A dissertation submitted to the Faculty of Engincering, University of the Witwatersrand, Johanncaburg, in fulfilment of the requirementz for the degree of Master of Science in Engineering

Johannesburg 1989

DECLARATION

I declare that ihs dissertation is my own, unaided work, It is being submitted for the degree of Master of Science in Engineering in the University of the Witwatersrand, Johannesburg, South Africa. No claim is made as to the originality of any of the theory presented in this dissertation, although elements of originality may be found in methedology and approach.

This work has not been submitted before for any degree or examination by this author in any other University.

(Signature of Candidate)
16 th day of May 1990

ABSTRACT

Classical laminate theory is a well known theory for obtaining the properties and stress distribution in a layered orthotropic laminate. This theory, lowever, only applies to lsminates of infinite size, where disturbances in the stress field as may be caused by free edges, holes of cut-outs are not present.

Methods of calculating the stress distribations and behaviour of holes and pin-loaded holes in a composite laminate have been investigated.

This dissertation presents a coinpoter program written in the "C" programming language as implemented on a personal computer. The theory is bacea upon the original work of Lekhnitski (1947) [Ref], as further developed and presented by De Jong. The theory is briefly presented. The method is an alternative to the more expensive method of fuita element modelling and is derived from the solution of the governing differential equation by means of complex stress functions.

The program, (BHOLES), is a data generating module which generates the stress fiede in the picinity of a hole or pin-loaded hole in a laminate specimen of arbitrary width to hole diameter ratio.

Alternative methods of presenting and analysing the generated data have been investigated but no direct comparison is made with experimental results.

The accuracy of the generated data is verified by several methods inchuding correlation with data generated by an independentily developed program. Indirect reference to test results obtained by De Jong [2] is used to indicate the effectiveness of the model.

ACKNOWLEDGEMENTS

The work completed in this dissertation would not have been possible without the financial support of Kenton (P ty) $\mathrm{I} t \mathrm{t}$,

The cooperation of the University of the Witwaterstand laboratory staff in the manufacture of a prototype test if g was of fundamental importance as was the assistance given by Mr C Diamantazos in the manufacture of pre-impregrated composite panels and the supply of additional information.

A special word of thanks must be extended to Dis R.J. Fritz for his supervision and role in liaison between the author and Mr T.E, de Song of Delft University of Technology during the initial stages of this project.

The work contained in this study is based largely upon the work of Mr T.H. de Jong and a word of gratitude must be extended to his willingness to supply much of the theory and notes which have been so well developed and presented by himself.

Finally a word of thanks to Dr R.J. Huston for his input in the form of discussions and papers on empirical methods and approaches and Miss Joanne Kirsten and Mrs Grace Proudfoot for the typing of the manuscript, all of the Division of Aeronautical and Systems Technology (Aerotelk) of the Council for Scientific and Industrial Research.

LIST O FIGURES

Figure Page
2.1 Integration convertions. 10
2.2 Idealisation for a hole in an orthotropic plate. 12
2.5 Simplifed flowchart for basic model. 27
2.6.1 Two-dimencional stress plot (De Jong [3]). 29
2.6.2 Apollo domain graphics output. 30
2.7.1 Visualisation of Tsai-Hill faitare envelope. 32
2.7.2 Section thtoagh Tsai-Hill falure envelope. 34
2.7.3 Axes convention used by De Jong [2] 35
S.1.1 Sustifeation of results on physical expectation 37
3.1.2a Three dimensional plots. 38
3.1.2b 30* laminase - quadrant (90' to 180) fibre stress. 39
3.3 Plot for $\phi=30$ degrees \{UD carbon\}. 44

LIST OF SYMBOLS

$\mathrm{C}_{\mathrm{yj}} \quad$ terms in the laminate compliance matrix.
$S_{i j} \quad u s e d$ interchangeably with $\mathrm{C}_{i j}$ in some analyses.
$\mathrm{S}_{\mathrm{ij}}^{\boldsymbol{\phi}}$ tansformed laminaie compliance terms.
O_{1} normal stresses.
ϵ_{i} bosmal strains.
$\sigma_{i j} \quad$ shear stress (same as $\tau_{i j}$).
$\boldsymbol{\epsilon}_{\mathrm{ij}} \quad$ shear strain (same es γ_{ij}).
4 . the Airy stress function (Uf(x,y)).
: material angularity (defized in the theory).
a material directionality (defined in the theory).
z omplex variable $(z=x+8 y)$.
x coordinate in the solution plane.
y coordinate in the solution plane.
$s \quad$ complex term in $z=x+$ sy.
$\mathrm{F}_{\mathrm{k}}\left(\mathrm{z}_{\mathrm{k}}\right)$ solution function for $\mathrm{U}(\mathrm{x}, \mathrm{y})$ in the complex plane. .
$\phi_{x}\left(z_{k}\right) \quad F_{k}$ differentiated with respect to z_{k}.
$\phi_{k}^{\prime}\left(z_{k}\right) \quad \phi_{k}\left(z_{k}\right)$ differentiated with reppect to z_{k}.
12. displacertent in direction of x-coordinate.
v displacement in difection of y coordinate.
$\mathrm{P}_{\mathrm{x}} \quad$ boundary load in direction of x-coordinate.
$P_{y} \quad$ boundary load in direction of y-coordinate.
$P_{x y}$ shear boundary load.
ζ substitution variable.
C_{i} constants.
Ry Ioad reswilant on pin in y-coordinate direction.
$\mathrm{R}_{\mathrm{x}} \quad$ Load resultant on pin in x-coordinate direction.
P_{r} radial force on hole edge due to pin (frictionless).
$x_{n} \quad$ terms in sine series representing pressure distribution due to pin.
$\mathrm{A}_{\mathrm{k}} \quad$ constants resulting from pin load.

HOMENCEATURE

1 General

i) The complex terms s_{k} and $s_{k \phi}$ are distingoishable from the material compliances $S_{i j}$ and $S_{i j_{\phi}}$ by the single and double suffexes.
ii) Material compliances are initially referred to as C_{ij} at the end of Chapter 1. and in Chapter 2.1. The deeper analysis given in Chapters 2.2 and 2.3 uses the S_{y} variable for material compliances.
iii) The terms \mathbf{v}_{k} and u_{k} referred to in equations (3.21) are distingoisable from the displacements v and u by the stffex. Their expansion is given int equation (2.8).

2 References

References with an asterisk refer to references referred to by the author referenced.
Page
DECLARATION i
ABSTRACT ii
ACKNOWLEDGEMFNTS iii
LIST OF FIGURES iv
LIST OF SYMBOLS v
NOMENCLATURE vi
CONTENTSS LIST vii
1 BATRODUCTION 1
1.1 Work Justificiation 1
1.2 Literature Survey 2
1.3 Objectives of Current Research 5
1.4 Approach 6
2 THEORY 8
2.1 Complex Streas Functions 8
2.2 Stresses Around Unloaded Holes 12
2.3 Stresses Around Pin Loadel Holea 16
2.4 Computerisation of the Mathematical Model 25
2.5 Superposition of Stress States 26
2.0 Graphical Representation of the Stress State 28
2.7 Failure Criteria 31
2.7.1 The Thai-Bill failure criterion 31
3 MOLEL VERIFICATION 36
3.1 Verification by Physical Interpretation 36
3.2 Intermodiase Result Correlation 40
3.3 Correlation of Failure Load Predictions 41
3.4 Test Results (De Joag) 44
CONTENTS LLST (continued)
Page
4 DISCOSSLON OF RESWIS 45
5 CONCLDSLONS AND RECOMMENDATIONS 47
REFERENGES 50
APPENDLI A : THREE-DMENSTONAL STRESS PLOTS 53
APPENDIX B : STRESS VECTORTD RESERVE FACTORS USED IN TSAI-EILL FALLURE CRITERIA - $90 / \pm 45] \mathrm{s}$ 58
APPENDIX C: LISTING OF C PROGRAM FOR GALCULATING STRESS DATA 60
APPENDIX D: OVERVIEW OF PASCAL INTEGRATED PROGRAM 87
APPENDIX E : El Function Terms Used in Displacement Fomelas (See Equations \{2.39) and (2.40)\} 101
E2 Expansion of Termas Appearing in Equation (2.32) 102

CEAPTEX 1 INTRODUCTION

1.1 Work Jostification

Generally, two methods of jonning two components are used in the fabrication of composite structures, wiz. adhesive sonding, where the load transfer is predominantly by shear in the adhesive layer, and mechanical goints, where the load transfer is rrovided by fasterers such as rivets, boits and pins.

Earlier invertigations into the efficiency of a pin loaded hole in carbon/epoxy tab specimens [4] indicated that the efficiencies that can at expected from mechanical joining of such materials is lower than is typically found in joints in isotropic metals. This is especially true for the more dactile materials, such as many forms of aluminium, where deformation of the material can reduce the stress concentrations presert in close proximity to the bolt hole(s). The implication of this is that the attractive high specific strength and stiffness, as well as gencrally good fatigue resistance of fibrous corcuposites, are offset by their intolerance of stress raisers such as may be created ty holes or cutouts.

Although the drilling of holes in a laminate may ofter be avoided by the selection of a fabrication process involving integrally cured components or by adhesive bonding techniques, this is not always possible nor desirable. Situations are often fornd where mechanical joints are not only the best solution to a particular structural integration process, but may often be the oniy method of component integration. This is the case where, for example, structural disassembly is required, where access panels are required, when the magnitude of the loada to be transferred are too large to allow even the best adhesives to be used, when fail-safe failure modes are mandatory, in combination with adhesive bonding to eliminate the need for costly bonding jags and so forth.

The efficency of a mechanical joint in a fibrous composite is strongly impuenced by the laminate lay up, and it may therefore be concluded that such joints can be optimised [5], and should at the very least be understood, zalalysed and tested before implementation in any demanding structural application.

That the design of a mechanical joint in a composite laminate requizes special attention is best put by Poon [6]:
"... one of the more challenging aspects of mechanically fastezed jointe is that the well-established design procedures for metal joints, that are based on years of experience with isotropic and homogeneous materials, have yet to be changed in order to "commodete the anisotropic and nonhomogeneous properties of composite materials".

1.2 Litesature Suryey

Papers on the subject of holes and rechanic 1 joints in composites date back as far as the iate sixties. The problems involved with this particgiar aspect are however numerous, and the many existing papers on the subject can therefore be considered to be limited.

Ar extensive literature sarvey is not offered in this disseriation. Instead some of the aspects that heve been investigated by various researchers are briefly mentioned and the reater is instead relerred to ant earlier and more comprebensive survey done by the author $\{1\}$. This sarvey was intended to contain a more in depth investigation, with the intention that the reader may obtain an acceptable amount of background information to the general problem. Fmpirical methods as used by Haxt-Smith [7], Collings [8], Matthews et of [8] and Jppinger, et al [10] are presented in a feir amount of detail in ant attempt to distill a more universal methedology and to investigate general parametrics.

The more detaited aspects such as friction between mating surfaces and loss of bolt torque due to the yisco elastic properties of resin-based composites are only briefly mentioned. Sandifer [11] found that there was no significant effect on the fatigue life of graphite/epoxy materiai when fretted against alumizium, titanium or graphite/epoxy of the same type. The effect of friction in a fraying plate surface can be included in the stress analyais if the clamping force is known. A typical idealisation of a bolted joint used to determine the contact pressure between plateo is illustrated by Mathews, et al [12].

Poon [6] gives a reasonably datailed discassion on the basic methodologies used in fatigue life prediction. Also discussed in this repori are effects such as galling (also discussed by Cole [6* 1 , and installation damage where remedies sucta as labrication as used in the F18 and AV-813 are suggested.

Rosenfield [13] quabitatively examines the now well known graphite- aluminium corrosion problem by testing mechanically fastened joints fabricated from these materials with and without vanious forms of corrosion protection methods. As investigation into the corrosion characteristics of various metal fasteners in graphite/epoxy composites during exposure to a hostile environment such as salt spray and the protection offered by various protective coating systems is also presented in a paper from the Air Force Materials Laluoratory, Obie [14].

Static strength prediction using fracture mechanics principles is presented by Eiseumann [5], and this approach can be seen to be similar to the "characteristic dimension" approach nsed by Whitney and Nuismer [15].
. ffining the failure load of a composite material joint is a problem in itself. Poon [6] notes that basing the definition on the maximmm load that can be sustained by such joints is tather crude and inappropriate, since in this case failures occurred in some cases in bearing at a specimen width to hole diameter ratio of around 3 , after which the sustained load continued to iscrease as the fibres piled up behiad the pin. This observation was confirmed by the author [4] and by subsequent related undergraduate work [17]. The problem of failure load definition leads to the need to be able to predict the load at which first significant damage occucs such that specimens can be loaded to this predicted value whilst asing acoustic emissions as a guide, and subsequent x-ray examination for verification of the extent of the damage. This meshod was successfulty iraplemestec̃ by De Jong [2] where first siguificant damage loads occurred within twenty percent of those predicted. In the light of limitations of the theory used in the test cases and the limitations of the damage detection techniques, this is believed to be a siguiticant step in the understanding of the behaviour of composite materials. The problems involved with failure theories ahould also not be forgotten.

Analytical techwques for predicting the stress field in the vicinity of a bolted joint iuclude finite element techniques and complex stress function methods.

Various finite element codes have been used to calcuiate the stress field. Waszcak and Cruse [17] presented a two-dimensional finite element model as early as 1971 using an assumed cosine pressure distribution on the hole edge. This assumption has subsequently been shown to be incorrect. Chang et al [18*] investigated the same problem in a similar way and obtained improved correlations in failute strength predictions by applying the Yamada-Sun shear streagth failure criterion in conjunction with a proposed failure hypothesis that predicts failure based on stresses at a chatacteristic distancs axay from the hole in order to minimise three dimensional effecta. Argawal [19] used a NAS'RAN code to determine the stress distribution around the fastener hole of a double shear bolt beaning specimen and Whitneq-Nuismer average stress criterion for filure load.

Soni [20] used the same NASTRAN code and boundary conditions but adopted the Tsai-Wu tensor polynomial failure criterion. York, et al [21*] wsed the structaral analysis package SAP V and the modifed "point stress" failure criterion. Fowlande, at al [22] used a finite eiemens model which included the effects of variations in friction,material properties, loud distribution between boits in series, end distance, bolt clearance and bolt spacing. An important advantage of this approach is the ability to take three dimensional effects into account. Three dimensional affects are of special imporfance when including bolt torque and edge effects. Rybicki and Schmueser [24] made one of the earliest attempts at analysing a curved boundary. Their model included effects of through the thickness stresses. Matthews, et al [23] describes the development of an element dexived from a standard 20 noded isoparametric brick element. The effects of boit tightsing on through-the-thickness effects are discussed. The brick was incorporated as standard within the FINEL analysis package.

The method of complex functions has been applied by numerons researchers of which the most notable is De Jong [2]. Others such as Turg [25] have made useful contributions to this analytical technique. Tung presents a hiniting procedure and a root modification scheme that give accurate results with ordinary machine precision for any plate material. This procedure has not been implemented in the analysis presented in this thesis, and consequently it can be expected that a solution cannot be obtained for the case when the characteristic roots are equal.

Besides the empirical, analytical and experimental aspecis of the problem of bolted Joinis in compositas, are the more practical aspects such as the effects of countersink angle (which may vary between 90 and 100 degrees), the use of solid versns hollow nivets, and rivet types, such as is discussed by Matthews, et al [26]. Some commercially available rivet systeras are also discussed in the foller review previously mentioned by the atthor. Practical aspects such as galvanic corrosion, galling, instailation damage and pull through strengti with reference to semi-tabular civets, big foots, Cherry Buck rivets, sizess-wave ripet systems, groove proportioned lock boits, composite fasteners and sulf tapping serews are discassed by Cole, et al [27], and the determination of suitable safety factors for use when desiguing bolted joints in GRP are discussed by Matthews and Johnston [28].

In addition to the vast number of papers on the subject, numerous reviews are also available. Some of these are by Tseng-Hua Tsiang [29] and Goodwin and Mathews [30].

1.3 Objectives of Current Research

The objective of this research was to investigate the literature in order to extract enough information to be able to make a significant contribution to the design and analysis of advanced aircrazt structures with particular reference to mechanical joints in composite materials. This has been ackieved in the following manner:
(a) The accumulation and collation of as much information as possible relating to research done by other researchers on the sribject.
(b) The extraction of fuformation from relevant papers and the presentation of this information in a biterature survey such that a feasonable understanding of mosi aspects and approaches currently used to design and analyse composite joints can be reedily obtained by the reader. Since this phase was done whilst the suthor was working in an industry not yat possessing a well developed capability in this area, a suggested approach to the development of such expertise is presented.
(c) The development of an analytical model capable of generating the theoretical shress fied in the vicinity of a pin loaded hole in order to make a tool avaibable for deepet understanding of the mechanisms involved in load itarsfer. An attempt was made to develop a graptical representation of the relevant stresses in such a way as to enable the interpretation of results presented by other authors. A modest attempt is also mede so predict the Ioad at which first signiticant damage in the laminate occurs and its location by means of the concept of tailure propensities based on the Tsai-Hill failure criterion.

1.4 Approach

Enpirical methods have been investigated to a reasonable extent and results from such an appiosch can be very usefal in the design exvironment, but the costs involved with developing the pecessary infrastructure, the data collection process and the equipment itself are high. The various approaches which may be adopted for developing the necessary expertise in this are are discussed in Part 1, Literatore sutvey. In summary it can be said that practical application is always the final test, that empirical data iuv necessary for rapid first order design procedures, but that the availability of an analytical model will offer the trol required for more in depth understanding of the actual stress field and mechanimms of load transfer. In addition to this a detailed model may indicate directions required for optimised joint design and reveal trends or effects which cannot be obtained by other approaches.

Of the analytical methods uses only two have been noted and considered to be worth pursuing. These are finite element models and complex stress function models. Of these two methods the fnite element method at present has possibly been the most effective, since it is capable of inciuding through-the-thickness effects such as may be ordinarily present or induced by bolt torque. The costs of building such a model can however be considered to be extremely high, due both to the high cost of the required soitware, and due to the time required to build and rum a complex model which will have to anclude layering, anisotropy and contact or pressure modelling. The method of complex stress functions on the other hand can be implemented quite independertiy of any other specialised software, and as this thesis demonstrates, can be made effective on a personal computer revulitige in greatly reduced costs.

The mothod is derived from the solution, (by means of anaiytic functions), of the differential equation obiained by substituting fistly the constitutive equations:

$$
\left\{\begin{array}{l}
\varepsilon_{x} \tag{1.1}\\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{lll}
C_{11} & C_{12} & C_{16} \\
C_{21} & C_{22} & C_{27} \\
C_{61} & C_{62} & C_{66}
\end{array}\right\}\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{x y}
\end{array}\right\}
$$

and secondiy the Airy stress function $U(x, y)$;
where
into the compatibility equation:

$$
\begin{equation*}
\frac{\partial^{2} \epsilon_{x}}{\theta_{y}^{2}}+\frac{\partial^{2} \epsilon_{y}}{\partial_{x}^{2}}=\frac{\partial^{2} \gamma_{x y}}{\theta_{x} \theta_{y}} \tag{1,3}
\end{equation*}
$$

The restulting th order diflerential equation is:
which can be simplified and solver using appropriate boundary conditions.

GHAPTER 2
 THEORY

The solvtion of the differential equation is done by means of analytic functions. The solation fryolves much algebraic manipulation. A detailed analyais is avoided in this report for the sake of brevity. Instead, only the major steps in the derivation as developed by De Jong [3] are preserted.

2.1 Complex Stress Functions

By taking the $x-y$ coordinates as having an orientation with respect to the laminate such that these axes lie atong the principal material axes the temas C_{16} and \mathcal{C}_{26} convenientiy become zero. This results in a simplified form of equation (1.4):

$$
\left[\frac{C_{22}}{C_{11}}\right] \frac{\partial^{4} \pi}{\partial \partial_{x}^{1}}+\left[\frac{2 C_{12}+C_{66}}{C_{11}}\right] \frac{\partial_{1} U}{\partial_{x}^{2} \beta_{5}^{2}}+\frac{\partial^{4} U}{\theta_{y}}=0
$$

Now by defining two propersies, directionality (t) and angularity (a),

$$
\begin{align*}
\text { where } & r=\sqrt{\frac{C_{22}}{C_{11}}}=\sqrt{\frac{\ddot{E}_{1}}{E_{2}}} \tag{2.2}\\
a & =\frac{C_{52}+\frac{C_{68}}{2}}{C_{31}}=\frac{E_{1}}{2 G_{12}}-\mu_{12} \tag{2.3}
\end{align*}
$$

this equation becomea:

It is of interest to note that by inserting isotropic ralues for r and a , this equation reduces to:
$\Delta^{2} \mathrm{U}=0$

In order to solve this differential equation, $U(x, y)$ is assumed to have a solution iunction in the complex plane, i.e.

$$
\begin{equation*}
U(x, y)=f(x+5 y)=F\{(z) \tag{2.5}
\end{equation*}
$$

whers $z=x+5 y$
and $s=$ complex number

I* can be fhown that:

$$
U=F_{1}\left(x+s_{1} y\right)+\bar{F}_{1}\left(x+\bar{s}_{1} y\right)+F_{2}\left(x+s_{2} y\right)+\bar{F}_{2}\left(x+\bar{B}_{2} y\right)+C_{8} x+C_{2} y+C_{3}
$$

and since the particular molution $U=C_{1} x+C_{2} y+C_{3}$ gives $\sigma_{x}=\sigma_{y}=r_{x y}=0$, it can be ignored.

The resulting equation can be written as:

$$
U=2 R e\left[F_{1}\left(z_{1}\right)+F_{2}\left(z_{2}\right)\right]
$$

and simplined to:

$$
\begin{equation*}
\mathrm{U}=2 \operatorname{Re} \int \mathrm{~F}_{\mathrm{r}}\left(\mathrm{a}_{k}\right) \quad \mathrm{k}=1,2 \tag{2.8}
\end{equation*}
$$

Letting $\frac{d F_{1}}{d z_{1}}=\phi_{1}\left(z_{1}\right)$ and $\frac{d F_{2}}{d z_{2}}=\phi_{2}\left(z_{2}\right)$, the stresses can be found by differentiation to be:

$$
\begin{align*}
& \sigma_{z}=2 \operatorname{Re} \sum_{i z}^{2} \phi_{k}^{\prime}\left(z_{k}\right) \\
& \sigma_{y}=2 \operatorname{Re} \sum \phi_{k}^{\prime}\left(z_{k}\right) \\
& \sigma_{x y}=-2 \operatorname{Re} \sum s_{k} \phi_{k}^{\prime}\left(z_{k}\right) \quad k=1,2 \tag{2.7}
\end{align*}
$$

where $\phi_{\mathrm{t}}^{\prime}=\frac{\mathrm{d} \phi_{1}}{\mathrm{~d} \xi_{1}}$ and $\phi_{2}^{\prime}=\frac{\mathrm{d} \phi_{2}}{\mathrm{dz}}$
aind the displacements become:

$$
\begin{align*}
& u=2 R e \sum u_{k} \phi_{\mathbf{k}}+C_{1} y+C_{2} \\
& v=2 R e \sum v_{k} \phi_{k}+C_{f} x+C_{i} \tag{2.8}
\end{align*}
$$

where $u_{k}=C_{i t} s_{k}^{2}+C_{12}$ and $v_{k}=\frac{C_{22}}{B_{k}}+C_{t 2} s_{k}$

To soive the differential equation, a convention for the direction of integration along the bourdaries is chosen as shown below. In this case it is defined positive to the left if facing the boundary frominside the region.

Figure 2.1 : Integration conventions.

When the loads on the boundary are known the following equations aze derived:

$$
\begin{align*}
2 \operatorname{Re} \sum \phi_{k}\left(z_{k}\right) & =-\int \mathbf{Y} \cdot d s+C \\
2 \operatorname{Re} \sum s_{k} \phi_{k}\left(z_{k}\right) & =\int X \cdot d s+C \tag{2.9}
\end{align*}
$$

and when the displacements ate used we bave:

$$
\begin{align*}
& 2 \operatorname{Re} \sum v_{k} \phi_{k}\left(z_{k}\right)=\mathrm{q}(\mathrm{~s}) \\
& 2 \operatorname{Re} \sum v_{k} \phi_{\mathrm{k}}\left(z_{k}\right)=v(s) \quad k=1,2 \tag{2.10}
\end{align*}
$$

Thus, by applying either external loading ax displacements or both along the boundary region, the fungtions ϕ_{k} can be obtained.

The functions ϕ_{i}^{\prime} are represented by a Laureat series:

$$
f(x)=\sum_{-x}^{\infty} \mathrm{B} E_{n} z^{n}
$$

without the presence of the positive terms. ϕ_{k}^{\prime} can be written as:

$$
\hat{\phi}_{k}^{\prime}\left(z_{k}\right)=g^{\left.()^{(}\right)}+A_{k} s_{k}^{-3}-\left[g_{i}^{\left(k_{3}\right.} z_{k}^{-2}+2 g_{2}^{(k)} z_{k}^{-\frac{1}{2}}+3 g_{3}^{(k)} z_{k}^{-4} \cdots\right]
$$

and by integration:

$$
\begin{equation*}
\phi_{k}\left(z_{k}\right)=g^{\left[k_{]}\right.} \cdot z_{k}+A_{k} \operatorname{An}_{z_{k}}+\sum_{n=1}^{\infty} g_{n}^{(k)} z_{k}^{-n}(+ \text { Const }) \tag{2.11}
\end{equation*}
$$

It can then be reasoned that:
(a) The terms $g^{(2)} z_{k}$ represent the homogeneons stress freld, and
(b) the $\sum_{n \times 1}^{\infty} g_{a}^{\left(k_{1}\right.} z_{k}^{\text {nt }}$ termas represent the effects of a hole, while
(c) the $A_{k} A z_{k}$ terms are related to any loading on the hole edge,

These terms can to some extent be separated during analysis. Also, it can be showa that this Laurent series converges for all values of $|z| \geqslant 1$, i.e. outside the unit circie in the complex plane.

2.2 Stresses Around Unlosded Foles

By considering an infinitely large plate with a hole of radius $R=1$ and the centre of the axis system such that it coincides with the material principle axes, (es shown in Figure 2.2), the functions ϕ may be found.

Figure 2.2 : Idealisation for a hole in an orthotropic plate.
The stress distribution may be found by epalaating the complex functions $\phi_{\mathrm{k}}\left(\mathrm{z}_{\mathrm{k}}\right)$, with the general form:

$$
\begin{equation*}
\phi_{k}\left(z_{k}\right)=g^{\left(k_{)}\right)} \cdot z_{k}+\sum_{n=!}^{m} g_{n}^{\left(k_{k}\right)} \cdot z_{k}^{-n} \tag{2.12}
\end{equation*}
$$

where the firsi terra can easily be shown to represent the homogenous field by:

The perturbated stress field due to the presence of the hole may be evaluated using the

$$
\sum_{n=1}^{\infty} g_{n}^{(k)} \cdot z_{k}^{n n}
$$

temm and this can then be superimposed onto the homogenous stress field. Thus from equation (2.9) and using the fact that at this particular boundary no external load has been applied, we have:

$$
2 F e\left[\left[g^{(1)} \cdot z_{1}+g^{(2)} \cdot z_{2}\right]+\sum_{n=1}^{\infty} g_{n}^{(n)} \cdot z_{1}^{-n}+\sum_{n=1}^{\infty} g_{n}^{(3)} \cdot z_{2}^{-n}\right]=0
$$

and

$$
\begin{equation*}
\left.2 \operatorname{Re}\left[\left[\varepsilon_{1} g^{(1)} \cdot z_{1}+\varepsilon_{2} \cdot g^{(2)} \cdot z_{2}\right]\right]+\sum_{n=1}^{\infty} \varepsilon_{1} \cdot g_{n}^{(1)} \cdot z_{1}^{n}+\sum_{n \pm 1}^{\infty} s_{2} \cdot g_{n}^{(2)} \cdot z_{2}^{-n}\right]=0 \tag{2.14}
\end{equation*}
$$

or

$$
2 \operatorname{Re}\left[\sum_{n=1}^{\infty} g_{n}^{(t)} \cdot x_{1}^{-n}+\sum_{n=1}^{\infty} g_{n}^{(2)} \cdot x_{2}^{-n}\right]=-2 \operatorname{Re}\left[g^{(1)} \cdot z_{1}+g^{(2)} \cdot z_{2}\right]
$$

and

$$
\begin{equation*}
2 \operatorname{Re}\left[\sum_{p=1}^{\infty} s_{1} \cdot g_{n}^{(1)} \cdot z_{1}^{(n)}+\sum_{n=1}^{\infty} s_{2} \cdot g_{n}^{(2)} \cdot z_{2}^{-n}\right]=-2 \operatorname{Re}\left[s_{1, g}{ }^{(1)} \cdot z_{1}+s_{x^{\prime}} g^{(2)} \cdot z_{2}\right] \tag{2.15}
\end{equation*}
$$

Now by considaning the stress Beld at infinity we can asoume that the stress perturbations are zero and the external lozding is as given in Figure 2.2, giving:

$$
2 \operatorname{Re}\left[g^{(t)} z_{1}+g^{(2)} z_{2}\right]=-\int Y \cdot d s=P_{y} \cdot x-P_{x y} \cdot y
$$

and

$$
\begin{equation*}
2 \operatorname{Re}\left[s_{1} g^{\left(I_{1} z_{1}+g_{2} g^{(z)}\right.} z_{2}\right]=\int X \cdot d s=P_{x} \cdot y-P_{x y} \cdot x \tag{2.16}
\end{equation*}
$$

which may be substitated into equation (2.15):

$$
\operatorname{2Re}\left[\sum_{\substack{n=1}}^{\infty} g_{n}^{(1)} \cdot z_{i}^{-n}+\sum_{n=1}^{\infty} g_{n}^{(z)} \cdot z_{2}^{-n}\right]=-P_{y} \cdot x+P_{x y} \cdot y
$$

and

$$
\begin{equation*}
2 \operatorname{Re}\left[\sum_{n=1}^{\infty} s_{1} g_{n}^{(1)} \cdot x_{1}^{-n)}+\sum_{n=1}^{\infty} s_{2} g_{n}^{\left(R_{2}\right.} \cdot x_{2}^{\pi z}\right]=-P_{x} \cdot y+P_{x y} \cdot x \tag{2.17}
\end{equation*}
$$

In order to more easily solve the equations, new wariables ζ_{2} and ζ_{8} are introduced where:

$$
\begin{equation*}
\zeta_{k}=\frac{s_{k}+\sqrt{z_{k}^{2}-s_{k}^{2}-1}}{1-i_{k}} \tag{2.;8}
\end{equation*}
$$

And on the wit circle $\xi_{2}=2$.

The resulting series after substitution becomes:

$$
2 R e\left[\sum_{n=1}^{\infty} C_{n}^{(n)} \cdot \zeta_{2}^{n}+\sum_{n=1}^{\infty} C_{n}^{(\pi)} \cdot \zeta_{2}^{n}\right]=-P_{y} \cdot y+P_{x y} \cdot y
$$

and

$$
\begin{equation*}
\left.2 \operatorname{Re}\left[\sum_{n=1}^{\infty} s_{1} C_{n}^{(d)} \cdot \zeta_{1}^{n}+\sum_{n=1}^{m} s_{2} C_{n}^{2}\right) \cdot C_{2}^{n}\right]=-P_{x} \cdot y+P_{x y} \cdot x \tag{2.19}
\end{equation*}
$$

It can, (by a fair amount of reasoning), be construed that

$$
C_{n}^{(b)}=C_{a}^{(2)}=0 \text { for all } n \neq I_{1}
$$

and then solving for C_{1} and C_{2} gives

$$
\phi_{k}\left(z_{k}\right)=\frac{P_{x}-P_{y} s_{\ell}^{y}-P_{x y}\left(s_{k}+\varepsilon_{\ell}\right)}{2\left(e_{k}^{2}-s_{\ell}^{2}\right)} \cdot z_{k}+\frac{-i P_{x}+s_{\ell} P_{y}+\left(1-i_{\ell}\right) P_{x y}}{2\left(s_{k}-g_{\ell}\right)} \varepsilon_{k}^{-1}
$$

$\phi_{k}\left(x_{x}\right)$ cati be differentiated to give:
which eabbles direct calcuiation of $\sigma_{x,} \sigma_{y}$ and $\tau_{x y}$ as well as u and v. The solutions for the stresses become:

$$
\begin{aligned}
& \sigma_{x}=P_{x}+2 \operatorname{Re} \sum\left[\mathrm{~s}_{k}^{2} B_{k}\left[\begin{array}{l}
\frac{x}{z_{k}^{1}}-1
\end{array}\right]\right] \\
& \sigma_{y}=P_{g}+2 R e\left\lceil\left[B_{k}\left[\frac{x_{z}^{3}}{\frac{k}{3}}-1\right]\right]\right. \\
& \tau_{x y}=P_{x y}-2 R e \bar{\sum}\left[E_{z} B_{k}\left[\begin{array}{l}
z \\
\frac{z}{k}-1 \\
z_{k}^{x}
\end{array}\right]\right] \\
& \text { where } \quad B_{k}=\frac{P_{x}+i_{z} p_{y}+\left(s_{z}+i\right) P_{x y}}{2\left(s_{k}-x_{z}\right)\left(s_{k}-i\right)} \\
& \text { and } \\
& v_{k}^{1}=\sqrt{s_{k}^{2}-B_{k}^{2}-1}
\end{aligned}
$$

2.3 Stresses A conan Pin Loaded Holes

Forces applied to the edge of the hole are included in the analysis by means of the A_{k} fo h_{k} term. Its presence in the formulation accounts for any loading that may be present on the hole edge. A_{k} may be solved from equations given in Ref. [3]. These equations are:

$$
\begin{align*}
& \sum\left[u_{k \phi} A_{k}-\bar{u}_{k \phi} \overline{A_{k}}\right)=0 \\
& x=1+2 \\
& \sum_{k=1,2}^{\infty}\left[v_{k \phi} A_{k}-\bar{v}_{k} \widehat{A}_{k}\right\}=\hat{U} \\
& \sum_{k=1,2}^{\infty}\left\{A_{k}-\overline{A_{k}}\right]=\frac{R_{y}}{2 \pi i} \\
& \sum_{k=1,2}^{\infty}\left\{s_{k \dot{\prime}} A_{k}-8 s_{k \phi} \overline{A_{k}}\right\}=\frac{-R_{k}}{2 \pi i} \tag{2,21}
\end{align*}
$$

yielding

$$
\begin{align*}
& \left.+R_{x}\left\{s_{1 \phi \phi}\left[s_{z \phi}+\overline{s_{2 \phi}}+\overline{s_{1 \phi}}-\frac{s_{11 \phi}}{s_{11 \phi}}\right]-\frac{s_{28 \phi}}{s_{11 \phi}}\right\}\right\} \\
& \left\{2 x i\left[s_{s_{\phi}}-s_{k \phi}\right]\left[\overline{s_{\varepsilon \phi}}-s_{k \phi}\right]\left\{\left(s_{k \phi}-\overline{s_{k \phi}}\right]\right\}\right. \\
& k=1,2 ; \quad \ell=2,1 \tag{2,22}
\end{align*}
$$

The original formulation of ϕ_{k} may be written as:

$$
\begin{equation*}
\phi_{k}\left(z_{k}\right)=A_{k} \ln _{1} \zeta_{k}+\phi_{k}^{0}\left(z_{k}\right)+B_{k} \quad k=1,2 \tag{2.23}
\end{equation*}
$$

This may then be substituted into the boundary equations given in equation (2.9).

$$
2 \operatorname{Re} \sum_{k=1,2}^{\infty}\left\{B_{k_{k}}, A_{-k} \sin \sigma+\phi_{k}^{0}\left(z_{k}\right)\right\}=\int_{0}^{s} \mathrm{Y} \cdot d s+K_{1}
$$

and

$$
\begin{equation*}
2 \operatorname{Re} \sum_{k=1,2}^{\infty}\left\{s_{s \phi} B_{k}+s_{k \phi} A_{k} t n \sigma+s_{k \phi} \phi_{k}^{0}\left(z_{k}\right)\right\}=-\int_{0}^{s} X \cdot d s+K_{2} \tag{2.24}
\end{equation*}
$$

(This is valid on the hole edge where $\zeta_{1}=\zeta_{2}=\sigma=1$) and following from the third and fourtin equations of (2.21):

$$
\begin{align*}
& 2 \operatorname{Re} \sum_{k=1,2}^{\infty} A_{k} \tan \sigma^{\circ}=\frac{R_{2} \theta}{2 \pi} \\
& 2 \operatorname{Re} \sum_{k=1,3}^{\infty}{ }_{k}^{s_{k \phi}} A_{k} \operatorname{tr} \sigma=\frac{-R_{x} \theta}{2 \pi}
\end{align*}
$$

Thus equations (2.24) become:

$$
2 \operatorname{Re} \sum_{k=1,2}^{\infty}\left\{\mathrm{B}_{\mathrm{k}}+\phi_{k}^{\mathrm{a}}\left(\underline{3}_{1}\right)\right\}=\int_{0}^{s} \mathrm{Y} \cdot d 8+K_{1}-\frac{R_{v} \theta}{2 \pi}
$$

and

$$
\begin{equation*}
2 \operatorname{Re} \sum_{k=s, 2}^{\infty}\left\{s_{k \phi} B_{2}+s_{k \phi} \phi_{k}^{b}\left(z_{k}\right)\right\}=-\int_{0}^{s} \mathrm{X} \cdot \mathrm{ds}+\mathrm{K}_{2}+\frac{\mathrm{R}_{x} \theta}{2 \pi} \tag{2.26}
\end{equation*}
$$

Since no form for the prebsure distribation is assumed beforehand, a general expression is needed which will accommodate any distribution that may result from the analysis. The chosen form is:

$$
\begin{array}{ll}
P_{r}=P_{0} \sum_{n=1,2,3}^{\infty} a_{i n} \sin \pi \theta & \text { for } 0<\theta<\pi \\
P_{r}=0 & \text { for } \pi<\theta<2 \pi \tag{2.27}
\end{array}
$$

or to have one expression which is valid on the whole circurnference, (2.27) can be written as:

$$
P_{r}=P_{r}\left[\frac{1}{2}+\frac{2}{x} \sum_{m=1,3}^{\infty} \frac{\sin m \theta}{m}\right]=\left\{\begin{array}{l}
P_{\mathrm{r}} \text { for } 0<\theta<\pi \\
0 \text { for } \pi<\theta<2 \pi
\end{array}\right.
$$

reruting in:

$$
\begin{equation*}
P_{t}=P_{0}\left[\frac{2}{2}+\frac{2}{x} \sum_{m=1,3}^{\infty} \frac{\sin \min \theta}{\mathrm{ra}}\right] \sum_{p=1,2,3}^{\infty} a_{n} \sin n \theta \tag{2.28}
\end{equation*}
$$

which can be converted to:

$$
P_{r}=P_{0}\left[\frac{1}{2} \int_{n=1, y, 3}^{\infty} \pi_{n i n} \sin v \theta+\frac{1}{\pi}\left[\sum_{n \in 1,8}^{\infty} \frac{z_{n}}{n}+\sum_{n, n}^{*} a_{n}\left\{\frac{1}{n-m}+\frac{1}{n+m}\right] \cos m \theta\right]\right\}
$$

in whech: $\quad \sum_{B=n}^{*}=\sum_{n \in 1,3}^{\infty} \cdots \sum_{n=2,4}^{\infty} \cdots+\sum_{n=2,4}^{\infty} \cdots \sum_{m=\{83}^{\infty}$

This expression is continaous on the whole contour of the hole and obeys (2.27). The terms with odd values of n represent the symmetric part of the load on the edge, the terms with even in the asymmetric part.

Now by taléng $X=P_{r} \cos \theta$ and $Y=P_{r} \sin \theta$ we can derive from (2.28);

$$
\begin{align*}
& \int_{0}^{s} \mathrm{X} \cdot \mathrm{ds}=-\mathrm{f}_{1}+\frac{\mathrm{R}_{x} \theta}{2 \pi}+\frac{\mathrm{R}_{x}}{4}+\frac{\mathrm{P}_{0}}{4} \sum_{n=1,3}^{m}\left[\frac{e_{n}+\mathrm{A}_{n+2}}{(n+1)}\right] \tag{2.29}\\
& \int_{0}^{s} \mathrm{X} \cdot \mathrm{ds}=+f_{2}+\frac{\mathrm{R}_{\mathrm{v}} \theta}{2 \pi}+K \tag{2.30}
\end{align*}
$$

where with a_{1} chosen as unity:

$$
\begin{align*}
& R_{x}=\int_{0}^{2 \pi} X \cdot d s=P_{0}\left\{a_{2}+\sum_{n=2,4}^{\infty} \frac{z_{n}+a_{n+2}}{(n+1]}\right\} \tag{2.31}\\
& R_{y}=\int_{0}^{2 \pi} Y \cdot d g=\left(P_{0} / 2\right) \cdot r \tag{2.32}
\end{align*}
$$

The fanctions f_{1}, f_{2} and K are given is Appendix E.
Hence with (2.29) and (2.30) the boundary conditions become:

$$
2 \operatorname{Re} \sum_{k=1,2}\left\{B_{k}+\phi_{k}^{0}\left(z_{k}\right)\right\}=f_{2}+K+K
$$

and

$$
\begin{equation*}
2 \operatorname{Re} \sum_{k=1,2}\left\{s_{k \phi} B_{x}+\left(\varepsilon_{k \phi}\right) \phi_{k}^{0}\left(z_{k}\right)\right\}=f_{1}-\frac{k_{x}}{4}-\frac{F_{0}}{4} \sum_{n \in i, 3}^{\infty} \frac{z_{n}+a_{n+2}}{(n+1)}+K_{z} \tag{2.33}
\end{equation*}
$$

Now with equations (3.32) continaons on the whole contour a solution for the holomorphic firrctions $\phi_{\mathbf{k}}$ can be obtained.

As previonaly mentioned, the terms $\phi_{k}^{0}\left(z_{k}\right)$ can be expressed as series of negative powers of z_{k} wilh anknown coefficients. Aiso the replacement of z_{k} by $\zeta_{k}=\sigma$ may be done on the hole edge.

Therefore the boundary conditions given in equations (3.31) can be expressed as follows:

$$
2 \operatorname{Re} \sum_{k=1,2}\left\{B_{\psi}+\phi_{k}^{0}(0)\right\}=f_{2}+K+\mathbf{K}_{5}
$$

and

$$
\begin{equation*}
2 \operatorname{Re} \sum_{k=1 ; 2}\left\{s_{k \phi} B_{k}+\left(s_{k \phi}\right) \phi_{k}^{0}(a)\right\}=f_{1}-\frac{R_{x}}{4}-\frac{P_{0}}{4} \sum_{n=1,3}^{\infty} \frac{a_{n}+a_{n, 2}}{(a+1)}+K_{2} \tag{2.34}
\end{equation*}
$$

The constants on the right hand sides of the above equation determine the constants B_{k} and the transiation of the plate as a nigid body. These equations may now be simplified to:

$$
\begin{align*}
& 2 \operatorname{Re}, \sum_{k=1,2} \phi_{k}^{0}(\sigma)=f_{2} \\
& 2 \operatorname{Re} \sum_{k=1,2}^{j} s_{3 \phi} \phi_{k}^{0}(\sigma)=f_{:}
\end{align*}
$$

Which may be combined to give:

$$
\begin{equation*}
\left(s_{l \phi}-s_{k \phi}\right) \phi_{2}^{g}(\sigma)+\left(s_{l \phi}^{-s_{k \phi}}\right) \overline{\phi_{l}^{q}(\sigma)}+s_{l \phi}-\overline{s_{\ell \phi}} \overline{\phi_{l}^{\gamma}(\sigma)}=s_{t \phi} f_{2}-f_{4} \tag{2.35}
\end{equation*}
$$

Now $\phi_{x}^{(}(\sigma)$, continuous on the edge of the hole, is the boundary value of the function $\phi_{(}\left(\zeta_{2}\right)$ on the edge of the hole. Also $\phi_{0}(\omega)=0$ since the plate is infinite and at infinity the stresses must be zero. Now by considening Cauchy's integral we can write:

$$
\frac{1}{2 \pi} \oint \frac{\phi_{k}^{0}\langle\sigma\rangle}{\sigma-\zeta_{k}} \cdot d \sigma=\phi_{k}\left(\zeta_{k}\right)
$$

$$
\begin{equation*}
\frac{1}{2 \pi} \oint \overline{\frac{\phi_{g}^{g}(a)}{\sigma-f_{z}}} \cdot d \theta=0 \tag{2.37}
\end{equation*}
$$

and applying (2.37) to (2.36) results in:

$$
\begin{equation*}
-\left(s_{\phi}-S_{k \phi}\right) \phi_{k}^{c}\left(\zeta_{k}\right)=\frac{s_{1}}{2 \pi} \oint \frac{f_{2}}{\sigma-\zeta_{k}} \cdot d \sigma-\frac{1}{2 \pi_{j}} \oint \frac{f_{1}}{-\zeta_{k}} \cdot d \sigma \tag{2.38}
\end{equation*}
$$

The integral determination of the terms on the right hand sides of this equation are presented in Ref. [3]. The resuiting equation is: .

$$
\begin{align*}
& \left.-\frac{\pi i}{4} \sum_{n=0,1,2}^{\infty} \frac{x_{n}(1+i n g l \phi)+a_{n+2}\left(i-2 i v_{l \phi}\right)}{n+1} \zeta_{i}^{n-1}\right] \tag{2.38}\\
& \sum_{a \leq n}=\sum_{m=1,2}^{\infty} \sum_{n=1,1}^{\infty}+\sum_{m=1,4}^{\infty} \sum_{n=2,4}^{\infty} \\
& a_{a}=0
\end{align*}
$$

where

Except for the coefficients a_{n}, the complex stress functions qhe (z_{k}) are completely determiser. It now only remains to determine these constants by applying displacements on the ede of the hole, (resulting from some load), in equation (2.10).

By making use of equation (2.39) and equat n (2.10) the following equations may be derived:

$$
\begin{aligned}
& u=\sum_{k=1,2}^{\infty}\left\{u_{k \phi} \phi_{k}^{\theta}(\sigma)+\overline{u_{k \alpha}} \phi_{k}(\sigma)\right\} \\
& =\frac{P_{0}}{4}\left\{\sum_{n=0,1,2}^{\infty} F_{i}^{\{\pi)} \sin (n+1) \theta-\frac{g}{\pi} \sum_{\infty \rightarrow n}^{(\pi, n)} \cos m \theta\right.
\end{aligned}
$$

$$
\begin{align*}
& v=\int_{k=\{y 2}^{\infty}\left\{v_{k \phi} \phi_{k}(\sigma)+\overline{v_{k}} \phi_{k}^{\pi(\sigma)}\right\} \\
& =\frac{P_{0}}{4}\left\{\sum_{n=0, n, 2}^{\infty} F_{i}^{(n)} \cos (n+1) \theta+\frac{8}{\pi} \sum_{n, \theta} F_{2}^{i n+n)} \sin \min \theta\right. \\
& \left.-\sum_{n=0,1,2}^{\infty} \mathrm{F}_{4}^{*\{n\}} \sin \{n+1) \theta-\frac{8}{\pi} \sum_{\pi x, \pi}^{*} \mathrm{~F}_{2}^{*\{m+n\rangle} \cos m \theta\right\} \tag{2.41}
\end{align*}
$$

Where the ternas F_{α}^{β} and $F_{\alpha}^{* \beta}$ are all given in full in Appendix E.

A final condition of displacement on the hole edge may be obtained by coasidering đisplacements in the radial and tangential directions. It can easily be derived that this further condition may be expressed as;

$$
\begin{equation*}
\text { i } \cos \theta+\left(v-v_{1}\right) \sin \theta=0 \tag{2.42}
\end{equation*}
$$

Some of the series appesting tin the displacement formulae (2.40) and (2.41) may be replaced by analytic expressions that are only valid for $0<\theta<\pi$. The resulting expressions may be substituted into equanion (2.12). This results in.

$$
\begin{equation*}
a_{10}+\sum_{n=2+3,4}^{\infty} a_{0 \psi^{2}}^{a_{2}}=0 \tag{2.43}
\end{equation*}
$$

where a_{13} and $a_{x \theta}$ are known coefficients.

With

$$
C_{5}=C_{5} \cos \theta-C_{4} \sin \theta
$$

$$
C_{1}=C_{4} \cos \theta-C_{7} \sin \theta
$$

$$
C_{1 \theta}=C_{8} \cos \theta-C_{8} \sin \theta
$$

and

$$
C_{11}=-C_{1} \cos \theta-C_{0} \sin \theta
$$

These become:

$$
a_{1 \theta}=\frac{C_{4}}{2} \sin 2 \theta+\frac{C_{5}}{2} \cos 2 \theta+C_{5}\left\{\theta-\frac{\pi}{2}\right] \cos \theta-\frac{C_{7}}{2} \sin \theta
$$

$$
+\frac{8}{\pi} \sum_{m=1,3}^{\infty} \frac{2 C_{8} \sin (m \theta)-c_{8} m \operatorname{mec} s(m \theta)-2 C_{7}(-1)^{\frac{m+1}{2}} \sin \theta}{m^{2}(m-2)(m+2)}
$$

and for even r:

$$
\begin{aligned}
a_{a \theta}= & \frac{2}{n^{2}-1}\left[C_{10} \cdot n \cdot \sin (n \theta)+C_{11} \cos (n \theta)+2 C_{8} \sin (n \theta)\right. \\
& \left.-\frac{C_{6} \cdot n}{x}\left[\frac{4}{n^{2}-1} \cos \theta-(2 \theta-\pi) \sin \theta\right]-C_{4}(-1)^{\frac{n}{2}} \sin \theta\right] . \\
& +\frac{8}{x} \sum_{a=2,4}^{\infty}\left[\frac{2 C_{9} \operatorname{man} \cdot \sin (m n)-C_{8} n\left(m^{3}-n^{2}+1\right) \cos (m \theta)-C_{n} n\left(m^{2}-n^{2}+1\right) \cdot(-1)^{\frac{m}{2}} \operatorname{in} \theta}{N_{m, n}}\right]
\end{aligned}
$$

and for odd values of n :

$$
\begin{aligned}
a_{n \theta}= & \frac{2}{n^{2}-1}\left[C_{10} \cdot n \cdot \sin (\mathrm{n} \theta)+C_{11} \cos (n \theta)+2 C_{0} \sin (n \theta)\right. \\
& \left.-\left\{2 C_{6}(-1)^{\frac{3-1}{2}}+C_{7} n(-1)^{\frac{n-1}{2}}\right] \sin \theta\right] \\
& +\frac{s}{\pi} \sum_{m=1,3}^{\infty}\left[\frac{\left.2 C_{8} m n \cdot \sin (m \theta)-C_{B^{n}\left(m m^{2}-n\right.}^{2}+1\right) \cos (m n)-2 m i n \cdot C_{7}(-1)^{\frac{m+1}{2}}}{N_{m, n}} \sin \theta\right]
\end{aligned}
$$

The terms a_{n} may now be solved from:

$$
\left\{a_{n \phi}\right\}\left\{a_{n}\right\}=\left\{-a_{1 \dot{\phi}}\right\}
$$

In summary then

- the stresses around an infinite plate with a hole and loaded pin are described by:

$$
\begin{aligned}
& \sigma_{x}=2 \mathrm{Re} \sum \mathrm{~s}_{\mathrm{x}}^{2} \phi_{\mathrm{k}}^{\prime}\left(z_{\mathrm{k}}\right) \\
& \sigma_{y}=2 R e \sum \phi_{k}^{\prime}\left(z_{k}\right) \\
& \sigma_{x y}=-2 \mathrm{Rez} \sum \mathrm{~s}_{\mathrm{k}} \phi_{\mathrm{z}}^{\prime}\left(z_{k}\right)
\end{aligned}
$$

where

- $\quad \phi_{k}\left(x_{k}\right)=g^{(k)} \cdot z_{k}+A_{k} t_{n} z_{k}+\sum_{n}^{\infty} g_{n}^{\left(k_{j}\right)} \cdot z_{k}^{-n}$

Using the substitution

$$
\zeta_{k}=\frac{x_{k}+\sqrt{z_{k}^{2}-B_{k}^{2}-1}}{1-i_{k}}
$$

this may be wititen as

$$
\phi_{k}\left(z_{k}\right)=A_{k} \in n \zeta_{k}+\phi_{x}^{0}\left(x_{k}\right)+B_{k}
$$

and

$$
\phi_{k}^{\prime}\left(z_{k}\right)=\frac{k_{k} b_{k}}{\zeta_{k}} \frac{b_{k}}{\partial z_{k}}+\phi_{k}^{\prime \theta}\left(z_{k}\right)
$$

where, froun above

$$
\frac{\partial C_{k}}{\partial z_{k}}=\frac{\zeta_{k}}{\sqrt{z_{k}^{2}-s_{k \phi}^{2}-1}}
$$

- The term Ak given in equation (2.22) may be reworked into the following term:

$$
\begin{aligned}
& A_{k}=\frac{\mathrm{P}_{0}}{2 \pi i\left(z_{\ell \phi}-s_{k \phi}\right)}\left\{\frac{1}{2}\left[\mathrm{R}_{\mathrm{x}}+\mathrm{s}_{\phi \phi}-\mathrm{H}_{y}\right]\right. \\
& \left.+\mathrm{S}_{11} \cdot \mathrm{~A} \cdot\left[\mathrm{R}_{x}+s_{\mathrm{k} \phi} \cdot \mathrm{R}_{\mathrm{y}}\right]\left[\overline{s_{\ell \phi}}-\overrightarrow{s_{\ell \phi}}\right]\left[\overline{s_{k \phi}} \times \overline{s_{\ell \phi}}\right]\right\} \\
& A=\frac{C a}{4 S^{2} \pi_{k}^{2}\left(l_{k}+3\right)^{2}}
\end{aligned}
$$

where

- Forcing z_{k} to the bole edge where $\zeta \approx z=a=1$, enables a boundary value to be inserted jato the Canchy jategral given in equation (2.37) to yield the function for $\phi_{k}^{0}\left(\zeta_{k}\right)$ given in equation (2.39). 像 ${ }^{\prime \prime}\left(\zeta_{x}\right)$ is then easily derived and the stress may be evaluated anywhere in the plate.

2.4 Superposition of Stress Staices

Due to the form of equation (2.11), it can be shown that the terms representing the homogeneous stress fielt and the effects of a pin loaded hole may be calculated separately and the final stress field obtained by superposition.

This technique is useful when including practical issues such as finite specimen width

2.5 Computcrisation of the Mathematical Model

Although it is not the purpose of this thesis to examine computational soffware or hardmare, it was believed necessary to include a brief discussion due to the rapid developments occurring in microprocessors and software. It is felt that this aspect should be taken into consideration when exaluating the analysis technique presented in this thesis. The development of parallel iterative solution algorithons and the associated harduare for the finite element method are reievant to comparisons of compuationsl efficiecy. The softwate language OCCDM, although considered to have the attribute of simplicity (Davis [31]) for expressing many of the requizements of concurrency software, is still a long way from being a competitive tool tor the solution of frite element equations. In liact, the advantages which can be gained from concurrency are equally applicable to the technigue presented in this thesis, and are mote easily applied.

Another factor to be considered is the availability of EEM software having the capability of handling layered and orthotropic elements and the additional complications of model complexity due to the contact problem.

It was with some of these factors in mand that a decision ves made to implement the method of complex stress functions as presented by De Jong on a medium performance personal computer. Although the manijpuation of a computational process involving complex variables would have been far simpler on a main frame computer using FORTRAN with complex rariable capability, this would to some extent detract from one of the main atractions of the method, viz. portability.

Numerous languages are now available on personal computers, and the features of high-level languages which support gord software design methods, as well as the need to improve the likelihood of software correc aess and reliability are ascressed in length by Davies [31]. With the possibility of using the method presented in this paper in a modular approach to the design of a data-base-centered modular design of a more expansive composite design and analysis sotware system, the" C^{n} language was chosen. Although this is a high level language, it has the advantage of being able to comple and ran software models with multiple data segments, each 64k in size

为
and up to I Mb for code on a personal computer having 640k ram and a hard or floppy disc.

The program BHOLES has subsequently been translated into pascal and implemented on an APOLLO domain 3000 system with improved graphics interfacing. It thould be noten that a BAsIe' preprocessor was used in the original version for this thesis as well the a simple graphics program, also in BASIC. These are not discrssed. Appendix L contains the main section of the C progran. In order to illustrate the coding a smple inwchart is given here.

Figure 2.5 : Simplified flowchart for basic model.

The generally accepted method of representation of the stresses in the region of a F ile or a pin-lozded hole in a composite laminate is a plot of radial and tangential stresses around the edge of the hole. It is however belleved by this author that this method which may be applicable for isotropic studies is not applicable for directional multi-component materials. A typical representation of the stresses in a laminate as presented by De Jong [2] is given in Figure 2.6 .1 for reference. By considering a more detailed stress distribution as described in Chapter 2.7, it is believed three graphs will not complicate msters much more than two. To this end, instead of using tangential and radial stresses, stresses parallel to the fibre direction, perpendicular to the fibre direction and shear in the matrix are used. Further, the distribution of these stresses in the whole region surtounding the hole may be beneficial in obtaining a better understanding of the mechanisms of load transfer and lead to theories of optimal lay up ries suitable for designers. The presentation of the stress distribution around a pin-loaded hole or hole is thetefore represented by means of a three dimensional plot as illustrated in Figure 3.1.2(a) for a unidirectional carbon laminate with a pin load applied at 15° to the direction of the fibres. One further plot is provided for completeness. This is a plot of failure propensity where, in this thesis, the failure propensity is based cn the Tsaj-Fill failure criterion and is ased to locate the position of the onset of first damage, as well as critital load distributions. A set of four, (three-dimensional), plots per layer are thus nsed to describe the stress state. A complete set of graphs as obtained on an APOLLO are shown in Figure 2.6.2. It should be noted that for a lamisate, the production of four graphs per layer may seem excessive, but it must be kept in mind that such a system will enable the study of layer orientation effects on indiridual layer stress distributions, and not only may this enable optimum laminate design but will enable further maderstanding of the mechanisms of load transfer in multi-layered orthotropic systems.-

 A pigarnactionke Cry-h.p. Luctuare.

Figure 2.6.1 : Two-dimensional stress plot (De Jong [3])

Figure 2.6.2: Apollo domsin graphics output.

2.7 Failure Criteria

2.7.1 The Tsai-Hill failure criterion

A multitade of failare criteria have been proposed by many researchers. Some of these are simple while othets are complicated. A discussion on the vations failure criterion is avoided. In onder to verify fenults with those presented by De Jong the Tsai-Hill failure critaniz has been applied in thé: hesis. Failure propensities aro therefore also based on this criteria.

While attempting to correlate results with those priblished by De Jong, tit was found that this failnre criteria resulted in close corselation for single fayered materials but not for multilayered materials. It was discovered that De Jong applied this criteria to maltilayered materials asing test velueg of strength obtained from tests on these multilayered lafainates. Using these values of strength in the principle directions quoted by De fongy good correlation was found. Using the single layer test values applied to individnal layers, and Etresses obtained by applying classical laminate theory to the laminate in order to get the individual layer stresses, resulted in large errors. It was therefore believed to be necessary to inclute a brief investigation into the porsible reasons for the discrepancy so as to avoid possible exroneous application of this failure critexion.

The basic form of the failure criterion is:

$$
\begin{equation*}
\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}}+\frac{\sigma_{2}^{2}}{\sigma_{2}^{7}}+\frac{\sigma_{1} \sigma_{2}}{\sigma_{1}} \frac{\sigma_{3}^{2}}{\sigma_{2}}+\frac{\sigma_{3}^{2}}{\sigma_{3}^{2}}=1 \tag{2.44}
\end{equation*}
$$

The envelope formed by this criteriz is intustated in Figure 2.7.1. Only the upper half is shown to improve clacity. The differing lobe sizes due to the differing aitimate strengths should be noteri.

Figure 2.7.1 : Visualtsation of Tsai-mill failure envelope.

In order to determine the probable mode of failure, it was necessary to extract misie information from the criteria than just a "yes/no" type of failure prediction. By considering a cross section through the envelope, as illustrated in Figure 2.7.2, the sensitivity of a lamina to either the stress parallel to the fibze direction (σ_{1}), parpendicular to the fibre direction $\left(\sigma_{2}\right)$ or due to shear $\left(\sigma_{3}\right)$ may be investigated. Figure 2.7.2 shows this cross-section in detail. Again only the top half of the envelope is showa.

Referring to Figure 2.7.2, the two points A and B represent two stress states with the same parallel stress (i.e. stress states occurring in the same cutting plane). If one were now to calculate a reserve factor based on extending the line $0 A$ to as and using the definition of reserve factor equal to $a_{3} 0$ divided by $A 0_{7}$ it can be seen that a point B could also be located having the same reserve factor given by $b_{3} 0$ divided by $B 0$.

Assume now that the σ_{2} stresses remain fixed as well, Any change in the stress state can now only be achieved by varying the thitd. The variable stress can now be used to calculate a reserve factor with respect to that stress only. In this case the use of the σ_{3} stress indicates a larger failure propensity at poind A than at point B.

Using this approach it is possible to extract five reserve factors which will more clearly define the stress state of a layer. These are given below:

- The Tsai-Hill absolute value plus a quadrant indicator.
- The vectored reserve factor.
- The parallel stress reserve factor.
- The perpendicular stress teserve factor.
- The shear stress reserve factor.
where the "vectored" reserve factor is defined as that obtained by maintaining a constant ratio of parsllel, shear and perpendicular stresses.

This approach has been applied to a $[90 / \pm 45]$ carbon laminate. Appendix B givec details of results tor this laminate. These results are summarised in Table 2.7.1.

Figure 2.7.2 : Section through Tsai-Hill failure envelope.

Table 2.7.1 : Strength predictions for a $[90 / \pm 45]$ laminate,

PROPERTY	BASIC LAYER PROPERTIBS (TBST)	LAMINATE PROPBRTIBS (TEST)	CALCULATED LAMINATE FPF AND MODULI
E_{5}	9.11 GPa	23.62 GPa	24.79 GPa
$\mathbf{E}_{\mathbf{y}}$	156.39 GPa	80.03 GPa	88.42 GPa
G_{xy}	5.35 GPa	18.55 GPa	22.67 GPa
$\nu_{\text {Iy }}$	0.0198	0.1650	0.19787
σ_{1} (Tens)	64 MPa	212 MPa	202 MPa
$\sigma_{1}(\mathrm{Comp})$	212 MPa	-286 MPa	-233 MPa
σ_{2} (Tens)	1600 MPa	1072 MPa	665 MPa
σ_{2} (Comp)	${ }^{1} 1042 \mathrm{MPa}$	-805 MPa	-665 MPa
σ_{3}	70 MPa	217 MPa	$-300+\mathrm{MPa}$

Figure 2.7 .3 : Axes convention used by De Jong [2].

CHAPTER 3 MODEL VERIFICATION

Verification of the computer model was done in four ways. These were:

- Correlation with expectations on a physical level.
- Correlation of intermediate results with similar results by De Jung.
- Correlation of failure load and locations for a few laminates with De Jong.
- Test result correlation - De Jong [2].

Each of these will be discussed in turn.

3.1 Verification by Physical Interpratation

One major aim of this thesis mes te develop a model capable of describing the mechanisms of load transfer that occurs when a pin bears against the edge of a bole in a composite laminate. In order to justify the stress fields produced by this nodel a unidirectional laminate with a pin-load aligned in the direction of the fibres is considered. Figure 3.1.1 shows a simplified representation of suck a situation. The diagram also shows expected parallel, transverse and shear stresses. These are easily seen to correiate with the graphical program outputs shown in Figure 3.1.2(e) and 3.1.2(b).

For the case where the load angle is no longer in the same.direction as the fibres, no detailed discussion is given. It should however be noted that the load and displacement angles are ao longer coincident, that the maximum compressive stresses are smaller and occur at an angle to the load direction. Figure 3.1 .2 shows the ense for a displacement angle of 30 degrees with the fibre direction.

Appendix (A) contains numerous piots for various cases of loading. In these plots the angle of displacenent is varied, the ratio of specimen width to hole diameter is varied and in some cases pure tensile or compressive fields are represented or superimposed onto the stress field due to a pin loaded hole in a plate.

FIGRE STRESS

Figure 3.1.2(a) : Three dimersional plots.

Figure 3.1.2(b) : 30° laminate - quadrant $\left(90^{\circ}\right.$ to 180°) fibre stress.
It should be noted that the last plot in this series is for a $\left[45^{\circ}\right]$ laminate and the stresses can no longer be treated as stresses in the fibre direction, perpendicular to the fibre direction and shear. The failure propensity diagram is also not valid. Further work is required in this ares to reduce the laminate stresses to individual layer stresses. This eatails the development of a more detailed post processor.

The most intexmediate result is the production of the an terms described by equation (2.42). A qualitetive estimate of the accuracy of solution can be made by examining the terms for any, ymmetrical displacement case where all even temas produred should ideally be zero in order that symmetry of the pressure distribution is maintained. Results for a unidirectional carbon laminats obtained from program BHOLES is compared in Table 3.1 with results published by De Jong [2].

Table 3.1: Gorrelation of intermediate results.

BHOUES		DE JONG	
$\mathrm{UD}=$ (0 deg $)$		UD $=(0 \mathrm{deg})$	
$\mathrm{an}_{\mathrm{n}}[1]$	+1.000e-040	a(1)	$0.100 \mathrm{~d}+01$
$\left.\mathrm{a}_{\mathrm{n}} \mathbf{2} 2\right]$	+2.625e-011	a(2)	-0.111d-05
$\mathrm{a}_{\text {a }}(\mathrm{Bj}$	-3.823e-001	a ${ }^{\text {(3) }}$	$-0.382 \mathrm{~d}+00$
$\mathrm{an}_{\text {[} 41}$	+4.271e-012	a(4)	$0.467 \mathrm{~d}-07$
$\mathrm{a}_{\mathrm{n}} \mathrm{F}_{51}$	+1.429e-001	(5)	$0.142 \mathrm{~d}+00$
2116]	+1.173e-011	a(6)	-0.159d-05
$\mathrm{an}_{\mathrm{n}} 77$	-6.377e-002	a(7)	-0.637d-01
	+9.817e-012	a(8)	$-0.268 \mathrm{~d}-05$
$\mathrm{an}_{\text {[}}^{\text {[9] }}$	*1.094e-002	a(9)	$0.108 \mathrm{~d}-01$
$\mathrm{a}_{5}[10]$	$-1.200 \mathrm{e}-011$	a(10)	-0.393d-05
$\mathrm{an}_{\mathrm{n}}\left[1 \mathrm{l} \mathrm{I}^{\text {a }}\right.$	$-1.585 \mathrm{e}-002$	a(11)	-0.158d-01
$\mathrm{a}_{\mathrm{n}}[12]$	+1.252e-011	a(12)	-0.460d-05
$\mathrm{a}_{\mathrm{n}}[13]$	-4.667e-003	$a(13)$	-0.466d-02
a_{n} [14]	+1.484e-011	a(14)	-0.488d-05
$\mathrm{z}_{n}[15]$	-6.5818-003	$2(15)$	-0.657e-02
$\mathrm{a}_{\mathrm{n} \text { [16] }}$	+1.191e-012	3 a 16	-0.407d-05
$\mathrm{a}_{\mathrm{n}}[17]$	-3.601e-008	a(17)	-0.359d-02
$\mathrm{an}_{\mathrm{n}}[18 \mathrm{C}$	+9.738e-012	a(18)	-0.295d-05
$\mathrm{an}_{\mathrm{n}}[19]$	- $5.434 \mathrm{e}-003$	a(19)	-0.243d-02
$\mathrm{a}_{\mathrm{n}}[20]$	+6.267e-012	$a(20)$	-0.161d-05
$\mathrm{ar}_{5}[21]$	-9.174e-004	a 21)	-0.974d-03
$\mathrm{a}_{\mathrm{n}}[22]$	+2.155e-012	a(22)	-0.478c-06
$\mathrm{a}_{\mathrm{n}}[23]$	-2.599e-004	a(23)	-0.2578-03

3.3 Correlation of Failere Load Predictions
(i) Case 1: WD laminate with 0 deg displacement angle

Input Data:

Lamina Properties:	$\mathrm{E} 11=9.11 \mathrm{GPa}$
	$\mathrm{E} 22=156.39 \mathrm{GPa}$
	$\mathrm{V12}=0.0198$
	$\mathrm{G} 12=5.35 \mathrm{GPa}$.
Lamina Compliencies:	$\mathrm{S} 11=1.097695 \mathrm{E}-10$
	$\mathrm{~S} 22=6.394271 \mathrm{E}-12$
	$\mathrm{~S} 12=-2.173436 \mathrm{E}-12$

Displacement Angle:	0 degrees
Directionality:	0.2413541
Angularity:	0.08316018
Width to hole diameter ratio:	infinite
No. of terms in approximations:	50

Output Data:

(a) Tailure propensity diagram gives failure location at 90 degrees.
(b) Extracted stresses for
P3 $=123,5 \mathrm{MPa}$ are
$\sigma_{1}=-254.40 \mathrm{MPa}$
$\sigma_{z}=-70.15 \mathrm{MPa}$
$\sigma_{3}=0.00 \mathrm{MPa}$

Tsai-Hill value $=0.993$
Vectored reserve factor $=1.003$
Reserve factor $\left(\sigma_{1}\right)=3.534$
Reserve factor $\left(\sigma_{2}\right)=1.003$

Failure is therefore by splitting at 90 degrees and a load of 123.5 MPa . Failure value calculated by De_{E} Jong - 123 MPa .
(ii) Case 2: UD carbon laminate with a 30 degree pin displacement angle.

Input Data:

Same as for case (i) but displacement angle $=30$ degrees.

For this case detailed results analysis is not given. Refer instead to Thapter 2.7.1 on extension of the Tsai-Eill failure criserion. The results are presented to demonstrate the fact that failure occurs at neither the location of maximum shear, fibre or resin stresses, bat at some combination of them. This location is however dependent on the particular failure criterion used to locate it.

Results:
(a) Failure at 105°
(b) Vectored reserve factors: Tsai-Hill value $=1.007$

Reserve factor $\left(\nu_{1}\right)=1.808$
Reserve factor $\left(\sigma_{2}\right)=1.020$
Reserve factor $\left(\sigma_{\mathrm{s}}\right)=1.004$

Failure is at a load of 119 MPa .
Failure value calculated by De Jong $=118 \mathrm{MPa}$.

The method of calculating this location and value is somewhat more Iaborious than locating it by means of a propensity diagrann.

Table 3.2 shows the relevant values and vectored-reserve-factor based deduction of the failure modes. The resuiting load resultant angle is approximately half of the displacement angle with a value of 14,9 degrees.

The data in Table 3.2 is presented in Figure 3.3.

Table 3.2: Stresses and reserve factors for unit load $=1 \mathrm{~N}$ for UD carbon.

\star

0

Figure 3.3 : Plot for $\phi=30$ degrees \{UD carbon\}. Stresses at hole edge for load angle $\phi=30$ degrees.

3.4 Test Resalts (De Jong)

De jong [2] ran tests in perification of the amalytical results of a model which included pin flexibility, friction and clearance. The tests involved accurate measuring of the elastic response of the test specimens as well as the aconstic emigsions.

These results will not be discussed in detail here except to comment that no significant damage is reported to have occurred until loads in excess of 80 percent of the theoretically predicted failure load. This is attributed to, amongst other things, experimental error and to some extent the failure criteria used.

It should be noted that the experimental results appear to correlate very well with theory for elastic response and that bolt clearance has a significant effect on the results.

CHAPTER 4 DISCUSSION OF RESULTS

A literature sarvey on mechanical joints in composite laminates shows that much work hes been done in this area of advanted composite structures.

Although empirical methods have been developed and may be a useful method for obtaining parametric information or ever as the basis for a desigr methedology, they are expensive, (due to the large number of variables), and do not provide an insight into the mechanisms of load transfer. They are therefore limited in the amount of understanding that can be obtained from them (due to the large number of unknowns).

Methods of obtaining the stress distribution, elastic response, and failure load (and mode) include finite element models. This method was however not deeply investigated due to the fact that the amount of work reguired to build a model, and the amount of effort required to alter a lay-up or width to diameter ratio, is large when compared to the less detailed model afforded by complex stress functions, (the main loss in detail occurring in the lack of three dimensional effects).

The method of complex stress functions hes been used to develop a model for a hale or a pin-loaded bole in a composite laminate with variable width to diameter ratios and load angles. The program BHOLES has beer shown by correlation with an independently developed model to generate accurate data. Indications are that a higher degree of computational accuracy has been achieved in a program capable of ruming on a personal computer than wese achieved on a main frame using Fortran IV, thos also adding an element of portability.

Theoretical strength predictions have not been correlated directly with test results. This is mainly due to the ligh cost of the required test equipment and testing. Although BHOLES does not include the effects of pin fiexibility or friction, indications of the effectiveness of the method can be indirectly obtained by referring to results produced by De Jorg [2]. Test results showed thet extensive damage was not detected until a load of around 80 percent of the theoretical failure load was applied. The elastic response predictions appear to conrelate well for pin clearances of 0 to 2 percent.

Some experimental work has been done on the effects of bolt torque on the bearing strength of glass fibre laminates (3G) and indications are that increases in joint efficiency of as much as 20 percent can be achieved.

CHAPTER 5
 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

Finite element modeling of bolted joints is probebly the most effective method of studyizg the behaviour of bolted joints in composite laminates due to the fact that thrse dimensional effects can be included in the model. This means that bolt torque and edge effects can also be investigated. However, the work required by this method and the complications jovolved in modelling an orthotropic layered system with bearing loads make it an expensive and highly specialised tool which should only be applied at a later stage for deeper investigetions.

Complex stress functions offer an efficient and apparently effective analytical/ computational tocl for investigating tine belaviour of pin-loaded joints. Also the spin-offs from this approach are more extensive.

For example:

- Graphical desiga data may be produced efficiently. These may be corrected for three dimensional effects using data obtained from limited testing.
- The method may also be used to analyse square, elliptical and triangular cut-outs in Laminates using conformal transformations.
- Eract solutions for specific situations may be derived which are simple enough to be implemented on a programmable calculator.

The importante of being able to design and analyse mechanical joints in composite laminates cennot be ignored. Computational techniques for investigating the behaviour of such joints for purposes of understanding, pretiminary eoncept evaluation and the production of design data, is made particularly atizactive by the rapid growth in computer technology. The bigh coss of obtaixing relevant data due to the vast umber of unknowns makes a computational approach even more attractive.

In the course of this research mumerous related areas of importance were isolated. Some of these are listed below for reference:

- Effective failure criteria and an efficient materials data base linked to a statistical data analyser are required.
- Highly loaded advazced composite structures are often limited by the effectiveness of joining methods in general.
- The nature of advanced composite structures requires effective analysis. This analysis can be achieved by the implementation of situation dependent computational suits which are capable of operating interactively with an effective data-base.
- Mechanical joining techniques may be effective in the integration process and as such may be assisted by bonding.

Much work remains to be done on joints in composite materials in generat, on mechanical joints, and the complex stress function approach to the computation of the behaviour of advanced composites. The model presented in this dissentation is by no means complete and much acope for further develepment exists. Some aspects still requiring attention are listed below:

- The present model must be upgraded to include pin flexibility, pin friction, and shear in the hornogeneors stress feld.
- The approach can be extended to rows of pint-loaded holes, thus allowing investigation of effective bolt pitch.
- The exact solutions for specific situations should be investigated for general applicability.
- Application of the method to other cul-out shapes should be investigated.
- The model at present requires a fair amount of pre- and post-processing. This aspect has yet to be fully developed.
- Drivers for the data generation unit can be developed which are aimed at the generation of design data.
- Probably most importantly of all, accurate test procedures must be developed to provide information on the accaracy of the model, and the role of three dimensional effects.

REPFERENCES

[I] Bidgood, P.M. : Mechanical joints in composites - Literature survey, strmmary and notes, (Urepublished).
[2] De Jong, T. and Klang, E.C. : Pinned connections in composite materials Theory and experiment, Delft University of Technology, Report No. LR-445, Jan 1985.
[8] de Jong, T. and Vill, H.A. : Stiesses around pin-loaded holes in elastically orthotropic plates with arbitrary load direction, Defft University of Technology, Report No. LR-333.
[4] Bidgood, P.M. : Mechanical joints in composites, Research project for BSc Eng (Mech(aero)), University of the WitwatersfLnd, South Africa, Dec. 1984.
[5] Eisenman, J.R. and Loenhardt, J.L. : Improving composite bolted joint effictency by laminate tailoring, ASTM, STP 749, 1989, pp. 117-120.
[6] Poon, C. : Literature review on the design of composite mechanically fastened joints, National Aeronautical Establishment, Ottawa, February 1986.
[7] Hart-Smith, L.J. : Mechanically-fastened joints for advanced composites phenomenological considerations and simple analyses, Structures Subdivision, Donglas Aircraft Compary, McDonnal Douglass Corporation - in Proccedings of Fourth Conference on Advanced Cumposites in Structural Design, 1979.
[8] Collings, T.A. : The use of bolted connections as a means of joining carbon fibre reinforced plastics, Structures Department, Royal Aircraft Establishment, Farnborough. Report No. C229/77, in Designing with Fibre Reinforced Materials. (I Mech E Conf. Publications, 1977-1979).
[0] Matthews, F.L. (et al) ; The bolt bearing strength of glass/carbon hybrid composites, in Compesites, Butterworth and Co (Publishers) Ltd, Jufy 1982.
[10] Oplinger, D.W. : On the strectural behaviour of mechanically fastened joints in composite structures, Army Materials and Mechanics Research Centre, Watertown, Massachusetts.
[11]* Sandifer, J.P. : Fretting fatigue on graphite/epoxy composites, ALAA, Paper No. 77-418, 1077.
[12] Goodwin, E.W., Mattews, F.K. and Kilty, F.F. : Strength of muiti-bolt joints in GRP, in Composites, Butterworth and Co (Publishers) Ltd, Juiy 1982.
[13] Rosenfield, M.S. : The effect of a corrosive enviromment on the strength and life of graphite-epoxy mechanically fastened joints, Naval Air Development Centre, Waxminster, Pa.
[14] Air Force Materials Laboratory : Comosion behaviour of metal fasteners in graphite-epoxy composites, Air Force Systems Conmend, Wright-Patterson AFB, Ohio, Febr. 1975.
[15]* Whiney, J.M. and Nuismer, R.J. : Stress tractare criteria for laminated composites containing stress coacentrations, Journal of Composite Materials, Vol. 8, July 1974, pp. 253-265.
[16] Furguson, G. : Tests to establish the effect of bolt torque on bolted joints in FRP, Jydergraduate Research, Universiby of the Witwatersrand, South Africa. (Unpublished Report).
[17] Waszcak,].P. and Graise, T.A. : Failuze mode and streugth predictions of apisotropic bolt bearing specimens, Department of Mechanical Engineering, Carnegie-Mellon Jniversity, Pittoburgh, Pennybivania in J. Composite materiais, Vol. 5, Juzy 1971, p. 421.
[18]* Chang, F.K., Scott, R.A. and Springer, G.S. : Design of composite laminates containing a pin-loaded hole, Journal of Composite Materials, Vol. 18, 1984, pp. 279-289.
[19]* Agarwal, B. M. : Behaviour of multifastener bolted joints in composite materials, AIAA-80-0307, 1980.
[20] Soni, S.B. : Failure analysis of composite leminates with a fastener hole, Joinizg of Composite Materials, ASTM, STP 749, K.T. Kedward, Ed., American Society for Testing and Materials, 1981, pp. 145-104.
[21]* York, J.L. et al : Analysis of the net tension failure mode in composite boited joints, Journal of Reinforced Plastics and Composites, Vol. 1, April 1982, pp. 141-152.
[22] Rowlands et al : Single- and muitiple-bolted joints in orthotropic materials, in Composites, Butterworth and Co (Publishers) Ltd, July 1982.
[23] Mathews, F.E. et al : Stress distribution around a single bolt in fibre-reinforced plastic, in Composites, Bitterworth and Co (Publishers) L\$t, July 1982, pp. 316-321.
[24]7 Rybickd, E.F. and Schmueser, D.W. : Effect of stacking sequence and lay-up angle on free edge stresses around a hole in laminated plate under tension, in J. Composite Materials, Vol. 12, No. 4, July 1978, p. 300.
[25] Turg, T.K. : On the computation of stresses around a single bolt in fibrereinforced plastic, in J. Composite Materials, Vol. 21, Butterworth and Co (Ptublishers) Ltç, Febr. 1987.
[26] Mathews, F.L. and Leong, W.K. : The strength of riveted joints in GFRP, Department of Aeronautics, Imperial College of Science and Technology, London, England, in ICCM 3, Vol. 2, pp. 1241-1246.
[27] Cole, R.T. (et al) : Fasteners for composite structuces, in Composites, Butterworth and Co (Publishers) Ltd, July 1982, pp. 233-240.
[28] Johnson, M. and Mathewn, F.L. : Determination of safety fectors for use when đesigning bolted joints in grp, in Composites, IPC Eusiness Press, April 1970, pp. 73-76.
[29] Tseng-Hua Tsiang : Survey of bolted-joint technology in composite laminates, Massachusetts linstitute of Tecionoingy, Cambridge, MA 02139, in Composite Technology Rewiew, Vol. 6, No. 2, Summer 1984.
[30] Goodwin, E.W. and Mathews, F.L. : A review of the strength of joints in fibre-reinforced plastics, in Compcsites, Butterworth and Co (Publishers) Ltd, July 1982, pp. 155-100.
[32] Davies, A.C.: Features of high-level languages for microprocessors, in Microprocessors and Microsystems, Vol, 11, No. 2, March 1087, pp, 77-87.

APPENDIX A

 THREE-DIMENSIONAL STRESS PLOTS

58

APPENDIX \mathbf{B}

STRES VECTORED RESERVE FACTORS USED IN tsai－mill fallure certeria［90／445］．

Failme Criteria Results

Reserve Factors for individual layers based on the Tsai－Fill failure criterion for a － $90 / 445]$ laminate；

1 Load $=+202 \mathrm{MPPa}$ in σ_{1} direction：

$$
\begin{aligned}
& 90^{\circ} \text { layers: } \quad \text { Tsai-Fill value }=0.994 \text { (Quadrant 8) } \\
& R F \text { (vect) }=1.003 \\
& \operatorname{RF}\left(\sigma_{2}\right)=1.003 \\
& \mathrm{RT}\left(\sigma_{1}\right)=3.984 \\
& \text { R点 }\left(\sigma_{3}\right)=\infty \\
& \text { \#45* layecs: Tsai-Eill walue }=0.853 \text { (Quadrant 5) } \\
& \text { RF (vect) }=1.083 \\
& \mathrm{FP}\left(\sigma_{2}\right) \quad \# 1.22 \\
& \text { RF (} \sigma_{1} \text {) }=2.132 \\
& R F\left(\sigma_{8}\right)=1.124
\end{aligned}
$$

2 Joad－ 233 MPa in σ_{1} direction：

90＂layers：Tsai－Hill value $=0.108$（Quadrant 6）
RF（vect）$=3.04$
$\operatorname{RF}\left(\sigma_{2}\right)=2.83$
$\operatorname{Rn}\left(\mathrm{A}_{1}\right)=6.85$
$R F\left(A_{3}\right)=\infty$
245＊layers：Tsai－Ejll value $=0.998$（Quadrant 3）
RF（vect）$=1.00$
RF $\left(\sigma_{2}\right)=1.69$
$R F\left(\sigma_{1}\right)=1.002$
$\mathrm{RF}\left(e_{s}\right)=1.00$

3 Load $=+665 \mathrm{MPa}$ in a $_{2}$ direction:

90* layers: | Tsai-Hill value | $=0.459$ (Quadrant 6) |
| ---: | :--- |
| $\operatorname{RF}($ vect $)$ | $=1.475$ |
| $\mathrm{RF}\left(\sigma_{2}\right)$ | $=9.52$ |
| $\mathrm{RF}\left(\sigma_{1}\right)$ | $=1.445$ |
| $\mathrm{RF}\left(\sigma_{3}\right)$ | $=\infty$ |
| $\pm 45^{\circ}$ layers: \quad Tsai-Hill value | $=0.998$ (Quadrant 1) |
| $\operatorname{RF}($ vect $)$ | $=1.001$ |
| $\operatorname{RF}\left(\sigma_{2}\right)$ | $=1.032$ |
| $\operatorname{RF}\left(\sigma_{1}\right)$ | $=1.38$ |
| $\operatorname{RF}\left(\sigma_{3}\right)$ | $=1.001$ |

$4 \mathrm{~L}_{\mathrm{oad}}=-665 \mathrm{MPa}$ in σ_{2} direction:

90° iayers:	Tsai-Hill value	$=0.968$ (Quadrant 8)
	RF (vect)	$=1.016$
	$\mathrm{RF}\left(\sigma_{2}\right)$	= 2.016
	RF (a_{1})	± 1.015
	$\mathrm{RF}\left(\mathrm{C}_{2}\right)$	= ${ }^{\circ}$
*45. Layers:	Tsai-Hill value	$=0.986$ (Quadrant 7)
	RF (vect)	$=1.001$
	$\mathrm{RF}\left(\mathrm{O}_{2}\right)$	$=3.195$
	$\mathrm{AF}\left(\sigma_{1}\right)$	$=1.253$
	$\mathrm{RF}\left(\sigma_{3}\right)$	$=1.0017$

APPENDIX C

LISTING OF C PROGRAM FOR CALCUEATING STRESS DATA

MODLLE FILE ITST-GHOAES, PRy: wist of included 4 I! as for manual applitation.

*atel 18003-9 9

Authorif P.M.Bidgoad.


```
Cc\{́files\aholeslbhal
ctMefiles'tholeslecalo
Et\Efilestmhoferlimp
t!etfil estbhol eylant man
```


MOCULE BHDL. E - CUTPuTs: Stress finid data qeneratian, Fesultant pin loars.
 PLimeded 5krain info.

tatel 15-05-4

Authert P,M, Bithood.

```
Cisclude *el\cfilegibholes\dec|n,h>%
vaid nalm(]
f
INOETRUETURE DEF去NTION.
```

typutef etruct	t dbuble	reimt	3coaplent
typedef wtruct stross_node	tdouble struft stretss_ngee	Tnext	3stress_value

(*-DELCARATIONS.

```deuble complex stressivalun void```	```#newdbz(ypid); temwno(voidy; Trempolnt (voids; 4r earoblamplen tcouzarbla!i```
cemplez	teubt (complex tal tha, cooplex theta):
complex	Tdive fenaplex taiphs, coaplex isetalif
complex	- Tpanc sconplex tel hha, doblole power)'
complex	tapd (complax Talpha, conplex tbeta):
complex	Indi (tompley tslaha, conplex logta) ;
complet	tsat !ecomplay talohal:
esmpler	Esitt (soaplex tal phal;
compley	thube (canplex talphel;
vaid	indtialisel (souble natrix2d[509t503)
vaid	instialinal (doub] e vectoridic50:
void	
voind	tranfcomplen talphag, cooplex thetelif
double	ginpletdouble dtrnsfdir)
double	dinplf (double dernsfilf);
$i n t$	i inplirat trasilil
const	double pi=3.14137\%654;


CMMEX VariabLE- MEM. ALLDC.

S11 * пemol) $\ddagger$	Sthlyi $=$ กewncol	scos = nawhetil	sphis [0] $=$ newno (t)
S2\% = nowno it	SPHI22 $=$ newne (1)	$5[1]=$ newno j)	sphitl) \# neancit
S12 ${ }^{\text {F }}$ newnoid:	SPHJI2 $=$ rewnc (it	scjphicol * nemshoili	Sc.jphi [t) $=$ natra (1:
51\% \# newio 1)	SPWJIf $=$ Hownali;	$A=$ nerino ( ${ }^{\text {a }}$	
	Spmith mexacily	$\begin{aligned} \text { AECOS } & =\text { new olit } \\ \text { P[O) } & =\text { newne } \end{aligned}$	
	AX $=$ newtual		
c2 = remit			
%	RY $=$ newnoly		
c3 = newne lis	RYY $=$ newnol?		
cS = newncllt			
One * rembicis	repone * numatis	phisin $=$ newnots;	
twa $=$ newno (1)	if $=$ numbedis	phitos = newnoc) 1	
$\begin{aligned} & \text { xcoord }=\text { nemnotl; } \\ & \text { yccord }=\text { newnod'; } \end{aligned}$	$\begin{aligned} \text { Zuto] } & =\text { newnoli; } \\ \text { Zeta[0] } & =\text { newnaif } \end{aligned}$	Zhitl $=$ newnoly   Ietati] = newnalif	$\begin{aligned} & \text { Surci }=\text { newhoili; } \\ & \text { sumc }=\text { newnalif } \end{aligned}$
ne a xemmelij	HC 5 nammoli;	Ante $=$ mewnell:	nart $=$ Bexnodi
Phiokros $=$ newno (l)	Fodet 0$]=$ newhe ();	sumt $=$ newno ()	
Phtoktij $=$ newne ${ }^{\text {a }}$	Roct[1] * hewnal)	value $=$ newno it;	

```
solfitos \(=\) newno (); sphill) \# nemact scjphi[t) \(=\) narma (1)

AkIt \(=\) nemall:


```

                    C2 = rembe\!% RY = temmol!;
                CS = הEWNE\!% RYY = newnoll;
                c5 = nemnc!\!
                One * remuc\\; negone * nmwnoli;
                    phisin = newnots;
    ```

```

                xcoard = newnoli; Z%F0] = newnoli; Zk[tz = newholy;
                Bunc! # n金w%all;
    ```

```

            mE a zemolji fe= nemmgl)
            Gat i= mewne!!!
                                    name = memmod;
    PKTak[0] = newro(i; RoDe[0] = newhe();
sume = newno()I
FHIok!i] = newne\}; Ront[1]* nemavil!
value = newnd!};

```
```

```
AL COMPLEX VARIAERE- NEN. RLLDE.
```

```
```

AL COMPLEX VARIAERE- NEN. RLLDE.

```

\section*{(t-VARIAELE INITIALISRTIGN.}
[Seq decht. proc. For newnoll.]
\(1 /\)

jaltifalican(Antheta); initialisel (Aftheta) inithafipel (folif

```

datas= "atludataw, not";

```

```

data7 \# *al<br>data7.hol "I
fo=fopon(dats|,* **);
felose(fp);
fs = fopmifdata5, "wn}*
4c|mse(f)%;
ft = fopen(datab, "w'):
f+200n(4t);
fu= Fqpenidata7, "b*);
fc\ose(4a):

```

formend In INPUT YARIABLES.
printfl|MATERIAL AND BEARING STREPG DATAS \(\boldsymbol{n}^{*}+1\)

 printfi" Input difectionility; \({ }^{\prime \prime}\); dircty \(=\) dimplifidirityll printfi"kn Indtit displanty anglat") printai"kn input conpliance Sil t")
phi \(\quad\) sinplt(phat)
511-3ra = finplessil-)reli
printfi* Enput coopliance sat :"1F
522-3te \(=\) dintin(\(522-\)-ra) 1
printf(" Input tompliante S12;")
g12-3r \(=\) dinple (S12->re) ;
printfi" Input compliafce sib:");
Slb->re * dinple (5la-Prel)

\(\mathrm{HN}=\) [inp \(\left\{\begin{array}{l}\mathrm{N} \\ \mathrm{N}\end{array}\right)\);

 printfi"INPST Material strength in transversa comprsiail Sigxcomp at dinpleisigxcbap): printfl*INPUT Matefial strength in Inaplane shear:*); gigxy = dinplaisigxy);
printfi* printf("

 printf(*ininput ii) \&D incluci the bearing stresexin");

phi*-14phispt/250:


```

    i) {dirgty>angty}
    ```

```

                        sf1\->1m = sqre(f(virety*angty)/2)!
                        scoj-ire =-1 s[y]->re{
                        5{01-24n * &{12-3ibi}
                #lse
            < क[{]->ra=01
                        s{[y->1m = surt(fangty-dircty)/2] + sqrt{(angty+dircty)/2:{
                        50]->>: = 0;
                        si0j->1% = sqrt((angty+dffcty)/z)-sqrai(angty-dircty)/2)|)
    /*-IDTAFIDN FUNCTJONS.

```

```

    phisin->re= sin(phi) i phisinu>in m O;
    ```



```

AF-PNTATE Sit to ETVE sphlij,









```
trr \(=\) sul taubt (tempran\} (mul faddiadd i'
```






``` kubp (phisin) ), ghtecgi) , 51t)
tran(trr, SPHI26);
/*-CALCTAHIN CI TO ET.
```




```
trF = subtftemp, grHI16]:
```

trF = subtftemp, grHI16]:
trop w mall (mul (mphi[03; sphiz11], SPHI11);

```
 trop w mall (mul (mphi[03; sphiz11], SPHI11);
```






```
*ry = suct(SPNIEb,temp)t
```

*ry = suct(SPNIEb,temp)t

k*		
k		1-3imit
6		2->1野;
$k 7$		+3

```
```

kP = kEEcos{thatal-k4tsin(theta)]
k9 k kteos(thota)mkJtsin(thata);
k:0 = kBtgos(theta)-k%tsin(theta):
k!i = -kErsin(theta)-k91gos(thetal;
sign2=1:
5ign3=1t
m\9n4=1%

```
\(\begin{array}{ll}\text { sun } & =01 \\ \text { ung } & =1 ; \\ j & =-1 i\end{array}\)
ta : \(j^{46=2 i}\)
\(x=j\)
if tsign= 13 sign=-1; eige signtif

)while (j<MM);

 +kPtcos (ztthats) (2)
 \(+(k b\) (thetarpi / 2) \$cos (theta))

 +(Etsum/pi))

 \(J=0 ;\)
 sitg = 15
 da \(\left\{{ }_{j}+\cdots 2\right\}\)
 x=11
 if (signta it 5 ignaul; pl ke signmif

 *cos (xithezal)-と4tz

 isin(thetal) \(/\) momp \(;\)

 Anthetali-2) \((\mathrm{k}-23=(2 f(2+z-1))\) - (fintotatsin(zitheta))
 - (k11texas (zきthtta)
 \(\rightarrow\) (2tkbtsin(z (theta))
 - (kbtiff)

 -(2ttheta-0ij)sinithetal)
 - \{k4tsignstsin(theta)l)

3/timat 14t

3/t 03 k lopp \$/ >/T of 1 leop If

\section*{It SOLVE FOR AI: TERTN:}
\begin{tabular}{|c|c|}
\hline \% Altheta,An, Ni. & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline
\end{tabular}

printfi"tmpasic LCAD RESULTANTSt n) ;

71

\section*{/B-CALCURATION OF STREES पARIJES.}

A-3FE = teap-3res4;
\(\mathrm{A}-3\) in \(=\) tenpm>im/4;


```

for ({=0; \<=1f ++|)< j=1-j;

```

```

    teap = mul { aul {$M) & (sciphitj], कphi[j)),
                                    gubt(sezphiti], sphi[j])l,tenpl;
    ```


```

                                    Ak[id-\ra =tenp->re/f pij
                                    AkI!]->i### temp->im f pi;
    3

```
1* CALCDLATION DF ETRESS FIELD - dsta.
 \(1 /\)

/4 Angle variant - jx 5 dey steps. . .

 \(51 \sin x=0\).
 Sigmay \(=01\)
 Sigaaky \(=01\)
 randus \(=x / 4 ;\)
 Aggle \(=\) es5 Rpirseos

ycoard-3re = raditus sin(tingIe); yeoord->in a of

14 Calculation of PAItZk) and PHI (Z2k)
for \(\{k=0 ; k(=1 ; 4+k)\{|=1=k|\)

temp = sgt (subt (gubt fikft tzk[k]),

\section*{fiCheste of corcest rat sign．}


```

$\operatorname{RoDt}[k]=3 i \mathrm{~A}=$ temp－＞iet－1；$\} 13$

```


```

Rott［kI－ソim $=$ trapa

```

```

if（Root［k］－＞rec（0）（Root［t］－＞re $\equiv$ temp－）ratij
Foot［K］－3in $=$ tamp－＞int $-\{1\rangle\}$

```
trap \(=\) djvc（addizktki，Reak［kl），

fealan．of FHfo＊k＿Zetalky in＂un．B． 2

tu（ \(\mathrm{Bt} \boldsymbol{\pi}\) 2）

me－斿』 \(=\) n
\(\mathrm{AE} \rightarrow\)－\(=01\)
Mc－31＊ 0

Anc－S1n \(=0\) O \(\quad 3\)

\(A n C-\lambda i n=0: 3\)

\(b=n\)
Nants－）
nmenc－＞im 401

temp atad funcl，texpll tran（tenp；suaci）；

```

Nm(C;
da f x+\#2% n=01
ds { n+=2;
ma->re = = i
nc->re = nt
隹-21青 = 0t
\piL->f% = 01
RHE-Pre= Antm-2]!
AnE->in = 0 ;
a* an
y= ถ%

```



```

        tenp = add (sume z,tenp);
        tran(temp, sumt2);
    3while (m (NN-1):
    3while (m(\#\#f-l);
sume-Yrg=0;
SuGac->in*0;
n*-1;
Cof n+m!f

```

```

            value-3im=0;
            alse (value-ire=An[n-23;
            value-3inmoct )
            If (n=W0) ivalue->rem0;
                value->im=0; 3
    nc-3+e=p;
    ```

```

    Anc->re =Am[m;;
    BTs->1n =0 i
    bm;
    temp = dive (addinu) (Anc,gubt (tme, mul (mphi[1),ifi)),
    ```

```

        temp = add (sumc, temp) T
            &rsur(texp, Fltampl)
    ```

temp \(=\) nul toume; 5:1)
tranttemp, funci;
stups-ire \(=\) subc-5re in of 14 ?

tr maltemp, FHIgkikyll

\(\square\)
fistress calc. and euparporition.
fifure Com. 也r Tuns, with widzh.
\begin{tabular}{|c|c|}
\hline & ```
<1 =1-k;
```



```
 RYY-34B#O:
 if(f)agA=w2) RYY-\re= =-11&\Y->re!
 teap = and {au) (subt (aphilinj, sphitiJ)%%
 Eubt(sphiftk],&i|l,twa):
 teap = d{ve{mul {m,l (sphi[l),RYY),il},temp}
 tzan(temp, g[x]);
```



```
}
``` \\
\hline
\end{tabular}


Signax m Sigmax +78 temp-7re;
teap ant) (subtcive (Inckj, Reotiki), oreh etky



SigmaXY= 5igmaxiy+-2itanp-3rei 1
 p/tendify/
fi Cajeylatizn of indumite baring. Coptl.



5iguay = sigany +trapmbr diz;

51gsaxym is graxy +tapp->ret-is
\(\%\)
```

/1Linked list datem staragg.

```

```

 H
    ```

```

 firstyx a sigmatik;
    ```

```

 - EigmaY*sintphi)tsin(phs)
    ```

```

 7
 mbe (new = netpolot!)s
 SigmakX-䏠t % new;
 glgmaxX = nem:
    ```

```

 * Sf gearimin(phi) xsim(phi)
    ```

```

 Siqumkx-2mextm0;

/astarage tr gata to disc.

Sigarax = fírstyif

fptintf(fp, "215teln", Sigmaxz->arid_valve)!
felose (fp);
Signoyy * firstyy;
$f_{5}=$ fopent (datas, "a*);

fel mmeffs :
Signaxyy = firstxxy

fajoss (f)
Ts.i $=$ firstitaff

4slose(fu);

cate? 1世 ©

finciute＜anath．h》
ifnclude 〈stdilb．h〉
\＆inelude 〈stdart，$h\rangle$
tinciluth（stidion）
typedef struct

> Crouble rei
> double int
5nemplixi
（yopdef struct itress nide tonotrble grid＿value；

 coaplex tinit：

> Cbot.a-3re $=$ a! phz-3re!
> bett-bin $=$ al pha-3in!

coaplex tswtitcampley talpha，tomplex tyetal

（ 5 tatic int flagif

if $1+5$ 朝 $1=0$ ：
i dumal．re＊alpha－3re－bata－bref dumyl．in＝elph4－＞io－beta－＞im return（tedinany）its

complex taddicoeplex tal pha，complex Ibeta）
（static fnt 41 aty

if（43 ag2o＝0）
f dummy，re＝alpha－pre＋beto－＞rei duminys．in＝日iphar＞in＋beter－＞imi return（2dunany3！）

else

（ duthy4，\％＝alpha－＞re＋betaw re；
 Feturn（tidumay 4 ）： 3

3

Copplax＊mul \｛complex talphai，complex shetal
t gtatic int 41 agzi

If（ 41 ag

 return（kduany 5 ）ψ_{\uparrow} ）

 return（kekarayb）i）

1f（ 51 Aq3 3×2 2）

 return（toduncy）；
i）（f1ag3－m3）

 1835퓰

3

complex tdivc (comples, thlgha, complex theta)

Estafse int tlapas

if (f1as $94=001$

returnibdumay 7 ;)
Eita
 (teta-3re t peta->re + beta->in t beta->im)
 (beta->re it beta->re - beta->is betam>im);
return (adumay ${ }^{\text {Blis }}$)
3

t statife int flaybi

 returnitultwy 11)

 returntedungy : 2h1)
if (11ag6w2)

 returat新unay 15);)

 returntidvany 16) 1)


```
complax tikubotcomplex talipha)
{ Etatic lnt f1ag7:
```



```
    If (41).477=n0)
```



```
    retura(tudumay131;)
    else
```



```
    return(kdumary14):)
3
10
EOmplax tsçt(complex talpha)
C stativ int flag*)
```



```
if (flagga=0)
\ 14 (Jjpha->rt=*0) dummY20.re*01
```



```
                                    +alpha->im&alpha->{n)/(2);
    If (alpha-)fm##0) dumay20.im=0;
        else dummy20,ife wart{\sq|t{ofipha->retalpha->re
```



```
        return (kdyany20);`
            Else
            { if (alpha->rew=0) dumay21.remo;
```



```
                                    tal pha-%jniglpha-3im)//2);
        if {el pha->if(t-0} dumar>21,in=0;
```



```
        return(tdumam21);%
*
/4
```



```
5 statig int %1447;
    doubie phi,mods
```



```
    4f (flag7=00)
```



```
    *umay%2.fe = mod % sos(phi);
    dumnyz2.in # mod t sin(phi);
    ratarn(64(tumily22)!2
    else,
    & phi = powert\atan2{cipha->ia, alplow->rej);
```



```
            durnyzz.re = rod I cos(phi);
            dumbry2S.in = mod t sin(phi);
            return(Edumnyzt) \s
}
```


MODELE I*PR.E: Input formbt for manual use of mocula bhot.E.
dativi 15m03m"ag
Author: P. $\begin{gathered}\text { F. Bidgood. }\end{gathered}$

1* TKE FOLLDUNG 15 FOR INPUT WHEN DIRECT MDOULE AFPNICATJON IS REDEIRED. $\%$
EincIude <stdyo.n)CincIuffe \{atdarg, h\}doutle dinple (deuble dtranfote)\}return (dtrnstáde) \ddagger)
doubla dinglfitouble dtrnsfdif)
int limpdint tractiscreturndtrnstis;

＊stel 15－0J－rge．

Authar：P．M．自idques，

 Cinclude 〈nath，h）

int i，iJ
for \｛if0；$\{\langle=50 ;+4\}$ ；

3
vaid indtialistif（dembis vectoridr503）

5
it－SDATIION OF EETATIDNS．－

int $\quad 1, j, k+i n x i$


```
sum \(=0 ;\)
```



```
                            ( \(L=A t j J E k J ;\)
                            in \(=15\) \}
```



```
        位单ACkjij3;
```



```
                                A[taxjtj] \(=\mathrm{L}\);
                                L " ATAvEKJFj7:
```



```
                                    AInvFinaziLjJ \(=\mathrm{L}\);
```



```
3
```


APPENDEX D
 OVERVIEW OF PASCAL INTEGRATED PROGRAM

Comphole

Contents

1. Introduction
2. Program sections
3. Module Bhol
4. Module Scale
5. Nodule Solve
6. Program Comphole
7. Input and Output
B. Generating a plot
8. Sending graphics output to file
9. How to compile, bind and sun the program
10. Printing

INTRODUCTION

This repart deals with the computer package designed for generating data fox pin-losded holes, and for obtaining a giaphical display of the results. The package is designed to run on the APOLE0 system, and is currently in the possassion of P. Bidgood. The package was designed by Mihaly zsadanyi, during a pariod of vacation work in January and February 1988.

PROGRAM SECTIONS

The package consists of 4 sections :"

1. the main program = PROGRAt Comphole
2. MODULE Bhol
3. MODULE Ccalc
4. YODULE SOIVE

He shall discuss each of the above individually.

MODULE BHOL

This module is used to calculate the stress fields. The data produced by this module can then be plocted by using the main program Comphole. Bhol is a direce translation of the C program Bhol. C, written by P. Bidgood. Kodule Bhol rates use of modules Ccalc and Solve (to be discussed inter).

Module Bhol consists of the following parts ;-

1. Initialisation

Here, certain variables, as well es the matrices and vectors a:e initialise. Certain complex numbers, such es (0,1) and (1,0) are also defined.
2. Read-in

2 Conphale

Here, the input paremeters are read, either from the keyboard or Eram a user defined file. Note that if a file is used, the full pathname of the $\ddagger i l e$ must be given.
nB - all akgles are input in megrees
These are converted by the program into radians in the traditional wey. The name of the output file is also to be read ir. For a fall discussion of inpur and output files, see later. All the output files are then opened.
3. Caiculation of Antheta and Altheta,

First, the complex functions and compliances are rotated, according to the values of the variebles 'dircty' and 'angty'. Then, constants cl-c3 and k $4 \% 7$ gre calculated. PROCEDURE Calcalate_Goefficiants is then called, and here the vector Alcheta and the matrix Antheta are celculated.
Note - the errities of Altheta are numbered from 0 to NN-1, while the NN $x \mathbb{N N}^{4 a t r i x}$ ancheta has rows and columns number from 0 to NN-1 85 well.
4. Solve the system of linear equations.

This is done by module Solve (see below).
5. Calculation of stress fields.

The 3 proceciures Calculate Rx_and Ry, Calculate_Ak and Calculate Stress Eifelis do this job. They consist mainly of some long and intricate sumations. When the load angie (delta) has been calcalated, it is output, and so are the values for the srress fields.

MODULE CCALC

This module consists of several Eunctions which perform arithmetic calculations on complex mimbers. These functions are :-

1. FUNCTION Add - addis two complex nughers.
2. FONGTION Subt - subtracts one complex number from anocher.
3. Functron Mal - multiplies two complex numbers.
4. FUNCIION Conjugate - conjugates a coinplex number.
5. FLHCTION Dive- divides one complex number by another- To find (a, b) / (c, d) the following formbia is used :$(a, b) /(c, d)=((a, b) *(c,-d)) /(c * c+d * d)$
6. FUNCTION skrt - squares a complex number.
7. FONCTIION kube - cubes a complex number.
8. FUNCTION Sqt = finds a square root of a complex number, Since we can find two coaplex aumers which, wher squared, yield the sawe result, the FUNCTION Ieturns the square root with non-negative real part (except when finding the square root of ($0 . b$) where $b<0$).
9. FUNCTION powc - raises a conpiex mamber to a power wing de Mourye's formula:-

Use is ande of the PUNCTION Atan2, which returas the arctan of an angle in the correct quadrant.

MOOULE SOLVE

Module Solve is used to solve a system of linear equations by Guussian ellaination using partial pivoting. PROCFDURE LU Decompose converts the matzix to upper triangalar form, and then PRCCRDUR゙E Back; Substitute does back substitution to find the solution.

PROGRAM COMPHOLE

The main progran Comphole is used to coordinate the two maln functions; thich are :-

1. Plesting of data

2. Crestion of data.

The program is menu driven; the first mern being used to find out whother the user wants to plot data or to craste date. If the daca creation option is chosen, module Bhol takes over control, and returns when its operation is complete. See the section on module Bhoi above for more details.

```
    If the user decides to plot data instead, he can do one of two things
:-
1. Plor one set of data.
2. Plot a succession of sets of data.
```


One plot

Here, the progira reads in input from a set of 4 fites, foes the necessary calculations for 3D graphics, and then generates the plot on the screen. (See the section on input/output for more info about thest files).

The first tige plot is drawn, the user is asked for the nanes of the input files. The plot is then drawn. On completion of the first plot, howtever, a new menu appears, which gives him the following options :-

1. Redraw the previous plot.
2. Draw a plot using different data (fe the user is asked for a new file name).
3. Change the tilt or rotate angles.
4. Decide whether the plot is so be output to a file for subsequent printing.

If the user decides to change the tilt or rotate angles, a new menu apposars, which displays the current values of F^{2} te angles. These can be changed, if desired. Once one of thase angaes is changed, the iser can redraw the plot.

If the user decides to change the setting of the sead-ta-file aption, e new menu wili appear, displaying the current setting as being ON or OEF. If the user wants to set it to $O N$, he will be asked to give the name of che file to which the plot is to be sent.

A succession of plots

If the user wants to get a succession of plots, he mast specity the names of the files from which the data for the plot is to be read. To avoic tedious typing, the program will read the data for plot number k from the class of files whose pathrame is Pkt. For example, if 3 plots are required, the deta can ba stored in 3 classes of filles:-

1. //dfs/user/mike/test1
2. //dfs/user/mike/test2 and
3. //dfs/user/eike/tes t 3
(For more information about 'classes of files' see the section on input/output below.)

The user will be* asked to input the number of plots required. After one piot is complete, the user must press the space bar to get the next plot.

INPUT AND OUTPUT

then module Bhol genexates output, it is stored in a class of 4 files. These 4 files have the same parhname, except that they have an ending .datal, data2, data3 or data4. For oxample, if the user wants the output to have the natie //dfs/user/mike/xesults, the output will be stozed in the files

1. //dfs/usez/mike/zesults.datal
2. //dfs/user/ぁike/results.data2
3. //dfis/user/mike/results.data3 and
4. //dfs/user/foike/results.dats4

Hers, the 'ciass name' of the input files is '//dfs/user/mike/results'.
When the user wants a single plot, be will be asked to give the pathname of the class of 4 files, so if he inputs '//dfs/user/mike/plet' the data thill be read from the 4 files //dfs/user/wike/plot.dataj $J=1,2,3,4$.

If the user wants a succession of plots, one class name will be askad of the user, and then the 4 files for plot namber K will come from $/ / \mathrm{dfs} / \mathrm{user} / \mathrm{m}$ \{ke/plotX.dataJ $\mathrm{I}=1,2,3,4$.

The input/outpur files will have the following data :-

1. Angie increment around the pinthole (in degrees)
2. Number of points per angle
3. displagement angle (in degrees)
4. load angle (in degxees)
5. the values of the stress fields.
generating a plot.

To generate a plot, the progrem does the following :-

1. The x and y coordinates are calculaced. If a plot has been previously genexaced, and none of che follouting has chenged -
a. the angle increment
b. the sumber of points per angle
c. the rotate engle
d. the tilt angles
then the new x and y coordinates will be the same as the old x and y coordinates, so they need not be recomputed. However, if the user changes at least one of the 4 values above, then the x and y coordinates must be recomputed.
2. The z values (the values of the stress fields) are read in. The maximum and minimum z values are also found.
3. The x, y and z coordinates are transformed into a peir of screen coordimates sx and sy (since comprex monitors are unfortanately only 2 dimensionay). This is done by raOEDURE Project. Note that there are 4 sets of z coordinetes (read in from the 4 files), and thus 4 graphs will be ploteed on one display simultaneously, one in each quarter of the screen.
4. The display is initialised, by using the gpr procedure gpr_\$init. The display rakes up the whale screen, stace the mode that gpr is set to in the program is ger Sborrow. The graphics routines borrow the whole screen from the display manager, and give it back when the graphics displsy is terminated.
5. The piot is drawn, according to the zcreen coordinates sx and sy.
6. The box at the top of the screen (which will contain the values of the load and displatenent angles), as well es the border lines and the two centre lines axe drash, in PROCEDORE Draw_box.
7. The axes for each of the 4 grephics are drewn. This is done by PROCEDURE Draw Axes. Note tiat the Y axis is replaced by the $-Y$ axis.
8. A semicircie of radius 1, starting at ($-1,0,0$), passing thru ($0,-1,0$) and ending at $(1,0,0)$ is draw by PROCEDURE Draw Arc.
9. The text is drawa by PROCEDURE Display Text. The text consists of :-
a. the name of each graph.
b. the maximum and minimum 2 values of each graph, except for the 4th graph (failure propensity), were the R and THETA values at which the $\begin{aligned} & \text { maximum occurs is displayed instead. }\end{aligned}$
c. the load and displacement angies.
10. Tho message 'Press space bar' is put on the fop right hand corner of the displey, once piotting is complete. The progren then waits until the space bar is pressed, before continuing.
11. Once the space bar has been pres.a. ${ }^{\circ}$, if the progran is plotting a succession of plots, it will draw the next plot, otherwise the display will be terminated (gpt_steminate) and the screen will be the sarae as before the plot started. Note that if the prograir is doing a succession of plots, then it will calculate the next plot's sx and sy coordinates whils the user is viewing the previous plot. Tri this way, sone time is saved. If the user presses the space bar before the message 'Press space bax' comes up, nothing happens - he will just have to press the space bar again at the right tine.

SENDING GRAPHICS OUTPUT TO A FILE

If the user has set: the send-to-file varisble ON, then once the plot is drawn (and before the 'Press space bar' message appears), the output will be sent to the file that the asex specified. This fyle can the beprinced on a printer. (See later for details.) Note that the whole screen will not fif on the printer paper - it is just too wide. To evercote this pretlem, the display is output in two sections, first the left half and ci,kn the right helf.

HOW TO COMPILE, BIND AND RUN THE PROGRAM

Compiling

Since the whole package consists of a main program and 3 modules, each of these have to be compiled. Suppose our 4 program sections are in the files Comphole, pas, Bhol.pas, Solve.pas and Ccalc.pas. Then we compile these 4 . ogram sections by issaing the commands :-

1. pas cosmphole. pas -nwern
2. pas bhol, pas -nwata
3. pas solve.pas
4. pas ceale.pes

The '-nwarn' is used fust to suppress sone pesky warnings that the conpiles deems necessary to dung on us.

If all 4 program sections axe compiled, and then a change is made to any one of them, only this section need be recompiled.

Einding

Once all parts of the prograal have been complled, they must be bound by issuing the following command :-
bind comphole.bin bhol.bin solve, bin calc,bin ob sun The 'm rus bit means that the binary code of the whole, bound progrem will be sent to a file called 'run'

Running

Once the program sections have been bound, and the binary tode sent to file 'run', issue the following command to ruft the peckage :-
run

PRINTING

If the plot has been sent to outpit file 'plot. data', then the file can be printed by issuing the command :-
prf plot.data -plot

SOME CLOSING COMAIENTS

The data creation process takes about $2 / 3$ of the time that it takes the C progrem on the PC . For angle fncrenents of 5 degrees, with 13 points per angle, with 22 points along the hola edge, and 30 -terms in the sime series, the PASCAL program took about 20 minutes to calculate the stress fielus, compared with 30 winates for the C program on the YC. An advan= tage of using the AROELD is that once the data creation process has begar, a new shell can be created, and the progran run with differint input, so dany set; of data can be created simultar: fucly, and lots of time saved.

The calcalations for the 3D graphice do not take very long -anything from 3 to 10 seconds, depending on how many users are using the system.

APPENDIX E

E. 1 Function Tenns used in Dirplacement Formulae (See Equations (2.39) and 2.40))

$$
\begin{aligned}
& F_{1}^{*(\operatorname{anm})}=\frac{2 n a_{n} C}{\left((m-1)^{2}-n^{2},\right.} \overline{\left.(m+1)^{2}-n^{2}\right\}} \\
& \mathrm{F}_{3}^{(\mathrm{D})}=\frac{\mathrm{a}_{\mathrm{n}}\left(\mathrm{C}_{5}-C_{4}\right)+\mathrm{a}_{\mathrm{n}+2}\left(C_{5}+C_{8}\right)}{n+1} \\
& F_{3}^{*(n)}=\frac{\left(O_{4}\right)\left(a_{n}-a_{n+2}\right)}{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& F_{I}^{*(n, n)}=\frac{n s_{q}\left(m^{2}-n^{2}+1\right) C_{4}}{N_{m} n} \\
& F_{4}^{(n)}=\frac{a_{n}\left(C_{8}-C_{7}\right)+a_{n+2}\left(C_{8}+C_{7}\right)}{n} \\
& F_{4}^{*}=\frac{\left(C_{4}\right)\left(a_{n}+a_{n+2}\right)}{n+1}
\end{aligned}
$$

E. 2 Expansion of Terms Appearing in Equation (2.32)

$$
\begin{aligned}
& f_{1}=P_{0}\left[\frac{1}{4}\left\{a_{2} \cos \theta+\sum_{n=1,2,3,4}^{\infty} \frac{\left(s_{n}+a_{n}+2\right)}{3}+\cos (n+1) \theta\right]-\frac{\sin 2 \theta}{4 \pi} \frac{R_{x}}{P_{0}}\right. \\
& -\frac{\sin \theta}{\pi} \sum_{n=1,1,5}^{\infty} \frac{a_{n}}{n}-\frac{1}{2}\left[\sum_{n \sim 1,2}^{\infty} \sum_{\infty \times 2,4}^{\infty} \sum_{n=2,4}^{\infty} \sum_{n=0,5}^{\infty}\right] \\
& \left.a_{a n}\left[\frac{1}{n+m}+\frac{1}{n-m}\right] \cdot \frac{1}{n-m}\left[\frac{\sin (m-1) \theta}{(m-1)}+\frac{\sin (m-1)}{(m-1)} \theta\right]\right] \\
& f_{x}=P_{0}\left[\frac{1}{4}\left\{a_{2} \sin \theta+\sum_{n=1 ; 2,3}^{\infty} \frac{\left(a_{n}+a_{n+2}\right)}{n+1} \sin (n+1) \theta\right\}-\frac{\cos 2 \theta}{4 \pi} \frac{R_{x}}{P_{0}}\right. \\
& -\frac{\cos \theta}{\pi} \sum_{n=1,3,6}^{\infty} \frac{a_{n}}{n}-\frac{1}{2 \pi}\left[\sum_{n=1, s}^{\infty} \sum_{m=2,4}^{\infty} \sum_{n=2,4}^{\infty} \sum_{n=3, s}^{\infty}\right] \\
& \left.a_{n}\left[\frac{1}{n+m}+\frac{1}{n-m}\right]\left[\frac{\cos (m-1) \theta}{(m-1)}-\frac{\cos (m-1)}{(m-1)} \theta\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
K= & P_{0}\left[\frac{1}{x} \sum_{n=1,3}^{\infty} \frac{a_{n}}{n}-\frac{1}{3 x}\left[\sum_{n=1, s}^{\infty} \sum_{n=2,4}^{\infty} \sum_{n=2,4}^{\infty} \sum_{n=3,5}^{\infty}\right]\right. \\
& \left.a_{n}\left[\frac{1}{n+m}+\frac{1}{n-m}\right]\left[\frac{1}{m=1}+\frac{1}{m+1}\right] \frac{R_{x}}{4 \pi P_{0}}\right]
\end{aligned}
$$

Author Bidgood Peter Mark
Name of thesis Mechanical Joints In Composite Laminates - A Complex Stress Function Based Pin Loaded Hole Approximation. 1989

PUBLISHER:

University of the Witwatersrand, Johannesburg ©(2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

