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Visual complexity has been extensively studied in the mathematical, computational

sciences. Concurrently, psychological studies have attempted to define visual complexity

as perceived by humans. The problem lies in that the computational and psychological

studies are always explored separately, and thus their definitions of visual complexity

are disjointed. This is evident when attempting to capture human-perceived complexity

through computer vision.

This research attempts to tackle this problem in the context of cognitive assessments. This

context introduces a practical application to the general question of computer, and human

perception of complexity: Computerized cognitive assessments regularly employ visual

stimuli, and present tasks that test a subject’s primal cognitive functions. The difficulty

of these tasks is not objectively quantified, which reduces the efficiency of the tests’

administration, and the accuracy of the results’ interpretation. This study developed

and examined an algorithm that could computationally predict a visual task’s human-

perceived complexity.

The algorithm used a database of visual tasks and subjects’ performance in terms of

response times. Human subjective evaluation of tasks’ complexity were captured for a

subset of these tasks. Two types of feature sets were extracted from the visual stimuli

presented in the tasks: object-specific, and whole image features. Several classifiers were

implemented, using the features and the subjects’ perceived visual complexity labels. The

best algorithm configuration yielded a 58 % prediction, for a three-class complexity scale.

An analysis of the performance of the algorithm, and the relative visual features’ impor-

tance values, provided insights which could help bridge the gap between mathematical

complexity, and human perceived complexity.
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CHAPTER 1

Introduction

Visual perception is the ability to process and interpret the surrounding visual environ-

ment. This primal activity, common to humans and animals, begins with the eyes sensing

an image and transmitting it via neural paths to the brain. The subsequent processing

culminates in a decision or action based on the properties of this image. This process-

ing, however, remains a mystery, and no model has yet been accepted to describe this

translation or encoding process.

Two of the most vital cognitive actions that employ visual perception are recognition

and recall. Recognition refers to the ability to compare and differentiate between visual

information elements, and recall is the ability to retrieve previously perceived information.

On a daily basis, humans are faced with situations where they are required to recognise

and distinguish between several objects when making an observation or a choice of action.

They also make decisions by recalling past observations and experiences. Individuals are

shaped by these preceding experiences and the daily choices they make.

Neurocognitive, psychological and geriatric tests typically employ simple recognition and

recall tasks to assess cognitive performance [3]. Visual stimuli are presented to subjects,

traditionally on paper, and performance in recognition and recall of these stimuli is as-

sessed [2] [35].

In earlier paper-based testing, the complexity of these visual tasks, if considered at all,

was determined by human testers. Besides being subjective and even biased, this process

would be applied to a limited number of tasks, and therefore limited the number and

variability of tasks that could be included in the test. The pace and fluency of the

examinees’ responses, which should be a measure of their performance, were interpreted

1



Chapter 1. Introduction 2

based on the tester’s observations, which limited their accuracy. This procedure directly

introduced discrepancies between subjective observations of different testers.

Computerized cognitive testing has become more prevalent in the last two decades and

provides a capability of enhancing both the administration and the reliability of the

tests. The computerized system allows a generation of a wider variety of tasks to prevent

repetition in successive periodic testing. Subsequently, the interpretation of the subjects’

performance can also be enhanced by the ability to capture their response latency and

duration, as opposed to mere counting of correct answers.

Computerized tests offer a platform for dynamic adaptation to a user’s cognitive capa-

bilities – adjusting the complexity of the set of tasks presented based on their previous

task response times. This ensures that the subject is presented with a task of an appro-

priate difficulty level for them, rather than something that is too easy or too difficult,

which could cause frustration or boredom, and limit the usefulness of the assessment. An

evaluation of performance which takes into account response times can also be refined by

considering the complexity of the task as a weighting component in the test score.

The hindrance in this concept, however, is that the difficulty or complexity levels of the

different tasks employed in existing tests are not quantitatively defined.

This necessitates a computerized complexity scale that can quantify the difficulty level

of a given cognitive task. In order to create this scale, an algorithm to determine visual

complexity is required. While there are many mathematical algorithms that compute

the complexity of images, the relevance of these algorithmic measures to the human

visual complexity perception is rarely assessed. Complexity is studied in both areas,

however it is discussed separately. Therefore there is generally a dichotomy between the

mathematically defined visual complexity, and the human perceived visual complexity

studied in the fields of psychology and neurology. Consequently, the application of most

mathematical complexity measures to cognitive testing are impractical due to the inability

to bridge between the mathematical complexity result, and the human perceived visual

complexity when taking the test. Therefore, this sort of an algorithm must be tested

according to extensive human cognitive testing.
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The research aims to find a computerized visual complexity scale, in the context of visual

neurocognitive tests, based on mathematical tools and concepts, such as information

theory and machine learning, as well as human visual perception. This scale could provide

a computer vision paradigm, where an algorithm mimics human visual perception.

This dissertation begins with background on cognitive visual tasks, with focus on comput-

erized tests and their visual stimuli. A description and short analysis on theories of image

complexity computation is then presented; aspects of which were applied to the research

goal. The chapters thereafter introduce the research question, and the assumptions and

constraints involved. This is followed by the methods which were employed to solve the

research question. Finally, the results are presented with a concluding discussion and

interpretation of the results.



CHAPTER 2

Visual Tasks in Cognitive Studies

This chapter describes visual cognitive testing employed in the psychological and neuro-

logical disciplines, and narrows down to the digital versions of these tests, which were

considered for this research.

2.1 Cognitive Assessments

Many tests have been developed to assess cognitive decline in the fields of psychology,

neurology and geriatrics. The tests aim to capture the core cognitive domains: memory,

perception, reasoning, coordination and attention [13]. The assessments vary from the

quick and coarse Mini-Mental State Examination (MMSE), to longer, half day testing

procedures conducted by professionals in memory clinics. Some of these tests are still

paper-based, while some have been computerised.

The MMSE is a quick and simple screening tool that is most commonly used in clinical

trials and in general practice to detect cognitive decline [8]. It is a 30-point questionnaire

where 0 indicates severe cognitive impairment, and 30 indicates no cognitive impairment.

This examination is presented in figure 2.1 [18].

The MMSE is a coarse measure that lacks sensitivity to mild cognitive impairment. Ad-

ditionally, it can be seen that this examination is highly verbal, and lacks visuospatial

measures with a very small and crude visual aspect. It is therefore insensitive to impair-

ments in visual perception [29].

4



Chapter 2. Visual Tasks in Cognitive Studies 5

Figure 2.1: The Mini Mental State Examination

Figure 2.2 lists assessments that are also employed to detect cognitive impairment [8].

These have been analysed and compared in previous studies to assess the feasibility of

the MMSE and MMSE-2 assessment. The MMSE-2, specifically, is an enhanced, more

thorough version of the MMSE which was designed to improve MMSE performance.

Figure 2.2: Other cognitive assessments comparable to the MMSE
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While these alternative assessments might have certain advantages over the MMSE, they

are also not focused on visual perception measurements. These assessments are not

applied further as the focus of this research is on the visual stimuli presented during

cognitive assessments.

The assessments used to detect cognitive decline are predominately paper-based. How-

ever, over time computerised tests have been investigated, designed and implemented

as a more feasible solution for the same. Computerised testing can offer a calmer envi-

ronment for a subject with minimal human intervention. Above all, it allows for a faster,

more consistent and objective testing procedure in comparison to the more traditional

paper-based assessments.

2.2 Computerized Visual Neurocognitive Assessments

Different computerized tests employ different stimuli, and score subject performance in

unique ways. Several computerised tests combine aspects of other traditional paper-based

assessments on a digital platform, and have been validated against these paper-based tests

[14]. While conducted differently, they still aim to capture the core cognitive domains.

Examples of these tests are the General Cognitive Assessment Battery (CAB) from Cog-

niFit and the Cognitive Function Test (CFT) by Food for the Brain, both of which

last about forty minutes [13] [19]. There are others, such as the Cognivue test battery,

that have shorter, ten-minute tests. All of these assessments track correctness as well as

response times.

In the CFT, there are six different tests that require recognising and classifying well-

known pictures (such as methods of transport and household objects), matching basic

visual patterns in the form of geometric shapes, and distinguishing between different line

drawings. It further entails matching combinations of alphabetical letters, and remember-

ing objects and their positions in a delayed recall test [19]. The Cognifit tests, however,

are interactive with moving colourful shapes, word associations and musical tones. This

introduces a gamification aspect to the testing. The tests are targeted to home usage

[13].
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While these assessments are different, they similarly aim to capture recognition and re-

call skills, with comparable underlying techniques and processes between the variety of

computerised tests.

The tasks in the assessments present different types of stimuli, such as visual comparisons,

word associations, and musical assessments. Therefore, while these tests employ more

visual stimuli than those detailed previously, they are still mixed with other stimuli

types. Consequently, isolating only the visual responses for study is a challenge. Another

limitation to these tests is that, being commercial products, there is no test result data

that can be investigated and applied for this research.

Studying complexity in visual tasks requires tests that focus on visual perception, and

have available test results on which investigations can be conducted.

2.3 Visual Tasks Using Binary Images

The NexSig computerized cognitive testing battery, developed in 2004, employs visual

recall and recognition tests using small binary (black and white) images. The response

correctness and response times of the hundreds of subjects to the visual tasks presented,

were collected in several studies using this battery, and are available for research.

Nexsig tests were used in studies of dementia, Alzheimer’s disease, and other neurological,

as well as psychiatric disorders. In all these studies, controls’ data was collected. An

interesting study explored Cognifit cognitive training, exercising the brain to maintain

or improve cognitive abilities. It investigated whether using cognitive training could

provide greater benefits than those obtained by playing conventional computer games,

using NexSig tests as a cognitive assessment tool [32].

The data collected in this, and several large scale studies of both, controls and cognitively

declined people, contain a detailed description of the images used in the visual tasks, and

subjects’ corresponding response times. This data is therefore potentially valuable for a

study bridging cognitive sciences, and computational visual complexity.
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The images presented in the tests are all simple, black and white, four-by-four square

images. They can easily be described by sixteen-bit coding, and are therefore referred to

as “binary images”. The justification behind the choice of the images is that the lack of

colour, and the small size of the images, would allow for a more objective visual analysis

of the images by the subject. The disadvantage with presenting elaborate and colourful

visual stimuli, is that certain objects in the images, or the images themselves, are more

likely to visually trigger past memories or associations for a subject. These triggers could

distract their focus off the required objective comparison or recollection of the image(s).

This could in turn skew the capturing of the neurocognitive decline extent in the subject.

The presented images in NexSig’s tests are therefore enhanced images that are simple,

yet conceptually similar to those in other, more common cognitive assessments.

2.4 Assessing Visual Task Complexity in Cognitive Testing

With all these cognitive tests, the complexity of the different tasks has not yet been objec-

tively defined. There are several advantages to being able to determine task complexity:

If the difficulty of a task was known prior to presenting it, then the corresponding response

time could be weighted and better evaluated. This would be a finer way of assessing the

level of cognitive impairment in the subject. For example, it could be said that a subject

that takes very long to complete a simple task is more cognitively impaired than another

subject that takes a short time to complete a relatively difficult task. Additionally, the

task presentation order could dynamically adapt to the subject’s responses: if the sub-

ject is struggling with difficult tasks, then the system can present a simpler task, and

vice versa. This necessitates a computerized visual complexity defining solution that is

cognisant of visual perception.

Before proceeding further, it is important to note that any analysis conducted on these

tests will require investigations into relative complexity. This is because the tests involve

the presentation of multiple images in each test instance. This relative complexity mea-

surement should therefore computerise the image comparison in a way that indicates

how complex a presented task is.



Chapter 2. Visual Tasks in Cognitive Studies 9

The visual testing focus, the simple nature of the presented images, and the availability

of the results make NexSig’s test battery a desirable one to create a computerized visual

complexity scale against for this research. This should be a scale that incorporates both,

mathematical, as well as human perceived, visual complexity.

The following chapter will detail visual perception concepts and image analysis techniques,

explored with the aim of capturing visual perception through computer vision.



CHAPTER 3

Studies on Visual Perception and Complexity

This chapter presents theoretical investigations on visual perception, and computationally

capturing complexity. The concepts of these were useful in providing a guideline on how

a visual complexity defining algorithm for cognitive assessments had to be approached.

Since the algorithm requires comparison between human complexity perception, and com-

putational complexity classification, the model had to consider a combination of both,

visual perception and information theories.

The chapter begins with theories that have previously investigated and attempted to

describe visual perception. These theories motivated the subsequent choice of the math-

ematical techniques considered, as their implementation should mimic the visual percep-

tion process. Thereafter, binary images are analysed to see how different objects in a

binary image would be able to provide image features. This is followed by image compar-

ison techniques that are described to understand how multiple images could be compared

through computer vision to capture relative features that define relative visual complex-

ity. Once the technical concepts are explained, related research previously conducted is

presented as preliminary work. Finally, computer vision and machine learning techniques

have been analysed to provide guidance on how the preliminary work could be extended

for this research.

3.1 Theoretical Concepts of Visual Perception and Complexity

These theories were explored in attempt to understand and define visual features that

are vital in defining what humans perceive when observing visual stimuli, and can be

captured on a computer.

10
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3.1.1 Witkin: Field-Dependence and Independence

Herman Witkin, a psychologist who specialised in cognitive psychology, proposed a field

dependence concept. He postulates that individuals can be classified as ‘field dependent’

or ‘field independent’ in their cognitive styles [9]. Field dependent individuals lack atten-

tion to detail. They initially assess their visual field as a whole, and then loosely partition

the information into groups. Field independent individuals, however, immediately sepa-

rate and organise the visual information into clear-cut groupings [9]. Several researchers

suggest that this classification correlates to elementary cognitive processes.

Witkin’s theories indicate that when attempting to interpret human visual perception,

the different cognitive processes should be catered for. This can be done by capturing

certain visual characteristics/features at an intricate, detailed level, and other features at

a more holistic, higher level.

3.1.2 Attneave: Aspects of Visual Perception

Fred Attneave, a psychologist known for his theories in visual perception, states that

there is no straight forward method by which to determine which physical measurements

have greatest psychological pertinence [6]. He considers visual perception an information

handling process where much of the visual information observed by a human is likely to

be redundant [5] [7].

The computational consequence of this hypothesis is that any visual invariance consti-

tutes a source of redundancy because the subject automatically begins to deduce the rest

of the image, thus reducing its perceived complexity. This is with regards to the concen-

tration of information at certain points, image symmetry, adjoining pixels of the same

colours, shapes, lines, or even angles. The extent to which a human can extrapolate this

information is still unknown [5] [7]. However, the occurrence of these characteristics can

be captured as features that provide useful measures of human perceived complexity.

Attneave and Witkin’s visual perception theories demonstrate a basic foundation on how

images are observed, and how the observation process is likely to vary between humans.
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These principle concepts are considered when developing the machine vision system in

this research.

The algorithm must be able to mimic the visual perception process followed by humans.

Therefore, through computer vision, it is important to holistically assess the images as

field dependent individuals would, and also clearly segment and evaluate the images in

parts as field independent individuals would. In this process, the model should capture

the information held in the image, such as object-specific information. This would allow

for the measurement of the level of redundancy and consequent visual extrapolation that

would be conducted by a human during the visual observation. Implementing visual

perception through computer vision is vital to computationally measure how simple or

difficult a human is likely to find a selected test instance.

3.2 Mathematical Concepts of Visual Perception and

Complexity

While there are several mathematical definitions of image complexity, few are likely to

align with the human perception of visual complexity. This section describes two math-

ematical techniques that, based on their foundational concepts, are likely to correlate to

human perception.

3.2.1 Gabor Filters

A Gabor filter is a type of bandpass filter commonly applied in image processing. It

is made up by a sinusoidal plane at a certain frequency and orientation, modulated by

a Gaussian envelope [22]. The filter has a real and an imaginary part (representing

orthogonal directions) to collectively form a complex number [21].
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The complex two-dimensional Gabor filter function is given by equation 3.1 [21]:

g(x, y) = e
−

(x′2 + γ2y′2)

2σ2 e
i(2π

x′

λ
+ψ)

(3.1)

Where:

x′ = xcosθ + ysinθ

y′ = −xsinθ + ycosθ

θ = Orientation angle

γ = Spatial aspect ratio

σ = Gaussian standard deviation

λ = Sinusoidal wavelength = linear speed
frequency

Many claim that these filters are synonymous with perception in the human visual system.

This is because they are known to share similarity with the receptive field of simple cells

in the visual cortex of mammalian brains [15] [27]. It is said that the initial stage of visual

processing in the brain (V1) applies a ‘filter bank’ of Gabor filters [31]. A filter bank is a

collection of filters at different orientations and frequencies.

It is hypothesised that the following filter bank exists in V1 [31]:

Figure 3.1: The Gabor filter bank believed to be applied by the initial stage of visual
processing in the brain (V1) [31]
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When a filter bank is applied to a single input signal, the output is an array of single-

frequency-modulated versions (at different orientations) of the input signal. Therefore,

when this Gabor filter bank is applied to an image, the image is convoluted with real and

imaginary vectors at different frequencies and directions to result in a feature array/vector

[22].

Given the similarity to the human visual system, two-dimensional Gabor filters are fre-

quently used for feature extraction in images with automated edge detection and texture

analysis. Gabor feature based methods are also among the top performers in face detec-

tion and recognition, iris recognition and fingerprint matching [22].

This suggests that the computer application of the Gabor filter bank to the binary images

in the NexSig cognitive test battery could provide information into how these images are

visually processed.

3.2.2 Fractal Dimensions

A fractal pattern is an image that displays ‘self-similarity’. An image displays self-

similarity if it shares the same (or similar) statistical characteristics as the whole figure

at different scales of magnification. I.e. each part of the image is at least approximately

a smaller copy of the whole image. A very popular fractal curve is the Koch snowflake

- a pattern repeatedly built off the outer two sides of several equilateral triangles [17].

The fractal dimension (Df ) is therefore the measure of the fractal properties that the

figure/image displays by indicating how scaling changes an image.

The box counting method is a technique widely used to determine the fractal dimension

of images. The process looks at the number of boxes, N, needed to cover the non-zero

elements of an image as the size of the boxes, r, is varied. The fractal dimension is then

calculated as the slope of the line of best fit through the log (N) (y axis) against log(r)

(x axis) plot [24]. The slope/dimension tends to vary between 1 and 2. Df = 1 is likely

to represent a straight line, and Df = 2 is likely to represent a line so out of shape that

it completely fills up a two-dimensional plane. Therefore the greater/steeper the slope,

the greater the fractal properties. This box-counting dimension, Df , is also known as



Chapter 3 Studies on Visual Perception and Complexity 15

the Minkowski-Bouligand dimension, or Kolmogorov capacity, or Kolmogorov dimension,

and is given in equation 3.2 [24].

Df = gradient(
log(Nr)

1
log(r)

)

Df = −dlog(Nr)

dlog(r)

(3.2)

An important step in the box counting technique is choosing the relevant box sizes, and

increments of change in the box sizes. Naturally, the box size must never exceed the

image’s total size. Box sizes beyond about 50 % of the image size are likely to introduce

errors. A maximum box size of 25 % of the shorter side of the image is generally optimal

for standard box counting scans [20]. If an image is noisy, the largest box size should be

smaller [20].

The fractal dimension signifies visual complexity by measuring the level of visual detail in

a fractal at different levels of magnification [17]. A higher fractal dimension indicates more

detail at smaller scales, and thus signifies greater visual complexity. Since the human eye

is likely to pick up visual self-similarity as well, this measure should be synonymous, at

least to a certain extent, with visual perception.

As the implementation in this study is aimed at computationally mimicking visual percep-

tion, mathematical concepts that are suggested to be synonymous with visual perception

would be well suited for this endeavour. Gabor filters and fractal dimension calculations

can therefore be implemented and tested against the provided cognitive tests’ results to

prove their relevance in human perception.

3.3 Binary Image Processing in Machine Vision

Binary images are images which have only two possible values for each pixel – black or

white. Initially, machine vision largely focused on binary images (as opposed to colourful

images) due to memory and computing power limitations. In terms of visual perception,

people have less difficulty in distinguishing line drawings, silhouettes and other images
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formed when there are only two colours being visually assessed. Binary images are there-

fore frequently used in several human visual applications, which makes binary vision

systems continually useful [11].

The following methods are most commonly used for the analysis of binary images by

humans, and consequently in machine vision systems [11]. More specifically, they are

likely to be applied by field independent individuals during their visual observations as

they separate and organise detail within images.

3.3.1 Image Segmentation

Humans tend to naturally identify sub-images of some sort within an image. This process

is known as segmentation and is often the first step during image analysis [11]. This

could be difficult to execute on a computer as the segmentation process may vary from

person to person – different people focus on different areas of an image. The first step

to implementing image segmentation objectively on a computer could therefore involve

simply partitioning the image into smaller, equally-sized sets of pixels to be assessed

independently.

Segmentation is also done on the varying colour distribution within an image. Since

binary images have only two distinct variances of colour, there is a predefined level of

segmentation (between the black and white pixels) within the image [11]. This is a more

common and consistent level of segmentation naturally conducted by individuals, and

can similarly be implemented computationally.

Another possible level of segmentation that is likely to occur is the detection of distinct

objects in an image. Identifying significant objects in an image is one of the key compo-

nents in image analysis [11]. Humans are likely to notice the size and location of these

objects as distinctive features of the image. Note that the object calculations on the

example images in 3.3.2 and 3.3.3 assume that a single cluster of black pixels in the im-

age can be classified as an object. A formal object classification algorithm is yet to be

defined.
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3.3.2 Object Detection: Size

The size of an object can be given by its area [11]. In the case of binary images with

large, distinct pixels, the size measure of the object can be obtained by simply summing

the number of black pixels that it is made up of. Therefore, the size/area of the L-shaped

object in the example image in figure 3.2, is 4.

3.3.3 Object Detection: Position/Location

The position of an object within the image can be defined using its centroid – the ge-

ometric centre of the object [11]. This theory could be applied to the objects within a

binary image.

To calculate the centroid of any composite object, it must first be broken up into a series

of smaller, basic shapes that have predefined local centroid locations. The formula to

calculate the centroid [x̄, ȳ] of object B is given in equation 3.3 where B is made up of n

basic shapes with area A. Therefore, xi is the x coordinate, and yi is the y coordinate of

the local centroid of shape/area Ai.

B[x̄, ȳ] = [

∑n
i=1Ai.xi∑n
i=1Ai

,

∑n
i=1Ai.yi∑n
i=1Ai

] (3.3)

If the x and y axis are defined as shown in figure 3.3, the centroid for the single L-shaped

object in the example image is [2.75,2.25] and is drawn in on the same figure.

Figure 3.2: Original image Figure 3.3: Centroid of the
object in the image relative to

the axis drawn in
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Binary image processing concepts are directly applicable to the images from the chosen

visual test battery where the objects in an image convey information regarding that

image. Therefore, once an object is defined in an image, its size, location, shape, and

even orientation can be captured as visual features. These basic characteristics can also

convey other information about the image. For example, calculating the average distance

between the locations of multiple objects in the image provide an indication of the object

spacing within the image, or even comparing the relative positions of detected objects

within two different images could be used as a measure of similarity/difference between

the two images. Similarly, the other binary image information detailed in this section can

be compared between multiple images to deduce comparative measures.

Further to this, additional comparative measures need to be investigated to understand

how images are compared during visual perception. The next section deals with compar-

ing images to understand relative complexity.

3.4 Assessing Complexity Between Multiple Images

The techniques explored in this section address the comparison of multiple images to

gather information regarding the relative complexity of the images. These can therefore

be used to provide insight into comparing multiple images through computer vision.

3.4.1 Modelling Image Complexity by Independent Component

Analysis, with Application to Content-Based Image Re-

trieval

Authors Jukka Perkiö and Aapo Hyvärinen claim that the difficulty in defining the de-

gree of similarity between two images stems from the fact that the similarity is largely

dependent on the context of the images. Perkiö suggests that similarity between images

is defined at two levels: the semantics and the syntax, where the syntax refers to the

structure of the image, and the semantics are dependent on the context of the images.

Simply put, different aspects or features of an image tend to be focused on in different
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contexts. Consequently, the less dependent the similarity is on the context of the images,

the more general the similarity measure can be with a simpler semantic/ more logical

interpretation, and greater focus on the syntax of the images [33].

Perkiö and Hyvärinen’s paper presents a method based on a model known as independent

component analysis (ICA) that incorporates data sparsity to approximate a pair-wise sim-

ilarity measure. The method estimates the entropy of images separately and combined.

The similarity is then calculated from the normalised difference between the single im-

age complexity, and the pair-wise complexity. The measured complexity is low if the

components are largely dispersed [33].

The other two methods predominantly discussed in this paper, KL-divergences and NCDs,

are estimated from RGB-intensity histograms, and will therefore not be studied further

for binary image complexity definitions. ICA is comparable, but not similar, to other

complexity measures such as normalized compression distance, and other information

theoretic entropy-based methods [33].

ICA will not be directly implemented in this research, however, the process detailed in

this study demonstrates how data sparsity can indicate pair-wise image similarity. Data

sparsity is also an important measure in visual perception – Attneave postulated that

the concentration of information at certain points in an image is one of the factors that

can cause a human to extrapolate the rest of the image. The degree of extrapolation

then affects an image’s perceived complexity. Data sparsity could also subsequently be

measured given the object information detailed in the previous subsection.

3.4.2 A Co-Saliency Model of Image Pairs

Saliency is the quality of being especially noticeable. Thus, co-saliency is the common

saliency between two or more images, which is influenced by the co-occurring of particular

patterns and contrast factors between the images [37].

Saliency detection models are primarily inspired by the human visual attention processes,

and can be segmented into two categories: eye fixation prediction models and salient
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object detection models. The objective of the former is to predict fixation points when

people freely look at a visual scene. The objective of the latter is to detect and segment

the full extent of salient objects that strikingly attract visual attention. Based on the

hypothesis that salient regions should be distinctively noticeable from their surroundings

within an image, early saliency prediction techniques involved contrast detection. More

recently, deep neural networks have been used to identify informative and salient regions

between comparable images [37].

This co-saliency model combines the local prominent regions within a single image with

the similarity measure between an image pair. They have built the model to follow

the attention search process for an image pair, which can be obtained by a calculated

weighted addition of the Single Image Saliency Map (SISM) and Multi-Image Saliency

Map (MISM) [23].

The SISM is generated by combining three different types of saliency maps: Itti’s model

saliency, frequency-tuned saliency, and spectral residual saliency where the first one mim-

ics the human visual search process. The SISM calculation is moulded based on the

specific advantages of each of the three maps [23].

The MISM is then generated by assessing the inter-image correspondence through feature

matching. This is based on the premise that if there is a similar object in both the images,

it would garner more visual attention. The MISM process consists of four stages: pyra-

mid decomposition, feature extraction, SimRank optimization, and multi-image saliency

computation [23].

A weighted addition of the SISM and MISM is then calculated. This method provides an

effective way of predicting human fixations between multiple images and isolate co-salient

areas. The authors point out that humans focus on the most valuable information from

the image pair [23].

This co-saliency model demonstrates the concept of how co-occurring patterns between

multiple images can affect the relative image complexity. Once again, this ties into

Attneave’s hypothesis where co-occurring patterns could constitute as a level of visual

redundancy. This redundancy could subsequently affect visual perceived complexity.
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The equations explained herein are also not applied directly to the images in this research,

but they rather demonstrate how co-saliency is otherwise measured, and guide the more

informal choice of measure for co-saliency. Given the binary image processing detailed

in the previous subsection, the information deduced from the objects in images can be

compared to find co-occurring patterns which then constitutes for a measure of co-saliency.

3.4.3 Direct Image Comparison

While the previous two studies have detailed comparing respective aspects of images,

another approach can be considered where two whole images are compared directly against

one another. This comparison caters for field dependent individuals (as per Witkin’s

postulation) who assess their visual field as a whole, and only loosely evaluate sub-images

and other finer details.

A study named Measuring Classification Complexity of Image Databases: A Novel Ap-

proach presents a calculation of the degree of similarity between whole images from two

different classes [34].

Multiple images provided in a single neurocognitive test instance can be assumed to be

part of a single class. If one therefore manipulates their proposed equation to define the

similarity, it results in the summation of a simple bit-by-bit AND operation. In this

scenario, each respective bit is compared between the two images. Only if both of the

bits are black, is the result 1 for the comparison of those two bits. Therefore, the total

measure of similarity between two binary images (of the same size) with n bits each, can

range between 0 and n. Here 0 denotes a complete lack of similarity, and n denotes the

highest level of similarity.

Since the summation in this calculation is triggered by black squares in the same position

within their respective images, this calculation assumes that black blocks are more visually

striking during human observations than the white ones.
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3.5 Previous Research on Binary Images

The previous sections herein have now detailed mathematical implementations that are

in line with the principle visual perception theories. These can be applied in some way

to this research. There are, however, other studies that have also similarly explored this

research topic.

3.5.1 Individual Image Complexity Determination

A previously conducted study focused on defining the visual complexities of single

sixteen-bit binary images. An algorithm was developed by applying Fred Attneave’s

primary theories on human visual perception, to classify each image in the sixteen-bit

binary dataset with one of three visual complexity levels: “easy”, “medium” or “hard’.

The solution was tested against complexities perceived by human judges for three hundred

different images. The final algorithm yielded an accuracy of 69 % [7].

Realistically, however, if a subject is simply provided with a single image and asked to

define its perceived complexity, it might be tough to do so without posing the question

‘with respect to what?’ Even human perceived complexity is relative. Therefore, it can

be said that the extent of similarity between multiple images is a better indication of a

task’s complexity, than the individual complexities of those same images. For instance,

should two images be vastly different visually, where one is very simple, and one is very

complex, being able to distinguish between them becomes effortless.

Since cognitive tests involve a subject differentiation between presented images, the degree

of discrimination required is what defines the complexity level of a task. This individual

complexity measure will be a foundation on which a relative complexity measure will be

built in this research.
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3.5.2 Aharonson’s Compression by Tracing

This study was also conducted to define the relative visual complexity between the sixteen-

bit binary square images employed in recall and recognition tasks. It is built on the

postulation that the extent to which an image can be compressed is indicative of its level

of complexity.

Based on this, a compression technique was applied on a sixteen-bit binary vector, derived

from the square images. A pre-processing procedure used six tracing modes and converted

each image into six respective binary vectors. Each vector was compressed based on

the extent of change between the black and white consecutive bits. This process thus

disregarded the contiguous similar bits within the sequence [1]. Aharonson then used

the range of compressed vectors to propose a pattern description length (PDL) algorithm

that identifies the minimum number of bits required to describe the image [1].

A relative complexity measure was then calculated using the ratio between the individ-

ual image complexities obtained from the PDL. This equation ensured that the relative

complexity decreases if the difference between the two image complexities increases, or if

the complexity of the simpler image decreases. The algorithm proved to provide a useful

complexity scale for customary small image recognition tasks [1].

These two preliminary studies have both applied computer vision through the computa-

tional assessment of the binary images. However, further analysis needs to be conducted

on how the computer vision can be advanced through this research to make better use of

the available dataset, create an enhanced visual complexity scale, and ideally gain further

insight into visual perception.

3.6 Computer Vision and Machine Learning

Computer vision employs image processing techniques on images to produce quantitative

and qualitative information about them such as size, colour, or number of objects within

the images [25]. It is aimed at deducing visual information computationally in a similar

fashion to the visual reasoning process conducted through human vision. However, as
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visual perception remains a mystery and is yet to be completely understood, additional

machine learning methodologies, such as neural networks, can be coupled with computer

vision to attempt learning and mimicking visual reasoning [25].

One such study described a computer vision system to model human behaviours and

interactions in a visual surveillance task. In this investigation the system was trained

on sets of perceived actions and then tested on the ability to detect eventual anomalous

behaviours or potentially dangerous situations [30].

A classification model that is commonly applied in image classification studies is the

random forest (RF) classifier. A random forest trains on a combination of several decision

trees that make up the said forest [26].

Decision trees learn to map provided data (otherwise known as “features”) to expected

targets. Thereafter, if the decision tree is required to predict a result given a set of sample

data, it applies the feature information and structure it previously learnt. However, if

this is done with only one tree, the prediction error is likely to be very high as there are

too many factors to account for by only one tree. Random forests therefore eliminate

this variance by combining several trees where each tree adds more knowledge to the

measure [26]. A graph of the common relationship between the number of trees chosen

in a random forest, and the percentage prediction error is shown in figure 3.4. The final

number of trees chosen is usually around where the error percentage flat-lines so as to not

make the solution too computationally expensive, while maintaining a minimal error.

An important characteristic of the random forest is that each decision tree in the forest

considers a random subset of features when creating questions, and is only provided

with access to a random set of the training data points [12]. The random forest uses

a technique called bootstrap sampling which repeatedly selects a random sample of the

training set and allocates it to a decision tree. This random sampling increases diversity

in the forest and lowers the risk of overfitting a single set of training data. The final

result/predicted class is then the average, or the mode (majority vote) of the predictions

from the individual decision trees [12] [26]. The average is taken when the random forest
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Figure 3.4: Relationship between the number of trees in a random forest, and the
percentage prediction error

is used for regression, and the majority vote is taken when the random forest is used for

classification. A high level random forest process is illustrated in figure 3.5 [26].

Figure 3.5: Random forest classifier process flow
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The random forest is considered a robust model due to the minimal likelihood of over-

fitting the training data [12]. However, in some extreme cases this is still likely. While

overfitting is checked and prevented through cross validation methods, an additional tech-

nique by which to test that a model is not overfitting the data is to obtain the out-of-bag

(OOB) error. This calculation represents the prediction error on random samples from

the training subset [28].

A significant advantage to the random forest is that it can provide feature information

with the results. Since different subsets of features are used for different decision trees,

the results provide better insight into which features contributed to the classifier, and

hence to which lengths they had an impact on the final predication.

Other popular learning models that are employed for multi-class classification include

artificial neural networks (ANN) and support vector machines (SVM). These are known to

be strong learning techniques which can detect complex non-linear relationships between

dependent and independent variables, and are less influenced by outliers [4]. However,

these techniques are black boxes with several hidden layers between the input and the

output. Consequently, the results from these techniques would not provide information

on which features were used, and to which extent.

3.7 Summary

This chapter described several methods that are applicable to computationally modelling

human visual perception, and that have guided, in some way, the choice of techniques

implemented in this research: Attneave and Witkin’s theories assist in understanding

the theoretical concept of visual perception. The Gabor and fractal dimension concepts

provide mathematical calculations that are likely to be synonymous with human visual

perception. Binary image processing serve in identifying specific, key features observed

by subjects when defining the visual complexity of these binary images. ICA, co-saliency

and direct image comparison further propose solutions to define the relative similarity

between multiple images.
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The two last studies: Individual Image Complexity Determination and Aharonson’s Com-

pression by Tracing attempted to explore the correspondence of the computational com-

plexity and human complexity perception, and have motivated this research as prelimi-

nary work. The computer vision and machine learning theories are further explored as

an investigation into how these technologies have previously been used on images for a

similar purpose, and can thus assist in extending the preliminary work.

To implement the computer vision system in this study, the visual perception theories

guide which aspects of each mathematical, objective technique above is applied to extract

notable image features. This is aimed at computationally mimicking the same process

followed by a human during their visual observation. Features are extracted from the im-

ages with the techniques detailed in the binary image analysis. Object-specific and whole

image comparisons are made between images using these extracted features. Co-saliency

is measured by detecting the co-occurrence of different objects (as valuable focus points)

within the images. Relative sparsity is measured on the objects within the images. Ide-

ally, this process would computationally mimic visual perception by field independent

individuals. The images can then be compared holistically as well, through the whole

image comparisons, to computationally mimic visual perception by field dependent in-

dividuals.

Finally, the machine learning technique, random forests, is explored when building the

computational predictor of visual perceived complexity by learning how the presence of

the different features mentioned above affects the human perceived complexity.



CHAPTER 4

Research Specifications

4.1 Research Question

There is no reliable visual complexity scale for cognitive tests that employ visual stimuli.

One of the reasons for this is the distinct disjuncture between the mathematical defini-

tions of visual complexity, and psychological experiments on human perception of visual

complexity. This study intends to bridge this gap by attempting to mathematically and

computationally capture complexity in the context of human cognitive tests.

This research aims to answer the following question:

To what extent can a complexity measure, based on information theory and machine

vision, model and explain human visual perception in the context of cognitive tests?

To answer this question, the following five objectives will be pursued:

1. Create a human task complexity scale based on a database of response times ac-

quired in visual tasks. The scale requires a segmentation paradigm to map the

response times of subjects into a discrete scale.

2. Extract image features that capture the visual characteristics of the images in the

database tasks.

3. Develop a complexity classifier to find patterns that relate the image features in

the cognitive tasks (objective 2) to the human task complexity perception scales

(objective 1).

28
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4. Assess and compare the prediction performance of the algorithm for the different

human complexity perception scales.

5. Evaluate which features, or combination of features, are more relevant to the com-

plexity prediction.

The first objective aims to quantify the human visual perception, in the context of cog-

nitive visual tasks complexity. As visual cognitive tasks are presented to subjects, they

need to perceive the images therein, and complete a task: recognition or recall. As de-

tailed in the next section, this research assumes that the response time – the time taken

to complete a task - is indicative of the difficulty of the task, which in turn is correlated to

the complexity of the task. Given a suitable large database of computerized visual tasks,

and their response times, a human complexity scale needs to be derived and tested.

The second objective then involves extracting features of the image sets in the tasks to

capture, and specify visual characteristics that are relevant to the visual complexity of

the tasks.

The third objective entails developing a machine learner to yield a computational com-

plexity prediction, using the information theory and machine vision image features (de-

rived in objective 2) as inputs, and using the human complexity scale (derived in objec-

tive 1) as labels.

The fourth objective evaluates the performance of the algorithm developed in objective 3.

The results of this indicate how likely the algorithm is to correctly predict a human

perceived visual complexity of a cognitive task. The applicability of the different labels

schemes, that were derived based on human performance, is particularly examined in this

stage.

Concurrently, the fifth objective deals with analysing feature importance using the in-

formation provided by the machine learning model. This will indicate which features

contributed when defining the visual perceived complexity of the images.
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The culmination of these five objectives aims to provide a methodology that, given visual

cognitive tasks, and human perception performance, can match the two complexity scales

- computational and human - and classify the complexity of the cognitive tasks.

4.2 Assumptions

The assumptions in the study were made based on the data available for it. This database

- NexSig’s Computerized Neuropsychological Tests - will be further detailed under the

methods in the following chapter. The following assumptions are therefore made:

� The data is accurate, authentic, and reliable.

� A subject response times correlates to the perceived visual complexities of the task,

and are thus a good measure for the complexity of the task. Studies in psychology

have shown that reaction/response times relate to decision difficulty. When a human

is presented with any sort of a task, it requires brain activity. The corresponding

response time reflects the workload in the brain, and thus varies with the difficulty of

the task at hand [36]. Intuitively, the more difficult a task is, the more time it takes

to complete. Therefore, it was assumed that the subjects’ response times relate to

the complexity of the presented tasks, and could be used as a “ground truth” of

the perceived complexity. This assumption was necessary as all testing was done

against the response times, and the algorithm would be completely incorrect if the

response times were not an indication of the perceived complexity of the task.

� The human brain is very complex, and human performance, even in very focused

tasks such as the ones studied here, is affected by many processes, cognitive and

other. Examples of this are emotional reaction and past experiences. It is therefore

assumed that the bias or skewness caused by these factors is negligible compared

to the cognitive function. This assumption can be justified by the nature of the

visual stimuli, or images presented in the tasks concerned: The images are very

small and abstract and were chosen after neuropsychological studies, subjective,

but extensive, to mitigate this bias.
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4.3 Constraints

The following constraints were identified in this algorithm design:

� As described in the assumptions section, many aspects in human visual perception,

complexity included, are biased by noncognitive elements, such as emotion, culture,

previous memories and more. For example, one individual might perceive a familiar

object or shape within an image, whereas another does not see it. This could cause

different individuals to perceive the same visual stimulus differently. Therefore,

the analysis of the response times in the database may be skewed. Since these

factors cannot be quantified, it was not possible to capture or account for them

when analysing the data. While the possibility of this bias is significantly reduced

with the lack of colour and small size of the presented images, it was still noted as

a constraining factor.

� The dataset used in the study contains a large set of instances - visual tasks and

response times. This dataset was collected in studies with clinical goals, and may

not be optimal for the current research. The algorithm developed is therefore con-

strained by the range of the visual tasks in this dataset. In this way, if the dataset

did not contain images of a certain complexity type, it would not be possible to

train or test on them, thus limiting the capability of the algorithm’s complexity

labelling quality.

Given the problem specifications and the previously described related theories that could

assist in solving this problem, the next chapter presents the method that was implemented

in the research.
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Visual Complexity Learning Algorithm

This chapter presents the visual complexity learning algorithm that was developed to

create a quantitative, computerized complexity measure. The algorithm was developed

on Matlab, version 9.5, release R2018b. All code has been provided in the attached CD.

The chapter starts with a description and critical analysis of the dataset provided for this

research. It then details the algorithm applied to this dataset to implement a complexity

prediction.

5.1 Dataset

This computerized complexity measure made (secondary) use of the dataset from NexSig’s

computerized cognitive testing studies, as introduced in chapter 2. Approval to use the

dataset was obtained, along with the ethics clearance (M180414) for re-use of this data.

The clearance certificate is provided in Appendix B.

The primary advantage of NexSig’s computerized cognitive testing studies was that the

data was made available, and the simple binary images could be readily encoded and dealt

with computationally. The test results could be used to deduce information regarding

human visual perception in the context of visual neurocognitive tests. Consequently, this

dataset could provide a benchmark against which to develop and test the methodologies

that have been described in the related studies in chapter 3 to implement this complexity

defining solution, and possibly better describe visual perception.

32
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There were two visual tests employed in the studies that yielded the dataset: recognition

and recall. Both tests used images of the same category as visual stimuli: small, sixteen-

bit square binary images. In the recognition tasks (example shown in figure 5.1), three

images were presented on the screen, and the subject was required to recognize which of

the three images was different.

Figure 5.1: An example of a visual recognition task presented to a subject in the
dataset.

In the recall tasks (example shown in figure 5.2), a single image was presented on the

screen for a few seconds, and then erased. The subject was then presented with three

images, and required to remember and select which one was previously displayed.

Figure 5.2: An example of a visual recall task presented to a subject in the dataset.

The recognition and recall test results of the subjects – correctness of answer and response

times – were collected in the dataset. One table stored the recognition tasks’ results, and

the other stored the recall tasks’ results. Each row therein represented a task instance.

The first three fields in the row contained the coding of the images in the presented task,

from left to right image as presented on the screen. The images were coded as sixteen-bit

arrays translated from the four-by-four images starting from the top left square, going left
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to right, and then downwards row-by-row. A white pixel in the image was represented

with a 0 and a black pixel with a 1. For example, the first image in figure 5.1 would be

coded as 0011000101011011.

After the three images, each row contained a field with what the correct (expected) answer

for that task was (i.e. 1, 2 or 3), what the subject’s actual answer was (1, 2 or 3), and

what their corresponding task response time was in milliseconds. Results were cut off

shortly after 7000 ms. A snippet of these results is shown in table 5.1.

Table 5.1: Data extract of a recognition test battery with ten tasks provided to a
single subject

ID Filename Image1 Image2 Image3
Expected
Response

Actual
Response

Response
Time

1 1106089771859.txt 1111010000110100 1111010000110100 1000101101110100 3 3 2890
2 1106089771859.txt 0011110000101110 1100000111101000 1100000111101000 1 1 2688
3 1106089771859.txt 0011000101011011 0100001111101010 0011000101011011 2 2 3594
4 1106089771859.txt 0001100110010111 0111101011001000 0111101011001000 1 1 2125
5 1106089771859.txt 1100011001010100 0110100110100110 0110100110100110 1 1 3109
6 1106089771859.txt 0101111000011010 0101111000011010 0101001110011001 3 3 4391
7 1106089771859.txt 1100010011100110 1100010011100110 1100010111000110 3 3 3640
8 1106089771859.txt 0100010011101110 0011010010111010 0100010011101110 2 2 2125
9 1106089771859.txt 0111110010001010 1000101100111010 1000101100111010 1 3 2063
10 1106089771859.txt 0011010010011101 0011010010011101 0000100111111100 3 3 1844

A separate table listing the demographics and MMSE results of the subjects that took

part in the tests was also included in this dataset. This table mapped to the test results

via a filename, thus maintaining subject anonymity. A snippet of this representation is

shown in table 5.2.

Table 5.2: Data extract of the subject demographics provided in the table

Filename Age Gender MMSE Computer Skill

1106089771859.txt 50 Male 30 100
110668031945301.txt 74 Female 30 100
1107242873618.txt 44 Female 30 103

A sub-set of the data was selected for this study with the following motivation:

� This study did not attempt to model cognitive decline, but rather to model nor-

mal perception. First, normal perception needs to be defined to able be to detect

cognitive decline using these tests in the future. Therefore, only control subjects -
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persons with no cognitive impairment - were selected from the database. These sub-

jects had an MMSE value of 30. The results would then be a sufficient indication

of perceived visual complexities, uninfluenced by cognitive decline.

� The scope of this research only involved the recognition test results, and not the

recall test results. Each presentation of the recognition test has two unique images

(since two of the three images presented are identical), whereas the recall test has

three different images. The recognition test requires a visual comparison when the

subject looks for differences to select the one image that is unlike the other two.

The recall test, however, involves a recollective process that requires a judgement

of similarity to recall which of the presented three images was previously shown.

Ergo, this research only focussed on the tasks that were primarily indicative of the

visual comparison process, containing just two unique images.

This sub-set, containing 5 087 task instances - one row for each instance - with their

respective information as detailed above, was imported into Matlab using the data im-

porting functionality.

After extracting and importing the subset of data, an attempt was made to justify the

assumption that, for this subset, the tasks’ response times correlate to their human per-

ceived complexity, and to thus confirm that the these times could be used as a fair

representation of human perceived complexity.

The response times were examined according to the subjects’ demographics - age, gender

and computer skill - to test that none of these factors distorted the general distribution

of response times.

An algorithm was then developed to predict the visual complexity in tasks that entail

distinguishing between three images - with one unique image pair - with the performance

results of cognitively intact subjects. An image pair was defined as the two unique images

presented in the recognition tasks. The image that appeared twice between the two images

in a presented recognition task was assumed to have no additional impact on the visual

assessment in this research.
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5.2 Algorithm Development

The algorithm was developed to achieve the objectives as ordered in the research specifi-

cations in chapter 4. A high-level process flow of the algorithm implementation is shown

in figure 5.3.

Figure 5.3: Method process flow

The response times in the dataset were represented with a list of human perceived com-

plexity labels. Concurrently, the images from the tasks’ image pairs were analysed to

extract corresponding image information/features. Subsequently the human perceived

complexity labels, and the extracted visual features were entered into a random forest

learner to find a relationship between these inputs. The aim was to use this deduced

relationship in a complexity classifying model to predict the perceived visual complexity

of any 16-bit binary image pair. The idea was that if a relationship between the features

and the corresponding perceived complexity is known, then with any given image pair,

the features can be extracted, and the perceived complexity can be predicted based on

this previously built relationship.

The process flow of figure 5.3 was repeated through several experiments with different

values. The experiments included applying different response times scale representations,

and different classification learners. Further technical details pertaining to each stage of

the algorithm-defining process in figure 5.3 are detailed in the following sections.
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5.2.1 Human Visual Complexity Level Representation

As described in the problem specifications, and according to the literature and cognitive

testing assumption, the response times in the dataset are assumed to correlate, in some

way, to the tasks’ perceived complexities. Unfortunately, no prior knowledge or method

was previously proposed to quantify this exact correlation, i.e. is it a linear relation or a

logarithmic one? Moreover, the measured response times in the dataset are a continuous

scale of values which needed a larger amount of data to classify. Therefore, a segmentation

method was required to divide the scale into “complexity levels” ranging from “easy”

(short response times) to “hard” (long response times). Larger response times were

represented with a greater complexity level. Intuitively, the longer it took to fulfil a task,

the more difficult that task was perceived to be.

Linear and logarithmic paradigms were investigated to define the relationship between

the response times and the perceived complexities. Each paradigm was followed by a

segmentation method to a number of distinct perceived complexity levels. Accordingly,

each response time in the database was represented with a corresponding complexity

level/label based on which division the response time would fall under. The number

of levels that the response times were divided into changed based on the segmentation

technique applied. These were also adjusted based on the results observed.

Initial examination of the response times’ distribution yielded a normal/Gaussian one.

The following linear and logarithmic segmentation paradigms were explored:

5.2.1.1 Linear Response Time Representation

This paradigm assumed that the response times are linearly related to the perceived

complexity. A general illustration of this technique is shown in figure 5.4.

The mean (x̄) and the standard deviation (σ) of the response times, and a variable n were

used to define the linear class boundaries as per the illustration in figure 5.4. The mean (x̄)

of the responses times is 3167.9 ms, and the standard deviation (σ) is 1139.5 ms.
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Each complexity class was of width nσ. Therefore the variation of n controlled the number

of classes that the response time range was classified into. As an example, the different

number of classes rendered from varying n is presented in table 5.3.

Figure 5.4: General linear segmentation of the response times in the dataset

Table 5.3: The number of classes generated from varying n in the linear segmentation
technique from figure 5.4

.

n Number of Classes
0.50 12
0.75 8
1.00 6

In figure 5.4, the levels are shown to be adjacent to each other. However, with such a fine

scale of response times, there are responses at almost every millisecond; some of which

might fall in between certain classes. Therefore, there also needs to be a technique that

employs levels slightly separated from each other. An example of a linear response time

segmentation with three classes slightly separated from each other is shown in figure 5.5.
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Figure 5.5: The distribution of response times segmented linearly into 3 distinct levels
slightly apart from each other

The purple regions mark the response times that were ‘mid-levels’; these instances fell in

between two different classes. This segmentation was implemented as an additional ex-

periment where the mid-levels could be tested to see where (in which class) the algorithm

predicted them to fall.

5.2.1.2 Logarithmic Response Time Representation

This paradigm assumed that the response times have a logarithmic relationship with the

corresponding perceived complexity. This relationship is motivated on the fact that, as

per the Weber-Fechner law, human perception has a logarithmic trend where humans

perceive distance, light intensity, and even sound intensity logarithmically [16].

The logarithmic class boundaries were found with the logpsace function on Matlab that

takes a lower and upper boundary, and provides an array of logarithmically spaced values

in this range. Therefore, initially, the shortest response time (625 ms), and the longest

response time (7 030 ms) were taken as the two outer limits for this calculation to split

the response times into a variety of logarithmically sized classes.

Implementing this straight-forward logarithmic segmentation proved to be challenging

as the initial levels contained minimal response times, whereas the latter, larger levels,

encapsulated all of the response times. The majority of the response times were being

classified with “high” difficulty levels. An example of this technique with 4 classes is

shown in figure 5.6.
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Doing this, the classification learner (described later in this chapter) would have learnt

that most image combinations are classified as one of the latter levels, and the predictor

would have been biased towards the same level for all future predictions.

Figure 5.6: General logarithmic segmentation of the response times in the dataset
starting from the lowest response time to the largest response time

This motivated the decision to attempt an inward logarithmic segmentation that began

from the mode of the response times. The boundaries would then move outwards on

either side. By doing this, the smaller-sized classes were in the middle, most populous

area of the response times. The levels then increased in size as the volumes of response

times decreased going outwards from the mode of the response times on either side. An

illustration of the inward logarithmic segmentation into 4 classes is shown in figure 5.7.

Figure 5.7: Inward logarithmic segmentation of the response times in the dataset
starting from the mode and moving outwards on either side
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This inward logarithmic model was therefore chosen to execute the logarithmic segmen-

tation paradigm in the trials of the response time level representation step. Once again

the number of classes was varied (for different experiments) using the logpsace function

in Matlab to provide the boundaries based on the desired number of classes.

Additionally, the point (mentioned previously in the linear segmentation technique) around

the fine response times scale applies in this segmentation paradigm as well. Consequently,

an inward logarithmic segmentation module with three slightly separated levels was also

attempted, and is shown in figure 5.8.

Figure 5.8: The distribution of response times segmented logarithmically into 3 dis-
tinct levels slightly apart from each other

Following the above paradigms, each response time (and hence cognitive task) in the

provided dataset was uniquely labelled with a ‘human perceived’ complexity level. These

were the labels used by the machine learning tool when learning and predicting the task

complexities.

Each representation model was applied to the response times independently (one at a

time) to produce a set of labels for each separate experiment of the algorithm. Therefore,

each complexity representation model had its own set of corresponding test results. The

comparison between the results from the two segmentation paradigms was done to find

the optimal combination of a segmentation model, and a complexity predicting technique

that makes up the algorithm.
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5.2.1.3 Human-Provided Complexity Levels

This experiment has not been listed in the process flow of figure 5.3 as it was simply ex-

plored as a proof of concept to test the algorithm without the response time representation

step.

While the response times have been assumed to correlate to the perceived complexity,

another attempt was also made to extend a concept implemented in the preliminary work,

where the human perceived complexities were provided directly by human subjects.

As referred to in chapter 3, the preliminary work focused on the visual complexity of

single images from this same set. Although the images were from the same dataset

that has been provided for this research, the same response times could not be used as a

measure of perceived complexity in that study. This is because these response times are

indicative of the responses to the complete tasks, which required comparing multiple

images (‘relative’ complexity). However the scope of that study was only on defining the

complexity of single images. Therefore, certain single images were directly labelled by

three individuals with their perceived complexity as 1 (‘easy’), 2 (‘medium’) or 3 (‘hard’).

While the preliminary work had a significantly smaller scope than this research, with

only a fraction of the features extracted and images tested manually, the idea of directly

labelling the tasks with perceived complexity labels prior to training was also explored in

this research.

Consequently, in this attempt, 10 subjects and 120 recognition tasks from the dataset

were chosen at random. From this pool, different subjects were asked to label, for different

recognition tasks, how relatively difficult it was to distinguish between the three presented

images when finding the image that was different (where 1 was ‘easy’, 2 was ‘medium’

and 3 was ‘hard’). As a result there were a total of 120 recognition tasks directly classified

with perceived complexity levels.

These were used in another small experiment to assess algorithm performance when the

input human perceived levels were provided directly by human subjects.
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Sections 5.2.1.1 to 5.2.1.3 have detailed various techniques by which the provided data was

labelled with human perceived complexities. These labels were required for the algorithm

to learn the correlation between human perceived complexities, and the various features

in the image sets. These features are now described in the following section.

5.2.2 Feature Extraction

This section explains the extraction of features, chosen based on the background studies

detailed in chapter 3, that describe different characteristics of the images in the recognition

tasks.

5.2.2.1 Object Type Definitions

Before presenting the different features, this section details the object types that will be

referred to in certain feature descriptions [7]. The objects are conceptual and scalable,

and can apply to pixels or square black or white shapes of any size. All of the object

types are defined for both, the black and white squares.

Given an image A, with cells A(i, j) where i, j = 1 : 4, the various objects were detected

by scanning the image row by row, left to right, from the top row to the bottom row.

These object types will be referred to and incorporated in some of the different features

listed later under 5.2.2.2.

� Adjacent paths

An adjacent path is a line of consecutive adjoining squares of the same colour

(immediately alongside each other, against one of the four sides of each square).

When scanning the image, if the algorithm detects a black block, then the blocks

adjacent to this will also be checked for a black block. Given that the initial black

block is detected at A(i,j), then the adjacent cells will be A(i − 1, j), A(i + 1, j),

A(i, j−1) and A(i, j+ 1). This process will run recurrently until there are no other

black blocks found in this line/path, thus ending the black adjacent path. The same

process runs to also detect white adjacent paths.
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For illustration, the detected black adjacent paths are outlined in red in the example

image (figure 5.9).

Figure 5.9: Two adjacent paths (outlined in red) found in an image

� Diagonal paths

A diagonal path is a line of consecutive squares of the same colour diagonal to each

other (immediately alongside each other, against one of the four corners of each

square).

The algorithm will once again scan the image in a similar manner. If a black block

is found, the blocks diagonal to this will be checked for black blocks as well. Given

that the initial black block is found at A(i,j), the diagonal cells will now be A(i-1,j-

1), A(i-1,j+1), A(i+1,j-1) and A(i+1,j+1). This process will run recurrently until

there are no other consecutive black blocks found in the diagonal path, thus ending

the diagonal path instance. The same process runs to also detect white diagonal

paths.

For instance, the one black diagonal path present in the example image is outlined

in green in figure 5.10.

Figure 5.10: One diagonal path (outlined in green) identified in the image
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� Remaining single blocks

Once the adjacent and diagonal paths are found respectively in that order, and for

each colour, any remaining, unclassified black and white squares are detected and

classified as single blocks. An example black single block is shown in figure 5.11.

Figure 5.11: One single black block (outlined in blue) found in the image

By these definitions, the binary image in figures 5.9 to 5.11 also has one white adjacent

path (outlined in orange), and one white single block (outlined in purple) as shown in

figure 5.12.

Figure 5.12: One white adjacent path and one white single block found in the image

There were therefore three object types predefined for the feature extraction: adjacent

paths, diagonal paths, and single blocks.
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5.2.2.2 Feature Details

The purpose of this study was to be able to computationally define the human perceived

complexity when viewing multiple images in a cognitive task. Therefore, understanding

the task complexity required understanding the relative visual complexity of these images,

and hence required capturing relative characteristics between the unique image pair.

Based on this, it was initially assumed that each feature would be extracted for each

image in a unique image pair from a recognition task. The absolute difference between

the respective features would then be computed to represent a set of ‘relative’ features.

These calculated differences would then be inserted into the machine learning algorithm

to describe the image pair’s relative features. However, while the objective is to obtain

a comparative measure, image feature comparisons might not always be as simple as an

absolute difference between each image’s measure of that feature.

Therefore for the following extracted features described, each respective feature was then

obtained and loaded into the machine learning algorithm independently. This was done

with the idea that the algorithm would itself learn how the features for each image in

the pair related to each other, and how they consequently impacted the relative visual

complexity between the image pair. There are, however, still certain features that are

comparative in nature, and describe a common or different characteristic in the pair of

images. These directly measure some form of co-saliency between the images. Those

particular comparative features have been marked with “(Relative measure)” next to the

feature name in this section.

Two types of extracted features are detailed under this section: object-specific features,

and whole image features. As per Witkin’s theories, the object-specific features cater for

field independent visual observations that focus on specific object-related details within

the images. The whole image features cater for more holistic observations that assess a

higher level detail of the image as a whole.
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Object Specific Measures

The following features describe something object-specific for each image. The object

types are as defined previously in 5.2.2.1.

� Number of Objects

This feature is simply a count of the number of adjacent paths, number of diagonal

paths, and number of single blocks within each image, for both black and white

objects. There are therefore 6 measures for the number of objects in each image.

As an example, these have been counted in table 5.4 for the example image pair

presented in figure 5.13.

Image 1: Image 2:

Figure 5.13

Table 5.4: Number of objects for the image pair in figure 5.13

Image 1 Image 2
Black White Black White

Adjacent Paths 2 1 1 1
Diagonal Paths 0 0 1 0
Single Blocks 1 1 0 1

� Object Path Lengths

This measure is the total lengths of the (black and white) adjacent paths and the

diagonal paths present in each image. This feature is irrelevant for single blocks.

There are therefore 4 measures for the object path lengths.

As an example, these path lengths have been calculated in table 5.5 for the same

image pair in figure 5.13.
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Table 5.5: Object path lengths for the image pair in figure 5.13

Object Path Lengths
Image 1 Image 2

Black White Black White
Adjacent Paths 6 8 4 8
Diagonal Paths 0 0 3 0

� Object Angles (Relative Measure)

This is the number of (black and white) adjacent and diagonal paths that are at the

same angle, and the number of (black and white) adjacent and diagonal paths that

are at the opposite angle between the two images. These angles are calculated

with respect to the x axis of the images. This feature is only relevant to adjacent

paths and diagonal paths as all single blocks are always at the same angles in these

images.

Computing the averages or sums of the angles would lack relevance because knowing

an overall or average object orientation does not provide any substantial insight into

the individual object details. Finding an average of 45° for two objects at angles of

0° and 90° does not add value to capturing object information. Therefore, finding

where an image pair contains objects at the same angles, and where it contains

objects at exactly opposite angles might be more useful. Only the extreme scenarios

of the angles were considered because slight degree variations are likely to be visually

insignificant in images of this size, and in scenarios where the images are presented

in a time constrained environment. However, objects occurring at opposite angles

could indicate some level of object symmetry, and objects at the same angle could

indicate object similarity.

The example image pair presented in figure 5.14 contains one set of black diagonal

paths at opposite angles, and one set of black adjacent paths at equal angles

between the two images.
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Image 1: Image 2:

Figure 5.14

� Objects with Similar Locations (Relative Measure)

This is a comparative measure that indicates the number of objects that have sim-

ilar locations between the two images. Since the location is such a sensitive value,

any objects with locations within approximately half a square of each other are

counted as similarly located objects.

Equation 3.3 previously presented in chapter 3, and shown below, describes the

centroid formula that was used to classify the locations of any adjacent paths,

diagonal paths or single blocks in the images. Given an object B made up of n

basic shapes with area A, xi is the x coordinate, and yi is the y coordinate of the

local centroid of shape/area Ai used to calculate centroid coordinate B[x̄, ȳ].

B[x̄, ȳ] = [

∑n
i=1Ai.xi∑n
i=1Ai

,

∑n
i=1Ai.yi∑n
i=1Ai

] (3.3)

An example of the centroids found for the black objects in an image is illustrated

in figure 5.15.

Figure 5.15
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Only objects of the same type and colour are checked for similar locations be-

tween the two images. I.e. there are 6 counts, where the first 3 are the number

of black adjacent paths, number of black diagonal paths and the number of black

single blocks in similar locations, and the next 3 are the same counts for the white

object types with similar locations.

Based on the example pair in figure 5.16, the model would detect that there is one

set of black adjacent paths, one set of white adjacent paths, and one set

of white single blocks with similar locations between the two images.

Image 1: Image 2:

Figure 5.16

� Different Object Types Present (Relative Measure)

This measure is a binary indicator that flags if there are any object types (adjacent

paths, diagonal paths or single blocks) that exist in one image, but not the other.

Since the object types are quite distinct, it was considered that perhaps the oc-

currence of an object type in one image, but the lack thereof in the other image

could constitute for a level of visual difference between the images. The number

of objects was not relevant in this measure.

The indicator was calculated separately for black objects and white objects respec-

tively. For instance in the example in figure 5.17, Image 2 has one black diagonal

path while Image 1 does not have any black diagonal paths, and Image 1 has a

black single block while Image 2 does not have any black single blocks. Therefore

the indicator for the black different objects present would flag. However there is a

white adjacent path and white single block in both images, and no white diagonal

paths in either of the images, therefore the indicator for the white different objects

present would not flag.
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Image 1: Image 2:

Figure 5.17

� Similar Objects Within Each Image

This is the number of objects that are the same (shape and size) within an image.

While the previous features indicate the length and quantity of the present objects,

they did not provide any information on the objects’ direction or shape. For instance

the black objects in figure 5.18 are both single black adjacent paths with a length

of 4, and even have similarly located centroids, however their shapes are different,

and they could thus be perceived differently.

Image 1: Image 2:

Figure 5.18

Therefore, this shape measure was included to detect objects within an image that

are of the same shape. This measure also included objects that are the same shape,

but at a different angle.

For the shape comparison, the algorithm isolated each object found, and used the

RegionProps function on Matlab to store each object as its own temporary image.

This helped separate the shape of each object. These shapes were then compared

directly against one another (and also compared when rotated at 90◦, 180◦, 270◦

and 360◦).
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As an example, this calculation indicates that in figure 5.17 (same example image

pair presented in the previous feature), Image 1 has two of the same objects, and

Image 2 has none.

� Similar Objects Between Images in Pair (Relative Measure)

This is the number of objects that are the same (shape and size) between the two

images. The same shape detection method from the previous measure was applied

to detect objects of the same shape occurring between the images. Once again,

this measure also counted objects that are the same, but at a different angle.

For example, the algorithm would detect one similar object between the two images

in figure 5.19.

Image 1: Image 2:

Figure 5.19

This concluded the seven object-specific features captured for the image pairs in the

recognition tasks from the dataset.

Whole Image Features

The following features were extracted when assessing each image as a whole, without

focusing on isolated object details.

� Whole Image Object Spacing

The overall spacing measure was calculated as the average distance between all

objects (of one colour) in the image. This assumed that the average should indicate

how those objects are spread out across the image.
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As mentioned previously, an object’s centroid was used to define its location. Based

on this, the distance formula given in equation 5.1 was applied on the object cen-

troids to calculate the distance between all objects (of one colour) within each

image.

Given object centroids P (x1, y1) and Q(x2, y2), the distance d(P,Q) is:

d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

An average was then taken of all possible object distances to indicate the overall

object spacing in each image.

Given the example in figure 5.20: for the distances calculated between all the black

objects for each image, the averages would indicate that the black objects are more

spaced out in Image 2, than they are in Image 1.

Image 1: Image 2:

Figure 5.20: The object distances between the black objects drawn for an image pair.

� Whole Image Bit Comparison (Relative Measure)

This whole image feature extracted was a direct comparison technique between

the two images as detailed in chapter 3. However, that was presented as an AND

calculation, whereas for this feature, the calculation was slightly modified to be an

XOR one. This was still a logical operation that computed a bit-by-bit comparison

between each respective bit in the images to map every single point of difference

found. For the calculation, each image was taken as a 16-bit binary array (similarly

to how the images were encoded to be written in the provided dataset).
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The generic XOR calculation is shown in equation 5.2 below for two binary arrays

B1 and B2:

XOR(B1;B2) = B1B̄2 + B̄1B2 (5.2)

The result from the XOR computation on the two images was also a 16-bit binary

array that can be visualised back into a binary image as shown in figure 5.21. While

this was not the format in which it was inserted into the machine learning algorithm,

it simply illustrates how the resulting array maps the points of differences between

the two images. The highlighted areas in the consequent matrix indicate the regions

of visual dissimilarity.

Once again, since an array cannot be inserted into the machine learning algorithm, a

summation of the resulting array was made as an indication of how many respective

bits were different between the two images. This whole number formed the overall

bit difference measure between the two images.

It can also be observed that the two images in figure 5.21 have similar-shaped black

objects, but these would not be detected in this simple bit comparison as the similar

shapes do not have the same/similar locations within their respective images. This

justifies why the other object-specific features detailed previously were also required.

Image 1: Image 2:

Resulting comparison:

Figure 5.21: Illustration of the bit-by-bit comparison
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� Relaxed Image Symmetry

This whole image measure checked for symmetry in both of the images. To tie in

with Attneave’s theories, symmetry adds a level of visual redundancy which should

simplify an image.

Each image was scanned to test for symmetry in one of the following ways (examples

of each shown underneath):

(a) x axis
Horizontal axis

(b) y axis
Vertical axis

(c) xy axis and
-xy axis

Both diagonals

(d) Inverted
colours

Across x axis
or y axis

Figure 5.22: The different image symmetry possibilities

The algorithm looked for exact symmetry, as well as approximate (‘relaxed’) sym-

metry. Approximate symmetry is if the image is only one block (black or white)

off from being exactly symmetrical. In this instance the image is still noticeably

symmetrical at a visual glance. This was also done to realistically cater for addi-

tional test instances, because the probability of being presented with images that

are exactly symmetrical in these recognition tasks could be relatively low.

An example of an ‘approximately symmetrical’ image is shown in figure 5.23. This

image is approximately symmetrical across the xy, as well as -xy axis.

Figure 5.23: Example of an image that is almost symmetrical.

In the event of an image being symmetrical, or ‘almost’ symmetrical, across any of

the above ways, a binary indicator was flagged to indicate some aspect of symmetry

in this image.
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� Gabor Filter Feature Vector

The Gabor filter is a mathematical model. As introduced in chapter 3, it is a

bandpass filter made up by a sinusoidal plane at a certain frequency and orientation,

modulated by a Gaussian envelope [22]. These filters are commonly proposed as

texture-segmentation models as some hypothesise that the filters share similarity

with human visual perception.

In this study, a filter bank was created of Gabor filters devised from equation 3.1

presented in chapter 3. The filter bank contained a combination of Gabor filters at

8 different orientations, and 5 different frequencies, thus resulting in 40 filters.

The generated Gabor filters in the filter bank are as shown in figure 5.24 - the

illustration separates these into their real parts, and their magnitudes, as the Gabor

filter is a complex one.

Real Parts of Gabor Filters: Magnitudes of Gabor Filters:

Figure 5.24: The Gabor filter bank implemented in this research

The filter bank was then applied to each image in the image pair. An illustration

of the filter application on one example image is shown in figure 5.25.

The results were subsequently downscaled to obtain the final feature vector that

contained the results of the application of all filters on the image.



Chapter 5. Algorithm Implemented 57

Example Image:

Real parts of filtered results: Magnitudes of filtered results:

Figure 5.25: Filtered results after Gabor filter application on example image

While the final feature vectors from each image contained the results of the filter

bank application, an entire vector could not be inserted as a feature into the ma-

chine learning algorithm. Therefore single points of information about each feature

vector were calculated to yield two separate feature inputs into the learner: the sum

and distribution (standard deviation) of each Gabor output feature vector. It was

considered that these two features would hold some level of information about each

Gabor output vector.

� Fractal Dimensions

The fractal dimension (Df ) is another mathematical calculation. As initially pre-

sented in chapter 3, it is a ratio that indicates visual complexity by measuring the

level of visual detail in a ‘fractal’ pattern at different levels of magnification [17].

In this study, the fractal dimension was calculated to gauge if the images from the

tasks display any level of self-similarity, and to consequently capture another form of

visual complexity. One image with a larger fractal dimension than another image
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contains more detail at smaller scales, and can be assumed to be more visually

complex.

For each image, the fractal dimension was calculated using the box counting tech-

nique. As mentioned in chapter 3, this technique estimates the number of boxes

required to cover (the non-zero parts of) an image at different box sizes [10]. The

smaller the box size, the greater the number of boxes required to cover the image.

The box size (r) was increased in powers of 2 (1,2,4,..) for each increment. As

mentioned previously, box sizes greater than about 50 % of the image width tend

to introduce errors. The images in the dataset are of size 536 x 536. Therefore, the

greatest box size was 256 (28), which is approximately 48 % of the image width.

The corresponding number of boxes (N) was obtained for this range of box sizes

using the box counting technique implemented in Matlab.

The values of log(N) were plotted against the values of log(r). The fractal dimension

was then calculated as the slope of the line of best fit over the points using

previously presented equation 3.2. This slope is an average measure to quantify

how much the required number of boxes changes with the box size. The fractal

dimension must be less than the dimension, D, of the fractal set. Therefore, for

these images, it was known that the resulting fractal dimensions should have been

less than 2.

During this implementation, it was observed that in many scenarios two images

had similar calculated fractal dimensions, but there was more information lying in

how the points varied in between the line of best fit. For certain images, the rate

at which the number of boxes changed with the box size could occasionally vary

considerably between consecutive pairs of points/box sizes. Therefore the overall

fractal dimension calculated on a line of best fit could be misleading - this line

is likely to miss certain points of variation in between [10]. Essentially, the more

the slope changes at different points of the graph, the less the fractal dimension

calculation accurately describes their scaling characteristics [10]. Ideally, if an image

is a good fractal, the slope would not fluctuate significantly, however self-similarity

is not as easily achievable with 16-bit images. Therefore, the extent to which the

fractal dimension values vary with different box sizes was also measured:
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Another two related measures were calculated to provide three different fractal

dimension-related measures in total:

1. The fractal dimension (overall slope of the line of best fit).

2. The range of the fractal dimension values across the total number of mea-

surements taken for the image: This is the largest fractal dimension value

calculated between two consecutive points, minus the smallest fractal dimen-

sion value calculated between two consecutive points.

3. The distribution of the fractal dimension values across the total number of

measurements taken for the image: An indication of how much the slope/frac-

tal dimension varied between the series of points. This was calculated as the

standard deviation of the different fractal dimension values obtained for each

image.

All three of these fractal dimension-related features were calculated for each image

in the image pair.

5.2.2.3 Feature Summary

This complete feature extraction process in the algorithm catered for visual observations

focused on more intricate detail within the images, as well as visual observations focused

on the holistic overview of the image pair.

The variety of features were devised based on the reviewed literature on visual perception

(from chapter 3), and the relating mathematical algorithms presented herein. The Gabor

filters and the fractal dimension features are state-of-the-art, previously well established

and tested methods often applied in different fields of image analysis. These models

were chosen based on research into which existing mathematical algorithms could mimic

human visual perception computationally. The direct comparison technique is a modifi-

cation of a previously well established and simple technique of comparing binary arrays.

The remaining object-orientated features were novel and intuitive, motivated by Attneave

and Witkin’s concepts of visual perception, as well as further studies into mathematical
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complexity techniques. Co-saliency was measured by detecting the co-occurrence of sim-

ilar objects (as valuable focus points) within, and between, the images. The theories

specified by spatial information motivated the overall object spacing features.

The above features were all extracted for the image pairs present in the recognition test

results from the dataset. However, how their collective presence would affect the perceived

complexity was still unknown. With the task response times in the database labelled with

perceived task complexity labels, the following step was for the algorithm to learn how

the presence of these features mapped to the tasks’ perceived complexity.

The feature correlation was tested based on the feature importance values generated by

the machine learning technique. These are explained further in the next section.

5.2.3 Random Forest Learner and Classifier

With the extracted features, and the labelled complexity scale, the following step in the

algorithm necessitated a supervised learning model that could determine the relationship

between the two. The random forest was chosen due to its robust characteristics as a

classifier as suggested in chapter 3.

Since the random forest is a supervised learning technique, it requires an input (X), and

a desired output (Y ). In this study, for both training and testing, X was the range of

visual features present in the visual tasks’ image pairs, and Y was the corresponding

perceived complexity levels.

In this technique, the training dataset (the sets of extracted features for the training

tasks) was divided into random samples during the training process, each of which is

called a bootstrap dataset. The algorithm then created several decision trees, one for each

bootstrap dataset. Subsequently, it selected different subsets of the extracted features for

splitting the nodes in each different decision tree, and trained the model against the

respective complexity labels. The number of trees was selected based on the out-of-bag

(OOB) error graphs plotted to gauge at which point the error saturated. Any more trees

thereafter were simply taking up more computational power. This number of decision

trees for this research was 250.
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The decision trees were therefore trained collectively given the feature sets for the image

pairs, and the complexity levels. When testing, these trained decision trees then used

the inserted feature sets of the test data to each provide a complexity prediction per set

of extracted features. As per the classifier, the various predictions from the trees were

aggregated with a modal technique to yield the final predicted complexity label (YN) for

the N th set of extracted features (XN).

The output of the random forest classifier when testing was therefore a set of predicted

complexity labels, given the corresponding sets of extracted features. These predictions

were then compared to the original, predefined complexity labels of the tasks to calculate

a recognition/correctness percentage.

A 3-cross validation technique was applied for this algorithm: The dataset was divided

into three subsets, where iteratively, one subset would be used for training, and the other

two for testing. The final testing results for each experiment were then a combination of

the test results from the 3 iterations. Doing this prevented overfitting, and ensured that

all the provided data was used for both training, and testing, at some point in the model.

In addition to the complexity predictions, the random forest model provides better in-

sight into which features were used, and to which lengths they had an impact on the

complexity predications. The model can provide this information since different subsets

of features were selected for different decision trees, thus allowing the model to gauge

which features had a greater impact in the final complexity predictions. In Matlab, the

feature importance is calculated as part of the TreeBagger function. As per Matlab doc-

umentation: This resulting feature importance information is “a numeric array of size

1-by-Nvars (number of features) containing a measure of importance for each predictor

variable (feature). For any variable, the measure is the increase in prediction error if

the values of that variable are permuted across the out-of-bag observations. This measure

is computed for every tree, then averaged over the entire ensemble and divided by the

standard deviation over the entire ensemble.”

This method yielded insight into which of the feature sets were more relevant to the com-

plexity classifications, which achieves the fifth objective in the research question specifica-

tion. The feature importance information is also vital because it could later be compared
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to the visual features in human perception as suggested by psychologists, and hence

contribute to a better understanding of modelling visual perception computationally.

In the event that the random forest model was not optimal in picking up patterns between

the response times and visual complexities, the Matlab Classification Learner App was

also employed for a quick implementation and comparison of other available classifica-

tion learner techniques. This app includes several types of decision trees, support vector

machines, as well as a few ensemble classifiers. The extracted features were inserted into

all of the available classifiers, with the additional PCA functionality enabled to auto-

matically remove redundant features, and get a quick assessment of the other classifiers’

performance.

5.3 Experiments

A variety of experiments were conducted to test the developed algorithm with a collection

of segmentation paradigms (linear and logarithmic), number of classes (that are adjacent

as well as slightly distanced), and different classifiers. These experiments are listed in

table 5.6.
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Table 5.6: List of the experiments attempted with the algorithm

Experiment Description

1

� Linear segmentation
of RTs (adjacent)
� Number of classes: 8
� Classifier: Random Forest

2

� Linear segmentation
of RTs (adjacent)
� Number of classes: 6
� Classifier: Random Forest

3

� Linear segmentation
of RTs (adjacent)
� Number of classes: 4
� Classifier: Random Forest

4

� Linear segmentation
of RTs (separated)
� Number of classes: 3
� Classifier: Random Forest

5

� Inward log segmentation
of RTs (adjacent)
� Number of classes: 4
� Classifier: Random Forest

6

� Inward log segmentation
of RTs (separated)
� Number of classes: 3
� Classifier: Random Forest

7

� Inward log segmentation
of RTs (separated)
� Number of classes: 3
� Classifier: RUS Boosted Trees

8

� Inward log segmentation
of RTs (separated)
� Number of classes: 3
� Classifier: Linear SVM

9
� Extra testing of experiment 7’s
trained model on mid-levels
� Number of classes: 2

10

� Binary segmentation of RTs
(easy and hard, from extreme sides)
� Number of classes: 2
� Classifier: Random Forest

11
� Human labelling of tasks
� Number of classes: 3
� Classifier: Random Forest
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5.4 Summary

This chapter detailed how the complexity learning algorithm was developed given a pre-

viously collected database of certain cognitive tests’ human response times. The response

times were represented in a scale as an indication of the subjects’ perceived complexity of

the visual tests. The image features were extracted for image pairs in recognition tasks.

The random forest technique was then used to try learn how the presence of the differ-

ent visual features affected the visual complexity scale labels. The results and analysis

from this were used to build a classifier; the prediction accuracy of which would subse-

quently be tested on the testing dataset. Experiments were designed to test the different

components of this algorithm, and their results are presented in the following chapter.



CHAPTER 6

Results

This chapter presents the results obtained when the methods described in chapter 5

were applied to answer the initial research question: To what extent can a complexity

measure, based on information theory and machine vision, model and explain human

visual perception in the context of cognitive tests?. The results are presented in terms of

the prediction accuracies, and the resulting importance levels of the features extracted

from the task images.

As detailed in chapter 5, a system comprising of feature extraction, and a machine learning

prediction model was developed, trained, and tested using the visual recognition tasks,

to predict the human perceived complexities in these tasks. The available measure for

human perceived complexity - their response times to the visual tasks - was statistically

examined to check for their initial reliability as a measure of human perception of a task

difficulty. Different segmentation paradigms were subsequently applied to the response

times’ continuous range to provide a set of labels, and then tested. The machine learner’s

prediction accuracy was calculated by comparing the model’s predicted complexity levels

to the reaction times scale.

The examination of the response times’ distributions change with the dataset subjects’

demographic variables are presented in figures 6.1, 6.2, and 6.3.

65
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Figure 6.1: Frequency plot of the response times segmented by age

Figure 6.2: Frequency plot of the response times segmented by gender

Figure 6.3: Frequency plot of the response times segmented by computer skill

The graphs demonstrate that while the response time volumes vary within the factors,

the distributions are similar across the age groups, between the two genders, and across

the computer skill levels. Therefore, it can be assumed that a subject’s age, gender or

computer skill does not noticeably offset their response time. The response times could
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consequently be assumed as a valid representation of the perceived complexity of the

tasks performed by the subjects.

Table 6.1 summarises the results from the experiments performed to test the various

components of the methods as listed in table 5.6. The results are described and analysed

through this chapter to explain the process and motivation behind the selection of the

final set of methods based on these results. Each section in the chapter addresses one of

these components of the method.

Table 6.1: Results of the main experiments

Experiment Description
Same Class
Recognition

One Class
Apart

Recognition

1

� Linear segmentation
of RTs (adjacent)
� Number of classes: 8
� Classifier: Random Forest

36% 40%

2

� Linear segmentation
of RTs (adjacent)
� Number of classes: 6
� Classifier: Random Forest

42% 45%

3

� Linear segmentation
of RTs (adjacent)
� Number of classes: 4
� Classifier: Random Forest

61% 30%

4

� Linear segmentation
of RTs (separated)
� Number of classes: 3
� Classifier: Random Forest

59% 41%

5

� Inward log segmentation
of RTs (adjacent)
� Number of classes: 4
� Classifier: Random Forest

27% 38%

6

� Inward log segmentation
of RTs (separated)
� Number of classes: 3
� Classifier: Random Forest

36% 45%

7

� Inward log segmentation
of RTs (separated)
� Number of classes: 3
� Classifier: RUS Boosted Trees

35% 41%
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8

� Inward log segmentation
of RTs (separated)
� Number of classes: 3
� Classifier: Linear SVM

37% 38%

9
� Extra testing of experiment 7’s
trained model on mid-levels
� Number of classes: 2

70% * Only 2 classes;
any incorrect

prediction
is pure

misclassification
10

� Binary segmentation of RTs
(easy and hard, from extreme sides)
� Number of classes: 2
� Classifier: Random Forest

56%

11
� Human labelling of tasks
� Number of classes: 3
� Classifier: Random Forest

58% 40%

6.1 Response Time Segmentation Experiments

The linear and logarithmic segmentation paradigms are as described in chapter 5, and

are illustrated in figures 5.4 and 5.7 respectively.

Table 6.1 illustrates that for each segmentation paradigm (linear and logarithmic), the

prediction accuracies tend to increase with a fewer number of classes. This is a common

finding in machine learning.

However, when experimenting with the different number of segments in the linear seg-

mentation technique (experiments 1 - 4), it was found that the prediction accuracies were

misleading: Upon closer inspection of the distribution of the prediction values, it was

observed that the model repeatedly predicted the majority of the tasks to be in a narrow

band of 2-3 segments. The distribution of the response times also indicated a narrow

Gaussian around a mean response time value. The training tasks therefore fell within

that area as well, which may have resulted in the testing tasks being biased towards the

most frequent level/s, with a misleading prediction of the correct level. This bias became

more significant with a decreasing number of classes, resulting in more misleading correct

predictions. Figure 6.4 and figure 6.5 illustrate the predictions’ distributions, for the two
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extreme cases of the experiments involving linear segmentation: 8 classes and 3 classes,

respectively.

Figure 6.4: The distribution of the labels calculated from linear segmentation of
reaction times into 8 labels (top graph) and the distribution of the predicted complexity

classes (bottom graph)

Figure 6.5: The distribution of the labels calculated from linear segmentation of
reaction times into 3 labels (top graph) and the distribution of the predicted complexity

classes (bottom graph)

The inward logarithmic model, illustrated in figure 5.7, was pursued to correct this bias

by providing a more equal number of response times within each segmented level. As

described in the methods, starting the logarithmic segmentation from the mode of the

response times prevented a large volume of the task response times falling under a specific

class/segment. The resulting predictions were more spread out across the levels, thus

reducing the possibility of the classification bias. An illustration of the distribution of

response times from the 3-level inward log segmentation is shown in figure 6.6
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Figure 6.6: The distribution of the labels calculated from the inward log segmenta-
tion of reaction times into 3 labels (top graph) and the distribution of the predicted

complexity classes (bottom graph)

The example logarithmic segmentation paradigm of figure 5.7 contains four levels; and

was implemented as experiment 5 of table 6.1. A second logarithmic segmentation with

three levels: 1 (‘easy’), 2 (‘medium’) or 3 (‘hard’) where the levels were slightly separated

from each other was implemented as experiment 6 of table 6.1.

6.2 Prediction Accuracy for Logarithmically-Segmented Response

Times Labels

The prediction accuracy in experiment 6 was 36 % for the test dataset. 71 % of the

misclassifications (45% of all the classifications) were “small errors” since they were in-

correctly determined by only one level. Therefore, only 29 % of the misclassified tasks

(19 % of all classifications) were considered “large errors” by misclassifying the test tasks

by two levels. This occurred when the algorithm labelled/predicted a level 1 task as a

level 3 task, or labelled/predicted a level 3 task as a level 1 task.

Experiments 7 and 8 used different classifiers and yielded prediction accuracies of 35 %

and 37 % respectively. These two classifiers: the RUS Boost trees and linear SVM

models, yielded the best prediction accuracies in the Matlab Classification Learner App,

and were consequently listed in table 6.1. Both yielded similar results to the random

forest predictions.
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The results of experiments 9 and 10, which used the methodology of experiment 6: Loga-

rithmic segmentation into 3 separated levels and a random forest classifier, conclude the

response time related experiments in the table. Experiment 9 re-examined the possibility

that the results from experiment 6 are misleading due to the existence of quantization

effect - having too small a number of levels - or bias: The trained classifier was applied

on the task instances that were “mid-level” between the three complexity levels. These

mid-levels are marked by the purple regions in figure 5.8. The experiment aimed to gauge

how well the classifier predicted whereabout on the response times’ scale these instances

fell.

As described in the methods, these tasks were labelled by “mid-level” labels, where if a

task fell between level 1 and 2, it was labelled as 1.5, and if it fell between 2 and 3, it

was labelled with 2.5. When the classifier was applied to these instances, 70 % of the

predictions were 0.5 apart. In other words, for 70 % of the predictions, if the given task

was 1.5 – a mid-level between 1 and 2 – it was predicted as either a 1 or 2, and if the

task was 2.5 – a mid-level between 2 and 3 – it was predicted as either 2 or 3. The

misclassifications, in an amount of 30 %, were the instances that were predicted as a 3

when the task fell between level 1 and 2, or predicted as a 1 when it fell between level 2

and 3.

The asterisk for this experiment in table 6.1 accentuates the fact that this experiment

is different to the rest. For this experiment, the classifier will always predict a 1, 2 or 3

for each instance as these were the classes that it was trained with. These mid-level task

instances, however, were labelled with the mid-level labels as 1.5 or 2.5. Therefore the

percentage of “same class prediction” in table 6.1 for this scenario refers to test mid-levels

where the predicted labels - 1, 2, or 3 - were only 0.5 apart from the labels applied to the

mid-level tasks before testing - 1.5 or 2.5. The other 30 % of the classifications were those

that were predicted 1.5 apart from the mid-level labels, and are not listed under the “one

class apart recognition” column since they are considered pure misclassifications.
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Experiment 10 was designed to test the performance of the algorithm as a binary classifier

using the two extreme labels - easy (1) and hard (3). The correct class/level prediction

rate was 56 %. In this case, all other incorrect predictions (44 %) were pure misclassifi-

cations.

6.3 Prediction Accuracy for Human Perception Labels

Due to the small prediction accuracy of experiments 1-10, which used complexity labels

based on the dataset response times, experiment 11 attempted a different label source.

The method with a small number of subjects as described under section 5.2.1.3 was

implemented. These volunteers were presented with a sample of recognition tasks from the

original dataset. They subjectively estimated the complexity on a 3-level scale: 1 (‘easy’),

2 (‘medium’) and 3 (‘hard’).

The 10 subjects collectively completed 120 recognition tasks. A random forest classifi-

cation model, once again executed with 3-fold validation, was applied to this very small

dataset.

The predictions in this experiment yielded an accuracy of 58 %. Moreover, another 40 %

of the classifications yielded misclassifications of only one class. Therefore only 2 % of

the classifications were misclassified by two levels.

6.4 Feature Importance

Feature importance was calculated as part of the TreeBagger function of the random

forest implementation, using the configuration of experiment 6.

The feature importance results were grouped according to feature types and are illustrated

in figure 6.7. The first seven subplots in the figure represent the object-specific features.

The next five subplots then represent the whole image features. The importance values

are shown using the same scale such that they are easily comparable.
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The more positive the feature importance value, the more an impact it is predicted to

have in the classification of visual tasks complexity according to the labels provided. The

negative/very low values in the feature importance graphs suggest that those features

have negligible, if any, contribution to the classification.

Figure 6.7: Importance of Relative-Features

The feature importance values are further assessed below using a visual examination of

nine examples - three from each complexity class. The examples were randomly selected

from the test subset to illustrate and interpret the feature importance results of figure 6.7.

The perceived complexities of all these tasks were correctly predicted by the model.

The nine examples are shown in table 6.2, where the tasks, their human perceived and

algorithmically predicted complexity level are listed. While the algorithm was run on

unique image pairs, the tasks in table 6.2 are shown with three images, the way they were

presented to the subjects in the recognition task.

It is important to note that none of these features are independent. I.e. the presence,

or lack of a single feature cannot independently predict the human perceived complexity

level. However, the examples demonstrate trends in these features, that could explain

why a feature was selected by the classifier as a strong or a weak predicting factor.
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Table 6.2: Examples from the cognitive recognition tasks database which were cor-
rectly predicted by the algorithm as complexity levels 1, 2 and 3.

# Image 1 Image 2 Image 3
Complexity

Level

1 1

2 1

3 1

4 2

5 2

6 2

7 3
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8 3

9 3

6.4.1 Object-Specific Feature Importance

In #2 and #3 of the “easy” (level 1) image pairs in table 6.2, only one of the images has

one long black adjacent path. This makes it quite easily distinguishable from the other

unique image in the task. This demonstrates the importance of the black adjacent path/s

length/s shown by the feature importance graph (figure 6.7). The number of adjacent

paths, however, is quite consistent in all tasks across the three complexity levels, with no

specific trend. This could indicate why the number of (black and white) adjacent paths

did not play a role in deducing and predicting the complexity level. This can be also

related to the positive “Different (Black) Objects Present” feature: When one image in a

pair had only one long black adjacent path and the other image had more black features,

it was immediately predicted as easy (level 1); examples of this are the image pairs in

#2 and #3. The“Different (White) Objects” feature, however, did not display the same

characteristic. There appeared to be different white objects present within several image

pairs across the different complexity classes, once again with no specific trend. This might

explain the negative importance level of the “Different (White) Objects Present” feature

in figure 6.7.

The similar object location features’ importance values in figure 6.7 suggested that the

objects locations did not play a significant role in the image observations. The only object

type whose location yielded slight importance was the black adjacent path. In tasks



Chapter 6. Results 76

#5, #6 and #9 of table 6.2, the presence of a similarly located black adjacent path in

both images could have made the distinguishing between the images in the task harder,

thus increasing the perceived complexity in some way.

It appears that while similarly located objects held visual significance, the similar shapes,

especially those occurring between the images of the task, held small visual significance.

Finally, in terms of the object-specific features, the black spacing feature did not hold

considerable importance in comparison to the white spacing feature. In #2 in table 6.2,

the average distance between the white objects for image 1 (and image 3) is noticeably

greater than that for image 2. This is because there is only one long black adjacent

path in the middle of image 1, whereas there are smaller black objects dispersed around

image 2. This noticeable difference in the white spacing could have also justified the

‘easy’ (level 1) classification. Except for the average white spacing feature, most white

object-specific features have relatively weak significance as illustrated in figure 6.7.

6.4.2 Whole Image Feature Importance

The feature of whole image, direct, bit-by-bit comparison had a negative importance in

the complexity predictions (figure 6.7). This feature had values randomly ranging from 4

to 12 for the examples in table 6.2, and had no correlation to the human task complexity

labels.

The symmetry features demonstrated significance in task complexity prediction (fig-

ure 6.7). As an example, this is illustrated in the first easy (level 1) image pair in

table 6.2. Image 1 is very clearly symmetrical across the x axis, and is also symmetrical

across the y axis, in inverted colours - as described in the various symmetry checks in

chapter 5. The presence of this symmetry can explain the image as perceptually easier

to discriminate in the recognition task.

The last two subplots on the feature importance graph (figure 6.7) illustrate the impor-

tance of the mathematical features. These features are the sum of the output Gabor

feature vector, the standard deviation of the output Gabor feature vector, the calculated
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fractal dimension, the range of the different fractal dimension values observed through

the box-counting implementation, and the standard deviation of the same range of fractal

dimensions values. These features were calculated for each image from the unique pair in

the recognition task, and then a difference was computed. An observation of the values

of these calculated differences for the examples in table 6.2 yielded that, on average, all

five of these measures are reduced with increasing complexity. This trend can explain

the positive feature importance levels for all these features in the last two subplots of

figure 6.7.

The values for all features for the example tasks in table 6.2 are presented in Appendix A.

6.5 Summary

Several sets of results were obtained through different trials based on several response

times’ segmentation paradigms, and several machine learning techniques. The first 10

experiments were based on the initial and central assumption of this research: that the

response times correlate, or represent, the human perceived complexity of visual recogni-

tion tasks.

The best methods configuration of experiment 6 yielded a prediction accuracy of 36% for a

3 classes’ machine learner. Experiment 11, which used the same configuration with direct

human labels of visual complexity, showed a significantly higher prediction accuracy of

58 %. The feature importance results were presented and assessed using both machine

learning selection and manual examination of randomly selected examples from the test

dataset.

These findings will be discussed in further detail in the following chapter.



CHAPTER 7

Discussion and Conclusion

This chapter summarises the key findings of the research, and suggests future improve-

ments based on the collective results from this study.

7.1 Response Time Labels for Human-Perceived Visual Com-

plexity

The final methodology chosen in this study was the one of experiment 6 in table 6.1,

which used labels based on logarithmic segmentation of the response times. While the

linear segmentation paradigms yielded higher prediction accuracies, the logarithmic seg-

mentation models yielded results that were more reliable, and less biased. This choice is

also in line with the fact that human perception in all senses is inherently logarithmic in

nature [16].

Although the prediction accuracy from the final experiment of choice was relatively low,

the analysis of the misclassifications, and the tests on the mid-levels in experiment 9

suggest that the algorithm is heading in the right direction. The results could possibly

be improved in future studies by examining factors that overlap across classes computed

from human response times.

7.2 Classifier Choice

Several machine learning models were explored to verify that the low rate of correct

predictions was not due to the classifier choice - the random forest. The best performer

78



Chapter 7. Discussion 79

from the tested classifiers - the linear SVM’s prediction accuracy was just slightly greater

(< 1 %) than the initial random forest model implemented in this research.

The differences between the prediction accuracies of the various classifiers were not sig-

nificant. If anything, the best classifiers tested in experiments 9 and 10 had a percentage

of “large errors” which was slightly greater than the random forest. These results im-

ply that the random forest was a valid choice for this classification. However, for future

work, a non-linear (SVM) model could be attempted, since it may be more suited to

this problem as the process deals with logarithmic labels.

7.3 Critical Analysis of the Response Times as Labels

The accuracy of a classifier’s predictions will always be limited by the training data

provided to it. In this research the training data included both features and labels.

The results detailed in the previous chapter imply a critical deficiency in the use of

response times as labels. This research was based on an assumed correlation between

response times and perceived complexity. The results suggest that other factors could

have impacted the speed of response, aside from perceived difficulty. Although age, gender

and computer skill were examined and ruled out as having no significant effect on the

response time distributions, the response times could still be affected by factors such as

stress, distraction, boredom or fatigue of subjects taking the cognitive assessments.

Another practical example in which response times may not be a suitable measure of

perceived difficulty, is a scenario where a tester happens to provide cognitive tasks in

incrementally increasing complexities. In this context, it is possible that a subject’s

response times could be similar, or not drastically different, as he/she gets used to the

tasks. Based on the initial assumption in this research, which shaped the methodology

developed, visual tasks which have similar response times would be segmented under the

same complexity class. In the slowly incrementing complexity scenario, however, the

complexities of the tasks did vary, and similar response times indicate the subject simply

getting accustomed to the tasks provided.
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The results could also be interpreted as a correlation still existing between subjects re-

sponse times and their perceived visual tasks complexities, but that the segmentation

models implemented in this research were not able to correctly capture this correlation.

However, there is no way of independently testing the correctness of these segmentation

paradigms.

This motivates further future research into accurately establishing if, and how, response

times correlate to perceived complexity to create a more definitive, less volatile model of

human responses to cognitive tasks.

Another possible future solution is to employ the method developed here with direct

human perception labels. This was preliminarily addressed in this work, and examined

in experiment 11. The predictions based on subjects’ complexity labels estimation were

far more accurate than those involving the response time labels.

The goal of this research was to develop an algorithm that can gauge visual complexity as

closely as possible to the way humans intuitively would. Therefore, for this algorithm to

learn human perception trends, other labels providing the human perceived complexity

levels should be explored. A transformation from task response times into task perceived

complexities may be very complex and need new experiments and studies. Different labels

that capture human perceived complexity may also eliminate the segmentation needed to

convert a continuous variable, like response time, into discrete labels.

The use of different labels improved the prediction accuracy in this study and suggests

that the methodology has potential that can be explored more thoroughly in future

studies. It is important to note that the data size in the new labels experiment was very

small, and therefore is not conclusive and can only suggest a trend. Additionally, the

new human perception labels are also subjective. This experiment could therefore only

serve as a feasibility proof, and provide some insight into the plausibility of pursuing this

concept of new labels more thoroughly in the future.

Another issue to be mindful of is that when presenting tests designed to diagnose cognitive

decline on individuals with non-impaired cognition, it is likely that all images of this type

are easily distinguishable for these individuals, making all the recognition tasks “easy”.
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Consequently, there may be a bias in these individuals subjectively labelling tasks as hard

(level 3).

7.4 Feature Importance Analysis

The extracted features that were detailed in chapter 5 were based on the previously

reviewed literature on computational complexity of images. The resulting importance

numbers, as illustrated in figure 6.7, provided valuable insight into their significance

in human perception tasks. The positive feature importance in the context of machine

learning, and in visual observations in the study, implies that the presence of these features

had a relation to the human perceived complexity.

The finding of importance of the number of black adjacent paths is in line with At-

tneave’s theories on visual redundancy, where long strings of adjoining pixels of the same

colour could constitute for a level of visual redundancy, thus simplifying the visual field’s

perceived complexity [6].

The result that the black spacing feature had no substantial importance may be due to

the fact that there are many instances in the dataset with only one (large) black object,

making the overall/average black object spacing in the dataset a zero. This hinders the

ability to find a trend in the image pairs’ black object spacing calculations. Nevertheless,

the average spacing of the white objects was found to be important, implying that there

are more black objects present in the image. This was corroborated by the observation

that in the examples of table 6.2, the feature increased the perceived complexity of the

image pairs. This justifies the classifier’s computed importance of the white object spacing

feature. Even with the presence of only one black adjacent path in an image, the black

path tends to separate the white space, thus providing an average white object distance

measure, and another indication of the black objects’ placement.

If the white object distance measure truly indicates black objects’ placement, then this,

along with the fact that most of the other white object-specific features were weak, could

imply that during visual observations, the white objects are commonly considered as
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background space. This suggests that individuals do not typically notice specific white-

object details.

Most whole image features had greater significance than the object-specific features. The

only whole image feature which had a negative importance value was the bit-by-bit whole

image comparison technique. This result could suggest that this “typical computer” way

of scanning an image and comparing images is not a human perception model.

The significant importance of image symmetry in the complexity predictions, is once

again in line with Attneave’s premise on image symmetry representing another form of

visual redundancy, thus reducing the visual observation’s perceived complexity [6]. It

indicates that when subjects observe an image that has symmetry, the mirroring makes

it simpler to distinguish between other, non-symmetrical images.

Finally, the positive importance values of the Gabor and fractal dimension features imply

their relation to visual perception as described in the background studies of chapter 3 [15]

[17] [27] [31]. These feature importance values, and the trends showed that the smaller

the difference in the values of these features for each of the two images in the pair,

the greater the perceived complexity. This is also in line with the assumption of this

research that the smaller the difference between the images in the task, the harder is the

recognition of the odd one.

The feature importance trends found in the study suggest that it is possible to find a

correlation between human visual perception, and the complexity calculated from mathe-

matical models. The mathematical calculations are also likely to be more consistent and

objective, and may be applicable to a wider diversity of subjects, whereas features based

on intuitive observations, may be more likely to fluctuate between individuals.

Whole image features were found to be, in general, more significant for the complexity

prediction than the object-specific features. Based on Witkin’s theories, this could imply

that subjects might lean slightly more towards field dependency by assessing their visual

fields as a whole, and making only loose partitions of the presented visual field [9]. This

tendency could also be due to the small size and simplicity of the images in the dataset,

where individuals may not need to look for details at a finer level.
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7.5 More Future Considerations

After obtaining the results, the dataset was further inspected to understand the range

of tasks previously provided during these assessments. It was discovered that the tasks

provided in the dataset were limited in terms of their variety and range of possible square

binary images presented therein. All images from the tasks had either 7, or 8 black

squares out of the possible 16 squares. This suggests that these are the type of images

that are more likely to be employed in cognitive tasks. Testers might not have previously

presented other, more extreme, images as these could be considered as ‘too easy’.

Since the algorithm has been trained and tested on only this range of images, it becomes

more difficult to learn/predict the trends with more ‘extreme’ images (such as mostly

white or mostly black images). Additionally, the features chosen in this study aimed to

capture a variety of visual characteristics. The possibility of finding that same visual

variety in this dataset might be limited if there are only images with 7 or 8 black squares.

Therefore, the features that were weak in terms of importance during the predictions in

this study may be more significant in a greater assortment of images.

Another point to take into consideration is that some features should have also been

‘relaxed’, as was done with the image symmetry feature, so that they could possibly apply

to more of the image pairs in this dataset, and more human observations. This could

potentially be relevant to the detection of similar objects (within an image and between

the two images) as well, because the algorithm does not currently pick up if objects are

‘almost’ the same. This could also explain why all the similar object related features

had low/negative importance levels in the feature importance graphs - the prevalence of

exactly the same shapes occurring was not high enough in the dataset to be able to gauge

its importance.
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7.6 Conclusion

The results in this research show that computational features have the potential to provide

a visual complexity measure to human performance in visual recognition tasks. The

features extracted in the study provided an insight into visual factors that affect human

visual perception of small abstract images.

While the prediction accuracy of the final algorithm was low, the error analysis and

feature analysis demonstrate that this model has the potential to be further developed

into a computational complexity measurement paradigm, which can be related to the

human way of perceiving visual complexity. This study could therefore serve as a proof

of concept, and provide a preliminary methodology and set of features that could be

applied to other visual tasks involving similar images.

In future implementations, the human perceived complexity labels will require further

attention. It is important to note that these results will never be 100 % accurate be-

cause perceived complexity can be further affected by factors such as semantic memory,

psychological thoughts, or cultural background, which are harder to quantify. However

the results can still be improved in the future by experimenting with different methods

of defining human-perceived complexity labels.

As per the research question, a complexity calculation method combining information

theory, machine vision and human perception measures was successfully designed and

developed. The results indicate correlations that could help bridge the gap between hu-

man perceived complexity, and mathematically defined complexity. The resulting feature

importance values have assisted in explaining human visual perception in the context

of cognitive tests. Although the prediction accuracy of the final method was low, the

analysis of the results indicate that this complexity measure has the potential to evaluate

visual complexity in the context of cognitive tests.
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Appendix A

This appendix presents all the calculated features for the nine example tasks listed in

table 6.2 of dissertation titled: A visual complexity learning algorithm for modelling

human performance in visual cognitive tests.

Each subsequent page tabulates the measured features for one of the tasks from

table 6.2.
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Task #1 in table 6.2 ‖ Complexity level = 1

Features Image 1 Image 2 Image 3
Number of black adjacent paths 1 1 1
Number of black diagonal paths 0 0 0
Number of black single blocks 0 0 0
Number of white adjacent paths 1 3 3
Number of white diagonal paths 0 0 0
Number of white single blocks 0 0 0
Lengths of black adjacent paths 8 8 8
Lengths of black diagonal paths 0 0 0
Lengths of white adjacent paths 8 8 8
Lengths of white diagonal paths 0 0 0
Number of black adjacent paths at same angle 1
Number of black adjacent paths at opp. angle 1
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 1
Number of white adjacent paths at opp. angle 0
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 0
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 0
Number of white adjacent paths with similar locations 0
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 0
Black different object types present 0
White different object types present 0
Number of similar black objects between images in pair 0
Number of similar white objects between images in pair 0
Number of similar black objects within image 0 0 0
Number of similar white objects within image 0 0 0
Whole image black object spacing 0 0 0
Whole image white object spacing 0 378.77 378.77
Whole image bit-by-bit comparison 6
Whole image symmetry 1 0 0
Gabor feature vector sum 2030.3 2542.7 2542.7
Gabor feature vector standard deviation 0.0088 0.0099 0.0099
Fractal dimension (overall) 1.8499 1.7700 1.7700
Fractal dimension range 0.6781 0.6943 0.6943
Fractal dimension standard deviation 0.2480 0.2820 0.2820
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Task #2 in table 6.2 ‖ Complexity level = 1

Features Image 1 Image 2 Image 3
Number of black adjacent paths 1 2 1
Number of black diagonal paths 0 0 0
Number of black single blocks 0 2 0
Number of white adjacent paths 2 1 2
Number of white diagonal paths 0 0 0
Number of white single blocks 0 3 0
Lengths of black adjacent paths 8 6 8
Lengths of black diagonal paths 0 0 0
Lengths of white adjacent paths 8 5 8
Lengths of white diagonal paths 0 0 0
Number of black adjacent paths at same angle 0
Number of black adjacent paths at opp. angle 0
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 0
Number of white adjacent paths at opp. angle 0
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 0
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 0
Number of white adjacent paths with similar locations 0
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 0
Black different object types present 1
White different object types present 1
Number of similar black objects between images in pair 0
Number of similar white objects between images in pair 0
Number of similar black objects within image 0 1 0
Number of similar white objects within image 0 3 0
Whole image black object spacing 0 337.79 0
Whole image white object spacing 379.08 335.63 379.08
Whole image bit-by-bit comparison 10
Whole image symmetry 0 0 0
Gabor feature vector sum 2320.1 2786.9 2320.1
Gabor feature vector standard deviation 0.0095 0.0104 0.0095
Fractal dimension (overall) 1.7971 1.7860 1.7971
Fractal dimension range 0.7388 0.5913 0.7388
Fractal dimension standard deviation 0.2809 0.2427 0.2809
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Task #3 in table 6.2 ‖ Complexity level = 1

Features Image 1 Image 2 Image 3
Number of black adjacent paths 1 1 1
Number of black diagonal paths 1 1 0
Number of black single blocks 1 1 0
Number of white adjacent paths 1 1 2
Number of white diagonal paths 0 0 0
Number of white single blocks 2 2 1
Lengths of black adjacent paths 5 5 8
Lengths of black diagonal paths 2 2 0
Lengths of white adjacent paths 6 6 7
Lengths of white diagonal paths 0 0 0
Number of black adjacent paths at same angle 1
Number of black adjacent paths at opp. angle 1
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 0
Number of white adjacent paths at opp. angle 0
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 0
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 0
Number of white adjacent paths with similar locations 0
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 0
Black different object types present 1
White different object types present 0
Number of similar black objects between images in pair 0
Number of similar white objects between images in pair 0
Number of similar black objects within image 0 0 0
Number of similar white objects within image 2 2 0
Whole image black object spacing 352.94 352.94 0
Whole image white object spacing 316.72 316.72 354.94
Whole image bit-by-bit comparison 8
Whole image symmetry 0 0 0
Gabor feature vector sum 2653.4 2653.4 2525.3
Gabor feature vector standard deviation 0.0101 0.0101 0.0099
Fractal dimension (overall) 1.7800 1.7800 1.7999
Fractal dimension range 0.8317 0.8317 0.6026
Fractal dimension standard deviation 0.3017 0.3017 0.2240
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Task #4 in table 6.2 ‖ Complexity level = 2

Features Image 1 Image 2 Image 3
Number of black adjacent paths 1 1 1
Number of black diagonal paths 0 1 1
Number of black single blocks 1 0 0
Number of white adjacent paths 1 1 1
Number of white diagonal paths 0 1 1
Number of white single blocks 2 0 0
Lengths of black adjacent paths 7 5 5
Lengths of black diagonal paths 0 3 3
Lengths of white adjacent paths 6 5 5
Lengths of white diagonal paths 0 3 3
Number of black adjacent paths at same angle 1
Number of black adjacent paths at opp. angle 1
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 1
Number of white adjacent paths at opp. angle 1
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 0
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 0
Number of white adjacent paths with similar locations 1
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 0
Black different object types present 1
White different object types present 1
Number of similar black objects between images in pair 0
Number of similar white objects between images in pair 0
Number of similar black objects within image 0 0 0
Number of similar white objects within image 1 0 0
Whole image black object spacing 301.60 302.53 302.53
Whole image white object spacing 320.32 289.84 289.84
Whole image bit-by-bit comparison 4
Whole image symmetry 0 0 0
Gabor feature vector sum 2572.9 2797.6 2797.6
Gabor feature vector standard deviation 0.0100 0.0104 0.0104
Fractal dimension (overall) 1.8194 1.8031 1.8031
Fractal dimension range 0.5519 0.4955 0.4955
Fractal dimension standard deviation 0.1953 0.2067 0.2067
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Task #5 in table 6.2 ‖ Complexity level = 2

Features Image 1 Image 2 Image 3
Number of black adjacent paths 1 1 1
Number of black diagonal paths 0 0 0
Number of black single blocks 0 0 0
Number of white adjacent paths 2 2 2
Number of white diagonal paths 0 0 0
Number of white single blocks 1 0 1
Lengths of black adjacent paths 8 8 8
Lengths of black diagonal paths 0 0 0
Lengths of white adjacent paths 7 7 7
Lengths of white diagonal paths 0 0 0
Number of black adjacent paths at same angle 1
Number of black adjacent paths at opp. angle 1
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 0
Number of white adjacent paths at opp. angle 0
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 1
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 0
Number of white adjacent paths with similar locations 0
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 1
Black different object types present 0
White different object types present 0
Number of similar black objects between images in pair 0
Number of similar white objects between images in pair 1
Number of similar black objects within image 0 0 0
Number of similar white objects within image 0 0 0
Whole image black object spacing 0 0 0
Whole image white object spacing 361.68 388.15 361.68
Whole image bit-by-bit comparison 6
Whole image symmetry 0 0 0
Gabor feature vector sum 2545.9 2504.9 2545.9
Gabor feature vector standard deviation 0.0100 0.0099 0.0100
Fractal dimension (overall) 1.7702 1.7694 1.7702
Fractal dimension range 0.6943 0.6998 0.6943
Fractal dimension standard deviation 0.2825 0.2827 0.2825
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Task #6 in table ‖ Complexity level = 2

Features Image 1 Image 2 Image 3
Number of black adjacent paths 2 3 3
Number of black diagonal paths 0 0 0
Number of black single blocks 1 0 0
Number of white adjacent paths 1 1 1
Number of white diagonal paths 0 0 0
Number of white single blocks 1 1 1
Lengths of black adjacent paths 6 8 8
Lengths of black diagonal paths 0 0 0
Lengths of white adjacent paths 8 7 7
Lengths of white diagonal paths 0 0 0
Number of black adjacent paths at same angle 1
Number of black adjacent paths at opp. angle 0
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 1
Number of white adjacent paths at opp. angle 1
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 1
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 0
Number of white adjacent paths with similar locations 0
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 0
Black different object types present 1
White different object types present 0
Number of similar black objects between images in pair 3
Number of similar white objects between images in pair 0
Number of similar black objects within image 0 2 2
Number of similar white objects within image 0 0 0
Whole image black object spacing 381.40 352.72 352.72
Whole image white object spacing 330.56 324.84 324.84
Whole image bit-by-bit comparison 7
Whole image symmetry 1 0 0
Gabor feature vector sum 2748.2 2571.6 2571.6
Gabor feature vector standard deviation 0.0102 0.0100 0.0100
Fractal dimension (overall) 1.8000 1.7919 1.7919
Fractal dimension range 0.7631 0.6645 0.6645
Fractal dimension standard deviation 0.2851 0.2628 0.2628
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Task #7 in table 6.2 ‖ Complexity level = 3

Features Image 1 Image 2 Image 3
Number of black adjacent paths 1 2 1
Number of black diagonal paths 0 0 0
Number of black single blocks 1 2 1
Number of white adjacent paths 2 1 2
Number of white diagonal paths 0 1 0
Number of white single blocks 2 1 2
Lengths of black adjacent paths 6 5 6
Lengths of black diagonal paths 0 0 0
Lengths of white adjacent paths 7 6 7
Lengths of white diagonal paths 0 2 0
Number of black adjacent paths at same angle 0
Number of black adjacent paths at opp. angle 0
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 0
Number of white adjacent paths at opp. angle 0
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 0
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 1
Number of white adjacent paths with similar locations 0
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 0
Black different object types present 0
White different object types present 1
Number of similar black objects between images in pair 0
Number of similar white objects between images in pair 0
Number of similar black objects within image 0 2 0
Number of similar white objects within image 2 0 2
Whole image black object spacing 321.09 298.87 321.09
Whole image white object spacing 356.44 342.65 356.44
Whole image bit-by-bit comparison 4
Whole image symmetry 0 0 0
Gabor feature vector sum 2869.0 3004.8 2869.0
Gabor feature vector standard deviation 0.0105 0.0107 0.0105
Fractal dimension (overall) 1.7845 1.7881 1.7845
Fractal dimension range 0.5934 0.6282 0.5934
Fractal dimension standard deviation 0.2509 0.2491 0.2509
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Task #8 in table 6.2 ‖ Complexity level = 3

Features Image 1 Image 2 Image 3
Number of black adjacent paths 2 2 2
Number of black diagonal paths 0 0 0
Number of black single blocks 0 0 1
Number of white adjacent paths 2 2 2
Number of white diagonal paths 0 0 0
Number of white single blocks 0 0 0
Lengths of black adjacent paths 8 8 7
Lengths of black diagonal paths 0 0 0
Lengths of white adjacent paths 8 8 8
Lengths of white diagonal paths 0 0 0
Number of black adjacent paths at same angle 0
Number of black adjacent paths at opp. angle 0
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 0
Number of white adjacent paths at opp. angle 0
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 0
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 0
Number of white adjacent paths with similar locations 0
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 0
Black different object types present 1
White different object types present 0
Number of similar black objects between images in pair 1
Number of similar white objects between images in pair 0
Number of similar black objects within image 0 0 0
Number of similar white objects within image 0 0 0
Whole image black object spacing 330.98 330.98 351.63
Whole image white object spacing 329.74 329.74 299.40
Whole image bit-by-bit comparison 12
Whole image symmetry 0 0 0
Gabor feature vector sum 2486.4 2486.4 2558.8
Gabor feature vector standard deviation 0.0098 0.0098 0.0099
Fractal dimension (overall) 1.7966 1.7966 1.7968
Fractal dimension range 0.7355 0.7355 0.7371
Fractal dimension standard deviation 0.2742 0.2742 0.2734
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Task #9 in table 6.2 ‖ Complexity level = 3

Features Image 1 Image 2 Image 3
Number of black adjacent paths 2 2 2
Number of black diagonal paths 0 0 0
Number of black single blocks 0 1 1
Number of white adjacent paths 3 1 1
Number of white diagonal paths 0 0 0
Number of white single blocks 0 3 3
Lengths of black adjacent paths 8 7 7
Lengths of black diagonal paths 0 0 0
Lengths of white adjacent paths 8 5 5
Lengths of white diagonal paths 0 0 0
Number of black adjacent paths at same angle 1
Number of black adjacent paths at opp. angle 0
Number of black diagonal paths at same angle 0
Number of black diagonal paths at opp. angle 0
Number of white adjacent paths at same angle 0
Number of white adjacent paths at opp. angle 0
Number of white diagonal paths at same angle 0
Number of white diagonal paths at opp. angle 0
Number of black adjacent paths with similar locations 0
Number of black diagonal paths with similar locations 0
Number of black single blocks with similar locations 0
Number of white adjacent paths with similar locations 1
Number of white diagonal paths with similar locations 0
Number of white single blocks with similar locations 0
Black different object types present 1
White different object types present 1
Number of similar black objects between images in pair 1
Number of similar white objects between images in pair 0
Number of similar black objects within image 0 0 0
Number of similar white objects within image 2 3 3
Whole image black object spacing 298.50 312.42 312.42
Whole image white object spacing 351.82 395.94 395.94
Whole image bit-by-bit comparison 8
Whole image symmetry 0 0 0
Gabor feature vector sum 2638.4 2736.0 2736.0
Gabor feature vector standard deviation 0.0101 0.0103 0.0103
Fractal dimension (overall) 1.7866 1.7696 1.7696
Fractal dimension range 0.5900 0.6929 0.6929
Fractal dimension standard deviation 0.2499 0.2743 0.2743



Appendix B

The following ethics clearance certificate was obtained for re-use of the dataset from

NexSig’s computerized cognitive testing studies in this research:

10/05/2018
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