
                     

FORMATION OF SURFACE DIAMOND-LIKE 

NANOSTRUCTURES ON GRAPHITE 

INDUCED BY HIGHLY CHARGED ION 

IRRADIATION 

 

Thuto Nelson Makgato 

 

 

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, 

Johannesburg, in fulfillment of the requirements for the degree of Masters of Science in 

Physics 

 

Johannesburg, 2010 



vi 
 

Declaration 

I declare that this dissertation is my own work. It is being submitted in fulfillment of the 

requirements for the degree of Master of Science at the University of the Witwatersrand. 

It has not been submitted before for any degree or examination at any other university.  

 

 

 

___________________________________________ 

Thuto Nelson Makgato 

 

 

______________ day of ___________________ 2010 

 

 

 

 



vii 
 

 

 

 

To my family 

Let this seed bear the fruit that knowledge brings in the hands of time.  

 

 

 

 

 

 



viii 
 

Abstract 

The interaction of Antimony Slow Highly Charged Ions (SHCIs) of different charge 

states with Highly Oriented Pyrolitic Graphite (HOPG) is studied in terms of  

morphology and electronic modification of single-ion impact induced nanodefects. 

Results are presented in terms of non-contact Atomic Force Microscopy (NC-AFM) 

analysis, Raman spectroscopy, Photoluminescence and Scanning and Tunneling 

Spectroscopy (STS). A charge state dependence of radiation damage and nanodefect 

dimensions is observed using Raman spectroscopy and NC-AFM analysis respectively. 

Surface treatment of the nanodefects by annealing in a hydrogen atmosphere, induce 

modification of nanodefect dimensions and the corresponding electronic states as 

observed from NC-AFM analysis and STS. STS conducted on the treated nanodefects 

shows significant modification of the electronic energy band gap in Sb18+ and Sb22+ 

impact regions. The materials produced in this work by SHCI impact and surface 

treatment are believed to be diamond-like carbon (DLC) with electronic energy band 

gaps of approximately 2.05 eV and 2.33 eV corresponding to Sb18+ and Sb22+ impact 

regions respectively. DLC nanostructures observed in the present study could provide a 

host matrix for N-V luminant centers which can be used as single photon sources to 

fabricate patterned qubits using the Electron Beam Ion Trap (EBIT) for purposes of 

demonstrating scalable room temperature quantum information devices.                 
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Chapter 1  

1. Introduction 

 

1.1 Motivation 
 

“The principles of physics, as far as I can see, do not speak against maneuvering things 

atom by atom”. In his 1959 lecture (published in 1960) titled „There is enough room at 

the bottom‟, Nobel laureate Richard Feynman envisioned the possibility of constructing 

devices using a bottom-up approach as a possible solution to limitations of 

miniaturization and technology in general. Up to the present day, the concept of 

nanotechnology is attributed to Richard Feynman [1].   

Nevertheless, it is not clear when humans began to take advantage of nanosized 

materials. However, it is known that in the fourth century A.D. Roman glassmakers were 

fabricating glasses containing nanosized metals. An artifact from this period called the 

Lycurgus cup resides in the British Museum in London. The colour of the cup changes 

from green to a deep red when a light source is placed inside it [2].     
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Advances in instrumentation coupled with a renewed understanding of science, has 

brought about a new era in experimental physics; the age of nanotechnology. In general, 

the primary focus of nanotechnology and nanoscience is on the synthesis, 

characterization, analysis and application of nanostructured materials. Nanostructures are 

materials that have at least one of its dimensions confined in the nanometer (~1-100 nm) 

range e.g. quantum dots, nanocrystals, nanowires and nanotubes.   

Uniqueness of the structural characteristics, energetics, response, dynamics and physics 

of nanostructures, constitutes the basis of nanoscience [3]. Appropriate control of the 

properties and response of nanostructures can lead to new devices and technologies such 

as biomolecular machines, quantum information systems, and spintronics.  

Several methods for synthesizing nanostructures have been proposed and tested, with 

each method having its strengths and weak points. Some of these methods include; 

chemical vapour deposition (CVD) methods, laser pyrolysis, sol-gel techniques, colloidal 

chemistry, ion beam techniques and other exotic methods.  

One novel way to produce nanostructures on solid surfaces involves kinetic sputtering 

with fast ions. However, the interaction of energetic ions (atoms) with surfaces leads to a 

variety of emission phenomena (emission of electrons, photons, atoms, ions, clusters 

etc.) and results in pronounced modification of the surface and near-surface regions 

(change in composition and structure, defect production, removal of atoms etc.) [4].  

In kinetic sputtering, the decelerated primary projectiles usually transfer (kinetic) energy 

and momentum to the target atoms, displacing them from their original position and 
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eventually causing their emission into vacuum [5]. Therefore fast ions unavoidably cause 

radiation damage.  

As opposed to this, potential sputtering (PS), i.e. desorption induced by potential energy 

of slow highly charged ions (SHCIs), holds great promise as a much more selective 

nanostructuring tool [6,7]. PS may cause large sputter yields even at such low impact 

energy where kinetic sputtering and defect creation in deeper layers in not possible [8]. It 

is only recently that the unique qualities of SHCIs are being appreciated which make 

these ions an exceptional tool for nanostructuring solid surfaces.     

SHCIs are generally characterized by their large potential energy and low kinetic energy. 

Nanosized defects created by SHCIs ranging between 3 nm to 50 nm have been 

observed in the form of craters or blisters in several materials such as silicon [9], mica 

[10], highly oriented pyrolitic graphite (HOPG) [11], SiO2 and Al2O2 [12] using scanning 

probe microscopy techniques (SPM) particularly the atomic force microscope (AFM) 

and the scanning and tunneling microscopy (STM). 

Morphological/topological alterations induced by SHCIs have been extensively studied 

by several authors but remains a subject of ongoing research. However, Hamza et al. 

observed photoluminescence from nanostructures in silicon at 20K following intense 

ultrafast electronic excitation with Xe44+ ions [13]. This was one of the first observations 

of electronic modification of SHCI induced nanodefects.  

The transformation of electronic states in nanoscale defects following SHCI irradiation 

is an intriguing subject, particularly the transformation of graphite into diamond. It has 

been reported that nanodiamond structures have been formed under extremely fast 
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electron or ion beam irradiation [14]. Nanodiamonds were formed in certain sections of 

an ion track in a wide range of experimental conditions. Such transformation is due to 

the strong electronic excitation of carbon atoms along ion tracks. However, this kind of 

phenomenon is not observed in the low kinetic energy regime [15]. 

Nevertheless, in recent experiments, modification of electronic states at Ar8+ impact sites 

induced on HOPG was achieved by Meguro et al. where post-irradiation surface 

treatment was applied [15, 16]. The surface treatment involved electron injection from an 

STM tip and He-Cd laser irradiation. This provided sufficient activation for the 

hybridization of sp2 (graphite bonds) into sp3 (diamond bonds).   

Carbon related materials such as highly oriented pyrolitic graphite (HOPG), diamond, 

fullerenes and carbon nanotubes are expected to be key materials in nanoelectronics and 

other nanoscale technologies. Carbon-based materials exhibit special properties and are 

generally earth-friendly in nature. These materials are also environmentally compatible 

since they represent substances with properties between organic and inorganic 

compounds [16]. 

When structures are spatially confined within dimensions that are close (~ 1- 100 nm) to 

the average atomic diameter such as in nanostructures, quantum effects become more 

dominant as a result of a phenomenon known as quantum confinement. The possibility 

of using solid state ion implantation techniques to create qubit arrays of appropriate 

quantum information nanostructures that are necessary to demonstrate a scalable 

quantum computer has brought about a renewed interest in the search for the ideal 

quantum computer. The quantum computer is described in more detail in section 3.4.     
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One major challenge in the solid state approach to quantum computer development 

schemes has been finding appropriate single photon sources that have long enough 

coherence times to execute quantum algorithms. In the solid state approach, coherent 

control of single quantum systems has been achieved in a number of systems e.g. 

superconducting Cooper pair boxes [17] and electron spins in quantum dots [18]. 

Among these, the nitrogen-vacancy (N-V) center in diamond [19] is unique. This is 

because its spin exhibits a long coherence time that persists up to room temperature [20], 

whereas most other systems only allow coherent control at cryogenic temperatures. 

Coherent manipulation of N-V centers on large ensembles was first achieved many years 

ago [21, 22]. Recently however, coherent rotations and spin echoes of a single N-V 

center spin were reported by Jelezko et al. [23]. This landmark experiment, demonstrates 

that the N-V center provides a testbed for quantum manipulation in the solid state at 

room temperature [24, 25]. 

On the other hand, single center spectroscopy allows the study of the local environment 

of the N-V center [26] and has already unveiled anisotropic spin interactions and 

magnetic dipolar coupling to spins of other defects in diamond [27]. Recent results of 

these studies include observation of strong coupling between a single N-V center and the 

spin of a single substitutional nitrogen atom [28, 29] and the measurement of the spin 

relaxation time of a single nitrogen electron spin [29]. By combining single center 

spectroscopy with coherent control, the coherent interaction of the N-V center spin with 

its environment can be probed, which might ultimately lead to coherent quantum circuits 

[24].                 
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The underlying notion in this work is to utilize the unique properties of slow highly 

charged ions to synthesize diamond nanostructures as a host matrix for N-V luminant 

centers which could ultimately be coherently manipulated to achieve practical quantum 

computation. The behaviour of an N-V center localized in a nanodiamond matrix is an 

interesting study that can allow one to study properties of decoherence under quantum 

confinement.   

Amongst the already mentioned successes in N-V center studies, this work is also 

motivated by several successful studies on the charge state dependence of nanodefect 

formation and also on the lack of utilization of hydrogen as a catalyst in ion-based 

nanodiamond synthesis.  The variation of the SHCI charge state could probe different 

aspects of defect formation and nanodiamond synthesis and is hence an interesting 

experimental technique to explore.      
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1.2 Dissertation outline 
 

This work is categorized into six chapters. The first chapter aims to motivate and give a 

historical context of the scientific knowledge relevant to the present research. The 

second chapter covers the necessary theoretical background that is utilized in studies of 

carbon based nanotechnologies using highly charged ions. Details of the experimental 

apparatus utilized in this work are outlined in chapter three. In chapter four, the results 

of investigations conducted are presented and analyzed. Chapter five and six are geared 

towards discussion and conclusion of findings from the present study respectively.   
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Chapter 2   

2. Theoretical Review 

 

2.1 Slow Highly Charged Ions (SHCIs) 
 

A SHCI is defined to be any atom that has a large number of electrons (Q 1) removed 

from its naturally occurring atomic structure such that, the total energy released upon 

neutralization, E0 10 eV [30]. In this context, slow is defined as velocities ν<νBohr where 

the Bohr velocity, νBohr is a factor of ~1/137 (the fine structure constant) less than the 

speed of light. The Bohr velocity, νBohr≈2.19x106 ms-1 [31], and represents the orbital 

velocity of the outer most electrons in neutral atoms. Beyond this benchmark, physical 

processes such as electron capture by a highly charged ion may be significantly different.   

When a number of electrons (Q=1, 2, 3,..) are sequentially removed from a given atomic 

specie, a series of ions with varying N electron structures (N=Z-Q) having the same 

nucleus are produced. Such sequences are known as isonuclear sequences, and they 

represent a phase space that cuts through the (Z, Q) space of all possible SHCIs (figure 

2.1) [30].   
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Positively charged ions created in laboratories are created along isonuclear nuclear 

sequences. However, SHCIs can also be conceptualized to be created along isoelectronic 

sequences. These are sequences in which the N electron structure is not varied, but 

rather the nuclear charge Z is varied in an incremental manner.   

                                  

Figure 2.1 Schematic phase space plot of the range of all possible positive ions with nuclear 

charge Z and electronic charge |Q|< Z up to Z=100 [30]. 

 

Note: Isoelectronic sequences begin at Z=N+1 whereas isonuclear sequences begin at 

Q=1.  

The creation of a SHCI results in a compression of the electronic wavefunction of the 

subject atom, hence the size of a SHCI is in some cases dramatically different from that 

of its neutral counterpart. A simple scaling law for one-electron ions predicts that the 

size of the wavefunction varies as the reciprocal of the ion charge as follows; 
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                                       for   

 

where the R=Bohr radius [30]. 

(2.1)        

Using equation 2.1, figure 2.2 is drawn to a scale below.  

                                   

Figure 2.2 Schematic representation of the relative spatial extent of the wavefunction of a 

hydrogen-like Nickel ion (Z=28) compared with that of a hydrogen atom. The ratio is similar to 

the size of the planet Neptune compared with size of the Sun [30]. 

 

The above scaling law for atomic size predicts that the electronic density for a hydrogen-

like uranium ion is ~780 000 times higher than that of a hydrogen atom. For very highly 

charged ions (e.g. Q=92 with E0~750 000 eV) the spatial extent of the wavefunction 

enters a new regime. In the atomic limit (e.g. for the Hydrogen isoelectronic sequence), 

the electron orbits the nucleus at a characteristic distance that is large compared to both 
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the spatial extent of the nucleus and the fundamental length scale at which the electron 

ceases to behave as point particle with a finite charge (i.e. the Compton wavelength) [30]. 

As mentioned earlier in this work, SHCIs are considered to have neutralization energies 

beyond the realm of ordinary experience, such that E0 10 eV. Therefore, SHCIs are 

commonly associated with two kinds of energies namely kinetic (which is a factor of Q 

larger than it would have been if it was singly charged) and potential energy. This is 

contrary to singly charged ions whose energies are mainly kinetic. 

The kinetic energy of SHCIs accelerated through a given electric field is commonly 

represented by the quantity keV/u, where u is the rest mass of the ion in atomic mass 

units. However, sometimes the scaling is assumed and the energy is represented merely 

as keV. The ion velocity is given by the expression: 

 
(2.2) 

                                               

 

 

 

 

where T(ν) is the relativistic expression for the kinetic energy of the ions [30]. There 

exists a minimum impact velocity νm that a SHCI can have before impact with the 

surface. This minimum velocity is a result of acceleration caused by the unscreened 

surface charge and is commonly referred to as image charge acceleration. The energy 

gain due to image charge acceleration exceeds 1eV by approximately a factor of Q3/2 for 
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a typical surface [32].  Nevertheless, impact velocities below νm (down to zero) have been 

reported on imperfectly conducting surfaces [33, 34].   

Highly charged ions are characterized by their large potential energy (relative to 

conventional singly charged ions). The potential energy corresponds to their production 

where q electrons (q: ion charge state) have to be removed from an originally neutral 

atom. This potential energy becomes rather large for higher values of q as shown in 

figure 2.3 below [35]. 

                 

Figure 2.3 The total potential energy Wpot(q) of multiply charged Arq+, Xeq+ and Thq+ ions 

versus charge state q [35]. 

 

The large potential energy typical for SHCIs also creates relatively high, sometimes very 

high neutralization energy (e.g. for Q 1). Ionization energies of elements across the 

periodic table vary. Similarly the ionization energies of SHCIs created along an 
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isonuclear sequence vary. This is primarily because the outermost electrons become 

more tightly bound to the nucleus as electrons are sequentially removed from the 

naturally occurring atom.  

As electrons are sequentially removed from the SHCI, the ionization potential varies 

rapidly with respect to the ion charge. This is a direct result of the increasing nuclear 

charge relative to the inner most electrons in the electronic cloud and the decreasing 

distance between the inner most electrons and the nucleus. Simple Coulomb scaling 

potential for one electron atoms predicts the following [30]: 

                                      (2.3) 

All species of ions will approach Q2 enhancement in the high charge limit (Q→Z) as 

seen in figure 2.4. The neutralization energy E0 is given by the sum of all the ionization 

energies of the charge states at and below that of the ion. Thus the energy E0 is 

enhanced by the fact that the individual ionization energies in the sum are themselves 

enhanced by the „Q2 enhancement‟ described above [30]. Examples of neutralization 

energy as a function of charge is presented in figure 2.5.      



18 
 

  

Figure 2.4 Diagram showing the ionization sequence for Zenon along an isonuclear sequence.  

The diagram also shows (smooth line) the ionization potential for Hydrogen along an 

isoelectronic sequence [30]. 
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Figure 2.5 Neutralization energy of xenon and uranium as a function of ion charge. Note, by 

comparing with figure 2.4, that 40% of the neutralization energy of bare xenon comes from two 

deepest energy levels. This fraction ranges from 100% to 34% across the periodic table of 

naturally occurring elements [30]. 
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2.2 Interactions of SHCI with matter  

 

2.2.1 Overview 

 

The stopping of ions in matter has been a subject of interest at least since the early 

1900s.  Great contributors to the theoretical treatment of the stopping of singly charged 

ions in matter include Bohr [36, 37], Bethe [38, 39], Bloch [40, 41], Firsov [42, 43] and 

Lindhard [44, 45]. Later improvements to the theory were made by several authors 

including Sigmund [46] and Ziegler [47]. However, contrary to the stopping of singly 

charged ions in matter, the interaction of highly charged ions with matter is a relatively 

recent experimental study and is a subject of ongoing research.            

When SHCIs impinge on solid surfaces, modification of the surface and near surface 

regions occurs on a nanometer scale as a result of two main physical phenomena, namely 

physical and potential sputtering. The former, occurs by means of direct collisions with 

atoms of the target material both on the surface and near surface regions. Depending on 

the kinetic energy of the projected SHCIs, modification of the surface occurs by means 

of bond breaking between surface and near surface atoms, production of structural 

defects and the ejection of atoms into vacuum, e.g. conventional ion implanters [5].  

Ions projected onto a given target material will first interact with the electronic cloud of 

the target atoms before interacting with the nuclei of the target atoms. This interaction 

can be categorized into nuclear stopping and electronic stopping [47]. For singly charged 

ions (~keV), the interaction with matter is mainly nuclear and to a much lesser extent, 
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electronic [47], however, for swift heavy ions which have a relatively higher velocity 

(~MeV/amu) the interaction is dominated by electronic stopping [48, 49].  

Potential sputtering occurs as a result of the removal of electrons from a given neutral 

atomic specie. SHCIs by definition have relatively low velocities and hence their kinetic 

energy is low. As q increases for SHCIs, the resulting potential energy increases in a non-

linear manner. The interaction of SHCIs with solid surfaces is thus largely characterized 

by potential sputtering. The response of a solid surface to deposition of potential energy 

is a function of many parameters including the both kinetic and potential energy of the 

projectile ions.       

In more detail, as the SHCI approaches the surface, a collective response of the surface 

electrons is induced. This response is created by the dielectric response of the surface 

due to the presence of a charged particle, thereby creating an “image charge”. The effect 

of the image charge on the SHCI is in most cases, a net acceleration towards the surface. 

As a result of this “image charge acceleration, a lower limit to the projectile velocity is 

set. Burgdörfer and Meyer [50] predicted an energy gain due to the image charge prior to 

surface impact given by: 

                 . (2.4) 

Neutralization of the SHCI occurs before the impact with the surface. This process has 

been described by the classical-over-the-barrier model (COB). According to the COB 

model, electrons experience a potential barrier between the surface and the projectile. 

This barrier is formed by the projectile‟s screened Coulomb potential, the projectile‟s 

image potential and the image potential of the electron. As the projectile approaches the 
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surface, the height of the barrier will decrease and drop below the Fermi level at a critical 

distance given by 

 
(2.5) 

 where is the work function of the material concerned [50]. At this critical distance 

from the surface, electrons from the surface will be transformed into unoccupied states 

(quasi-stationary Rydberg states) of the approaching ion which overlap with filled surface 

valence band states. This continuing resonance capture results in a situation where the 

outermost orbitals of the SHCI are filled preferentially thereby forming a so called 

“Hollow atom” [51]. 

After a critical distance is reached, a number of processes start to compete. The hollow 

atom will start to shrink as an electron from the projectile is transferred into an empty 

surface state with a binding energy less than the surface workfunction. The change in 

charge of the hollow atom due to this rapid auto-ionization will proceed as a result of the 

continued resonance capture of electrons.  

Auger processes can also occur above the surface. One of these processes, Auger 

neutralization, occurs where an electron from the surface valence band is captured by the 

ion and another is ejected as an Auger electron. Auger de-excitation of the projectile, on 

the other hand, is where the excited projectile electron is demoted to a lower shell. This 

can also occur if another surface electron is captured by the projectile and the initially 

excited electron is ejected [52]. 
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The resulting above-surface neutralization picture is one of a constantly shrinking 

electron cloud around the original SHCI as shown below in figure 2.6. Neutralization of 

a singly charged ion is found to take place at distances of a few angstroms above the 

surface. For SHCIs on the other hand, neutralization is found to be charge dependent 

and can start at comparably larger distances. 

Once the approaching projectile is in contact with the surface, the outer electrons of the 

not-yet-relaxed SHCI will be peeled off by surface electron screening. A second, more 

compact, hollow atom will be formed below the surface. The electrons of the solid will 

form a compact screening cloud around the SHCI in a timescale related to the plasmon 

frequency of the solid [52]. 

         

Figure 2.6 Formation of a “hollow atom” as a SHCI approaches the surface of a solid [52]. 
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Below the surface, the hollow atom can de-excite via three processes [53]:  

 Auger neutralization  / auto-ionization 

Inner shell vacancies can be filled when excited projectiles eject electrons into 

vacuum and remaining excited electrons are demoted to lower states.  

 “Side feeding” 

Close collisions with target atoms can fill vacancies via quasi-resonant 

neutralization (“side feeding”). This may occur if there is sufficient overlap of 

inner electronic orbitals of the target and core states of the projectile.  

 X-ray emission 

Inner-shell vacancies can decay via X-ray emission and this is the latest step in 

hollow atom neutralization as it is strongly dependent on the projectile core 

charge.  

Auger processes that take place above and below the surface together will peel off 

processes that account for the emission of electrons during the interaction. The emitted 

secondary electrons and X-rays only account for a small fraction of the initial potential 

energy carried by the SHCI, 1% and 5% respectively. Neutralization of the SHCI takes 

in a few femtoseconds. The surface atomic motion requires time scales of picoseconds. 

Thus the major portion of the initial potential energy of the SHCI is initially deposited 

into the electronic system of the surface [52].  

Electronic excitation resulting from SHCI impacts on materials corresponds to the 

creation of electron-hole pairs (“hot holes”) in the conduction and or valence band of 

the target, and of inner-shell holes of target atoms. For most metal surfaces, such sudden 
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perturbation of the electronic structure can be rapidly accommodated. The excitation 

energy will therefore dissipate within the target material without inducing structural 

surface modification. This is the main reason that no charge state dependence of 

sputtering has been observed for Au, Si and GaAs [54, 55]. 

In materials with reduced electron mobility (e.g. insulator targets), a sudden modification 

of the near-surface electronic structure cannot be restored immediately and may 

therefore induce structural modifications (defect formation, desorption, sputtering etc.), 

giving rise to sputtering induced by the projectile‟s potential, i.e. potential sputtering. 

This potential sputtering process is characterized by a strong dependence of the 

observed sputtering yields on the charge state of the impinging ion, and can take place at 

ion impact energies well below the kinetic sputtering threshold (figure 2.7) [35]. 

                    

Figure 2.7 Measured sputter yield of LiF for impact Arq+ ions as a function of impact energy 

[35].   
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2.2.2 Coulomb Explosion Model 

 

The Coulomb explosion process has been proposed to be the cause of surface damage 

following SHCI impact [56, 57]. In fact, it is only recently that clear evidence for the 

existence of surface Coulomb explosions induced by SHCIs has been obtained [58, 59]. 

Cheng and Gillaspy performed the first full-scale three-dimensional molecular dynamics 

simulations of the Coulomb explosion model [60]. Although the Coulomb explosion 

model has been studied by several authors, it remains a subject of ongoing research. 

In the Coulomb explosion model, target (surface and near surface) atoms receive kinetic 

energy in the surface equivalent of an ion explosion spike [61, 62, 63]. A surface domain 

with high ionization density is formed in the course of electron emission during relation 

of SHCIs. Several hundred, mostly low energy (<20 eV) electrons are emitted from 

metals and insulators by SHCI like Xe44+ and Au69+ [64, 65].   

In insulators and poor conductors, charge neutrality cannot be reestablished on the time 

scale of several picoseconds, i.e. before ionized target atoms are repelled from each other 

resulting in a Coulomb explosion [31]. The rapid expansion of the target material is 

thought to send a shock wave into the material. The intersection of the shock wave in 

the surface can lead to desorption of neutral and charged molecules and clusters [65, 66, 

67]. 

Nevertheless, the main argument against the Coulomb explosion mechanisms question 

whether hole lifetimes even in insulators are sufficiently long to prevent re-neutralization 

of the charged domain before the lattice can respond [68]. Figures 2.8 and 2.9 show 
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some results of the Coulomb explosion computer simulations that were conducted by 

Cheng and Gillaspy where, a Si (111) surface consisting of 34 560 atoms distributed over 

24 layers was subjected to SHCI impact. Details of the simulation are given in ref [60]. 

                 

Figure 2.8 Snapshot of the time evolution of the Coulomb explosion process for a system 

consisting of 365 ions. Red and green spheres are used to indicate Si+ ions and Si atoms 

respectively. The initial Coulomb repulsive energy stored in the hemispherical region is about 

87.3 keV Between t = 0 and 40 fs, the charged region expands significantly. At t =80 fs over 100 

ions are ejected from the surface, forming a pronounced hole. By 360 fs the hole is much larger, 

and about 800 atoms and ions are driven from the surface [60]. 
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Figure 2.9 Spatial distributions of pressures (left column) and potential energy (right column) 

for the system with 365 ions, at several time instants. The times represented in panels (a)-(e) and 

(a‟)-(e‟) are 0, 8, 16, 40 and 80 fs, respectively. All units are in a.u., where 1 a.u. = 2.94 x 1013 Pa 

or 2.94 x 104 GPa in pressure. The same colour scales are used in (a)-(c) and (a‟)-(d‟) to 

demonstrate the dissipation between 0 and 16 fs. Different colour scales for (d), (e) and (e‟) are 

used to focus on the detail of the patterns in the plots [60]. 
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2.2.3 Inelastic Thermal Spike Model (iTS) 

 

The iTS is a mathematical model initially designed to explain in a quantitative manner, 

the behaviour of materials when subjected to fast ion impact. Since the 1950s, several 

theoretical models have been proposed to explain the appearance of latent tracks 

induced in matter by the slowing down process of incident ions in the electronic 

stopping power regime [69]. Among these, the ionic spike model for insulators of 

Fleischer et al. [70] and the thermal spike model [71] initially proposed by Seitz and 

Koehler [72] are the most often used. 

In the thermal spike model, the energy lost by the slowing down of a heavy ion is shared 

between electrons by the electron-electron interaction and is then transferred to the 

lattice atoms by electron-phonon coupling. The formation of a high temperature cylinder 

along the incident ion path is assumed, the temperature of which could be higher than 

the melting and vaporization temperatures of the material [69]. 

Due to the small volume of the cylinder, the cooling rate may reach ~1014 Ks-1 so the 

molten matter cools down within ~10-11 s and changes back to solid state. In the 

framework of this model, the latent track is assumed to result from the rapid quenching 

of the entire cylinder of the molten matter. Chronologically, the ionic spike (10-15-10-13 s) 

comes into play before the thermal spike (10-12 s) [69]. 

Above a critical value of the energy loss, dE/dx, damage produced in the core of the 

track leads to a macroscopic volume increase (swelling [73, 74]), track etchability [75] and 

stress [76]. At the surface of ionic crystals, swift ions induce nanometric hillocks [77, 78] 
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above a threshold value similar to that for swelling [74]. Although numerous 

experimental data are available for hillock formation due to swift heavy ion impact, the 

principle of the mechanism is still not yet fully understood [79]. 

El-Said et al. studied SHCI induced surface defects on CaF2 single crystals. In their 

investigation, they found that nanostructures induced by SHCI show  close resemblance 

with those created by fast ions. They observed a strong dependence of the formation on 

potential energy rather than on stopping power, also that there exists a well-defined 

threshold of potential energy required for the onset of nano-hillock formation (see figure 

2.10) [79]. 

 

 Mathematical Description  

The inelastic thermal spike model is described mathematically by two coupled equations 

[80, 81, 82] governing the energy diffusion of the electron and lattice subsystem 

respectively. A time-dependent thermal transient process is expressed in cylindrical 

geometry: 

 
(2.6) 

 

 
(2.7) 

 

where Te, T, Ce, C(T) and Ke, K(T) are the temperature, the specific heat and the thermal 

conductivity for the electronic and the atomic systems respectively,  is the mass 
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density of states of the lattice, and g the electron-phonon coupling constant. B(r, t) is 

the energy density per unit time supplied by the incident ions to the electronic system 

at radius r and time t [69]. Further details regarding the model are discussed the 

references; [69, 81, 82, 84]. 

                       

Figure 2.10 Mean diameter (top) and height (bottom) of hillock-like nano-structures as a 

function of the potential energy of Arq+ (open symbol) and Xeq+ (full symbol) projectiles. 

Hillocks are found only above a potential energy threshold of about 14 KeV. The error bars 

correspond to a standard deviation of the diameter and height distributions; the solid lines are 

drawn to guide the eye [69]. 
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Chapter 3  

3. Diamond: Properties and 

Synthesis 

 

3.1 Carbon Allotropes 
 

Allotropes refer to different chemical compounds formed by any atomic species. The 

different chemical structures are due to different bonding possibilities that exist between 

atomic species with the surrounding atoms. Carbon is the sixth element on the periodic 

table, has the electronic configuration: [He]2s22p2 and an atomic radius of ~0.077 nm 

[85].   

Carbon can form a variety of allotropes including diamond, graphite and carbon 

nanotubes (multiwalled and single walled). Although carbon exhibits a complex 

allotropy, allotropes that are frequently found in nature are diamond and graphite, which 

in turn exhibit different physical properties as a result of the difference in their chemical 

structures.   
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Carbon atomic orbitals can hybridize to form so called hybrid orbitals (sp2, sp3 and sp 

hybrid orbitals). In the sp3 hybrid orbital, the arrangement of the electrons of the L shell 

of the carbon atom in the ground state is modified as one of the 2s electrons is 

promoted to the higher 2p orbital.  

These new orbitals are labeled sp3 since they are formed from one s and three p orbitals. 

In this hybrid sp3 state, the carbon atom has four 2sp3 orbitals. This then raises the 

valence state from two to four. A calculated sp3 electron-density contour is shown in 

figure 3.1. It is important to note that hybrid orbitals are only formed in the bonding 

process with other carbon atoms and are not representative of an actual structure of a 

free carbon atom [85].  

The four hybrid sp3 orbitals (known as tetragonal hybrids) have identical shape but 

different spatial orientation. Connecting the endpoints of these vectors forms a regular 

tetrahedron with equal angles to each other of 109.28º (see figure 3.1).     

The sp3 hybrid orbitals form a strong bond when the carbon atom combines with a sp3 

orbital from another carbon atom since the concentration of the bonding electrons 

between the nuclei minimizes the nuclear repulsion and maximizes the attractive forces 

between themselves and both nuclei. This type of bond is directional and is called a 

sigma bond (σ) shown in figure 3.2 [85].   
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Figure 3.1 Calculated electron density contour of the sp3 hybrid orbital (left) and the tetrahedral 

hybridization axes of the four sp3 orbitals (right). The negative lobs have been omitted for clarity 

[85]. 

 

                      

Figure 3.2 Electron cloud representation of the sp3 hybrid orbital bonding (σ bond) showing 

covalent bonding [85]. 
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Whereas the sp3 orbital is the key to diamond and aliphatic compounds, the sp2 (or 

trigonal) orbital is the basis of all graphitic structures and aromatic compounds. In a sp2 

orbital, the arrangement of the electrons of the L shell of the carbon atom in the ground 

state is modified as one of the 2s electrons is promoted and combined with two of the 

2p orbitals (hence sp2). The result such a modification is three sp2 and an unhybridized 

free (or delocalized) p orbital. Therefore, the final valence of the system is four.  

The calculated electron-density contour of the sp2 orbital is similar in shape to that of the 

sp3 orbital shown in figure 3.1. However, the three identical sp2 orbitals are in the same 

plane and their orientation of maximum probability forms a 120º angle from each other 

(figure 3.3). The fourth orbital (the delocalized non-hybridized p electron), is directed 

perpendicular to the plane of the three sp2 orbitals and becomes available to form the 

subsidiary pi (π) bond with other atoms [85]. 

                                     

Figure 3.3 Planar section of the sp2 hybrid orbitals of the carbon atom [85]. 
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The sp2 like the sp3 bond, is covalent in nature. It is also a very strong bond, however, 

the overlap in the sp2 orbital with other sp2 orbitals is more pronounced, has a shorter 

bond length and a higher energy. The sp2 orbital is directional like the sp3 orbital. It is 

also called a sigma (σ) orbital and the bond is called a sigma (σ) bond [85].  

 

3.1.1 Diamond 

 

Diamond is a carbon allotrope in which each carbon is covalently bonded to four other 

carbon atoms at a distance of ~1.545 Å forming a tetrahedral geometry [85]. Nearly all 

diamonds adopt this structure except a small percentage which show a hexagonal 

structure related to wurtzite and these are called Lonsdaleite (see figures 3.4 and 3.5). 

Diamond bonds result from a hybridization of one s and three p orbitals thereby 

forming so called sp3 hybridized orbitals at bonding angles of 109.47º in three 

dimensions. As a result of this bonding nature, the structure of diamond is denser than 

that of graphite and has an atomic density of ~1.77 x 1023 atoms/cm3 i.e. (~3.57 g/cm3) 

[86]. 

The nearest neighbours in the diamond tetrahedral bond can be imagined as placed at 

four of the eight corners of a cube as shown in figure 3.4 where the bond directions are 

<111>. The tetrahedral element may also be visualized with the four nearest neighbours 

defining a three-dimensional prism with triangular cross-section. These prisms may be 

stacked to form a hexagonal lattice as shown in figure 3.5. 
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Figure 3.4 The cubic diamond structure, built by a repetition of tetrahedrally bonded blocks. 

The nearest neighbours define four corners of a cube; cubes are stacked to form a cubic lattice 

[86, 87]. 

                                                   

                             

   

Figure 3.5 The hexagonal diamond (Lonsdaleite) crystal structure, built by repetition of 

tetrahedrally bonded prisms. Nearest neighbours define triangular prisms which are stacked to 

form a hexagonal lattice [86]. 

Unit Cell Lattice 

     Unit Cell    Lattice 
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The space lattice of diamond is fcc (face centered cubic). The primitive basis has two 

identical atoms at 000; ¼ ¼ ¼ associated with each point of the fcc lattice (see figure 

3.6). The maximum proportion of the available volume which may be filled by hard 

spheres is only 0.34, which 46% of the filling factor for a closest packed structure such 

as fcc or hcp (hexagonal close packing). Carbon, Silicon, Germanium and Tin can all 

crystallize in the diamond structure, with lattice constants a = 3.56, 5.43, 5.65 and 6.46 Ǻ 

respectively [88]. 

                                               

 

Figure 3.6 Atomic positions in the cubic cell of the diamond structure projected on a cube face; 

the different colours represent fractions which in turn denote height above the base in units of a 

cube edge. The points 0 and ½ are on the face of the fcc lattice; those at ¼ and ¾ are on a 

similar lattice displaced along the body diagonal by one-fourth of its length. With a fcc space 

lattice, the basis consists of two identical atoms at 000; ¼ ¼ ¼. Note: Blue = 0; Red = ½, 

Yellow = ¾ and Green = ¼ [88]. 

 

The two different stackings of the basic tetrahedral element are shown in figure 3.7. The 

diamond-cubic lattice can also be seen to be constructed of a three-dimensional array of 
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six-membered rings where each ring has the “chair” conformation. The rings make up 

bilayer sheets of atoms that are parallel to the <111> planes. These sheets are stacked in 

the …/ABC/ABC/… sequence [86].         

      

 

        

Figure 3.7 The two different stacking systems in diamond, i.e. cubic lattice (top) and the 

hexagonal lattice (bottom) with bilayers in the sequences; …/ABC/ABC/… and 

…/AB/AB/… respectively [86]. 
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The numerous applications of diamond are a direct result of its extreme properties. 

Diamond is the hardest known naturally occurring mineral according to Mohr‟s hardness 

scale. As a result, it is commonly used in industrial applications as an abrasive. The 

tetrahedral sp3 covalent bonds allow diamond to have a very stable structure (metastable) 

even a room temperature. Diamond is also used in the manufacturing of Infra-Red (IR) 

Detectors as it is the best known thermal conductor. 

 

Diamond Types  

Diamond is classified into several categories depending largely on its purity or impurity 

levels. Advances in optical absorption techniques suggest that nitrogen is the most 

common impurity in naturally occurring diamond. Natural diamonds that have a large 

fraction of nitrogen are classified as type Ι, whereas those that are largely free of nitrogen 

impurities are classified as type ΙΙ. Type Ι diamonds can be further classified into Ιa if the 

nitrogen exits in an aggregated form or as Ιb if the nitrogen exists as single substitutional 

atoms.  

Most natural diamond belongs to the subdivision type Ιa and the nitrogen concentration 

can be as high as 3000 ppm. Less than 0.1% of naturally occurring diamonds are type Ιb 

with typical concentrations of.40 ppm In both the Ιa and Ιb type diamonds, nitrogen 

acts as an electron donor with ionization energies of 4.0 and 1.7 eV respectively, 

implying that the crystals are electrically insulating at room temperature. 
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Some, very rare in nature, type ΙΙ diamonds are highly conductive, exhibiting resistivities 

as low as 25 Ωm; these are classified as type ΙΙb. On the other hand, nitrogen-free high 

resistivity diamond is classified as type ΙΙa. Type ΙΙb diamonds are p-type 

semiconductors with typical boron concentrations less than 1 ppm and acceptor 

ionization energy of 0.37 MeV [89]. Table 3.1 below shows some properties of diamond.        

 

Table 3.1 Some properties of diamond [90, 91]. 

 
PROPERTY 
 

 
UNITS 

 
VALUE 

Lattice constant (300 K) [ ] 3.5668 

Elastic Modulus [ ] 700-1200 

Young’s Modulus (111 direction) [ ] 1223 

Bulk Modulus [ ] 442.3 

Density [ ] 3.515 

Melting Point [ ] 3750-3850 

Heat Capacity [ ] 0.4715 

Thermal conductivity: 

 (Type Ι, 300 K) 

 (Type ΙΙa, 300 K) 

 (Type ΙΙb, 300 K) 

 

[ ]         

[ ] 

[ ]    

 
895 
2300 
1350 

Thermal expansion coefficient 

 (300 K) 

 (193 K) 

 (400-1200 K) 

 

[x  

[x  

[x  

 
0.8 
0.4 
1.5 

Electronic band-gap (0 K) [ ] 5.48 

Electronic band-gap (300 K) [ ] 5.50 

Electron mobility (300 K) 
(high-purity single-crystal CVD) 

[ ] 1800-4500 

Hole Mobility (300 K)  
(high purity single-crystal CVD) 

[ ] 1200-3800 
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3.1.2 Graphite 

 

Graphite is the most common allotrope of carbon. It is also the most thermodynamically 

stable form of carbon particularly α-graphite. Along any plane in the graphite lattice, 

each sp2 hybridized carbon atom combines with three other sp2 hybridized atoms to 

form covalent σ bonds which in turn make up a series of hexagonal rings, all located in 

parallel as shown in figure 3.8. The fourth valency (the free delocalized electron) is 

oriented perpendicular to this plane (figure 3.9).  

Unlike the sigma (σ) orbital, it is non-symmetrical and is called by convention a pi (π) 

orbital. It is available to form a subsidiary pi (π) bond [85].  The planar sheets in graphite 

are weakely held together by van der Waals forces with an average seperation of  3.34 Å 

between the planes. This seperation is large in comparison to the single carbon-carbon 

bond length of 1.54 Å In the graphite lattice, the planes follow the pattern: ABABAB in 

the case of α-grpahite and ABCABCABC for β-graphite (figure 3.10).  

                                      

Figure 3.8 Three dimensional schematic of the graphite structure [85]. 
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Since the graphite sheets are weakly bound  by van der Waals forces, the sheets can easily 

slide over neiboring planes. For this reason, graphite is commonly used as a lubricant in 

industry. The π-electron system is delocalized and hence enables the material to conduct 

charge parallel to the planes. Therefore graphite behaves as an electrical conductor allong 

the lattice planes.  

However, along the direction perpendicular to the planes,  no chemical bonding exists. 

As a result graphite does not conduct electricity along the direction perpendicular to the 

planes. Table 3.2 shows some properties of graphite which are a direct result of its 

chemical structrue. 

 

                    

Figure 3.9 Schematic of the sp2 hybridized structure of graphite showing the sigma bonds and 

the 2p free electrons (above and below the sigma orbitals plane) [85]. 
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             (a)                                                   (b). 

Figure 3.10 Diagrams showing the arrangement of atoms in two of the most common allotropes 

of Carbon, namely (a).α-Graphite and (b). β-Graphite [92]. 

 

 

Table 3.2  Some Properties of Graphite [90, 91]. 

 
PROPERTY 
 

 
UNITS 

 
VALUE 

Lattice constant [ ] 2.462 

Bond Length [ ] 1.421 

Density [ ] 2.26 

Melting Point [ ] 4200 

Band Gap [ ] -0.04 

Thermal Conductivity [ ] 300.06 

Heat Capacity,  [ ] 8.527 

Thermal Expansion Coefficient 

 (in plane) 

 (along c axis) 

 

[x  

[x  

 
8.8 
27.3 
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3.2 Diamond Synthesis 
 

Probably the first recorded synthesis of diamond was performed by Scot J B Hannay in 

1880.  He used a mixture of hydrocarbonates, lithium and oil which was heated up in 

iron pipes until it blasted [93]. In this section, the synthesis of diamond is discussed. 

Several methods of producing diamond have been explored to date. However, this 

section will only focus on the following methods for the synthesis of diamond: high 

temperature high pressure synthesis techniques (HTHP), chemical vapour deposition 

(CVD) and nanodiamond synthesis techniques.  

 

3.2.1  HTHP synthesis of single crystal diamond. 

 

High temperature high pressure diamond is synthesized at the conditions where 

diamond is thermodynamically more stable than graphite. Although this implies that 

knowledge of the carbon phase diagram is important for diamond synthesis, this is not 

sufficient for the synthesis in practice. Kinetic considerations are also necessary [89]. 

 The activation energy of direct conversion (solid-solid transformation) from graphite to 

diamond is very large and very high temperatures are required. Catalysts are employed to 

decrease the required activation energy for diamond to graphite conversion. Synthetic 

diamond has three forms namely: single crystal (commonly used in electronic 

applications), polycrystalline aggregate and powder [93]. Figure 3.11 shows the phase 

diagram of diamond with several phase boundaries.  
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Figure 3.11 Pressure-temperature phase diagram of Carbon [94]. 

 

The boundary between graphite and diamond has been extensively studied and is given 

by [95]: 

                                            (2.8) 

The above relationship was determined based on experiments on growth and dissolution 

of diamond and graphite, accounting for the pressure effect on the EMF of a 

thermocouple [89]. 
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Direct Conversion 

There are two main ways to synthesize diamond without utilizing catalysts namely: static 

and dynamic compression. In static compression, 8 to 20 GPa of pressure and 1000 to 

3000ºC temperatures are required [96]. In order to generate such high pressures, a belt 

apparatus diamond anvil cell and multi-anvil apparatus are used. Electric current or a 

laser is applied for heating the sample.  

Carbon sources that are commonly used for the synthesis are graphite, amorphous 

carbon, glassy carbon and fullerite C60. Diamonds synthesized using such a method are 

typically less than 20 µm in size. Hexagonal diamond (Lonsdaleite) has been synthesized 

as well as cubic diamond [97].  

Conversion to diamond has been detected even at room temperature using in-situ X-ray 

diffraction, but the diamond is not quenchable [98]. For this conversion, C60 was used as 

the carbon source and the diamond was recovered after a high pressure compression up 

to 20 GPa was applied at room temperature [97]. 

Dynamic compression techniques have produced diamond at pressure of 7 to 150 GPa. 

The temperature applied in the synthesis is a function of the initial sample density. 

Several carbon sources including graphite, C60 and Carbon nanotubes have been utilized 

for this purpose. The duration of loading is in most cases ~µs and the diamond 

synthesized has a grain size ~100 nm [89].  

Well crystalline graphite enhances the formation of hexagonal diamond. This connection 

is consistent with the martensitic nature for the graphite-hexagonal diamond 
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transformation. In order to recover diamond irreversibly, it is necessary to heat the 

compressed sample up to about 1000ºC [89].  

There are several known materials that assist the conversion of graphite to diamond at 

lower temperature and pressure conditions (catalysts). Some of these include [96]: 

 Conventional catalysts 

Transition metals of group VΙΙΙ elements (Fe, Co, Ni, Ru, Pd, Os, Ir, Pt), Mn 

and Ta. Ni, Co, Fe and alloys in which they are main constituents, are popularly 

utilized in the production of diamond. More than 10% of carbon dissolves into 

the molten metals. In this process, these catalysts act as carbon solvents.   

 Mg 

This plays the role of the solvent of carbon essentially at high temperatures 

where its carbide decomposes. 

 Oxygen containing materials 

Carbonates (CaCO3, etc), hydroxides (Ca(OH)2, etc.), sulphates (MgSO4, etc.), 

H2O, kimberlite. Any compounds containing oxygen may be effective as catalysts 

except thermally stable oxides. Oxygen liberated from the compounds play an 

essential role for the diamond synthesis. The catalysts are likely to have a 

correlation with growth of natural diamond.  

 Hydrides 

LiH, CaH2. Micrometer sized crystals have been formed using such catalysts.  

Figure 3.12 shows a region of diamond growth. This region is bounded by two lines, i.e. 

the diamond-graphite equilibrium line and a melting line where a liquid phase is formed 
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in the catalysts-carbon system. This region is applicable for the conventional catalysts 

[89].  

Ni and Co have a eutectic relation with carbon, whereas Fe and Mn form stable carbides. 

In order to form the liquid phase at low temperatures, alloys of the metals are employed. 

5-6 GPa and 1200 to 1500ºC are the typical conditions for commercial production using 

the conventional catalysts [89].  

Higher pressure is required to grow diamond at the low temperature range. The 

minimum temperature for growth is higher than the melting temperature of the catalyst 

at a given pressure. The minimum pressure and temperature for the growth is lowered by 

employing a seed crystal, indicating that the nucleation barrier is considerable for the 

formation of diamond [89]. 

 

          

Figure 3.12 Schematic of diamond growth regions. (a) The diamond growth region using 

conventional catalysts. (b) The diamond growth region using non-metallic catalysts. Diamond 

grows in the shaded regions [89]. 
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Atomic impurities incorporated into the diamond lattice are limited. Some of these 

atomic species together with their optical effects in diamond are described below [89]: 

 Boron 

Readily incorporated to produce a blue colour if boron-containing 

materials such as boron, boron nitride and borides are present in the 

growth cell. [99]. 

 Nitrogen 

Largely responsible for the yellowish colour in diamond. Present in a wide 

range of concentrations from near zero to 800 ppm [100, 101, 102]. The 

diamonds grown from typical metal catalysts such as Ni, Co and Fe, 

contain 50-300 ppm of nitrogen. By adding nitrogen getters, Ti, Zr or Al, 

to the catalysts, the N concentrations are reduced to undetected levels, i.e. 

type ΙΙa. Nitrogen is incorporated in single substitutional form, but 

nitrogen pairs are found in crystals grown at higher temperatures [103].  

 Nickel 

Produces a number of characteristic absorption and luminescence bands. 

With decreasing nitrogen concentrations, a brownish-yellow colour which 

is seen in a crystal grown of pure nickel, changes to green then brown. 

Electron spin resonance (ESR) studies have revealed that substitutional 

Ni- and interstitial Ni+ are present in nitrogen rich and poor crystals 

respectively. Heat treatment produces complexes consisting of Ni, N and 

vacancies [104, 105, 106].  
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3.2.2 CVD diamond synthesis 

 

Much progress has been made in the last decade to produce diamond using the chemical 

vapour deposition (CVD) techniques. Today, CVD diamond plates of more than 10 cm 

in diameter and more than 1 mm thickness are commercially available whose optical and 

thermal properties are comparable to the best single crystal diamonds [93]. 

The most important CVD techniques are hot filament and microwave assisted. 

However, this section will only focus on microwave assisted CVD for brevity. Single-

crystal diamond has several outstanding physical and chemical properties such as the 

highest thermal conductivity at room temperature, the highest hardness, the highest 

Young‟s modulus and an ultrawide-band optical transmission range. Up to now, there 

exists a great industrial need for synthetic diamond, roughly 80 000 kg of synthetic 

diamond (HTHP) is used every year worldwide [93].    

 

Microwave CVD 

Along with HFCVD, it was microwave-plasma enhanced CVD (MPECVD) which 

moved diamond deposition from its niche of scientific curiosity into the area of 

industrially applicable technologies. It was first demonstrated by the group of Kamo et al. 

(1983) at MIRIM in Japan [107]. 

Generally, in the microwave-plasma diamond deposition reactor, process gases are 

introduced into a reactor chamber which contains the substrate to be coated. The 

chamber is an integral part of an electromagnet cavity and consequently its geometry has 
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a strong influence on the location and the extent of the microwave discharge. It is of 

great importance to create stable plasma which can be reproducibly controlled [93].  

Typically the substrate to be coated with diamond is immersed into the plasma within 

this cavity. The microwaves couple energy into the electrons which in turn transfer their 

energy to the gas through collisions [108, 109]. As a result of these collisions, the process 

gas is heated and chemical reactions in the gas phase lead to the formation of diamond 

precursors which impinge on the substrate surface. If the surface conditions are carefully 

adjusted, diamond starts growing on the substrate [93]. 

The microwave plasmas are excited by 915 MHz (32.8 cm) and 2.45 GHz (12.2 cm). The 

choice of the very specific frequencies is mainly due to the availability of components 

that comply with national regulations. MPECVD is a very flexible technique in terms of 

the variety of gas precursors which can be used for diamond growth.  

 

                         

Figure 3.13 NIRIM-type reactor used by Kamo et al. [107]. 
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In contrast to the HFCVD, where the admixture of aggressive reactant gases like oxygen 

or halogens would destroy the filaments, almost every conceivable gas mixture can be 

used [93]. The textured growth of CVD diamond films is dependent on only one 

parameter, the growth parameter α, which is defined as  

 
(2.9) 

where  and are the growth velocities on {100} and {111} directions 

respectively [93]. The growth parameter determines both the shape of the diamond 

nucleus and the texture of a polycrystalline diamond film. Experimentally, α is dependent 

on e.g. the methane concentration in the methane gas, the substrate temperature and gas 

impurities especially nitrogen and boron [93].  Figure 3.14 below shows diamonds of 

textures synthesized using the CVD method where concentrations of the input reactants 

were varied.   

              

Figure 3.14 SEM images of CVD diamond films deposited at 800ºC substrate temperature and 

1.5% CH4  in the reactant gas. A: α < 1.5, concentration = 10 ppm B, scale: 13 mm = 3 µm B: α 

> 2, concentration = 60 ppm N, scale: 8 mm = 1 µm [93]. 
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3.2.3 Nanodiamond Synthesis Techniques 

 

The first and most commonly used method for the synthesis of nanodiamonds is by 

explosive detonation of carbon based materials such as graphite and fullerenes. This 

method has been largely used for mass production of nanodiamond for industrial 

applications such as abrasives and wear resistant coatings.  

Other diamond synthesis methods include (but are not limited to) synthesis by laser 

methods and synthesis by fast (and slow) ion irradiation. Although many synthesis 

methods are being explored as proof of principle, these vast techniques are also largely 

related to different desired applications.  

 

Detonation Nanodiamonds                                                                                                                                                                                                                                                                                                                                                                                                                                               

By comparing the explosive detonation parameters with the carbon phase diagram and 

performing calculations, it has been shown empirically and then theoretically, that free 

carbon in detonation products (DPs) of powerful condensed carbon-containing 

individual explosives with a negative oxygen balance should condense in a diamond or 

liquid phase [110].  

A detailed mechanism explaining all the stages of UDD (ultrafine-dispersed diamonds) 

synthesis has not yet been proposed. Nevertheless, three stages can be distinguished in 

the detonation synthesis [110].  
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The stages are as follows: 

 First stage 

Transformation of the explosive under conditions of high pressure and 

temperature. Due to the detonation, free carbon must appear in DPs. The 

pressure and temperature in the detonation wave should provide the 

thermodynamic conditions necessary for conservation of the produced diamond 

phase and for preventing the diamond to graphite transition. For a 50/50 

trotyl/hexogen (TH) mixture, these conditions take place at 22 GPa and 3200 K.  

 Second stage 

The DPs expand rapidly and diamond particles are cooled to a temperature lower 

than the graphitization temperature.  

 Third stage 

This stage is characterized by intense heat and mass exchange between the DPs 

and the medium surrounding the explosive. The main parameters determining 

the final temperature and the time after which this temperature sets in are the 

specific heat, the amount of substance and the chemical activity of the medium. 

Experiments on UDD synthesis in various media have shown that the diamond yield 

depends on the gaseous medium in which the explosive detonates; the yield increases in 

the series vacuum-hydrogen-argon-nitrogen-carbon dioxide. Moreover, the diamond 

yield increases with the initial pressure of the gas filling the blast chamber.  
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Synthesis by Laser Ablation  

There have been few studies involved in the transformation of graphite and amorphous 

carbon to nanodiamond [111, 112]. Liu et al. [113] conducted an experiment to probe the 

phase transition of amorphous carbon to nanodiamond by employing a unique laser 

induced reaction technique, i.e. pulsed laser irradiation in liquid [114].  

In their experiment, amorphous carbon was converted into nanodiamond by pulsed-

laser irradiation of amorphous carbon films in a confined liquid at room temperature and 

ambient pressure. Nanocrystalline diamonds (NCDs) with a size of about 4-7 nm were 

prepared in amorphous carbon films by the amorphous carbon-to-diamond conversion. 

Their findings have applications field emission devices (FEDs) since NCDs embedded in 

amorphous carbon films can greatly improve the field emission performance by 

enhancing the emission site density (ESD) of the amorphous carbon cold cathode. The 

experimental approach is shown in figure 3.15 [113].  

The amorphous carbon films with a thickness of about 700 nm were deposited on single 

crystalline silicon substrates using a filtered cathode vacuum arc (FCVA) technique at 

room temperature. Their apparatus included a Nd: YAG laser (wavelength of 532 nm, 

pulse width of 10 ns and power density of 5.7 x 108 W/cm2) and de-ionized water filled 

to about 3 mm above the amorphous carbon film. 

Some results from their investigation are shown figures 3.16 and 3.17.      
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Figure 3.15 Schematic illustration of the experimental setup of laser irradiation in liquid [113]. 

 

Generally, laser induced plasma is first created at the liquid-solid interface when a 

pulsed-laser ablates the amorphous carbon layer. The plasma that contains various 

components of carbon species will be ejected from the laser-ablated amorphous carbon 

layer. Due to the laser induced pressure and the strong confinement of water, the laser-

induced plasma is driven into a high-temperature, high-density and high-pressure state 

[113]. 

Water will dissociate into atomic H and O elements in the plasma plume [115, 116]. The 

presence of atomic H has been suggested to of benefit to the nucleation and growth of 

diamond structured carbon in the liquid environment [117]. Therefore, some phase 

transitions from the sp2 to the sp3 phase of carbon could take place in the plasma plume 

[113]. 
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Figure 3.16 (a) Low-resolution TEM bright field image of the cross-section sample with two 

sites of the spatially periodic structure. (b) Detailed TEM image of one part of the condensed 

nanocrystals [113]. 

As a result of the liquid confinement, the quenching time of the plasma plume becomes 

so short that the metastable sp3 phase could be frozen in the final products. In this 

particular study, the quenching time is ~20 ns, thus, NCDs immersed in amorphous 

Carbon can be reserved in the final products. The pulse-laser irradiation of amorphous 

carbon in liquid therefore creates a stable phase region of diamond nucleation as shown 

in this particular study [118].   
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Figure 3.17 (a) SEM image of the spatially periodic array on amorphous carbon films induced by 

pulsed-laser irradiation in liquid. (b) Typical SEM image of one treated site. (c) Raman spectrum 

of the original amorphous carbon films, with the green dotted lines representing the result of a 

fitted-peak Lorentzian deconvolution. A hatched pane describes the FWHM of the G band. (d) 

Raman spectrum of the resulting sample, in which the shifts of the G mode and D mode are 

schematically depicted. The result of a fitted-peak Lorentzian deconvolution and a single skewed 

BWF line shape is describe by the green dotted lines and a blue symbol line, respectively [113]. 
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Synthesis by Ion Irradiation  

The transformation of sp2 to sp3 hybridization hardly occurs under normal conditions. 

However, such a transformation has been recently observed in materials irradiated with 

fast ion beams (high kinetic energy) [119, 120]. Banhart and Ajayan [121] used 1.2 MeV 

electron irradiation (>1024e-cm-2 ~ 100 dpa) to convert the cores of concentric-shell 

graphitic onions into nanometer-size diamond at irradiation temperatures above 900 K.  

Following this experiment, many other successful experiments on nanodiamond 

synthesis using high kinetic energy beams with different singly charged ions were 

conducted. An important observation that emerges in studying several different 

irradiation experiments [121, 120, 122] is that nanodiamonds are formed under a 

surprisingly wide range of irradiation conditions. This observation led to the notion that 

nanodiamonds developed almost instantaneously in tracks generated by the high-energy 

irradiation particle [119]. 

The fact that nanodiamonds are formed under such a vast range of irradiation conditions 

may be related to a very small difference in the graphite and diamond free-energies at 

these temperatures coupled with surface-energy considerations that may make diamond 

the stable phase at very small particle sizes [123, 124]. Under particle irradiation, it is 

possible that both the stable (graphite) and metastable (diamond) phases can form 

simply because the difference in their respective free-energies is small, this has been 

observed in diamond films grown by chemical vapour deposition [121].  

Daulton et al. [119] used an acid dissolution treatment to remove untransformed 

graphite and to isolate nanodiamonds from the ion-irradiated graphite specimens. The 
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acid residues were subsequently characterized by high resolution and analytical electron 

microscopy. Figure 3.18 shows a nanocrystal produced from such an irradiation. 

 

                                        

Figure 3.18 High-resolution lattice image of one of the larger nanocrystals found in the acid 

residue from the 350 MeV Kr irradiated graphite [119]. 

TRIM calculations of MeV singly charged ion beams in most materials (particularly 

carbon based materials) show that such high kinetic energy irradiation creates defects up 

to several microns below the surface. However, in the present study, focus will be on 

surface and near surface defects.  

Contrary to high kinetic energy singly charged ions, slow highly charged ions (SHCIs) 

creates surface based defects. This is primarily because SHCIs have relatively low 

velocities (hence low kinetic energy). However, as described earlier, SHCIs are 

characterized by a large potential energy which is largely responsible for the formation of 

surface defects. 
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The high potential energy of SHCIs which induce multiple emission of electrons from 

the surface before a direct nuclear collision process, provides a strong modification of 

electronic states of the local surface area via the electronic excitation processes as similar 

to the fast ion beam irradiation. Meguro et al have demonstrated that the single impact of 

SHCIs converts sp2 to sp3 hybridization in HOPG on the nanoscale with subsequent 

processes such as electron injection and laser irradiation [125]. 

In their experiment, atomically flat terraces of HOPG were irradiated with slow Arq+ 

(q=1-8) ions with 400 eV of kinetic energy directed onto the HOPG surfaces. After the 

irradiation, the samples were treated by electron injection and He-Cd laser irradiation in 

order to complete the transformation from sp2 to sp3. While electron injection had to be 

carried out on each SHCI impact area one after the other by means of a scanning and 

tunneling microscope (STM), the He-Cd laser irradiation was able to collectively convert 

the entire impact region on the HOPG surface. However, no difference in the two post-

treatment methods was observed [125]. 
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Figure 3.19 Images (a), (b) and (c) are STM images of the Ar8+ impact region. (a) As irradiated 

(metallic). (b) After electron injection (non-conductive) and (c), after the subsequent hydrogen 

treatment (non-conductive). Right side curves are I-V characteristics inside and outside of the 

Ar8+ impact region measured by STS [125]. 
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Multiple electron emission and the resulting hole accumulation play an important role in 

the transformation from metallic to non-conductive regions as seen in I-V curves shown 

in figure 3.19. During the neutralization process via diffusion of electrons, the 

reconstruction of bonds occurs and the nanoscale sp3 regions are created because they 

are the energetically most preferred phase on the nanoscale. Diamond has been reported 

to be more stable than graphite at the nanoscale (~ 3 nm diameter), even under ambient 

pressure [126]. 

Another possibility recently proposed is that the depletion of electron drives a lowering 

of the potential barrier of the transformation; e.g. when depleting ~0.1 electrons/atom, 

the barrier for the transformation from graphite to diamond is expected to disappear, 

which is normally 0.29 eV in neutral conditions [127].  

Both models are based on the formation of multiple holes which is caused by the large 

potential energy characteristic of SHCIs. However, in either model, no post process such 

as electron injection is necessary, while the actual transformation cannot be completed 

without electron injection or He-Cd laser irradiation [16]. 
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3.3 The Nitrogen Vacancy Center in diamond 

 

 

                

Figure 3.20 Diagram showing the nitrogen-vacancy complex in diamond (left) and the 

corresponding energy level schematics (right) [128].   

Natural (and synthetic) diamond usually contains nitrogen impurities. One such impurity 

that is commonly encountered in photoluminescence studies of diamond is the N-V 

luminant centre. The N-V center (in diamond) consists of a substitutional nitrogen atom 

sitting next to a vacant site in the diamond lattice (see figure 3.20).  
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The empirical introduction of N-V centers in the diamond matrix can be achieved with 

high accuracy and precision using specialized equipment such as the EBIT shown in 

figures 4.1, 4.2 and 4.3. Although this method can pattern N-V centers with high spatial 

accuracy and precision, subsequent annealing is usually necessary to provide the 

necessary energy so that vacancies in diamond can be mobile and thereby increase the 

probability of creating N-V sites.   

The ground state of the N-V center is a spin triplet (3A) and shows a zero field splitting 

between the  and  spin sublevels where  is the quantum number 

of the spin sublevel, quantized along the symmetry axis of the N-V center, along the 

 crystal axis [130]. The N-V state can be detected through photon antibunching 

measurements and ESR measurements that reveal a zero field splitting around 2.88 GHz 

corresponding to the ground state splitting (figure 3.21 c) [29]. 

The N-V-1 shows an allowed optical transition with the zero phonon line (ZPL) at 638 

nm which is very stable (see figure 3.21a). The average photon emission rate is 

substantially small for emissions involving   levels than for the  

level. This allows readout of the spin state by the photoluminescence intensity, . 

Thus, tuning radio frequency (RF) waves to precise excitation frequencies can alter the 

N-V centers between states 0 and 1 passing through transitional states that are quantum 

superpositions of the 0 and 1 states [29]. 
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Figure 3.21 (A) PL data for N-V centers in diamond under 488 nm laser excitation. (B), (C) 

photon correlation and ESR measurements, respectively, showing the zero field splitting of the 

ground state of the N-V center [128]. 
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Therefore, there exist several experimental “knobs” that can be used to study and 

manipulate the spin state of the N-V center, these include: magnitude and angle of the 

applied magnetic field, the power and duration of the optical excitation and the radio 

frequency (RF) magnetic fields for coherently rotating the electron and nuclear spin 

[130].  

Spin-spin and spin-lattice relaxation times are strongly affected by the coupling of the 

spin being probed due to its environment. Due to the weak spin-orbit coupling in 

diamond, the single spin of an N-V center is only weakly coupled to its environment 

(diamond lattice). Spin coherence times of ~µm have been measured for the N-V center 

in a high purity single crystal diamond at room temperature [29].  

However, in order to create N-V luminant centers that useful for practical information 

processing, other impurities that are commonly found in diamond have to be kept at a 

minimal level to reduce the effect of the environment (quantum noise). These properties 

of the N-V center meet several requirements for practical quantum computing. Hence, 

the N-V center in diamond has emerged as a possible solution in the continuing search 

for advanced materials that are necessary to carry out room temperature quantum 

computing. 

Quantum error correction serves to protect quantum information from errors due to 

decoherence and other quantum noise. Quantum error correction is essential if one is to 

achieve fault-tolerant quantum computation that can deal not only with noise on stored 

quantum information, but also with faulty quantum gates, faulty quantum preparation 

and faulty measurements.                   
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3.4 Introduction to Quantum Computing 
 

In the early 1980s, the idea of the quantum computer was introduced by Benioff [131] 

and Feynman [132]. They showed that bits represented by quantum mechanical states 

can evolve under action of quantum mechanical operators to provide reversible 

computation. In 1994, an explosion of interest in quantum computation was caused by 

Shor‟s discovery of the first quantum algorithm which can provide fast factorization of 

integers [133]. In 1998, Kane proposed the first silicon solid state quantum computer 

[134].    

A quantum computer is intended not for accelerating digital computation using quantum 

effects, but to utilize new quantum algorithms which were not possible in a digital 

computer. In a quantum computer, information is loaded as a “string” of quantum bits – 

“qubits”. A qubit is a quantum object, e.g. an atom (an ion) which can occupy different 

quantum states [135]. 

The main advantage of quantum computing is not only the density of qubits but rather 

that quantum physics allows one to operate with a superposition of states. For one atom, 

one can produce an infinite number of superpositional states using two basic quantum 

states, which correspond to “0” and “1” [135].   

Utilization of superpositional states allows one to work with quantum states which 

simultaneously represent many different numbers. This phenomenon is known as 

“quantum parallelism”. Major limitations with classical computers are associated with 

their inability to solve intractable problems, these are problems which do not have an 
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efficient algorithm [135], e.g. it can thousands of years for powerful digital computer to 

factories a 200 digit number.  

The first two-qubit quantum logic gate was demonstrated experimentally by Monroe et 

al. in 1995 [136]. They used the Cirac-Zoller scheme for a single B+ ion in an ion trap. 

The interaction with the environment quickly destroys superpositional states. This 

phenomenon of losing quantum coherence is termed “decoherence”. Therefore 

quantum computing must be done in time scale less than the time of decoherence. The 

characteristic time scale of decoherence depends not only on temperature but also on the 

system under consideration.  

In quantum information theory, the 0 and 1 states used in classical computers are 

replaced by orthonormal basis vectors  and   of a qubit in the form

, where . It is estimated that a quantum computer superior to a 

digital computer today requires at least 102 ~ 103 qubits [137].       

Successful implementation of a “practical” quantum computer has some basic 

requirements. These are requirements are summarized by the DiVincenzo criteria [137] 

and are listed below: 

 A scalable physical system with well characterized qubits.  

A quantum register made of many qubits is required for information storage. The 

simplest way is to use a two level quantum system, e.g. an electron, a spin ½ 

nucleus and two polarization states of a single photon may be a qubit. The 
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system should be scalable up a large number of qubits. The condition of two 

states may be relaxed to three states (qutrit) or more generally, d states (qudit). 

 Long decoherence times, much longer than the gate operation time. 

Decoherence means many aspects of quantum state degradation due to 

interaction of the system with the environment and sets the time available for 

quantum information. Roughly speaking, this is the time required for a pure state 

 (2.10) 

to “decay” into a mixed state of the form 

 (2.11) 

 In fact, decoherence time itself is not very important, what matters is the ratio 

“decoherence time/gate operation time”. For a typical gate operation time ~ ps, 

the system may execute 106 gate operations before the quantum state decays.  

 Initial state preparation  

It should be possible to set qubits to the zero state before each new calculation. 

 Gate Implementation 

The states of the individual qubits need to be manipulated with reasonable 

accuracy and interactions between the qubits need to be induced in a controlled 

manner to enable quantum gate implementation. The gate implementation time 

must shorter than the time for decoherence.  

 Readout 

It must be possible to read out the final states of the qubits once the 

computation is completed.  
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The prospect of using the N-V center for achieving room temperature quantum 

computing has constituted the major motivation for the present investigation. The ability 

to possibly synthesize nanodiamonds in a controlled manner in the form of qubit arrays 

by using single ion implantation techniques at the Electron Beam Ion Trap (EBIT) 

facility (described in the next section), could allow one the unique opportunity to 

produce nanoarrays of N-V centers localized in nanodiamond matrices which can 

ultimately be scaled up to produce a functional solid state quantum computer.   
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Chapter 4  

4. Experimental Procedures 

 

4.1 Electron Beam Ion Trap (EBIT) 
 

An electron beam ion trap (EBIT) is a device that can make and trap very highly charged 

ions by means of a high current density electron beam. The ions can either be studied in 

the trap itself or be extracted from the trap for external experiments.  

The EBIT was first developed at the Lawrence Livermore National Laboratory by Mort 

Levine and Ross Marrs. A high energy modification to the original EBIT has also been 

developed and is called super-EBIT. Super-EBIT is capable of producing bare uranium, 

, which had never been accomplished before without the use of high-energy particle 

accelerators [138].  

The advantage to EBIT creating such high energy ions is that the ions are practically at 

rest, something that cannot be accomplished by accelerators which accelerate the ions to 

very high energies. EBIT consists of a high current density electron beam which can be 

up to 5000 A/cm2, which is passed through a series of three drift tubes (see figure 4.1).  
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The drift tubes are basically a set of three cylindrical copper tubes. The beam is guided, 

accelerated and focused by magnetic fields and high voltage electrodes. The electron 

beam energy in the trap is determined by the positive voltage bias applied to the central 

drift tube. The electron beam is magnetically compressed from a diameter of 1 mm to 

less than 100 μm by a high magnetic field from a pair of superconducting Helmholtz 

coils [138].  

Ions are trapped radially by the space charge of the electron beam itself and axially by 

voltages applied to the drift tubes (see figure 4.1).The magnetic field also helps with the 

confinement.  

 

 

Figure 4.1 The drift tubes of EBIT focusing the electron beam [138]. 
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The electrons will collide with the ions in the beam and will therefore strip off the ion‟s 

electrons until the energy required to remove the next electron is higher than the beam 

energy. The original EBIT can have a beam energy of 30 keV which can create a 

uranium atom with only 10 of the usual 92 electrons.       

      

Figure 4.2 Diagrams showing the electron beam ion trap at the NIST EBIT, the main region is 

~1m in length [139]. 
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The electron beam is the primary component of the EBIT and performs three functions: 

it creates the highly charged ions by removing electrons via electron impact ionization; it 

traps the ions by providing a potential in the radial direction and it excites transitions in 

the ions where radiation is released which allows them to be studied spectroscopically.  

Figure 4.3 shows the target chamber where samples are mounted. It is in this part of the 

setup where the projectile SHCIs can be biased to a given kinetic energy. This kinetic 

energy is a function of the charge state of the SHCIs. This is because the kinetic energy 

impinging on the surface of the target is given by  

 (4.1) 

 

      

Figure 4.3 Diagram showing the target chamber at Berkeley EBIT. 
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A closer view of the target chamber at Berkeley EBIT is shown below in figure 4.4. 

 

               

Figure 4.4 A closer view of the target chamber shown in figure 4.3. 

 

There is a wide range of applications for local modification [140] of surfaces with 

scanning probes e.g. deposition of metal lines through nanostencils [141] and also the 

precise alignment of single ions on a large array to achieve a quantum computer with 

several qubits. The target chamber shown above in figure 4.4 has been recently 

combined with a scanning probe (atomic force microscope, AFM) alignment system to 

achieve such diverse functionality [142].  

In this setup, the alignment is achieved by incorporating a scanning probe into the 

beamline which is used for ion implantation. The tip of the scanning probe also 
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functions as a beam spot defining aperture by including a small hole through which the 

ions will be implanted into the target material. Holes in scanning probe cantilevers as 

small as 5nm have been achieved by focused ion beam (FIB) drilling followed by local 

ion beam assisted thin film deposition of Pt or SiO2 to reduce the hole radius to the 

desired radius (figure 4.5) [142, 143].   

 

             

Figure 4.5 FIB processed tip. Three holes of different sizes ranging from 1 µm to 100 nm have 

been drilled on the cantilever. The left insert shows the whole cantilever with the Wheatstone 

bride at the bottom. The right insert shows a larger view of the upper 100nm hole [142]. 
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During scans, the AFM cantilever is held in a fixed position and the stage is moved to 

acquire the scan image (see figure 4.7). For coarse motion and alignment, the cantilever 

itself is mounted on a flexure stage and can be positioned freely over the region of 

interest. The flexure stage is also used to achieve the coarse approach of the tip to the 

surface [142]. 

A piezoresistive readout scheme is used to sense the deflection of the cantilevers when 

imaging the target surface. The cantilevers have a Wheatstone bridge built in [144, 145] 

and a vacuum preamplifier (X10) integrated close to the cantilever. A second 

amplification stage (X10 – X5000) outside the vacuum is used in combination with a low 

pass filter before the signal is fed into the control hardware for the feedback loop [see 

figure 4.6].   

The technique of scanning probe microscope (SPM) tips using a nanoaperture has the 

advantage of being able to collimate nearly all ion species, this collimation can even take 

place at a kinetic energy of 1 keV or below. Assembling of nanoclusters or molecules is 

thus a possibility [146].   

By incorporating a single ion detection system into the apparatus, the number of 

implanted ions can be controlled exactly. At the Berkeley EBIT, this functionality is 

achievable by detection of secondary electrons from the surface or electron/hole pairs 

created in the target material. The use of SHCIs leads to several orders of magnitude 

higher signal and therefore makes the detection of every single ion easier [147, 148].     
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Figure 4.6 Cantilever with integrated piezoresistive Wheatstone bridge, bimorph actuator and 

AFM tip [146]. 

                              

Figure 4.7 Simplified diagram showing the surface patterning system at Berkeley EBIT. Note, 

the cantilever can be positioned anywhere relative to makers on the sample and revisit any spatial 

location in a predetermined manner [142]. 



81 
 

4.2 SHCI Implantation Details 

 

Slow Highly charged Antimony ions were extracted from the EBIT and reached the 

target chamber after momentum analysis in a 90o bending magnet. The vacuum pressure 

inside the target chamber was 10-7-10-8 torr. The ion kinetic energies (see equation 4.1) 

were set by the EBIT extraction potential of 5 keV and these are: 40 keV, 90 keV and 

110 keV for Sb8+, Sb18+ and Sb22+ respectively.    

The HOPG sample that is used in this work was cleaved with an adhesive tape to expose 

atomically flat terraces necessary for subsequent AFM/STM analysis. The sample was 

then implanted with Sb at different spatial coordinates with varying charge states: Sb8+, 

Sb18+ and Sb22+ as shown below in figure 4.8. The irradiation dose was approximately 100 

ions/µm2, and was kept constant at for all implants. The ions impinged on the HOPG 

surface under normal incidence. The ion currents were 33 pA, 54 pA and 2.8 pA with 

corresponding exposure times of 90 s, 60 s and 20 min. respectively. 

                                    

Figure 4.8 Implantation scheme adopted at EBIT (Berkeley) on HOPG (A). One quadrant was 

left unexposed for reference. The actual HOPG sample is shown in B, the HOPG was kept 

closed in the holder when not in use to avoid surface accumulation of water vapour from the air. 
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4.3 Monte Carlo Simulations (MC) 

 

SHCIs projected onto surfaces are associated with a given kinetic energy. This kinetic 

energy is characterized by the lower limit of the SHCIs set by the Coulomb force and 

also the extraction potential (see equation 4.1). The neutralisation of SHCIs is a function 

its kinetic energy loss and potential energy loss. The stopping of singly charged ions in 

matter has been extensively studied by several authors [40, 43, 46, 47].    

Monte Carlo simulations which follow the ion into the target, making detailed 

calculations of the energy transferred to every target atom collision have been designed. 

The SRIM/TRIM software package [149] is an example of such a design. SRIM/TRIM 

is commonly used in implantation studies to predict the range of singly charged ions in 

matter. 

Using TRIM, one can compute both the final 3D distribution of the ions and also all 

kinetic phenomena associated with the ion‟s energy loss: target damage, sputtering 

ionisation, and phonon production [149]. A more comprehensive estimation of the range 

of SHCIs in matter would have to consider the large potential energy commonly 

associated with SHCIs. As discussed in chapter 2, several authors have designed models 

that predict the interaction and range of SHCIs in matter; however, this is still a subject 

of ongoing investigation.   

The MC results for the implantation scheme used in this work are shown below where 

the calculated ranges are purely due to kinetic effects. Plots are shown for an example of 

the implantation of the highest charge state of Antimony (q = 22+) with a 
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corresponding kinetic energy of 110 keV. Similar calculations for other charge states 

have been computed and the output parameters are shown in table 4.1. 

 

             

Figure 4.9 Monte Carlo simulations of the ranges of Sb (110 keV) ions in HOPG. 
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Figure 4.10 Monte Carlo Simulations of the lateral distribution of Sb (110 keV) ions in HOPG. 

                                

Figure 4.11 Monte Carlo simulations of the trajectories of Sb (110 keV) ions in HOPG. 
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Figure 4.12 Transverse view of the Sb (110 keV) ion trajectories using Monte Carlo simulations. 

 

Figures 4.9 to 4.12 are examples of results of the implantation of Sb (110 keV) ions into 

HOPG using Monte Carlo simulations. Table 4.1 below shows the results for all charges 

studied including Bismuth (q = 35). The extraction voltage for all ion species is 5 kV. 

The parameters shown in table 4.1 namely the straggle, vacancies per ion and the range 

offer important information regarding the implantation. In this simulation, the vacancies 

created during the interaction are due to radiation damage resulting from kinetic effects. 
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This damage occurs by means of dislocations of atoms from initial positions in the ideal 

lattice structure.   

The data for the vacancies created is presented in vacancies per ion therefore; the total 

vacancies created due to kinetic effects from each implantation are a factor of 100 larger 

than the displayed values. The straggle of the ions in matter represents a characterization 

of the 3D spreading of an ion beam in matter. Whereas an approximately linear variation 

of range and the damage is observed as a function of charge, no obvious correlation can 

be assumed for the straggle of ions with respect to charge state as seen in table 4.1.           

 

Table 4.1 Implantation results for all investigated ion species using MC simulations.  

 
Parameter 

 
 

 

 

                       

Charge state (q) 35 22 18 8 

Kinetic energy (keV) 175 110 90 40 

Range (Ǻ) 559 516 460 274 

Vacancies/ion 1411 1021 870 447 

Straggle (Ǻ) 70 84 89 47 
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4.4 Scanning Probe Microscopies (SPM) 
 

Scanning probe microscopies (SPM) refer to fine scale (nm-μm range) imaging and 

surface characterisation techniques which operate primarily by scanning a sharp tip (~ 3-

50 nm radius of curvature) over a solid or liquid phase surface. Some SPM techniques 

include: Atomic Force microscopy (AFM), Magnetic Force Microscopy (MFM), 

Scanning and Tunnelling Microscopy (STM) and Scanning and Tunnelling Spectroscopy 

(STS), however, this work will focus on AFM and STM/STS techniques which have 

been utilized in the characterization of our HOPG sample.      

 

4.4.1 The Atomic Force Microscope (AFM) 

                      

Figure 4.13 The Dimension 3100 AFM/MFM apparatus on a vibration isolation table. 
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The atomic force microscope (AFM) probes the surface of the sample with a sharp tip. 

The tip, a couple of microns long and normally less than 100 Å in diameter, is located at 

the free end of a cantilever that is 100 to 200 μm long. The tip is either scanned over the 

sample or the sample is scanned over the tip. Forces between the tip and the sample 

surface cause the cantilever to bend or deflect, a detector then measures the cantilever 

deflection, this measured deflection then allows a computer to generate a map of a 

surface topography [150]. A schematic diagram of the general operation of AFM is 

shown below in figure 4.14.  

 

    

Figure 4.14 Simplified schematic operation of the Veeco CP ΙΙ AFM system [151]. 
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AFM cantilevers are designed in such a way that they can respond to forces from the 

surface. The most common force associated with typical sample-tip separations is the 

van der Waals force. The dependence of the van der Waals force on the sample-tip 

spacing is shown in figure 4.15. In the contact regime, the cantilever is held less than a 

few angstroms from the sample surface and the inter-atomic force between the 

cantilever and the sample is repulsive [152]. 

In the non-contact region, the cantilever is held on the order of tens to hundreds of 

angstroms from the sample surface, and the inter-atomic force between the cantilever 

and the sample is attractive (mainly as a result of the long-range van der Waals 

interactions). Both contact and non-contact imaging techniques can be used in surface 

analysis studies [152]. 

                  

Figure 4.15 Interatomic force vs. distance curve showing the dependence of the van der Waals 

force on the sample-tip spacing [152]. 



90 
 

Contact AFM 

In contact-AFM mode or repulsive mode, the tip makes soft physical contact with the 

sample. The tip is connected to the cantilever with a very low spring constant. This 

spring constant is lower than the effective spring constant holding the atoms of the 

sample together. The scanner traces the tip gently over the surface of the sample or the 

sample under the tip. The contact force causes the cantilever to bend to accommodate 

the topography of the sample [152].  

As the sample-tip distance decreases (see figure 4.15), the atoms in the sample and tip 

begin to weakly attract one another. This attraction increases with a decrease in 

separation distance until the atoms are so close together that their electron clouds repel 

each other electrostatically. The electrostatic repulsion will continue to weaken the 

attractive force as the separation distance decreases. The force goes to zero when the 

distance between the atoms reaches several angstroms. When the total van der Waals 

force becomes positive and hence repulsive the atoms are in contact [152].  

In the contact region of the curve the van der Waals force is very steep and the repulsive 

force balances any other force that attempts to push the atoms closer together. Thus in 

the AFM when the cantilever (see figure 4.16) pushes the tip against the sample, the 

repulsive force ensures that the cantilever bends rather than forcing the tip atoms closer 

to the sample atoms. If a very stiff cantilever is used to exert large forces on the sample, 

the inter-atomic separation between the tip and the sample atoms is unlikely to decrease; 

instead the sample surface is likely to be deformed [152].  
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Figure 4.16 The Veeco CPΙΙ AFM Probe cartridge [150]. 

 

The AFM can generate the topographic data set by operating in two different modes, 

constant height or constant-force mode. In constant height mode the spatial variation of 

the cantilever deflection can be used directly to generate the topographic data set 

because the height of the scanner is fixed as it scans. In constant force mode the 

deflection of the cantilever can be used as input to a feedback circuit that moves the 

scanner up and down in z, responding to the topography by keeping the cantilever 

deflection constant.  

The image is generated from the scanner‟s motion, and the total force applied to the 

sample is constant. In constant force mode the speed of scanning is limited by the 

response time of the feedback circuit, but the total force exerted on the sample by the tip 

is well controlled.  
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Non Contact AFM (NC-AFM) 

Non-contact AFM is one of several vibrating cantilever techniques in which a cantilever 

is vibrated near the surface of a sample. The spacing between the tip and the sample in 

non-contact use is of the order of tens to hundreds of angstroms. Non-contact AFM is 

desirable because it provides a means for measuring sample topography with very little 

or no contact between the tip and sample, thus soft (e.g. HOPG) and elastic samples can 

be studied [152].  

A further advantage is that samples like silicon wafers are not contaminated by the tip. A 

disadvantage of non-contact AFM is that it is more difficult to measure the force since it 

is so low, also because the force is so low the cantilever has to be stiffer. Figure 4.17 

shows the difference between two images taken with contact and with non-contact 

AFM.  

The non-contact AFM picks up a water droplet on the surface of the sample and 

registers it as a part of the topography. The contact AFM however does not pick the 

drop up as being part of the topography since the tip moves easier through the drop as it 

traces across the surface of the sample. This is one of the disadvantages of non-contact 

operation [152].  

If however the sample was very soft then the contact operation would drag the tip 

through different features of the topography and a distorted image of the surface would 

be obtained. It is thus important to consider the type of sample when choosing the 

mode of operation. 
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Figure 4.17 Contact and non-contact AFM images of a surface with a water droplet [152]. 
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4.4.2 The Scanning and Tunnelling Microscope (STM) 

            

           

Figure 4.18 The Veeco CP ΙΙ AFM/STM probe head [150]. 
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The apparatus for STM experiments is generally similar to setups used in AFM 

experiments. The main difference is the origin of the primary signal being measured. In 

AFM studies, the van der Waals forces constitute a large fraction of the measured signal 

whereas, in the STM experiments, the tunnelling electrons make up most of the 

measured signal.  

The STM was invented by G. Binnig, H. Rohrer and collaborators in the early 1980s 

[153]. The technique relies on tunnelling current between the probe and the sample to 

sense topography of the sample. The STM probe is an atomically sharp metal tip and is 

positioned a few atomic diameters above a conducting sample which is electrically biased 

relative to the tip [153].  

At a distance less than 1nm, a tunnelling current flows from sample to tip. In operation, 

the bias voltages typically range from 10 to 1000 mV while the tunnelling currents vary 

from 0.2 to 10 nA. The tunnelling current changes exponentially with sample-tip 

separation. When the two surfaces (tip and sample) are sufficiently close that their 

wavefunctions overlap, the resulting current is given by 

 (4.2) 

where and   are densities of the tip and sample respectively, C is a constant and 

   [154]. 

The exponential relationship between tip separation and tunnelling current makes the 

tunnelling current and excellent parameter for sensing sample-tip separation (high 

vertical resolution). A reproduction of the sample surface is produced by scanning the 
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tip over the sample surface and sensing the tunnelling current. The first STM operated in 

ultrahigh vacuum on cryogenically cooled samples today; many variations of the STM 

exist. 

STM is generally used under the following conditions [154]: 

 For samples with deeply relieved features or where feature verticality is ~ 90o. 

 Polished samples where different layers having similar topography but different 

electrical conductivities are to be imaged 

 Under conditions where contact with the sample surface is prohibited. 

The STM head utilized in this work uses a piezoelectric tube approximately 1.3 cm in 

diameter to control the 3D motion of the tip. The electrode configuration produces X 

and Y motions which are perpendicular, minimizes horizontal and vertical coupling and 

provides good sensitivity. The feedback loop (see figure 4.14) drives the Z motion 

which controls vertical motion of the Piezo tube.  

The Piezo tube, like all mechanical systems, has a resonance frequency which can cause 

the system to oscillate. The motion of the tip due to external vibrations is proportional 

to 

 
(4.3) 

where  is the vibrational frequency and  is the resonant frequency [153]. The Piezo 

tube has vertical and horizontal resonant frequencies, ~ 60 KHz and 40 KHz 

respectively for a standard STM head.  
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When a voltage, V, is applied to a sample (with the tip at ground), only states lying 

between and + eV participate in tunnelling. The sign and magnitude of the applied 

voltage determines which states contribute to the resulting topographic images. Many 

STM experiments are conducted at bias voltages between 1 and 3 V. For interpretation 

of such high bias results, it is useful to consider the predictions of the simple „planar‟ 

tunnelling model using the Wentzel-Kramers Brillouin (WKB) approximation. The 

WKB theory predicts that the tunnelling current is given by [154]: 

 
(4.4) 

where  and  are the density of states of the sample and tip respectively 

at location r and the energy E, is measured with respect to their individual Fermi levels. 

From equation 4.4, we see that for a negative sample bias, eV<0 and for a positive 

sample bias, eV>0. 

The tunnelling transmission probability  for electrons with energy E and 

applied bias voltage V is given by: 

 

(4.5) 

where z is the sample-tip spacing and  are the work functions [154]. Therefore, 

tunnelling is always largest for electrons at the Fermi level for which ever electrode is 

negatively biased. 
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Scanning and Tunnelling Spectroscopy (STS) 

The AFM/STM apparatus shown in figure 4.18 allows one to conduct tunnelling 

spectroscopy measurements. The uniqueness of STS when applied to amorphous 

diamond-like carbon and related materials is related to the fact that STS makes it 

possible to study the local electronic structure of such materials in regions smaller than 

the characteristic size of the sp2 and sp3 hybridized clusters [155].   

Depending on the conditions of measurements, the tunnelling current may be 

proportional to either the density of electron states at the sample surface or the 

corresponding convolution with the density of states (DOS) in the STM tip [155]. At 

lower bias voltages (when the applied voltage is lower than the sample & tip work 

function), structure in dI/dV vs VBias is associated with the surface (DOS) [154].  

Structure in the surface DOS can arise from critical points in the surface-projected bulk 

band structure or from true surface states which are generally associated with surface 

reconstructions. In practice, the tip DOS and the voltage-dependent tunneling 

probability are almost always unknown hence, extracting quantitative information is 

often challenging.  

In the study of metals and semiconductors, the energy range usually extends several eV 

on either side of the Fermi energy EF. Since T(eV,V) is generally a slowly varying 

function, valuable semi-quantitative electronic structure information can be obtained 

from I-V measurements [154]. 
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Feenstra et al. [156] argued that normalization of dI/dV by (I/V) reduces the data to a 

form like 

 

(4.6) 

The background term A(V) contains the influence of the electric field in the energy gap 

whereas, B(V) normalizes the transmission probability over the DOS. Assuming that 

A(V) and B(V) vary slowly with voltage, structure in (dI/dV)/(I/V) reflects the surface 

density of states, . One major advantage of this normalization procedure, is that 

is tends to reduce the distance dependence of the tunneling probability [156].  

Estimation of the electronic energy band is possible from differential current curves; 

dI/dV vs. VBias in STS measurements. Ivanov-Omskiĭ et al. [155] estimated the electronic 

energy band gap for amorphous carbon (a-C) films using STS measurements (see figure 

4.19).  

Nevertheless, there are some drawbacks inherent with the STS method. One of these 

drawbacks is that, with the feedback loop open, the STM tip is found in the state of 

unstable equilibrium [157]. Transient processes in the STM circuits at the instant the 

feedback loop is opened, electrostatic interaction between the tip and the substrate and 

other interferences may result in uncontrolled changes in the distance between the tip 

and the sample [155]. However, advances in software allow one to make corrections in 

the data hence minimizing the possibility of incurring artifacts [158].     
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Figure 4.19 Current-voltage characteristics of a-C, (top): conventional I-V curve, (middle): 

differential I-V curve and (bottom): normalized differential current curve [155]. CB and VB refer 

to the conduction and valence bands respectively.   
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4.5 Raman Spectroscopy 
 

Raman scattering refers to the inelastic scattering of phonons by fundamental excitations 

in molecules or solids. Raman spectroscopy is a standard non-destructive technique for 

the characterization of carbon-based materials. The Raman spectra of vibrational 

excitations in the various forms of carbon exhibit large differences [159,160,161,162]. 

The mechanical and optical properties depend on the sp3 content as well as on the 

number and size of clusters with short-range and medium range ordered sp2-coordinated 

carbon atoms [163].    

Raman scattering on DLC coatings is a sensitive probe of sp2 and sp3 bonding of the 

carbon atoms and of the nanocrystalline clusters. Due to the lattice disorder, the wave 

vector selection rules are relaxed and phonons from the whole Brillouin zone contribute 

to the Raman spectra. The observed broad bands reflect the phonon density of states. In 

the case of exciting the spectra with visible light, resonance effects are essential for the 

selection of the phonons which contribute to the Raman scattering process [163]. 

By excitation with phonons of visible light, the Raman spectrum is dominated by 

scattering of sp2 bonded graphitic carbon due to resonance enhancement of the Raman 

scattering cross section. Two broad bands appear at about 1550 cm-1 (“G-peak”) and at 

about 1360 cm-1 (“D-peak”). Although the visible Raman spectrum depends 

fundamentally on the ordering of the sp2 bonded carbon and only indirectly on the sp3 

content, it can be used in a restricted range of conditions to derive information about the 

sp2/sp3 ratio [163]. 
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In the Raman effect, a photon is scattered inelastically by a crystal, with creation or 

annihilation of a photon or magnon (see figure 4.20). The process is identical to the 

inelastic scattering of x-rays. The selection rules for the first-order Raman Effect are: 

 (4.7) 

where , k refer to the incident photon; , k‟ refer to the scattered photon and  K 

refer to the photon created or destroyed in the scattering event. In the second-order 

Raman Effect, two photons are involved in the inelastic scattering of the photon. The 

Raman Effect is made possible by the strain-dependence of the electronic polarisability 

[164]. 

 

                       

 

Figure 4.20 Raman scattering of a photon with emission or absorption of a phonon. The 

process is called Brillouin scattering when an acoustic phonon is involved and polariton 

scattering when an optical phonon is involved. Similar processes occur with magnons [164]. 

  

 

Stokes 
Anti-Stokes 
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The polarization of the dipoles excited in solids when a laser beam (amplitude; E0 

frequency νlas) interacts with phonons of frequency νvib depends on the polarisability 

tensor : 

 (4.8) 

where  terms can be individually described as functions of the normal vibrational 

coordinates Q using a Taylor approximation [165]: 

 
(4.9) 

  

                                   

 

(4.10 

 

With the scattered electric field being proportional to , equation 4.10 predicts both 

quasi-elastic  and inelastic   light scattering. The former is 

known as Rayleigh scattering and the latter, which occurs only if vibrations change 

polarisability  is known as Raman scattering [165]. 

The classical theory of radiation from an oscillating dipole demonstrates that the Raman 

peaks have a Lorentzian shape [165]: 
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(4.11) 

where  represents the dispersion branch to which the mode belongs to and  

represents the half-width for the ordered reference structure and the integral is taken                                 

over the Brillouin zone. The scattering of one phonon by n phonons (wave 

vectors, is governed by the momentum conservation rule [165]: 

 
(4.12) 

The Raman spectroscopy setup that has been used to characterise our HOPG sample at 

the University of the Witwatersrand is shown below in figures 4.21 and 4.22. 

 

                 

Figure 4.21 Raman spectroscopy/PL setup at the University of the Witwatersrand. 
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Figure 4.22 Diagram showing the light path for the Raman setup shown in figure 4.21. 

 

Raman spectra acquired in this work are acquired using a Jobin-Yvon T64000 Raman 

spectrometer operated in single spectrograph mode, with either a 600 lines/mm grating 

(longer range, lower spatial resolution) or a 1800 lines/mm grating (higher spatial 

resolution, smaller range), depending on the spectral range of interest. Backscattered 

light was collected via an Olympus BX40 microscope attachment, using either an Ultra 

long working distance 50X objective or a 100X objective. The backscattered light was 

dispersed via the mentioned gratings onto a liquid nitrogen cooled CCD detector and 
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data collected via Labspec.4.18 software. Two dimensional mapping was done via a 

motorised X-Y Marzhauser stage controlled via the Labspec software. The 514 nm line 

of an argon laser was used as the excitation source in all cases. It is important to note the 

following details: 

 Excitation wavelength: λ = 514 nm; Beam spot diameter: ≈1 µm.  

 Numerical Aperture, NA ≈ 0.5. 

 Lateral resolution: R = 0.61 x λ/NA = 0.63 µm. The best possible resolution in 

is R = 0.314 µm (The Abbe‟ criterion states that the wave nature of light 

prevents the distinction of points closer than λ/2, [166]). 

With these conditions it should be unlikely to detect structures less than 100 nm in 

diameter in our Raman setup. Figure 4.23 shows the spatial points that were investigated 

using Raman spectroscopy. Raman maps were conducted on the sites indicated below.    

                 

Figure 4.23 Diagram showing the areas on the HOPG sample that were studied using Raman 

spectroscopy. 
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4.6 Photoluminescence (PL) 

 

PL refers to the spontaneous emission of light (visible electromagnetic radiation) from a 

material following optical excitation. The excitation energy and intensity are chosen to 

probe different regions and excitation concentrations in the sample. Although PL 

techniques are commonly used to characterize different material parameters, the 

technique provides electrical rather than mechanical characterization [167].  

The first truly scientific investigation of photoluminescence was carried out by Sir 

George Gabriel Stokes in 1852 („On the Change of Refrangibility of Light‟) [168]. PL is a 

luminescence caused by ultraviolet, visible or infrared radiation. A special form of PL is 

the anti-Stokes luminescence where an emission at wavelengths shorter than the shortest 

wavelength of the excited radiation occurs [169].   

In particular, luminescence stimulated by non-ionizing optical radiation is called 

photoluminescence and includes fluorescence as well as phosphorescence depending on 

whether the radiative transition is a spin-allowed transition between two states with equal 

multiplicity (singlet-singlet and sometimes, triplet-triplet) or a spin forbidden transition 

between two states with different multiplicities (triplet-singlet) [169].       

Features observed in the characteristic spectrum can be used to identify surface, interface 

impurity levels and to gauge disorder and interface roughness. PL is a contactless, non 

destructive characterization technique and has proven to be an important tool in surface 

characterization however; the fundamental limitation of PL analysis is its dependence on 

radiative events [167].   
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Figure 4.24 shows the principal pathways by which transitions occur (Birks, 1970) [170]. 

In most cases, molecules are raised from the ground state (S0) to an excited state (Sn) by 

absorption. The favoured path for de-excitation is one which minimizes the lifetime of 

the excited state. Almost all molecules drop quickly to the lowest levels (S1 or T1) by non-

radiative processes, so that the most commonly observed radiative transitions are S1 → 

S0 fluorescence and T1 → S0 phosphorescence [169].  

In general, fluorescence lifetimes (0.1-10 ns) are much shorter than phosphorescence 

lifetimes (1 ms to 10 s). Fluorescence has thus also been defined as photoluminescence 

which occurs promptly after excitation while phosphorescence is discernibly delayed 

[169]. 

PL measurements were conducted on the unirradiated and the Sb22+ impact sites on 

HOPG. The apparatus is very similar that to used for the Raman spectroscopy 

measurements. However, two different objective lenses were used, namely the 50X and 

100X objectives. The main reason for using the 2 objective lenses is that the 100X 

objective has higher light collection efficiency. Therefore, small peaks might appear 

stronger than usual whereas, the 50X has a higher resolution and can thus resolve a large 

range of PL peaks. 

The setup utilizes a 514 nm excitation laser as in the Raman setup; however, diamond 

was a relatively large band gap and usually requires ultraviolet excitation. 

.     
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Figure 4.24 Schematic energy level diagram showing the pathways by which PL transitions 

occur. Principal radiative (→) and nonradiative (→) transitions causing photoluminescence. S0, 

S1 .. singlet levels; T1, T2, .. triplet levels. A represents absorption (10-18-10-15 s). IC: internal 

conversion (~10-12 s). IS: internal crossing (~10-9 s) F: fluorescence (10-9-10-8 s). P: 

phosphorescence (10-3-10 s) [169]. 
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4.7 Annealing Apparatus 
 

Meguro et al. injected electrons from an STM tip (alternatively localised He-Cd laser 

irradiation can be used) onto SHCI induced surface defects to catalyse the conversion of 

sp2 to sp3 bonding in graphite [16]. In this work, the catalysis of sp2 to sp3 bonds is 

achieved by annealing the sample at ~ 650oC in a hydrogen atmosphere for 40 minutes. 

This transformation is possible because hydrogen radicals etch away any graphite 

reconstructions on the surface facilitating only diamond growth [90]. 

The annealing stage of this project has been carried out at the University of the 

Witwatersrand. The setup utilised is fairly simple and is shown in figure 4.25 below. In 

conventional annealing systems, impurities are sometimes present from previous 

annealing experiments. To reduce the probability of introducing impurities into the 

induced defects, we first raised the temperature of the system to ~ 800oC then flushed 

the ceramic tube with Argon gas for 10 minutes.     

After 10 minutes we then lowered the temperature to ~ 650oC, inserted the sample into 

the ceramic tube, flushed Argon for about 10 minutes and then introduced Hydrogen 

gas into the ceramic tube. One of the important safety precautions to take into account 

is to make sure that hydrogen gas is released from the ceramic tube in a reasonably short 

time. This is because hydrogen explodes when compressed under high temperatures. 

The release of hydrogen (and argon) is achieved by creating an exhaust at the end of the 

ceramic tube (see figure 4.25).   
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Figure 4.25 Simplified diagram showing the annealing setup at the University of the 

Witwatersrand. Note: The ceramic tube is connected to a thermocouple to enable temperature 

control of the system. 
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Chapter 5   

5. Results and Discussion 

 

5.1 Overview  
 

In this section, findings from experimental investigations will be presented and analysed. 

These include AFM (before and after annealing), Raman Spectroscopy, 

Photoluminescence (PL), STM imaging and STS analysis. Ion implantation experiments 

using Sb with varying charge states were conducted at the Electron Beam Ion Trap 

(EBIT) facility at Lawrence Berkeley National Laboratory in U.S.A, while Raman 

spectroscopy, PL, AFM, STM and STS experiments were conducted at the University of 

the Witwatersrand in South Africa.   

 

5.2 AFM Analysis (before annealing) 

 

The HOPG surface can undergo mechanical deformation with minimal applied stress. 

This is a direct consequence of its bonding nature described in chapter 3. For this reason 

and to preserve the impact induced defects, non-contact AFM was used to analyze the 
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nature of the defects before annealing. It is also important to note that all AFM analysis 

was conducted at room temperature and ambient pressure.  

In order to assess the nanostructuring of the HOPG surface and to characterize the 

sample before surface treatment, the SHCI implanted regions were analyzed using the 

AFM apparatus described in section 4.4.1. Results from NC-AFM analysis are shown 

below.     

 

   

Figure 5.1 Example of NC-AFM image taken over the Sb22+ impact site on HOPG showing line 

profile directions x and y. 
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Figure 5.2 Line profiles across Sb22+ induced nanodefect on HOPG along directions x and y 

shown in figure 5.1. 

 

Figure 5.1 and 5.3 shows examples of NC-AFM images of SHCI impact induced 

nanodefects on HOPG before annealing. The AFM images were analyzed with respect 

to number densities, height and width distributions of the nanodefects. A summary of 

results acquired using NC-AFM on the nanodefects before annealing is shown in table 

5.1. It is important to note that due to the finite radius of curvature of the AFM tip, 

there exists a systematic error in the diameters measured but not in the measured hillock 

heights [79].  

In figure 5.1, the imaged region was irradiated with Sb22+ according to figure 4.23. There 

are ~10 visible defects in the imaged region. The given scan size is 462 X 462 nm, 
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therefore we expect to find ~ 21 impact induced defects assuming that the efficiency of 

defect formation is 100% and the beam distribution is Gaussian.  

The actual ion distribution in the beam is Gaussian; however, the efficiency of defect 

formation is not 100%. Also, there is great difficulty in determining the ion fluence in 

such cases of extremely low current. Therefore given all these uncertainties, the observed 

number of defects is within reasonable expectations.      

 

  

Figure 5.3 NC-AFM image taken over the Sb18+ impact site on HOPG showing line profile 

directions x and y. 
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Figure 5.4 Line profile taken across a chosen Sb18+ induced nanodefect on HOPG along 

directions shown in figure 5.3. 

 

All the observed SHCI induced nanodefects appear to have a crater at the center of a 

protrusion or hillock-like feature. Figures 5.1 and 5.3 show examples of such defects 

whereas, figures 5.2 and 5.4 show line profiles taken across the induced nanodefects 

along directions x and y defined in figures 5.1 and 5.3 respectively. The diameter and the 

height of the hillock-like features are quantified using statistical averages and the results 

are shown in table 5.1 and figures 5.5 and 5.6.  

In figure 5.3, the Sb18+ induced nanodefects are presented. The scan size of the imaged 

region is 350 X 350 nm. Therefore, assuming an implantation dose of ~100 ions/µm2 

where the ions in the beam follow a Gaussian distribution and the nanodefect formation 

efficiency is 100%, we expect to find ~12 impact induced defects. However, this not the 
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case because the efficiency of nanodefect formation is not 100% even though the ion 

distribution in the beam is Gaussian.  Figure 5.4 shows line profiles taken across Sb18+ 

induced nanodefects along the directions x and y as shown in figure 5.3. Both the x and 

y line profiles have similar features to the Sb22+ induced nanodefects that is both have a 

crater in the middle of hillock-like feature, however, the diameter and hillock size appear 

to be slightly smaller than in the Sb22+ case.  

Table 5.1 and figures 5.5 and 5.6 show summarized NC-AFM results of observed 

nanodefects before annealing. The average diameter (and height) of Bi35+ impact induced 

nanodefects has been included in the data for comparison. The errors shown are 

calculated by means of a standard deviation σ and a standard error in the mean, StErr 

(since the data is normally distributed) given by:    

 

(5.1) 

  

 
(5.2) 

where N is the number of elements in the given sample space.   

Table 5.1 shows a direct proportionality between the hillock height and the nanodefect 

diameter with respect to the charge state (hence kinetic energy and potential energy) of 

the incident ion. The direct proportionality of the nanodefect diameter with respect to 

charge state has been previously observed by several authors [182, 79, 35]. Figure 5.5 and 

5.6 illustrate results shown table 5.1. 
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Table 5.1 Summary of results from observed nanodefects  before annealing.        

Property  Units Sb8+ Sb18+ Sb22+ Bi35+ 

Defect diameter   nm 7.94±0.950 10.48±0.613 11.90±0.890 14.7±0.590 

Hillock height  Å 1.90±0.382 7.72±0.418 8.60±0.392 9.72±0.916 

Kinetic energy  keV 40 90 110 175 

                     

               

Figure 5.5 Charge state versus defect diameter of induced nanodefects before annealing. 
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Figure 5.6 Charge state versus hillock height of induced nanodefects before annealing. 

 

The above findings show that for all investigated charged states in this work, SHCI 

induced nanoscale defects have been formed. The nanodefects (before annealing) have 

diameters which vary between 7-15 nm while the hillock heights vary between 1 and 10 

Å. Therefore, the diameter to height ratio varies between 15 and 70. The formation of 

nanodefects by SHCI irradiation is found be directly proportional to the charge state of 

the incident SHCIs. 

El-Said et al. found that for every target material, there exists a minimum potential energy 

(hence charge state) that any incident ion must have in order to form surface 

nanodefects [79]. However, as seen in figures 5.5 and 5.6, the potential energy threshold 

for SHCI induced nanodefect formation in HOPG occurs at lower incident charge states 
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than those utilized in this work. The interaction of the incident SHCI with the target 

surface, involves a series of complex processes which occur on different time and energy 

scales (see chapter 2). When a SHCI approaches the surface, neutralization starts by 

electron transfer from the target into highly excited states of the projectile. Deexcitation 

of the projectile proceeds via Auger-type processes producing primarily low energy 

electrons [79]. 

An increasing amount of potential energy (e.g. for highly charged heavy ions) is 

dissipated by X-ray emission. The critical distance Rc from the surface for electron 

transfer to the SHCI can be estimated as:  

 
(5.3) 

where i is the amount of charge left behind (for the first electron capture i=1), W and ε 

are the work function and the dielectric constant of the material, respectively [79]. 

Therefore, for Sb8+ and Sb22+ impinging on HOPG, the critical distance for electron 

transfer is approximately 1.2 nm and 2.0 nm respectively. 

The upper limit for the interaction time between the Sb SHCIs and the HOPG surface is 

therefore set by the critical distances 1.2 nm and 2.0 nm corresponding to Sb8+ and Sb22+ 

respectively. The interaction time for charge states studied in this work is ~ fs. Within 

this time scale multiple electron emission together with other surface processes described 

in chapter 2 of this work ultimately result in a localized deformation of surface and near 

surface regions which can be imaged using techniques such as AFM as in figures 5.1 and 

5.3.  
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5.3 AFM Analysis (After annealing) 

 

After annealing the HOPG sample at ~650o in a hydrogen atmosphere for ~40 minutes, 

NC-AFM images of the surface were acquired at room temperature and ambient 

pressure using the apparatus described in section 4.4. Results from the NC-AFM analysis 

after annealing are shown below. Only Sb18+ induced nanodefects are shown below for 

brevity, however, statistical results from all impact sites are shown in table 5.2 and 

plotted in figure 5.9 and 5.10.      

               

Figure 5.7 NCAFM topography image of a Sb18+ impact site on HOPG after annealing. 
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Figure 5.8 3D image of figure 5.7 (top) and line profiles showing the topography of Sb18+ 

induced nanodefects (bottom) after annealing. Note the x-y scale is identical to that in figure 5.7. 
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Table 5.2 Summary of results from observed nanodefects after annealing. 

Property  Units Sb8+ Sb18+ Sb22+ 

Defect diameter   nm 6.372±0.312 8.66±0.290 9.15±0.498 

Hillock height  Å 1.821±0.121 2.01±0.143 2.473±0.182 

Kinetic energy  keV 40 90 110 

 

. 

Figure 5.9 Comparison of the (average) defect diameters induced on HOPG before and after 

annealing as a function of the charge state of the incident Sb ions. 
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Figure 5.10 Comparison of (average) hillock heights induced on HOPG before and after 

annealing as a function of the charge state of the incident Sb ions.   

 

Table 5.2, figure 5.9 and figure 5.10 show a summary of results from observed 

nanodefects after annealing. The results show a direct proportionality between the defect 

diameter and the defect height with the charge state of the incident ions. Both the defect 

diameter and the hillock height seem to be reduced following annealing as seen in figure 

5.9 and figure 5.10. This effect is observed in all impact sites for charge states 

investigated in this work. The observed reduction in defect diameter and hillock height 

after annealing is attributed to surface reconstruction facilitated by high temperature and 
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a hydrogen atmosphere. Error analysis of the data after annealing followed a similar 

procedure as before annealing using equations 5.1 and 5.2.    

 

5.4 Raman Spectroscopy 

 

Raman spectroscopy, in particular micro Raman spectroscopy, has been used widely in 

studies of carbon based nanomaterials. Meguro et al. [16] studied ion impact induced 

diamond-like nanostructures using Raman spectroscopy and observed a signal 

corresponding to the Raman shift for diamond.  

The present Raman study was conducted on the HOPG sample as detailed in section 4.5 

to assess firstly the radiation damage on the region irradiated with highest charge state of 

Sb, i.e. Sb22+ and secondly, the possible creation of nanodiamonds/DLC following 

annealing in a hydrogen atmosphere.  

Results from Bi35+ implantation on a similar HOPG sample are also presented in this 

work. The HOPG sample was irradiated under normal incidence with Bi35+ ions where 

the ion fluence was ~ 100 ions/µm2 as in the Sb case. However, only SHCI implantation 

has been conducted in this sample. No post irradiation surface treatment or annealing 

has been performed on this particular HOPG sample. As a result, only pre-annealing 

results are presented for the Bi35+ implantation study.    
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Raman spectroscopy results before annealing 

            

            

Figure 5.11 Raman intensity maps (8 X 8 points) of the unannealed, unirradiated (top) and the 

unannealed, Sb22+ irradiated regions of the sample (bottom) acquired using 600 lines/mm grating 

and a 50X objective lens 
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Figure 5.12 Raman spectroscopy spectra showing unirradiated HOPG (top) and Bi35+ irradiated 

HOPG (bottom) acquired using the 1800 lines/mm grating and a 50X objective lens. 
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In general, common Raman peaks observed in graphitic materials are; the D peak, the G 

peak, the D‟ peak and the G‟ peak corresponding to 1358 cm-1, 1581 cm-1 and 1620 cm-1 

and 2700 cm-1 respectively.   

Origin of Observed Raman Peaks 

 D and D’ peaks 

The D peak and D‟ peak are both defect induced Raman features (e.g. following 

irradiation by singly or multiply charged ions). The integrated Raman intensity 

ratio,  for the D and G bands is widely used for characterizing defect 

quantity in graphitic materials [171].  

 G Peak 

The G peak is a doubly degenerate in-plane transverse optic (iTO) and 

longitudinal optic (LO) phonon mode at the Brillouin zone center that is active 

for  carbon networks [171].  

 G’ Peak 

All graphitic materials exhibit this peak in the range (2500, 2800) cm-1 

corresponding to an overtone of the D peak. It is a second order peak and is 

very sensitive to the stacking order of the graphite sheets along the c-axis 

(perpendicular to the sample surface) [171].  

In figure 5.11, Raman spectroscopy maps of the unannealed sample are displayed. In the 

figure, Raman maps were acquired over the unirradiated region and in the second figure 

over the Sb22+ irradiated region for comparison. Inspection of figure 5.11 reveals three 

prominent peaks, namely; the D peak, the G peak and the G‟ peak. The D‟ peak (1620 
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cm-1) that is usually associated with disorder in graphite is not clearly seen in the two 

maps in figure 5.11, however, asymmetry of the G peak seen in both maps is largely 

attributed to the presence of the D‟ peak.         

The two Raman maps in figure 5.11 appear to be very similar, however, only a slight 

increase in the D peak following irradiation can be seen in some regions. The low 

intensity of the D peak is attributed to low radiation damage caused by the incident Sb22+ 

ions. Also, the spatial resolution of the micro Raman facility used in this work has a limit 

of approximately 0.314 µm set by the Abbe‟ criterion as discussed in section 4.5.  

In figure 5.12, Raman intensity profiles of an unirradiated (top) and Bi35+ irradiated 

HOPG sample are shown. The G peak is seen in both profiles; however, in the second 

profile (irradiated) a broad D peak can be clearly seen around 1358 cm-1. This peak is 

attributed to radiation damage created by Bi35+ impact on the surface and near surface 

regions.  

As discussed in chapter 2 of this work, the potential energy of SHCIs is proportional to 

the charge state of the SHCIs. Now in this case, the ion fluence used is approximately 

the same as in the Sb22+ case the extraction potential remained constant at ~5 kV. 

Therefore according to equation 4.1, the corresponding kinetic energy of Bi35+ ions is 

~175 keV. Two factors are therefore responsible for the observed radiation damage 

induced by Bi35+ in HOPG, namely; the kinetic energy and the potential energy 

associated with high ionization state of the projectiles.   
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Raman spectroscopy results after annealing 

          

                   

Figure 5.13 Raman intensity map (8 X 8 points) over the unirradiated spot (top) and the Sb22+ 

irradiated spot (bottom) after annealing using a 600 lines/mm grating and a 50X objective lens. 
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Figure 5.14 Raman spectra acquired over a random spot in the unirradiated region (top) and in 

the Sb22+ irradiated region (bottom) after annealing using the 1800 lines/mm grating and 50X 

objective lens. 
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Figure 5.13 and 5.14 shows Raman spectroscopy results acquired after annealing. In 

figure 5.13 Raman maps were acquired using the 600 lines/mm grating and the 50X 

objective lens whereas in figure 5.14, Raman profiles over a random spot in the 

unirradiated and the irradiated regions were acquired using the 1800 lines/mm grating 

and the 50X objective lens. 

As in figure 5.11 and 5.12 the most prominent peaks observed are the D, G and G‟ 

peaks. In both figures 5.13 and 5.14 the radiation damage induced by the SHCIs is not 

pronounced as observed through the D peak. However, a slight increase in the D peak 

can be seen in some regions following irradiation. The low intensity of the D peak is 

attributed to low spatial resolution of the Raman equipment used, low charge state of the 

SHCIs (e.g. relative to Bi35+) hence relatively lower kinetic and potential energy and also 

temperature and hydrogen assisted surface reconstructions.        

It has been reported that the FWHM of the G band and the intensity of the D peak 

closely relates to the crystallinity of HOPG [172, 173]. Figure 5.15 shows the FWHM of 

the G peak increases as a function of the intensity ratio of the D and G peaks, (ID/IG), in 

the case of q = 1, 3, 7 and 8.  It is important to note that this result indicates that defect 

formation is directly proportional to the charge state of the incident SHCIs. Defect 

formation (highest charge states) in HOPG will result in a least crystalline HOPG hence 

the highest values of FWHM of the G band correspond to highest charge states as seen 

in figure 5.15.  
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Figure 5.15 FWHM of the G peak as a function of the ID/IG [16]. 

 

Raman Signal Deconvolution 

The Raman spectra shown in figures 5.11 to 5.14 were further analyzed carefully using 

Lorentzian peak fitting method in order to reduce the composite Raman spectroscopy 

signal into its individual components. Using this method, one can then extract relevant 

parameters such as peak intensities, the full width at half maximum of the G peak 

(FWHMG) and estimation of their corresponding errors. 

Figures 5.16 and 5.17 shows examples of results from Lorentzian peak fitting using a 

Lorentzian function of the form: 
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(5.4) 

where A is the area under the curve, x0 is the peak center and w is the full width at half 

maximum (FWHM).  

 

  

Figure 5.16 Lorentzian peak fitting of Raman data collected over the Sb22+ impact site after 

annealing using the 1800 lines/mm grating and a 50X objective lens. The red line is the fit of the 

data and the green lines are Lorentzian components of the fit. 
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Figure 5.17 Lorentzian peak fitting results of the Bi35+ irradiated HOPG (unannealed). The red 

line is the fit of the data and the green lines are Lorentzian components of the fit. The Raman 

data was acquired using a 1800 lines/mm grating and a 50X objective lens. 

 

The deconvolution results show in a quantitative manner that the D peak in irradiated, 

unirradiated, annealed and annealed HOPG is relatively broad in wavenumber space (see 

figures 5.16 and 5.17) and has a very low intensity. Therefore, the overall radiation 

damage created by Sb22+ is low (before and after annealing) compared to that created by 

Bi35+ before annealing.  
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The ion fluence is kept constant for Bi35+ and Sb22+ implants, therefore the charge state 

of the incident ions play a more important role in the radiation damage induced in 

HOPG. A summary of results acquired from deconvolution of the Raman spectra before 

and after annealing using a Lorentzian function of the form shown in equation 5.4 is 

shown in tables 5.3 and 5.4. 

  

Table 5.3 Summary of Raman results obtained from Lorentzian peak fitting before 

annealing.      

 HOPG 1 HOPG 2 

Parameter Unirradiated Sb22+irradiated Unirradiated Bi35+irradiated 

FWHMG (cm-1) 14.0±0.0912 14.2±0.103 13.4±0.0182 13.7±0.0226 

ID/IG (x 10-2) 5.10±0.601 10.3±0.952 8.14±0.514 8.86±0.687 

Charge State (q+) 0 22 0 35 

 

Table 5.4 Summary of Raman results obtained from Lorentzian peak fitting after annealing.   

 HOPG 1 

Parameter Unirradiated  Sb22+ irradiated 

FWHMG (cm-1) 13.2±0.0825  14.1±0.0876 

ID/IG (x 10-2) 4.79±0.422  4.87±0.465 

Charge State (q+) 0  22 
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Inspection of tables 5.3 and 5.4 show a strong correlation between the charge state 

(hence potential and kinetic energy) of the incident SHCIs with the disorder induced in 

the target surface as quantified by (ID/IG) and FWHMG. The ratio of the intensity of the 

D peak to that of the G peak, (ID/IG) and the full width at half maximum of the G peak, 

FWHMG are both directly proportional to the charge state of the incident SHCIs. 

The observed Raman results as summarized in tables 5.3 and 5.4 are in agreement with 

previous studies [16, 174, 175]. In both HOPG samples, the disorder increases following 

irradiation. However, Bi35+ creates more radiation damage in HOPG than Sb22+. This 

observation is confirmed by the larger (ID/IG) value following Bi35+ irradiation as seen in 

table 5.3.   

After annealing, the FWHMG together with (ID/IG) decrease in both the unirradiated and 

the Sb22+ irradiated regions of the sample. These observations are in agreement with 

expectations because the high temperature and the hydrogen introduced into the 

annealing furnace together catalyze surface reconstructions from sp2 boding into sp3 

bonding. Therefore, an overall decrease in disorder is observed from Raman 

spectroscopy following annealing and is attributed surface reconstructions. 

It has been reported that on the nanoscale, energetics of surface reconstructions favour 

the reconstruction of graphite into diamond [123, 124]. However, in general, catalysts are 

required to reduce the activation energy required for the transformation (hence high 

temperature and hydrogen were utilized in the surface treatment phase of this work). 

Nevertheless, Raman spectroscopy was not able to detect sp3 phases of carbon 

corresponding to 1331 cm-1 (see figure 5.13 and 5.14) primarily due to the low spatial 
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resolution of the equipment used and the low number of defects per unit area (hence 

low Raman intensity) of the induced nanodefects.     

     

5.5 Photoluminescence (PL) 

 

The setup used to acquire PL data in the present work is similar to that used for Raman 

spectroscopy data acquisition. That is, in the PL setup, a 514 nm excitation wavelength 

was used. All PL data was acquired using a 600 lines/mm diffraction grating. However, 

one set of data was acquired using a 50X objective lens and another using a 100X 

objective lens for higher resolution (lower collection efficiency) and higher collection 

efficiency (lower resolution) respectively.  

Only the PL results acquired using the 50X objective lens (higher resolution) are 

presented in this work for brevity (see figure 5.19). Following Raman spectroscopy 

analysis, the next step was to investigate the photoluminescence properties of the Sb22+ 

induced nanodefects after annealing. 

The photoluminescence of nanodiamonds has been studied by several authors [176, 177, 

178]. Figure 5.18 shows PL results from nanodiamonds of different sizes acquired using 

a 532 nm laser. For nanodiamonds less than 50 nm in diameter, one expects a PL signal 

around 630 nm. However, PL signatures for DLC have been observed in different 

wavelengths depending on several properties such as sp2/sp3 ratio and the presence of 

impurities such as Nitrogen and Hydrogen. In the present study the acquired PL spectra 

do not show any significant change following annealing (see figure 5.19).  
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This observation is attributed to the low spatial resolution of the PL setup (similar to the 

Raman setup) and also thermal noise which is likely to interfere with the expected low 

intensity nanodiamond/DLC signal (PL data was acquired at room temperature and 

ambient pressure). Note: the sharp peaks appearing at 618 nm and 707 nm are spikes in 

the Sb22+ irradiated data, these do not represent any change in the material properties.  

 

                   

Figure 5.18 PL spectra of nanodiamonds of different sizes acquired using a 532 nm excitation 

laser [176]. Note: ZPL refers to the zero phonon line.  
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Figure 5.19 PL intensity spectra taken over the unirradiated site (top) and the Sb22+ irradiated 

(bottom) impact site on HOPG using a 50X objective lens, a 600 lines/mm grating and a 514 nm 

excitation laser. 
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5.6 Scanning and Tunneling Spectroscopy (STS). 

 

In order to conduct spectroscopy measurements on the HOPG sample, STM imaging of 

surface is necessary. This was achieved by scanning a PtIr tip across the sample with a 

sample-tip separation of several angstroms. An example of an STM image acquired over 

the Sb22+ impact site is shown in figure 5.20. The STM images were then zoomed into 

using CPΙΙ software routines in order to obtain a larger view of the nanodefect. 

It is important to note that STM imaging is prone errors in lateral measurements induced 

by the tip-sample electronic interaction. As a result, the true dimensions of defects may 

be obscured when observed using STM. However, amongst other reasons (see section 

4.4.2), STM is very useful in that it allows one to conduct spectroscopy measurements 

that can give accurate semi-quantitative electronic structure information. Figure 5.20 

shows a series of points along which individual I-V curves (figure 5.21) were collected to 

investigate electronic properties of the defects at Sb22+ and Sb18+ impact sites. 

    

Figure 5.20 STM image showing Sb22+ induced nanodefects on HOPG and the points along 

which I-V curves were acquired. The 3D image has the same x-y scale as the 2D image. 
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Figure 5.21 I-V curves acquired over the Sb18+ (top) and Sb22+ (bottom) nanodefects on HOPG 

after annealing showing the inner to the outer regions of the nanodefects. 
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Figure 5.21 shows I-V curves acquired over Sb18+ and Sb22+ impact sites on HOPG. In 

both cases, the I-V curves show that, towards the center of the nanodefect, the resistivity 

increases and gradually decrease towards the outer regions of the nanodefect. Such 

behaviour has been reported previously in literature [125].   

The first derivative of the I-V curves and the normalized differential currents (see 

section 4.4.2) have been widely used to give insight into local electronic structure of the 

material under investigation. Figure 5.22 shows results from taking the first derivative of 

the I-V curves shown in figure 5.21.  

Several interesting features can be seen in figure 5.22. Firstly, the Fermi energy is found 

to be at about 0.112 eV and 0.164 eV for the Sb18+ and Sb22+ induced defects 

respectively. A clear clustering of similar curves is seen in the Sb18+ induced defect and 

labeled A-C and D in the Sb22+ induced defects. Such clustering suggests a similarity in 

the electrical properties of the localized materials from which tunneling data is acquired.      

It has been reported that the normalized differential current curves resemble a closer 

representation of the local electronic states [154]. Figure 5.23 and 5.24 shows the 

normalized differential current curves and the truncated normalized differential current 

curves. In figure 5.23, discontinuities in the data are seen around 0.09 eV and 0.14 eV for 

the Sb18+ and Sb22+ induced nanodefects respectively.  

These discontinuities are only consequences of the mathematical procedure of the 

derivative which involves division by values that are close to zero but do not represent 

any known physical information. Therefore, these discontinuities are referred to as 

artificial discontinuities. 
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Figure 5.22 Differential current curves for Sb18+ (top) and Sb22+ (bottom) induced nanodefects 

showing the valence (VB) and conduction bands (CB) with respect to the Fermi level, curves 

from the inner and outer regions on the nanodefect and also the clustered curves labeled A-D. 
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Figure 5.23 Normalized differential curves taken over Sb18+ (top) and Sb22+ (bottom) induced 

nanodefects on HOPG. 
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Figure 5.24 Truncated normalized differential curves taken over Sb18+ and Sb22+ nanodefects. 
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When presenting normalized differential current curves, the discontinuity is commonly 

truncated to avoid obscuring important information in the data (see figure 5.24). Analysis 

of figure 5.24 shows that the structure in the local electronic DOS is complex for modest 

acquisition conditions used for both the Sb18+ and Sb22+ cases. 

In order to carry out a conclusive analysis of nanodefects based on the structure of the 

local electronic DOS, a statistical ensemble of I-V curves collected at different 

nanodefects for each charge state would be necessary and also less noise in the acquired 

data (considering that the data was acquired in ambient pressure and room temperature) 

would yield a more accurate and conclusive analysis. 

However, although it is not obvious to map out the electronic structure from the given 

normalized differential current curves, it is possible to make semi-quantitative estimates 

of the electronic energy band gap of the materials being studied. Ivanov-Omskiĭ et al. 

[155] demonstrated electronic energy gap estimation using differential current curves (see 

figure 4.19).  

Figure 5.25 shows electronic energy band gap estimation using a procedure similar to 

that used by Ivanov-Omskiĭ et al. Only materials with highest electronic energy band gap, 

(Eg) are plotted against HOPG which has a known electronic energy band gap. The 

estimated electronic energy band gap for the Sb18+ and Sb22+ induced nanodefects are 

≈2.05 eV and ≈2.33 eV respectively. DLC has been reported to have a band gap of ≈ 

1.5-2.6 eV [155, 178]. These values show an electronic transformation from graphite 

(blue curve in figure 5.25) to DLC (red curve) in the irradiated regions following surface 

treatment as described in chapter 4.7.         
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Figure 5.25 Plot showing the maximum electronic energy band gap (Eg) Sb18+ (top) and Sb22+ 

(bottom) induced nanodefects (red curve) on HOPG in comparison to graphite (blue curve). 



149 
 

Chapter 6   

6. Conclusions 

After thorough analysis and interpretation of results presented in chapter 5 of the 

present work, several conclusions can be drawn. Using NC-AFM imaging and analysis, 

this work provides further evidence for the direct proportionality between the charge 

state of the incident SHCIs with nanodefect formation in terms of the nanodefect 

diameter and the hillock height as reported previously by several authors [79, 125, 173, 

174].    

In the present study, the SHCIs that were investigated namely; Sb8+, Sb18+, Sb22+ and 

Bi35+ induced surface nanodefects on HOPG with average diameters of 7.94±0.950 nm, 

10.5±0.613 nm, 11.9±0.890 nm and 14.7±0.590 nm with corresponding average hillock 

heights of 1.90±0.382 Å, 7.72±0.418 Å, 8.60±0.392 Å and 9.72±0.916 Å respectively. El 

Said et al. showed that most materials have a potential energy threshold for the formation 

of nanodefects [79]. The present study provides evidence that such a potential energy 

threshold for HOPG occurs at lower charge states than the ones utilized in this work. 

Following annealing at 650ºC in a hydrogen atmosphere, the diameters of the 

nanodefects were reduced to 6.372±0.312 nm, 8.66±0.290 nm and 9.15±0.498 nm and 
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in hillock height to 1.821±0.121 Å, 2.01±0.143 Å and 2.473±0.182 Å for the Sb8+, Sb18+ 

and Sb22+ impact regions respectively. Therefore, diameter changes of up to 23% 

(corresponding to Sb22+ impact sites) and hillock height changes over 70% 

(corresponding to Sb18+ and Sb22+ impact sites) were observed following surface 

treatment.  The observed reduction in both the diameter and the hillock height of the 

SHCI induced surface nanodefects is attributed to surface reconstruction facilitated by 

high temperature (at approximately 650ºC) and a hydrogen atmosphere.  

Results obtained from Raman spectroscopy show that for an ion dose of ~100 

ions/µm2, electronic transformation of sp2 into sp3 phases of carbon is not easily 

detected by conventional methods. This observation is attributed to the following: 

 The spatial resolution of the micro Raman facility used in the present work is 

limited by the Abbe‟ Criterion to about 314 nm which is much larger than the 

average diameter of the SHCI induced nanodefects. 

 The density of nanodefects within the area of the laser utilized in the Raman 

spectroscopy measurements and PL (~1 µm) is very low given the small diameter 

and height of the nanodefects. As a result the corresponding Raman (and PL) 

signal intensity is very low. 

 The diamond Raman line corresponding to sp3 phases of carbon (diamond) is 

found at about 1331 cm-1. This line is very close to the D peak which is found at 

about 1358 cm-1. Therefore, the diamond line is easily obscured by any radiation 

damage with a characteristic broad D peak. 
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Nevertheless, although sp3 carbon phases are not easily detected for the above 

mentioned reasons, using micro Raman techniques, the present study provides a 

preliminary method for the assessment of radiation damage induced by SHCIs. The 

radiation damage by SHCIs is studied in terms of the FWHMG which represents the 

crystallinity of HOPG and also the ratio of the intensity of the D peak to the G peak, 

ID/IG which represents the disordered fraction of the material. Results from the 

assessment of radiation damage using micro Raman techniques show the following: 

 FWHMG is directly proportional to the charge state of the incident SHCIs as 

previously reported [16, 173]. 

 The disorder in HOPG as quantified by ID/IG is directly proportional to the 

charge state of the incident SHCIs. 

 Annealing HOPG at 650ºC for 40 minutes in a hydrogen atmosphere results in a 

decrease in the FWHMG and ID/IG in both the irradiated and unirradiated 

regions. This observation is attributed to high temperature and hydrogen assisted 

surface reconstruction. Therefore, the surface treatment results in a restoration 

of the HOPG crystallinity and a reduction in surface disorder. 

Scanning and tunneling spectroscopy (STS) has a shown that following annealing at 

650ºC for 40 minutes in a hydrogen atmosphere, electronic transformation of SHCI 

induced nanodefects in HOPG takes place. In the present study, differential current 

curves calculated from I-V curves acquired by means of the STS technique have shown 

in a semi-quantitative manner that the electronic energy band gap, Eg of the SHCI 

induced nanodefects changes from approximately 0 eV (predominantly sp2 rich form) to 
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about 2.05 eV and 2.33 eV for Sb18+ and Sb22+ induced nanodefects respectively which 

symbolizes significant presence of sp3 phases of carbon.  

The localized materials fabricated in the present study with electronic energy band gaps 

of approximately 2.05 eV and 2.33 eV correspond to diamond-like carbon (DLC) which 

has a known electronic energy band gap of ranging between 1.5 eV – 2.6 eV depending 

on the purity of the DLC and the sp2/sp3 ratio [155, 179]. Other radiation based 

methods of diamond synthesis using beams that are characterized primarily by kinetic 

effects (~MeV) are currently being explored. 

Results from the present study therefore provide preliminary measurements for future 

fabrication of patterned qubits based on N-V centers localized in nanoscale DLC. 

Preliminary studies geared towards optimizing the cross-section of N-V formation are 

currently being carried out at Berkeley EBIT in U.S.A.   

Single ion implantation of nitrogen into nanoscale DLC synthesized in the present study 

will provide the unique opportunity of creating nanopatterned arrays of N-V center 

based qubits which could ultimately be scaled up to develop a functional quantum 

computer and other useful quantum information devices using advanced nanopatterning 

apparatus such as the EBIT described in section 4.1.          
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