DECLARATION

I declare that this review is my own unaided work. It is being submitted for the Degree of Master of Science in engineering to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination to any other University.

.....

......day ofyear.....

ABSTRACT

The resistance to flow in rivers over the years has been largely an issue of great concern. There have been many suggestions as to how to compute the resistance to flow especially in a composite channel.

This work looks into the factors that contribute to the total flow resistance as a result of the elements that may be present in the body of water.

A critical review of previous work done to determine the total resistance to flow in a composite channel was made in this work and existing formulas were tested to see their reliability.

Ways of predicting resistance coefficients for individual elements were tested using those of James (2012), Meile et al. (2011) and Hirschowitz and James (2009).

This work has been limited to sparse arrangements of obstructions, vegetation and bank irregularities.

After careful observation, recording of data and analysis, formulas were developed for calculating the total resistance to flow for composite channel with permutations of three different elements these formulas were tested and seen to be useful in computing the total resistance to flow in a channel with low flow in a composite channel.

ACKNOWLEDGEMENTS

It has been a long journey to this point. A journey filled with uncertainties and happy times as well. I will not have even started if not for the financial encouragement and moral support from so many people who I shall mention below

First and foremost I offer my sincere gratitude to my supervisor professor C.S. James who supported me throughout my research with finance, patience knowledge and guidance without which I was never going to graduate.

I also thank the school coordinator Dr Ndiritu for his guidance from the beginning.

I also thank the School of Civil and nvironmental Engineering at the University of the Witwatersrand for providing the necessary laboratories and the staff among which Mr Waine Costolopus was a great anchor in terms of technical experience.

Finally I will like to thank my parents for their moral support and prayers throughout my study time.

TABLE OF CONTENTS

1. Introduction	1
1.1 Specific research objectives/problem statement	1
1.2 Justification for research	1
1.3 Scope of the study	2
1.4 Layout/structure of the research	3
2 Background	4
2.1 Intoduction	4
2.2 Composite resistance coefficient	5
2.3. The combined resistance of bed shear and form roughness	9
2.4 Resistance component of a river with low flow	12
2.5 Investigations on Emergent Bank Vegetation	13
2.6 Effects of bank irregularities to total resistance	14
2.6.1 Semi-empirical Drag-Coefficient Model	16
3. Methodology	18
3.1. Brief overview of conditions tested	18
3.2. Description of apparatus	18
3.3 Figure schematic of flume	19
3.4 Depth of flow	
3.5 Stage one	
3.6 Stage two	29
4.1 Experimental investigations of friction factors and Manning's n	
4.2 Group A (Smooth bed flume)	

4.3 Group B (Rough bed flume)	34
4.4 List of experimental series	34
4.4.1 Series 1.2 Smooth bed flume with irregularities	35
4.4.2 Series 1.3 smooth bed flume with obstructions	36
4.4.3 Series 1.4 Smooth bed flume with Vegetation	36
4.4.4 Series 1.5 Smooth bed flume with combination of irregularities and obstructions	37
4.4.5 Series 1.6 Smooth bed flume with combination of irregularities and vegetation	37
4.4.6 Series 1.7 Smooth bed flume with combination of obstructions and vegetation	38
4.4.7 Series 1.8 Smooth bed flume with a combination of irregularities, obstructions and vegetation.	38
4.4.8 Series 2.1 rough bed flume	39
4.4.9 Series 2.2 rough bed flume with irregularities	39
4.4.10 Series 2.3 rough bed flume with obstructions	40
4.4.11Series 2.4 Rough bed flume with vegetation	40
4.4.12 Series 2.5. Rough bed flume with combination of irregularities and obstructions	41
4.4.12 Series 2.5. Rough bed flume with combination of irregularities and obstructions	41
4.4.14 Series 2.7. Rough bed flume with combination of obstruction and vegetation	42
4.4.15 Series 2.8 Rough bed flume with combination of irregularities, obstruction and Vegetation	42
5. Analysis of results	44
5.1 Introduction	44
5.2 Useful guide to tables	45
5.3 Darcy-Weisbach friction factor and Manning's roughness coefficient	45

5.3.1. Using Darcy-Weisba	ch friction	factor	45
---------------------------	-------------	--------	----

5.3.2 Using Manning's roughness coefficient
5.3.3 Different Darcy-Weisbach friction factors for rough bed and smooth bed flume46
5.3.4 Different Manning roughness coefficients for rough bed and smooth bed flume46
5.4 Analysis to verify the total resistance coefficient is for both Darcy-Weisbach friction factors and Manning's roughness coefficient
5.4.1Using Darcy-Weisbach friction factors
5.4.2 Using Manning,s roughness coefficient
5.5 Analysis to check the form roughnesses of elements for different permutations of elements in the flume
5.5.1 For the rough bed flume using Darcy-Weisbach friction factor
5.5.2. For the smooth flume using Darcy-Weibach friction factor
5.5.3 For the rough bed flume using Manning's roughness coefficient71
5.5.4 For the smooth channel
5.6 Testing of the existing formulas that account for the total resistance in channel
5.6.1 SCS method
5.6.2. For the rough bed flume
5.6.3 For the smooth bed flume
5.7 HR Wallingford method
5.7.1 For the rough bed flume
5.7.2 For the smooth bed flume
5.8 Empirical formulas
5.81. For the rough bed flume
5.8.2 For the smooth bed flume

5.9 Computing Resistance Coefficient by prediction
5.9.1. Bank irregularities calculation (Semi-empirical Drag-Coefficient Model)
5.9.2 Rough bed flume
5.9.3 Smooth bed flume with irregularities
5.9.4 Analysis of resistance due to Obstacles
5.9.5. Rough bed flume with obstructions
5.9.6 Smooth bed flume with obstructions107
5.9.7 Vegetation formulation110
5.9.8 Rough bed flume with vegetation111
5.9.9 Smooth bed flume with vegetation112
5.10 Retesting of the formulas that account for the total resistance in a channel using the predicted resistance results
5. 10.1 SCS method114
5.10.2 SCS method retested with the predicted resistance result for rough bed flume115
5.10.3 SCS method retested with the predicted resistance result for smooth bed flume11
5.10.4 HR Wallingford's method retested with the predicted resistance results for rough Bed flume
5.10.5 Empirical formula retested with predicted total resistance results
5.11 Discussion
6. Conclusion and recommendation
References
Appendix

List of figures

Figure 2.4.1(a) Plan view of the test flume with (b) the definition of the parameters of the	
macrorough configurations Lb, Lc, and ΔB	13
Figure 2.4.2.Observed basic flow types as a function of the aspect ratio of the large-scale depressions: (a) reattachment flow type; (b) normal recirculating flow type; and (c) square-	
grooved flow type; grey zones indicate the range of performed experiments	13
grooved now type, grey zones indicate the range of performed experiments	15
Figure 3.3.1.Smooth bed flume	20
Figure 3.3.2. Smooth bed flume with bank irregularities	20
Figure 3.3.3. Smooth bed flume with obstructions	21
Figure 3.3.4. Smooth bed flume with vegetation	21
Figure 3.3.5. Smooth bed flume with irregularities obstructions	21
Figure 3.3.6. Smooth bed flume with irregularities, obstruction and vegetation	22
Figure 3.3.7. Smooth bed flume with irregularities and vegetation	22
Figure 3.3.8.Smooth bed flume with vegetation and obstructions	23
Figure 3.4.1.Rough bed flume	23
Figure 3.4.2. Rough bed flume with bank irregularities	24
Figure 3.4.3. Rough bed flume with obstructions	24
Figure 3.4.4. Rough bed flume with vegetation	25
Figure 3.4.5. Rough bed flume with irregularities obstructions	25
Figure 3.4.6. Rough bed flume with irregularities, obstruction and vegetation	26
Figure 3.4.7. Rough bed flume with irregularities and vegetation	26 viii

Figure 3.4.8. Rough bed flume with vegetation and obstructions	27
Figure 4.1 Smooth flume without any element	.31
Figure 4.2 Stage-discharge graph for smooth bed flume	32
Figure A1 Smooth bed flume with irregularities	.138
Figure A2 Stage-discharge graph for smooth bed flume with irregularities	.139
Figure A3 Smooth bed flume with obstructions	.140
Figure A4 Stage-discharge graph for smooth bed flume with obstructions	141
Figure A5 Smooth bed flume with vegetation	142
Figure A6 Stage-discharge graph for smooth bed flume with vegetation	143
Figure A7 Smooth bed flume with irregularities and obstructions	144
Figure A8 Stage-discharge graph for smooth bed flume with irregularities and obstructions	145
Figure A9 Smooth bed flume with irregularities and vegetation	
Figure A10 Stage-discharge graph for smooth bed flume with irregularities and obstructions.	147
Figure A11 Smooth bed flume with combination of obstructions and vegetation	148
Figure A12 Stage-discharge graph for smooth bed flume with vegetation and obstructions	149
Figure A13 Smooth bed flume with a combination of irregularities, obstructions and vegetation	.150
Figure A14 Stage-discharge graph for smooth bed flume with vegetation, irregularities and obstructions	151

Figure A15 Rough bed flume with only water and no elements1	53
Figure A16 Stage-discharge graph for rough bed flume1	53
Figure A17 Rough bed flume with irregularities	154
Figure A18 Stage-discharge graph for rough bed flume with irregularities	156
Figure A19 Rough bed flume with obstructions	156
Figure A20 Stage-discharge graph for rough bed flume with obstructions	158
Figure A21 Rough bed flume with vegetation	158
Figure A22 Stage-discharge graph for smooth bed flume with vegetation	160
Figure A23 Rough bed flume irregularities and obstructions	160
Figure A24 Stage-discharge graph for smooth bed flume with irregularities and obstructions	161
Figure A25 Rough bed flume with irregularities and vegetation	161
Figure A26 Stage-discharge graph for rough bed flume with irregularities and vegetation	163
Figure A27 Rough bed flume with obstruction and vegetation	155
Figure 28A Stage -discharge graph for smooth bed flume with vegetation and obstructions	166
Figure A29 Rough bed flume with a combination of irregularities, obstruction and vegetation	166
Figure A30 Stage-discharge graph for rough bed flume with vegetation, irregularities and obstructions	168

Figure 5.1.Graph showing the correlation between computed Manning's n values using the
empirical formulas against the manning's n values computed from the actual measured
discharges and depths for the rough bed flume
Figure 5.2 Graph showing the correlation between computed Manning's n values using the empirical formulas against the Manning's n values computed from the actual measured
discharges and depths for the smooth bed flume
Figure 5.3. Graph showing the correlation between predicted and observed Manning's n
values for the rough bed flume after using the empirical formulas for the prediction123
Figure 5.4 Graph showing the correlation between predicted and observed Manning's n
values for the smooth bed flume after using the empirical formulas for the prediction125

List of tables

Table 4.1 Summary of measured depths on the calibrated stilling pots at the given discharge for smooth flume bed.	1
Table 4.2 Summary of the normalised depth in metres against the stilling pots for smooth flume bed.	2
Table 4.3 Summary of measured depths, resistance coefficients (<i>f</i> and <i>n</i>) at given discharges for the smooth flume bed.	3
Table 4.4. Summary of measured depths, resistance coefficients (f and n) at given discharges for the smooth bed flume with irregularities	5
Table 4.5. Summary of measured depths, resistance coefficients (f and n) at given discharges for the smooth bed flume with obstructions	5
Table 4.6. Summary of measured depths, resistance coefficients (f and n) at given discharges for the smooth bed flume with vegetation	5
Table 4.7. Summary of measured depths, resistance coefficients f and n) at given discharges for the smooth bed flume with irregularities and obstructions	7
Table 4.8. Summary of measured depths, resistance coefficients (f and n) at given discharges for the smooth bed flume with irregularities and vegetation	7
Table 4.9. Summary of measured depths, resistance coefficients (f and n) at given discharges for the smooth bed flume with vegetation and obstructions	3
Table 4.10. Summary of measured depths, resistance coefficients (f and n) at given discharges for the smooth bed flume with irregularities, obstructions and vegetation	8

4.11. Summary of measured depths, resistance coefficients (<i>f</i> and <i>n</i>) at given discharges for the rough bed flume only
Table 4.12. Summary of measured depths, resistance coefficients (f and n) at given discharges for the rough bed flume with irregularities
Table 4.13. Summary of measured depths, resistance coefficients (f and n) at given discharges for the rough bed flume with obstructions
Table 4.14. Summary of measured depths, resistance coefficients (f and n) at given discharges for the rough bed flume with vegetation
Table 4.15. Summary of measured depths, resistance coefficients (f and n) at given discharges for the rough bed flume with obstructions and irregularities
Table 4.16. Summary of measured depths, resistance coefficients (f and n) at given discharges for the rough bed flume with vegetation and irregularities
Table 4.17. Summary of measured depths, resistance coefficients (f and n) at given discharges for the rough bed flume with obstructions and vegetation
Table 4.18. Summary of measured depths, resistance coefficients (f and n) at given discharges for the rough bed flume with obstructions, irregularities and vegetation
Table 5.1 Summary of Darcy-Weisbach friction factors for the individual elements (obstructions, vegetation & irregularities) and also their permutations in the rough bed flume

Table 5.2. Summary of total friction factors and friction factors due to form roughness

(f_{form}) for the individual elements (obstructions, vegetation & irregularities) and also their permutations in the smooth bed flume
Table 5.3. Summary showing the difference in form roughness between smooth bed flume and rough bed flume when obstructions, irregularities and vegetation are permutated in the flume using Darcy Weisbach friction factor
Table 5.4 Summaries of total Manning's roughness coefficient and Manning's roughness coefficient due to form roughness (n_{form}) for the individual elements (obstructions, vegetation & irregularities) and also their permutations in the rough bed flume
Table 5.5 Summary of total Manning's roughness coefficient and Manning's roughness coefficient due to form roughness (n_{form}) for the individual elements (obstructions, vegetation & irregularities) and also their permutations in the smooth bed flume
Table 5.6 Summary showing the difference in Manning's form roughness coefficient between smooth bed flume and rough bed flume when obstructions, irregularities and vegetation are permutated in the flume
Table 5.7 Summary showing the computed Darcy-Weisbach f values against the Darcy-Weisbach f values (using observed discharge and depth) for the rough bed flume60
Table 5.7 Summary showing the computed Darcy-Weisbach f values against the Darcy-Weisbach f values (using observed discharge and depth) for the smooth bed flume61
Table 5.9 Summary showing the computed Manning's n values against the computed Manning's n values (using observed discharge and depth) for the rough bed flume
Table 5.10 Summary showing the computed Manning's n values against the computed Manning's n values (using observed discharge and depth) for the smooth bed flume63

xiv

Table 5.11 Summary showing the different form roughness' (f_{form}) for the rough bed with
obstructions obtained from all the different permutations of the elements in the rough
bed flume using Darcy Weisbach friction factor65

Table 5.12 Summary showing the different form roughness' (f_{form}) for the rough bed with
vegetation obtained from all the different permutations of the elements in the rough
bed flume using Darcy Weisbach friction factor

Table 5.18 Summary showing the different form roughness' (f_{form}) for the rough bed with vegetation obtained from all the different permutations of the elements in the rough bed flume using Manning's roughness coefficient
Table 5.19 Summary showing the different form roughness' (f_{form}) for the rough bed with irregularities obtained from all the different permutations of the elements in the rough bed flume using Manning's roughness coefficient
Table 5.20 Summary showing the different form roughness' (f_{form}) for the smooth bed with obstructions obtained from all the different permutations of the elements in the smooth bed flume using Manning's roughness coefficient
Table 5.21 Summary showing the different form roughness' (f_{form}) for the smooth bed with vegetation obtained from all the different permutations of the elements in the smooth bed flume using Manning's roughness coefficient
Table 5.22 Summary showing the different form roughness' (f_{form}) for the smooth bed with irregularities obtained from all the different permutations of the elements in the smooth bed flume using Manning's roughness coefficient
Table 5.23 Summary showing the total Manning's n values computed from the measured discharges and depths for the rough bed flume as seen in the tables of the appendix
Table 5.24 Comparison of Manning's n values predicted by SCS method and experimental values for rough bed case
Table 5.25 Summary showing the total Manning's n values computed from the measured discharges and depths for the smooth bed flume as seen in the tables of the appendix

Table 5.26 Comparison of Manning's n values predicted by SCS method and experimental
values for smooth bed case
Table 5.27 Summary of computed form resistances for the permutations of the three
elements (obstructions, vegetation and irregularities for the smooth bed flume using
Manning's roughness coefficient
Table 5.28 Summary showing the testing of the HR Wallingford's method for both
predicted Manning's n values and the % error due to their differences for the rough bed
flume
Table 5.29 Summary of computed form resistances for the permutations of the three
elements (obstructions, vegetation and irregularities for the smooth bed flume using
Manning's roughness coefficient
Table 5.30 Summary showing the testing of the HR Wallingford's method for both
predicted Manning's n values and the % error due to their differences for the smooth bed
flume
Table 5.31 Summary showing the testing of the empirical method for both predicted
Manning's n values and the experimentally computed (observed) Manning's n values for
the rough bed flume
Table 5.32 Summary showing the testing of the empirical method for both predicted
Manning's <i>n</i> values and the experimentally computed (observed) Manning's <i>n</i> values for
the smooth bed flume
Table 5.22 Summery of colculations for f for rough had flying with head imagularities 0.6
Table 5.33. Summary of calculations for f_{bed} for rough bed flume with bank irregularities96
Table 5.34 Summary of calculations for f_{Mr} and f_{total} for rough bed with bank irregularities98

Table 5.35 Summary of calculations for f_{bed} in smooth bed with bank irregularities	99
Table 5.36 Summary of calculations for f_{Mr} and f_{total} in smooth bed with bank Irregularities	101
Table 5.37 Summary of calculations (rough bed channel with no elements except water) of f , n , R , R_e K_s	104
Table 5.39 Summary of calculations for f_{bed} in the rough channel with obstructions	105
Table 5.40 Summary of calculations for f_{bed} in the smooth channel with obstructions	107
Table 5.41 Summary of calculations for f_{form} and f_{total} with obstructions in the smooth channel	109
Table 5.42 Summary of calculations of $V_{inf}^2\left(\frac{m}{s}\right)$, f_v and f_{total} for the rough bed flume with vegetation.	111
Table 5.43 Summary of calculations of $V_{inf}^2(\frac{m}{s})$, f_v and f_{total} for the smooth bed flume with vegetation	113
Table 5.44 Summary of predicted values of Manning's resistance for rough channel for SCS method	116
Table 5.45 Summary of predicted values of Manning's resistance for smooth channel for SCS method	117
Table 5.46 Summary of predicted values of Manning's resistance n for rough bed flume	

Table 5.47 Summary of predicted values of Manning's resistance n for smooth bed flume using HR Wallingford's method
Table 5.48 Summary of predicted and observed values of Manning's resistance n for rough bed flume using empirical formulas
Table 5.49 Summary of predicted & observed values of Manning's resistance n for smooth bed flume using empirical formulas
Table A1. Summary of measured depths on the calibrated stilling pots at the given discharge for the smooth flume bed with irregularities
Table A2. Summary of the normalised depth in metres against the stilling pots for smooth flume with irregularities bed after applying procedure for table 4.2
Table A3 Summary of measured depths on the calibrated stilling pots at the given discharge for the smooth channel with obstruction
Table A4 Summary of the normalised depth in metres against the stilling pots for smooth flumewith obstructions bed after applying procedure for table 4.2
Table A5. Summary of measured depths on the calibrated stilling pots at the given discharge for the smooth channel with vegetation
Table A6. Summary of the normalised depth in metres against the stilling pots for smooth flume with obstructions bed after applying procedure for table 4.2
Table A7 Summary of measured depths on the calibrated stilling pots at the given discharge for the smooth channel with irregularities and obstructions
Table A8.Summary of the normalised depth in metres against the stilling pots for smooth flume with obstructions bed after applying procedure for table 4.2
Table A9.Summary of measured depths on the calibrated stilling pots at the given discharge for the smooth channel with irregularities and vegetation

Table A10.Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2147
Table A11. Summary of measured depths on the calibrated stilling pots at the given discharge for
the smooth channel with obstruction and vegetation148
Table A12. Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2149
Table A13. Summary of measured depths on the calibrated stilling pots at the given discharge for
the smooth channel with obstruction and irregularities and vegetation150
Table A14. Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2151
Table A15. Summary of measured depths on the calibrated stilling pots at the given discharge for
the rough bed flume only152
Table A16. Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2
Table A17. Summary of measured depths on the calibrated stilling pots at the given discharge for
the rough channel with irregularities154
Table A18. Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2155
Table A19. Summary of measured depths on the calibrated stilling pots at the given discharge for
the rough channel with obstructions
Table A20. Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2157
Table A21. Summary of measured depths on the calibrated stilling pots at the given discharge for
the rough bed flume with vegetation

Table A23. Summary of measured depths on the calibrated stilling pots at the given discharge for
the rough channel with irregularities and obstructions161
Table A24.Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2161
Table A25. Summary of measured depths on the calibrated stilling pots at the given discharge for
the rough channel with irregularities and vegetation163
Table A26. Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2163
Table A27. Summary of measured depths on the calibrated stilling pots at the given discharge for
the rough channel with obstructions and vegetation165
Table A28. Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2165
Table A29. Summary of measured depths on the calibrated stilling pots at the given discharge for
the rough channel with obstructions, vegetation and irregularities167
Table A30. Summary of the normalised depth in metres against the stilling pots for smooth flume
with obstructions bed after applying procedure for table 4.2167

Notation

 A_{bf} = bed area subjected to surface shear [m²] A_n = projected area of elements [m²] a = Constant in friction factor relationship [-]b = Constant in in friction factor relationship [-] $C_D = \text{drag coefficient [-]}$ C = constant in friction factor relationship [-]D =flow depth [m] d = cylinder diameter [m]F = downslope weight component of water [N] *F*'surface shear resisting force [N] F'' = form drag [N] f = friction factor [-] f' = friction factor associated with bed shear [-] f'' = friction factor associated with form drag [-] f_b = friction factor for bed [-] $g = \text{gravitational acceleration } [\text{m/s}^2]$ k_s = Nikuradse grain roughness [m] n = Manning resistance coefficient [s/m^{1/3}] n' = Manning resistance coefficient associated with bed shear [s/m^{1/3}] n'' = Manning resistance coefficient associated with form drag [s/m^{1/3}] N = number of elements per unit area of bed [-] R = hydraulic radius [m] R_e = flow Reynolds number [-] R_d = element Reynolds number [-]

S =channel slope [-]

u * = shear velocity [m/s]

V = average velocity [m/s]

v = volume of water above bed [m³]

W = channel width [m]

 α = factor to account for area of separation zone [-]

 δ = kinematic viscosity of water [m²/s]

 ρ = water density [kg/m³]

 τ_o = boundary shear stress [N/m²]

irr = irregularities

obst = obstructions

veg =Vegetation

 f_{to} = a constant to be equal to zero by Hirschowitz and James (2009) for W/D greater than about 5 and between 0.06 and 0.1 for narrow channels.

 f_m = total friction factor for bed with irregularities.

 f_{Mr} = resistance due to micro-roughness of the sidewalls of the elements causing the irregularities

 f_{prism} = the resistance due to the bed.

l.= the ratio of water volume to projected plant area,

 $a_x =$ longitudinal stem spacing

 a_{ν} = lateral stem spacing,

 d_p = the stem diameter

 V_{inf} = the depth-averaged velocity in the channel as unaffected by vegetation

 V_{veg} = the depth-averaged velocity within the vegetated zone,

 h_t = the flow depth