.

The correlation coefficient, and the accuracy within 10% of the actual values are given in Table 3.1.

Table 3.1: Correlation and Accuracy results of a comparative testing using the power plant data

Correlation 10%

Variable Corr EM Corr NN-GA EM NN-GA

Gas flow — 0.9790 — 21.43

Turbine 0.7116 0.8061 14.29 14.29

Heater 0.7218 0.6920 7.14 28.57

Gas dumper -0.4861 0.5093 3.57 10.71

Air flow 0.6384 0.8776 10.71 7.14

It can be seen from the results that EM failed to make a prediction for the gas flow in this dataset.

The reason is that for EM to make a prediction, the prediction matrix needs to be positive definite

(Wothke, 1993). The major cause of this is when one variable is linearly dependent on another

variable. This linear dependency may sometimes exist not between the variables themselves, but

between elements of moments such as the mean, variances, covariances and correlations (Wothke,

1993). Other reasons for this cause includes errors while reading the data, initial values and many

more. This problem can be solved by deleting variables that are linearly dependent on each other

or by using principal components to replace a set of collinear variables with orthogonal components.

Seminal work on dealing with “not positive definite matrices” can be found in (Wothke, 1993).

The results show that the NN-GA method is able to impute missing values with higher accuracy of

prediction for most cases and this is shown in the graph of Figure 3.4. The lack of high accuracy

predictions for both estimation techniques suggests some degree of difficulty in estimating the missing
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variables.

Figure 3.4: Graphical comparison of estimation accuracy using 10% tolerance using power plant

data

For neural networks, it is observable that the quality of estimation in each input variable depends on

the existence of some form of correlation between variables in the input space such that this linear

or non-linear relationship can be discovered by the neural networks and used to give higher accuracy

imputations. The EM algorithm also requires that the data not to be linearly dependent on some

variables within the input space, as demonstrated by the need for positive definite matrices.

The results obtained using the HIV database are presented in Figure 3.5, which shows the results

obtained when predicting missing variables on the HIV dataset within 10% tolerance. Results here

clearly show that EM performs better than the NN-GA method for the prediction of variables such

as Education, Parity, Age and Age gap. Unlike with the power plant database, results here show

that EM is better than Neural Network for prediction of variables in the HIV dataset in this study.
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Since this is a social science database, the reason for poor performance of the NN-GA can be either

that the variables are not sufficiently representative of the problem space to produce an accurate

imputation model, or that people were not very honest in answering the questions in the question-

naire, leading to little dependability of variables on each other. The EM will work better due to its

learning algorithm, which is based on maximum likelihood method.

Figure 3.5: Prediction within 10 % tolerance of missing variable in the HIV data

The relationship between the predictions and the actual data is evaluated by calculating the cor-

relation between the estimated variable and the actual variable. Table 3.2 presents the correlation

coefficient obtained for both methods. The predicted data are highly correlated to the actual missing
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data, and this proves that the estimation techniques have mastered the pattern of the data.

Table 3.2: The correlation coefficients between actual and predicted data for the HIV database.

Key: Educ = Education, Gravid = gravidity

Educ Gravid Parity Age Age Gap Health

NN and GA 0.10 0.71 0.67 0.99 0.99 -0.0047

EM 0.12 0.21 0.91 0.99 1 0.11

Lastly, the results obtained from the industrial winding process are presented. The EM and NN-GA

approaches are compared and the results are shown in Figure 3.6.

Figure 3.6: Prediction within 10% tolerance of missing variable in the industrial winding process

From the observed data, presented in Table 3.3, the predicted values are not very correlated to the

actual missing variables. The possible explanation to this is that the missing data are somehow

dependent on other variables in the data. Again the results obtained in this section show that
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for some variables the EM algorithm produces better imputed results, while in others the NN-GA

system was able to produce a better imputation result. The difference in terms of the predicted

values themselves is not significatly large for the problems under investigation.

Table 3.3: The correlation coefficients between actual and predicted data for the industrial winding

process

S1 S2 S3 I1 I3

NN and GA 0.203 0.229 0.159 0.038 0.117

EM - -0.003 0.009 -0.05 -0.007

The problem of the non-positive definite matrix when imputing values for S1 prevented the EM

algorithm from being used to estimate the missing data. However, the results obtain bring light to

the problem domain of missing data. It seems there is no method that can be deemed to be better

than the other in the applications considered. The next section present the conclusions drawn from

this study.

3.8 Conclusion

This chapter investigated and compared the EM algorithms approach and neural networks and GA

combination approach for missing data approximation. In one approach, an auto-associative neural

network was trained to predict its own input space. Genetic algorithms were used to approximate the

missing data. The other approach implemented the expectation maximisation for the same problem.

The results show that for some variables the EM algorithm is able to produce a better imputation

accuracy, while for other variables the neural network-genetic algorithm system is better.

The imputation ability of one method over another seems highly problem dependent. Findings
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also showed that the EM algorithm seems to perform better in cases where there is very little

dependencies among the variables, which is not the case when using the neural network approach.

These dependencies can be seen by looking at the correlations between variables. However, EM

requires a large number of iterations to reach convergence. There is a small significance in terms

of the accuracy of the predictions of the two methods. It seems there is a small difference between

the actual values predicted by the two techniques. This difference has a magnitude which is usually

less than 2 in all the three datasets. It can then be concluded that, although one method performs

better than the other in some in various applications, the is no much significance in the difference in

performance of the techniques under investigation.
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Chapter 4

Does the Choice of an Optimisation Technique

Matter in an Ensemble of Networks?

4.1 Introduction: Application to Sensor Failure and Restoration

The use of inferential sensors is a common task in on-line fault detection in various control applica-

tions. A problem arises when sensors fail while the control system is designed to make a decision

based on the data from those sensors. In decision making and condition monitoring application,

sensor failure results in inadequate information and hence, hinders the decision making process. In

this chapter, an estimation algorithm that uses an ensemble of regressors is proposed. Hybrid genetic

algorithms and fast simulated annealing are used to predict the missing values and their results are

compared. The NN-GA model that has been used in Chapter 3 will be used again in this chapter.

It is neither easy to tell which sensor will fail first nor what will cause the failure. However, sensor

manufacturers often provide specifications such as Mean-time-between-failures (MTBF) and Mean-

time-to-failure (MTTF) which can help in detecting which sensors are most likely to fail than others.

MTTF is used in cases where a sensor is replaced after a failure, whereas MTBF denotes time be-

54



4.1. INTRODUCTION: APPLICATION TO SENSOR FAILURE AND RESTORATION

tween failures where the sensor is repaired. There is nevertheless, no guarantee that failures will

follow manufacturers specifications. Figure 4.1 shows an example of a sensor system composed of

four sensors. A decision is taken based on the readings from all the sensors. When some sensor

readings are missing as depicted by sensor 3, in Figure 4.1 below, the imputation system is triggered

to approximate the missing data, and these estimates are used as if they were the measured values.

As a result, the decision making system can continually make decisions as if all sensors are fully

functional.

Figure 4.1: An illustration of a monitoring system composed of four sensors

Missing values from sensors generally follow a structured failure process where only values from one

or two sensors will be missing. An example of this kind of missing data is shown in Table 4.1 and

will be used throughout this chapter.
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Table 4.1: Sample missing values from a sensor, with ’?’ denoting missing values

F1 F2 . . . Fn−1 Fn

3.6 2.05 . . . 9.6 0.03

4.5 6.59 . . . 0.03 ?

3.9 4.57 . . . 0.02 ?

1.8 ? . . . 0.02 ?

2.0 ? . . . 0.1 0.03

6.8 ? . . . 0.9 0.02

4.2 Background: Evolutionary Optimisation Techniques

The previous chapter used genetic algorithm to predict missing values in a database. This chapter

widens the investigation of GA introducing the combination of GA and a local search optimiser,

forming a hybrid GA. Furthermore, Fast Simulated Annealing (FSA) is also investigated and the

combination of each of these optimisation techniques with neural networks is used. The chapter aims

at introducing the concept of a committee to the missing data problem, and as a result, does not

focus on optimising the members of the committee. It should, however, be noted that any technique

for estimation of missing data can be used in the committee. Next in this chapter, a background of

the two optimisation techniques under investigation is given, starting with the hybrid GA, followed

by the simulated annealing. The proposition in this chapter is that the choice of an optimisation

technique, in an ensemble of networks does not matter. This has not yet been investigated and the

results will bring to the light, the necessity and importance of choosing an optimisation adequately

well.
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4.2.1 Hybrid Genetic Algorithms

As mentioned in Chapter 3, a genetic algorithm is an iterative heuristic deriving its operation from

biology. GA’s mimic the natural selection of species in an environment where only the fittest species

can survive and creates a set of possible solutions which can be viewed as a population of organisms

(Goldberg, 1989). The hybrid GA used herein combines the power of GA with the speed of a local

optimiser. Traditional GA is known for excelling at finding the space near the global optimum and

not necessarily finding the global optimum point itself. In this case, a local optimiser continues with

the search when GA has found the global optimal space. The local optimiser jumps in only after

realising that GA offers little or no improvement after many generations (Davis, 1991) and this helps

in fine-tuning the solution (McGookin and Murray-Smith, 2006). This approach furthermore differs

from the traditional GA in that the elitism reservation strategy (Tamaki, Kita and Kobayashi, 1996)

is used. In the traditional GA, a chromosome in the current generation is selected into the next

generation with certain probability. The best chromosomes of the current generation may be lost

due to mutation, crossover, or selection during the evolving process, and subsequently cause difficulty

in reaching convergence. It may therefore take more generations and hence more running time, to

get quality solutions. To avoid this, an elitism method discussed by Tamaki et al. (1996) permits

chromosomes with the best fitness to survive and to be carried into the next generation.

4.2.2 Fast Simulated Annealing (FSA)

In contrast to the GA, Simulated Annealing (SA) does not maintain a population of trial solutions.

Instead, it generates a trajectory through the search space by making incremental changes to a single

set of parameters. SA is a stochastic relaxation technique that has its origin in statistical mechanics.

SA was first developed by Kirkpatrick et al. (1983) as a local search algorithm following the initial
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algorithm proposed by Metropolis et al. (1953). SA is a probabilistic hill-climbing technique that

is based on the annealing process of metals (McGookin and Murray-Smith, 2006). The annealing

process occurs after the heat source is removed from a molten metal, and as a result, temperature

starts to decrease. The metal becomes more rigid with this decrease in temperature. The decrease

in temperature continues until the temperature of the metal is equal to that of the surrounding. It

is at this temperature that the metal is perfectly solid (McGookin and Murray-Smith, 2006).

Like most hill-climbing search techniques, SA searches the space by piece-wise perturbations of

parameters that are being optimised (McGookin and Murray-Smith, 2006). These perturbations

depend on the temperature T, which decreases with each and every iteration of the search. Due to

this, perturbations are larger at the beginning of the search and they become smaller towards the

end of the search. At every iteration, the cost is evaluated and if the cost value is lower than the

previous one, the previous parameter gets replaced by the new parameter. Should the cost function

be negative (down hill), the new parameter gets accepted. However, if the new cost is higher than

the previous one (up hill), the cost gets subjected to a probability check where the probability,

P of the new parameters cost Cnew relative to the previous best cost Cprev is calculated using

the Boltzman’s equation as follows (McGookin and Murray-Smith, 2006; Nascimento, de Carvalho,

de Castilho, Costa and Soares, 2001):

P = exp

(
Cprev − Cnew

T

)
(4.1)

This probability is compared to a certain threshold, thresh [0 1]and P is only accepted if it is above

thresh. This process is known as the Metropolis criterion and is used to control the acceptance

probability of every step in the search process (Nascimento et al., 2001). The full SA pseudocode is

summarised in the flow chart shown in Figure 4.2.
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Figure 4.2: Flowchart showing the simulated annealing algorithm

59



4.3. AN ENSEMBLE OF NETWORKS FOR MISSING DATA IMPUTATION

The FSA is simply an improvement to the popular SA algorithm. Many techniques of making this

process faster have been proposed in the literature (Chen and Chang, 2006). The technique used in

this paper combines hill-climbing with random distribution and this improves the annealing speed

as random moves are semi-local (Nascimento et al., 2001).

4.3 An Ensemble of Networks for Missing Data Imputation

The principal incentive for using an ensemble of networks is derived from the intuitive logic that many

’heads’ are better than one and therefore using many networks is thus better than using one. It is

from this intuition that societies make decision via committee. Examples of these committees include

parliaments, panel of judges and many more, who often will have different view points. The method

proposed in this section has been derived from the adaptive boosting (Freund and Schapire, 1995).

The algorithm uses an ensemble of auto-encoders to estimate the missing value and uses a technique of

rewarding or penalising a particular network using the known performance of the network. A similar

approach has been used by Perrone and Cooper (1993) where they showed that the committee of

networks can optimises the decision. In this section, an ensemble of networks is used to estimate the

values of the missing data. The final output is then a weighted combination of individual networks

that have been used in the prediction. Similar work has been done by Mohamed and Marwala (2005),

where they gave equal weights to each network. The system considered in this chapter is suitable

for on-line prediction of missing data and assigns weights to networks in accordance to their the

performance.

As before, training is aimed at finding the optimal architecture of the autoencoder. Exhaustive search

was done to find the optimum number of hidden units. Once the number of hidden units had been

found, supervised learning was used to determine the network parameters of the autoencoder. Once
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an acceptable performance had been achieved the weights are saved for later use. This approach

uses an ensemble of autoencoders in a configuration shown in Figure 4.3. Fast simulated annealing

and genetic algorithms are both used in obtaining the estimates and their results are later compared.

Each optimiser (FSA and hybrid GA) tries to minimise an error function between the predicted

and the target output. The error used here is the sum-of-squares error (SSE) which is calculated as

follows (Mohamed and Marwala, 2005):

ESSE =
N∑

n=1

(tn − yn)2 (4.2)

where t is the target, y the predicted and N is the number of instances with missing entries. Each

of the autoencoders used is assigned weight according to equation (4.3) as explained in (Opitz and

Shavlik, 1996; Merz, 1997),

αi =
1− Ei∑N

j=1(1− Ei)
(4.3)

where Ei is the estimate of model i’s error on the validation set. This kind of weight assignment

intuitively ensures that model i gets more weight if its performance is higher than the performance

of other models. The objective here is to have a set of models which are likely to have uncorrelated

errors (Merz, 1997).

As presented in the previous chapters, the function which is optimised by the GA and the FSA in

the estimation of missing data is given as follows (Abdella and Marwala, 2006):

ε =


{

xk

xu

}
− f( ~W,

{
xk

xu

}
)


2

(4.4)
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Figure 4.3: An ensemble of networks to approximate missing data through the use of GA or SA.

The missing values are denoted by the dark circled.

and this equation is used as the objective function that the hybrid GA and FSA try to minimise.

Other members of the committee can be added provided, a suitable combining scheme is derived.

4.4 Experimental Results and Discussion

4.4.1 Experimental Setup

The data used in this experiment comes from a model of a Steam Generator at Abbort Power Plant

in Champaign Illinois (De Moor, 1998). This data has four inputs, which are the fuel, air, reference

level and the disturbance which is defined by the load level. This work attempts to regress in order

to obtain two output which are the drum pressure and the steam flow. More information on the

inputs and the test setup can be found in (De Moor, 1998).
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Both hybrid GA and Fast Simulated Annealing are used and their results are compared. The proposed

technique assumes that only the best estimate obtained by either the hybrid GA or FSA will give

the smallest error between the input and the output. It was deduced in this research that there are

other values that can minimise the error as calculated in the objective function. These values are not

necessarily the missing values. Due to the nature of the search algorithms used in this research, both

the hybrid GA and FSA do not have any search restrictions. It was deduced that defining a search

space yields better results and will only limit the search to specific boundaries. This essentially

implies that bounds matter in this application. For each variable, the search’s lower and upper

bounds were defined as follows:

LB = min(x)− stddev(x) (4.5)

Similarly, the upper bound was defined as

UB = max(x) + stddev(x) (4.6)

where min(x) and max(x) are the minimum and the maximum values that have been observed in

the training data. This was arrived at by assuming that the training data represent the entire data

space. This, however, has a negative effect considering the possibility of the assumption not holding.

Should the lower bound be negative, a value of zero is used. There are many other techniques that

can be used to optimise the bound, in order to improve the prediction accuracies and search times.

For the autoencoders to have a bottleneck structure, a maximum number of hidden nodes that could

be used in this investigation was found to be 3. Three autoencoders were used for diversity in an

ensemble similar to the one shown in Figure 4.3. One was composed of 2 hidden nodes while the

other two had three hidden nodes each, in their architecture. For the hybrid GA, an elite count of 2

was chosen while the crossover fraction was fixed at 0.8.
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4.4.2 Results

Figure 4.4 compares the actual and the predicted values of nine instances were the input was missing.

Error bars were added to show the magnitude of the tolerance, which is calculated as 20% more or

less of the actual value. The results were obtained using the network structure proposed here and

only the hybrid GA was used. Network numbered 2, is the one with 2 hidden nodes. Table 4.2

presents further results. In this table, the results obtained by each network in the ensemble are

compared to those obtained using an ensemble. The reason for this comparison is to show that the

results obtained using the ensemble are better than than the results obtained with each individual

network. In all cases, results obtained using the hybrid GA are compared to those obtained using

FSA for a performance tolerance of 20%, which was arbitrarily chosen. The tolerance is here defined

as the region at which the prediction are accepatble and is measured from the target values.

Figure 4.4: A sample of predictions obtained using ensemble of network with GA for the prediction

of the disturbance

It should be noted that the results obtained from FSA and the Hybrid GA are closely related to each

other. It can also be seen that the performance obtained using an ensemble of networks is even better

than those obtained using the best network in the ensemble with an exception to the prediction of
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Table 4.2: Comparison in performance between hybrid GA and FSA for the proposed approach

Network1 Network2 Network3 Ensemble

Inputs HGA % FSA % HGA % FSA % HGA % FSA % HGA % FSA %

Fuel 84 87 67 60 94 95 100 100

Air 83 80 59 67 18 12 100 99

Level ref 73 74 76 76 89 93 94 97

Disturbance 91 91 58 51 46 48 79 84

Average 82.75% 83% 65% 63.5% 61.75% 62% 93.25% 95%

the Disturbance. As it can be seen in Table 4.2, the accuracy of the ensemble is lower than that

obtained with the first network, labeled Network 1 in the table. This unexpected performance can be

explained in that the assumption that data is MAR might not hold for the testing data. Techniques

that assume that the data is either missing MNAR or MCAR may solve the problem. From this

point, only the results obtained through the ensemble of classifiers will be analysed.

The average results obtained using the Hybrid GA and the FSA are very close to each other. This

simply proves that the two optimisation techniques used in this paper are most likely to converge to

the same values for the problem under investigation. Using a Pentium IV processor of speed 2.4GHz,

FSA and the hybrid GA manage to get the results in approximately 9.096s and 12.5s, respectively.

The results obtained here are in agreement with the results of (Dhlamini et al., 2006; Dhlamini

et al., 2005). Unfortunately, both techniques need more time to produce accurate results. It could

be concluded that the bigger the ensemble, the longer it will take to produce accurate results. The

biggest trade-off in this task is whether we need more accurate results or we need results in a very

short time period. Obviously, for online condition monitoring we need results timeously as much as

much as they have to be reliable.
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In this analysis, the statistical relationship between the predicted output and the actual target is

further looked at. This relationship will be quantified by using correlation coefficients between the

two quantities. Table 4.3 presents the results obtained using both GA and SA. As it can be seen

from this table, the relationship is very close. The findings are in agreement with those obtained

by Mohamed and Marwala (2005). This, therefore, shows that the method used to approximate the

missing data does not add any bias to the data (Mohamed and Marwala, 2005).

Table 4.3: Comparison between Hybrid GA and FSA

GA FSA

Inputs Corr MSE Corr MSE

Fuel 1 0.02 1 0.024

Air 0.92 0.3 0.96 0.2

Level ref 0.78 0.8 0.76 0.9

Disturbance 0.69 1.01 0.60 1.2

In a case where more than one input variables are missing, the same technique can still be used.

Suppose s sensors have failed; the optimisation problem will then be to find s values that will

minimise the error in the objective function. However, this can become a slow process since there

might be a variable combination of data that can minimise the objective function. Furthermore, the

performance will be expected to deteriorate. In such a case, it will also be appropriate to find the

pattern at which data is missing, as it may help in finding a remedy.
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4.5 Conclusion

Treatment of missing data is a challenge for on-line condition monitoring problems. An ensemble of

three autoencoders together with hybrid GA and fast simulated annealing was used to approximate

missing data. Several insights were deduced from the simulation results. The valuable contribution of

this chapter is two folds. Firstly, for the problem of missing data where optimisation techniques are

used, this chapter has demonstrated that the choice of an optimisation technique matters. Although

FSA is slightly faster than the hybrid GA, it was observed that both methods can converge to

the same search space and to almost the same values. Secondly, it was further observed that the

assumption that, “the error between the input and the output of the autoencoder in the network

configuration proposed in this work will be minimal only if the predicted value is correct”, does not

hold in all cases. Due to this reason, it is important to define a search space that the search algorithm

must explore. For this reason, this chapter highlighted that the bounds need to be well chosen as

they may be outside the scope of the solution.
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Chapter 5

Dynamic Programming and Neural Networks

Approach for Missing Data Estimation

5.1 Introduction

The concept of dynamic programming was introduced by Richard Bellman (1957) as a technique to

solve problems in applications where best solutions are required, one after the other. Dynamic pro-

gramming can be viewed as a stage-wise search technique with outputs being a sequence of decisions.

The term ‘dynamic programming’ emanates from the term ‘mathematical programming’, which im-

plies optimisation of a mathematical expression. Dynamic programming exploits the duplications

as well as the arrangement of the data. During the search for the optimal solution, early decisions

solutions that can not possibly give optimal results are pruned. The fundamental concept behind

this method is to avoid doing the same calculation more than once and this is achieved by storing the

results obtained in each sub-problem. Dynamic programming uses the concept of optimality, that

can be translated to optimisation in stages. It follows that, for an optimal sequence of decisions,

each sub-sequence must be optimal (Bellman, 1957). The concept of dynamic programming can be a
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useful tool to the problem of missing data, that optimises all the sub-steps in the solution. Using the

concept of optimality, to obtain the best estimate of missing data, all steps leading to the solution

need to be optimised. This concept has several advantages that can improve the method proposed

by Abdella and Marwala (2006), which shall be used as a baseline method in this chapter. In this

chapter, a novel technique to estimate missing data using neural networks, Genetic Algorithms (GA)

and dynamic programming will be proposed.

5.2 Mathematical Background on Dynamic Programming

This section presents the fundamental background of dynamic programming. More details on the

background can be found in (Bellman, 1957). A problem is solved step-wise, obtaining the optimal

solution for every step, keeping track of recurrences and overlaps. This method is computationally

efficient in cases where there are overlaps as, calculations will not be repeated. A complex problem

is broken into sub-problems which are even broken into sub-sub problems. The objective behind this

process is to have very manageable problems. When these sub-problems are solved, all solutions are

stored and are retrieved if a similar problem is encountered.

The dynamic programming equation, well known as the Bellman equation for evaluation is defined

as follows (Bellman, 1957):

J(t) =
inf∑
k=0

γkU(t + k) (5.1)

where 0 < γ < 1 is the discount factor and U is the utility function.
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The training stage is aimed at minimising the evaluation function. In this problem, dynamic pro-

gramming is viewed as an optimisation problem with (Bertsekas, 2005):

xk+1 = fk(xk, Uk, rk), k = 0, 1, . . . , N − 1 (5.2)

where k is the discrete time, xk is the state, which is the known data that will be relevant for future

optimisation. Uk is the decision that will be selected. N is the number of times the control has been

applied and r can be viewed, in this case, as some form of a disturbance or some bias term. This

leaves us with an additive cost function of the form (Bertsekas, 2005):

E{gN (xN ) +
N−1∑
k=0

gk(xk, Uk, rk)} (5.3)

where g(u) is the cost function and for this model to work, we assume that uk is selected with

knowledge of xk (Bertsekas, 2005)

‖E1‖ =
∑

t

E2
1(t) (5.4)

where

E1(t) = J [Y (t)]− γJ [Y (t + 1)]− U(t). (5.5)

where Y (t) is a visible vector.

5.3 Base Model for Imputation

The NN-GA model presented in Chapter 3 is used here as a base model. A basic flow chart of this

model is presented in Figure 5.1.
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Figure 5.1: A flow chart of the auto-associative neural network and genetic algorithm model for

missing data imputation

5.4 Implementation of Dynamic Programming for the Missing Data

Problem

The concept of dynamic programing has mainly been applied to optimal control problems. This is due

to the fact that in many control problems, decisions are mostly taken with incomplete information

about the state of the system (Cogill, Rotkowitz, Roy and Lall, 2006). The missing data problem

under investigation in this work requires a similar approach to be taken on a large number of records.

Generally, there are two approaches that are typically followed in the implementation of dynamic

programming. These approaches can be described as follows:
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Top-down approach where the problem is divided into sub-problems whose solutions are acquired

and stored for future use.

Bottom-up approach where a sub-problem is anticipated and solved before hand and used to

construct the solution to the bigger problem. It is however, not always instinctive to guess all

problems before hand

The parameter Y , defined as a function of missing data, Xmis becomes the policy function that

characterises the optimal choice of parameters in terms of the error function in equation 5.6

ε =


{

Xk

Xu

}
− f( ~W,

{
Xk

Xu

}
)


2

(5.6)

as described in previous chapters. According to the Bellman’s equation (Bellman, 1957), if the policy

function is optimal for the infinite summation, then it has to be true that irrespective of the initial

estimate of the missing data, the remaining decisions should characterise an optimal policy. In this

problem of missing data estimation, the principle of optimality is connected to the theory of optimal

substructure. The method implemented does not train its neural networks on the full set of complete

data, where complete data refers to a record that has no missing fields. Instead, the dataset is broken

up into categories and a neural network is trained for each category using only the data from that

category.

The rationale as to why this method could improve performance of the base model is that, the base

model assumes data variables to be somehow related to one another. From statistical analysis, it can

be anticipated that parameters such as race have an influence on the other variables such as HIV.

It follows that, parameters from one category might not have an effect on known parameters from

other categories. Following the fundamental concept of dynamic programming, it is a necessity to

optimise each and every step of the solution. To achieve this, different models have to be created
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and all extraneous data should not be used to create such a model. Separate models are created for

each combination of categories data. Looking at this from a behavioral point, a person is likely to

act more similarly to someone close to their age than someone much older or younger than them.

The top-down approach was adopted and the pseudo-code is presented in the Algorithm 1. Figure

5.2 present a flow chart representation of the proposed algorithm.

Algorithm 1: Auto-associative neural networks and genetic algorithms model for missing data

imputation using dynamic programing
input : Given database with missing values

output: Imputed Missing value

← To begin: read and code the data

← Categorise the data (using the preferred method)

← Read the next record in the database

forall (records 1→ N) do
Find the appropriate category of the data

end

while Creating a model do
← Check if the category has appeared before

forall records → N do
← IF record has been seen before

−→ THEN Retrieve the correct model and use to impute

←ELSE:

−→ Build the training data −→ Create a neural network model −→ Store the model; −→

THEN Retrieve the correct model and use to impute

end

end
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Figure 5.2: Auto-associative neural network and genetic algorithm model for missing data imputa-

tion using dynamic programming

After implementation it was found that the algorithm shown in Figure 5.2 breaks down when there is

a group of categories with no complete records. In this case the algorithm supplies no training data

for the neural network. A solution is to broaden the category in the hope of finding data that would

then fit the record in question. If a record is alone in its category then the algorithm creates a data

set for training ignoring numerical categories. In other words it uses all data with the same race and

province. In an unlikely event that there is no complete data in that combination of race and province

then the record is passed unaltered (ie no imputation is done) and maybe other methods of data

imputation could be used. The second way to prevent these “lone categories” is to use previously
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imputed data to train the networks. A lone category is here defined as a category in which there are

no complete records.

5.5 Grouping for Maximum Homogeneity

In an attempt to overcome the challenges mentioned in the preceding section, data were grouped for

maximum homogeneity. For illustration purpose, let us consider one variable from the data, namely

age. An easy implementation will categorise age into four equal bins. This will lead to definite

distinctions in age. However, a drawback of this is that borderline categories are not well presented.

For borderline cases, in one year one person is in one group and the following year, one could be

in another group, even though no significant change has taken place. In light to this challenge,

overlapping bins bring light to this challenge.

An interesting observation was made: Age can only be connected to behavioral fields. Thus, it makes

less sense, if any, to deduce someone’s race from their age. Noticeably, from age, one might gain some

insight into their parity for example. As already mentioned, someone is more likely to behave like

someone close to their age than like someone much older or younger. This idea is taken further by

assuming that there is a probability distribution for determining the likelihood of someone to behave

like someone else as a function of age. This distribution is assumed to be normally distributed around

a candidates age. In model creation stage, a sample is picked such that 68 % of the samples lie within

one standard deviation of the age of the candidate.

Given the observed data of K elements with numerical measure ai, categories are defined as follows

(Fisher, 1958):

D =
K∑

i=1

wi(ai − ai)2 (5.7)
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In this equation, wi is some weight assigned to the element i and ai denotes the weighted arithmetic

mean of the numerical measures that fall within the group that element i belongs. D here defines

the squared distance in the restricted problem as defined in (Fisher, 1958) and this parameter has to

be minimised to the restriction (68% standard deviation in this case).

5.6 Experimental Evaluation

5.6.1 Data and Analysis

The HIV database presented in Chapter 2 was used in this test. As mentioned earlier, the data

for this survey is obtained from questionnaires answered by pregnant women visiting selected public

clinics in South Africa. Only women participating for the first time in the survey were eligible to

answer the questionnaire.

5.6.2 Experimental Setup

The multi-layer perceptron neural networks were all trained using the scaled conjugate gradient

learning algorithm with a linear activation function. The number of hidden nodes used was always

two less than the number of input. (Thompson, Marks and El-Sharkawi, 2003) has shown that the

auto-associative neural networks perform best when the number of hidden nodes is less than that of

the input and output nodes. The GA was implemented using the floating point representation for

30 generations, with 100 chromosomes per generation. The mutation rate was set to a value of 0.1

and all these parameters were empirically determined.
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5.6.3 Testing Criteria

Elements of the complete data set were systematically removed. The program was then run on these

now incomplete data sets and the imputed results were compared to the original values. The accuracy

was measured as the percentage of numbers that were offset from the original value within a certain

tolerance, and as follows:

Error =
nτ

N
× 100% (5.8)

where nτ is the number of predictions within a certain tolerance.

The following tolerances were used for each field:

• Age, to within 2, 5 and 10 years.

• Education Level, to within 1, 3 and 5 grades.

• Gravidity, to within 1, 3, and 5 pregnancies.

• Parity, to within 1, 2 and 4 children.

• Father’s Age, to within 3, 7 and 15 years

• HIV status, the percentage that were correctly predicted, the percentage of false positives

and the percentage of false negatives.

5.6.4 Results and Discussion

Figure 5.3 shows the average percentages of the missing data within each range for the tests done

when only one field is missing as described in Section 5.6.3. The vertical axis differentiates between

the ranges listed in the previous subsection for each field respectively. The results shown here are
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averages after four runs on different data portions. Table 5.1 shows the percentages of imputed data

that fell with the ranges for records when only one variable was missing.

Figure 5.3: Percentages of imputed data within a pre-determined tolerance when only one variable

was missing for each record. Tol 1, 2 and 3 indicate the respective tolerances as presented in the

previous subsection

Table 5.1: Percentages of imputed data that fell with the ranges for records when only one variable

was missing for each record

Age Edu Gra Par Fat HIV

tolerance 1 48 38 96 95 45 66

tolerance 2 79 66 99.6 99 75 -

tolerance 3 95 81 100 99.9 93 -

These results presented above are compared to the results obtained using the baseline method. Figure

5.4 presents the results of the baseline method, whereas table 5.2 shows the percentages of imputed
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data that fell with the ranges for records when only one variable was missing for each record, using

the baseline method.

Figure 5.4: Percentages of imputed data within a pre-determined tolerance when only one variable

was missing for each record using the baseline method

Table 5.2: Percentages of imputed data that fell with the ranges for records when only one variable

was missing for each record using the baseline method

Age Edu Gra Par Fat HIV

tolerance 1 48 25 82.7 81.3 47 58

tolerance 2 79 49 96 95 76 -

tolerance 3 100 70.3 100 100 93 -

It can be seen that the dynamic programming approach has an effect on the results. Results obtained

from the dynamic model are better than the results obtained using the baseline approach. In the

case of two missing data points, the combination of missing age and all the other fields was tested.
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Table 5.3 presents the results as above. The bottom three rows of each column correspond to age,

whilst the top three correspond to the field that heads the column.

Table 5.3: Percentages of imputed data that fell with the ranges for records missing age and one

other field

Edu Gra Par Fat HIV

tolerance 1 38 96 96 37 67

tolerance 2 65 99.5 99 68 17

tolerance 3 80 100 99.9 92 16

tolerance 1 (AGE) 50 47 50 35 48

tolerance 2 (AGE) 81 78 79 67 79

tolerance 3 (AGE) 96 95 95 90 96

It can be seen from this table that removing two fields has no noticeable difference to removing one

except with the combination of age and father’s age. Both of these significantly lose predictability

when they are both absent. This indicates some dependence. A few tests were done on three and

four missing fields and there were no noticeable differences, apart from when both age and father’s

age were missing. However when all six numeric fields were absent, the results dropped in general.

5.7 Conclusion

An NN-GA model was built to impute missing data, using the principle of dynamic programing.

Using the proposed method, the program builds a data set for training in a certain category it does

not have to redundantly find the category of every record. The results did show the varying degree of

predictability of each field, with gravidity being the most predictable and education level the least.
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The results also show that some fields were independent of each other and removing both had no

effect on the model’s ability to predict them. However fields that are dependent on each other yield

a much lower predictability when both are removed, such as a combination of age and father’s age.

The unique contribution of this chapter was not only to demonstrate that dynamic programming is

applicable in the problem of missing data, but to also show that it is efficient to address the problem

of missing data, step-wise. This approach makes it possible to modularise the problem of missing

data, for maximum efficiency. With the advancements in parallel computing, various modules of the

problem could be solved by different processors, working together in parallel.
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Chapter 6

Incompleteness in Heteroskedastic and

Nonstationary Time Series. Can it be Solved?

6.1 Introduction

There are many nonstationary quantities in nature that fluctuate with time and their measurements

can only be sampled after a certain time period, thereby forming a time series. Common examples

are the stock market, weather, heartbeats, seismic waves and animal populations. There are some

engineering and measurement systems that are dedicated to measuring nonstationary quantities.

Such instruments are not immune to failures. When instrument or sensor failure occurs, it becomes

difficult to estimate the missing values. This difficulty is increased by the chaotic and unpredictable

nature of the data. The 2003 Nobel Prize Laureates in Economics, Granger (2003) and Engle (1982)

had an excellent contribution to non-linear data. Although he was not addressing the problem

of missing data, Granger showed that the traditional statistical methods could be misleading if

applied to variables that wander over time without returning to some long-run resting point (Granger,

2003). Engle on the other hand had a ground-breaking discovery of Autoregressive Conditional
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Heteroskedasticity (ARCH), a method to analyse unpredictable movements in financial market prices

and also applicable in risk assessment (Engle, 1982).

Computational Intelligence (CI) approaches have previously been proposed in applications that deal

with nonstationary data, such as the stock market prediction. The volatility of the data makes the

analysis complex. A possible reason for this complexity is that CI aims at developing intelligent

techniques that emulate human intelligence. Human intelligence has, however, failed to analyse and

predict the performance of nonstationary systems and this is evident in the stock market where even

the experts fail to precisely predict how markets will perform. For the same reason, systems that

exhibit a volatile performance remain difficult to predict. This becomes even more difficult in a

situation where the measuring system fails while measuring nonstationary data. No attempt has yet

been made to approximate missing data in strictly nonstationary processes, where concepts change

with time. Examples where concept may change with time include fault detection and diagnosis

(Nelwamondo and Marwala, 2006; Nelwamondo et al., 2006), safety of complex systems, monitoring

of industrial processes and many more (Basseville and Nikiforov, 1993). The challenge with missing

data problems in this application is that the approximation process must be complete before the next

sample is taken. Ways of detecting that the data is missing need to be implemented. Moreover, more

than one technique may be required to approximate the missing data due to drifting of concepts.

As a result, the computation time, amount of memory required and the model complexity may grow

indefinitely as new data continually arrive (Last, 2002).

Most learning techniques and algorithms that have been developed thus far either assume that

data will continuously be available or that data conform to a stationary distribution. This chap-

ter introduces a novel technique for on-line approximation of missing data in nonstationary and

heteroskedastic data. The objective here is to develop a technique that learns new concepts incre-

mentally. The resulting state of knowledge is then used in predicting the missing values. During
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the learning phase, discrepancy between the predicted values and the actual missing values is used

as the error, and modifications to the system are done to minimise this error. This chapter shines

light on the question: How can missing values be estimated in a continuous measurement system

that exhibit nonstationarity in the data pattern? In light of this question, an ensemble of regressors

which are combined using weighted methods is trained.

6.2 Nonstationary and Chaotic Systems: What it Means

Nonstationarity is a common property to many macroeconomic and financial time series data (Engle,

2003). Nonstationarity means that a variable has no clear tendency to return to a constant value

or a linear trend. Engineering examples of such systems include velocity component at a point in

a turbulent flow and various measurement systems such as those measuring the heart beat rate

(Turcotte and Rundle, 2002). Another example is the electrical transmission system; when this

system is pushed to its capacity limit it can exhibit chaotic behavior and failure (Turcotte and

Rundle, 2002). Many other examples such as vibration systems have been presented by James

(1996) and Nelwamondo et al. (2006).

Stationarity is defined in terms of the mean and the auto-covariance. Suppose there is a dataset that

is randomly sampled and is found to have a constant mean, and its auto-covariance is a function that

depends only on the distance in placement. The data will then be considered to be stationary, or

more formally, wide-sense stationary. Chaotic systems on the other hand are nonstationary systems

that are highly sensitive to initial conditions. Such systems are very difficult to predict over a long

term. Various studies have shown different approaches towards predicting nonstationary behaviours.

This difficulty is due to the concept drifting before reaching a particular observation. In a case where

some data are missing, it is for this reason that it becomes difficult to estimate the missing values.
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Some work has been done in dealing with missing data in nonstationary time series (Stefanakos and

Athanassoulis, 2001). In most cases, attempts are made to make the data stationary using deferencing

procedures (Stefanakos and Athanassoulis, 2001). In cases of missing data, applying the differencing

techniques proposed in literature usually widens the gap or even introduces additional gaps, thereby,

not solving the problem of missing data (Ljung, 1989). An interesting method was proposed by

Stefanakos and Athanassoulis (2001), which operates by completing missing values at the level of

uncorrelated residuals after removing any systematic trends such as periodic components. A sample

of the results obtained using their method is presented in Figure 6.1. A more detailed description of

their method is presented in Appendix C. Their method is rather complex and only works well with

seasonal data (Nelwamondo and Marwala, 2007b). Due to this, their method would not be precise

in cases where the concept being predicted or learned changes with time.

Figure 6.1: Incomplete time series (solid line) and the completed one (dotted line) (Stefanakos and

Athanassoulis, 2001)
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6.3 The Principle of Concept Drift

The principle of concept drift implies that the concept about which data is obtained may shift from

time to time. This is often the case with non-stationary time series data. Predicting values of a rapidly

drifting concept is not possible if the concept changes each time step without restriction and this has

also been mentioned by Case et al. (2001). The rate of concept drift is defined as the probability

that the target function disagrees over two successive examples (Helmbold and Long, 1991). There

are two types of concept drifts that have been reported in literature. These types are categorised by

the rate of the drift and are referred to as the sudden and the gradual concept drift.

A drawback of concept drift is that for a high volume of nonstationary data streams, where the actual

drift is unknown in advance, the time it takes to predict may grow indefinitely (Last, 2002). In all

cases of concept drift, incremental methods that continuously revise and refine the approximation

model need to be devised and these methods need to incorporate new data as they arrive. This can

be achieved by continually using recent data while not forgetting past data. However, in some cases,

past data might be invalid and may need to be forgotten (Last, 2002). Techniques for detecting

concept drift remain a challenge. Furthermore, the techniques used must also be able to detect the

type of concept drift experienced in the data.

Harries and Sammut (1988) have developed an off-line method for partitioning data streams into a

set of time-dependent conceptual clusters. Their approach was, however, aimed at detecting concept

drift in off-line systems. This work looks at a technique of detecting concept drift in an on-line

application as will be explained later in the chapter.
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6.4 Heteroskedasticity as a Concept Drift Detection Technique

Techniques for detecting concept drift are quite essential in time series data. The biggest challenge

to this task is due to data being collected over time. Ways of detecting concept drift may vary in

accordance to the pattern at which the concept is drifting. In most cases, the use of a window,

where old examples are forgotten has proved to be sufficient (Last, 2002; Helmbold and Long, 1991).

Known examples of window based algorithms include Time-Window Forgetting (Salganicoff, 1997),

FLORA (Kubat and Widmer, 1996) and FRANN (Kubat and Widmer, 1994).

A problem occurs when the concept drifts in a cyclic fashion. An example will be the weather that has

a pattern that drifts from one season to another, but the pattern will eventually recur. A cyclically

drifting concept exhibits a tendency to return to previously visited states. However, there are many

algorithms such as STAGGER (Schlimmer and Granger, 1986), IB3 (Aha and Albert, 1991) and

FLORA 3 (Widmer and Kubat, 1993) that have been developed to handle cyclic concept drift. In

this kind of drift, old examples need not be forgotten as they may reappear in a later stage. An

effective missing data estimator must be able to track such changes and to quickly adapt to them.

This work proposes the use of heteroskedasticity as a means of detecting concept drift.

A lot of information that guides the specification of regression models usually relates to the mean

function and not to variances. Heteroskedasticity occurs when the variables in a sequence have dif-

fering variances. Heteroskedasticity can arise in a variety of ways such as changes in behaviours

of data under different conditions. A number of tests have been proposed in the literature to test

for heteroskedasticity (Ferrari, Cysneiros and Cribari-Neto, 2004). There are a number of types

of heteroskedasticity. However, heteroskedasticity has been modelled as Autoregressive Conditional

Heteroskedasticity (ARCH) or Generalised Autoregressive Conditional Heteroskedasticity (GARCH).

Only recently, a new model has been developed and this model is Nonstationary Non-linear Het-
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eroskedasticity (NNH) that assumes stochastic volatility (Park, 2002). Data models belonging to

the class of NNH only will be considered nonstationary as they provide dynamic representations of

conditional volatility.

For a volatile NNH model, consider the sample auto correlations of the squared processes of obtaining

the data from the sensor. The sample autocorrelations are defined as (Park, 2002):

R2
nk =

∑n
k+1(y

2
t − y2

n)(y2
t−k − y2

n)∑n
t=1(y

2
t − y2

n)2
(6.1)

where y2
n denotes the sample mean of y2

t and yt = σtεt. The parameter ε is assumed to be inde-

pendently identically distributed (iid) (0,1) and is updated using filtration γ denoting information

available at time t whereas σ on the other hand is adapted to γt−1.

The NNH model therefore specifies the conditional heteroskedasticity as a function of some explana-

tory variables, completely in parallel with the conventional approach. This work considers an aspect

of NNH that the variable affecting the conditional heteroskedasticity is non-stationary and typically

follows a random walk (Park, 2002). Heteroskedasticity is used as a technique to detect if the concept

has changed for an on-line estimation of missing data. This is aimed at detecting that the estimators

that are being used are no longer the best estimators as the concept has changed. More details on

the heteroskedasticity method can be found in (Ferrari et al., 2004).

6.5 Missing Data Approximation in the Presence of Concept Drift

Learning in the presence of concept drift is a great challenge. Although there are some learning

algorithms such as FLORA 3 (Kubat and Widmer, 1996) that are aimed at learning under concept

drift conditions, the problem remains a challenge as the complexity varies from one problem domain

88



6.5. MISSING DATA APPROXIMATION IN THE PRESENCE OF CONCEPT DRIFT

to the other. The challenge becomes greater if in one run, the concept changes without restriction. As

the data dealt with is non-stationary, differentiating between true concept drift and noise is another

challenge.

6.5.1 Learning and Forgetting

There are many techniques for learning that are reported in the literature. The most common one is

through the use of a window and this method operates by only trusting the most recent examples.

Examples are added to the window as they arrive and oldest ones removed from the window. In

the simplest case, the window will be of a fixed size, however, adaptive windows have also been

reported in the literature (Kubat and Widmer, 1996). It is very important to choose the window size

very well as small windows will help in fast adaptation to new concepts, meanwhile, bigger windows

will offer good generalisation. In this case, the choice of the window size is a compromise between

fast adaptability and good generalisation (Scholz and Klinkenberg, 2005). A fixed window implicitly

makes an assumption on how quickly the concept changes (Scholz and Klinkenberg, 2005).

To solve the problem of learning in the presence of concept drift, a model that can adapt itself in

relation to the contents of the window need to be adopted (Kubat and Widmer, 1996). Another

big challenge faced is determining how many instances need to be deleted from the window. The

idea of forgetting an example has been criticised for weakening of the existing description items

(Kubat and Widmer, 1996). This kind of forgetting also assumes that only the latest examples are

relevant, which might not always be the case. Helmbold and Long (1991) have, however, shown that

it is sufficient to use a fixed number of previous examples. An algorithm that removes inconsistent

examples more efficiently will manage to track concept sequences that change more rapidly (Kubat

and Widmer, 1996).
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In this work, a window of fixed size is used. The oldest example is dropped as soon as a new one

arrives. The window is chosen such that it is not too narrow to accommodate a sufficient number

of examples. Again, the window size is chosen to avoid slowing down the reaction to concept drift.

This ensures that the window does not contain old data (Wang, Fan, Yu and Han, 2003). The model

used here is also suitable in periodic cycles where old sequences may be seen again after some time.

6.5.2 Algorithm Description

This section explains the algorithm used to approximate missing data from a non-stationary and

heteroskedastic time series data. The algorithm uses an ensemble of regressors and avoids discarding

old knowledge resulting from discarding old networks. Instead, networks are stored and ranked

according to a particular concept (Nelwamondo and Marwala, 2007b). The algorithms proposed uses

incremental learning, hence, online learning. The algorithm is divided into three sections namely

training, validation and testing as described below.

1. Training:

Batch learning is initially used. In this training, it is assumed that the data available for

initial training will cover the entire range of the data that may be observed even in future.

In this training, each missing datum is predicted using the past i instances where i = 6 in

the application of this work. This implies that the window size is fixed at six samples. While

sliding this window through the data, the heteroskedasticity of each window is calculated. All

vectors are then grouped according to their heteroskedasticity. This process result in disordering

the sequence of the data. An ensemble of neural networks to predict data for a particular

heteroskedasticity range is then trained. An MLP neural network as shown in Figure 6.2 is

used.
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Figure 6.2: MLP network using six previous data instances to predict the current value.

In the entire range of heteroskedasticity [0, 1], a subrange of length 0.05 was used and various

neural networks were trained. This practice led to 20 subranges and as a result, 20 trained

neural networks. Each network was assigned to a subrange and was optimised for such range.

The objective here was to have at least one neural network designed for each individual sub-

range. This does not, however, imply that only one network would be used in a particular

subrange as we need to add diversity to the system. An assumption made was that sufficient

data were available and the dataset well represented the full data. The next step following here

is validation.
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2. Validation:

All networks created in the training section above are subjected to a validation set containing all

the groupings of data. As mentioned earlier, grouping is done based on the heteroskedasticity

values. Each regressor is tested on all groups and weights are assigned accordingly. The weight

is assigned using the weighted majority scheme given by (Merz, 1997) as:

αk =
1− Ek∑N

j=1(1− Ek)
(6.2)

where Ek is the estimate of model k’s error on the validation set. This leads to each network

with 20 weights simply because a new weight will be assigned when the network is validated

on each grouping. Weights are assigned to each network for each group, leading to a weight

vector as shown in Table 6.1.

Table 6.1: An illustration of how weights are assigned to each neural network after validation

Network range 1 range 2 range 3 range 4 . . . range 20

1 α
(1)
1 α

(1)
2 α

(1)
3 α

(1)
4 . . . α

(1)
20

2 α
(2)
1 α

(2)
2 α

(2)
3 α

(2)
4 . . . α

(2)
20

3 α
(3)
1 α

(3)
2 α

(3)
3 α

(3)
4 . . . α

(3)
20

...
...

...
...

...
. . .

...

20 α
(20)
1 α

(20)
2 α

(20)
3 α

(20)
4 . . . α

(20)
20

3. Testing:

When missing data are detected, i instances before the missing data are used to create a vector

of instances. The heteroskedasticity of this vector is evaluated. From all the networks created,

only those networks that have bigger weights assigned to them in the validation set for the
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same range of heteroskedasticity are chosen. In this application, all available networks are used

and the missing values are approximated as shown below

f(x) = y ≡
k=N∑
k=1

αifk(x) (6.3)

where α is the weight assigned during the validation stage when no data were missing and N

is the total number of neural networks used. For a given network, the weights are normalised

such that
∑i=N

i=1 αi ≈ 1.

After an efficient number of new instances has been sampled, the training process is repeated

and this process is shown in an illustration in Figure 6.3. The next section reports on the

evaluation of the algorithm on two data sets.

Figure 6.3: Illustration of the proposed algorithm

6.6 Empirical Evaluation Using Simulated Dataset

1. Case study 1

Firstly the algorithm proposed in Section 6.5.2 is evaluated on the time series data produced

by numerical simulation. A sequence of uncorrelated Gaussian random variables is generated
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with zero mean and variance of 0.108 as done by Stefanakos and Athanassoulis (2001). In this

study, data is simulated as if it is coming from a sensor that measures some variable that exhibit

nonstationary characteristics. The data is made to show some cyclic behavior that illustrate a

cyclic concept drift. Figure 6.4 shows a sample of the simulated data.

Figure 6.4: Sample data with cyclic concept drift

2. Case study 2

The second test sample was created using the Dow Jones stock market data. The stock market

is well known for being difficult to predict as it exhibits nonstationarity. Furthermore, the stock

market is a good example of data with concept drift. In this section, the opening price of the

Dow Jones stock is also simulated as some data collected from some sensor and sampled at a

constant interval. A sample of this data is shown in Figure 6.5. The relative performance of the
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algorithm is measured by how close the prediction is to the actual data. The results obtained

with this data are summarised in the next section.

Figure 6.5: Sample data with both gradual and sudden concept drift

6.7 Experimental Results

Firstly the effect of the number of regressors on the error was evaluated. Performance in terms of

accuracy is shown in Figure 6.6 for the study in case 1 and this figure evaluates predictability of

missing sensor values within 10% tolerance as used in the previous chapters.

95



6.7. EXPERIMENTAL RESULTS

Figure 6.6: Effect of the number of regressors on the prediction accuracy for Case study 1

As the number of estimators is increased, the Mean Squared Error reduces. However, there is a point

at which increasing the number of regressors does not significantly affect the error. In Figure 6.7,

this point is observed when regressors are 16 and when regressors are 4 in Figure 6.8. From this

point onwards, increasing the number of regressors does not improve the results significantly. This

point has been observed to vary from one estimation to the other. It has also been observed that

judging this point using what happened in the validation stage is not sufficient as the concept could

have drifted already. As a result, all 20 estimators were used.

For each case study, the algorithm was tested with 500 missing points and the same algorithm was

used to estimate the missing values. Performance was calculated based on how many missing points

are estimated within a given percentage tolerance and we only considered 10% tolerance levels.
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Figure 6.7: Effect of the number of regressors on the Mean Square Error for the simulated data

Figure 6.8: Effect of the number of regressors on the Mean Square Error for the real data of the

from the stock market
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Results are summarised in Table 6.2. In addition, the correlation coefficients between the missing

data and the estimated data are computed and the results are shown in Table 6.2.

Table 6.2: Results obtained from both case studies and the correlation coefficients between the

estimated and the actual values for prediction within 10%

Case study Estimate within 10% Estimate within 5% Corr Coefficient

1 78% 41% 0.78

2 46% 25% 0.26

Results in Table 6.2 show that prediction of missing data when there is a large concept drift is not

very accurate. It can be seen that there is poor correlation between the estimated data and the

actual data for Case study 2. This point was was further investigated in this study, paying particular

attention to the data set of Case study 2. The best results obtained in estimation of missing data in

that case are shown in Figure 6.9.

It was observed that there is a time lag of approximately two instances. Pan et al. (2005) also found

a lag in their stock market prediction. Findings in this paper show that this lag is responsible for

the poor correlation coefficient reported in Table 6.2. Results obtained here give some light on the

use of heteroskedasticity as a measure of concept drift.
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Figure 6.9: Best results obtained with the data set of case study 2

6.8 Discussion and Conclusion

In most cases, when sensors fail, estimation of the missing data becomes essential. However, this

becomes a difficult task when the variable measured demonstrates non-stationarity. This chapter

proposed an algorithm to approximate missing data in non-stationary time series that may also be

characterised by concept drift. An ensemble of estimators has been used and the final output was

computed using the weighted approach of combining regression machines. Results show that the

predictability increases as the number of neural networks used is increased. This is seemingly caused

by the concept drift. The concept simply drifts from a region mastered by one neural network to a

region mastered by another.

This chapter has open a new direction for research, where missing data can be estimated for non-

stationary applications. Is is evident from the literature review this area has never been explored.
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While the proposed technique is novel, it is not without weaknesses. The major drawback is that

the proposed technique requires more data to be available during the training stage. Furthermore,

an ensemble with a large number of neural network slows down the prediction which then reduces

the usability of the method in fast sampled data. The proposed method can also be computationally

expensive as it requires a large memory to store all the networks and their assigned weights. The

chapter has, however, uniquely opened the doors of research to this area. Many other methods need

to be developed so that they can be compared to the unique existing approach proposed in this

chapter.
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Chapter 7

Rough Sets Computations for Missing Data

Imputation

7.1 Introduction

This thesis has thus far presented different techniques for missing data estimation, ranging from case

deletion to advanced techniques such as the use of neural networks. Special attention has been given

to imputation techniques such as the Expectation Maximisation as well as the use of neural networks,

coupled with an optimisation technique such as genetic algorithms. The use of neural networks comes

with a greater cost in terms of computation and data has to be made available before the missing

condition occurs. This implies that data need to be available for the purpose of training the neural

network. Moreover, the loss function that needs to be optimised in the technique of combining neural

network and an optimisation algorithm might not be straight forward. Although these techniques

may offer better accuracy as compared to other traditional methods, it is in the view of this research

to implement an algorithm that balances the trade-off between prediction accuracy and computation

cost.
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This chapter will implement a rough set based approach to estimate missing data. In the implemen-

tation of rough sets in this chapter, it is hypothesised that it is not always necessary to use overly

complex techniques for missing data, instead, hot deck imputations where missing data are derived

from similar cases can be as good. It is envisaged that in large databases, it is more likely that

the missing values could be similar to some other variables observed somewhere in the same data.

Instead of approximating missing data, it might therefore be cheaper to spot similarities between the

observed data instances and those that contain missing attributes.

7.2 Applications of Rough Sets

There are many applications of rough sets reported in literature. Most of the applications assume

that complete data is available (Grzymala-Busse, 2004). This is, however, not often the case in real

life situations. There is also a great deal of information regarding various applications of rough sets

in medical data. Rough sets have been used mostly in prediction cases and Tettey, Nelwamondo

and Marwala (2007) have just used rough set theory in rule extraction and compared their results

with those obtained using neuro-fuzzy models. The results indicated that rough sets are better

than neuro-fuzzy systems in terms of clarity and interpretability of the results (Tettey et al., 2007).

Rowland et al. (1998) compared neural networks and rough sets for the prediction of ambulation

following a spinal cord injury. Although rough sets performed slightly worse than neural networks,

they proved that they can still be used in prediction problems. Rough sets have also been used

in learning Malicious Code Detection by Zhang et al. (2006) and in Fault diagnosis (Tay and

Shen, 2003). In all applications mentioned above, rough sets were used under the assumption that

all data are available, which is often not the case. Grzymala-Busse and Hu (2001) have presented nine

approaches of estimating missing values. Among others, the presented methods include techniques
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such as selecting the most common attribute, concept most common attribute, assigning all possible

values related to the current concept, deleting cases with missing values, treating missing values

as special values and imputing for missing values using other techniques such as neural networks,

and maximum likelihoods approaches, as presented in earlier chapters of this thesis. Some of the

techniques proposed come with expense either in terms of computation time or loss of information.

There is a substantial amount of work in the literature that demonstrates how certain and possible

decisions rules may be computed from incomplete decision tables. A well known Learning from

Examples Module (LEM2) rule induction algorithm (Grzymala-Busse, 1992) has been explored for

rule extraction. LEM2 is a component of the Learning from Examples based on Rough Sets (LERS)

data mining system. In this chapter, little attention will be given to rule extraction as the chapter

aims at demonstrating that missing data can be imputed without the use of overly complicated

techniques.

7.3 Rough Set Theory

The rough sets theory provides a technique of reasoning from vague and imprecise data (Goh and

Law, 2003). The technique is based on the assumption that information of interest is associated

somehow with some information of the universe of the discourse as discussed by Komorowski et al.

(1999) and Yang and John (2006). Objects with same information are indiscernible in the view of the

available information. An elementary set consisting of indiscernible objects forms a basic granule of

knowledge. A union of elementary sets is referred to as a crisp set, otherwise the set is considered to

be rough. The next few subsections briefly introduce concepts that are common to rough set theory.
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7.3.1 Information System

An information system (Λ), is defined as a pair (U, A) where U is a finite set of objects called

the universe and A is a non-empty finite set of attributes as shown in Eq (7.1) below (Yang and

John, 2006).

Λ = (U, A) (7.1)

Every attribute a ∈ A has a value which must be a member of a value set Va of the attribute a.

a : U→ Va (7.2)

A rough set is defined with a set of attributes and the indiscernibility relation between them. Indis-

cernibility is discussed next.

7.3.2 Indiscernibility Relation

Indiscernibility (I) relation is one of the fundamental ideas of rough set theory (Grzymala-Busse

and Siddhaye, 2004). Indiscernibility simply implies similarity (Goh and Law, 2003). Given an

information system Λ and subset B ⊆ A, B determines a binary relation I(B) on U:

(x, y) ∈ I(B) iff a(x) = a(y) (7.3)

for all a ∈ B where a(x) denotes the value of attribute a for element x. Eq (7.3) implies that any

two elements, x and y, that belong to I(B) should be identical from the point of view of a.
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Suppose U has a finite set of N objects {x1, x2, . . . , xN}. Let Q be a finite set of n attributes

{q1, q2, . . . , qn} in the same information system Λ, then,

Λ = 〈U, Q, V, f〉 (7.4)

where f is the total decision function called the information function. From the definition of the

Indiscernibility Relation given in this section, any two objects have a similarity relation to attribute

a if they have the same attribute values everywhere except for the missing values.

7.3.3 Information Table and Data Representation

An Information Table (IT) is used in rough sets theory as a way of representing the data. The data

in the IT are arranged based on their condition attributes and a decision attribute (D). Condition

attributes and decision attribute are analogous to the independent variables and a dependent variable

(Goh and Law, 2003). These attributes are divided into C ∪ D = Q and C ∩ D = ∅. An IT can be

classified into complete and incomplete classes. All objects in a complete class have known attribute

values whereas an IT is considered incomplete if at least one attribute variable has a missing value.

An example of an incomplete IT is given in Table 7.1.

The dataset is represented by a table where each row represents an instance, sometimes referred to

as an object. Every column represents an attribute which can be a measured variable. This kind of a

table is also referred to as Information System (Komorowski, Pawlak, Polkowski and Skowron, 1999).
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Table 7.1: An example of an Information Table with missing values, where x1, x2 and x3 are the

condition attributes and D is the decision attribute

x1 x2 x3 D

1 1 1 0.2 B

2 1 2 0.3 A

3 0 1 0.3 B

4 ? ? 0.3 A

5 0 3 0.4 A

6 0 2 0.2 B

7 1 4 ? A

7.3.4 Decision Rules Induction

Rough set also involve generating decision rules for a given IT. The rules are normally deter-

mined based on condition attributes values (Goh and Law, 2003). The rules are presented in an

if CONDITION(S)-then DECISION format. However, a detailed example on demonstrating the

procedures to be followed in doing rule induction is shown in Appendix C. The algorithm used in

this chapter is derived from the approach presented in Appendix C except that no rules were ex-

tracted here. The major interest of this chapter are therefore to only estimate the missing data as

opposed to making the decision where rules become of utmost help. Work has, however, been done

for induction decision rules in HIV classification (Tettey et al., 2007).
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7.3.5 Set Approximation

There are various properties of rough sets that have been presented in (Pawlak, 1991) and (Pawlak,

2002). Some of the properties are discussed below.

1. Lower and Upper Approximation of Sets

The lower and upper approximations are defined on the basis of indiscernibility relation dis-

cussed previously. The lower approximation is defined as the collection of cases whose equivalent

classes are contained in the cases that need to be approximated whereas the upper approxima-

tion is defined as the collection of classes that are partially contained in the set that needs to

be approximated (Rowland, Ohno-Machado and Ohrn, 1998).

Let concept X be defined as a set of all cases defined by a specific value of the decision. Any

finite union of elementary set, associated with B is called a B−definable set (Grzymala-Busse

and Siddhaye, 2004). The set X is approximated by two B − definable sets, referred to as

the B-lower approximation denoted by BX and B-upper approximation, BX. The B-lower

approximation is defined as (Grzymala-Busse and Siddhaye, 2004)

{x ∈ U|[x]B ⊆ X} (7.5)

and the B-upper approximation is defined as

{x ∈ U|[x]B ∩X 6= ∅} (7.6)

where [x]B denotes an equivalent class of I(B) containing the variable x. There are other meth-

ods that have been reported in the literature for defining the lower and upper approximations

for a completely specified decision tables. Some of the common ones include approximating the
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lower and upper approximation of X using Equations (7.7) and (7.8) respectively as follows

(Grzymala-Busse, 2004):

∪{[x]B|x ∈ U, [x]B ⊆ X} (7.7)

∪{[x]B|x ∈ U, [x]B ∩X 6= ∅} (7.8)

The definition of definability is modified in cases of incompletely specified tables. In this

case, any finite union of characteristics sets of B is called a B − definable set. Three different

definitions of approximations have been discussed (Grzymala-Busse and Siddhaye, 2004). Again

letting B be a subset of A of all attributes and R(B) be the characteristic relation of the

incomplete decision table with characteristic sets K(x), where x ∈ U , the following are defined:

BX = {x ∈ U|KB(x) ⊆ X} (7.9)

and

BX = {x ∈ U|KB(x) ∩X 6= ∅} (7.10)

The equations in (7.9) and (7.10) are referred to as singletons. The other method of defining

lower and upper approximations defines approximations as unions of elementary sets, subsets

of U. The subset lower and upper approximations of incompletely specified data sets are then

defined as:

BX = ∪{KB(x)|x ∈ U,KB(x) ⊆ X} (7.11)
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and

BX = ∪{KB(x)|x ∈ U, kB(x) ∩X 6= ∅} (7.12)

Another method is also considered where the universe U is replaced by a concept X. More

information on these methods can be found in (Grzymala-Busse, 2004; Grzymala-Busse and

Hu, 2001; Grzymala-Busse, 1992; Grzymala-Busse and Siddhaye, 2004).

It follows from the properties that a crisp set is only defined if B(X) = B(X). Roughness

therefore is defined as the difference between the upper and the lower approximation.

2. Rough Membership Functions

Rough membership function is a function µx
A : U → [0, 1] that when applied to object x,

quantifies the degree of overlap between set X and the indiscinibility set to which x belongs.

The rough membership function is used to calculate the plausibility as discussed in Appendix

B and is defined as (Hong, Tseng and Wang, 2002):

µX
A (X) =

|[X]B ∩X|
|[X]B|

(7.13)

.

7.4 Missing Data Imputation Based on Rough Sets

The algorithm implemented here imputes the missing values by presenting a list of all possible

values, based on the observed data. As mentioned earlier, the hypothesis here is that in most

finite databases, a case similar to the missing data case could have been observed before.

It therefore should be cheaper to use such values, instead of computing missing values with

complex methods such as neural networks. The algorithm implemented is shown in Algorithm
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2, followed by a work-through example demonstrating how the missing values are imputed.

There are two approaches to reconstructing the missing values. The missing values can either

be probabilistically interpreted or be possibilistically interpreted. When the missing values

are probabilistically interpreted, every element in the domain of the attribute has the same

probabilistic degree of being the correct value (Nakata and Sakai, 2006).

The algorithm proposed here is fully dependent on the available data and makes no additional

assumptions about the data or the distribution thereof. The objective is to transform an incomplete

information system into a complete one. A list of possible values is given in a case where a crisp set

could not be found. It is from this list that possible values may be heuristically chosen. Justification

to this is that it is not always the case that decision makers need to know the exact value. As a

result, it may be cheaper to have a rough value. The possible imputable values are obtained by

collecting all the entries that lead to a particular decision D. The algorithm used in this application

is a simplified version of the algorithm of Hong et al. (2002) described in more details in Appendix

B.

The algorithm will now be illustrated using an example. Missing values will be denoted by the

question mark symbol (?). Attribute values of attribute a are denoted as Va. Using the notation

defined in (Gediga and Duntsch, 2003), let relQ(x) represent a set of all Q-relevant attributes of x.

Assuming an IT as presented in Table 7.2, where x1 is in binary form, x2 ∈ [1 : 5] and being integers

whereas x3 can either be 0.2, 0.3 or 0.4.

The algorithm firstly seeks relationship between variables. Since this is a small database, it is assumed

that the only variable that will always be known is the decision (Nelwamondo and Marwala, 2007c).

The first step will be to partition the data according to the decision and this could be done as follows:
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Algorithm 2: Rough sets based missing data imputation algorithm
input : Incompete data set Λ with a attributes and i instances.

All these instances should belong to a desision D

output : A vector containing possible missing values

Assumption: D and some attributes will always be known

forall i do
→ Partition the input space according to D → Arrange all attributes according to order of availability,

with D being first.

end

foreach attribute do
→ Without directly extracting the rules, use the available information to extract relationships to other

instances i in the Λ.

→ The family of equivalent classes ε(a) containing each object oi for all input attributes is computed.

→ The degree of belongingness κ(o[A]1/|dom(aimissing
)| where 6= o′ and dom(x14) denotes the domain of

attribute x14 , which is the fourth instance of x1, and |dom(x14)| is the cardinality of dom(x14)

while extracting relationships do
If i has the same attribute values with aj everywhere except for the missing value, replace the

missing value, amissing, with the value vj , from aj , where j is an index to onother instance.

Otherwise proceed to the next step

end

→ Complete the lower approximation of each attribute,given the available data of the same instance with

the missing value.

while doing this do
IF more than one vj values are suitable for the estimation, postpone the replacement for later when

it will be clear which value is appropriate

end

→ Compute the incomplete upper approximations of each subset partition.

→ Do the computation and imputation of missing data as was done with the lower approximation.

→ Either crips sets will be found, otherwise, rough sets can be used and missing data can be

heuristically be selected from the obtained rough set.

end
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Table 7.2: An example of a table with missing values

x1 x2 x3 D

1 1 1 0.2 B

2 1 2 0.3 A

3 0 1 0.3 B

4 ? ? 0.3 A

5 0 3 0.4 A

6 0 2 0.2 B

7 1 4 ? A

ε(D) = {o1, o3, o6}, {o2, o4, o5, o7}

Two partitions are obtained due to the binary nature of the decision in the chosen example. The next

step is to extract indescinible relationships within each attribute. For x1, the following is obtained:

IND(x1) = {(o1, o1), (o1, o2), (o1, o4), (o1, o7), (o2, o2), (o2, o4), (o2, o7), (o3, o3), (o3, o4),

(o3, o5), (o3, o6), (o4, o4), (o4, o5), , (o4, o6)(o4, o7), (o5, o5), (o5, o6), (o6, o6), (o7, o7)}

The family of equivalent classes ε(x1) containing each object oi for all input variables is computed

as follows:

ε(x1) = {o1, o2, o4, o7}, {o3, o4o5, o6}
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Similarly,

ε(x2) = {o1, o3, o4}, {o2, o4, o6}, {o4, o5}, {o,o7}, {o4}{07}

and

ε(x3) = {o1, o6, o7}, {o2, o3, o4, o7}, {o5, o7}

In the example above, the degree of belongingness κ(o[x14 ] = o[x14 ] = 1/|dom(x14)| where o 6= o′ and

dom(x14) denotes the domain of attribute x14 , which is the forth instance of x1, and |dom(x14)| is the

cardinality of dom(x14). If the missing values were to be possibilistically interpreted, all attributes

have the same possibilistic degree of it being the actual one.

Due to the fact that the data used in this chapter are not easily determinable, the chapter shall only

use the probabilistic interpretation. Under the probabilistic interpretation of missing values, (Nakata

and Sakai, 2006):

∑
E(X)3o

κ(E(X) ∈ ε(X)) = 1 (7.14)

where E(X) ∈ ε(X)

The lower approximations is defined as:

A(Xmiss, {Xavail,D}) = {E(Xmiss)|∃(Xavail,D), E(X) ⊆ (Xavail,D)} (7.15)

whereas the upper approximation is defined as

A(Xmiss, {Xavail,D}) = {E(Xmiss)|∃(Xavail,D), E(X) ∩Xavail ∩ D}. (7.16)
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Using IND(x1), the families of all possible classes containing o4 is given by

Possε(x1)oi = {o1, o2, o7}, {o1, o2, o4, o7}, i = 1, 2, 7

Possε(x1)oi = {o3, o5, o6}, {o3, o4, o5, o6}, i = 3, 5, 6

Possε(x1)o4 = {o4, o1, o2, o7}, {o3, o4, o5, o6}

The probabilistic degree to which one can be sure that the chosen value is the right one is given by

(Nakata and Sakai, 2006) as

κ(({oi}) ∈ ε(x1)) = 1/2, i = 1, 2, 7

κ(({oi}) ∈ ε(x1)) = 1/2, i = 3, 5, 6

κ(({oi}) ∈ ε(x1)) = 1/2, i = 4

else

κ({oi}) ∈ ε(x1)) = 0

The else part applies to all other conditions such as κ({o1, o2, o3}) ∈ ε(x1)) = 0.

A family of weighted equivalent classes is now computed as follows:

ε(x1) = {{o1, o2, o4, o7}{1/2}}, {{o3, o4o5, o6}{1/2}}

The values ε(x2) and ε(x3) are computed in a similar way. These families of weighted equivalent

classes are then used to obtain the lower and upper approximations as presented above. The degree
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to which object o has the same value as object o′ on the attributes is referred to as the degree

of belongingness and is defined in terms of the binary relation for indiscernibility as (Nakata and

Sakai, 2006):

IND(X) = {((o, o′), κ(o[X] = o′[X]))|(κ(o[X] = o′[X]) 6= 0) ∧ (o 6= o′)} ∪ {((o, o), 1)}

where κ(o[X] = o′[X]) is the indiscernibility degree of the objects o and o′ and this is equal to the

degree of belongingness,

κ(o[X] = o′[X]) = ⊗
Ai∈X κ(o[Ai] = o′[Ai])

where the operator ⊗ depends on whether the missing values are possibilistically or probabilistically

interpreted. For probabilistic interpretation, the parameter is a product denoted by ×, otherwise the

operator min is used .

A(Xmiss, {Xavail,D}) = {E(Xmiss)|∃(Xavail,D), E(X) ⊆ (Xavail,D)} (7.17)

The upper approximation is further defined as (Nakata and Sakai, 2006):

A(Xmiss, {Xavail,D}) = {E(Xmiss)|∃(Xavail,D), E(X) ∩Xavail ∩ D} (7.18)
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7.5 Experimental Evaluation

7.5.1 Database and Pre-processing

The HIV database as presented in Chapter 2 was used in this task. Pre-processing was done as

described in Chapter 2. In this task, the data collected during the years 2001, 2002 and 2003 were

used.

7.5.2 Variable Discretisation

The discretisation defines the granularity with which one would like to analyse the universe of dis-

course. If one chooses to discretise the variables into a large number of categories the rules extracted

are more complex to analyse. Therefore, if one would like to use the rough sets for rule analysis

and interpretation rather than for classification it is advisable that the number of categories be as

small as possible. For the purposes of this work the input variables have been discretised into four

categories. A description of the categories and their definition is shown in Table 7.3.

Table 7.3: A table showing the discretised variables.

Race Age Education Gravidity Parity Father’s Age HIV

1 ≤ 19 Zero (0) Low (≤ 3) Low (≤ 3) ≤ 19 0

2 [20− 29]) P (1− 7) High (> 3) High (> 3) ([20− 29]) 1

3 [30− 39]) S (8− 12) - - ([30− 39]) -

4 ≥ 40 T (13) - - ≥ 40 -

Table 7.4 shows the simplified version of the table shown in Section 6.5.1.
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Table 7.4: Extract of the HIV database used, with missing values after discretisation

Race Region Educ Gravid Parity Age Father’s age HIV

1 C ? ≤ 3 ≤ 3 [31:40] [41:50] 0

2 B T ≤ 3 ≤ 3 ≤ 20 [21:30] 0

3 ? S ≤ 3 ≤ 3 ? [21:30] 1

2 C S ≤ 3 ? ≤ 20 [31:40] 1

3 B S ? ≤ 3 [21:30] [21:30] 0

? C S ≤ 3 ≤ 3 [21:30] [21:30] 0

2 A P ≤ 3 ≤ 3 ≤ 20 ? 0

1 C ? > 3 ? [21:30] [21:30] 0

4 A P ≤ 3 ≤ 3 ≤ 20 [21:30] 1

1 B S ≤ 3 ≤ 3 ≤ 20 [21:30] 1

7.5.3 Results and Discussion

The experimentation was performed using both the original and the simplified data sets. Results

obtained in both cases are summarised in Table 7.5.

Table 7.5: Missing data estimation results for both the original data and the generalised data in

percentage

Education Gravidity Parity Father’s age

Original 83.1 86.5 87.8 74.7

Generalised 99.3 99.2 99 98.5

It can be seen that the prediction accuracy is much higher for the generalised data set. This is because

the states have been reduced. Furthermore, instead of being exact, the likelihood of being correct is
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even higher if one has to give a rough estimate. For instance, instead of saying that someone has a

highest level of education of 10, it is much safer to say, They have secondary education. Although this

approach leaves details, it is often the case that the left-out details are not required. In a decision

system such as the one considered in this chapter, knowing that the prospective father is 19 years

old may carry the same weight as saying that the father is a teenager.

7.6 Conclusion

Rough sets have been used for missing data imputation and characteristic relations are introduced

to describe incompletely specified decision tables. It has been shown that the basic rough set idea

of lower and upper approximations for incompletely specified decision tables may be defined in a

variety of different ways. The technique was tested with a real database and the results with the

HIV database are acceptable with accuracies ranging from 74.7% to 100%. One drawback of this

method is that it makes no extrapolation or interpolation and as a result, can only be used if the

missing case is similar or related to another case with full or more observation. Rough sets were

applied to a new database and the results of this chapter are in agreemnet with the results of other

researchers. Many researchers who worked in the subject area had only managed to apply rough sets

to smaller datasets. This chapter, has therefore confirmed that rough sets can be reliable for missing

data estimation in larger and real databases.

118



Chapter 8

Fuzzy ARTMAP and Neural Network

Approach to On-line Processing of Inputs with

Missing Values

8.1 Introduction

This chapter investigates a problem of condition monitoring where computational intelligence tech-

niques are used to classify and regress in the presence of missing data without the actual prediction

of missing values. A novel approach where no attempt is made to recover the missing values for

both regression and classification problems is presented. An ensemble of fuzzy-ARTMAP classifiers

to classify in the presence of missing data is proposed. The algorithm is further extended to a re-

gression application where MLPs are used in an attempt to obtain the correct output with limited

input variables. The proposed method is compared to a technique that combines neural networks

with Genetic Algorithm (GA) to approximate the missing data.
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8.2 Background on Fuzzy ARTMAP

Fuzzy ARTMAP is a neural network architecture developed by Carpernter et al. (1992) and is

based on Adaptive Resonance Theory (ART). The Fuzzy ARTMAP has been used in condition

monitoring by Javadpour and Knapp (2003), but their application was not on-line. The Fuzzy

ARTMAP architecture is capable of fast, on-line, supervised incremental learning, classification and

prediction (Carpenter, Grossberg, Markuzon, Reynolds and Rosen, 1992). The fuzzy ARTMAP

operates by dividing the input space into a number of hyperboxes, which are mapped to an output

space. Instance based learning is used, where each individual input is mapped to a class label. Three

parameters namely the vigilance ρ ∈ [0, 1], the learning rate β ∈ [0, 1] and the choice parameter α

are used to control the learning process. The choice parameter is generally made small and a value

of 0.01 was used in this application. Parameter β controls the adaptation speed, where 0 implies a

slow speed and 1, the fastest. If β = 1, the hyperboxes get enlarged to include the point represented

by the input vector. The vigilance represents the degree of belonging and it controls how large any

hyperbox can become, resulting in new hyperboxes being formed. Larger values of ρ may lead to

smaller hyperboxes being formed and may lead to ‘category proliferation’, which can be viewed as

over-training. A more detailed description of the Fuzzy ARTMAP is provided in Appendix C. Fuzzy

ARTMAP is preferred due to its incremental learning ability. As new data is sampled, there will be

no need to retrain the network as would be the case with the MLP.

For larger datasets, processing times and memory space introduce several challenges. Incremental

learning becomes an attractive feature since learning does not necessarily have to be done all at once

(Andonie, Sasu and Beiu, 2003). A neural network to be used in large datasets should therefore

(Andonie et al., 2003; Nelwamondo and Marwala, 2007a):
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1. be able to learn additional information from new data.

2. preserve previously acquired knowledge.

3. be able to accommodate new data categories that may be introduced with new data.

4. not require access to the original data used to initially train the system.

The fuzzy ARTMAP offers all these characteristics and as a result, will be preferred. The Fuzzy

ARTMAP is also considered to be one of the premier neural networks architectures as discussed

by Castro et al. (2005). Fuzzy ARTMAP has been used in the development of a reactive agent-

based car following model and performed equally to the back-propagation techniques, whereas Fuzzy

ARTMAP offers an incremental learning ability. Fuzzy ARTMAP has also been used for agent-

based optimisation by Taylor and Wolf (Taylor and Wolf, 2004) and results demonstrated good

generalisation and faster learning than other classifies. Due to its success in various applications,

fuzzy ARTMAP will be used in this section.

8.3 A Novel Ensemble-based Technique for Missing Data

The algorithm proposed here uses an ensemble of neural networks to perform either classification and

regression in the presence of missing data. Ensemble based approaches have been well researched

and have been found to improve classification performances in various applications (Freund and

Schapire, 1995). The potential of using ensemble based approach for solving the missing data problem

remains unexplored in both classification and regression problems. In the proposed method, batch

training is performed whereas testing is done on-line. Training is achieved using a number of neural

networks, each trained with a different combination of features. For a condition monitoring system

that contains n sensors, the user has to state the value of navail, which is the number of features most
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likely to be available at any given time. Such information can be deduced from the reliability of the

sensors as specified by manufacturers. Specifications such as Mean-time-between-failures (MTBF)

and Mean-time-to-failure (MTTF) become more useful in detecting which sensors are most likely to

fail than others.

When the number of sensors most likely to be available has been determined, the number of all

possible networks can be calculated using:

N =

 n

navail

 =
n!

n(n− navail)!
(8.1)

where N is the total number of all possible networks, n is the total number of features and navail is

the number of features most likely to be available at any time. Although the number navail can be

statistically calculated, it has an effect on the number of networks that can be available. Let us con-

sider a simple example where the input space has five features, labeled : a, b, c, d and e and there are

3 features that are most likely to be available at any time. Using equation (8.1), variable N is found

to be 10. These classifiers will be trained with features [abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde].

In a case where one variable is missing, say a, only four networks can be used for testing, and these

are the classifiers that do not use a in their training input sequence. If there exists a situation where

two variables are missing, say a and b, only one classifier will be usable. As a result, the number of

classifiers reduces with an increase in a number of missing inputs per instance.

Each neural network is trained with navail features. The validation process is then conducted and the

outcome is used to decide on the combination scheme. The training process requires complete data

to be available as training is done off-line. The available data set is divided into the ‘training set’

and the ‘validation set’. Each network created is tested on the validation set and is assigned a weight

122



8.3. A NOVEL ENSEMBLE-BASED TECHNIQUE FOR MISSING DATA

according to its performance on the validation set. A diagrammatic illustration of the proposed

ensemble approach is presented in Figure 8.1.

Figure 8.1: Diagrammatic illustration of the proposed ensemble based approach for missing data

For a classification task, the weight is assigned using the weighted majority scheme given by (Merz,

1997) as:

αi =
1− Ei∑N

j=1(1− Ei)
(8.2)

where Ei is the estimate of model i’s error on the validation set. This kind of weight assignment has its

roots in what is called boosting and is based on the fact that a set of networks that produces varying

results can be combined to produce better results than each individual network in the ensemble

(Merz, 1997). The training algorithm is presented in Algorithm 3 and the parameter ntwki represents

the i− th neural network in the ensemble

The testing procedure is different for classification and regression. In classification, testing begins

by selecting an elite classifier. This is chosen to be the classifier with the best classification rate on
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Algorithm 3: Proposed algorithm for decision making without prediction of missing data
input : all variable ∈ InputSpace & navail obtained from the user

output: Decision

Calculate number of maximum Networks N using equation (8.1)

forall (variables 1→ Xn) do
Create all possible networks, ntwk1 → ntwkC , each with navail inputs

end

while Training do
← Train ntwki with a different combination of navl inputs

forall i→ C do
← Subject ntwki to a validation set as follows:

−→ Select the corresponding features used;

−→ Obtain network performance;

−→ Assign weights, α according to equation (6.2) and store for future use

end

end

while Testing do
← Load parameters from trainning;

if A Classification problem then

foreach instance with missing values do
← Select networks, starting with those with bigger α;

← Bring 2 more networks, using their αas the selection criteria;

← Use majority voting to obtain the final classification

end

end

if A Regression Problem then

foreach instance with missing values do
← Get regression estimates from all networks trained without the current missing variable

← Use their weights to compute the final value.

end

end

end
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the validation set. To this elite classifier, two more classifiers are gradually added, ensuring that an

odd number is maintained. Weighted majority voting is used at each instance until the performance

does not improve or until all classifiers are used. In a case of regression, all networks are used all at

once and their prediction, together with their weights are used to compute the final value. The final

predicted value is computed as follows:

f(x) = y ≡
i=N∑
i=1

αifi(x) (8.3)

where α is the weight assigned during the validation stage when no data were missing and N is the

total number of regressors. Parameter α is assigned such that
∑i=N

i=1 αi = 1. Considering that not all

networks shall be available during testing, there is a need to define Nusable as the number of regressors

that are usable in obtaining the regression value of an instance j. As a result,
∑i=Nusable

i=1 αi 6= 1.

The weights are recalculated to ensure that
∑Nusable

n=1 αn = 1.

8.4 Experimental Results and Discussion

This section presents the results obtained in the experiments conducted using the technique presented

above. Firstly, the results of the proposed technique in a classification problem will be presented

and later the method will be tested in a regression problem. In both cases, the results are compared

to those obtained after imputing the missing values using the neural network-genetic algorithm

combination as discussed above.

8.4.1 Application to Classification

(a) Data Set

The experiment was performed using the Dissolved Gas Analysis data obtained from a trans-
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former bushing operating on-site. The data consist of 10 features, which are the gases that

dissolved in the oil. The hypothesis in this experiment is to determine if the bushing condition

(faulty or healthy) can be determined while some of the data are missing. The data was divided

into the training set and the validation set, each containing 2000 instances.

(b) Experimental Setup

The classification test was implemented using an ensemble of Fuzzy-ARTMAP networks. Two

inputs were considered more likely to be missing and as a result, 8 were considered most likely

to be available. The on-line process was simulated where data is sampled one instance at a time

for testing. The network parameters were empirically determined and the vigilance parameter

of 0.75 was used for the Fuzzy-ARTMAP. The results obtained were compared to those obtained

using the the NN-GA approach, where for the GA, the crossover rate of 0.1 was used over 25

generations, each with a population size of 20. These parameters are empirically determined.

(c) Results

Using equation (8.1), a total of 45 networks was found to be the maximum possible. The

performance was calculated only after 4000 cases were evaluated and is shown in Fig. 8.2 . The

classification increases with an increase in the number of classifiers used. Although all these

classifiers were not trained with all the inputs, their combination seems to work better than

one network. The classification accuracy obtained under missing data goes as high as 98.2%

which compares very closely to a 100% which is obtainable when no data is missing.

Results obtained using this method are compared to those obtained when missing data were

first imputed using the NN-GA approach. The comparison results are tabulated in Table 8.1

below.

The results presented in Table 8.1 clearly show that the proposed algorithms can be used as a

means of solving the missing data problem. The proposed algorithm compares very well to the
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Figure 8.2: The performance vs number of classifiers

Table 8.1: Comparison between the proposed method and NN-GA approach for classification.

Proposed algorithm NN-GA

Number of missing 1 2 1 2

Accuracy (%) 98.2 97.2 99 89.1

Run time (s) 0.86 0.77 0.67 1.33

well known NN-GA approach. The run time for testing the performance of the method varies

considerably. It can be noted from the table that for the NN-GA method, run time increase

with increasing number of missing variables per instance. Opposed to the NN-GA approach, the

proposed method offers run times that decrease with increasing number of inputs. The reason

for this is that the number of Fuzzy-ARTMAP networks available reduces with an increasing

number of inputs as mentioned earlier. However, this improvement in speed comes at a cost of

the diversity. Furthermore, this method will completely come to a failure in a case where more

than navl inputs will be missing at the same time.
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8.4.2 Application to Regression

In this section, the algorithm implemented in the preceding section is extended to a regression

problem. The proposed algorithm is implemented using MLP mainly to show that it can work

independent of the neural network type used.

(a) Database

The data from a model of a Steam Generator at Abbott Power Plant (De Moor, 1998) was

used for this task. This data has four inputs, which are the fuel, air, reference level and the

disturbance. There are two outputs which shall be predicted using the proposed approach in

the presence of missing data. These outputs are drum pressure and the steam flow.

(b) Experimental Setup

The MLP here regresses in order to obtain two outputs which are the drum pressure and the

steam flow. Assume navl = 2 is the case and as a result, only two inputs can be used. An

ensemble of MLP networks was created, each with five hidden nodes and trained only using

two of the inputs to obtain the output. Due to limited features in the data set, this work shall

only consider a maximum of one sensor failure per instance. Each network was trained with

1200 training cycles using the scaled conjugate gradient algorithm and a hyperbolic tangent

activation function. All these training parameters were again empirically determined.

Since testing is done on-line where one input arrives at a time, evaluation of performance at

each instance would not give a general view of how the algorithm works. The work therefore

evaluates the general performance using the following formula only after N instances have been

predicted.

Error =
nτ

N
× 100% (8.4)
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where nτ is the number of predictions within a certain tolerance. In this chapter, a tolerance

of 20% is used and was arbitrarily chosen. Results are summarised in Table 8.2

Table 8.2: Regression accuracy obtained without estimating the missing values

Proposed alg NN-GA

Perf % Run time Perf % Run time

Drum Pressure 77 0.71 68 126

Steam Flow 86 0.77 84 98

Results show that the proposed method is well suited for the problem under investigation.

The proposed method performs better than the combination of GA and autoencoder neural

networks in the regression problem under investigation. The reason is that the errors that are

made when estimating the missing data in the NN-GA approach are further propagated to the

output-prediction stage.

The ensemble based approach proposed here does not suffer from this problem as there is no

attempt to approximate the missing variables. It can also be observed that the ensemble based

approach takes less time that the NN-GA method. The reason for this is that GA may take

longer times to converge to reliable estimates of the missing values depending on the objective

function to be optimised. Although, the prediction times are negligibly small, an ensemble

based technique takes more time to train since training involves many networks.

8.5 Discussion

In this chapter a novel technique for dealing with missing data for on-line condition monitoring prob-

lem was proposed. Firstly the problem of classifying in the presence of missing data was addressed,
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where no attempts are made to recover the missing values. The problem domain was then extended

to regression. The newly proposed technique performs better than the NN-GA approach, both in

accuracy and time efficiency during testing. The main contribution to literature was not only to

propose a new architecture, but to, among others, show that the architecture is also robust. The

proposed architecture is capable of working with any type of neural network as presented in this

chapter. This has been shown by using both the Fuzzy ARTMAP and the MLP in the proposed

configuration. The advantage of the proposed technique is that it eliminates the need for finding the

best estimate of the data, and hence, saves time.
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Chapter 9

Conclusion and Future Work

9.1 Summary and Contribution

The aim of this thesis was to investigate and develop techniques to impute missing data in various

applications. Firstly, techniques for data analysis and predictive analyisis were proposed. Predictive

analytics methods suitable for the missing data problem were presented and discussed. This analysis

was found to be vital in determining if data in question are predictable and hence, to help in choosing

the estimation techniques accordingly. Various techniques were applied and new views were drawn.

A review of the most common techniques for handling missing data was also presented. Various

techniques were presented and their merits and demerits were discussed. From the review, the

Expectation Maximisation (EM) and the neural network imputation techniques emerged as preferable

techniques. Due to the findings by other researchers such as Twala (2005) that the expectation

maximisation method was the best method, this work to compare the EM with the combination of

neural networks and genetic algorithms (NN-GA) to verify if indeed the claim is still valid. The

major contribution in this regard was to compare these techniques in terms of prediction accuracies
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and speed of prediction. As mentioned earlier, the goal was to verify if indeed, EM remains the state-

of-the-art. It was found that the EM technique works better than the NN-GA technique only if there

is little or no linear correlations between the input data variables. The use of autoencoders in the

NN-GA approach is aimed at capturing the correlations and as a result, the NN-GA works better for

input space that is highly intercorrelated. Moreover, the significance of the difference in performance

of the two methods was presented. These two techniques were found to be complementary to each

other.

The NN-GA technique was further investigated . Instead of using GA as before, GA was combined

with a local search method forming a hybrid GA. The aim was to reduce the time taken to convergence

to a solution. GA was used only to come to an optimal search space and a local optimiser was used

after GA has found the optimal search space. Furthermore, fast simulated annealing (FSA) was used

in this investigation and the results were compared to those obtained using the hybrid GA. The FSA

was found generally to be better than the hybrid GA in terms of speed and prediction accuracies.

Moreover, instead of using only one network, an ensemble of neural networks was considered and

the results were combined using weighted methods. Several significant insights were deduced from

the simulation results. It was deduced that for the problem of missing data where optimisation

techniques are used, the choice of an optimisation technique matters.

Although the doctoral work of He (2006) found that results obtained using an imputation method are

better than the results obtained when full a complete dataset with no missing values was used, the

finding in this work are in disagreement with this claim. It is in the view of this research that, when

imputing for missing values, the best achievable results should be estimating accurately the missing

values as given in a complete dataset. The results in this work present no possibility of achieving

results in the ‘complete’ dataset.
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Another unique contribution of this thesis was to use the NN-GA architecture as a base model to

derive an optimal sequence of decisions by making use of the dynamic programming principles. Not

only did the research demonstrate that dynamic programming is applicable in the problem of missing

data, but to also show that it is efficient in addressing the problem of missing data. This approach

makes it possible to modularise the problem of missing data, for maximum efficiency. With the

advancements in parallel computing, various modules of the problem could be solved by different

processors, working together in parallel.

Furthermore, a novel technique method for imputing missing data in non-stationary time series data

that learns even when there is a concept drift was proposed. This method uses heteroskedasticity

to detect concept drift. New direction for research, where missing data can be estimated for non-

stationary applications were opened by the introduction of this novel method. Thus, this thesis

has uniquely opened the doors of research to this area. The proposed technique uses an ensemble

of neural networks trained for a particular concept. Unlike other preferred methods in the litera-

ture, the proposed technique does not forget the past data. The proposed method keeps track of

all concepts that have been learned, regardless of whether they have drifted or not. Results showed

a prediction accuracies ranging from 46% to 76% for predicting within the 10% tolerance from the

actual values. This method is, however, computationally expensive as it requires a large memory to

store all the previously aquired knowledge. Many other methods need to be developed so that they

can be compared to the unique existing approach proposed in this thesis.

In addressing whether missing data necessarily needs to be imputed using complicated techniques

such as EM and neural networks, this work found that hot deck imputations are fairly acceptable.

It is found to be cheaper to impute missing data by simply analysing other cases that have similar

cases except for the missing values. Rough sets imputation were used under the condition that large

amount of data is available and prediction accuracies ranged from 70% to 100%. The work, has
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significantly confirmed that rough sets can be reliable for missing data estimation in larger and real

databases. Lastly, a technique that completely avoids imputing missing data was proposed. It was

found that at times, computational resourses are used for missing data imputations, whereas the

same results could have been found without predicting the missing values. The results obtained

using the proposed technique compares in favour of the proposed method than when missing data

were first imputed using the NN-GA technique. In this area of research, the work also demonstrated

that indeed, the goal of statistical procedures should be, not only to to estimate, but to lead to a

sound decision.

9.2 Direction for Future Work

Firstly, instead of just imputing the missing values, the confidence of estimation needs to be measured.

This will be of particular interest to time-series data with concept drift or with high levels of noise.

It will also be very important to measure the impact of the missing data on the decision that had

been made after missing values had been imputed. A further investigation on how the criteria can

be set for deciding which technique is suitable for a given application needs to be conducted. This

work has demonstrated the applicability of imputation techniques in real time-series data. Further

research needs also to be done to justify the applicability of some of the techniques discussed and a

way of automating the the imputation techniques.

The effect of the mechanism of missing data should be investigated. This work assumed the data to

be missing at random. The effect of this assumption on the decision needs to be investigated. As

opposed to assuming the missing data mechanism, it could be necessary to first investigate why data

is missing. The results of such investigation can pave a way towards selecting the right technique to

impute the missing values.
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P. D. Allison



Appendix A

Approaches to Missing Data Problems

This Appendix reviews some of the most common techniques that have been used to handle the

problem of missing data. These techniques are categorised into case deletion, prediction rules, Maxi-

mum likelihood (ML) and least square approximation approaches as briefly discussed below. Suppose

there exists an incomplete data base as represented in Table A.1. The question mark (?) symbol

represents the missing values.

A.1 Case Deletion

By far the most common approach is to simply omit those cases with missing data and to run analyses

on what remains (Schafer and Graham, 2002; He, 2006). There are two common techniques that

are used for deleting data with missing entries which are referred to as listwise deletion and pairwise

deletion .
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Table A.1: An example of a table with missing values

Instances x1 x2 x3 D

1 1 ? 0.2 B

2 1 2 0.3 A

3 0 1 0.3 B

4 0 ? 0.3 B

5 0 3 0.4 A

6 0 ? 0.2 B

7 1 4 ? A

8 1 4 0.3 A

A.1.1 Listwise Deletion

Listwise deletion is a method whereby only the complete data are retrained. In cases if missing

data, the entire observation is removed from the database (Little and Rubin, 1987). The biggest

drawback of this method is the amount of information lost in the process. If there is a dataset with

50 variables and each variable has a 2% probability of being missing, then, there will be a less than

40% probability that there is an instance with a complete observation of 50 variables. To be precise,

if these data were to be observed according to Bernoulli process, only

0.9850 = 0.364

is the expected propotion of data to be complete.

This will essentially imply that if there are 100 instances of recorded data and listwise deletion has

to be applied, only 37 instances are likely to be used. Another disadvantage of listwise deletion is

that it assumes that the observation with missing values is not important and can be ignored. As a
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result, the condition of a machine being monitored, for example, can not be detected should one or

more sensors fail. According to Kim and Curry (1997) the correlations or covariances may be biased

(Tsikriktsis, 2005). For the data presented in Table A.1, instances 1, 4, 6 and 7 are deleted since

they do not contain full data. This results in half of the dataset and the output looks as presented

in Table A.2

Table A.2: Data from Table A.1 after cases with missing data have been deleted

Instances x1 x2 x3 D

2 1 2 0.3 A

3 0 1 0.3 B

5 0 3 0.4 A

8 1 4 0.3 A

A.1.2 Pairwise Deletion

Pairwise deletion is a variant of listwise deletion and uses the incomplete record only if the missing

variable is not required in the calculation under consideration. The record with missing values is

only used in the analysis that does not involve the missing variable. Although this method seems to

be better than listwise deletion, it has been criticised in literature. Allison (2002) points out that

unless the data are MCAR, pairwise deletion produces biased estimates and is not recommended.

A.2 Prediction Rules

The major focus of prediction rules is to make an incomplete dataset complete. There are various

analyses that are required to impute the missing data. However, information is also required in order
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to impute the missing data or to solve the missing data problem. The information required here

varies from one application to the other, where in other applications, what needs to be known is the

importance of the missing data, whereas in some applications, the reason why the data is missing.

This information may be obtained by analysing the behaviour of all the other records on the missing

attribute. In some other cases, it is necessary to study the relationship between the missing variables

and the observed ones. Another approach is to search the records for similar cases and observe how

the missing attributes behave given the other observed data. Prediction rule based approaches to

handle missing data rely mostly on very limited variables. Approaches to predicting missing data in

this class can be broken down into two classes, namely simple rule prediction and multivariate rule

prediction which are also known as single imputation and multiple imputation respectively. These

methods are discussed in detail below.

A.2.1 Simple Rule Prediction

In simple rule prediction or single imputation, all missing values are replaced with a single replacement

value. The replacement values are means or draws from a predictive distribution of the missing values.

This technique requires a method of creating a predictive distribution for the imputation based on

the observed data (He, 2006). These distributions are generated in two common approaches, which

are implicit modelling and explicit modelling.

The prediction rules falling within the implicit modelling class are some of the easiest methods that

can be used for missing data imputation. The simple rule prediction uses a relationship rule within the

missing variable and the most popular approaches are the Mean substitution and the Hot/Cold deck

imputation. Explicit modelling on the other hand has a predictive distribution which is fully based

on a formal statistical model with explicit assumptions. Common techniques within this category
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include regression imputations, and stochastic imputations. Techniques falling within the simple rule

prediction are summarised below.

(a) Mean Imputation

In this case, the missing entry is simply substituted by the mean of the observed data of the

corresponding variable. There is no doubt that this is one of the simplest imputation techniques.

This technique, however, leads to biased variances which get worse with an increase in number

of missing data records (Little and Rubin, 1987). For data in Table A.1, all missing values

under variables x1, x2 and x3 are replaced by 0.5, 2.8 and 0.3 respectively, all rounded to one

decimal place.

(b) Hot Deck Imputation

Hot deck imputation is a procedure where missing data are replaced with data that comes from

other records of the same data. In concept, the missing data are substituted by data obtained

from the data with similar cases (Schafer, 1997). The hot deck imputation has two major steps,

as outlined below:

• Records are first subdivided into classes. This can be done using a number of different

skills such as clustering and nearest neighbour techniques.

• Incomplete records are filled with values that fall within the same class.

Following this description, it becomes clear that the value in instance 4 should be replaced by

1, since this case is similar to the case in instance 3 except for the missing value. Similarly, the

missing value in instance 6 can be replaced by 0.3 from instance number 8. An advantage of hot

deck imputation is that no strong model assumption needs to be made for an estimation to be

made (Sande, 1983). Hot deck imputations are also favourable for their conceptual simplicity

(Rubin, 1987).
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Considering hot deck imputation from another perspective, it is difficult to define similarity.

Furthermore, in most cases, more than one values will be found suitable for replacing the

missing ones. A criteria of picking the most appropriate value needs to be defined. Some

techniques simply choose one value randomly, or use an average of the possible values (Little

and Rubin, 1987).

(c) Cold Deck Imputation

Missing values of an item are replaced by a constant value from an external source. This can

also be values from previous observation. In some cases, the missing value is substituted by

the modal value rather than by that from its most similar entity.

(d) Regression Imputations

Regression imputations replace the missing values by predicted values, which are predicted

mainly based on the available data. Deciding on the proper regression imputation technique is

highly dependent on the missing variable (He, 2006). Regression imputations start by comput-

ing estimates of mean vector (µ) and co-variance matrix (Σ ) of the data based on a sub-matrix

containing data with no missing values (Wasito, 2003). The linear regression of the missing

variables is then calculated based on the observed data. The missing data are then replaced

by the values obtained from the linear regression. This technique, however, underestimates the

variance and the covariance of the data (Little and Rubin, 1987).

(e) Regression-based Nearest Neighbour Hot Decking

This is a combination of the nearest neighbour hot decking method and the multivariate re-

gression model (Laaksonen, 2000). If missing data are on a continuous covariate, the missing

value is imputed as the average of the covariate values of the nearest neighbours, otherwise the

majority of the ‘votes’ determines the class of the missing observation on the basis of nearest

available data. The steps involved in this method are (Wasito, 2003; Laaksonen, 2000):
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(a) Input dataset X

(b) Form a multivariate regression model so that Y is the dependent variable to be imputed.

Let the variables without missing values be the independent variables.

(c) Compute predicted values of Y and order the data according to the predicted variables.

(d) For each of the missing entries of Y , input that observed value of Y which is the closest

in the order specified in step 3 above is used as the imputation value.

Although it is claimed that this method does not underestimate the variance (Laaksonen, 2000),

this method has a problem due to poor balance between the observed and the missing values

(Wasito, 2003).

(f) Tree Based Imputation

Tree based imputation techniques are divided into two categories, namely the classification

tree models and the regression tree models. In the classification tree models, it is assumed

that the response variable is categorical. Regression tree models assume that the response

variable can be represented using numeric values. Imputing missing values using tree-based

methods involves taking the response variables and the independent variables. Classification

or regression trees are built based on the distribution of the response variables in terms of the

independent variables (Wasito, 2003).

(g) Substitution

This method replaces units with alternative units that can be deemed correct to fit the missing

data character. In most applications, the safest substitution value is preferred. An example,

will be in an application where the content of gases dissolved in oil is measured in parts per

million. If some missing values occur, it can be assumed that the value was measured as zero

and as a result was not recorded. Zero in this case becomes a replacement value for all the

cases with missing values.
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A known limitation of the single imputation methods described so far is that standard variance

formula applied to the imputed data underestimates the variance of the estimates. Single

imputation methods also ignore the reduced variability of the predicted values and treats the

imputed values as if they are fixed (He, 2006).

(h) Stochastic Imputation

Stochastic imputation seems to be a variant of regression imputation that also reflects the

uncertainty of the predicted values (Wasito, 2003).

A.2.2 Multivariate Rule Prediction

This method seems to be an extension of the simple rule prediction discussed above. The difference

between this class and the preceding one is that, instead of using one variable, multivariate rule

prediction uses more than one variable. Neural networks imputation is one example of this class.

This method is also well known as Multiple Imputation (MI) and was introduced by Rubin (1987).

MI combines the well known statistical techniques and works by creating a maximum likelihood

based covariance matrix and a vector of means. Multiple Imputations involve drawing missing

values from the posterior distribution f(Ymiss|Yobs). The posterior distribution of the parameter

of interest, φ can be obtained by averaging the posterior distribution for the complete data over the

predictive distribution of the missing data (Huanga and Carriere, 2006). A complete dataset for the

ith observation, Y i = (Yobs, Ymiss) is obtained by combining the observed data and the imputed data.

MI is often related to hot deck imputations. The advantage of MI over hot deck imputation is

the ability to create more than one imputation values. This makes MI robust to violations of non-

normality of the variables used in the analysis (He, 2006). The disadvantage of this technique is

the time intensiveness in imputing and combining missing values (Rubin, 1987). The neural network
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imputation is discussed next.

Neural Network Imputation

Artificial neural networks (ANN) are a biologically inspired computation schemes that learn in a

parallel and distributed fashion. ANN are known to extract the non-linear relationship between

several variables that are presented to the network. These ANNs are also capable of learning the

nature of the dependency between the input and output variables. There are two types learning

styles for neural networks, namely supervised and unsupervised learning.

Due to their ability of mapping complex relationships, neural networks are also suitable for missing

data imputations. The generic imputation model for missing data using neural networks with a single

layer of hidden units can be described mathematically as (Wasito, 2003):

yi = f
(
bi +

Nh∑
j=1

dij ∗ f
(
ak +

Nx∑
k=1

cjk ∗ xk

))
, i = 1, . . . , Ny (A.1)

where xk, yi, Nx, Ny and Nh denote the independent variables, dependent variables, number of

independent variables, number of dependent variables and the number of hidden units, respectively.

The parameters a, b, c and d are estimated using the sigmoid function given by

f(t) =
1

1 + e−t
(A.2)

The neural networks is mostly trained using the back propagation on the variables with no missing

values. During the training, weights at which the Mean Square Error (MSE) is minimum are deter-

mined. Other types of neural networks have also been used to solve the missing data problem. One
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known disadvantage of the neural network relative to the other techniques discussed above is that

the neural network is computationally expensive and sufficient data should be available to have a

good generalisation.

A.3 Maximum Likelihood

A.3.1 Expectation Maximisation

The expectation maximisation is one of the most common techniques that have emerged in the

literature for missing data imputations. This method is an iterative procedure that proceeds in two

steps (Little and Rubin, 1987). The first step is called the expectation (E) step which computes

the expected value for the missing value. The second step is the maximisation (M) step, aimed at

maximising the likelihood function of the expected variables obtained in the E-step. The algorithm

iterates between the two steps until convergence. Convergence occurs when parameter estimates do

not change any more with an increase in number of iterations or when such changes are negligible.

The steps involved in the EM algorithms are summarised below:

1. Replace missing values by random estimates.

2. Estimate parameters.

3. Re-estimate the missing values using the estimated parameters.

4. Iterate between items 2 and 3 until convergence.
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A.3.2 Raw Maximum Likelihood

The Raw maximum likelihood is also known as Full Information Maximum Likelihood (FIML). This

method uses all available data points in the database to construct the first and second order moment.

Maximum likelihood-based methods can generate a vector of means and a covariance matrix among

the variables in a database that is superior to the vector of means and covariance matrix produced

by commonly used missing data handling methods such as listwise deletion, pairwise deletion, and

mean substitution. Raw maximum likelihood methods can also be applied to fit other linear models

such as regression models and structural equations models. One advantage of this method is the ease

to use and that it uses well known statistical properties. Another advantage over the EM algorithm

is that it allows for direct computation of appropriate standard errors and test statistics. The biggest

disadvantage is the assumption of joint multivariate normality of the variables used in the analysis

(Schafer, 1997). Furthermore, this method does not produce the raw data matrix (Rubin, 1987), of

which the EM does.

A.4 Least Squares Approximation

Techniques to handle missing data based on least square approximations normally work sequentially

by producing one factor at a time. This factor is aimed at minimising the sum of the squared

error between the available data points and the reconstructed ones. Data is first modelled using the

available data. The disadvantage of tree-based techniques is that convergence is not guaranteed and

the errors of approximation are high (Wasito, 2003). Another common approach used is to first fill

in the missing data using the ad hoc methods. Iteratively, theF complete data is approximated and

the imputed values are updated. This method suffers from slow convergence.
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Likelihood methods are more attractive in theory (Schafer and Graham, 2002) than most techniques

discussed above. However, they rest on a few crucial assumptions. Firstly, they assume that the

sample data is large enough such that the estimates are not biased and that the estimates are

normally distributed. Literature review reveals that the EM algorithm is still widely used. Lately,

new techniques that combine neural networks with optimisation techniques have been reported in the

literature (Abdella and Marwala, 2006). It, therefore, becomes very difficult to know which approach

to use in a given missing data problem. To help put this work into proper perspective, the next

chapter compares the EM approach to a combination of neural networks with genetic algorithms.
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Appendix B

Data Analysis for the HIV, the Power Plant

and the Industrial Winding Process Databases

B.1 Introduction

This Appendix will present the data analysis of the datasets used in various studies in this research.

The main objective, here is to better understand the data, before computational intelligence tech-

niques are applied. This can help in the choice of techniques that need to be applied for a particular

situation of interest. Firstly an analysis performed on various HIV datasets used will be presented,

followed by the analysis on the power plant dataset and the data from an industrial winding process

as presented in Chapter 2.
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B.2 HIV Data Analysis

In this Appendix, the following keys will be used to reprent provinces

EC: Easten Cape, FS: Free State, KZN: Kwazulu Natal, MP: Mpumalanga, NC: Northern Cape,

LP: Limpopo, NW: North West and GP: Gauteng

B.3 Data From an Industrial Winding Process

The correlation coefficients obtained for the industrial winding process for all the 10 bins. The results

are presented in Table B.4.
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Table B.1: The breakdown of race representation on the HIV datasets of years 2000 to 2002
2000 2001 2002

Province Race Number % Number % Number %

EC Black 1937 90.98 1415 90.59 1843 90.08

White 3 0.14 3 0.19 8 0.39

Coloured 189 8.88 144 9.22 195 9.53

Asian 0 0 0 0 0 0

FS Black 1089 97.84 1089 21.43 1085 97.84

White 2 0.18 2 0.18 1 0.09

Coloured 19 1.75 22 1.98 23 2.07

Asian 0 0 - 0 0 0

KZN Black 6460 96.37 96 97.96 3079 97.72

White 44 0.66 0 0 2 0.06

Coloured 94 1.40 0 0 13 0.41

Asian 105 1.57 2 2.04 57 1.81

MP Black 908 97.83 1071 99.08 1215 99.18

White 4 0.43 7 0.65 5 0.41

Coloured 16 1.73 3 0.28 3 0.25

Asian 0 0 0 0 2 0.16

NC Black 280 55.11 290 58.82 298 53.5

White 5 0.98 4 0.81 12 2.15

Coloured 223 43.90 199 40.37 245 43.99

Asian 0 0 0 0 2 0.36

LP Black 1804 100 1722 99.19 1848 99.89

White 0 0 2 0.11 2 0.11

Coloured 0 0 12 0.69 0 0

Asian 0 0 0 0 0 0

NW Black 1383 99.00 1247 99.19 1321 98.51

White 9 0.64 9 0.71 4 0.3

Coloured 5 11 0.87 21.43 16 1.19

Asian 0 0 3 0.24 0 0

WC Black 767 40.67 731 37.01 625 42.75

White 19 1 17 0.86 13 0.89

Coloured 1096 58.11 1222 61.87 823 56.29

Asian 4 0.21 5 0.25 1 0.06

GP Black – – 2836 92.93 2772 95.45

White – – 46 1.51 19 0.65

Coloured – – 108 3.54 72 2.27

Asian – – 62 2.03 41 1.41
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Table B.2: Correlation between input parameters for various provinces
2000 2001 2002

Province Gra Par HIV Age Gra Par HIV Age Father Gra Par HIV Age Father

EC Edu -0.37 -0.35 0.04 -0.20 -0.37 -0.37 0.03 -0.17 -0.07 -0.41 0.41 0.04 -0.19 -0.20

Gra 0.95 -0.07 0.7 0.97 -0.06 0.72 0.29 0.98 -0.04 0.69 0.64

Par 0 0.68 -0.05 0.71 0.29 -0.04 0.68 0.64

Hiv -0.05 0.01 0.03 0.01 0.00

Age – 0.38 0.83

FS Edu -0.36 -0.37 0.03 -0.18- 0.30 -0.29 0.03 -0.14 0.02 -0.37 -0.38 -0.01 -0.19 -0.19

Gra 0.93 -0.01 0.68 0.94 -0.04 0.74 0.51 0.93 0.02 0.72 0.58

Par -0.01 0.66 0.05 0.73 -0.01 0.01 0.71 0.56

Hiv 0.07 0.01 0.02 0.11 0.08

Age – 0.64 0.70

KZN Edu -0.17 -0.41 -0.01 -0.09 0.01 0 -0.05 -0.23 0.22 -0.29 -0.31 0.05 -0.24 -0.22

Gra 0.93 -0.05 0.66 0.97 0.10 0.61 0.5 0.70 -0.01 0.51 0.40

Par -0.07 0.67 0.11 0.60 0.49 -0.02 0.57 0.45

Hiv -0.01 0.20 0.19 0.06 0.09

Age – 0.76 0.76

MP Edu -0.37 -0.38 0.01 -0.25 -0.40 -0.41 0.05 -0.19 -0.22 -0.34 -0.35 -0.02 -0.18 -0.08

Gra 0.96 –0.09 0.7 0.96 0.01 0.77 0.65 0.97 0.00 0.75 0.57

Par -0.09 0.7 -0.02 0.75 0.64 -0.01 0.74 0.55

Hiv -0.08 0.04 0.09 0.05 0.07

Age – 0.77 0.73

NC Edu -0.28 -0.14 -0.02 0.12 -0.33 -0.35 0 0.16 -0.20 -0.22 -0.21 0.06 -0.13 -0.14

Gra 0.55 -0.03 0.57 0.88 -0.04 0.68 0.59 0.90 0.03 0.73 0.62

Par -0.03 0.34 -0.03 0.66 0.59 -0.01 0.72 0.60

Hiv 0.02 0.05 0.13 0.07 0.07

Age – 0.79 0.81

LP Edu -0.24 -0.35 0.04 0.23 -0.31 -0.32 -0.04 0.14 -0.16 -0.33 -0.31 -0.01 -0.24 -0.02

Gra 0.78 -0.02 0.66 0.95 0.04 0.79 0.71 0.79 -0.01 0.78 0.35

Par -0.06 0.74 -0.02 0.80 0.71 0.02 0.68 0.27

Hiv -0.03 0.01 0.01 0.03 -0.03

Age – 0.8 0.43

NW Edu -0.31 -0.32 0.06 -0.14 -0.39 -0.36 0.08 -0.2 -0.19 -0.39 -0.34 0.01 -0.19 -0.11

Gra 0.95 -0.08 0.7 0.88 -0.07 0.73 0.66 0.80 0.01 0.75 0.60

Par -0.08 0.69 -0.1 0.68 0.61 0.00 0.60 0.51

Hiv 0.04 0.05 0.05 0.08 0.11

Age – 0.83 0.71

WC Edu -0.34 -0.34 0.04 -0.18 0.02 -0.05 0.03 -0.01 0.46 -0.34 -0.35 0.03 -0.19 -0.20

Gra 0.93 -0.06 0.67 0.90 -0.06 0.61 0.51 0.94 -0.05 0.71 0.58

Par -0.07 0.66 -0.05 0.62 0.46 -0.05 0.71 0.59

Hiv -0.03 -0.01 -0.02 -0.03 0.03

Age –5 0.45 0.76

GP Edu - - - - -0.37 -0.37 -0.04 -0.23 -0.24 -0.32 -0.32 -0.04 -0.20 -0.04

Gra - - - 0.93 -0.01 0.73 0.65 0.89 0.01 0.72 0.64

Par - - 0 0.72 0.64 0.01 0.72 0.64

Hiv - 0.01 0.02 0.05 0.06

Age – 0.82 0.83
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Table B.3: The Attribute strength calculation when the HIV dataset was broken down to 20 bins

values
Bucket Magnitude of the Attribute Strength

1 110.3

2 122.6

3 133.1

4 105.4

5 128.3

6 120.8

7 122.6

8 145.7

9 141.6

10 116.0

11 120.4

12 135.5

13 129.5

14 122.1

15 133.1

16 118.2

17 114.7

18 140.4

19 131.9

20 126.0
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Table B.4: Correlation between input parameters for the power plant data
Industrial Winding Process Data

Bin # S2 S3 I1 I3

1 S1 -0.36 0.67 -0.12 0.00

S2 -0.06 0.00 0.05

S3 0.05 0.15

I1 -0.13

2 S1 -0.08 0.86 -0.04 -0.11

S2 0.28 -0.02 -0.07

S3 0.11 0.01

I1 0.36

3 S1 -0.19 0.82 -0.16 0.09

S2 -0.11 0.09 -0.10

S3 -0.03 -0.02

I1 -0.19

4 S1 -0.07 0.85 0.07 0.12

S2 0.12 -0.12 0.22

S3 0.14 -0.10

I1 -0.16

5 S1 -0.12 0.53 -0.09 0.02

S2 -0.10 -0.01 0.03

S3 0.01 0.08

I1 -0.11

6 S1 0.19 0.13 0.05 -0.09

S2 0.06 0.06 0.05

S3 -0.01 0.04

I1 0.36

7 S1 -0.16 0.52 0.13 -0.21

S2 0.15 -0.13 -0.17

S3 0.06 0.02

I1 -0.11

8 S1 -0.22 0.45 -0.08 0.05

S2 -0.05 0.12 -0.10

S3 -0.10 0.08

I1 -0.15

9 S1 -0.19 0.04 0.02 -0.13

S2 -0.01 -0.01 0.08

S3 -0.12 0.21

I1 -0.07

10 S1 0.11 0.43 0.11 -0.11

S2 0.36 0.02 0.13

S3 -0.03 0.08

I1 0.40
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Appendix C

Time Series Analysis in the Presence of

Missing Values

This Appendix describes the method of Stefanakos and Athanassoulis (2001) to analyse time series

data in the presence of missing data. In relation to the work in this thesis, their method is applicable

to a periodic measurement system for data that almost repeat after some time period.

C.1 Time Series Analysis with Missing Values

Let X(τ) be a long-term time series which is nonstationary. The time series is decomposed as follows:

X(τ) = Xtr(τ) + µ(τ) + σ(τ)W (τ) (C.1)

where Xtr, µ(τ) and σ(τ) are assumed to be deterministic functions. Parameter Xtr represents a

periodic trend, whereas µ(τ) and σ(τ) represent a seasonal mean and a seasonal standard deviation
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respectively. Suppose Xe.v. is an incomplete version of the time series X(τ). Therefore,

Xe.v.(τ) = {X(τi), i ∈ Ie.v. = {i1, i2, . . . , iIe.v.}} (C.2)

where Ie.v. contains indices of existing observations and e.v. stands for existing values. Evidently,

Ie.v. ⊂ I = 1, 2, . . . , I with I being the total number of observations. Firstly the estimation of

deterministic component of the time series is performed.

Xe.v.(j) =
1

Ke.v.(j)

∑
K∈Ke.v.(j)

X(j, τα
k ) j = 1, 2, . . . , J (C.3)

where J is the number of periods, (eg, years), τα is the time within the cycle and Ke.v. are the sets

of indices of the available time series values of each period, j. The mean values calculated in (C.3)

become a representative of the unobserved time series, X(j), for as long as the number of existing

time series points is not dramatically different from the total number that can be observed. A linear

model is then fitted to the existing data points in the form

Xtr(τ) = B0 + B1
τ

Tα
(C.4)

The next step is very challenging and requires obtaining the stationary series, We.v.. This step is

followed by calculating the autocorrelation function of unobserved time series, We.v.(τ) using the

procedure of Parzen (1963) given by:

R̃WW (r, T ;β) =
R̂We.v.We.v.(r, T ;β)

R̂uu(r)
(C.5)

where R̂We.v.We.v.(r, T ;β) and R̂uu(r) are the empirical autocorrelation functions of We.v.(τ) and µ(τ)

respectively. The next step is to estimate the spectral density using a rectangular lag window given

by:

S̃WW (f) =
∫ T/2

−T/2
KL(r, TM )R̃WW (r, T ;β) exp[−2jπfr]dr (C.6)
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where

KL(r, TM ) =

{
1, |r| ≤ TM

0, |r| > TM

(C.7)

with TM being the truncation point. The spectrum density that results is as follows:

ŜW W (fs) =
∑

h=s−m

s + mKS(fh)S̃W W (fs − fh) (C.8)

where

KS(f) = 1/(2m + 1). (C.9)

The next step in this method is to use Autoregressive Moving Average (ARMA) modelling of the

stationary part of the time series, W (τ) of order ARMA(P,Q). The time series can then be represented

using

WARMA(τl) =
P∑

p=1

apWARMA(τl−P ) + ε(τl) +
Q∑

q=1

bqε(τl−q, l = 1, 2, . . . (C.10)

where ε(τ) is a time series of uncorrelated Gaussian with zero mean and standard deviation. The

stationary series is then modelled as a low-order linear ARMA process, with parameters estimated

using the least square fitting of the ARMA raw spectrum ŜWW (f)

A population of uncorrelated Gaussian random numbers, εsim(τ) with zero mean and variance is

then generated, producing a sequence:

εsim(τ) = {εsimτi, i = 1, 2, . . . , Im.v.} (C.11)

where m.v represent missing values, and hence Im.v. is the total number of missing values. The

existing values index residuals are calculated on the basis of previous values, either actual values or

simulated ones. The missing values are then indexed to the corresponding values. The complete
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versions of the simulations are calculated, while inspecting the correlation coefficient function. A

fully detailed description can be found in (Stefanakos and Athanassoulis, 2001).

157



Appendix D

Rough-set-based Algorithm to Estimate

Missing Values While Deriving Rules

D.1 Introduction

This Appendix presents a rough-set-based algorithm that simultaneously estimates missing values

and derive rules from the incomplete data set. This algorithm was proposed by Hong et al. (2002) and

is reproduced here with permission from the owners. Each object is represented in the format (obj,

symbol) where symbol can be (c) or (u) for certain or uncertain respectively. Table D.1 illustrates

an example of a data set that the algorithm can be applied to.

The algorithm first fills the missing values available in each of the objects by calculating the incom-

plete lower approximation. It is easier to estimate the missing values in a case where an uncertain

object exist in only one incomplete equivalence class. When certainty has been achieved, the symbol

of the attribute is changed to c, otherwise, estimation is postponed until the missing values can be

determined from more attributes. Should it happen that all attributes have been used, whereas, the

certainty is not determinable, the values are heuristically assigned to one of the values representing
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Table D.1: An incomplete data set

Object Parameter 1 Parameter 2 . . . Parameter m

obj(1) Low Low . . . High

obj(2) High Low . . . High

...
...

...
. . .

...

obj(n) High High . . . Low

the incomplete equivalence classes. A more formal description of the algorithm is given in the next

section.

D.2 The Algorithm

The algorithm described below consist of 18 steps, as discussed below. The input is assumed to have

n objects each with m attributes as illustrated in Table D.2. The output of the algorithm is a set of

certain and possible rules.

1: Partition the object set into disjoint subsets according to class labels. Denote each set belonging

to class Cl as Xl.

2: If obj(i) has a certain value vi, for attribute A, put (obj(i), c) in the incomplete equivalent

class from Aj = v
(i)
j . If obj(i) has a missing value for Aj , put (obj(i), u) into each incomplete

equivalent class from Aj .

3: Initialise parameter q to count the number of attributes currently being processed for incomplete

lower approximations.

159



D.2. THE ALGORITHM

4: Compute the incomplete lower approximation, for each subset B, with q attributes for each Xl

as:

B∗(Xl) = {(obj(i), symbol(i))|1 ≤ i ≤ n, obj(i) ∈ Xl, B
c
k(obj

(i)) ⊆ Xl,

1 ≤ k ≤ |B(obj(i)|}

where B(obj(i)) is a set of incomplete equivalent classes derived from attribute subset B, whereas

Bc
k(obj

(i)) is certain part of the kth incomplete equivalent class in B(obj(i)).

5: For each uncertain instance obj(i) in the incomplete lower approximations:

– If obj(i) exist only in one incomplete equivalence classes, assign the uncertain values of

obj(i) to attribute values vk
B, changing symbol u to c.

– If obj(i) exists in more than one incomplete equivalent classes in B∗(Xl), postpone the

estimation until revealed with more attributes.

6: Increment q and repeat STEPS 4-6 until q > m

7: If obj(i) still exists in more than one incomplete equivalent classes, find vk
B having the maximum

number of certain objects in incomplete equivalent classes. Assign the uncertain values of obj(i)

to vk
B and change the symbols accordingly.

8: Derive certain rules from the lower approximations of each subset, B.

9: Remove certain rules with condition parts which are more specific.

10: Reset q

11: Compute the incomplete upper approximations of each subset B, with q attributes as: B∗(Xl) =

{(obj(i), symbol(i))|1 ≤ i ≤ n, Bc
k(obj

(i)) ∩Xl

6= ∅, Bc
k(obj

(i)) 6⊂ Xl, 1 ≤ k ≤ |B(obj(i)|} where all parameters are as defined in STEP 4.

12: For each uncertain instance obj(i) in the incomplete upper approximation:
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– If obj(i) exist only in one incomplete equivalence class of the kth value combination, assign

the uncertain values of obj(i) to attribute values vk
B, changing symbol u to c.

– If obj(i) exists in more than one incomplete equivalent classes in B∗(Xl), postpone the

estimation until revealed with more attributes.

13: Increment q and repeat STEPS 8 to 12 until q > m

14: Calculate the plausibility measures of each incomplete equivalent classes in an upper approxi-

mation for each Xl as: p
(
Bc

k(obj
(i))

)
= |Bc

k(obj(i))∩Xl|
|Bc

k(obj(i))|

15: Do as in STEP 7, but this time using upper approximations.

16: Derive the possible rules from the upper approximations of each subset, with the plausibility

measure recalculated due to the estimated objects.

17: Remove possible rules with conditions parts that are more specific and plausibility measure less

or equal to those of other possible or estimated objects.

18: Output certain rules and possible rules

D.3 Illustration through an Example

The algorithm is demonstrated using an example. The algorithms described above is applied to an

incomplete table as shown in Table D.2. Missing values are denoted by ∗, and the values with the

brackets are the estimated values as predicted using the algorithm and as shown later in the example.

All the 18 steps described in the algorithm are followed in the example below

1. There are three classes existing in D.1
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XH = {obj(2), obj(5), obj(6), obj(9)}

XN = {obj(1), obj(3), obj(8)}

XL = {obj(4), obj(7)}

2. Since both SP and DP have three possible values, {H,N, L}, three equivalent classes are

formed for each attribute. The incomplete elementary sets from all attribute is set as follows:

U/{SP} = {{(obj(3), c)(obj(6), c)(obj(5), u)(obj(9), u)},

{(obj(2), c)(obj(5), u)(obj(9), u)},

{(obj(1), c)(obj(4), c)(obj(7), c)(obj(8), c)(obj(5), u)(obj(9), u)}}

In a simmilar manner, the complemantary set of U/{DP} is obtained.

3. q=1

Table D.2: A sample of a table with medical data

Object Systolic pressure (SP) Diastolic pressure (DP) Blood pressure (BP)

obj(1) L N N

obj(2) H L H

obj(3) N H N

obj(4) L L L

obj(5) ∗(H) H H

obj(6) N H H

obj(7) L ∗(L) L

obj(8) L H N

obj(9) ∗(H) N H

162



D.3. ILLUSTRATION THROUGH AN EXAMPLE

4. SP∗(XH) = {(obj(2), c)(obj(5), u)(obj(9), u)}

DP∗(XH) = SP∗(XN ) = ∅

DP∗(XN ) = SP∗(XL) = DP∗(XL) = ∅

5. Considering, SP∗(XH), it can be seen that obj(5) and obj(9) only exist in the incomplete equiv-

alent class of SP = H. These values are then assigned to H, and are changed to (obj(5), c) and

(obj(9), c) in SP∗(XH).

6. q = q + 1, and steps 4 to 6 are repeated. The elementary set of attribures {SP,DP} is found

as follows:

U/{SP,DP} = {{(obj(1), c)(obj(7), u)}{(obj(2), c)}{(obj(3), c)(obj(6), c)}

{(obj(4), c)(obj(7), u)}{(obj(5), c)}

{(obj(7), u)(obj(8), c)}{(obj(9), c)}}

The incomplete lower approximations of {SP,DP} are found as follows:

SP,DP∗(XH) = {(obj(2), c)}{(obj(5), c)}{(obj(9), c)},

SP,DP∗(XN ) = {(obj(1), c)}{(obj(8), c)}, and

SP,DP∗(XL) = {(obj(4), c)(obj(7), u)}

Uncertain object obj(7) in SP,DP in only the incomplete equivalent class of SP = L and

DP = L. Then, obj(7) is assigned to L and cahnged to (obj(7), c). The incomplete elementary

set of attribute SP and DP is then modified accordingly.

U/{SP,DP} = {{(obj(1), c)}{(obj(2), c)}{(obj(3), c)(obj(6), c)}

{(obj(4), c)(obj(7), c)}{(obj(5), c)}
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{(obj(8), c)}{(obj(9), c)}}

At this stage, all the missing values have been estimated to the values in brackets in Table D.1.

7. All missing values have been estimated. Proceed.

8. Certain rules are derived from the lower approximation

(i) If SP=H, Then BP=H

(ii) If SP=H and DP=N, then BP=H

(iii) If SP=H and DP=H, then BP=H

(iv) If SP=H and DP=L, then BP=H

(v) If SP=L and DP=N, then BP=N

(vi) If SP=L and DP=H, then BP=N

(vii) If SP=L and DP=L, then BP=L

9. Conditions parts of rules (ii),(iii) and (iv) are more specific than those of (i), then rules (ii),(iii)

and (iv) are removed from the certain rule set.

10. Counter q is reset to 1

11. The incomplete upper approximations of single attributes of three classes are calculated from

the incomplete elementary sets, leading to the following results:

SP ∗(XH) = {(obj(3), c)(obj(6), c)},

DP ∗(XH) = {(obj(1), c)}, {(obj(3), c)(obj(5), c)(obj(6), c)(obj(8), c)},

{(obj(2), c)(obj(4), c)(obj(7), c)},

SP ∗(XN ) = {(obj(3), c)}, {(obj(1), c)(obj(4), c)(obj(7), c)(obj(8), c)},

DP ∗(XN ) = {(obj(1), c)(obj(9), c)}, {(obj(3), c)(obj(5), c)(obj(6), c)(obj(8), c)}
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SP ∗(XL) = {(obj(1), c)(obj(4), c)(obj(7), c)(obj(8), c)},

DP ∗(XL) = {(obj(2), c)}, {(obj(4), c)(obj(7), c)}.

12. No uncertain objects exist

13. q=q+1, and steps 8-12 are repeated. The incomplete upper approximations of {SP,DP} are

found as:

SP,DP ∗(XH) = {(obj(3), c)(obj(6), c)},

SP,DP ∗(XN ) = {(obj(3), c), {(obj(6), c)},

SP,DP ∗(XL) = ∅.

14. The plausibility measure of the incomplete equivalent classes {(obj(3), c)(obj(6), c)} is computed

for the upper approximation of XH as :

p
(
SP,DP c(obj(3) or obj(6))

)
= |SP,DP c(obj(3) or obj(6))∩XH |

|SP,DP c(obj(3) or obj(6))|

= (obj(3),obj(6))∩(obj(1),obj(3),obj(8))

(obj(3),obj(6))
= 1/2

15. Skipped since all objects in the upper approximation are certain.

16. The possible rules derived from the upper approximation of SP and DP are:

(i) If SP=N, Then BP=H with plausibility =1/2

(ii) If DP=N, then BP=H with plausibility =1/2

(iii) If DP=H then BP=H with plausibility =1/2

(iv) If DP=L then BP=H with plausibility =1/3

(v) If SP=N then BP=N with plausibility =1/2

(vi) If SP=L then BP=N with plausibility =1/2

(vii) If DP=N, then BP=N with plausibility =1/2
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(viii) If DP=H, then BP=N with plausibility =1/2

(ix) If SP=L, then BP=L with plausibility =1/2

(x) If DP=L, then BP=L with plausibility =2/3

The possible rules derived from the upper approximation of attributes {SP,DP} are

(xi) If DP=N and DP=H, then BP=H with plausibility =1/2

(xii) If SP=N and DP=H, then BP=N with plausibility =1/2

17. The condition parts of rules (xi) and (xii) are more specific than those of rules (i), (iii), (v)

and (viii) and their plausibility measure are all the same, rules (xi) and (xii) are thus removed

from the possible rule set

18. Output certain rules and possible rules
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Appendix E

Background Theory of Fuzzy ARTMAP

E.1 Introduction

This Appendix presents a summary of the theory of Fuzzy-ARTMAP which is detailed in (Carpenter

et al., 1992). The Fuzzy-ARTMAP is well known for its good ability to learn additional information

from new data, without actually requiring access from the old data. During the learning process,

the previously acquired knowledge is retained. Fuzzy-ARTMAP is a classification tool that can also

accommodate new classes while they arrive with new data. The next section will present a brief

background of this technique.

E.2 Summary of the Fuzzy ARTMAP

Fuzzy ARTMAP is based on the Adaptive Resonance Theory (ART) introduced by Grossberg (1976a;

1976b). The ART has a network which is capable of assimilating new knowledge while maintaining

knowledge or information that is already instructed. The structure of the Fuzzy ARTMAP is shown

in Figure E.1

167



E.2. SUMMARY OF THE FUZZY ARTMAP

Figure E.1: Structure of the Fuzzy ARTMAP (Grossberg, 1976a)

The parameters of the ART have functionalities defined as follows (Lopes, Minussi and Lofuto, 2005):

• F0 represents the input layer that receives and stores the new input patterns.

• F1 represents the comparison layer that has main functionality of eliminating the noise in the

input.

• F2 is the recognition layer that stores the categories that inputs fall.

The ART has two memory requirements that help in its functionality. These memories are termed the

long term memory (LTM) and the short term memory (STM). The STM is responsible for activity
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patterns developed in the F1 and F2 layers. The performance of the ART network is explained as

follows:

1. An input pattern is presented to the network;

2. Check for similarity of the input pattern to the pattern already stored in the network’s LTM.

(a) If such similarity exists, then the pattern is already known.

(b) Otherwise the input pattern does not pertain to any category already formed, and the

network will form a new category, which will store the new input pattern

The fuzzy ART module classifies the input vectors in categories, composed of analogue data that are

converted to binary values by an active code converter. The input set of fuzzy ARTMAP module

is composed of binary data The fuzzy ARTMAP output module is composed of electric load values

referred to the subsequent hour, and are processed in classes.

E.2.1 Fuzzy ARTMAP Algorithm

E.2.2 Input

The input pattern of ARTa is a vector a = [a1, a2, . . . , aMa ] where Ma is the dimension and the inputs

to the second ART, denoted as ARTb is b = [b1, b2, . . . , BM ].

E.2.3 Parameters

There are three main parameters that are important for the performance and learning of the fuzzy

ARTMAP network (Grossberg, 1976b). These parameters are listed below.
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• chosen parameterα which acts on the category selection and satisfies α > 0 condition

• Training rate β ∈ [0, 1] which controls the speed at which the networks adapts.

• Vigilance parameter (ρ ∈ [0, 1]] and controls the resonance of the network. It is also respon-

sible for the number of categories formed in F2

If the vigilance parameter is set very large, it produces a good classification with many categories. In

contrary, if this parameter is set very low, the network has good generalisation (Lopes et al., 2005).

E.2.4 Algorithm Structure

Let J be the active category for the ARTa module and K be the active category for the ARTb. Using

the process called match tracking, the active category on ARTa is checked for correspondence with

the desired output in the ARTb module. If they correspond, the next step is to check for the vigilance

condition, which is given by:

|yb ∧ wab
JK |

|yb|
≥ ρab (E.1)

where yb is the output vector from the ARTb module. When resonance is not achieved, the vigilant

parameter is incremented a little, just to exclude the current category and to select another category

which will be used. This procedure is repeated until Equation E.1 is satisfied.

The operator ∧ is defined by

(p ∧ q) ≡ min(pi, qi) (E.2)
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and the norm |.| is defined by

|p| ≡
M∑
i=1

|pi| (E.3)

for an M-dimensional vector (Carpenter et al., 1992).

E.2.5 Learning

All weights are initially set to a value of 1, indicating that there is no active category. Learning

occurs by the process of weight adaptation. The adaptation of the ARTa and ARTb is given by

wnew
J = β(I ∧ wold

J ) + (1− β)wold
J (E.4)

where J represents the active category. The parameter β controls the training speed, where β = 1

gives the fastest adaptation speed and 0 < β < 1 allows the weights to adapt slowly.

The adaptation of the inter-ART module is affected as

wab
JK = 1 (E.5)

wab
JK = 1 for k 6= K (E.6)

Suppose the input and the output are denoted by I and O respectively. The first step in learning is

the calculation of the bottom-up inputs to every node j in the F a
2 as follows (Castro, Georgiopoulos,
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Secretan, DeMara, Anagnostopoulos and Gonzaleza, 2005):

T a
j =

|Ir ∧wa
j |

|wa
j |+ βa

(E.7)

The node jmax is then checked if it passes the vigilance criterion. The next step is only executed

if the vigilance criterion is passed. This node is further checked for the prediction test where it is

verified if the node matches the exact output vector O. All these operations are repeated until the

prediction test is passed.
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