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Abstract 

The 2-isopropenyl-2,3-dihydrobenzofuran moiety is found in many naturally occurring compounds 

including rotenone, a complex pentacyclic molecule isolated from several leguminous plants of the 

Derris and Lonchocarpus species. Interest in rotenone stems from the fact that it possesses 

significant pesticidal and piscicidal properties which have been employed for centuries. 

Furthermore, as it has three stereogenic centres, rotenone poses an interesting and challenging 

synthetic target for organic chemists. Although various syntheses of this natural compound have 

been reported, none of these were stereoselective. The first stereoselective total synthesis of 

rotenone is described in this dissertation. 

 

Initially, a model study was conducted in which the simplest of the natural rotenoids, munduserone, 

was synthesised. The key step in this transformation involves the use of a platinum catalysed 6-

endo-hydroarylation reaction of an alkynone intermediate, thus affording munduserone in 6 steps 

and an overall yield of 23%. We then attended to the synthesis of the more complex rotenoid, 

rotenone. Rotenone was synthesised by the initial assembly of a chiral (-)-(R)-2-isopropenyl-2,3-

dihydrobenzofuran-4-ol moiety, asymmetrically accessible using a stereoselective Pd π-allyl 

mediated cyclisation of (E)-4-(2,6-dihydroxyphenyl)-2-methylbut-2-enyl methyl carbonate. Having 

constructed the dihydrobenzofuran in an enantiomeric excess of 94.8%, the chromene part of 

rotenone could then be synthesised. To this end, the LDA mediated coupling reaction of the 

formylated dihydrobenzofuran and 1,2-dimethoxy-4-(prop-2-ynyloxy)benzene, gave a secondary 

alcohol which was subsequently oxidised to the corresponding alkynone, (-)-(R)-(6,7-dimethoxy-

2H-chromen-4-yl)(4-methoxy-2-isopropenyl-2,3-dihydrobenzofuran-5-yl)methanone. A 6-endo-

hydroarylation reaction was employed as a mild strategy to construct the chromene moiety, (-)-(R)-

(6,7-dimethoxy-2H-chromen-4-yl)(4-methoxy-2-isopropenyl-2,3-dihydrobenzofuran-5-

yl)methanone. Finally, a deprotection and a base-catalysed intramolecular oxo-Michael addition 

concluded the first stereoselective synthesis of rotenone in 17 steps and an overall yield of 0.02%. 
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CHAPTER 1 – INTRODUCTION 

 

The eradication of pests in agriculture is an unremitting problem that has plagued mankind since the 

dawn of agriculture. Early farmers relied on natural resources as pesticides such as for example, 

root extracts of the Derris elliptica which were employed as a pesticide in nutmeg cultivation in the 

East Indies.
1
 In fact, the use of similar plant extracts by native tribes as an aid in catching fish was 

reported by travellers to the East Indies, South America and Africa. They observed that when the 

crushed root of the Derris plant was added to lakes and ponds, the fish would swim up to the 

surface of the water body where they could then be easily harpooned.
2
 Not much was known about 

these extracts until the beginning of the 20
th

 century when they were studied by a researcher in 

Japan by the name of Roten.
3
 Little did he know that the primary toxic ingredient was a complex 

pentacyclic natural product which would later be named „rotenone‟ 1 (Figure 1). This compound is 

responsible for both the pesticidal and piscicidal activities observed in the extracts and has therefore 

become one of the most popular and well-known natural products amongst scientists and the 

general community alike. Indeed, the entire class of related compounds were subsequently 

discovered and were suitably named „rotenoids‟. 

 

Figure 1 

 

Although rotenone had been used for over a century, it wasn‟t until 1912 that it was patented for 

commercial use.
4
 Due to its complex structure, the synthesis of this pesticide on an industrial scale 

has remained impractical. Rather, the product is extracted from several leguminous plants of the 

Derris and Lonchocarpus species. Rotenone was particularly appealing as a pesticide in that, owing 

to its natural origins, it could be exploited in “organic agriculture” where the use of chemically 

synthesised pesticides is prohibited.
3
 In fact in 2007, approximately 14,500 pounds of rotenone was 

utilised in the United States of America alone for agricultural purposes.
5, 6

 The chemical also has a 

relatively short half-life as it photodegrades to non-toxic compounds within several days, thus 
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limiting human contact and consumption.
3
 Moreover, since rotenone is relatively non-polar, it was 

believed to be less toxic to mammals as absorption through their relatively hydrophilic 

gastrointestinal tract was thought to be inefficient. In contrast to this, the chemical is readily 

absorbed through the hydrophobic trachea of insects, hence its efficacy as a pesticide. Likewise, 

effective absorption through the liphophylic gills of fish allows for irreversible binding of rotenone 

to NADH-Q oxidoreductase (complex I), the first of four complexes in the electron transport chain 

of cellular respiration. The chain ordinarily terminates with the reduction of oxygen and the 

synthesis of ATP. Upon binding of rotenone to complex I, the respiratory chain is inhibited and 

since fish are unable to utilise oxygen in the blood, they swim to the surface in a desperate attempt 

to seek more highly oxygenated water. These piscicidal effects are reversible and fish that are 

transferred in time to a rotenone free water body are able to recover. 

 

1.1 A possible link between rotenone and Parkinson’s disease 

Parkinson‟s disease is one of the most common neurodegenerative disorders in elderly people. 

Although the primary cause is still unknown, it is believed to originate from a combination of both 

genetic and environmental factors. The disease is characterised by the degeneration of 

dopaminergic neurons in the brain as a result of mitochondrial dysfunction, brought about by the 

inhibition of complex I in the electron transport chain.
7
 Since rotenone is a known complex I 

inhibitor, it was associated with this disease and has thus received a considerable amount of 

negative publicity, especially following a study conducted at Emory University.
8
 In this research, 

rats were infused with rotenone over a period of weeks and an onset of symptoms similar to those in 

Parkinson‟s disease was observed. Rotenone has since been the subject of much controversy and 

consequently, there has been an increase in research regarding this matter. The general consensus 

amongst researchers is that a link does indeed exist between rotenone and Parkinson‟s disease.
7, 9

 

There has however, been pressing need for better models as many scientific organisations believe 

that these studies were unrealistic in that they do not mimic the way in which rotenone would 

normally be ingested. Consequently, the response to these studies varied and whilst rotenone was 

banned in several countries, others chose to continue using the compound, simply adopting more 

stringent regulations. 
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1.2 Industry’s response 

In an attempt to alter the negative image of rotenone, various efforts were made to reduce the 

concentration of rotenone in commercially available products. For instance, a new product called 

„True Stop‟ was developed in which rotenone was mixed with cow manure, thus combining a 

fertiliser and a pesticide in a single product. This was a significant improvement on many other 

available formulations as low concentrations of the active ingredient rotenone were adequate, and 

organic solvents were no longer required as the carrier. It also provided a practical solution to the 

environmental issue faced by dairy farmers who had to dispose of large amounts of cow manure.
10

 

True Stop was made available on the market in 1994, however, this formulation was short-lived as, 

along with many other rotenone-containing agricultural products, it was banned in 2007 when the 

European Union and the United States of America prohibited the use of rotenone as a pesticide. 

 

In the years prior to the banning of rotenone, many countries continued to use the pesticide, 

however, lower concentration limits were set. Several studies were carried out in order to ascertain 

the time period required between the last spray and harvesting, so that concentrations of rotenone 

would decrease to the legal limits. For example, in Italy, a pre-harvest period of 10 days was set at 

which point the concentration of rotenone was believed to have decreased to the maximum residue 

level of 0.04 mg/kg. In an interesting study, the concentration of rotenone on olives and in olive oil 

(one of Italy's major commodities) was evaluated.
3
 Olives were monitored under normal 

environmental conditions and following a preharvest period of 10 days, the concentrations of 

rotenone on the harvested crop and in the olive oil produced therefrom, were measured. The results 

were disturbing in that the concentration of rotenone on the fruit was found to be three times higher 

than the legal limit, and this was subsequently transferred to the olive oil. Clearly, rotenone had a 

longer half-life when used on olives. Interestingly, this was attributed to the waxy coating on the 

fruit into which rotenone could penetrate, thus protecting it against photodegradation. The pre-

harvest period was therefore extended to 20 days which was deemed adequate for sufficient 

decomposition of the chemical when applied to olives. The results of this study are rather unsettling 

if one considers the countless number of times that olive oil or any other organic produce has been 

consumed, potentially still containing rotenone. Whilst many may argue that rotenone is not 

harmful to humans when consumed orally, a recent study released in the earlier part of this year 

would suggest otherwise.
6
 It has finally been concluded, using a reasonable model, that Parkinson‟s 

disease is most certainly connected to rotenone exposure. 
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1.3 An improved model 

The earlier models used to study the effects of rotenone were based upon the administration of 

rotenone by injection into the jugular vein of rats. There was a need for newer and better models 

which would more closely mimic the actual entry of rotenone into the human body. At the 

beginning of 2011, yet another journal article regarding the safety of rotenone was released.
11

 A 

better model was developed in which rotenone was administered orally to rats over a period of 

weeks. The results showed that although rotenone was believed to be poorly absorbed through the 

gastrointestinal tract of mammals, oral administration of the chemical resulted in symptoms related 

to Parkinson‟s disease. A flaw in this study however, pertains to the doses of rotenone administered. 

The rats were dosed at 30-100 mg/kg daily. This is equivalent to 1.8-3.0 kg per person of an 

average weight of 60 kg. It is very unlikely that such quantities of rotenone would ever be 

consumed even accidently! 

 

In June 2011 a report was released in which a unique and sensible approach to the study of rotenone 

and Parkinson‟s disease was adopted.
6
 Unlike preceding studies in the laboratory, the effects of 

rotenone and its association with Parkinson‟s disease specifically in humans, was presented. The 

field study was based upon the effect of rotenone on 84,740 applicators of the pesticide and their 

partners, primarily in farming areas. All individuals were examined and diagnoses were made by 

two professionals. The results were astonishing. The symptoms of Parkinson‟s disease were 2.5 

times more prevalent in individuals who had used the pesticide compared to non-users. It was 

concluded that individuals who had used rotenone-containing products in the past, including 

household insecticides, may have been exposed to its harmful effects. Nevertheless, there is one 

positive outcome that emanated from this controversy. Extensive research has provided scientists 

with a better understanding of the causes and biochemical changes accompanying Parkinson‟s 

disease, and in better understanding the cause of the disease, researchers have come one step closer 

to finding a cure. 

 

Ironically, the biological studies of rotenone have also revealed that it exhibits anticancer properties 

against a variety of cells such as human B-cell lymphomas, promyelocytic leukemias, 

neuroblastomas and more recently, MCF-7 breast cancer cells.
12

 Similarly, the related rotenoid 

deguelin 2 possesses chemotherapeutic properties (Figure 2).
13

 Although the exact mode of action is 
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yet to be established, several accompanying biochemical processes within the cell have been 

identified and apoptosis-inducing mechanisms proposed.
12

 The fate of a cell is essentially controlled 

by the three MAPK subfamilies which can either promote cell division, cell differentiation or cell 

apoptosis. When treated with rotenone, an increase in the concentration of reactive oxygen species 

within the cell was observed as a result of complex I inhibition, followed by phosphorylation and 

hence activation of the MAPK protein kinases responsible for cell apoptosis. An increase in the 

concentration of Bax (an apoptotic protein), and a decrease in the antiapoptotic protein Bcl-2 was 

also observed, resulting in an overall increase in the permeability of the mitochondrial membrane, 

thus effecting cell apoptosis. These results do not necessarily suggest that rotenone be used as an 

anticancer agent. Rather, invaluable information may be gathered from these studies, providing 

scientists with a better understanding of the disease. New targets and unique ways to combat cancer 

may be revealed in establishing the mode of action of rotenone. Furthermore, structure-activity 

studies may disclose key features within the rotenoid core that facilitate the anticancer action of 

both rotenone 1 and deguelin 2. 

 

Figure 2 

 

1.4 Rotenone makes headlines 

Although rotenone was banned as a pesticide in 2007, it is still exploited as a chemical means to 

eradicate potentially harmful organisms from various rivers and lakes. Its use as a piscicide has 

been well-documented and numerous examples are described below. 

 

A serious issue was faced by Norway in 2008 in that approximately 10% of Norway‟s 400 rivers 

had been infected with a parasite called Gyrodactylus Salaris, the consequence of which was a 

dramatic decrease in the population of the wild Atlantic salmon over the last 30 years. Extreme 

situations called for extreme measures and as a last resort, the parasite was exterminated by 

chemical means. Rotenone was deposited onto the banks of the River Ogna and the salmon were 
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simultaneously collected using nets and transferred to a salt water tank where they were 

decontaminated and allowed to recover.
14

 

 

In 2009 another problem was resolved using rotenone. In the Great Lakes in the United States of 

America, scientists were concerned about the survival of various indigenous species that were 

threatened by the Asian Carp. This fish can grow up to 1.2 m in length and weigh up to 45 kg. 

Given that they are able to consume up to 40% of their body mass per day, the risk of this species 

eradicating the smaller indigenous fish presented a very real threat. Fearing permanent damage to 

the ecosystem, it was decided that the Asian Carp would have to be eradicated by chemical means 

using rotenone. This decision was supported by the fact that the Asian Carp were a danger to local 

fisherman as they are able to jump up to 2.5 m out of the water and this had resulted in many 

fishermen being injured.
15

 

 

Worldwide, rotenone has been utilised to eradicate alien invasive fish species from rivers and lakes. 

Locally, rotenone will be used in the Western Cape to eliminate bass from the Cape Floristic 

Region. The bass species was originally introduced into South African waters in the late 19
th

 

century purely for recreational purposes. Over a decade later, their population has escalated to the 

point that they now threaten the survival of native species, many of which have since been 

classified as endangered. In response to this matter, an environmental impact assessment was 

conducted and various alternatives were considered in order to eradicate the bass.
16

 It was reported 

that the extent of the problem is such that physical methods are no longer an option and chemical 

means would have to be employed to remove this alien species. Failure to do so may result in 

extinction of some species and vulnerability of others. The environmental impact assessment 

concluded that rotenone would have to be used in the Cape Floristic Region to eradicate the bass 

species specifically in four streams in which the removal of alien fish is feasible. The bass would 

not be removed from regions in which angling is common, as this activity is a means of income for 

many locals. Special care would have to be taken to preserve the indigenous aquatic faunas of the 

region, e.g. prior to the addition of the poison, indigenous species such as the Eastern Cape Krom 

would have to be physically removed and kept in porta-pools for the duration of the treatment. The 

success of this procedure is not only dependent upon the complete eradication of bass, but also on 

the ability of native organisms to repopulate their home following this treatment. With the support 

of the environmental impact assessment, the South African Water Research Commission recently 
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announced that the rehabilitation process would commence as of February 2011, although this 

process has been somewhat delayed due to undisclosed reasons. 

 

1.5 The biosynthesis of rotenoids 

In light of the fact that rotenone is a naturally occurring compound let us take a moment to consider 

the possible biosynthesis of this interesting molecule and other related rotenoids, all of which 

contain the cis-fused tetrahydrochromeno[3,4-b]chromene nucleus.  

 

As is often the case in discussing these natural pathways, a definitive biosynthetic pathway toward 

the rotenoid ring system is yet to be established. Despite this, the majority of proposed pathways 

suggest that a link exists between the isoflavone and rotenoid class of compounds.
17-19

 Crombie and 

co-workers have made a significant contribution to this area of rotenoid chemistry.
17, 18

 

Experimental work pertaining to the synthesis of rotenoids has shown that this class of compounds 

may emanate from the amino acid phenylalanine 3, which is converted into a chalcone 4 and then in 

the presence of methionine, an isoflavone 5 is formed (Scheme 1). The phenyl ring migrates from 

the 6a to the 12a-position as designated in the desired rotenoid (a conventional labelling system for 

rotenoids is adopted throughout this dissertation, as illustrated in 1). These processes are commonly 

observed in flavanoid chemistry and are generally accepted amongst the several proposed 

biosynthetic pathways toward rotenoids. The carbon atom eventually ending up at the 6-position is 

believed to be introduced by methionine. Next, cyclisation of the 2-methoxyisoflavone 6, possibly 

by isomerisation, allows for the formation of the B-ring system and thus the tetracyclic compound 

7. The pathway may terminate at this point upon methylation of the hydroxyl, producing the natural 

product munduserone 8. Alternatively, prenylation at the 8-position will give rise to the more 

complex rotenoids such as rotenone 1 (R=H) and amorphigenin 9 (R=OH), possessing the E-ring 

system. 
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Scheme 1 

 

1.6 Isolation, structure elucidation and syntheses of rotenone and munduserone 

Although the structure of rotenone was established in 1932 based on work by LaForge, Butenandt 

and Takei,
2, 20, 21

 it took scientists approximately another 30 years to synthesise this complex 

molecule and even then the synthesis was not enantioselective.
22

 One of the earliest syntheses was 

reported in 1958 when rotenone was partially synthesised from derrisic acid 10, a product of the 

degradation of rotenone (Figure 3).
23, 24

  

 

Figure 3 
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The first non-stereoselective total synthesis of rotenone 1 was subsequently reported in 1960.
22

 In 

this synthesis, rotenone was obtained in 17 steps from commercially available resorcinol 11 

(Scheme 2). The synthesis commenced with the construction of the benzofuran 12 using available 

methodology.
25

 Following this, the isopropyl functionality was introduced by means of a Grignard 

reaction (later to be converted to the required isopropenyl group) and then hydrogenation over 

Raney nickel afforded the required dihydrobenzofuran 13. By means of a Hoesch condensation with 

14,
26

 Miyano and co-workers began to construct the rest of the molecule. At this stage the isopropyl 

functionality of 15 was dehydrated to afford the isopropenyl group as required for rotenone, thereby 

forming the advanced racemic intermediate, derrisic acid 10. Ring closure was achieved by boiling 

10 in a solution of acetic anhydride and sodium acetate according to the procedure by Takei, giving 

dehydrorotenone 16.
21

 Conversion to rotenone was attained firstly by reduction with sodium 

borohydride, followed by oxidation of rotenol 17 to mutarotenone, a mixture of diastereomers of 

natural rotenone.
22

 

 

Scheme 2: Reagents and conditions: (i) a: MeMgBr, b: Raney Ni; (ii) a: ZnCl2, HCl, b: KOH; (iii) a: 

Diazomethane, b: PBr3, pyridine, overall 0.01%; (iv) Acetic anhydride, NaOAc, 23%; (v) NaBH4; (vi) 

Al(OiPr)3. 
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In the original procedure by Miyano and co-workers,
22

 derrisic acid 10 had been synthesised in a 

disappointingly poor yield of 0.01%. They had attributed this to the instability of the isopropenyl 

moiety under acidic conditions. Moreover, dehydrorotenone 16 was afforded according to the 

procedure by Takei through the cyclisation of derrisic acid, also in a poor yield (23%). In an attempt 

to improve on this, Miyano presented yet another procedure in which dehydrorotenone was 

synthesised from pyrrolidine enamine 18 and tubaacyl chloride 19 in a yield of 15% (Scheme 3).
27

 

Alternatively, derrisic acid could be treated with dicyclohexylcarbodimide (DCC) and a tertiary 

base to give dehydrorotenone in a slightly improved 40% yield (Scheme 4).
28

 

 

Scheme 3: Reagents and conditions: HCl, Δ, 15%. 

 

 

Scheme 4: Reagents and conditions: (i) a: DCC, pyridine, b: Potassium propanoate, EtOH, reflux, 1 h, 40%. 

 

Shortly after the first total racemic synthesis of rotenone, the absolute configuration was elucidated 

by Büchi and co-workers.
29

 The absolute stereochemistry was determined upon comparison of the 

degradation products of rotenone to compounds of known stereochemistry, thus establishing the 

(6aS, 12aS, 5‟R) configuration. This presented an interesting and challenging synthetic target for 

organic chemists, hence the surge in rotenoid chemistry in the 1960‟s. Research in this area was 

subsequently fuelled by a need to better understand the activity of rotenoids within biological 

systems, as rotenone had been linked to Parkinson‟s disease. Thus, several of the following reported 
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syntheses commenced from advanced intermediates obtained from natural sources, as the focus was 

to include radioactive labels for biological studies. A discussion pertaining to several syntheses, 

many in this category, are highlighted in the following sections. 

 

In 1960, Ollis and Finch isolated and identified the simplest of the rotenoids, namely munduserone 

8, from the bark of Mundulea sericea.
30

 They also proceeded with a partial synthesis of the 

compound starting from dehydromunduserone 20 (Scheme 5).
31

 This involved the transformation of 

20 to munduserol 21 using sodium borohydride, followed by an Oppenauer oxidation using 

aluminium isopropoxide, to furnish munduserone 8. This was a significant discovery as a simple 

target was presented upon which methodology could be tested, prior to attempting the synthesis of 

the more complex rotenoids, such as rotenone and deguelin. We shall now give a brief review of the 

progress to date with regard to the synthesis of munduserone and rotenone, specifically. 

 

Scheme 5: Reagents and conditions: (i) NaBH4, dioxane; (ii) Al(OiPr)3, acetone/benzene. 

 

1.6.1 Synthesis of the dehydrorotenoid core 

In 1967, Fukui and co-workers presented a new synthesis of the rotenoid class of compounds.
32

 

Their approach was consistent with the notion that rotenoids could be derived from isoflavones as 

the core structure, to which the rings B and E could later be added (Scheme 6). They attempted this 

in a somewhat reverse manner, however, in that the tricyclic structure was degraded en route to 

munduserone 8. Having synthesised the isoflavone 22, selective demethylation was achieved using 

aluminium trichloride. Conversion to the phenoxyacetic ester 23 allowed for the addition of a 

carbon atom, eventually at the 6-position in munduserone. Alkaline hydrolysis to give 

methyltephrosic acid 24 was followed by an intramolecular cyclisation using acetic anhydride and 

sodium acetate, affording dehydromunduserone 20 which could be converted to munduserone 8 on 

application of the methodology described by Ollis et al.
31

 Unfortunately, this methodology has not 

been extended to the syntheses of more complex rotenoids such as rotenone. 
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Scheme 6: Reagents and conditions: (i) a: AlCl3, 85%, b: Ethyl bromoacetate, 94%; (ii) Dilute alkali, 71%; 

(iii) Acetic anhydride, NaOAc; (iv) a: NaBH4, dioxane, b: Al(OiPr)3, acetone/benzene. 

 

The total synthesis of munduserone 8 reported by Nakatani and Matsui a year later resembled the 

above process.
33

 A similar bicyclic system was synthesised upon which cyclisation afforded 

dehydromunduserone (Scheme 7). In contrast to the above methodology, Nakatani constructed the 

bicyclic tephrosic acid 26 from derric acid 25 and resorcinol 11, rather than from an isoflavone 

intermediate. The coupled product 26 was treated with diazomethane thus affording the partially 

methylated compound 27. Finally, refluxing in the presence of sodium ethoxide afforded 

dehydromunduserone 20 which was converted to 8 according to the procedure by Ollis et al.
31

 

 

Scheme 7: Reagents and conditions: (i) P2O5, H3PO4, 69%; (ii) Diazomethane, 80%; (iii) NaOEt, EtOH, 

reflux, 3 h, 83%; (iv) a: NaBH4, dioxane, 60 °C for 45 min, 100 °C for 15 min, 57%, b: Al(OiPr)3, 

acetone/benzene, reflux, 14 h, 88%. 
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In an attempt to circumvent the reduction-oxidation procedures required for the dehydrorotenoid to 

the rotenoid routes, Crombie and co-workers presented an alternative method.
34

 Treatment of the 

dehydrorotenoid 28 with DIBAL (Scheme 8) provided the unnatural trans B/C ring system 29 as 

confirmed by an X-ray crystallographic structure. Epimerisation under acidic conditions then gave 

the natural cis product 30. 

 

Scheme 8: Reagents and conditions: (i) DIBAL, toluene/THF, ­78 °C to 0 °C; (ii) HCl. 

 

1.6.2 A direct route to the rotenoid core 

Inspired by their interests in the biosynthetic pathway of rotenoids as well as their biological effects, 

Crombie and co-workers made several attempts to construct various natural rotenoids and unnatural 

derivatives.
35

 In the process of isotopic labelling which formed the key feature of their research in 

elucidation of the biosynthetic routes, new synthetic approaches to the rotenoid core were 

developed. Not only did this shed light on the biosynthesis of these interesting compounds, but a 

significant contribution to the laboratory synthesis of various rotenoids was attained. 

 

Whilst many of the available methods at the time afforded the dehydrorotenoid, Crombie and co-

workers had developed several methods providing direct access to the tetracyclic core at the correct 

oxidation level, thus eliminating the need for further reduction-oxidation procedures. This was 

particularly of value when synthesising compounds such as rotenone, in which the isopropenyl 

functionality was sensitive to these conditions. Indeed, the procedure developed by Crombie was 

effective for the synthesis of both munduserone 8 and rotenone 1.
36

 In designing their approach, 

they envisaged that munduserone and rotenone could be synthesised from hydroxyisoflavones 31, 

thereby closely aligning themselves with the biosynthetic route (Scheme 9). This approach would 

require a methylene insertion and it was envisaged that dimethylsulfoxonium methylide could be 

employed as an analogous reagent to methionine in nature. It was predicted that treatment of 31 

with dimethylsulfoxonium methylide would afford 32 by way of a Michael addition, which would 

be followed by a rearrangement and concomitant ring opening of the chromanone to give 33. 

Recyclisation would then lead to the vinylcoumaranone 34 as a key intermediate in this approach. 
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Finally, in the presence of base and dimethylsulfoxonium methylide, further reaction would yield 

the dienone 35 which, upon electrocyclic rearrangement, would give the dehydrorotenol 36. An 

intramolecular cyclisation would finally afford the rotenoid 37 at the correct oxidation level. 

 

Scheme 9 

 

It was envisaged that this interesting proposal could be used to synthesise both munduserone and 

rotenone by way of a common intermediate, 9-demethylmunduserone 7. In putting the proposal into 

practice (Scheme 10), a reaction of 4,5-dimethoxy-o-benzoquinone 38 with 7-benzyloxychroman-4-

one 39 afforded the isoflavone 40 which was subsequently methylated on all three phenolic 

hydroxyl groups and then selectively demethylated. Removal of the benzyl protecting group 

furnished the dihydroxydimethoxyisoflavone 41. Subsequent reaction with dimethylsulfoxonium 

methylide produced the vinylcoumaranone 42 which, upon treatment with pyridine, afforded 7 

(although in a poor yield). Finally, methylation employing diazomethane afforded munduserone 8. 

In an attempt to apply this methodology to the synthesis of rotenone, prenylation at the 8-position of 

7 by means of a Lewis acid catalysed condensation produced rot-2-enonic acid 43. Reaction with 

MCPBA afforded dalpanol 44 which is believed to be the immediate precursor to rotenone in the 

biosynthetic pathway. The conversion of dalpanol to rotenone had not been achieved at the time. 

This was however, accomplished several years later by Nakatani and Matsui (see later).
37
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Scheme 10: Reagents and conditions: (i) NaH, DMSO, 2 h, 71% (ii) a: MeI, K2CO3, reflux, b: AlCl3, 

MeCN, reflux, 16 h, 60%; (iii) NaH, DMSO, 2 h; (iv) Pyridine, 100 °C, 14% over 2 steps; (v) Diazomethane, 

18% over 3 steps; (vi) 3-Methylbut-2-en-1-ol, BF3.(OEt)2/CH2Cl2, 5 °C, 4 h, 23%; (vii) MCPBA, Na2CO3, 

CHCl3, 0 °C, 40 min, 13%. 

 

As a compromise, rotenone could be synthesised starting from a slightly different precursor in the 

form of derritol isoflavone 45, a product of the degradation of rotenone (Scheme 11). A reaction 

with dimethylsulfoxonium methylide afforded the vinylcoumaranone 46 as predicted. Pyridine was 

then added to the mixture of diastereomers which, upon heating, afforded rotenone 1 and its epimer. 

Interestingly, the trans-fused ring system was acquired in this process unlike natural rotenone which 

adopts a cis arrangement for the B/C ring junction. Nevertheless, the cis form of rotenone could be 

isolated from this epimeric mixture by fractional crystallisation.
36
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Scheme 11: Reagents and conditions: (i) DMSO, 3 h; (ii) Pyridine, 100 °C, 48 h, 26%. 

 

In light of this work, Crombie and co-workers attempted yet another synthesis of the tetracyclic 

rotenoid core (Scheme 12).
35

 The phenolic ketone 47, which was accessible by various methods 

such as the classical Hoesch reaction, was treated with sodium ethyl formate to give the isoflavone 

48. An allyl side chain was then introduced using sodium hydride and allyl bromide and upon 

alkaline hydrolysis, the bicyclic, allylated compound 49 was afforded. Following an oxidation to the 

aldehyde 50 using osmium tetroxide and sodium periodate, the product was heated to reflux in 

pyridine thus giving the rotenoid skeleton 51. This methodology was used to synthesise 

isorotenone, a derivative of rotenone in which the double bond is situated within the furan ring 

rather than on the isopropyl moiety. The procedure had not been extended to the synthesis of 

rotenone, possibly due to susceptibility of the isopropenyl double bond to oxidation by osmium 

tetroxide. 

 

Scheme 12: Reagents and conditions: (i) Sodium ethyl formate; (ii) NaH, allyl bromide, DMF, 3 h, 64%; 

(iii) NaOH, EtOH, reflux, 58%; (iv) OsO4, sodium periodate, dioxane/water, rt, 2 h, 31%; (v) Pyridine, 

30 min, 30%. 
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Miyano and Crombie, together with their respective research groups, were pioneers in the synthesis 

of rotenone and other related structures. Several additional interesting approaches to the rotenoid 

core have been reported over a number of decades. These include partial syntheses from other 

naturally occurring rotenoids, the use of Claisen rearrangements as a key step, palladium-catalysed 

arylations and the use of protected cyanohydrins. A brief description of these routes follows. 

  

1.6.3 Rotenone from dalpanol  

Many examples are available in the literature in which rotenone was synthesised from an advanced 

intermediate, itself attained from rotenone degradation products or from other natural rotenoid 

compounds. An example of the latter is illustrated in the synthesis of rotenone 1 from the natural 

product dalpanol 44 (Scheme 13), a compound nearly identical to rotenone in that the only 

difference lies in the fact that it possesses an isopropyl alcohol side chain.
37

 A simple dehydration 

reaction of 44 using PBr3-pyridine furnished 1 in a single step!
22

 

 

Scheme 13 Reagents and conditions: PBr3, pyridine, 0-5 °C, 10 h, 31%. 

 

1.6.4 Claisen rearrangement of acetylenic intermediates 

A novel synthesis toward the rotenoid skeleton was presented in 1973 by Omakawa and 

Yamashita.
38

 Their synthetic strategy also circumvented the need for reduction and oxidation steps 

of a dehydrorotenoid, as the compound was afforded at the correct oxidation level (Scheme 14). A 

key step in their synthesis involved a cleverly employed Claisen rearrangement of an acetylenic 

intermediate. The synthesis commenced with the propargyl ether 52 which was converted to the 

Grignard reagent 53 and then reacted with 4-methoxysalicaldehyde to afford the coupled alcohol 

54. An oxidation to the ketone 55, followed by a Claisen rearrangement (although under rather 

harsh conditions), gave the key chromene moiety 56. Ring closure in the form of an internal 

Michael addition produced munduserone 8. Although the yield over the last two steps was only 

17%, this was still an improvement on preceding methods. Hence, the methodology was adopted 
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several years later by Crombie and co-workers in the synthesis of several rotenoid derivatives for 

the purpose of structure-activity studies.
39, 40

  

 

Scheme 14: Reagents and conditions: (i) EtMgBr, THF, rt, 2 h; (ii) 2-hydroxy-4-methoxybenzaldehyde, 

THF, 5-10 °C for 30 min, rt for 2 h; (iii) MnO2, CH2Cl2, rt, 45 min, 65% over 3 steps; (iv) N,N-

diethylaniline, 185 °C, 2.5 h; (v) NaOAc, EtOH, reflux, 2.5 h, 17% over 2 steps. 

 

In 1978, the methodology was extended to the synthesis of rotenone, this time coupling a suitably 

substituted dihydrobenzofuran with the propargyl ether 52 by means of a Grignard reaction.
41

 The 

remainder of the synthesis was identical to that applied in the construction of munduserone. 

However, one of the major downsides to this procedure was that the dihydrobenzofuran was 

synthesised as a racemic mixture. Although enantiomerically pure material could be obtained by 

subsequent resolution methods, this did not constitute a stereoselective synthesis. The yields were 

also particularly concerning as the only reported value was that of the key Claisen rearrangement, 

obtained in a modest 40% yield. 

 

1.6.5 Palladium-catalysed intramolecular arylation 

A transition metal mediated synthesis of munduserone was described by Whiting and co-workers.
42, 

43
 The chromone 58 was afforded upon treatment of 57 with 3,4-dimethoxyphenol (Scheme 15). 

Iodination to give 59, followed by reduction with sodium borohydride yielded the chromanol 60 

which was dehydrated to 61. Treatment with palladium acetate furnished the B-ring, and hence the 

tetracyclic rotenoid skeleton 62, by means of an apparent radical reaction. Conversion to the diol 63 

was achieved using osmium tetroxide-N-methylmorpholine-N-oxide following which, oxidation to 
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the ketone and deoxygenation at the 12a-position afforded munduserone 8. One of the main 

disadvantages of this synthesis pertains to the final transformations which were achieved in a 

relatively poor yield. The procedure was also unsuitable for the synthesis of rotenone as the 

isopropenyl moiety would not be stable under the reaction conditions of the final few steps. 

 

Scheme 15: Reagents and conditions: (i) a: EtOCH2CO2Et, Na, Et2O, 24 h, 53%, b: H2SO4, EtOH, reflux, 

30 min, c: HBr, AcOH, 50 °C, 24 h, 53%; (ii) 3,4-dimethoxyphenol, K2CO3, acetone, reflux, 48 h, 79%; (iii) 

HgO, I2, EtOH, 50 °C, 30 min, 61%; (iv) NaBH4, THF, 1.5 h, 83%; (v) Acetyl chloride, 30 min, then 

benzene, reflux, 1 h, 88%; (vi) Pd(OAc)2, PPh3, NEt3, MeCN, 80 °C, 12 h, 56%; (vii) OsO4, tert-butanol, 

acetone/water, rt, 14 days, 92%; (viii) a: MnO2,CH2Cl2, 12 h, rt, b: Zn, AcOH, 20% over 2 steps. 

 

1.6.6 Aroylation of substituted chromans 

Concerned with the fact that many of the available methods were lengthy, low yielding and 

restrictive in terms of the versatility of starting materials and subsequent products, Lai and co-

workers wished to develop a more efficient procedure that could provide access to a variety of 

rotenoids, both natural and unnatural which, given their many applications, could then be subjected 

to structure-activity studies. In 1989, Lai and co-workers presented their novel synthesis of the 

rotenoid nucleus, derived from a chroman substituted with an anion stabilising group such as a 

sulfone (Scheme 16).
44

 To this end, 4-(phenylthio)chroman 65 was synthesised from chroman-4-ol 

64 and thiophenol upon treatment with zinc iodide. Subsequent reaction with MCPBA afforded the 
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sulfonyl-chroman 66 which was then coupled to 2,4-dimethoxybenzoyl chloride in an aroylation 

reaction. The chromene moiety 67 was then released from the sulfone by using Raney Nickel, 

following which, a dehydrogenation reaction using iodine in ethanol formed the Michael acceptor 

68. Selective removal of the methyl group was achieved using boron trichloride, thus setting the 

stage for an internal Michael addition of 69 to afford the rotenoid skeleton 70 in a modest yield. 

Loss of product was potentially due to oxidation of the final rotenoid, as the dehydrorotenoid and 

hydroxyrotenoids were isolated along with the desired product. 

 

Scheme 16: Reagents and conditions: (i) PhSH, ZnI2, EDC, rt, 1 h, 87%; (ii) MCPBA, CH2Cl2, 0 °C, 18 h, 

81%; (iii) 2,4-dimethoxybenzoyl chloride, nBuLi, THF, HMPA, ­75 °C to rt, 63%; (iv) a: Raney Ni, EtOAc, 

4 h, 99%, b: I2, KOAc, EtOH, 2 h; (v) BCl3, CH2Cl2, 0 °C to rt; (vi) KOAc, EtOH, reflux, 2.5 h. 

 

1.6.7 Synthesis from protected cyanohydrins 

In 2009, a novel synthesis of munduserone was reported, involving the coupling of the 

nitrochromene 71 and a protected cyanohydrin 72.
45

 Each of these intermediates was accessible 

starting from commercially available materials, 4,5-dimethoxysalicaldehyde and 4-

methoxysalicaldehyde, respectively (Scheme 17). Following LDA coupling, the crude products 73 

and 74 were subjected to mildly acidic and then basic conditions to facilitate the removal of the 

TMS protecting group and then HCN and HNO2, respectively. The two products afforded in the 

process, the desired enone 75 and hydroxymunduserone 76, were produced in poor yields. Both of 

these compounds, however, could be converted to munduserone 8 in a good yield. Ring closure of 

the enone was automatically achieved upon removal of the MOM protecting group under acidic 

conditions. Hydroxymunduserone was treated with zinc in acetic acid, also affording the desired 

rotenoid, munduserone. This approach was unsuitable for the synthesis of rotenone as extended 

exposure to acidic conditions may have resulted in epimerisation at the stereogenic 5‟-centre. 
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Scheme 17: Reagents and conditions: (i) LDA, THF, -70 °C to rt; (ii) a: 5% H2SO4, THF, 50 °C, b: Et3N, 

Me2CO, rt, 21% overall; (iii) a: 5% H2SO4, THF, 50 °C, b: Et3N, Me2CO, rt; 28% overall (iv) 10% HCl, 

MeOH, 65 °C, 2 h, 86%; (v) Zn, AcOH, 115 °C, 45 min, 71%. 

 

1.7 The Wits approach – aims of this project 

In 2007 the Wits organic research group, in collaboration with the Schmalz research group at the 

University of Köln, became interested in developing the first stereoselective synthesis of rotenone.
46

 

A convergent procedure was envisaged whereby a suitably substituted chroman 77 and a chiral 

dihydrobenzofuran 78 would be synthesised separately and then coupled leading to rotenone 1 

(Scheme 18). Since at this time the Schmalz group were already working towards the chroman 

moiety, de Koning and Pelly at Wits University decided to tackle the synthesis of the chiral 2-

isopropenyl-2,3-dihydrobenzofuran (R)-78. To this end, the Wits group successfully completed the 

synthesis of the dihydrobenzofuran moiety by way of a key Pd π-allyl mediated cyclisation, in an 

excellent yield and enantiomeric excess.
46, 47

 Despite a significant effort on behalf of the Schmalz 

group, all attempts to obtain the desired chroman were thwarted in light of the fact that the molecule 

turned out to be very unstable. In particular, it appeared that the chroman nucleus was very 

susceptible to oxidation at the 2-position. 
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Scheme 18 

 

With the knowledge that the originally planned synthesis could not proceed due to the instability of 

the chroman, we turned our attention to an alternative method that would allow us to capitalise on 

work already completed toward the chiral dihydrobenzofuran. To this end, a recent publication by 

Sames and Pastine in their synthesis of deguelin, revitalised our rotenone project as we envisaged 

being able to use similar methodology to complete the synthesis of rotenone.
48, 49

 In their synthesis, 

a novel platinum-catalysed 6-endo-hydroarylation method was developed, providing direct access 

to the chromene scaffold under mild conditions and in a good yield.
49, 50

 The simplified 

disconnection below illustrates the alkyne 52 and benzopyran 79 precursors from which deguelin 

was synthesised in this procedure (Scheme 19). If we were to reconstruct our chiral 

dihydrobenzofuran (R)-78 with the appropriate functionality (R)-80, we were confident that we 

could similarly employ the alkyne precursor 52 in order to synthesise the chroman moiety in 

rotenone. 
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Scheme 19 

 

In the discussion to follow, we will outline several approaches to the synthesis of the crucial 

dihydrobenzofuran and provide a detailed description of the methodology employed in our 

laboratories by de Koning and Pelly for the synthesis of (R)-78.
47

 We shall also give a brief 

overview of the key 6-endo-hydroarylation reaction and events leading up to its use in the 

construction of deguelin and its envisaged importance in our planned synthesis of rotenone. 

 

1.8 Selected syntheses of the 2,3-dihydrobenzofuran moiety 

Over the years, the synthesis of the dihydrobenzofuran has been extensively investigated, owing to 

its prevalence in a variety of natural products. A multitude of approaches have been established, 

providing access to a range of substituted 2,3-dihydrobenzofurans. Here, we present several 

interesting synthetic processes, briefly considering racemic syntheses and eventually placing 

emphasis on transition metal catalysed reactions, with particular interest in those that delivered an 

enantioselective approach towards the assembly of 2-substituted dihydrobenzofurans. 

 



Chapter 1 – Synthesis of the dihydrobenzofuran moiety 

________________________________ 

 

24 
 

1.8.1 Background on racemic syntheses of the 2,3-dihydrobenzofuran moiety 

One of the earliest recorded syntheses of the 2,3-dihydrobenzofuran dates back to 1958 when 2-

isopropenyl-2,3-dihydrobenzofuran 83 was synthesised from isoprene dibromide 81 and sodium 

with fluoroacetophenone.
51

 Twenty years later, a variation on this reaction was conducted by 

Kawasa and co-workers, using phenol 82, rather than fluoroacetophenone, under harsh conditions 

(Scheme 20). 
52

 Although this reaction yielded 83 as is found in rotenone, the synthesis below is of 

course non-stereoselective. 

 

Scheme 20: Reagents and conditions: (i) Na, 43% 

 

In 1990, Larock and co-workers described the synthesis of a variety of oxygen heterocyclic 

compounds, including the dihydrobenzofurans 86 and 87 obtained using a palladium-catalysed 

annulation of a 1,3-diene 85 by the o-iodophenol 84 (Scheme 21).
53

 Unfortunately, the reaction was 

specifically restricted to electron-deficient o-iodophenols and sterically unhindered dienes. 

Moreover, this procedure was poor yielding, non-stereoselective and in fact led to a mixture of 

products as shown below. 

 

Scheme 21: Reagents and conditions: (i): 5 mol% Pd(OAc)2, NaOAc, n-Bu4NCl, DMF, 100 °C, 3 days, 

43%. 

 

A more recent development emanating from the same research group showed that use of the o-

acetate 88, rather than the phenol 84, resulted in a significant improvement in the reaction, which 

could now be applied to a broader range of substrates (Scheme 22).
54

 Terminal, cyclic and internal 

dienes as well as electron-rich and electron-deficient o-iodoaryl acetates were utilised, giving rise to 
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many compounds in good yields which were previously inaccessible by this methodology. Amongst 

these, were several derivatives of the 2-isopropenyl-2,3-dihydrobenzofuran unit such as 89. 

Interestingly, regarding chirality at the 2-position, the report states that the reaction is 

stereoselective, although no mention was made beyond this and enantiomeric excesses had been 

omitted. Since we wished to approach the synthesis of rotenone stereoselectively, this was an issue 

of particular concern. 

 

Scheme 22: Reagents and conditions: (i) 5 mol% Pd(dba)2, 5 mol% dppe, Ag2CO3, dioxane/H2O, 100 °C, 

24 h, 98%. 

 

In a concurrent study by Larock and co-workers, a slightly different approach to heterocyclic 

compounds was provided.
55

 A palladium-catalysed cross-coupling reaction of o-allylic phenols 90 

with vinylic halides (or triflates) 91 was described (Scheme 23). Various benzopyran 92 and 

dihydrobenzofuran moieties 93 were constructed in the process. Unfortunately, the methodology 

was not widely applicable and the dihydrobenzofuran moiety was only obtained in selected 

examples. It was usually formed as a by-product as the reactions strongly favoured the formation of 

the corresponding pyrans. 

 

Scheme 23: Reagents and conditions: (i) 5 mol% Pd(OAc)2, Na2CO3, n-Bu4NCl, DMF, 80 °C, 24 h, 

92: 82%, 93: 8%.  

 

Intramolecular Pd-catalysed coupling reactions of aryl halides with alcohols have provided a route 

to cyclic aryl ethers. Reactions of this sort were reported for the first time in 1996 by Buchwald and 

co-workers upon synthesising several five-, six- and seven-membered heterocycles in moderate to 
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good yields.
56

 An example is illustrated in Scheme 24 below in which the arylbromo alcohol 94 was 

subjected to catalytic Pd(OAc)2 in the presence of a bidentate phosphorous-based ligand, thus 

affording the dihydrobenzofuran 95 substituted at the 2-position in a good yield. The reaction was 

unfortunately limited to tertiary alcohols as application of these conditions to primary and 

secondary alcohols afforded the corresponding dehalogenated aldehydes or ketones with the desired 

compound only in low yields. This was attributed to a β-hydride elimination which competed with a 

reductive elimination at the palladacycle stage 98 (Scheme 25). 

 

Scheme 24: Reagents and conditions: (i) 5 mol% Pd(OAc)2, 6 mol% Tol-BINAP ligand, K2CO3, toluene, 

100 °C, 89%. 

 

More recently, focus was placed on the development of a new ligand that would accelerate the 

reductive elimination step, increasing the yields of the desired product (Scheme 25).
57

 To this end, 

seven electron-rich o-biphenyl- and binaphthylphosphine ligands were tested. The binaphthyl ligand 

97 was the most generally effective in the cyclisation of primary, secondary 96 and tertiary 

alcohols, affording the corresponding dihydrobenzofurans 99 in good yield. 

 

Scheme 25: Reagents and conditions: (i) 3 mol% Pd(OAc)2, Cs2(CO)3, 2.5-3.5 mol% ligand, toluene, 60 °C, 

26 h, 71-75%. 
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Interestingly, upon applying these conditions to optically active alcohols, conservation of 

enantiomeric purity was observed. However, this had only been applied to the synthesis of 6-

membered molecules and had not been extended to the construction of the chiral dihydrobenzofuran 

unit. An additional disadvantage to this study was that substituents at the 2-position were restricted 

to simple methyl groups and the methodology seemed unlikely to furnish the necessary isopropenyl 

functionality required for rotenone. 

 

Although palladium has been more frequently employed in transition metal catalysed cyclisations 

towards the dihydrobenzofuran, a few examples in the literature describe procedures in which other 

metals are utilised. In the presence of an iridium catalyst, Liu and co-workers showed that the well-

known Claisen rearrangement could be conducted under much milder conditions than those 

normally employed (Scheme 26).
58

 In turn, the catalyst would promote a cyclisation reaction of 

100, thus yielding the dihydrobenzofuran 101. A wide range of catalysts were screened and a 

combination of IrCl3 and AgOTf were found to be the most efficient system in catalysing the 

tandem Claisen hydroaryloxylation. Although a variety of simple dihydrobenzofurans were 

synthesised, the method was restricted to just a methyl group at the 2-position. 

 

Scheme 26: Reagents and conditions: (i) 5 mol% IrCl3, 10 mol% AgOTF, ClCH2CH2Cl, 60 °C, 24 h, 65%. 

 

1.8.2 Stereoselective syntheses of the 2,3-dihydrobenzofuran moiety 

Having considered several racemic syntheses, we will now describe various routes in which the 

dihydrobenzofuran was acquired as a single enantiomer. In several approaches, a single isomer was 

obtained, although by resolution methods of the racemic mixture. One such method was described 

by Bowen and co-workers in which the dihydrobenzofuran, a product of the reduction of the 

corresponding benzofuran unit, was separated into its enantiomers by resolution methods.
59

 

Yamaguchi and co-workers synthesised various naturally occurring 2-isopropenyl 

dihydrobenzofuran derivatives,
60

 and upon subjecting the racemic mixture to diastereoselective 
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kinetic resolution methods such as the Sharp asymmetric dihydroxylation, excellent enantiomeric 

excesses were obtained, although yields were poor. 

  

Since we were particularly interested in stereoselective syntheses, a few of the more pertinent 

approaches shall now be presented in which the assembly of the stereogenic centre at the 2-position 

was optimised towards a single isomer. 

 

1.8.2.1 The Asymmetric Wacker oxidation 

The Wacker oxidation has been employed in several stereoselective syntheses of 2-substituted 

dihydrobenzofurans with varying degrees of success. Uozumi attempted a Wacker-type cyclisation 

on prochiral o-allylphenols 102 using a chiral (η
3
-pinene)palladium(II) complex 103, affording 

various dihydrobenzofurans 104.
63, 64

 The reaction was poorly stereoselective, affording a maximum 

enantiomeric excess of just 26% (Scheme 27). 

 

Scheme 27: Reagents and conditions: (i) 5 mol% (η
3
-pinene)palladium(II) dimer, 10 mol% Cu(OAc)2-O2 or 

t
BuOOH, MeOH, 35 °C, 19-74%, 0.1-26% ee. 

 

Over a decade later, a modified procedure was described by Uozumi and co-workers (Scheme 

28).
61-63

 This was a noteworthy achievement as, upon cyclisation of the o-tetra- (R=Me) and o-

trisubstituted (R=H) allylphenols 105 using the chiral bis(oxazoline) ligands (boxax) 107 and 108, 

respectively, the dihydrobenzofurans 106 were obtained in enantiomeric excesses as high as 96% 

and 97%. The optimised conditions involved the use of an excess of benzoquinone and a methanolic 

solvent system. 
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Scheme 28: Reagents and conditions: (i) 10 mol% Pd(OCOCF3)2, boxax ligand, benzoquinone, MeOH, 

60 °C, 24 h, 96-97% ee. 

 

The Wacker oxidation was further modified by Zhang and co-workers.
64

 Several chiral ligands were 

developed and upon applying these to the Wacker cyclisation of o-tetrasubstituted allylphenols, 

enantiomeric excesses as high as 99% were obtained. Shortly thereafter, the most promising of 

these ligands 110 was applied to the cyclisation of o-trisubstituted allylphenols 109 (Scheme 29). 

High catalytic activities and enantiomeric excesses were maintained, yielding a variety of cyclised 

dihydrobenzofuran products such as 111 in high enantiomeric excesses. Once again, the 

methodology was not extended to the synthesis of chiral 2-isopropenyl dihydrobenzofurans as 

required in our synthesis of rotenone (i.e. without the methyl substituent at the 2-position). 

 

Scheme 29: Reagents and conditions: (i) 10 mol% Pd(CF3COO)2, 10 mol% ligand, benzoquinone, acetone, 

20 °C, 72 h, 87%, 94% ee. 

 



Chapter 1 – Synthesis of the dihydrobenzofuran moiety 

________________________________ 

 

30 
 

1.8.2.2 Asymmetric synthesis via enantioselective epoxidation  

As an alternative to the Wacker oxidation, asymmetric epoxidations have also been utilised in the 

synthesis of various dihydrobenzofuran-containing natural products.
65, 66

 Hamada and co-workers 

recently described a procedure in which a variety of ortho allylphenols were subjected to the Shi-

type asymmetric epoxidation and subsequent cyclisation to afford the dihydrobenzofuran nucleus 

(Scheme 30).
67

 In this study, reaction conditions were optimised, affording high yields and 

enantiomeric excesses. Initially, the Shi ketone 115 was utilised as a chiral catalyst in the 

asymmetric epoxidation reaction. When applied to the unprotected phenols 112 (i.e. R‟=H), the 

resulting epoxides would spontaneously cyclise to the corresponding dihydrobenzofurans 114, 

resulting in poor yields and poor enantiomeric excesses. Interestingly, on application of the same 

reaction conditions to the silyl-protected phenols 112 (R‟=TBS), the stable epoxides 113 were 

afforded in good enantiomeric excesses and these were then subjected to a cyclisation reaction in a 

more controlled manner upon deprotection using TBAF, to give the dihydrobenzofurans 114 in 

good enantiomeric excesses. Whilst the protecting group allowed for better enantiomeric excesses, 

the yields of the reaction were still low. This problem was overcome by switching to the alternative 

Shi ketone 116, thereby affording the desired dihydrobenzofurans 114 in excellent yields and 

enantiomeric excesses. These reaction conditions were applied to a range of substrates, varying the 

degree of substitution on the alkene and the bulkiness of the protecting group. Excellent 

enantiomeric excesses were obtained for di- and trisubstituted alkenes whereas enantiomeric 

excesses were very low for the mono- and tetra-substituted variants. It was also shown that bulky 

protecting groups facilitated better enantiomeric excesses as deduced upon comparison of the tert-

butyl dimethylsilyl and tert-butyl diphenylsilyl derivatives. 
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Scheme 30: Reagents and conditions: (i) 30 mol% catalyst, (n-Bu)4NHSO4, oxone, K2CO3, CH3CN-DMM 

buffer, 0 °C, 23 h; (ii) TBAF, THF, overall 88%, 97% ee (for R=dihydropyranone). 

 

1.8.2.3 Sharpless asymmetric dihydroxylation 

The majority of the stereoselective syntheses of 2-substituted dihydrobenzofurans undergo 

construction of a stereogenic centre during the cyclisation step, employing specific catalysts and 

ligands. In a somewhat different approach, Shi and co-workers envisaged creating the stereogenic 

centre prior to the construction of the furan ring system (Scheme 31).
68

 To this end, the unsaturated 

ester 117 was subjected to a Sharpless asymmetric dihydroxylation using AD-mix-β, thus affording 

the diol 118 in an excellent yield and enantiomeric excess. The benzylic carbon was selectively 

defunctionalised and the ester was hydrolysed to the carboxylic acid 119. A cyclisation reaction 

using sodium hydride was then performed during which the stereogenic centre was retained. 

Conversion of the carboxylic acid to the ester was then achieved using trimethylsilyldiazomethane 

and methanol, affording the chiral dihydrobenzofuran 120 as a useful precursor amenable to further 

derivatisation. 
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Scheme 31: Reagents and conditions: (i) AD-mix-β, methylsulfonamide, t-BuOH/H2O, 4 °C, 2 days, 96%, 

98% ee; (ii) a: 10% Pd/C, cat. H2SO4, H2, EtOH, 48 h, b: NaOH, MeOH, 2 h; (iii) a: NaH, DMF/toluene, 

110 °C, 4 h, b: TMSCHN2, benzene/MeOH.  

 

Panda and Das employed similar methodology en route to (2S,3S)-2-(2-hydroxypropan-2-yl)-2,3-

dihydrobenzofuran-3-ol 126 (Scheme 32).
69

 In this synthetic sequence, readily available 

salicaldehyde 121 was benzylated and then converted to the trans cinnamate ester 122 by means of 

a Wittig reaction. Sharpless asymmetric dihydroxylation subsequently afforded the dihydroxyl 

derivative 123 in an excellent yield and enantiomeric excess. Selective protection of the diol to 124 

was achieved firstly by regioselective α-tosylation with tosyl chloride and triethylamine, followed 

by conversion of the benzylic alcohol to the tert-butyl dimethylsilyl ether using tert-butyl 

dimethylsilyl triflate. Finally, debenzylation of the phenol set the stage for a cyclisation reaction 

thus affording the dihydrobenzofuran 125, which could readily be converted to the corresponding 2-

isopropyl substituted dihydrobenzofuran 126 by methyl double addition carried out by means of a 

Grignard reaction. This methodology was applied to a range of substrates, producing a variety of 

substituted dihydrobenzofuran compounds. 

 

Scheme 32: Reagents and conditions: (i) a: BnBr, K2CO3, acetone, reflux, 4 h, 85%, b: Ph3P=CHCO2Et, 

CH2Cl2, rt, 2 h, 78%; (ii) AD-mix-α, t-BuOH/H2O, methanesulfonamide, rt to 0 °C, 28 h, 92%, 99% ee; (iii) 
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a: TsCl, Et3N, CH2Cl2, 3 days, 87%, b: TBDMS-OTf, 2,6-lutidine, CH2Cl2, rt, 6 h, 85%; (iv) a: 10% Pd/C, 

H2, 4 h, b: K2CO3, acetone, rt, 6 h, 69%; (v) a: MeMgI, THF, reflux, 4 h, 77%, b: TBAF, 0 °C, 5 h, 91%. 

 

1.8.2.4 Asymmetric allylic alkylation (AAA) 

In 2007 de Koning and Pelly described the first stereoselective synthesis of (R)-2-isopropenyl-2,3-

dihydrobenzofuran-4-ol.
46, 47

 Until this time, a stereoselective synthesis of this molecule had never 

been achieved other than by employing resolution methods. As mentioned previously, we intended 

to utilise the asymmetric synthesis by Pelly since it afforded the dihydrobenzofuran with the 

isopropenyl and phenolic substituents at the 2- and 4-positions, respectively, making it a promising 

precursor to rotenone. In the key chiral cyclisation step, (E)-4-(2,6-dihydroxyphenyl)-2-methyl-2-

butenyl methyl carbonate 127 was treated with catalytic palladium in the presence of the 

commercially available R,R’-Trost ligand 128, thereby affording (R)-2-isopropenyl-2,3-

dihydrobenzofuran-4-ol (R)-78 in an excellent enantiomeric excess (Scheme 33).
46

 This was a 

noteworthy achievement as these moieties are found in a number of natural products such as 

trematone, hydroxytrematone, fommanoxin and rotenone. Of significant importance leading up to 

this reaction was the construction of the (E)- geometrical isomer 127 as the (Z)- geometrical isomer 

would produce the opposite enantiomer (although in a poor ee) when cyclised with the same chiral 

ligand using Trost‟s conditions. Therefore, a mixture of geometrical isomers would have resulted in 

a diminished enantiomeric excess. 

 

Scheme 33: Reagents and conditions: (i) 3 mol% Pd(dba)2, 8 mol% R,R’-Trost ligand, AcOH, CH2Cl2, rt, 

18 h, 80%, 92% ee.
46
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This interesting cyclisation reaction employed by Pelly et al. was initially developed by Trost and 

co-workers.
47

 One of the most useful synthetic applications is activation of the α-position of 

carbonyl groups in the synthesis of new C-C bonds. Trost and co-workers hoped to similarly 

capitalise on activated olefins, hence the development of the AAA reaction.
70

 Reactions of this sort 

are achieved using catalytic palladium metal which allows for the addition of a nucleophile onto an 

olefin which contains a suitable leaving group such as an acetate or a carbonate. The reaction 

proceeds via a working catalytic cycle which is illustrated below (Scheme 34). At the start, the 

palladium coordinates to the alkene 129, thus forming an alkenylpalladium complex 130. Ionisation 

occurs as the leaving group is released to form the charged π-allyl palladium complex 131 which is 

now susceptible to attack by the nucleophile. The resulting product is subject to both stereochemical 

as well as regiochemical factors. Regarding the stereochemistry, since the palladium is able to 

coordinate to either face in the π-allyl palladium complex 131, the nucleophile may attack on either 

face provided it is opposite to the palladium, in the course of which opposite enantiomers will be 

generated. The regiochemical issue arises as the nucleophile may attack at either of the two β 

carbons to the palladium, resulting in one of two products illustrated in 132. Finally, 

decomplexation releases 133 and the palladium catalyst is regenerated.
71

 

 

Scheme 34 
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The regioselectivity issue is demonstrated more clearly by way of an example illustrated in 

Scheme 35 below, in which the nucleophile may attack at either of the two β positions to the 

palladium in complex 134. In this particular example, the site of attack is subject to the 

favourability of the product that is formed in that upon an exo attack, a 6-membered ring is 

generated which is significantly more stable than the alternative 8-membered ring, hence the 

formation of product 135.
72

 

Scheme 35 

 

The synthesis by Pelly was ideal in that both the regiochemical and stereochemical outcome of the 

reaction could be controlled.
47

 Regarding the regiochemistry, an intramolecular nucleophilic attack 

in 136 could generate a 5- or 7-membered product (Scheme 36). Since 5-membered rings are more 

favourable, (R)-78 was afforded. Also illustrated below is the fact that for a specific configuration 

only one of the two phenolic OH‟s will attack in the π-allyl palladium complex. Since the Pd is 

coordinated on the bottom face in 136, front facial attack will selectively occur by the nearby OH as 

the other phenolic group is too far away, thus resulting in a single product.  
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Scheme 36 

 

Should rotation take place about the benzylic single bond, the palladium will be on the top face and 

so the nearby phenolic group which is also able to attack on the bottom face, is now the other OH. 

This will result in the same (R)- enantiomer 78 (Scheme 37). 

 

Scheme 37 

 

In using a chiral Trost ligand, Pelly was able to control the face of the alkene to which palladium 

coordinated and hence, the attack of the nucleophile so that the stereochemical outcome of the 

reaction was directed towards a single enantiomer.
47

 This is rationalised by way of the mechanistic 

model proposed by Trost (Scheme 38).
72

 Schematically, the R,R’-Trost ligand is represented by the 

chiral scaffold where the walls and flaps spatially represent the phenyl groups of the 

triarylphosphine moieties of the ligand. In the initial stages of approach and complexation, the 

carbonate leaving group is accommodated under the right flap of the ligand, illustrated in 137. The 

subsequent loss of the leaving group (and hence the steric bulk associated with it) results in an 

intermediate 138 which is no longer in the most favourable spatial arrangement, and may be 

regarded as a mismatched system. This is overcome by a π-σ-π rearrangement of the π-allyl 

palladium complex, giving rise to the thermodynamically preferred matched intermediate 139. 

Attack of the nucleophile now positioned on the bottom face gives the favourable (R)-83. Of course, 

should the nucleophile attack in the mismatched scenario, the mismatched (S)-83 will form, 
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although in a poor enantiomeric excess. This is due to the fact that 139 is more thermodynamically 

favourable than 138 and therefore the matched (R)-83 will always form. The key to inducing a 

matched cyclisation reaction is to provide enough time for the π-σ-π rearrangement to occur. This is 

accomplished by the addition of a weak acid such as acetic acid, thereby reducing the 

nucleophilicity of the phenolic group and hence reducing the rate of the reaction. 

 

Scheme 38 

 

1.9 Construction of the chromene moiety 

Having considered a viable approach to the chiral synthesis of the dihydrobenzofuran moiety (R)-80 

of rotenone, we would then need to turn our attention to the other (chromene) half of the natural 

product that needed to be synthesised (Scheme 39). We believed that the chromene portion could be 

synthesised from the propargyl ether 52 by means of a hydroarylation reaction. 

 

Scheme 39 
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An intramolecular hydroarylation is the addition of an aromatic C-H bond across multiple bonds of 

an attached alkene or alkyne thus converting, for example, 140 to 141 (Scheme 40).
73,

 
50

 The 

reaction has developed progressively over a number of years. Presently, hydroarylations can be 

applied intramolecularly to arene-yne type systems of both terminal as well as internal alkynes 

bearing a variety of substituents. The reaction has also been extended to propargyl ethers (X=O) 

and amines (X=NH).
50

 As a consequence of this extensive research, convenient methods now exist 

providing direct access to a variety of annulated arene carbocyclic and heterocyclic structures such 

as dihydronaphthalenes,
74-76

 napthalenes,
77

 carbenes,
49, 50, 76

 and coumarins.
78

 Early forms of this 

reaction suffered from selectivity issues and a number of products were often formed. Over the 

years, the selectivity of this reaction has been improved to the point that in many cases, under the 

right conditions, a single product can be synthesised. 

 

Scheme 40 

 

Leading up to the development of this reaction, several breakthroughs were made in 2000 in the 

area of C-H bond activation and functionalisation. Fujiwara and co-workers conducted a study on 

the intermolecular hydroarylation of a variety of alkynes 143 with simple aromatic systems 142 in 

the presence of Pd(II) or Pt(II) catalysts (Scheme 41).
79

 It was envisaged that this would provide a 

simple and clean method for synthesising substituted aromatic compounds without prior 

functionalisation of the aromatic ring. In applying this methodology, desired coupled product was 

usually obtained, although the formation of by-products was problematic. These problems were the 

result of the reaction not being completely stereoselective and in addition to the predominant cis 

isomer 144, a small amount of the trans geometrical isomer 145 was also produced. Additional side 

products 146 were obtained as a result of multiple reactions of a single arene with more than one 

alkyne, or vice versa. Trifluoroacetic acid (TFA) was utilised in this reaction and attempts to 

exclude or even reduce the amount of TFA used, only resulted in lower yields. The necessary 

addition of TFA in this reaction limited its use to functional groups that were resistant to the acid. 
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Scheme 41: Reagents and conditions: (i) 1 mol% Pd(OAc)2, TFA, CH2Cl2, 0 °C to rt, 45 h, 144: 72%, 

145: 6%, 146: 5%. 

 

In a parallel study, Chatani et al. presented an intramolecular hydroarylation of aryl-1-alkynes.
74

 

Terminal alkynes bonded directly to the aromatic system were subjected to hydroarylation reactions 

in the presence of PtCl2 and RuCl2(CO)3 catalysts, thus providing access to various carbocyclic 

systems such as dihydronaphthalene derivatives. Unfortunately, this study was limited to terminal 

alkynes and when Chatani applied the reaction conditions to substituted alkynes, a number of 

products formed. In extending the reaction to propargyl ethers, the alkyne C-O bond would be 

cleaved, yielding the benzylic alcohol.  

 

A mechanistic model was also proposed from which the issue of site selectivity could be 

rationalised by steric considerations (Scheme 42). The reaction begins with the addition of the metal 

chloride to the alkyne (147, 151) and subsequent formation of a vinyl cationic intermediate (148, 

152). Less steric congestion observed in intermediate 148 compared to 152 justifies the 

predominance of the final product 150 compared to 154. The vinyl cationic intermediate undergoes 

electrophilic aromatic substitution to give the carbocyclic intermediates 149 and 153. The double 

bond may isomerise to the more stable internal position to afford the dihydronaphthalene 

derivatives 150 and 154 which, upon application of this methodology, were obtained in a 96:4 

mixture, respectively. The study of terminal aryl-alkynes was later extended to the use of GaCl3 as 

the catalyst.
75
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Scheme 42 

 

Several mechanisms have been proposed for the hydroarylation reaction and most of these are along 

the lines of the mechanisms illustrated in Scheme 43 and Scheme 44 which differ in the number of 

atoms in the tether.74, 80 The reaction begins with η
2
-coordination of the transition metal to the 

alkyne (155 or 157). This complexation renders the alkyne susceptible to intra- or intermolecular 

nucleophilic attack. The formation of a vinyl cationic intermediate has also been proposed (Scheme 

42), although this intermediate has never been isolated. Electrophilic aromatic substitution followed 

by a 1,2 or 1,3-hydrogen shift then gives rise to the exo and endo products, respectively. The 

selectivity observed between the exo and endo products is in fact subject to the number of atoms in 

the tether, separating the alkene and arene. Arene-yne systems 155 containing two atoms in the 

tether (Scheme 43), show a pronounced preference for the 6-endo pathway over the 5-exo mode, 

exclusively forming the 6-endo product 156.
80

 With three or four atoms in the tether 157 (Scheme 

44), the exo product 158 is usually formed, however, the double bond may isomerise to the more 

stable, internal position.74, 80  
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Scheme 43 

 

 

Scheme 44 

 

Having acquired some level of understanding regarding the mechanism of this reaction, many other 

hydroarylation reactions were performed, thus improving the available methodology. Nishizawa 

and co-workers were able to expand on the synthesis of dihydronaphthalenes by intramolecular 

hydroarylations (Scheme 45, X=C).
76

 The importance of this modified approach is that cyclisation 

of internal alkynes such as 159 to form substituted dihydronaphthalenes 160 had become feasible. 

In utilising mercuric triflate, the cyclisation of propargyl ethers to various chromene derivatives 

(X=O) was also achieved. 
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Scheme 45: Reagents and conditions: (i) For X=C: 0.1 mol% Hg(OTf)2-(TMU)3, MeCN, rt, 4 h, 95%; for 

X=O: 0.2 mol% Hg(OTf)2-(TMU)3, MeCN, ­20 °C, 7 h, 96%. 

 

Sames and co-workers demonstrated that one single catalyst could play the role and have the 

beneficial properties of all the above mentioned catalysts.
49, 50

 They discovered that PtCl4 proved to 

be a far superior catalyst to Pt(II), Ga(III) and Pd(II) under mild and neutral conditions. The latter 

two catalysts had until then been considered the most efficient catalysts for intramolecular 

hydroarylations (however, their complexes were sensitive to substitution on the alkyne and hence 

limited with respect to their substrate scope). By comparison, Pt(IV) was a much more efficient and 

consistent hydroarylation catalyst, compatible with a wider range of substrates. The reaction was 

selective for the 6-endo product and good to excellent yields were obtained when applied to 

propargyl ethers, amines and alkynoate esters. The reaction was further appealing in that both 

terminal and internal alkynes as well as highly substituted aromatic systems were amenable to the 

hydroarylation reaction in the presence of PtCl4. In addition to its higher reactivity, Pt(IV) was also 

more selective in that the activated alkyne was more susceptible to the nucleophilic arene as 

opposed to other nucleophiles which may be present such as water, hence competing processes 

were significantly slower. 

 

A comparison of Pt(II) and Pt(IV) showed that the two catalysts produced comparable results on 

aromatic systems containing two or more electron donating substituents, e.g. methoxy groups. 

When applied to electron deficient alkynones, however, Pt(IV) was superior to Pt(II). Alkynoate 

esters were also converted to their respective chromenes in good yields when using Pt(IV) which is 

not the case for Pt(II). In addition to its higher electrophilicity, the superior reactivity of Pt(IV) was 

also attributed to its higher solubility in organic solvents.
49, 50

 

 

In optimising the conditions for the hydroarylation reaction, Sames and co-workers set the stage for 

the reaction with the advanced alkynone 161, obtained in three steps from 3,4-dimethoxyphenol 
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(Scheme 46).
48

 Surprisingly, Pt(II) appeared to be the superior of the two catalysts despite the fact 

that previous studies indicated that it was not well suited to electron-deficient alkynes. 

Nevertheless, the 6-endo-hydroarylation had provided access to the tetracyclic compound 162 

which could easily be converted to deguelin. This was an important achievement as in vitro and in 

vivo studies had demonstrated deguelin‟s chemotherapeutic activity.
13

 

 

Scheme 46: Reagents and conditions: (i) 5 mol% PtCl2, toluene, 55 °C, 10 h, 91%. 
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CHAPTER 2 - PLANNED APPROACH 

2.1 Towards rotenone  

In our retro-synthetic strategy for rotenone we wished to capitalise on the fact that the chiral 

dihydrobenzofuran moiety of the molecule had previously been synthesised stereoselectively in our 

laboratories.
47

 To this end, we envisaged that rotenone 1 would be the product of several 

transformations, beginning with the appropriately substituted dihydrobenzofuran building block 

(R)-80 illustrated in the disconnection below, obtained by means of the procedure developed by de 

Koning and Pelly (Scheme 47). The final pentacyclic molecule 1 would be the product of an 

intramolecular Michael addition of the chromene moiety (R)-163, acquired by means of the key 

transition metal catalysed hydroarylation reaction of the alkynone (R)-164. We envisaged that the 

alkynone could be accessed from an oxidation reaction of the corresponding alcohol (R)-165, the 

product of a coupling reaction of the alkyne 52 and dihydrobenzofuran (R)-80 intermediates. 

 

Scheme 47 

 

Since we envisaged that rotenone would be synthesised from the dihydrobenzofuran, a brief 

description of the synthesis of this key intermediate follows (Scheme 48). At the start of the 

synthesis, commercially available resorcinol 11 would be protected and then allylated. Conversion 

to the aldehyde 166 by way of an ozonolysis reaction would set the stage for a Horner-Wadsworth-

Emmons reaction, yielding the (E)- alkene 167, exclusively. Reduction of the ester 167 to the 

alcohol 168 would be followed by conversion to the carbonate 169. A deprotection would liberate 



Chapter 2 - Synthetic strategy: Our envisaged approach to rotenone and the design of a model study 

________________________________ 

 

45 
 

the phenols thus allowing us to carry out the crucial, stereoselective, Pd π-allyl cyclisation. We 

were confident that the dihydrobenzofuran (R)-78 would be synthesised in a high enantiomeric 

excess. 

 

Scheme 48 

 

The procedure according to de Koning and Pelly would afford the dihydrobenzofuran (R)-78.
47

 

Therefore, before commencing with the coupling reaction to the alkyne en route to rotenone, a key 

formyl group would need to be introduced at the 5-position to form the required intermediate (R)-

80. However, there were potential problems that had to be considered before doing so. Firstly, 

whilst there are numerous formylation procedures available, many of these are not completely 

selective for the position ortho to the hydroxyl, i.e. the 5-position, and the formyl group could just 

as easily be introduced in the para 7-position (Figure 4). The issue of regioselectivity was further 

complicated by the benzylic ether which could ortho-direct the formyl group into the 7-position. 
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Figure 4 

 

The second issue lay in the fact that many formylation procedures employ harsh conditions which 

could potentially affect the crucial stereogenic centre. We were also reluctant to use strong bases 

such as nBuLi as deprotonation at the acidic benzylic position may have affected the carefully 

constructed furan ring. Yet, we were somewhat reassured by the fact that according to Cahn and co-

workers, the furan ring and even more importantly, the stereogenic 5‟ centre in rotenone, is stable 

under basic conditions.
81, 82

 Hopefully, this would hold in its precursors as we proceeded through 

our planned synthesis. The issue of chirality would also add a level of complexity to the synthesis 

compared to that of deguelin, for example, and once we had the dihydrobenzofuran unit in hand, we 

would have to take special care to retain the meticulously constructed chiral centre, not only during 

the planned formylation step, but indeed throughout the rest of the synthesis. 

 

2.2 Towards munduserone - A model study 

Prior to the challenging synthesis of rotenone, we decided to embark on a model study in which the 

methodology developed by Sames in his synthesis of deguelin would be applied to the simplest of 

the natural rotenoids, munduserone 8.
48

 This would allow us to gain a better understanding of the 

reactions and to optimise yields in preparation for the synthesis of the more complex rotenoid. The 

proposed synthesis would commence with the coupling of the alkyne 52 and benzaldehyde 170 

intermediates to form the secondary alcohol 171 (Scheme 49). An oxidation reaction would then 

allow for the synthesis of the alkynone 172, a key intermediate in the envisaged crucial 

hydroarylation reaction. With the chromene moiety 173 in hand, all that would remain in the 

synthesis of munduserone would be the base-catalysed intramolecular oxo-Michael addition of the 

deprotected chromene 173 to hopefully afford munduserone 8. 
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Scheme 49 

 

In the section to follow, we describe the synthesis of munduserone, the dihydrobenzofuran and 

finally, rotenone. 
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CHAPTER 3 – RESULTS AND DISCUSSION 

3.1 Synthesis of munduserone – 8 

3.1.1 Synthesis of 3,4-Dimethoxyphenol – 176 

 

Scheme 50 

 

We began our envisaged total synthesis of munduserone from the commercially available vanillin 

methyl ether 174, which could be transformed to the required dimethoxyphenol 176 by way of a 

Baeyer-Villiger oxidation followed by hydrolysis of the corresponding ester 175 (Scheme 50). To 

this end, a slight excess of MCPBA was added to a solution of the aldehyde 174 dissolved in 

dichloromethane and the reaction was stirred at rt for 15 h before being quenched with dimethyl 

sulfide. The procedure was based upon the synthesis described by Roengsumran wherein base 

hydrolysis of the ester 175 was achieved by dissolving the crude material in methanol, treating with 

potassium carbonate and stirring for 30 minutes.
83

 After several hours of stirring under these 

reaction conditions, most of the substrate remained as the ester. Harsher conditions were then 

applied in which 175 was hydrolysed by dissolving the crude material in a methanolic solution of 

KOH and heating to reflux for 18 h. Following a workup and purification by column 

chromatography, the product 176 was obtained as a white solid in a good yield. 

 

The simple phenol 176 gave rise to a relatively uncomplicated 
1
H NMR spectrum. The 

first indication of a successful reaction was given by the broad singlet at 5.70 ppm due 

to the OH proton. Protons H5‟ and H2‟ appeared as ortho and meta coupled doublets at 

6.73 ppm and 6.48 ppm, respectively. Proton H6‟ which coupled to both H5‟ and H2‟, 

appeared as a doublet of doublets with coupling constants of 8.6 Hz and 2.8 Hz, consistent with the 

J values of protons H5‟ and H2‟, respectively. The protons on the two methoxy groups appeared as 

intense singlets in the upfield region at 3.81 ppm and 3.79 ppm. In the 
13

C NMR spectrum, the 

presence of eight signals due to the six aromatic and two methoxy groups as well as the absence of 

a carbonyl signal, attested to the success of the reaction. In the IR spectrum, an OH stretch was 



Chapter 3 - Results and Discussion: Synthesis of munduserone 

________________________________ 

 

49 
 

observed at 3419 cm
-1

. The measured melting point of 79-81 °C compared well with reported 

value.
83

  

 

3.1.2 Synthesis of 1,2-dimethoxy-4-(prop-2-ynyloxy)benzene – 52 

 

Scheme 51 

 

Having attained the phenol 176, we were now able to introduce the propargyl moiety essential for 

the coupling reaction (Scheme 51). The alkylation proceeded smoothly upon the addition of a slight 

excess of propargyl bromide and potassium carbonate to a solution of the phenol 79 dissolved in 

dimethylformamide. The reaction was monitored by TLC and after several hours of stirring under 

Ar, a less polar product of higher Rf had begun to form. The reaction was left to stir for 18 h so as to 

allow for complete conversion of 176. Following a workup and purification by column 

chromatography, the propargyl ether 52 was obtained as a pale yellow solid in a good yield. 

Although our recorded melting point was higher than the literature value by 3 °C,
38

 a close to 

perfect match in the spectroscopic data reported by Sames and co-workers reassured us that the 

desired product had indeed been synthesised.
48

 

 

In the 
1
H NMR spectrum, the doublet and triplet at 4.65 ppm and 2.52 ppm 

accounted for the methylene and acetylene protons of the propargyl moiety, 

coupled to one another with a J value of 2.8 Hz. In conjunction with this, the 

previously observed broad OH singlet in the 
1
H NMR spectrum of the precursor 

was no longer present. The remainder of the spectrum was similar to the precursor, although all the 

signals had shifted slightly downfield. The accompanying changes in the 
13

C NMR spectrum 

included three additional signals at 78.80 ppm, 75.38 ppm and 56.46 ppm due to the propargyl 

functionality. The phenol signal in the IR spectrum was no longer present. 
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3.1.3 Synthesis of 2-(tert-butyldimethylsilyloxy)-4-methoxybenzaldehyde – 178 

 

Scheme 52 

 

Having synthesised the first of our required two precursors for munduserone, we now moved onto 

the preparation of the silyl protected benzaldehyde 178. In the synthesis of deguelin by Sames and 

co-workers, a methyl protecting group was employed at position 2, however, since there would be 

an additional three methoxy groups in the coupled product, we felt that an alternative protecting 

group would be more easily monitored. Indeed, silyl protecting groups in the form of a tert-

butyldimethylsilyl moiety would produce distinct signals in the far upfield region, thus allowing us 

to closely monitor them. Furthermore, TBS groups are stable under most conditions and would be 

selectively removed at an advanced stage of the synthesis using fluoride-containing reagents such as 

TBAF. Therefore, a TBS group was introduced by adding TBSCl to a solution of 2-hydroxy-4-

methoxy benzaldehyde 177 in acetonitrile followed by the base, imidazole (Scheme 52). After 18 h, 

TLC analysis indicated complete conversion of 177 to a less polar compound. Following a workup 

and purification by column chromatography, the desired product 178 was obtained in a good yield. 

 

Two distinct upfield singlets at 1.02 ppm and 0.29 ppm integrating for nine and 

six protons, respectively, attested to the formation of the desired silyl ether. The 

remainder of the spectrum was comprised of a singlet in the far downfield region 

due to the aldehyde proton, three aromatic signals and a methoxy singlet. As for 

the aromatic protons, H5 produced an interesting doublet of doublets as it ortho coupled to H6 and 

also meta coupled to H3. In the 
13

C NMR spectrum, the three most upfield signals were accounted 

for by the three TBS carbons. The far downfield signal at 188.61 ppm was as a result of the 

aldehyde which also appeared in the IR spectrum as an intense carbonyl signal at 1680 cm
-1

. 
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3.1.4 Synthesis of 1-(2-(tert-butyldimethylsilyloxy)-4-methoxyphenyl)-4-(3,4-

dimethoxyphenoxy)but-2-yn-1-ol – 179 

 

Scheme 53 

 

With the two components in hand, we were now in a position to couple them together by way of a 

nucleophilic attack of the alkyne anion onto the aldehyde 178. In the similar process, Sames carried 

out their related coupling reaction and then with the crude product in hand, proceeded directly to the 

oxidation. We adopted this approach in our initial attempts to synthesise the secondary alcohol 179. 

To this end, the propargyl ether 52 was dissolved in tetrahydrofuran and cooled to -85 °C. 

Treatment with nBuLi for 30 minutes was followed by the addition of the aldehyde 178. The 

reaction was allowed to warm to rt and stirred for an hour. Following a workup, the crude material 

was dissolved in dichloromethane and manganese dioxide was added. After stirring under Ar for 

18 h, TLC analysis indicated that five compounds were present relatively close to one another on 

the TLC plate. A challenging purification allowed us to identify these as the deprotected aldehyde 

177, the two intermediates 52 and 178, the alcohol 179 and the alkynone 180. The reaction was 

attempted several times, varying the reaction times and conditions in order to allow for full 

conversion of the starting materials. We had hoped that this would not only improve yields, but also 

allow for an easier separation. However, this proved unsuccessful as full conversion of the starting 

materials to 179 was never observed, making for a difficult separation, sometimes requiring 

repeated column chromatography. The yields were also very poor, usually in the range of 30%. 

 

Having encountered these difficulties, it was decided that the crude material would be properly 

purified prior to performing the oxidation reaction. Thus, the coupling reaction was carried out as 

per the procedure described above (Scheme 53) and following purification, the alcohol 179 was 

afforded in a good yield of 81%. 
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Interestingly, the 
1
H NMR spectrum of this coupled product was quite 

similar to the combined spectra of the individual starting materials. 

Clearly observable were the six aromatic signals, the bridging 

methylene signal and the three methoxy signals. In the far upfield 

region of the spectrum, the two distinct singlets from the TBS group 

were present. New signals as a result of the coupling reaction were the two doublets at 5.70 ppm 

and 2.58 ppm, due to the CHOH and OH protons, respectively, thereby confirming the success of 

the reaction. In the IR spectrum a broad absorption at 3490 cm
-1 

also confirmed the presence of the 

OH group. The CHOH appeared in the 
13

C NMR spectrum at 60.29 ppm and as expected, the 

aldehyde signal was no longer present. 

 

3.1.5 Synthesis of 1-(2-(tert-butyldimethylsilyloxy)-4-methoxyphenyl)-4-(3,4-

dimethoxyphenoxy)but-2-yn-1-one – 180 

 

Scheme 54 

 

In order to optimise the required oxidation of the alcohol 179 to the alkynone 180, we investigated 

several solvent systems, specifically toluene, acetonitrile and dichloromethane. The best yields were 

obtained when using dichloromethane. Thus in the methodology employed, the alcohol 179 was 

dissolved in dichloromethane and an excess of 20 equivalents of activated manganese dioxide were 

added (Scheme 54), in accordance with the procedure by Sames. The reaction was left to stir for 

18 h at rt at which point TLC analysis indicated that a trace amount of starting material was present. 

After several days of stirring, the reaction was stopped despite persistent traces of 179. After 

filtration and purification, the desired product 180 was obtained as a yellow oil in a good yield of 

84%. 

 

In an attempt to reduce the reaction time and promote the reaction to proceed to completion, the 

mixture was heated to reflux. The results were somewhat confusing as TLC analysis indicated 
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complete consumption of the starting material and conversion to the alkynone 180, yet yields were 

lower than before. In a second attempt to reduce the reaction times, another addition of manganese 

dioxide was made during the course of the reaction, however, yields were once again lower and we 

reverted to the original procedure. 

 

In the 
1
H NMR spectrum, confirmation of the oxidation to the 

alkynone was attested to by the fact that both the CHOH and OH 

signals were no longer present. Moreover, the H6 aromatic signal had 

shifted downfield as we would expect being ortho to the new 

carbonyl functionality. In the 
13

C NMR spectrum, the downfield 

signal at 174.54 ppm attested to the presence of the carbonyl. The effect of added delocalisation was 

observed in the C6 and C≡C signals, which were shifted noticeably downfield. The transformation 

to the alkynone was also observed in the IR spectrum, where the broad OH peak was replaced by a 

carbonyl signal at 1737 cm
-1

. 

 

3.1.6 Synthesis of (2-(tert-butyldimethylsilyloxy)-4-methoxyphenyl)(6,7-dimethoxy-

2H-chromen-4-yl)methanone – 181 

 

Scheme 55 

 

There is a significant amount of literature precedence for the hydroarylation reaction, using a 

variety of catalysts and solvent systems. We investigated the reaction using three different catalytic 

systems and then applied the highest yielding conditions to the synthesis of the more complex 

target, rotenone. 

 

In our first attempt at this reaction, we decided to employ a gold catalyst, similar to the procedure 

by Echavarren.
80

 To this end, the alkynone 180 was dissolved in dichloromethane and the reaction 
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was degassed by bubbling Ar directly into the solution by means of a Pasteur pipette. Au(PPh3)Cl 

and AgSbF6 were added and the reaction was left to stir at 23 °C for 2 h. TLC analysis at the end of 

this period indicated that no reaction had taken place. The reaction was therefore heated to 30 °C 

and left to proceed for another 18 h. Analysis by TLC now indicated that in addition to the 

alkynone, a second compound was present. The reaction was worked up and the crude material was 

purified by column chromatography. Interestingly, this new product was identified as the 

deprotected chromene 182. The formation of 182 would have been a desirable outcome were it not 

for the fact that it was only obtained in an 8% yield. 

 

As our second option for this reaction, we turned to the conditions employed by Sames and co-

workers. In previous studies, the 6-endo-hydroarylation had been attempted using a range of 

catalysts such as PtCl2 and PtCl4.
48

 Between the two, PtCl4 was the superior of the two catalysts in 

that it had been more generally applicable to a wider range of substrates. Unexpectedly, in 

synthesising deguelin, higher yields were obtained when using PtCl2. We therefore decided to test 

both of these Pt catalytic systems in our approach towards munduserone. 

 

In our first attempt at these new conditions, we opted to use the Pt(IV) catalyst. To this end, the 

starting material 180 was dissolved in dioxane and the system was degassed by bubbling Ar directly 

into the solution. PtCl4 was added against a flow of Ar and the reaction was heated to 65 °C. 

Following 2 h of stirring, TLC analysis indicated that the alkynone had not reacted and the 

temperature was then raised to 90 °C in an attempt to promote the reaction. After 18 h under these 

conditions, TLC analysis indicated that a new product had formed, although the starting material 

was still the predominant species. Purification by column chromatography afforded a small amount 

of the desired chromene 181 in a 10% yield. 

 

Disappointed by the results, we decided to utilise the PtCl2 catalytic system. Thus, into a two neck 

round bottom flask was placed the starting material 180 and dry toluene. The solution was 

degassed, and PtCl2 was added (Scheme 55). The reaction was heated to 70 °C and allowed to stir 

under Ar for 18 h following which, TLC analysis indicated that a product of slightly higher Rf than 

the starting material had formed. Purification and NMR spectroscopic analysis confirmed that this 

was the desired chromene 181. The highest yield obtained under these conditions was a poor 46%, 

although this was significantly better than the above two procedures.  
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In light of the fact that we consistently recovered starting material from this reaction, we envisaged 

that a second addition of PtCl2 would be made 18 h after the first. However, this saw a serious drop 

in yields to a dismal 10%! In a second attempt, a catalytic bed was set up in which a mixture of the 

catalyst and celite were packed tightly and the alkynone passed through it. We envisaged that the 

continuous removal of the product as it progressed through the catalytic bed would potentially drive 

the reaction, allowing for better yields. This proved to be unsuccessful and only starting material 

was recovered. In the end, we concluded that the disappointing yield could be attributed to steric 

effects caused by the bulky TBS group. This is a likely assumption as Sames and co-workers had 

employed small methyl protecting groups in the synthesis of their desired chromene which had been 

afforded in an excellent yield. Nevertheless, we were pleased to obtain the 6-endo chromene 181 as 

the exclusively produced product. 

 

The somewhat different 
1
H NMR spectrum in comparison with that of 

the starting material was the first pleasant sign that the reaction had 

proceeded. In the first instance, confirmation of the product was 

obtained by the number of aromatic protons which had been reduced to 

five, as we would have expected. The former proton situated on C4a' was 

lost upon conversion to the chromene, inevitably simplifying the signal of protons H5‟ and H8‟ to 

singlets. Protons H6, H5 and H3 remained unchanged as an ortho coupled doublet, a doublet of 

doublets and a meta coupled doublet, respectively. Whilst the methylene protons were still present 

in the 
1
H NMR spectrum, they no longer appeared as a singlet, but rather a doublet as they coupled 

to the alkene proton H3‟. Proton H3' appeared as a triplet in the alkene region at 6.11 ppm with a 

matching J value. The three closely spaced singlets, each integrating for three protons, and the far 

upfield singlets, integrating for nine and six protons, were consistent with the three methoxy and 

silyl protecting groups in the molecule. In the 
13

C NMR spectrum, the number of carbon signals 

remained unchanged, however, there were several distinct features in the spectrum worth 

mentioning. The alkyne carbons at approximately 86 ppm in the precursor were both no longer 

present. These were replaced by two alkene signals of which the signal at 128.26 ppm could be 

assigned to C3', this being testament to the success of the reaction.  

 

Regardless of the poor results obtained in the hydroarylation reaction, we decided to move forward 

with the synthesis of munduserone. Of course, this was only a model study and we were hopeful 

that with a bit of luck, the yields would be higher en route to rotenone. 
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3.1.7 Synthesis of (6,7-dimethoxy-2H-chromen-4-yl)(2-hydroxy-4-

methoxyphenyl)methanone – 182 

 

Scheme 56 

 

With the desired chromene moiety 181 in hand, all that remained in the synthesis of munduserone 

was a desilylation to reveal the phenol, followed by the final ring closure. The deprotection was 

originally attempted using TBAF as the source of fluoride ions, and then the crude material was 

subjected to a ring closure using sodium acetate. A mixture of products was obtained which proved 

difficult to separate by chromatography. Indeed, analysis of the mixture by NMR spectroscopy 

revealed the presence of the silylated chromene 181, the deprotected chromene 182, as well as 

munduserone 8. 

 

Having encountered these difficulties, we decided to carry out the deprotection and ring closure 

steps sequentially. The silyl groups were cleaved by adding TBAF to a solution of the starting 

material 181 in tetrahydrofuran at 0 °C. Following 5 minutes of stirring, saturated ammonium 

chloride was added in order to protonate the phenoxide anion, thus preventing ring closure. Efforts 

to do so appeared to be in vain as a mixture of products was once again obtained, certainly due to 

spontaneous ring closure of the phenoxide anion upon deprotection. We hoped to take advantage of 

this and upon repeating the reaction, longer reaction times and higher temperatures were allowed in 

an attempt to synthesise munduserone in one step. Once again, a mixture of products was obtained. 

 

In a final attempt at the reaction, the deprotection was conducted using an acidic source of fluoride 

ions in the form of HF as this would facilitate immediate protonation of the formed phenoxide 

anion, thereby purposefully preventing the ring closure (Scheme 56). To this end, HF was added to 

a solution of starting material 181 in acetonitrile and the reaction was closely monitored by TLC. 

Following 30 minutes of stirring, TLC analysis showed that only starting material was present and a 

second addition of HF was made. TLC analysis after 1.5 h indicated that all the starting material 
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had reacted to what we hoped was the phenol. Following a workup and purification, the desired 

phenol 182 was obtained as a yellow solid in a good yield. 

 

In the 
1
H NMR spectrum, the absence of the two distinctive far upfield 

signals due to the TBS group attested to the success of the deprotection. 

The phenolic OH was observed as a singlet in the far downfield region 

at 12.60 ppm. The remainder of the spectrum was unchanged, although 

the chemical shift values of all signals varied slightly. In the 
13

C NMR 

spectrum, the three signals due to the TBS group in the precursor were no longer present. The 

carbonyl functionality was seen in the IR spectrum as a stretching band at 1615 cm
-1

. 

  

3.1.8 Synthesis of (±)-munduserone – (±)-8 

 

Scheme 57 

 

With the phenol 182 in hand we were able to carry out the final step of the synthesis - the base-

catalysed intramolecular oxo-Michael addition (Scheme 57). Although a number of mild bases can 

be utilised for this type of reaction, we opted for sodium acetate as this had been successfully used 

on our specific substrate 182 in an alternative synthesis of munduserone.
84

 Thus, sodium acetate 

was added to a solution of the phenol 182, dissolved in ethanol and the reaction was heated to reflux 

at 90 °C. Analysis of the reaction mixture by TLC after 10 minutes indicated that the reaction was 

progressing smoothly and after 2 h all the starting material had been consumed and a single product 

had formed. Following a workup and purification by column chromatography, munduserone was 

obtained in an excellent yield. Recrystallisation of the material in diethyl ether produced crystals 

suitable for X-ray analysis and confirmed that we had racemically synthesised 8 as the structure 

belonged to the racemic space group P-1. The enantiomers consisted of the cis-fused products with 

respect to protons H6a and H12a. The following unit cell dimensions were reported: a = 4.61 Å, b = 

12.40 Å and c = 13.80 Å. The crystal structure was refined to an R-factor of 4.45% (Figure 5). 
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Figure 5 

 

Several syntheses of munduserone have been achieved and these are 

well documented in the literature.
36, 42, 45

 We were delighted by the fact 

that the accompanying analytical data in the form of NMR spectra and 

melting points compared well with those obtained for our product.
45

 In 

the 
1
H NMR spectrum, the loss of the OH singlet in the downfield 

region was one of several changes that attested to the success of the reaction. In the aromatic region, 

signals remained unchanged apart from their chemical shift values. Protons H6, being adjacent to a 

stereogenic centre, were non-equivalent and gave rise to separate signals at 4.61 ppm and 4.18 ppm. 

These signals were identified using the HSQC spectrum, on the basis that they were the only 

methylene protons in the molecule. For clarity purposes, these shall be denoted H6 and H6'. Proton 

H6 at 4.18 ppm was coupled only to H6', hence the doublet. Over and above this, proton H6‟ was also 

coupled to H6a. Therefore, H6‟ and H6a gave rise to the doublet of doublets and an apparent triplet at 

4.61 ppm and 4.94 ppm, respectively. By process of elimination, the signal at 3.84 ppm was 

assigned to proton H12a, appearing as a doublet as a result of coupling to proton H6a. Finally, the 

methoxy groups gave rise to the three singlets in the downfield region of the spectrum. In the 
13

C 

NMR spectrum, the far downfield signal at 189.19 ppm was consistent with the carbonyl group. 

This was visible in the IR spectrum as a sharp absorption at 1673 cm
-1

. The measured melting point 

compared well with the literature value.
84

 

 

Thus, we had successfully synthesised munduserone from commercially available 3,4-

dimethoxyphenol in six steps and an overall yield of 23%. Having completed the model study, we 

then proceeded to the synthesis of rotenone. In the section to follow we will describe the synthesis 
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of the dihydrobenzofuran and subsequent application of the methodology used in the model study to 

complete the synthesis of rotenone. 
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3.2 Synthesis of rotenone  

3.2.1 Synthesis of 1,3-bis(methoxymethoxy)benzene – 183 

 

Scheme 58 

 

Having completed the model study, we had established that our proposed synthesis of rotenone was 

viable. We began our synthesis of rotenone with commercially available resorcinol. At the start of 

the synthesis, protecting groups were needed that would satisfy the following requirements: Firstly, 

we required them to be good ortho directors, thus facilitating lithiation between the two oxygen 

substituents to install the required allyl group. We also had to consider that these protecting groups 

would have to be selectively removed at a later stage in the synthesis and that the conditions 

required for this would need to be compatible with the remaining functional groups on the 

molecule. Although MOM groups are well-reputed ortho directors, these would be incompatible 

later in the synthesis and so a protecting group switch was needed. Therefore we envisaged that, 

following allylation, the diol would be protected as a silyl ether for the remainder of the synthesis.  

 

The protection of commercial resorcinol 11 to form 1,3-bis(methoxymethoxy)benzene 183 is a 

well-known reaction and many procedures are available, using a variety of solvent systems and 

bases.
85, 86

 Accordingly, resorcinol 11 in dimethylformamide was treated with sodium hydride and 

methoxymethyl chloride (Scheme 58). The reaction was left to stir at rt for 18 h and was then 

treated with ammonia solution to quench the unreacted toxic methoxymethyl chloride. Following a 

workup, purification was achieved by Kugelrohr distillation to afford the MOM protected product 

183 as a clear oil. 

 

The 
1
H NMR spectrum was pleasantly uncomplicated owing to symmetry within the molecule and 

compared well with that in the literature.
86, 87

 Three signals appeared in the aromatic region, as 

expected. The two triplets owing to protons H5 and H2 were a result of coupling to protons H4 and 

H6. Ortho and meta coupling constants of 8.1 Hz and 2.1 Hz allowed us to distinguish between 

protons H5 and H2, respectively. Protons H4 and H6 gave rise to a doublet of doublets, and their 
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coupling constants matched those of protons H5 and H2. Two singlets 

integrating for four and six protons were consistent with the methylene 

and methyl groups, respectively, of the MOM protecting groups, and 

verified that we had synthesised the desired product. In the IR spectrum, an intense peak at 

1073 cm
-1

 was characteristic of a C-O stretch in an aromatic ether.  

 

3.2.2 Synthesis of allyl-1,3-bis(methoxymethoxy)benzene – 184 

 

Scheme 59 

 

With the MOM protecting groups in place, we were now able to introduce the allyl moiety by 

means of directed ortho metalation (DoM). By inductive effects, methoxymethyl ethers increase the 

acidity at the ortho position on an aromatic ring and upon lithiation, stabilise the aryllithium in a 

six-membered chelate.
87, 88

 With two MOM groups in place we were confident that lithiation, 

followed by allylation, would take place in a position ortho to both groups (Scheme 59). To this 

end, nBuLi was added to a solution of the bis-MOM protected resorcinol 183 in tetrahydrofuran at 

0 °C and the reaction was stirred for 1.5 h during which the colour intensified from yellow to 

orange. The solution became clear as an excess of allyl bromide was added. The reaction was stirred 

for 1 h at 0 °C and then allowed to warm to rt. TLC analysis after 18 h indicated that a new product, 

with a slightly higher Rf than the starting material, had formed and after workup and purification, 

the desired allylated product 184 was produced in a good yield.  

 

As a result of installing the allyl chain, the aromatic signals were 

reduced to a simple triplet at 7.10 ppm and a doublet further upfield at 

6.77 ppm, due to protons H5 and H4 and H6, respectively, which were 

also ortho coupled to one another. The single triplet for proton H5 

indicated that symmetry within the molecule had been maintained. This was supported by the fact 

that the triplet due to proton H2 no longer existed. New signals in the alkene region integrating for 
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three protons in total, acted as confirmation of a successful reaction. The internal alkene proton 

produced a multiplet as a result of coupling to the adjacent methylene protons and non-equivalent 

geminal alkene protons. Finally, the MOM groups still appeared to be intact as the singlet 

integrating for the four equivalent methylene protons was still present. The methoxy protons existed 

as an overlapping signal with the benzylic methylene protons, integrating for eight hydrogens in 

total. The additional three signals in the 
13

C NMR spectrum could be accounted for by the allyl side 

chain. 

 

3.2.3 Synthesis of 2-allylbenzene-1,3-diol – 185 

 

Scheme 60 

 

Having successfully utilised the MOM groups as ortho directors to install the allyl chain, we then 

carried out the protecting group switch at this point in the synthesis, as no other acid sensitive 

groups were present. The deprotection was conducted by dissolving the allylated compound 184 in 

tetrahydrofuran and methanol and adding a catalytic amount of aqueous HCl (Scheme 60). The 

reaction was heated to reflux for 18 h at which point TLC analysis indicated that in addition to the 

starting material, two more polar species were present which could be accounted for as the mono- 

and completely deprotected compounds. A second addition of acid was made and the reaction was 

left to proceed for 18 h, upon which TLC indicated complete conversion to what we had assumed to 

be the fully deprotected compound. Following a workup, the product was purified by column 

chromatography and identified as the diphenol 185, obtained as a pale yellow oil in quantitative 

yield. Reaction times varied based on the scale of the reaction, requiring up to three days in some 

cases. Acid was added in small portions according to previous work by Pelly which showed that 

increasing the amount of acid initially added, would not allow for faster reaction times and in fact, 

had an adverse effect on the yield.
46, 47
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The deprotection proved to be successful as confirmed by the absence of the 

intense OCH2 and OCH3 singlets associated with the MOM group in the 
1
H NMR 

spectrum. In connection with this, the diol appeared as a singlet integrating for 

both protons at 5.09 ppm, due to symmetry within the molecule. The aromatic and 

alkene signals were unchanged apart from their chemical shifts and in fact, the methylene protons 

could now be clearly seen as a doublet, where they previously overlapped with the methoxy groups. 

One of our main concerns with this particular reaction was that of potential isomerisation of the 

double bond into the internal, more substituted position, also in conjugation with the aromatic 

system. If the double bond had isomerised, two alkene protons and a methyl group would have 

appeared in the 
1
H NMR spectrum. Since there were still three protons in the alkene region and a 

methylene rather than a methyl group, we were confident that isomerisation had not taken place 

upon heating. In the 
13

C NMR spectrum, signals associated with the MOM protecting groups had 

also disappeared. Carbons C1 and C3 had shifted slightly upfield due to less of a deshielding effect 

upon loss of the MOM groups. A broad stretch in the IR spectrum at 3381 cm
-1

 attested to the 

presence of the alcohols.  

 

3.2.4 Synthesis of 2-allyl-1,3-bis(tert-butyldimethylsilyloxy)benzene – 186 

 

Scheme 61 

 

Tert-butyldimethylsilyl protecting groups were then introduced which we intended to use for the 

remainder of the synthesis en route to the required dihydrobenzofuran (Scheme 61). TBS groups 

would be stable under the envisaged steps to follow and could be cleaved under mild conditions 

later in the synthesis. Therefore, the allylated diol 185 was dissolved in acetonitrile and treated with 

an excess of imidazole and TBSCl. The reaction was stirred at rt under Ar and was analysed by 

TLC at 1 h intervals. After the first 2 h, TLC analysis indicated that, in addition to the starting 

material, two new compounds with a significantly higher Rf had formed. We had assumed that these 

were the mono-protected species and the desired product. After 18 h, the presumed mono-protected 
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species was only present in trace amounts by TLC. Following a workup and purification by column 

chromatography, the bis-silyl ether 186 was furnished as a yellow oil in a good yield. 

 

The appearance of two new intense signals in the far upfield region of 

the 
1
H NMR spectrum was a pleasing sign that the silyl protection 

reaction had been successful. The two singlets at 1.00 ppm and 

0.22 ppm integrated for 18 and 12 protons, respectively, due to the two 

TBS protecting groups. These manifested as just two signals due to symmetry within the molecule. 

The signal at 1.00 ppm accounted for the two C(CH3)3 groups and the signal at 0.22 ppm, for the 

two Si(CH3)2 protons. This was accompanied by changes in the 
13

C NMR spectrum as three new 

signals appeared in the far upfield region at 25.89 ppm, 18.32 ppm and ­4.05 ppm. As for the 

remaining aromatic and alkene signals, these were almost identical to that of their precursor apart 

from slight changes in their chemical shifts. The distinctive OH stretch in the IR spectrum of the 

precursor was no longer present. 

 

3.2.5 Synthesis of 2-(2,6-bis(tert-butyldimethylsilyloxy)-phenyl)acetaldehyde – 188 

 

Scheme 62 

 

With the silyl protecting groups in place, we could now proceed with the remaining steps in the 

synthesis. The first of these required that the alkene 186 be converted to the aldehyde 188 by 

employing one of several methodologies at our disposal, e.g. use of osmium tetroxide allows for the 

formation of the corresponding diol which, upon treatment with sodium periodate, is oxidatively 

cleaved, affording the desired aldehyde.
89

 As an alternative method, ozonolysis provides for a 

convenient conversion of the alkene to the aldehyde. In this process, a pericyclic reaction between 

the alkene and ozone followed by a rearrangement gives way to an ozonalide intermediate 187 

which, when treated with a reducing agent, can be converted to the aldehyde. This may be achieved 

using reagents such as dimethylsulfide, triphenylphosphine or a zinc/acetic acid combination.
90

 We 
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opted for the ozonolysis reaction as we had access to an ozone generator (Scheme 62). Thus, a 

round bottom flask containing the starting material 186 in dichloromethane was immersed in a 

frozen acetone slurry bath which was approximately at ­80 °C. These low temperature conditions 

were a precaution in order to avoid over oxidation of the electron rich aromatic ring system. Ozone 

gas was bubbled into the reaction mixture for three minutes, then the ozone generator was switched 

off and oxygen gas was bubbled into the reaction in order to purge excess ozone from the solution. 

TLC analysis was used to monitor the reaction after every addition of ozone gas. After 15 minutes 

of repeating this process, we were satisfied that the reaction had gone to completion and an excess 

of zinc and acetic acid were added in order to reduce the ozonalide intermediate 187. The reaction 

was slowly warmed up to 5 °C at which point TLC analysis, using DNPH as a dye, indicated 

complete conversion of the intermediate to the corresponding aldehyde. At this elevated 

temperature a second product also began to form. We believed that this was the diol as TBS groups 

may be cleaved under acidic conditions. At this point, the zinc was immediately filtered off and the 

reaction was quenched using sodium bicarbonate in order to neutralise excess acetic acid. Following 

a workup, the crude material was purified by column chromatography to afford to the aldehyde 188 

in an unexceptional, 73% yield. 

 

The fact that ozonolysis had successfully occurred was immediately 

confirmed upon scrutinising the 
1
H and 

13
C NMR spectra. Amongst the 

1
H NMR spectral signals, the most pertinent signal was the new 

downfield singlet at 9.60 ppm owing to the newly formed aldehyde. 

The alkene protons had also disappeared and all that remained was a simple doublet integrating for 

two protons, due to the methylene functionality. The methylene protons had shifted slightly 

downfield as a result of the deshielding effect of the carbonyl. They were also coupled weakly to 

the aldehyde proton as was seen by the small coupling constant of 1.5 Hz. Shoulders on the 

aldehyde signal confirmed the coupling to its adjacent protons. The obvious addition to the 
13

C 

NMR spectrum at 200.86 ppm attested to the presence of a carbonyl. The two alkene carbons had 

also disappeared whilst the methylene carbon was present. The existence of the carbonyl was 

further verified by a strong absorption band in the IR spectrum at 1728 cm
-1 

due to the C=O stretch. 
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3.2.6 Synthesis of (E)-ethyl-4-(2,6-bis(tert-butyl-dimethylsilyloxy)phenyl)-2-

methylbut-2-enoate – 193  

With the aldehyde in place, we were now in a position to carry out a Wittig reaction to begin the 

process of constructing the required functionality for the Trost cyclisation to follow later. In 

generating the alkene it is important to consider that Wittig reactions can give rise to both the (E)- 

and (Z)- geometrical isomers, and the predominating isomer depends on the nature of the ylide. The 

(Z)- geometrical isomer 190 is generally the product of a reaction between an unstabilised ylide and 

an aldehyde, proceeding via the kinetically preferred syn arrangement of the oxaphosphetane ring 

intermediate. In contrast to this, a modification on the Wittig reaction known as the Horner-

Wadsworth-Emmons reaction, in known for its high selectivity of the (E)- alkene 192 (Scheme 63). 

The key feature in this method is that it employs a stabilised ylide (in which the anion is stabilised 

by conjugation into the carbonyl system) and, in light of the fact that formation of the syn 

intermediate 189 is reversible, thermodynamic control dominates, eventually leading to the more 

stable anti arranged intermediate 191 and hence the (E)- isomer 192.
91, 92

 In our synthesis, selective 

formation of the (E)- isomer was a crucial factor that would become important in the planned 

stereoselective Pd π-allyl cyclisation which was to follow as contamination by the opposite 

geometrical isomer would lead to diminished ee‟s. 

 

 

Scheme 63 

 

Therefore, we set our sights on converting the aldehyde 188 to the ester 193 using this 

methodology. The required Horner-Wadsworth-Emmons reagent ethyl 2-
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(diethoxyphosphoryl)propanoate was synthesised from ethyl 2-bromopropanoate and 

triethylphosphite. With this reagent in hand, we then proceeded to the Horner-Wadsworth-Emmons 

reaction. LiCl and 2-(diethoxyphosphoryl)propanoate were dissolved in acetonitrile and the solution 

was cooled to 0 °C. DBU was added slowly and the reaction was left to proceed at 0 °C for 

15 minutes, thus allowing for the formation of the ylide. The aldehyde 188, dissolved in 

acetonitrile, was then added dropwise and the reaction was allowed to warm to rt. After several 

hours, TLC analysis indicated that starting material was still present and the reaction was left to 

proceed for 18 h during which the colour changed from yellow to brown. TLC analysis indicated 

that in addition to the newly formed product and the phosphine oxide, starting material was still 

present. Despite this, the reaction was quenched and following a workup, the crude material was 

purified by column chromatography to indeed afford the product 193, although in a disappointing 

yield of 28%. In an attempt to overcome this problem, a longer time period was permitted for the 

formation of the ylide upon the addition of DBU. Once the aldehyde 188 was added, the 

temperature was maintained at 0 °C for several hours before allowing to warm to room temperature. 

These changes only improved the yield marginally to 39%. We therefore decided on a different 

strategy - rather than adding the aldehyde to the ylide, we opted to generate the ylide separately and 

then add this by canula to a flask containing the aldehyde dissolved in acetonitrile. Disappointingly, 

the yield remained consistent at 38%. 

 

Scheme 64 

 

Having considered various strategies for the combination of the ylide and aldehyde 188 without 

success, we now turned our attention to using a different base such as nBuLi (Scheme 64).
72

 To this 

end, the ylide was generated in tetrahydrofuran by adding LiCl and the phosphonate ester and then 

after cooling to at 0 °C, the nBuLi was added dropwise. After 30 minutes of stirring, the ylide was 

carefully transferred by canula to a round bottom flask containing the aldehyde 188 dissolved in 

acetonitrile, also at 0 °C. The reaction was left to stir under Ar for 18 h. The best yields of the 

desired product 193 were obtained when maintaining the reaction temperature at 0 °C for the full 
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18 h period and we were eventually able to significantly improve the yield to a very acceptable 

90%. 

 

The 
1
H NMR spectrum was pleasingly different from its precursor. 

One of many new features in the spectrum included a quartet and a 

triplet, which were coupled to one another as part of the ethyl 

propanoate moiety. In addition, the downfield aldehyde signal was no 

longer present. The aromatic region was once again marked by the 

familiar triplet and doublet at 6.94 ppm and 6.46 ppm, respectively. There was also an additional 

signal in the downfield region at 6.80 ppm due to the alkene proton. This proton was significantly 

more deshielded than the alkene protons in its precursors, certainly due to conjugation of the alkene 

into the carbonyl system. This interesting signal appeared as a triplet of quartets due to coupling to 

the adjacent methylene protons (J=6.3 Hz), followed by weak, long range coupling to the methyl 

group (J=1.1 Hz). The methylene and methyl protons appeared as doublets at 3.48 ppm and 

1.92 ppm, respectively. The 
13

C NMR spectrum exhibited five additional signals, as expected. The 

signal at 168.20 ppm due to the carbonyl of the ester was predictably further upfield than that of its 

aldehyde precursor. Also worth mentioning are the additional alkene signals at 142.40 ppm and 

121.16 ppm, the latter being the quaternary carbon of the alkene. The ethyl signals that appeared at 

60.14 ppm and 14.25 ppm attested to the success of the reaction. In the IR spectrum, a strong signal 

at 1709 cm
-1

 provided for additional verification that the carbonyl of the ester was present. 

 

A very important feature of this reaction was our desire to obtain exclusively the (E)- geometrical 

isomer and indeed, by means of 2D NOE experiments, we were able to confirm that the (E)- alkene 

had been synthesised (Figure 6). Several intense enhancements were observed, yet the weakest of 

these provided the most convincing evidence. Upon irradiation of the benzylic protons, an 

enhancement in the methyl group was observed. This confirmed that the (E)- geometrical isomer 

193 had been synthesised as these protons would be too far apart in the (Z)- isomer 194 to see an 

enhancement (Figure 7). Naturally, we were aware of the fact that a single interaction does not 

necessarily provide for conclusive evidence and we were cautious of our deductions. These would 

be verified in subsequent steps of the synthesis where further NOESY experiments would provide 

for more definitive results. 
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Figure 6 

 

 

Figure 7 

 

3.2.7 Synthesis of (E)-4-(2,6-bis(tert-butyldimethylsilyloxy)phenyl)-2-methylbut-2-en-

1-ol – 195 

 

Scheme 65 
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In order to introduce the carbonate functionality needed in the succeeding Pd mediated reaction, the 

ester 193 would first have to be reduced to the alcohol 195, following which, the carbonate would 

be installed (Scheme 65). To this end, the ester 193 was dissolved in dry tetrahydrofuran and once 

cooled to 0 °C, LiAlH4 was added in small portions. The reaction was closely monitored by TLC at 

20 minute intervals as we found that upon prolonged exposure to these reaction conditions, a base 

spot would form due to cleavage of the silyl protecting groups. After approximately 1 h, TLC 

analysis indicated that most of the starting material had been converted to a more polar product of 

lower Rf. The reaction was left to proceed until complete consumption of the starting material was 

observed. This varied based on the scale of the reaction, sometimes requiring up to 3 h. Following a 

workup, the crude material was purified by column chromatography, giving the desired alcohol 195 

in a good yield. 

 

In the 
1
H NMR spectrum, absence of the triplet and quartet signals due 

to the ethyl side chain provided the first evidence that the reduction had 

successfully taken place. Whilst the alkene signal was still present, it 

was noticeably less deshielded at 5.43 ppm as it was no longer in 

conjugation with a carbonyl. Since it was still coupled to the benzylic 

and methyl protons, its signal continued to be a triplet of quartets. The new signal appearing at 

3.92 ppm integrating for two protons, was due to the new methylene CH2OH protons. The OH 

produced a broad singlet at 1.33 ppm. In the 
13

C NMR spectrum, the downfield carbonyl signal that 

was observed in the precursor had disappeared. Signals due to the ethyl moiety were also absent, 

however, there was a new signal at 69.18 ppm due to the CH2OH carbon. We could also deduce, 

from the broad stretch at 3330 cm
-1

 in the IR spectrum, that an alcohol had been synthesised. 

 

3.2.8 Synthesis of (E)-4-(2,6-bis(tert-butyldimethylsilyloxy)phenyl)-2-methylbut-2-

enyl methyl carbonate – 196 

 

Scheme 66 
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In one of the last few transformations of this sequence, the alcohol 195 was converted to a 

carbonate 196 as this would act as a good leaving group in the cyclisation step. With an acetate in 

place, Pelly et al. showed that yields obtained in the Pd mediated synthesis were poor, attributing 

this to the potential re-attack of the acetate anion onto the Pd complex.
46, 47

 Subsequent use of the 

carbonate saw a drastic improvement in the yield. This is due to the fact that upon decarboxylation, 

carbon dioxide and methanol are released thus circumventing the potential re-attack, not to mention 

the favourable entropic effects in driving the reaction forward.  

 

To this end, pyridine and methyl chloroformate were added to a solution of the alcohol 195 in 

dichloromethane, at 0 °C (Scheme 66). The reaction was allowed to warm to rt and once full 

conversion to a new product was observed by TLC, the reaction was stopped. Generally, the 

reaction required 1 h to go to completion, or slightly longer for larger scale reactions. Following a 

workup, the crude material was purified by column chromatography, furnishing the carbonate 196 

as a clear oil in an excellent yield. 

 

The most convincing evidence for the formation of the carbonate 

was the presence of the new singlet in the upfield region at 

3.76 ppm, due to the OCH3 protons. The OCH2 signal had also 

shifted significantly downfield as would be expected on introducing 

a nearby carbonyl. Other than this, the 
1
H NMR spectrum of the 

product and precursor were very similiar, apart from slight shifts further downfield in all signals. 

The 
13

C NMR spectrum exhibited, inter alia, a signal at 155.83 ppm due to the carbonyl of the 

carbonate functionality. A new signal at 54.58 ppm as a result of the methoxy group also attested to 

the success of the reaction. Over and above the information derived from the NMR spectra, the 

C=O stretching absorption observed in the carbonyl region of the IR spectrum at 1749 cm
-1

, acted 

as final confirmation that the carbonate had indeed been synthesised. 

 

We were now in a position to obtain more convincing evidence that we had indeed synthesised the 

desired (E)- geometric isomer. As observed before in the NOESY experiments of 193, an 

interaction between the benzylic and methyl protons of 196 was once again consistent with the 

desired isomer. More concrete evidence came in the form of a second enhancement as upon 
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irradiation of the alkene proton, a clear response was observed from the newly installed OCH2 

protons (Figure 8). Clearly, the (E)- alkene 196 had been synthesised as this interaction would not 

be possible in the (Z)- alkene 197 where these protons would spatially be very far from one another 

(Figure 9). In the (E)- geometry 196 the alkene proton is in close proximity to the OCH2, hence the 

observed enhancement. We could now be confident that the (E)- alkene had indeed been 

synthesised in the earlier Horner-Wadsworth-Emmons reaction! 

 

Figure 8 

 

 

Figure 9 

 



Chapter 3 - Results and Discussion: Enantioselective synthesis of rotenone 

________________________________ 

 

73 
 

3.2.9 Synthesis of (E)-4-(2,6-dihydroxyphenyl)-2-methylbut-2-enyl methyl carbonate 

– 127 

 

Scheme 67 

 

All that remained in preparation for the key step of the synthesis was to liberate our phenolic 

nucleophile by the removal of the silyl protecting groups (Scheme 67). Therefore, 196 in 

tetrahydrofuran was treated with TBAF at 0 °C. TLC analysis after 5 minutes indicated complete 

conversion to a single product. Following a workup using ammonium chloride, purification by 

column chromatography afforded the diol 127 in a good yield. Interestingly, the diol 127 would 

spontaneously cyclise with time to afford the dihydrobenzofuran rac-78 (Scheme 68). Although the 

diol would be cyclised in the subsequent step, we hoped to carry out the cyclisation 

stereoselectively and contamination by rac-78 would have eroded our enantiomeric excess. Hence, 

the diol was kept in the freezer so as to prevent spontaneous cyclisation prior to our stereocontrolled 

reaction. 

 

Scheme 68 

 

The deprotection was clearly evident from two main changes observed in 

the 
1
H NMR spectrum of the diol 127. The noticeable loss of the intense, 

far upfield signals due to the former protecting TBS groups meant that the 

deprotection had proceeded successfully. In conjunction with this, a 

prominent, broad singlet integrating for two protons at 5.00 ppm indicated 
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that the two equivalent phenolic hydroxyl protons were present. The remaining signals continued to 

follow the familiar pattern and had only changed slightly in their chemical shifts. In the 
13

C NMR 

spectrum, the three far upfield signals due to the TBS group had disappeared. The OH was present 

in the IR spectrum as a broad stretching band at 3397 cm
-1

. Unfortunately, not all the ethyl acetate 

could be removed from the product despite many hours on high vac. This was possibly an effect of 

hydrogen bonding to the alcohol groups. 

 

3.2.10 Synthesis of racemic 2-isopropenyl-2,3-dihydrobenzofuran-4-ol – rac-78 

 

Scheme 69 

 

Having successfully synthesised substrate 127, we were now in a position to carry out the key Pd π-

allyl mediated cyclisation. We decided that the dihydrobenzofuran would initially be synthesised 

without stereochemical control in order to optimise the yields before utilising the costly Trost ligand 

(Scheme 69). In conducting the reaction racemically, triphenylphosphine was utilised as the ligand. 

To this end, a solution of dichloromethane and Pd(dba)2 was degassed by bubbling Ar directly into 

the solution. Four equivalents of triphenylphosphine were added and the violet solution eventually 

turned light orange as ligand exchange occurred, thus generating Pd(PPh3)4 in situ. Acetic acid was 

added followed by the carbonate 127 and the reaction was heated to reflux for 18 h. Although acetic 

acid was not necessarily required in the racemic synthesis, it was added to the reaction so that the 

system closely resembled the chiral cyclisation reaction in which acetic acid was used to slow down 

the reaction, allowing for a high enantiomeric excess. TLC analysis after 18 h indicated complete 

conversion of the starting material to a single product. Following purification by column 

chromatography, the dihydrobenzofuran rac-78 was afforded as a clear oil in a moderate yield and 

as expected, racemically (confirmed by chiral HPLC of the acetate derivative as we found that the 

enantiomers of rac-78 did not separate well on the chiralcel OJ column). 
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The 
1
H NMR spectrum was completely different from its starting material. The 

OCH2 and OCH3 singlets associated with the carbonate had disappeared and in 

their place, a number of more complex signals were present. Where there were 

previously two aromatic signals, loss of symmetry within the molecule had led to 

three signals as protons H5 and H7 were no longer in equivalent environments. Despite the lack of 

symmetry, H6 appeared to produce a triplet at 6.99 ppm as it coupled to its adjacent protons. Protons 

H7 and H5 coupled to H6, thereby generating two doublets at 6.43 ppm and 6.31 ppm, respectively. 

The coupling constants of these protons matched one another at 8.0 Hz. Proton H2 coupled to the 

benzylic protons H3 to produce a triplet at 5.21 ppm with a coupling constant of 8.8 Hz. The alkene 

protons were non-equivalent thereby giving rise to two signals with coupling constants so small, 

they appeared as singlets at 5.09 ppm and 4.91 ppm. The phenolic OH existed as a singlet at 

4.88 ppm. Being adjacent to a stereogenic centre, the diastereotopic protons H3 found themselves in 

different chemical environments thus each produced a doublet of doublets upon coupling to one 

another as well as to proton H2. Finally, the single CH3 in the molecule was observed as a singlet in 

the upfield region at 1.78 ppm. 

 

3.2.11 Synthesis of (-)-(R)-2-isopropenyl-2,3-dihydrobenzofuran-4-ol – (R)-78 

 

Scheme 70 

 

Having synthesised the dihydrobenzofuran racemically, we then moved on to the stereoselective 

synthesis (Scheme 70). In the chiral synthesis, the bidentate R,R’-Trost ligand was employed in 

place of triphenylphosphine. In theory, two ligands will complex to a single Pd and in using 2.9 

equivalents of the Trost ligand to the palladium in our initial attempt, the ligand was in slight excess 

of the metal. This was important as previous work showed that Pd(dba)2 itself was capable of 

catalysing the reaction, although racemically. In using a slight excess of the ligand, an enantiomeric 

excess of 86% of (R)-78 was obtained, however, this was lower than the 92% ee attained by Pelly et 

al.
47

 We were concerned that sufficient exchange of the chiral ligands onto the Pd had not occurred 
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and with that in mind we decided to increase the equivalents of Trost ligand (exactly 4.7 

equivalents). Having added the chiral ligand, the mixture also was stirred for 5 minutes longer than 

in our prior attempt in order to ensure complete exchange of the chiral ligand onto the Pd. We were 

once again disappointed by the results, this time even more so than before. An excess of Trost 

ligand appeared to counter the desired effect of the chiral ligand as the enantiomeric excess dropped 

to a disappointing 59%. We therefore embarked upon a strategy whereby the reaction was 

attempted several times, each time varying a single element until conditions were optimised to the 

point that an enantiomeric excess of 94.8% was obtained. The improved ee was a function of the 

following factors. Firstly, there appeared to be a very fine balance between using enough but not too 

much ligand, and 2.6 equivalents of ligand for every Pd provided the best results. A new bottle of 

the Trost ligand was also purchased and a new batch of Pd2(dba)3CHCl3 was synthesised. The acetic 

acid was also distilled and degassed prior to use. Finally, on a scale of approximately 200 mg, the 

starting material was dissolved in dichloromethane and added slowly by means of a dropping 

funnel, rather than adding this in a single portion. Unfortunately, upon doubling the scale of the 

reaction to 400 mg of starting material, the enantiomeric excess decreased to 90%. This batch was 

employed in the synthesis of rotenone.  

 

The dihydrobenzofuran was eventually synthesised as follows: dichloromethane and 

Pd2(dba)3CHCl3 were placed in a round bottom flask fitted with a dropping funnel and the violet 

solution was degassed. The chiral R,R’-Trost ligand was then added and the solution was stirred for 

25 minutes during which a colour change occurred to a light orange. Acetic acid was added and 

after 5 minutes of stirring, the dropping funnel was charged with dichloromethane and the carbonate 

127 which was then added dropwise to the reaction. After allowing the reaction to proceed for 18 h 

at rt, the mixture was concentrated and purified by column chromatography to afford the 

dihydrobenzofuran (R)-78 in a good yield and excellent enantiomeric excess. The absolute 

stereochemistry was at this point assumed to be the (R)- isomer based on the model proposed by 

Trost. 

 

For the above mentioned reaction, new Pd2(dba)3(CHCl3) was synthesised by adding PdCl2 to a 

solution of hot methanol, dba (dibenzylideneacetone) and sodium acetate. The reaction was stirred 

for 4 h at 40 °C during which a maroon precipitate formed. The reaction was allowed to cool and 

the precipitate filtered off and washed successively with water and acetone. The precipitate was 

dissolved in hot chloroform and any impurities were filtered off. Diethyl ether was slowly added 
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allowing for precipitation of deep purple crystals which were filtered off and dried in vacuo. The 

composition of the catalyst was identified as Pd2(dba)3(CHCl3) by X-ray crystallographic analysis.
93

 

 

The NMR and IR spectra were as expected, identical to those of the racemic 

mixture. A chiral synthesis was confirmed by optical measurements, although the 

actual enantiomeric excess could not be determined at this stage as the 

enantiomers of the phenol did not separate effectively on our Chiralcel OJ 

column. The enantiomeric excess was determined from chiral HPLC work of the corresponding 

acetate derivative. 

 

3.2.12 Synthesis of 2-isopropenyl-2,3-dihydrobenzofuran-4-yl acetate – (R)-198 and 

rac-198 

 

Scheme 71 

 

Since we were unable to accurately determine the enantiomeric excess (ee) of our reaction using the 

phenol 78, the dihydrobenzofuran was modified to the corresponding acetate 198 for which good 

separation of the enantiomers was obtained. In this reaction, transformation to the acetate was 

achieved by adding triethylamine, DMAP and acetic anhydride to a solution of the phenol 78 in 

dichloromethane (Scheme 71). The reaction was stirred under Ar for 18 h at which point TLC 

analysis indicated that all the starting material had reacted, forming a new product at a higher Rf 

value. Purification by column chromatography afforded the acetate 198 as a clear oil in good yield 

which was then analysed by chiral HPLC. Effective separation of the enantiomers was first 

optimised on the racemic material and we found the best mobile phase to be 10% isopropyl alcohol 

in hexane (Figure 10). Having separated the racemic mixture, we then employed the same 

conditions to analyse our stereoselective cyclisation reaction. An enantiomeric excess as high as 

94.8% was obtained, although on larger scales it was just in excess of 90%. 
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Conversion to the acetate was confirmed by the fact that the OH signal 

previously seen in the 
1
H NMR spectrum of its precursor, was absent. It was 

replaced by a single new methyl signal at 2.29 ppm due to the acetate. The 

methyl protons of the acetate appeared to be rather isolated, hence the clear 

singlet. This methyl signal was downfield to the CH3C=CH2 signal due to the nearby carbonyl. The 

assignment of this methyl was confirmed as upon scrutinising the signal at 1.76 ppm, shoulders 

were revealed, a feature due to long range coupling and only possible in the CH3C=CH2 methyl 

protons. The remainder of the signals were almost identical to that of its precursor apart from proton 

H6 which had shifted downfield to 6.65 ppm, no doubt due to the acetate. In the 
13

C NMR spectrum, 

the far downfield carbonyl signal at 168.43 ppm and the new methyl signal at 20.86 ppm further 

confirmed that the acetate had been synthesised. With the strong carbonyl absorption at 1759 cm
-1

 

in the IR spectrum, we could assuredly say that the acetate had been synthesised. 

 

  

Figure 10 

Note: the peaks are located at different positions as the initial method used for the racemic mixture would take 0.5 s as 

the starting point. 
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3.2.13 Synthesis of (-)-(R)-2-isopropenyl-2,3-dihydrobenzofuran-4-yl-2-

nitrobenzenesulfonate – (R)-199 

 

Scheme 72 

 

We had optimised the reaction conditions for obtaining a good yield and enantiomeric excess and 

we now needed to confirm that the R,R’-Trost ligand had indeed provided us with what we had 

assumed until now to be the (R)- enantiomer, as depicted by the Trost model. Information of this 

sort could be derived from a crystal structure and since the dihydrobenzofuran (R)-78 existed as an 

oil, it had to be derivatised so as to obtain a solid (Scheme 72). A sulphur-containing moiety was 

added as a heavy atom was required to unambiguously assign the absolute stereochemistry. 

Therefore, 2-isopropenyl-2,3-dihydrobenzofuran-4-ol (R)-78 was dissolved in dichloromethane and 

triethylamine and 2-nitrobenzenesulfonyl chloride were added. The reaction was stirred at rt for 

18 h after which TLC analysis indicated full conversion to the nitrobenzenesulfonate derivative (R)-

199. Purification by column chromatography followed by recrystallisation from diethyl ether 

afforded crystals suitable for X-ray analysis. The absolute stereochemistry of the major enantiomer 

was confirmed as the (R)- isomer (Figure 11). X-ray crystallographic analysis revealed that the 

dihydrobenzofuran derivative belonged to the chiral space group P212121 with the following unit 

cell dimensions: a = 5.73 Å, b = 13.07 Å, c = 22.16 Å. A suitable R-factor of 3.66% was obtained 

for this crystal structure. 
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Figure 11 

 

The 
1
H NMR spectrum exhibited several new aromatic signals in the 

downfield region. The deshielding effect of the nitro group shifted the 

aromatic protons in the nitrobenzenesulfonate moiety further downfield 

so that there was no overlap with the aromatic protons of the 

dihydrobenzofuran. Proton H3' produced a doublet and since it was 

adjacent to the nitro group, it was found furthest downfield at 7.99 ppm. Following this, protons H5' 

and H6' gave an overlapping signal at 7.85 ppm. Proton H4' was the least deshielded and since it 

coupled to all of the above mentioned hydrogens, it gave rise to a complex multiplet at 7.78-

7.65 ppm. The remainder of the spectrum was unaffected, apart from slight changes in the chemical 

shifts. Characteristically, the aromatic protons H6, H7 and H5 appeared as a triplet and two doublets 

at 7.05 ppm, 6.74 ppm and 6.55 ppm. Proton H2 coupled to the adjacent methylene protons to give a 

triplet at 5.19 ppm and further upfield, each of the geminal alkene protons gave rise to individual 

singlets at 5.05 ppm and 4.90 ppm. This was followed by the characteristic doublet of doublets at 

3.41 ppm and 3.03 ppm, due to protons H3. Furthest upfield was the methyl singlet at 1.71 ppm. 

Loss of the OH signal in both the 
1
H NMR and the IR spectra further attested to the fact that the 

alcohol had been derivatised. In the 
13

C NMR spectrum, six additional signals provided for the most 

obvious affirmation of the addition of the benzene ring. The measured melting point deviated by a 

single degree from the reported melting point of 82-83 °C.
47

 

 

Since we had completed the enantioselective synthesis of the required dihydrobenzofuran (R)-78, 

we could now forge ahead with the synthesis of rotenone. A key feature, however, was that in order 
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to couple this unit to the alkyne, a formyl group would first have to be introduced into the position 

ortho to the phenol of (R)-78. For this purpose, several methods were at our disposal, e.g. a formyl 

group could be introduced by electrophilic substitution. This would require an activated phenol 

which meant that at the outset of the synthesis, we would have to introduce an ortho directing 

moiety such as a MOM group. Alternatively, a Vilsmeier-Haack reaction could be used which 

would not necessarily require an activating group. A description of the formylation reactions that 

we had attempted follows, eventually leading to the development of a successful procedure. 

 

3.2.14 Synthesis of (R)-4-(methoxymethoxy)-2-isopropenyl-2,3-dihydrobenzofuran – 

(R)-200 

 

Scheme 73 

 

Several attempts were made to introduce the formyl group into the 5-position. We initially decided 

to employ an electrophilic substitution reaction and this required the introduction of a MOM 

protecting group as it is a good ortho director (Scheme 73). Therefore, to a solution of the alcohol 

(R)-78 dissolved in dimethylformamide and immersed in an ice bath, was added sodium hydride 

followed by methoxymethyl chloride. The reaction was allowed to warm to rt and stirred under Ar 

for 18 h. TLC analysis indicated that a new product of higher Rf had formed and only trace amounts 

of starting material were present. Despite the long reaction times, a small amount of starting 

material was consistently recovered from this reaction. Following a work-up and purification by 

column chromatography, the MOM protected dihydrobenzofuran (R)-200 was afforded as a yellow 

oil in a moderate yield. 

 

The MOM protection was confirmed by the fact that, in addition to the 

normal dihydrobenzofuran signals, singlets at 5.18 ppm and 3.48 ppm 

appeared due to the OCH2 and OCH3 groups. The effect of this on the 

remaining signals was minimal with only slight deshielding of the aromatic 
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protons and hence shifting of these signals downfield. Disappearance of the OH signal in the 
1
H 

NMR and the IR spectra verified the conversion of the phenol to the MOM ether. This was further 

confirmed in the 
13

C NMR spectrum by the addition of two new signals in the more upfield region. 

 

With the well reputed ortho director in place, we could now carry out the electrophilic substitution 

using nBuLi and p-formaldehyde. The reaction would hopefully afford the benzylic alcohol which, 

upon oxidation, could be converted to the benzaldehyde at the 5-position. To this end, the MOM 

protected dihydrobenzofuran (R)-200 was dissolved in tetrahydrofuran and cooled to ­78 °C by 

means of an acetone slurry bath. TMEDA (2 equiv.) was added followed by the dropwise addition 

of nBuLi (2 equiv.). After 1.5 h, p-formaldehyde (2 equiv.) was added and the reaction was 

maintained at ­78 °C for an hour before warming up to rt. Following 18 h of stirring under Ar, TLC 

analysis indicated that the starting material was still present with only trace amounts of two other 

products. These were recovered in such low quantities that we were not able to elucidate their 

structure and the only information that could be gathered from their NMR spectra was that the furan 

had most likely decomposed under these conditions as characteristic signals of this moiety were no 

longer visible. 

 

Our main concern at this point was that the temperature employed was too low for lithiation and 

hence formylation to occur. The reaction was repeated, this time increasing the temperature of 

lithiation to 0 °C. However, this did not have the effect we were hoping for as the results were 

identical to those in the previous experiment. 

 

At this stage it was unclear whether the problem was associated with ineffective lithiation or 

perhaps poor nucleophilic attack of the lithiated benzene ring on p-formaldehyde. To solve this we 

decided to carry out a test reaction employing MeI as the electrophile. Once again, the starting 

material was recovered as the major compound in addition to trace amounts of two other products, 

uncharacterisable beyond the fact that they appeared to indicate decomposition of the furan ring. 

Clearly, the problem did not lie in the electrophile but rather in the fact that lithiation was not 

successful. We also concluded that the decomposition of the furan ring occurred as a result of 

prolonged exposure to the strongly basic conditions, which could have potentially deprotonated the 

acidic benzylic position. 
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3.2.15 Synthesis of (R)-4-(methoxymethoxy)-2-isopropenyl-2,3-dihydrobenzofuran-5-

carbaldehyde and (R)-4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde – 

(R)-201 and (R)-202 

 

Scheme 74 

 

Since our electrophilic substitution had proven to be unsuccessful, we decided to attempt the 

formylation using a variation of the Vilsmeier-Haack reaction (Scheme 74).
94

 Unlike conventional 

Vilsmeier Haack reactions, this procedure combined the starting material (R)-200 and the 

dichloromethyl methyl ether prior to adding the stannic chloride, resulting in what appeared to be a 

reaction between the dihydrobenzofuran and the dichloromethyl methyl ether. The 
1
H NMR 

spectrum once again indicated that the furan ring was absent. In repeating the reaction, the tin 

tetrachloride and the dichloromethyl methyl ether were first combined at ­78 °C and after 

20 minutes, the starting material (R)-200 was added. The reaction was maintained at ­78 °C for 1 h 

at which point TLC analysis indicated that two new products had formed. The reaction was 

quenched and following a workup and purification, NMR revealed that both products contained the 

formyl substituent. The minor product produced in an 11% yield was the desired MOM protected 

formylated compound (R)-201. The major formylated product in a higher yield of 25% was that of 

the deprotected phenol (R)-202. 

 

The fact that formylation had successfully occurred was immediately 

confirmed upon examining the 
1
H NMR spectrum. The new, far downfield 

singlet confirmed the presence of the aldehyde. As a result, the aromatic 

region was simplified to two doublets at 7.61 ppm and 6.69 ppm. Proton H6 

was further downfield than H7 due to the deshielding effect of the adjacent 

formyl group. The remainder of the signals were unchanged. In the 
13

C NMR spectrum, the 

carbonyl signal in the far downfield region at 187.43 ppm was immediately obvious. NOE 

experiments were inconclusive with regards to the ortho or para position of formylation. 
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In the process of formylation, the second product showed that the MOM 

protecting groups had also been cleaved. This was confirmed firstly by the fact 

that the OCH2 and OCH3 signals were absent, and secondly by the new singlet at 

11.47 ppm due to the OH proton, identified by proton exchange upon the 

addition of D2O to the NMR sample. Once again, the aromatic region had been simplified to two 

doublets at 7.36 ppm and 6.50 ppm due to protons H6 and H7, respectively. Proton H6 was further 

downfield as it was closer to the formyl group and hence more susceptible to deshielding. All 

attempts to unambiguously assign the position of the formyl group by NOE experiments were once 

again inconclusive. However, we were optimistic that favourable hydrogen bonding between the 

alcohol and the formyl group would have directed formylation into the ortho rather than the para 

position. This was somewhat confirmed by the intense carbonyl absorption peak at 1630 cm
-1

 in the 

IR spectrum which was at a slightly lower wavenumber than what is normally observed, potentially 

due to hydrogen bonding to the adjacent OH. The ortho position of the formyl group was verified in 

the subsequent reactions. 

 

3.2.16 Synthesis of (-)-(R)-4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-5-

carbaldehyde and (R)-4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-7-carbaldehyde – 

(R)-202 and (R)-203 

 

Scheme 75 

 

In light of the fact that the MOM deprotected compound (R)-202 was obtained in the preceding 

Vilsmeier reaction, we decided to attempt the reaction on the unprotected phenol (R)-78 (Scheme 

75). To this end, tin tetrachloride and dichloromethyl methyl ether were combined at ­78 °C and 

stirred for 20 minutes. The Vilsmeier salt was then transferred by canula to a round bottom flask 

containing the dihydrobenzofuran (R)-78. In this strategy the starting material was therefore in 

excess of the harsh Vilsmeier reagents so as to avoid any potential side reactions. After 5 minutes of 
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stirring, two new products were present with significantly different Rf values. TLC analysis after 1 h 

indicated that starting material was still present and the reaction was warmed to 0 °C for an 

additional hour. Following a workup and purification, both products were identified by NMR 

spectroscopy as the formylated phenol. Both the ortho (R)-202 and para (R)-203 products had been 

synthesised, however, NOE experiments would not allow us to distinguish between the two 

compounds. Nevertheless, we could tentatively assign the regioisomers by rationalising the Rf 

values and yields of the respective products. The isomer of higher Rf had also been produced in 

excess of the other product. This was assumed to be the ortho substituted product (R)-202, driven 

by the favourable hydrogen bonding interaction illustrated in Scheme 75. The higher Rf value was 

perhaps due to the intramolecular interaction between the phenolic OH and the adjacent carbonyl, 

effectively reducing the interaction of the molecule with the silica, thus allowing the product to 

travel more quickly on the TLC plate. 

 

The spectroscopic data was identical to that obtained in the previous synthesis 

(Scheme 74). In the 
1
H NMR spectrum, two far downfield signals at 11.47 ppm 

and 9.68 ppm attested to the presence of the phenolic OH and the aldehyde, 

respectively. In the 
13

C NMR spectrum, the single additional signal in the 

downfield region at 194.32 ppm was assigned to the carbonyl, thus acting as affirmation of the 

successful reaction. 

 

We had assumed that the minor product was one in which formylation had taken 

place in the 7-position. This was in response to the fact that all signals as a result 

of the dihydrobenzofuran nucleus were equivalent to those in the major product, 

with exception of two slight differences. The OH and carbonyl signals in (R)-203 

were situated further upfield compared to its regioisomer, at 7.43 ppm and 

10.04 ppm, respectively. This key difference between the two products was used to distinguish 

between the ortho and para compounds. Hydrogen bonding between the hydroxyl and formyl group 

in (R)-202 would shift the OH signal further downfield, hence it was situated at 11.47 ppm. In stark 

contrast to this, the OH signal in the para substituted product (R)-203 was found further upfield at 

7.43 ppm. 
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3.2.17 Synthesis of (-)-(R)-4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-5-

carbaldehyde – (R)-202 

 

Scheme 76 

 

Owing to the fact that we had encountered these difficulties with the formylation reaction, we once 

again returned to the literature to search for alternative procedures. In this process we discovered an 

interesting magnesium mediated formylation which appeared to selectively install the desired 

functionality in the position ortho to a phenolic OH (Scheme 76).
95

 We were further drawn to this 

method as mild reagents were used, unlike the harsher conditions employed in the electrophilic 

substitution and Vilsmeier-Haack reactions. In applying this procedure to our compound, p-

formaldehyde was added to a round bottom flask under Ar containing the starting material (R)-78, 

anhydrous magnesium chloride and triethylamine in dry tetrahydrofuran. The mixture was heated to 

reflux and after 2 h, TLC analysis indicated that a single new product had formed. A workup, 

followed by purification by column chromatography gave the formylated product (R)-202 as a 

yellow oil. The Rf and spectroscopic data were identical to the previously assumed ortho product, 

although the new method saw a significant improvement in the yield of 75%. The enantiomeric 

excess could not be elucidated using chiral HPLC as the product could not be resolved into its 

isomers. However, the product remained optically active which meant that we had not racemised 

the material. In the remainder of the synthesis, reactions were first conducted on a small scale and 

specific rotations were measured and taken as an indication of the fact that one enantiomer was still 

in excess of the other, prior to conducting the experiment on a larger scale. 
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3.2.18 Synthesis of (-)-(R)-4-(tert-butyldimethylsilyloxy)-2-isopropenyl-2,3-

dihydrobenzofuran-5-carbaldehyde – (R)-204 

 

Scheme 77 

 

Prior to the coupling reaction, the phenol was protected using a TBS silyl group as these had been 

successfully utilised in the parallel synthesis of munduserone. The previously employed 

methodology using imidazole and TBSCl did not work and after 18 h of stirring, only starting 

material was present. This was attributed to the stabilising hydrogen bond interaction which may 

have hindered deprotonation of the phenol and hence silylation. A different solvent had to be used 

which could potentially disrupt the hydrogen bond between the alcohol and the formyl group, thus 

facilitating deprotonation and hence silylation. The method used was based upon silylation of the 

similarly substituted compound, salicaldehyde.
96

 A slight excess of diisopropylethylamine was 

added to a solution of the starting material (R)-202 dissolved in dimethylformamide (Scheme 77). 

Following 5 minutes of stirring, TBSCl was added. The reaction progressed at a very fast rate and 

TLC analysis after 10 minutes indicated full conversion to a product of slightly higher Rf. 

Following a workup and purification by column chromatography, the silylated product (R)-204 was 

obtained as a yellow oil in a good yield of 90%. 

 

In the 
1
H NMR spectrum, the silyl ether manifested itself as two intense, 

upfield singlets, thus confirming the success of the reaction. These signals at 

1.04 ppm and 0.20 ppm integrated for nine and six protons, respectively. In 

fact, the two methyl groups attached to the silicon atom appeared to be non-

equivalent as these produced very closely spaced singlets at 0.22 ppm and 

0.20 ppm. This was an interesting feature which indicated that rotation of the bulky TBS group was 

restricted and hence the methyl groups were in different environments, thus producing the two 

singlets. The far downfield OH singlet had accordingly disappeared and although the carbonyl 

signal was still present, it had shifted slightly downfield to 10.15 ppm. The remaining signals 

indicated that the dihydrobenzofuran was unchanged. Three additional signals in the 
13

C NMR 
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spectrum at 18.46 ppm, 16.93 ppm and ­3.79 ppm verified the presence of a TBS group. The intense 

absorption in the IR spectrum at 1674 cm
-1

 was consistent with the presence of the formyl group. 

 

3.2.19 Attempted synthesis of 1-((R)-4-(tert-butyldimethylsilyloxy)-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)-4-(3,4-dimethoxyphenoxy)but-2-yn-1-ol – (R)-205 

 

Scheme 78 

 

The coupling reaction was then carried out with the second of the two intermediates also used in the 

model study, the propargyl ether 52 (Scheme 78). The alkyne 52 (1.05 equiv.) was dissolved in 

tetrahydrofuran and once cooled to ­78 °C, 1.1 equivalents of nBuLi were added. After stirring for 

30 minutes, the dihydrobenzofuran (R)-204 (1 equiv.), also dissolved in tetrahydrofuran, was added 

by canula. The reaction was left to warm to rt and stirred for 1 h and then quenched by adding 

saturated ammonium chloride solution. Following purification, mainly the starting materials were 

recovered as well as a trace amount of an unknown product which we could say with certainty was 

not the desired product (R)-205 as characteristic signals of the product such as those of the methoxy 

groups were absent in the 
1
H NMR spectrum. In an effort to drive the reaction forward it was 

repeated, this time using nBuLi in excess of two equivalents. Unfortunately, this only resulted in a 

number of compounds forming, none of which were the desired product. 

 

We were initially confused by the failure of this reaction as it had been successful in the model 

study. In considering the differences between the two compounds, we surmised that perhaps this 

was due to increased steric hindrance of the dihydrobenzofuran compared to compound 178 of the 

model study. This is illustrated in Figure 12 where dashed lines represent atoms only present in the 

dihydrobenzofuran (R)-204 (and not in the model compound 178). It is entirely possible that the 

presence of the methylene in (R)-204 may significantly alter the position of the bulky silyl group, 
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pushing it towards the carbonyl in what is known as the buttressing effect.
97

 This would result in a 

more sterically hindered aldehyde which would be less susceptible to attack by the alkyne 52. We 

therefore attempted the coupling reaction again, this time with a smaller protecting group in place. 

 

Figure 12 

 

3.2.20 Synthesis of (-)-(R)-4-isopropoxy-2-isopropenyl-2,3-dihydrobenzofuran-5-

carbaldehyde – (R)-206 

 

Scheme 79 

 

Concerned with the steric bulk associated with the TBS group, we next opted for the smaller 

isopropyl group. The procedure employed in introducing this protecting group was once again 

based on the protection of a salicaldehyde derivative, this time with an isopropyl moiety.
98

 The 

formylated dihydrobenzofuran (R)-202 was thus dissolved in dimethylformamide and potassium 

carbonate and 2-bromoporopane were added (Scheme 79). The reaction was then immersed in an 

oil bath preheated to 45 °C. TLC analysis after 30 minutes indicated that a new product had formed, 

although a large amount of starting material was still present. The reaction was left to stir at this 

temperature for 18 h following which, a workup and purification yielded the desired compound (R)-

206 as a yellow oil in an acceptable yield of 78%. 

 

Interestingly, one would have expected the less polar alkylated dihydrobenzofuran (R)-206 to travel 

further up the TLC plate compared to the phenol precursor (R)-202. A rather unusual observation 

was made in that the Rf of the phenol was higher than that of the alkylated compound. This 
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observation supported the notion that, since the formyl group was in a position ortho to the phenolic 

OH, hydrogen bonding between the two significantly decreased the interaction of the phenol with 

the silica. This was a fortuitous observation of our previous summations that the formyl group had 

been introduced in the desired ortho position. 

 

The isopropyl groups could be easily detected in the 
1
H NMR spectrum of the 

product. The characteristic septet and doublet integrating for one and six protons, 

respectively, were indeed present in the 
1
H NMR spectrum of the product, thus 

confirming a successful reaction. As a result, the OH signal had disappeared in 

the downfield region of the 
1
H NMR spectrum. As for the dihydrobenzofuran 

nucleus, protons maintained their respective splitting patterns, although several of their chemical 

shifts had changed slightly. In the 
13

C NMR spectrum, introduction of the isopropyl group was 

accompanied by two additional signals at 75.34 ppm and 22.45 ppm. The IR spectrum contained a 

C=O absorption peak at 1671 cm
-1

. 

 

3.2.21 Attempted synthesis of 4-(3,4-dimethoxyphenoxy)-1-((R)-4-isopropoxy-2- 

isopropenyl-2,3-dihydrobenzofuran-5-yl)but-2-yn-1-ol – (R)-207 

 

Scheme 80 

 

With the somewhat less sterically encumbering isopropyl protecting group in place, the coupling 

reaction was once again attempted using the dihydrobenzofuran (R)-206 (Scheme 80). Once again, 

the coupling reaction did not proceed and the desired product (R)-207 was not synthesised. 

Seemingly, the only option available to us was to switch to the smallest feasible protecting group, 

namely a methoxy. This was a concerning strategy as we knew that this may pose deprotection 

problems later on in the synthesis as other methoxy groups were present in the molecule. 
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3.2.22 Synthesis of (-)-(R)-4-methoxy-2-isopropenyl-2,3-dihydrobenzofuran-5-

carbaldehyde – (R)-208 

 

Scheme 81 

 

As expected, the introduction of the methyl group proceeded smoothly using dimethyl sulfate. In 

this process, potassium carbonate was added to a solution of the starting material (R)-202 in acetone 

(Scheme 81). The reaction was heated to reflux and whilst stirring under Ar, a colour change was 

observed from clear to a milky white. TLC analysis at 1 h indicated complete conversion to a 

compound of lower Rf and a workup was then performed, followed by purification by column 

chromatography to afford the methylated product (R)-208 as a waxy solid in an excellent yield of 

98%. 

 

The large singlet at 4.00 ppm in the 
1
H NMR spectrum clearly indicated the 

transformation from the phenol to an aromatic methoxy. There was also no sign of 

the phenolic OH proton. The carbonyl signal was still clearly present as a 

downfield singlet at 10.22 ppm. As for the remaining signals, these were similar in 

appearance to their precursor, only shifted slightly downfield. The 
13

C NMR 

spectrum contained a new signal at 60.12 ppm, indicative of the methoxy group. 
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3.2.23 Synthesis of (-)-(R)-4-(3,4-Dimethoxyphenoxy)-1-(4-methoxy-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)but-2-yn-1-ol –209 

 

Scheme 82 

 

With the smallest of our feasible protecting groups in place, it was now time to once again attempt 

the coupling reaction and hope that the problems associated with steric crowding could be 

overcome (Scheme 82). To this end, nBuLi was added to a solution of the alkyne 52 dissolved in 

tetrahydrofuran at ­78 °C. The reaction was stirred for 30 minutes and the methylated 

dihydrobenzofuran (R)-208, also dissolved in tetrahydrofuran, was added by canula. The solution 

was allowed to warm to rt and following 1 h of stirring, TLC analysis indicated that a trace amount 

of a new product was present. The reaction was heated to 40 °C and monitored hourly by TLC over 

the next 5 h. After this time, the reaction mixture was cooled and following a workup and 

purification, the first signs of a success were evident as the desired product 209 was obtained, albeit 

in a very modest 17% yield. This improved slightly to 40% upon increasing the reaction time to 

18 h, however, TLC analysis at the end of this period indicated that a significant amount of starting 

material was still present. This was especially problematic as the two starting materials (52 and (R)-

208) had the same Rf values and so the precious, unreacted dihydrobenzofuran could not be 

recovered in these reactions. 

 

Spectroscopic evidence for the formation of the secondary alcohol 

209 was obtained from the 
1
H, 

13
C and COSY NMR spectra. The 

most obvious indication that the coupling reaction had worked was 

given by the three singlets at 3.88 ppm, 3.84 ppm and 3.82 ppm, 

each integrating for three protons due to the three methoxy groups. 

The two singlets at 5.58 ppm and 2.78 ppm integrating for one 

proton each, were assigned to the newly formed CHOH and the OH protons, respectively. An 
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interesting feature in the 
1
H NMR spectrum was the doubling up of several peaks as a result of the 

formation of diastereomers. This was particularly evident in the CHOH and the OH signals which 

were each comprised of closely spaced singlets. In the aromatic region, four signals integrated for 

five protons in total. These signals were assigned to their respective protons upon inspection of their 

coupling patterns and coupling constants. The first and most obvious assignment was that of proton 

H2‟ which was the only meta coupled aromatic proton. Therefore, H2‟ could be assigned to the 

doublet at 6.58 ppm adopting a coupling constant of magnitude 2.7 Hz. The COSY spectrum 

(Figure 13) showed that H2‟ was coupled to one of the overlapping signals at 6.50-6.48 ppm, due to 

proton H6‟. Proton H6‟ in turn coupled to the doublet at 6.77 ppm, due to proton H5‟. This was 

supported by the ortho coupling constant of 8.7 Hz adopted by proton H5‟. In the dihydrobenzofuran 

nucleus, protons H6 and H7
 
only coupled to one another and were expected to give two doublets 

with ortho coupling constants in the range of 6-10 Hz. This relationship was observed in the doublet 

furthest downfield at 7.22 ppm which coupled to one of the overlapping signals at 6.50-6.48 ppm, 

with an ortho coupling constant of 8.2 Hz. The doublet further downfield was due to proton H6, and 

proton H7 existed as one of the overlapping signals. The protons associated with the 

dihydrobenzofuran moiety could be easily assigned. As for the remainder of the signals, the singlet 

integrating for two protons could only be assigned to the remaining methylene protons CH2-C≡C. 

As expected, 24 signals were produced in the 
13

C NMR spectrum, although the presence of 

diastereomers was once again evident in the doubling up of several peaks. The first five, far 

downfield signals were assigned to the five ArCO‟s in the molecule. This was followed by the 

quaternary alkene signal at 143.50 ppm which remained unwavering in its position in the 
13

C NMR 

spectrum. The quaternary carbons of the alkyne moiety gave the signals at 87.53 ppm and 

80.70 ppm. As for the remaining signals, these were assigned using the HSQC spectrum. In the IR 

spectrum, the broad stretch at 3489 cm
-1

 verified the formation of the alcohol by way of the 

coupling reaction.  
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Figure 13 

 

Concerned with the yield of the reaction, we surmised that once deprotonated, the alkyne could 

behave as a strong base, thus deprotonating the acidic benzylic protons rather than acting as a 

nucleophile and attacking the carbonyl. The obvious solution to this was to increase the amount of 

nBuLi to two equivalents. In this attempt, we observed by TLC that after an hour at 40 °C the 

product had started to form, yet shortly after this, complete conversion to a new product was 

observed. Following a workup and purification, the product was analysed spectroscopically and 

although it could not be completely characterised, distinct multiplets in the far upfield region of the 

1
H NMR spectrum indicated that the nucleophilic butyl group had added to the molecule, however, 

we could not elucidate exactly where and how this had happened. 

 

Due to the dismal and inconsistent yields in the coupling reaction, we decided to employ various 

other bases in an attempt to couple the two compounds. We tested several methods using a variety 

of bases on a new model system closely resembling the methylated dihydrobenzofuran. This is 

described in the next section. 
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3.2.24 Back to a model system: Synthesis of 4-(3,4-dimethoxyphenoxy)-1-(2,4-

dimethoxyphenyl)but-2-yn-1-ol – 211 

 

A model system – n-Butyllithium and manganese dioxide 

 

Scheme 83 

 

The recovery of starting material in the coupling reactions was not only observed in the synthesis of 

rotenone, but also in our synthesis of munduserone. Thus, we decided to conduct a model study to 

see if we could drive the coupling reaction to completion by oxidising the newly formed alkoxide in 

situ with the addition of manganese dioxide to the reaction mixture. We would first have to 

investigate the feasibility of the coupling reaction on the new model system (Scheme 83). To this 

end, the alkyne 52 (1.05 equiv.) was dissolved in tetrahydrofuran and nBuLi (1.075 equiv.) was 

added at ­78 °C. Following 30 minutes of stirring, the aldehyde 210 (1 equiv.), also dissolved in 

tetrahydrofuran, was added. The reaction afforded the coupled product 211 as a yellow oil in an 

84% yield, despite the fact that the starting materials were recovered. Having verified that the 

coupling reaction worked in the model system, our next step was to add manganese dioxide to 

oxidise the alkoxide in order to drive the reaction in the forward direction. Therefore, once the 

aldehyde (1 equiv.) had been added to the deprotonated alkyne (1.05 equiv.) and stirred for 

30 minutes at 40 °C, manganese dioxide (20 equiv.) was added and the reaction was monitored by 

TLC. We were delighted to see that the alkynone had indeed formed, however, starting material was 

still present even after several hours. In this modified process the alkynone was obtained in a 

disappointing 27% yield. Since we could not improve the yield in this manner, we decided to test a 

number of bases on the model system. 
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A model system – Sodium amide 

 

Scheme 84 

 

Since sodium amide has been used extensively to deprotonate the acidic proton of alkynes, we 

decided to employ this base in our coupling reaction.
92, 99

 Therefore, the alkyne 52 was added to a 

stirred solution of sodium amide in anhydrous diethyl ether under Ar. The mixture was heated to 

reflux gently for 2.5 h following which, the reaction was cooled to 0 °C and diluted with diethyl 

ether. At this point, the aldehyde 210 was dissolved in ether and added by means of a dropping 

funnel (Scheme 84). The reaction was allowed to warm to rt and monitored by TLC. After stirring 

for several days, only trace amounts of two other products were recovered relative to the vast 

amount of starting material. Neither of these was the desired product 211. 

 

A model system – Lithium 2,2,6,6-tetramethylpiperidine 

 

Scheme 85 

 

Since bases such as nBuLi could act as a nucleophile, we decided to attempt the coupling reaction 

using a more hindered lithium base such as LiTMP which was less likely to add to the molecule. 

This was generated in situ by adding nBuLi (1.1 equiv.) to a slight excess of 2,2,6,6-

tetramethylpiperidine (1.3 equiv.) at ­78 °C. The reaction was stirred at this temperature and then 

warmed to 0 °C by means of an ice bath (to ensure complete reaction of nBuLi with TMP) and then 
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cooled back to ­78 °C. The alkyne 52 (1.05 equiv.) was dissolved in tetrahydrofuran and added 

dropwise to the yellow solution which subsequently became clear (Scheme 85). After stirring at this 

temperature for 1 h, the aldehyde 210 (1.0 equiv.) was dissolved in tetrahydrofuran and added 

dropwise by means of a dropping funnel. The pale yellow solution was stirred at ­78 °C for 

30 minutes before warming to rt. The reaction was monitored by TLC and after several hours, 

heated up to 40 °C. When the reaction did not appear to progress any further, a workup and 

purification were performed to afford the product 211 in a mediocre 45% yield. 

 

A model system – Lithium diisopropylamide 

 

Scheme 86 

 

As an alternative to LiTMP, we decided to use the bulky base LDA which would hopefully afford 

the coupled product in a better yield. Although LDA could be generated in situ using diisopropyl 

amine and nBuLi, we had direct access to the commercially available material. To this end, LDA 

(1.6 equiv.) was added to a round bottom flask containing tetrahydrofuran and cooled to ­78 °C 

(Scheme 86). The alkyne 52 (1.05 equiv.) was dissolved in tetrahydrofuran and added dropwise by 

means of a dropping funnel. The resulting yellow solution was stirred at this temperature for 2 h. 

The aldehyde 210 (1.0 equiv.) was dissolved in tetrahydrofuran and added dropwise to the solution, 

resulting in a colour change to clear. After stirring at ­78 °C for another 30 minutes, the reaction 

was warmed to rt. TLC analysis after stirring for 30 minutes indicated that the product 211 was 

present. The reaction was left to proceed for 3 h during which the colour intensified. By TLC 

analysis, the concentrations of starting material and product appeared constant and a workup was 

performed. Following purification by column chromatography, the product 211 was afforded as a 

yellow oil in a pleasing 76% yield. Having finally had success in optimising the coupling reaction 

on the model system using LDA, we now returned to the synthesis of rotenone to apply this same 

methodology. 
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3.2.25 Synthesis of (-)-(R)-4-(3,4-Dimethoxyphenoxy)-1-(4-methoxy-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)but-2-yn-1-ol – 209 

 

Scheme 87 

 

The experimental procedure was analogous to that in the model study. LDA (1.6 equiv.) was added 

to a round bottom flask containing tetrahydrofuran and cooled to ­78 °C (Scheme 87). The alkyne 

52 (1.05 equiv.) was added and the reaction was stirred at this temperature for 2 h. As the aldehyde 

(R)-208 (1.0 equiv.) was added dropwise, the solution changed colour from clear to yellow. The 

reaction was left to warm to rt during which the solution became yellow again. Following 1.5 h of 

stirring, TLC analysis indicated that most of the starting material had converted to the product and 

saturated ammonium chloride was added. A workup, followed by purification finally afforded the 

desired secondary alcohol 209 in a very satisfying 75% yield! As expected, the spectroscopic data 

was identical to that obtained when using nBuLi. 

 

3.2.26 Synthesis of (-)-(R)-4-(3,4-dimethoxyphenoxy)-1-(4-methoxy-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)but-2-yn-1-one – (R)-212 

 

Scheme 88 
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In preparation for the key 6-endo-hydroarylation to follow, we now set about oxidising the 

secondary alcohol 209 using manganese dioxide as the oxidising agent (Scheme 88). In this 

reaction, manganese dioxide was added to a solution of the phenol 209 dissolved in 

dichloromethane. The reaction was left to stir at rt and monitored by TLC. Following 1 h of stirring, 

TLC analysis indicated complete conversion to a product of slightly higher Rf. The oxidising agent 

was removed by filtration and the solvent evaporated in vacuo before purifying by column 

chromatography to furnish the alkynone (R)-212 as an orange oil in a good yield (80%). 

 

Although the alkynone‟s spectroscopic data was very similar to that 

of its precursor, several key differences provided for convincing 

evidence of the successful oxidation. In the 
1
H NMR spectrum, loss 

of the signals due to the CHOH and OH protons attested to the 

conversion of 209 into (R)-212. The remaining signals appeared to 

be unaffected apart from changes in the chemical shift values of the 

aromatic and CH2C≡C protons. Proton H6 was shifted considerably downfield, certainly due to 

increased conjugation with the new carbonyl system. In the 
13

C NMR spectrum, the new downfield 

carbonyl signal at 174.17 ppm and loss of the CHOH signal verified the conversion of the alcohol to 

the alkynone functionality. Presence of the carbonyl was further supported by an absorption peak at 

1635 cm
-1

 in the IR spectrum. 

 

3.2.27 Synthesis of (-)-(R)-(6,7-dimethoxy-2H-chromen-4-yl)(4-methoxy-2-isopropenyl-

2,3-dihydrobenzofuran-5-yl)methanone – (R)-213 

 

Scheme 89 
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In our model study, the 6-endo-hydroarylation reaction facilitated the synthesis of the chromene 

portion of munduserone, although we consistently obtained the product in poor yields and large 

amounts of starting material was recovered. In light of the fact that we were unable to effectively 

optimise this reaction in the model study and decided to accept a poor yielding step, we now needed 

to apply this methodology to rotenone. The procedure involved the addition of PtCl2 to a solution of 

the alkynone (R)-212 in toluene and the reaction was heated to 70 °C (Scheme 89). TLC analysis at 

regular intervals indicated that after 2 h, all the starting material had reacted which was the first 

positive sign that perhaps this reaction had proceeded better than in the model study. Indeed, much 

to our surprise the desired product (R)-213 was obtained in a good yield of 77%! We rationalised 

this pleasant outcome by virtue of the fact that the less bulky methyl protecting group (compared to 

the TBS group employed in the model study) may have allowed for a more efficient reaction. 

 

Several distinct changes in the 
1
H and 

13
C NMR spectra confirmed 

that the chromene moiety had been synthesised, thus bringing us one 

step closer to the target molecule. The 
1
H NMR spectrum indicated 

that the number of aromatic protons had been reduced from five in the 

precursor to four in the product. Several of the aromatic signals were 

also simplified since, in the formation of the chromene moiety of the 

molecule, an aromatic proton was substituted and ortho coupling in this system no longer existed. 

Hence, the two singlets at 7.14 ppm and 6.50 ppm accounted for the protons H8‟ and H5‟. Protons H6 

and H7 remained unchanged as doublets. A new triplet at 6.10 ppm integrating for a single proton 

attested to the presence of the single alkene proton, H3‟. This proton was coupled to the methylene 

protons H2‟, hence the doublet at 4.79 ppm integrating for two protons. In the 
13

C NMR spectrum, 

the far downfield signal at 193.97 ppm indicated that a resonance stabilised carbonyl was present. 

The carbon signals of the alkyne had also disappeared whilst new alkene signals acted as testament 

to the reaction. The HMBC NMR spectrum was used to assign the quaternary carbons. In the IR 

spectrum, a peak at 1650 cm
-1

 certified the presence of a carbonyl within the product (R)-213. 
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3.2.28 Synthesis of (-)-(R)-(6,7-dimethoxy-2H-chromen-4-yl)(4-hydroxy-2-isopropenyl-

2,3-dihydrobenzofuran-5-yl)methanone – (R)-214 

 

Scheme 90 

 

Having constructed the chromene (R)-213, we now needed to carry out a concerning step - the 

selective deprotection of the methyl ether group at the 4-position (Scheme 90). In our original 

synthetic plan, this step would ideally have involved the removal of a silyl protecting group which 

would be accomplished selectively under mild conditions. However, due to the steric problems we 

discussed earlier, we were forced to employ the trickier methyl protecting group. We envisaged that 

selective deprotection of the desired methoxy could be achieved using the Lewis acid, boron 

trichloride, which upon coordinating to the oxygen carbonyl, would exclusively deprotect the 

adjacent methoxy group. Of course we also envisaged that the reaction would have to be monitored 

carefully by TLC so as to avoid prolonged exposure to the reagent which could potentially cleave 

the methoxy groups at positions 6‟ and 7‟. To this end, a solution of the methylated compound (R)-

213 in dichloromethane was immersed in an acetone slurry bath at ­78 °C. Boron trichloride was 

added and the reaction was stirred at this temperature for 1 h before being transferred to an ice bath 

to allow the reaction to warm to 0 °C. After 1 h at this temperature, TLC indicated that all the 

starting material had been converted to a single new product. The reaction was quenched and a 

workup, followed by column chromatography, revealed that we had indeed successfully carried out 

the selective deprotection, thus affording the phenol (R)-214 as a yellow oil in a yield of 82%. 

 

Transformation to the phenol was clearly observed in the 
1
H NMR 

spectrum of the product. The three methoxy singlets had been reduced 

to two methoxy signals, this being a clear indication of the successful 

deprotection. The alcohol was revealed as a new, far downfield singlet 
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at 12.59 ppm, indicating possible hydrogen bonding to the adjacent carbonyl. Accompanying 

changes included a shift in the aromatic signals slightly downfield. The 
13

C NMR spectrum 

contained one less signal as a result of the selective cleavage of a methyl group. The carbonyl signal 

had shifted slightly downfield to 198.54 ppm perhaps due to the hydrogen bonding interaction to 

the phenolic OH. The peaks in the IR spectrum at 3081 cm
-1

 and 1635 cm
-1

 attested to the presence 

of both the alcohol and the carbonyl, respectively. The chemical shift of the carbonyl signal was 

indicative of a hydrogen bonded ketone. 

 

3.2.29 Synthesis of rotenone and its diastereomer – 1a and 1b 

 

Scheme 91 

 

Having finally obtained our penultimate compound (R)-214, we were now in a position to carry out 

the final transformation in the synthesis of rotenone in the form of a base-catalysed intramolecular 

oxo-Michael addition (Scheme 91). This was achieved by adding sodium acetate to a solution of the 

chromene in absolute ethanol and heating the reaction to reflux at 90 °C. Following 30 minutes of 

stirring, TLC analysis indicated that two new products of similar Rf were present in addition to a 

small amount of starting material. The reaction was stirred for a further 2 hours and then worked up 

despite the trace amounts of starting material which persisted. Separation of the two products by 

flash chromatography proved to be problematic as a significant amount of co-eluted material was 

obtained. To resolve this problem, these mixed fractions were separated by preparative layer 

chromatography. NMR spectroscopic analysis indicated that the two products were almost identical 

and only slight differences in the chemical shift values of several signals was observed. As 

expected, we had synthesised the diastereomers 1a and 1b. Upon comparison of their NMR spectra 

to the spectrum of commercially available rotenone, we were able to identify compound 1a as being 

the correct diastereomer as its NMR spectra were analogous to those of the commercially available 

material, obtained from natural sources. Figure 14 and Figure 15 below illustrate the means by 
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which we were able to identify the correct diastereomer 1a from our two products, as being 

analogous to natural rotenone. An overlay of the spectra illustrates that the 
1
H NMR spectrum of 

diastereomer 1a in green matches the NMR spectrum of commercial rotenone (blue). Quite clearly, 

the diastereomer 1b is different from the commercial form of rotenone and these differences have 

been highlighted below (black line). 

 

Figure 14 
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Figure 15 

 

The most obvious change in the 
1
H NMR spectrum in going from 

the precursor (R)-214 to rotenone 1a was the disappearance of the 

phenolic proton in the far downfield region. The aromatic signals as 

well as those of the dihydrobenzofuran moiety remain unchanged 

except for slight alterations in their chemical shift values. Once these 

signals had been assigned to their respective protons, we could begin 

with the assignment of the remaining protons H6, H6a and H12a. 

Being adjacent to a stereogenic centre, protons H6 were non-equivalent and produced individual 

signals as a doublet of doublets and a doublet at 4.62 ppm and 4.19 ppm, respectively. The COSY 

spectrum proved useful in identification of the remaining signals. The proton at 4.19 ppm was 

simply coupled to the other proton H6 hence the doublet. In addition to this, the proton at 4.62 ppm 

was coupled to a second proton at 4.94 ppm which must therefore be proton H6a. The actual 

coupling pattern was not clear as this signal overlapped with that of the alkene proton H7‟. Proton 

H6a was in turn coupled to H12a at 3.85 ppm, hence the doublet. Analysis of the coupling constant 

between protons H6a and H12a showed that we had indeed synthesised cis rotenone. This was 

confirmed upon comparison to the physical data of both cis and trans rotenone available in the 



Chapter 3 - Results and Discussion: Enantioselective synthesis of rotenone 

________________________________ 

 

105 
 

literature in which cis coupling gave a J value of 3.9 Hz, unlike trans coupling which is 12.8 Hz.
100

 

Regarding signals in the 
13

C NMR spectrum, these were assigned using an HSQC and an HMBC 

spectrum. In the IR spectrum, loss of the broad OH stretch present in the precursor further attested 

to the success of the reaction. 

 

The specific rotation, which was similar in magnitude and identical in sign to natural rotenone, 

verified that one enantiomer was in excess of the other. However, the specific rotation is unreliable 

in determining the enantiomeric excess as the literature values vary significantly. Moreover, the 

presence of a trace amount of the opposite diastereomer may have also altered this value. 

 

Nevertheless, subsequent recrystallisation of the matching diastereomer 1a from carbon 

tetrachloride afforded crystals from which an X-ray structure was obtained (Figure 16). The 

structure showed that rotenone had been synthesised and that all three stereogenic centres were 

identical to the naturally occurring form of rotenone. Indeed, the compound belonged to the chiral 

space group P212121 which meant that the carefully constructed stereogenic centre at the 5‟-position 

had been maintained throughout the chemical transformations leading to rotenone. The unit cell 

contained two molecules of rotenone in which slightly different conformations had been adopted. 

However, both molecules had the correct stereochemistry at the 5‟, 6a and 12a-centres. A suitable 

R-factor of 4.79% was obtained for this crystal structure.  

 

Figure 16 
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The results obtained from the X-ray structure were verified by chiral HPLC which was exhaustively 

employed as a means to separate the enantiomers. The results in using the chiralcel OJ column, 

chiralcel OD-H column and the chiral Supelco Chirobiotic T column were in agreement with the 

fact that we had not eroded the enantiomeric excess in the synthesis towards rotenone. 

 

Although the recorded melting point of 1a was slightly lower than the melting points available in 

the literature, it should be mentioned that these values are also somewhat inconsistent across several 

publications. The melting point depression of 1a could be due to one or both of the following 

reasons. Firstly, the presence of a small amount of the diastereomer 1b (indicated by means of 

HPLC work) may have lowered the melting point. The type of capillary used has also been shown 

to affect the melting point, specifically of rotenone. Therefore, the melting point of rotenone should 

not be taken as a measure of the purity of the sample.
101

 

 

Interestingly, after several hours of being in CDCl3, a rerun of the spectrum showed several small 

additional signals. This was clearly visible as the deuterated solution changed colour from clear to 

yellow within one day. Whilst this may be due to the decomposition of rotenone, isomerisation of 

rotenone 1a to isorotenone 215 is also a common feature observed in acidic deuterated solvents. 

The is believed to take place by means of a 1,2-hydrogen shift from C5‟ to C6‟, as illustrated below 

(Scheme 92).
81, 82, 102

 

 

Scheme 92 

 

In summary of the final transformation, we had synthesised two diastereomers of rotenone. These 

were in fact both cis products, as confirmed by the coupling constants between protons H6a and H12a. 

We were able to identify the desired diastereomer by comparison of their NMR spectra to that of 

commercially available rotenone extracted from Nature. The matching diastereomer was 

recrystallised and an X-ray structure confirmed that we had assuredly synthesised the natural form 
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of rotenone and that this had been achieved stereoselectively as the compound belonged to a chiral 

space group. The X-ray structure together with information gathered from chiral HPLC confirmed 

the natural pesticide, rotenone had been synthesised enantioselectively. 
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3.3 Concluding remarks 

3.3.1 Project summary 

In conclusion, we have successfully synthesised the two natural rotenoids, munduserone and 

rotenone. Munduserone 8 was synthesised racemically in six steps starting from commercially 

available 3,4-dimethoxyphenol 176 (Scheme 93). An alkylation reaction, followed by convergence 

with an appropriately substituted benzaldehyde 178, afforded the coupled alcohol 179. Oxidation to 

the alkynone 180, followed by the crucial 6-endo-hydroarylation reaction, yielded the required 

chromene moiety 181. The silyl protecting group was cleaved and a final intramolecular Michael 

addition furnished (±)-munduserone in six synthetic steps and a satisfactory overall yield of 23%. 

No diastereomers (containing the trans-fused ring system) were obtained in this synthesis and in 

fact, an X-ray crystal structure confirmed that munduserone had been synthesised as the cis-fused 

ring system. 

 

Scheme 93: Reagents and conditions: (i) Propargyl bromide, K2CO3, DMF, rt, 18 h, 91%; (ii) a: 52, nBuLi, 

THF, ­78 °C, 30 min, b: 178, 1 h, rt, 81%; (iii) MnO2, CH2Cl2, rt, 18 h, 84%; (iv) PtCl2, toluene, 70 °C, 18 h, 

46%; (v) HF, MeCN, rt, 1.5 h, 87%; (vi) NaOAc, EtOH, 90 °C , 2 h, 92% of racemate. 

 



Chapter 3 - Concluding Remarks: Project summary and future work 

________________________________ 

 

109 
 

Having successfully synthesised munduserone, we then proceeded to the synthesis of rotenone from 

commercially available resorcinol 11 (Scheme 94). The synthesis was based upon two key reactions 

of which the first was a Pd π-allyl mediated cyclisation as a means to the assembly of the 

dihydrobenzofuran moiety. In the latter part of the synthesis, the chromene half of rotenone was 

synthesised by means of a 6-endo-hydroarylation. Hence, in commencing with the 

dihydrobenzofuran synthesis, resorcinol was converted to the MOM ether 183 and following an 

allylation in the ortho position, a protecting group switch was conducted and TBS groups were 

introduced. The silylated compound 186 was oxidised by means of an ozonolysis reaction to the 

aldehyde 188, which was then subjected to a Horner-Wadsworth-Emmons reaction, affording the 

(E)- alkene 193 exclusively. The resulting ester 193 was reduced to an alcohol 195 and then 

converted to the carbonate 196. Finally, a deprotection afforded the diol 127 which was subjected to 

a Pd π-allyl mediated cyclisation in the presence of a chiral Trost ligand, thus affording the 

dihydrobenzofuran 78 in an excellent enantiomeric excess. The dihydrobenzofuran was 

subsequently formylated, protected as a methoxy and then coupled to the propargyl ether to afford 

the secondary alcohol 209. Following an oxidation reaction, the key 6-endo-hydroarylation was 

conducted to furnish the chromene 213. Finally, a deprotection followed by an internal Michael 

addition afforded rotenone 1a and its diastereomer 1b, separable by PLC. Our desired diastereomer 

was identified upon comparison of the NMR spectra of each diastereomer to that of commercially 

available rotenone. An accompanying X-ray crystal structure verified that the desired diastereomer 

had been synthesised, which also belonged to a chiral space group, thereby confirming that we had 

indeed synthesised rotenone stereoselectively. This result was verified by chiral HPLC work. This 

project therefore constitutes the first total, stereoselective synthesis of the natural pesticide, 

rotenone in 17 steps and an overall yield of 0.02%! 
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Scheme 94: Reagents and conditions: (i) NaH, MOMCl, DMF, 0 °C to rt, 18 h, 57%; (ii) nBuLi, allyl 

bromide, THF, 0 °C to rt, 18 h, 84%; (iii) HCl, THF/MeOH, reflux, 2 days, quant.; (iv) TBSCl, imidazole, 
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MeCN, RT, 18 h, 86%; (v) O3, Zn/AcOH, CH2Cl2, ­78 °C, 73%; (vi) LiCl, ethyl-2-

(diethoxyphosphoryl)propanoate, nBuLi, THF, 0 °C, 18 h, 90%; (vii) LiAlH4, THF, 0 °C, 3 h, 87%; (viii) 

Methyl chloroformate, pyridine, CH2Cl2, 0 °C to rt, 35 min, 91%;, (ix) TBAF, THF, O °C, 5 min, 86%; (x) 

1.5 mol% Pd2(dba)3CHCl3, 8 mol% R,R’-Trost ligand, AcOH, CH2Cl2, 18 h, 23°C, 85%, 94% ee; (xi) p-

Formaldehyde, MgCl2, NEt3, THF, reflux, 2 h, 75%; (xii) K2CO3, dimethyl sulfate, acetone, reflux, 1 h, 98%; 

(xiii) a: LDA, 52, THF, ­78 °C, 2 h, b: 208, rt, 1.5 h, 75%; (xiv) MnO2, CHCl2, rt, 1 h, 80%; (xv) PtCl2 

toluene, 70 °C, 2 h, 77%; (xvi) BCl3, CHCl2, ­78 °C to 0 °C, 2 h, 82%; (xvii) NaOAc, EtOH, 90 °C, 2.5 h, 

overall 89% of diastereomers. 

 

3.3.2 Interesting observations noted 

In the synthesis of both rotenoids, several interesting observations were made which warrant further 

discussion. The first of these pertains to the coupling reaction of the alkyne to the appropriate 

benzaldehyde. In the synthesis of munduserone, this reaction proceeded smoothly using nBuLi as 

the coupling reagent and the silylated benzaldehyde 178, thus affording the secondary alcohol in a 

good yield (Scheme 93). In contrast to this, the analogous reaction en route to rotenone was 

unsuccessful when using the TBS-protected dihydrobenzofuran (R)-204 (Figure 17). This was 

attributed to the fact that the dihydrobenzofuran was more bulky than the analogous aldehyde 178 

synthesis of munduserone, thereby pushing the TBS group toward the aldehyde so that the reactive 

site was crowded and the coupling reaction was inhibited. In fact, in switching to the less bulky 

methyl protecting groups, the dihydrobenzofuran (R)-208 could be coupled to the alkyne, although 

in a poor yield when using nBuLi. The yield of this reaction was further improved by using LDA as 

a base. 

 

Figure 17 

 

Another reaction that appeared to be limited by steric bulk was the key 6-endo-hydroarylation. In 

the synthesis of munduserone, the 6-endo-hydroarylation was low yielding. Fortunately, the 

reaction proceeded smoothly in the route towards rotenone in which the significantly less bulky 

methyl protecting group was employed. Since this reaction had been attempted using a variety of 
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catalyst and solvent systems, we were confident that the difference in results was a matter of sterics. 

In utilising TBS groups in the synthesis of munduserone, the alkyne was perhaps sterically 

congested, thus obstructing initial coordination of the platinum catalyst to the alkyne. However, in 

using a less bulky protecting group, the alkyne was accessible for coordination to the metal catalyst, 

thereby rendering it susceptible to attack by the nucleophile which, in this case, was the tethered 

aromatic system. 

 

3.3.3 Future work to utilise an asymmetric Michael addition 

In the final intramolecular Michael addition, two stereogenic centres at the 6a and 12a-positions 

were created. In the synthesis of munduserone, a racemic mixture of enantiomers was afforded, 

although both were the cis isomers, i.e. the (S6a, S12a) and (R6a, R12a) enantiomers were present. 

Since in the synthesis of rotenone a stereogenic centre was already present at the 5‟-carbon centre, 

diastereomers 1a - (S6a, S12a, R5’) and 1b - (R6a, R12a, R5’) were synthesised which fortunately could 

be separated by chromatographic methods. However, several examples exist in the literature in 

which Michael additions have been conducted stereoselectively. Therefore, had these been applied 

to the synthesis of rotenone, a single diastereomer may have been assembled. Although 

stereoselective intramolecular Michael additions that afford only one cis isomer at a ring junction 

are numbered, a brief description of a selected literature example is discussed below. 

 

Intramolecular Michael additions have been utilised extensively in the synthesis of polycyclic 

compounds, many of which are chiral natural products. Therefore, there is pressing need for 

asymmetric reactions that will favour a specific enantiomer at the newly formed ring junction. In a 

selected example, Ishikawa and co-workers developed a quinine-catalysed asymmetric Michael 

addition which satisfied these requirements (Scheme 95).
103

 The synthesis commenced with 1,3,5-

trimethoxybenzene 215 which was converted over a number of steps to the 5-hydroxycoumarin 

derivative 216. In using quinine 217 and chlorobenzene as the solvent, the Michael addition 

afforded the chromanone 218 enriched with a single cis enantiomer, attained in an enantiomeric 

excess of 98%. In fact, the stereochemistry of the major enantiomer at the newly formed ring 

junction mimics that at the 6a and 12a-positions in rotenone (both hydrogens pointing downwards), 

thus making this a feasible approach. Therefore, in an effort to circumvent the separation of 

diastereomers, future work in our laboratories could entail the application of the above methodology 

to the synthesis of rotenone as this may afford a single diastereomer. 
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Scheme 95: Reagents and conditions: (i) 10 mol% quinine, PhCl, 14 °C, 21 h, 100%, 98% ee of the cis 

isomer. 
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CHAPTER 4 – EXPERIMENTAL PROCEDURES 

4.1 General Procedures 

4.1.1 Purification of solvents and reagents 

Solvents used for reactions were dried over an appropriate drying agent and then distilled under 

nitrogen gas. Tetrahydrofuran was distilled over sodium wire using benzophenone as an indicator. 

Toluene was distilled from sodium metal lumps. Dichloromethane and acetonitrile were distilled 

from calcium hydride. Reagents were obtained from commercial sources and used without 

purification or purified by standard procedures outlined by Perrin et al.
104

 The solvents used for 

chromatographic purposes were distilled prior to use by means of conventional distillation 

procedures. 

 

4.1.2 Chromatography 

Purification of compounds by column chromatography was achieved using Macherey-Nagel silica 

gel 60 (particle size 0.063 mm to 0.200 mm) as the adsorbent. Silica gel of particle size 0.040 mm 

to 0.070 mm was occasionally utilised for flash chromatography. Mixtures of ethyl acetate and 

hexane were used as the mobile phase. The reported Rf values are for analytical thin layer 

chromatography (TLC) performed using aluminium-backed Macherey-Nagel Alugram Sil G/UV254 

plates pre-coated 0.25 mm silica gel 60. Adsorbed compounds were either viewed under UV light 

or by dipping into KMnO4 or 2,4-Dinitrophenyl hydrazine staining solutions. 

 

4.1.3 Spectroscopic and physical data 

1
H and 

13
C NMR spectra were recorded on a Bruker ADVANCE 300 spectrophotometer at 

300.13 MHz and 75.47 MHz, respectively. Occasionally, a Bruker DRX 400 spectrometer was 

employed for 
1
H (400.13 MHz) and 

13
C (100.63 MHz) spectra. The final compound was recorded 

on a Bruker Ultrashield 500 Plus spectrophotometer at 500.13 MHz for the 
1
H NMR spectrum and 

125.76 MHz for the 
13

C NMR spectrum. Spectra were recorded in deuterated chloroform (CDCl3) 

and are reported in parts per million relative to tetramethylsilane in 
1
H NMR spectra and the central 

deuterated chloroform signal in 
13

C NMR spectra. J-values are given in Hz. HSQC spectra were 

used to assign protonated carbon signals. In most instances quaternary carbons were simply listed, 

especially for more complicated molecules. On occasion, these were assigned using HMBC spectra. 
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Infra-red spectra were recorded on a Bruker Tensor-27 Fourier Transform spectrometer. 

Measurements were made by loading the sample directly onto a diamond cell. The signals are 

reported on the wavenumber scale (ν/cm
-1

). 

Specific rotations were measured using a Jasco DIP-370 Digital Polarimeter at the D-line of sodium 

(589 nm). 

Melting points were measured using the X-4 Melting-Point Apparatus with microscope and are 

uncorrected. 

High resolution mass spectra were recorded in either the EI
+ 

or EI
- 
mode on a Waters Synapt G2 

mass spectrometer. 

Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with graphite 

monochromated Mo Kα radiation (50 Kv, 30 mA). APEX 2 data collection software was used and 

the collection method involved ω-scans of width 0.5° and 512 x 512 bit data frames. Data reduction 

was carried out using the program SAINT+ version 6.02 and face indexed absorption corrections 

were made using XPREP. Crystal structures were solved by direct methods using SHELXS-97. Non-

hydrogen atoms were first refined isotropically and then anisotropically by full-matrix least-squares 

calculations based on F
2
 using SHELXL-97. Hydrogen atoms were located in the difference map 

and then positioned geometrically and allowed to ride on their respective parent atoms. Diagrams 

and publication material were generated using SHELXTL, PLATON
105

 and ORTEP-3.
106

 

 

4.1.4 High pressure liquid chromatography 

High pressure liquid chromatography (HPLC) was performed on an UltiMate 3000 HPLC using a 

Chiralcel OJ 10μ 250 x 4.6 mm chiral column at flow rates of 1.0 ml.min
-1

. A mixture of isopropyl 

alcohol and hexane was used as the mobile phase. The eluted compounds were detected using an 

UltiMate 3000 photodiode array detector at 215 nm. All calculations were based on peak area. 

Occasionally, the Chiralcel OD-H 5μ 250 x 4.6 mm chiral column was used at a flow rate of 

1.0 ml.min
-1

. 

 

4.1.5 Other general procedures 

All reactions were carried out under Ar (g) and reaction vessels were dried prior to use, either in the 

oven or flame-dried whilst under vacuum. "In vacuo" refers to the removal of solvent using a rotary 
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evaporator. Following purification of products, residual solvent was removed using a high vacuum 

pump (ca. 0.1 mm Hg) at ambient temperature. 

 

4.2 Experimental work pertaining to the synthesis of munduserone 

4.2.1 3,4-Dimethoxyphenol – 176 

Into a two neck round bottom flask under Ar was placed 3,4-dimethoxybenzaldehyde 174 (4.00 g, 

24.1 mmol) followed by dry dichloromethane (80 ml). m-Chloroperbenzoic acid (5.71 g with 20% 

water, 26.5 mmol) was added and the reaction was left to proceed at rt for 15 h. The reaction 

mixture was quenched with dimethyl sulfide (ca. 5 ml) and the solvent evaporated in vacuo. The 

crude material was transferred to a separating funnel and diluted with ethyl acetate (50 ml) and 

water was added (50 ml). After mixing, the phases were separated and the organic fraction was 

sequentially extracted with water (2 × 50 ml) and then brine (50 ml). The solvent was removed in 

vacuo and the residue dissolved in a methanolic solution of KOH (5% w/v, 121 ml, 108 mmol) and 

then heated to reflux for 18 h. The reaction was allowed to cool to rt, neutralised with ice-cooled 

aqueous HCl (20 ml), transferred to a separating funnel and ethyl acetate (100 ml) and water 

(50 ml) were added. The phases were separated and the aqueous phase was extracted with ethyl 

acetate (3 × 100 ml). The combined organic fractions were washed with brine (150 ml), dried over 

anhydrous magnesium sulfate, filtered and the solvent removed in vacuo. After purification by 

column chromatography (30% EtOAc/Hexane), the phenol 176 was obtained as a white solid 

(3.12 g, 84%). 

 

Rf = 0.48 (50% EtOAc/Hexane). Mp. = 79-81 °C, (Sigma-Aldrich Lit. 79-82 °C). 

δH /ppm: 6.73 (1H, d, J=8.6 Hz, H5‟), 6.48 (1H, d, J=2.8 Hz, H2‟), 6.36 (1H, dd, 

J=8.6 Hz and 2.8 Hz, H6‟), 5.70 (1H, br s, OH), 3.81 (3H, s, OCH3), 3.79 (3H, s, 

OCH3). δC /ppm: 150.22 (ArCO), 149.78 (ArCO), 142.94 (ArCO), 112.48 (C5‟), 

105.87 (C6‟), 100.60 (C2‟), 56.53 (OCH3), 55.70 (OCH3). νmax /cm
-1

: 3419 (OH str), 2936 (CH str), 

1608, 1506, 1289, 1126, 1022. 

 

4.2.2 1,2-Dimethoxy-4-(prop-2-ynyloxy)benzene – 52 

Propargyl bromide (80 wt % in toluene, 0.17 ml, 1.6 mmol) and potassium carbonate (0.22 g, 

1.6 mmol) were added to a solution of 3,4-dimethoxyphenol 176 (0.20 g, 1.3 mmol) in freshly 
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distilled dimethylformamide (6.5 ml). The reaction was left to stir at rt under Ar for 18 h and 

saturated aqueous ammonium chloride (50 ml) and ethyl acetate (50 ml) were then added. The 

reaction mixture was transferred to a separating funnel and after mixing and separating the phases, 

the organic phase was extracted with water (2 × 50 ml), brine (50 ml) and dried over anhydrous 

magnesium sulfate. Following filtration and evaporation of the volatiles in vacuo, the crude oil was 

purified by column chromatography (20% EtOAc/Hexane) to afford the desired alkylated 

compound 52 as a pale yellow solid (0.23 g, 91%). 

 

Rf = 0.71 (50% EtOAc/Hexane). Mp. = 51-52 °C, (Lit.
38

 48-48.5 °C). δH /ppm: 

6.79 (1H, d, J=8.7 Hz, H5‟), 6.59 (1H, d, J=2.8 Hz, H2‟), 6.49 (1H, dd, J=8.7 Hz 

and 2.8 Hz, H6‟), 4.65 (2H, d, J=2.4 Hz, CH2C≡CH), 3.86 (3H, s, OCH3), 3.84 (3H, 

s, OCH3), 2.52 (1H, t, J=2.4 Hz, CH2C≡CH). δC /ppm: 152.12 (ArCO), 149.85 

(ArCO), 144.16 (ArCO), 111.56 (C5'), 104.40 (C6‟), 101.40 (C2‟), 78.80 (CH2C≡CH), 75.38 

(CH2C≡CH), 56.46 (OCH3), 56.36 (OCH3), 55.85 (CH2C≡CH).
48

 νmax /cm
-1

: 3283 (≡CH str), 2937 

(CH str), 1598, 1508, 1451, 1225, 1193, 1023. HRMS (ESI, +ve) C11H13O3
+
 [MH

+
] requires m/z 

193.0866, found 193.0864. 

Note: the numbering scheme in 176 was adopted so as to allow for easy reading.  

 

4.2.3 2-(Tert-butyldimethylsilyloxy)-4-methoxybenzaldehyde – 178 

Into a dry two neck round bottom flask under Ar was placed 2-hydroxy-4-methoxybenzaldehyde 

177 (0.50 g, 3.3 mmol) followed by dry acetonitrile (50 ml). Imidazole (0.29 g, 4.3 mmol) and then 

TBSCl (0.64 g, 4.2 mmol) were added in a single portion and after 15 min the imidazole 

hydrochloride salt appeared. Following 18 h of stirring, analysis by TLC indicated that all of the 

starting material had reacted. The acetonitrile was evaporated and the crude mixture was taken up in 

ethyl acetate (50 ml) and water (50 ml), thus facilitating the dissolution of the imidazole 

hydrochloride salt into the aqueous phase upon mixing. The phases were separated and the aqueous 

phase was extracted with ethyl acetate (3 × 50 ml). The combined organic fractions were washed 

with brine (150 ml), separated and dried over anhydrous magnesium sulfate. After filtration and 

evaporation of the solvent in vacuo, the crude product was purified by column chromatography 

(10% EtOAc/Hexane), yielding the silyl-protected product 178 as an oil (5.34 g, 86%). 
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Rf = 0.66 (20% EtOAc/Hexane). δH /ppm: 10.30 (1H, s, CHO), 7.79 (1H, d, 

J=8.8 Hz, H6), 6.59 (1H, dd, J=8.8 Hz and 1.7 Hz, H5), 6.34 (1H, d, J=2.3 Hz, 

H3), 3.84 (3H, s, OCH3), 1.02 (9H, s, C(CH3)3), 0.29 (6H, s, Si(CH3)2). δC /ppm: 

188.61 (CHO), 165.70 (ArCO), 160.68 (ArCO), 130.05 (C6), 121.36 (C1), 107.78 

(C5), 105.18 (C3), 55.48 (OCH3), 25.62 (C(CH3)3), 18.31 (C(CH3)3), ­4.35 (Si(CH3)2). νmax /cm
-1

: 

2934 (CH str), 1680 (C=O str), 1600, 1292, 1167. HRMS (ESI, +ve) C14H23O3Si
+
 [MH

+
] requires 

m/z 267.1418, found 267.1417. 

 

4.2.4 1-(2-(Tert-butyldimethylsilyloxy)-4-methoxyphenyl)-4-(3,4-

dimethoxyphenoxy)but-2-yn-1-ol – 179 

Into a two neck round bottom flask filled with Ar was placed the alkyne 52 (1.53 g, 7.96 mmol) 

followed by dry tetrahydrofuran (75 ml). The solution was cooled to ­78 °C using a frozen acetone 

slurry bath and nBuLi (1.4 M, 5.8 ml, 8.1 mmol) was added dropwise. The reaction was stirred for 

30 min and then the aldehyde 178 (2.00 g, 7.51 mmol), also dissolved in tetrahydrofuran (50 ml) 

and under Ar, was added via canula. An accompanying colour change was observed as the reaction 

went from a milky white to clear upon the addition of the aldehyde. The reaction was allowed to 

warm to rt and stirred for 1 h during which the solution turned yellow. Once quenched with NH4Cl 

(50 ml), the reaction mixture was transferred to a separating funnel and diluted further with ethyl 

acetate (100 ml). After mixing, the phases were separated and the aqueous phase was extracted with 

ethyl acetate (3 × 50 ml). The combined organic fractions were washed with brine (150 ml), dried 

over anhydrous magnesium sulfate and the solvent evaporated in vacuo. Purification was achieved 

by column chromatography (20% EtOAc/Hexane), furnishing the coupled product 179 as a yellow 

oil (2.79 g, 81%). 

 

Rf = 0.33 (30% EtOAc/Hexane). δH /ppm: 7.39 (1H, d, J=8.5 Hz, 

H6), 6.77 (1H, d, J=8.7 Hz, H5‟), 6.59 (1H, d, J=2.8 Hz, H2‟), 6.53 – 

6.44 (2H, overlapping signals, H5 and H6‟), 6.38 (1H, d, J=2.4 Hz, 

H3), 5.70 (1H, d, J=5.5 Hz, CHOH), 4.72 (2H, s, CH2C≡C), 3.84 (3H, 

s, OCH3), 3.82 (3H, s, OCH3), 3.77 (3H, s, OCH3), 2.58 (1H, d, 

J=5.6 Hz, OH), 1.01 (9H, s, C(CH3)3)), 0.27 (6H, s, Si(CH3)2). δC /ppm: 160.60 (ArCO), 153.92 

(ArCO), 152.25 (ArCO), 149.75 (ArCO), 144.01 (ArCO), 128.81 (C6), 123.38 (C1), 111.57 (C5‟), 

105.82 (ArCH ), 105.31 (ArCH), 104.73 (C5), 101.43 (C2‟), 87.02 (C≡C), 80.95 (C≡C), 60.29 
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(CHOH), 56.94 (CH2C≡C), 56.34 (OCH3), 55.78 (OCH3), 55.29 (OCH3), 25.71 (C(CH3)3), 18.16 

(C(CH3)3), ­4.18 (Si(CH3)2). νmax /cm
-1

: 3490 (OH str), 2932 (CH str), 1608, 1506, 1195, 1160, 

1025. HRMS (ESI, +ve) C25H34O6SiNa
+
 [MNa

+
] requires m/z 481.2022, found 481.2023.  

 

4.2.5 1-(2-(Tert-butyldimethylsilyloxy)-4-methoxyphenyl)-4-(3,4-

dimethoxyphenoxy)but-2-yn-1-one – 180 

To a solution of the alcohol 179 (0.26 g, 0.57 mmol) in dry dichloromethane (30 ml) stirring at rt 

and under Ar was added manganese dioxide (0.98 g, 11 mmol). After 18 h TLC analysis indicated 

that although the product had formed, a significant amount of starting material remained. The 

reaction was left to stir for an additional three days until only a trace amount of starting material 

remained. The suspension was filtered through a bed of celite and the solvent removed in vacuo. 

The crude material was purified by column chromatography (20% EtOAc/Hexane), yielding the 

alkynone 180 as a yellow oil (0.22 g, 84%). 

 

Rf = 0.40 (30% EtOAc/Hexane). δH /ppm: 7.85 (1H, d, J=8.8 Hz, 

H6), 6.80 (1H, d, J=8.7 Hz, H5‟), 6.62 (1H, d, J=2.8 Hz, H2‟), 6.57 – 

6.45 (2H, overlapping signals, H5 and H6‟), 6.35 (1H, d, J=2.3 Hz, 

H3), 4.86 (2H, s, CH2C≡C), 3.86 (3H, s, OCH3), 3.85 (3H, s, OCH3), 

3.82 (3H, s, OCH3), 1.02 (9H, s, C(CH3)3)), 0.24 (6H, s, Si(CH3)2). 

δC /ppm: 174.54 (C=O), 164.84 (ArCO), 158.27 (ArCO), 151.94 (ArCO), 149.80 (ArCO), 144.32 

(ArCO), 135.60 (C6), 121.80 (C1), 111.51 (C5‟), 106.88 (ArCH), 106.83 (C3), 104.90 (ArCH), 

101.62 (C2‟), 86.20 (C≡C), 86.12 (C≡C), 56.86 (CH2C≡C), 56.29 (OCH3), 55.82 (OCH3), 55.43 

(OCH3), 25.75 (C(CH3)3), 18.45 (C(CH3)3), ­4.29 (Si(CH3)2). νmax /cm
-1

: 2931 (CH str), 1737 (C=O 

str), 1598, 1509, 1228. HRMS (ESI, +ve) C25H33O6Si
+
 [MH

+
] requires m/z 457.2048, found 

457.2046. 

 

4.2.6 (2-(Tert-butyldimethylsilyloxy)-4-methoxyphenyl)(6,7-dimethoxy-2H-chromen-

4-yl)methanone – 181 

Into a 2 neck round bottom flask fitted with a condenser and under Ar was placed the alkynone 180 

(0.50 g, 1.1 mmol) followed by dry toluene (11 ml). The reaction was degassed by bubbling Ar 

directly into the solution for 5 min and PtCl2 (0.034 g, 0.13 mmol, 12 mol%) was then added. The 
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reaction was heated to 70 °C and stirred for 18 h. The solvent was removed in vacuo and the crude 

material adsorbed onto silica gel for purification by flash chromatography (10% EtOAc/Hexane). 

This afforded the desired chromene 181 as a yellow oil (0.23 g, 46%). A notable amount of starting 

material was also recovered. 

 

Rf = 0.53 (30% EtOAc/Hexane). δH /ppm: 7.44 (1H, d, J=8.6 Hz, H6), 

7.35 (1H, s, H8‟), 6.57 (1H, dd, J=8.6 Hz and 2.3 Hz, H5), 6.47 (1H, s, 

H5‟), 6.37 (1 H, d, J=2.2 Hz, H3), 6.11 (1H, t, J=4.1 Hz, H3‟), 4.78 (2H, 

d, J=4.1 Hz, H2‟), 3.86 (3H, s, OCH3), 3.82 (3H, s, OCH3), 3.79 (3H, s, 

OCH3), 0.87 (9H, s, C(CH3)3), 0.15 (6H, s, Si(CH3)2). δC /ppm: 194.56 

(C=O), 163.14, 155.84, 149.89, 148.72, 143.35, 135.66, 132.40, 128.26, 124.29, 111.96, 109.21 

(C8‟), 106.56 (C5), 106.11 (C3), 100.39 (C5‟), 64.85 (C2‟), 56.21 (OCH3), 55.87 (OCH3), 55.41 

(OCH3), 25.59 (C(CH3)3), 18.20 (C(CH3)3), -4.30 (Si(CH3)2). νmax /cm
-1

: 2931 (CH str), 1655 (C=O 

str), 1600, 1505, 1253, 1195, 1156. HRMS (ESI, +ve) C25H33O6Si
+
 [MH

+
] requires m/z 457.2048, 

found 457.2025. 

 

4.2.7 (6,7-Dimethoxy-2H-chromen-4-yl)(2-hydroxy-4-methoxyphenyl)methanone – 

182 

The silylated compound 181 (0.43 g, 0.94 mmol) was placed in a two neck round bottom flask 

containing dry acetonitrile (100 ml). HF (48%, 0.068 μl, 0.038 g, 1.9 mmol) was added and the 

solution was left to stir under Ar at rt. After 30 min, TLC analysis indicated that the deprotected 

alcohol had not formed and a second addition of HF (48%, 0.068 μl, 0.038 g, 1.9 mmol) was made. 

After 1.5 h of stirring, TLC showed that the reaction had gone to completion. Water (30 ml) was 

added and the reaction mixture was transferred to a separating funnel. The aqueous layer was 

extracted with ethyl acetate (3 × 50 ml) and the combined organic fractions were dried over 

anhydrous magnesium sulfate, filtered and the solvent removed in vacuo. The crude material was 

purified by column chromatography (30% EtOAc/Hexane), revealing the deprotected phenol 182 as 

a yellow solid (0.28 g, 87%). 

 

Rf = 0.44 (30% EtOAc/Hexane). Mp. = 119-121 °C. δH /ppm: 12.60 

(1H, s, OH), 7.61 (1H, d, J=9.0 Hz, H6), 6.70 (1H, s, H8‟), 6.51 (1H, s, 
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H5‟), 6.48 (1H, d, J=2.5 Hz, H3), 6.38 (1H, dd, J=9.0 Hz and 2.5 Hz, H5), 5.88 (1H, t, J=4.0 Hz, 

H3‟), 4.85 (2H, d, J=4.0 Hz, H2‟), 3.86 (3H, s, OCH3), 3.85 (3H, s, OCH3), 3.73 (3H, s, OCH3). 

δC /ppm: 198.39 (C=O), 166.83, 166.41, 150.57, 148.58, 143.74, 134.73 (C6), 134.34, 122.02 (C3‟), 

113.23, 111.92, 108.45 (C8‟), 107.61 (C5), 100.98, 100.81 (C5‟), 64.60 (C2‟), 56.49 (OCH3), 55.95 

(OCH3), 55.65 (OCH3). νmax /cm
-1

: 2959 (CH str), 1615 (C=O str), 1582, 1502, 1243, 1200, 1182, 

1159. HRMS (ESI, +ve) C19H19O6
+
 [MH

+
] requires m/z 343.1183, found 343.1182. 

 

4.2.8 (±)-Munduserone – 8 

Into a two neck round bottom flask fitted with a condenser and under Ar was placed the alcohol 182 

(0.19 g, 0.56 mmol) followed by absolute ethanol (100 ml). Sodium acetate (0.20 g, 2.5 mmol) was 

added and the reaction was set to reflux at 90 °C. The reaction was monitored regularly by TLC and 

after 2 h the reaction had gone to completion. Water (50 ml) and ethyl acetate (100 ml) were added 

to the cooled reaction mixture which was then transferred to a separating funnel. After mixing, the 

phases were separated and the aqueous phase was extracted with ethyl acetate (3 × 50 ml). The 

combined organic fractions were washed with brine (150 ml) and dried over magnesium sulfate. 

Filtration and evaporation of the solvent in vacuo was followed by purification by column 

chromatography to furnish the final compound munduserone 8 as a racemic mixture (0.17 g, 92%). 

Recrystallisation from diethyl ether afforded off-white needle-like crystals (0.099g, 52%) suitable 

for X-ray analysis. 

Note: A conventional rotenoid numbering scheme was adopted.
29, 107 

 

Rf = 0.60 (50% EtOAc/Hexane). Mp. = 168-170 °C. δH /ppm: 7.87 

(1H, d, J=8.8 Hz, H11), 6.76 (1H, s, H4), 6.57 (1H, dd, J=8.8 Hz and 

2.4 Hz, H10), 6.46 (1H, s, H1), 6.42 (1H, d, J=2.3 Hz, H8), 4.94 (1H, t, 

J=3.1 Hz, H6a), 4.62 (1H, dd, J=12.0 Hz, 3.1 Hz, H6), 4.18 (1H, d, 

J=12.0 Hz, H6), 3.84 (1H, d, J=4.0 Hz, H12a), 3.80 (3H, s, OCH3), 3.79 

(3H, s, OCH3), 3.76 (3H, s, OCH3). δC /ppm: 189.19 (C=O), 166.48, 162.75, 149.50, 147.37, 

143.90, 129.31 (C11), 112.74, 110.65 (C10), 110.34 (C4), 104.70, 100.98 (C1), 100.67 (C8), 72.36 

(C6a), 66.27 (C6), 56.28 (OCH3), 55.82 (OCH3), 55.60 (OCH3), 44.54 (C12a). νmax /cm
-1

: 2938 (CH 

str), 1673 (C=O str), 1613, 1514, 1445, 1347, 1150, 1125. HRMS (ESI, +ve) C19H19O6
+
 [MH

+
] 

requires m/z 343.1183, found 343.1182. X-ray data: C19H18O6; M=342.33; triclinic; 0.71073 Å; 

a=4.6143(2) Å, b=12.4005(6) Å, c=13.8039(7) Å, U=779.42(6) Å
3
; 296(2) K, space group, P-1, 
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Z=2;. μ(Mo-Κα)=0.109 mm
-1

 12559 reflections measured, 3875 unique [R(int)=0.0608] which were 

used in all calculations. Final R indices [I>2σ(I)] R1=0.0445, Wr(F
2
)=0.0899. 

 

4.3 Experimental work pertaining to the synthesis of rotenone 

4.3.1 1,3-Bis(methoxymethoxy)benzene – 183 

Into a two neck round bottom flask containing Ar was placed distilled dimethylformamide (100 ml) 

followed by commercially available resorcinol 11 (20.0 g, 0.182 mol). The reaction flask was 

immersed in an ice bath and sodium hydride (60% dispersion in oil, 16.8 g, 0.420 mol) was slowly 

added resulting in effervescence of the solution. This was followed by the addition of 

methoxymethyl chloride (35.6 g, 33.0 ml, 0.443 mol). The ice bath was allowed to melt and the 

reaction stirred at rt for 18 h. Ammonia solution was added and the reaction mixture was decanted 

into a separating funnel. Ethyl acetate (200 ml) and 0.1M NaOH (200 ml) were added and after 

mixing, the phases were separated. The organic layer was extracted with NaOH (200 ml) and brine 

(200 ml) and then dried over anhydrous magnesium sulfate. Following filtration and evaporation of 

the solvent in vacuo, the crude material was purified by Kugelrohr distillation. The bis-

methoxymethyl ether 183 was afforded as a clear oil (20.6 g, 57%). 

 

Rf = 0.34 (10% EtOAc/Hexane). δH /ppm: 7.18 (1H, t, J=8.1 Hz, H5), 

6.74 (1H, t, J=2.1 Hz, H2), 6.70 (2H, dd, J=8.2 Hz and 2.2 Hz, H4 and 

H6), 5.16 (4H, s, 2 × OCH2), 3.47 (6H, s, 2 × OCH3). δC /ppm: 158.32 

(C1 and C3), 129.89 (C5), 109.58 (C4 and C6), 104.96 (C2), 94.42 (2 × OCH2), 55.96 (2 × OCH3). 

νmax /cm
-1

: 2901 (CH str), 1591, 1488, 1137, 1073. HRMS (ESI, +ve) C10H15O4
+
 [MH

+
] requires 

m/z 199.0972, found 199.0972. 

 

4.3.2 2-Allyl-1,3-bis(methoxymethoxy)benzene – 184 

A solution of 1,3-bis(methoxymethoxy)benzene 183 (3.20 g, 16.1 mmol) in dry tetrahydrofuran 

(180 ml) was placed in a two neck round bottom flask fitted with a dropping funnel and under Ar. 

The solution was cooled to 0 °C and the dropping funnel was charged with nBuLi (1.40 M in 

hexane, 13.6 ml, 19.0 mmol) which was added dropwise over a 5 minute period, thus forming a 

yellow solution. The reaction was stirred for a further 1.5 h at 0 °C during which the colour 

intensified and eventually turned orange. Allyl bromide (3.91 g, 2.80 ml 32.4 mmol) in 
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tetrahydrofuran (10 ml) was added dropwise to the reaction mixture resulting in a colour change 

from orange to clear. The temperature was maintained at 0 °C for an additional hour and the 

reaction was then allowed to warm to room temperature and stirred for 18 h. The orange reaction 

mixture was transferred to a separating funnel and water (100 ml) was added and the reaction was 

diluted with ethyl acetate (100 ml). After mixing, the organic phase was separated and the aqueous 

phase was extracted with ethyl acetate (3 × 100 ml). The combined organic fractions were washed 

with brine (200 ml) and dried over anhydrous magnesium sulfate. After filtration and evaporation of 

the solvent in vacuo, the crude oil was purified by flash chromatography (2% EtOAc/Hexane) to 

afford the desired allylated compound 184 as a clear oil (3.22 g, 84%). 

 

Rf = 0.40 (10% EtOAc/Hexane). δH /ppm: 7.10 (1H, t, J=8.3 Hz, H5), 

6.77 (2H, d, J=8.3 Hz, H4 and H6), 6.03-5.90 (1H, m, CH2CH=CH2), 

5.18 (4H, s, 2 × OCH2), 5.01-4.92 (2H, overlapping signals, 

CH2CH=CH2), 3.46 (8H, overlapping s and d, 2 × OCH3 and 

CH2CH=CH2). δC /ppm: 155.84 (C1 and C3), 136.75 (CH2CH=CH2), 127.17 (C5), 118.39 (C2), 

114.12 (CH2CH=CH2), 107.96 (C4 and C6), 94.48 (2 × OCH2), 55.98 (2 × OCH3), 27.63 

(CH2CH=CH2). νmax /cm
-1

: 2900 (CH str), 1594, 1468, 1152, 1031. HRMS (ESI, +ve) C13H19O4
+
 

[MH
+
] requires m/z 239.1285, found 239.1285. 

 

4.3.3 2-Allylbenzene-1,3-diol – 185 

Into a 250 ml round bottom flask fitted with a condenser was placed 2-allyl-1,3-

bis(methoxymethoxy)benzene 184 (3.07 g, 12.9 mmol) followed by dry tetrahydrofuran (100 ml) 

and methanol (50 ml). Once acidified with 3 drops of 32% HCl, the solution was heated to reflux 

for 18 h. Analysis by TLC indicated that three compounds were present which we had assumed to 

be the starting material and the completely deprotected product in small amounts as well as the 

mono-deprotected compound as the major species. Another 3 drops of acid were added and the 

solution was refluxed again for 18 h, allowing for full conversion to the fully deprotected diol. The 

solvent was evaporated in vacuo and the crude product was dissolved in ethyl acetate (150 ml) and 

dried over magnesium sulfate. Filtration and removal of the solvent in vacuo followed by 

purification by column chromatography (10% EtOAc/Hexane) gave the allylated diol 185 as a pale 

yellow oil in quantitative yield.  
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Rf = 0.42 (30% EtOAc/Hexane). δH /ppm: 6.97 (1H, t, J=8.1 Hz, H5), 6.42 (2H, 

d, J=8.1 Hz, H4 and H6), 6.10-5.91 (1H, m, CH2CH=CH2), 5.22-5.11 (2H, 

overlapping signals, CH2CH=CH2), 5.09 (2H, s, 2 × OH), 3.47 (2H, d, J=6.0 Hz, 

CH2CH=CH2). δC /ppm: 154.95 (C1 and C3), 135.87 (CH2CH=CH2), 127.67 (C5), 

116.05 (CH2CH=CH2), 111.94 (C2), 108.32 (C4 and C6), 27.47 (CH2CH=CH2). νmax /cm
-1

: 3381 

(OH str), 1703, 1609, 1463, 1260. HRMS (ESI, +ve) C9H11O2
+
 [MH

+
] requires m/z 151.0761, 

found 151.0760. 

 

4.3.4 2-Allyl-1,3-bis(tert-butyldimethylsilyloxy)benzene – 186 

The diol 185 (2.47 g, 16.4 mmol) was dissolved in dry acetonitrile (180 ml) in a two neck round 

bottom flask under Ar. Imidazole (3.35 g, 49.2 mmol) and then TBSCl (6.18 g, 41.0 mmol) was 

added in a single portion and after 15 min the imidazole hydrochloride salt appeared. Following 

18 h of stirring, analysis by TLC indicated that all of the starting material had reacted. The 

acetonitrile was evaporated and the crude mixture was taken up in ethyl acetate (150 ml) and water 

(150 ml), thus facilitating the dissolution of the imidazole hydrochloride salt into the aqueous phase 

upon mixing. The phases were separated and the aqueous phase was extracted with ethyl acetate (3 

× 100 ml). The combined organic fractions were washed with brine (200 ml), separated and dried 

over anhydrous magnesium sulfate. After filtration and evaporation of the solvent in vacuo, the 

crude product was purified by column chromatography (2% EtOAc/Hexane) to yield the silyl-

protected compound 186 as a yellow oil (5.34 g, 86%). 

 

Rf = 0.86 (10% EtOAc/Hexane). δH /ppm: 6.92 (1H, t, J=8.2 Hz, H5), 

6.44 (2H, d, J=8.2 Hz, H4 and H6), 5.96-5.85 (1H, m, CH2CH=CH2), 

5.05-4.78 (2H, overlapping signals, CH2CH=CH2), 3.37 (2H, d, 

J=5.8 Hz, CH2CH=CH2), 1.00 (18H, s, 2 × C(CH3)3), 0.22 (12H, s, 2 × 

Si(CH3)2). δC /ppm: 154.92 (C1 and C3), 136.83 (CH2CH=CH2), 126.32 (C5), 121.65 (C2), 114.11 

(CH2CH=CH2), 111.53 (C4 and C6), 28.41 (CH2CH=CH2), 25.89 (2 × C(CH3)), 18.32 (2 × C(CH3)), 

­4.05 (2 × Si(CH3)2). νmax /cm
-1

: 2930 (CH str), 1587, 1462, 1244, 1070. HRMS (ESI, +ve) 

C21H39O2Si2
+
 [MH

+
] requires m/z 379.2490, found 379.2483. 

 



Chapter 4 - Experimental Procedures: Enantioselective synthesis of rotenone 

________________________________ 

 

125 
 

4.3.5 2-(2,6-Bis(tert-butyldimethylsilyloxy)-phenyl)acetaldehyde – 188 

A round bottom flask containing 186 (4.00 g, 10.6 mmol) dissolved in dry dichloromethane 

(180 ml) was immersed into an acetone bath cooled to ­78 °C. Ozone gas was bubbled into the 

reaction mixture for several minutes followed by oxygen gas in order to purge excess ozone from 

the solution. TLC analysis of the reaction mixture indicated that a significant amount of the starting 

material had been consumed and the ozonide intermediate was forming. The process was repeated 

in 3 minute intervals, bubbling ozone gas followed by molecular oxygen until TLC analysis 

indicated that no starting material was present. Excess acetic acid and zinc dust were added and the 

reaction mixture was warmed to 5 °C at which point TLC indicated complete conversion of the 

ozonide to the aldehyde. The reaction mixture was filtered, washed twice with sodium bicarbonate 

solution (150 ml), once with brine (150 ml) and finally dried over anhydrous magnesium sulfate. 

After filtration and evaporation of the solvent in vacuo, the crude product was purified by column 

chromatography (2% EtOAc/Hexane) to afford 188 as a clear oil at rt or a waxy solid at 0 °C 

(2.93 g, 73%). 

 

Rf = 0.37 (5% EtOAc/Hexane). δH /ppm: 9.60 (1H, s, CHO), 7.03 

(1H, t, J=8.2 Hz, H4), 6.50 (2H, d, J=8.2 Hz, H3 and H5), 3.64 (2H, d, 

J=1.5 Hz, CH2CHO), 0.97 (18H, s, 2 × C(CH3)3), 0.22 (12H, s, 2 × 

Si(CH3)2). δC /ppm: 200.86 (CHO), 155.33 (C2 and C6), 127.86 (C4), 

115.04 (C1), 111.43 (C3 and C5), 39.42 (CH2CHO), 25.74 (2 × C(CH3)), 18.21 (2 × C(CH3)), ­4.17 

(2 × Si(CH3)2). νmax /cm
-1

: 2931 (CH str), 1728 (C=O str), 1588, 1463, 1247, 1084. HRMS (ESI, 

+ve) C20H37O3Si2
+
 [MH

+
] requires m/z 381.2283, found 381.2284. 

 

4.3.6 (E)-Ethyl-4-(2,6-bis(tert-butyl-dimethylsilyloxy)phenyl)-2-methylbut-2-enoate – 

193 

Into a 2 neck round bottom flask fitted with a dropping funnel and under Ar was placed LiCl 

(0.10 g, 2.4 mmol) followed by dry tetrahydrofuran (5 ml). Ethyl 2-

(diethoxyphosphoryl)propanoate (0.31 g, 0.28 ml, 1.3 mmol) was added in a single portion and the 

reaction mixture was cooled by means of an ice bath to 0 °C. The dropwise addition of nBuLi 

(1.40 M in hexane, 0.826 ml, 1.16 mmol) over a 5 min period facilitated the dissolution of the LiCl 

salt, thus forming a homogeneous solution. The reaction was allowed to stir for 30 min before being 

transferred to a second round bottom flask containing the aldehyde 188 (0.40 g, 1.1 mmol) in dry 
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acetonitrile (10 ml), also under Ar and cooled to 0 °C. The reaction mixture was maintained at 

approximately 5 °C for 18 h during which the colour changed from clear to a pale yellow. The 

solution was transferred to a separating funnel and water (50 ml) and ethyl acetate (50 ml) were 

added. After mixing, the organic phase was separated and the aqueous phase was extracted with 

ethyl acetate (3 × 50 ml). The combined organic fractions were washed with brine (150 ml) and 

dried over magnesium sulfate before filtering and removing the solvent in vacuo. The crude 

material was purified by column chromatography (2% EtOAc/Hexane) to furnish the ester 193 as a 

clear oil (0.44 g, 90%). 

 

Rf = 0.38 (5% EtOAc/Hexane). δH /ppm: 6.94 (1H, t, J=8.2 Hz, H4), 

6.80 (1H, tq, J=6.3 Hz and 1.1 Hz, CH2CH=C), 6.46 (2H, d, J=8.2 Hz, 

H3 and H5), 4.13 (2H, q, J=7.1 Hz, OCH2CH3), 3.48 (2H, d, J=6.3 Hz, 

CH2CH=C), 1.92 (3H, d, J=1.1 Hz CH3C=C), 1.23 (3H, t, J=7.1 Hz, 

OCH2CH3), 0.98 (18H, s, 2 × C(CH3)3), 0.23 (12H, s, 2 × Si(CH3)2). 

δC /ppm: 168.20 (C=O), 154.85 (C2 and C6), 142.40 (CH2CH=C), 126.99 (C1), 126.60 (C4), 121.16 

(CH2CH=C), 111.54 (C3 and C5), 60.14 (OCH2CH3), 25.76 (2 × C(CH3)3), 24.10 (CH2CH=C), 

18.26 (2 × C(CH3)3), 14.25 (OCH2CH3), 12.64 (CH3C=C), ­4.09 (2 × Si(CH3)2). νmax /cm
-1

: 2931 

(CH str), 1709 (C=O str), 1586, 1463, 1242. HRMS (ESI, +ve) C25H45O4Si2
+
 [MH

+
] requires m/z 

465.2858, found 465.2851. 

 

4.3.7 (E)-4-(2,6-Bis(tert-butyldimethylsilyloxy)phenyl)-2-methylbut-2-en-1-ol – 195 

The ester 193 (1.51 g, 3.25 mmol) was placed in a two neck round bottom flask containing dry 

tetrahydrofuran (30 ml) and under Ar. Once cooled to 0 °C by means of an ice bath, LiAlH4 (0.16 g, 

4.2 mmol) was added resulting in effervescence of the solution. The reaction was maintained at 

0 °C and was monitored every 20 min by TLC. After approximately 3 h, all the starting material 

had been consumed. Ice cold water was added (100 ml) and the reaction mixture was diluted with 

ethyl acetate (100 ml). The reaction was transferred to a separating funnel and the emulsion that 

formed upon mixing was broken by the addition of a small amount of 1 M HCl solution. The phases 

were separated and the aqueous phase was extracted with ethyl acetate (3 × 100 ml). The combined 

organic fractions were filtered through celite and washed with brine (200 ml). Once dried over 

anhydrous magnesium sulfate, filtered and the solvent evaporated, the crude product was purified 
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by column chromatography (2% EtOAc/Hexane), giving the alcohol 195 as a clear oil (1.19 g, 

87%). 

 

Rf = 0.27 (10% EtOAc/Hexane). δH /ppm: 6.88 (1H, t, J=8.2 Hz, H4), 

6.42 (2H, d, J=8.2 Hz, H3 and H5), 5.43 (1H, tq, J=6.2 Hz and 0.9 Hz, 

CH2CH=C), 3.92 (2H, s, CH2OH), 3.34 (2H, d, J=6.0 Hz, CH2CH=C), 

1.74 (3H, d, J=0.9 Hz CH3C=C), 1.33 (1H, s, OH), 0.96 (18H, s, 2 × 

C(CH3)3), 0.20 (12H, s, 2 × Si(CH3)2). δC /ppm: 154.70 (C2 and C6), 

134.06 (CH2CH=C), 126.20 (CH2CH=C), 126.08 (C4), 122.81 (C1), 111.70 (C3 and C5), 69.18 

(CH2OH), 25.78 (2 × C(CH3)3), 22.94 (CH2CH=C), 18.29 (2 × C(CH3)3), 14.03 (CH3C=C), ­4.06 (2 

× Si(CH3)2). νmax /cm
-1

: 3330 (OH str), 2930 (CH str), 1586, 1461, 1242, 1062. HRMS (ESI, +ve) 

C23H42O3Si2
+
 [MH

+
] requires m/z 423.2752, found 423.2746. 

 

4.3.8 (E)-4-(2,6-bis(tert-butyldimethylsilyloxy)phenyl)-2-methylbut-2-enyl methyl 

carbonate – 196 

Into a two neck round bottom flask containing Ar was placed the alcohol 195 (3.55 g, 8.40 mmol) 

followed by dry dichloromethane (70 ml). The reaction was cooled to 0 °C by means of an ice bath 

and pyridine (2.74 g, 2.80 ml, 34.6 mmol) was added in one portion followed by the dropwise 

addition of methyl chloroformate (1.59 g, 1.30 ml, 16.8 mmol). After stirring for 5 min at 0 °C, the 

ice bath was removed and the reaction was allowed to proceed at rt for 30 min. Water was carefully 

added (80 ml) and the reaction was decanted into a separating funnel, diluting further with water 

(150 ml) and dichloromethane (150 ml). After mixing the phases, the organic phase was separated 

and the aqueous phase was extracted with dichloromethane (150 ml). The organic phases were 

combined, washed with HCl (0.2 M, 2 × 100 ml), water (150 ml) and finally brine (200 ml). After 

drying over anhydrous magnesium sulfate and filtering, the solvent was removed in vacuo and the 

crude oil was purified by column chromatography (5% EtOAc/Hexane), furnishing the carbonate 

196 as a clear oil (3.67 g, 91%). 

 

Rf = 0.35 (10% EtOAc/Hexane). δH /ppm: 6.91 (1H, t, J=8.2 Hz, 

H4), 6.44 (2H, d, J=8.2 Hz, H3 and H5), 5.55 (1H, tq, J=5.6 Hz and 

0.6 Hz, CH2CH=C), 4.48 (2H, s, OCH2), 3.76 (3H, s, OCH3), 3.36 
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(2H, d, J=6.0 Hz, CH2CH=C), 1.76 (3H, d, J=0.6 Hz, CH3C=C), 0.98 (18H, s, 2 × C(CH3)3), 0.22 

(12H, s, 2 × Si(CH3)2). δC /ppm: 155.80 (C=O), 154.76 (C2), 130.35 (CH2CH=C), 128.75 

(CH2CH=C), 126.22 (C4), 122.33 (C1), 111.65 (C3 and C5), 73.88 (OCH2), 54.58 (OCH3), 25.78 (2 

× C(CH3)3), 23.07 (CH2CH=C), 18.28 (2 × C(CH3)3), 14.21 (CH3C=C), ­4.08 (2 × Si(CH3)2). 

νmax /cm
-1

: 2930 (CH str), 1749 (C=O str), 1586, 1462, 1243, 1064. HRMS (ESI, +ve) 

C25H45O5Si2
+
 [MH

+
] requires m/z 481.2807, found 481.2808. 

 

4.3.9 (E)-4-(2,6-Dihydroxyphenyl)-2-methylbut-2-enyl methyl carbonate – 127 

Into a two neck round bottom flask containing Ar was placed the silylated carbonate 196 (3.09 g, 

6.43 mmol) followed by dry tetrahydrofuran (180 ml). The solution was cooled to 0 °C by means of 

an ice bath and TBAF (1.00 M in THF, 12.9 ml, 12.9 mmol) was added in a single portion. After 

5 min of stirring, TLC analysis indicated that the reaction was complete. Saturated ammonium 

chloride was added (100 ml) and the solution was diluted with ethyl acetate (150 ml). After mixing, 

the phases were separated and the aqueous phase was extracted with ethyl acetate (3 × 100 ml). The 

combined organic fractions were washed with brine (200 ml), dried over anhydrous magnesium 

sulfate and filtered. The solvent was removed in vacuo and column chromatography (20% 

EtOAc/Hexane) of the crude material afforded the purified diol 127 as a clear oil which turned 

brown overnight at 0 °C (1.39 g, 86%). 

 

Rf = 0.47 (40% EtOAc/Hexane). δH /ppm: 6.93 (1H, t, J=8.1 Hz, H4), 

6.38 (2H, d, J=8.1 Hz, H3 and H5), 5.64 (1H, t, J=7.1 Hz, CH2CH=C), 

5.00 (2H, br s, 2 × OH), 4.53 (2H, s, OCH2), 3.78 (3H, s, OCH3), 3.45 

(2H, d, J=7.1 Hz, CH2CH=C), 1.86 (3H, s, CH3C=C). δC /ppm: 155.83 

(C=O), 154.91 (C2 and C6), 130.84 (CH2CH=C), 127.82 (CH2CH=C), 

127.23 (C4), 113.31 (C1), 108.04 (C3 and C5), 73.59 (OCH2), 54.77 (OCH3), 21.99 (CH2CH=C), 

13.89 (CH3C=C). νmax /cm
-1

: 3397 (OH str), 2959(CH str), 1719(C=O str), 1610, 1464, 1273. 

HRMS (ESI, -ve) C13H15O5
-
 [MH

-
] requires m/z 251.0918, found 251.0923. 

 

4.3.10 (±)-2-Isopropenyl-2,3-dihydrobenzofuran-4-ol – rac-78 

Dichloromethane (4 ml) and Pd(dba)2 (0.011 g, 0.020 mmol) were introduced into a dry two neck 

round bottom flask under Ar and equipped with a condenser. The violet solution was degassed for 
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5 min by bubbling Ar directly into the solvent by means of a Pasteur pipette. Triphenylphosphine 

(0.021 g, 0.079 mmol) was added against a flow of Ar and the reaction was left to stir until the 

solution changed to a light orange colour indicating the formation of Pd(PPh3)4 in situ. Degassed 

acetic acid (0.032 g, 0.030 ml, 0.53 mmol) was added and the reaction was stirred for another 

5 min. The carbonate 127 (0.10 g, 0.40 mmol) was then introduced against a flow of Ar and the 

reaction was set to reflux for 18 h. Once complete, the crude mixture was transferred to a round 

bottom flask, adsorbed directly onto silica and purified by column chromatography (5% 

EtOAc/Hexane), furnishing the cyclised product rac-78 as a clear oil (0.051 g, 73%). 

 

Rf = 0.38 (20% EtOAc/Hexane). δH /ppm: 6.99 (1H, t, J=8.0 Hz, H6), 6.43 (1H, 

d, J=8.0 Hz, H7), 6.31 (1H, d, J=8.1 Hz, H5), 5.21 (1H, t, J=8.8 Hz, H2), 5.09 (1H, 

s, CH3C=CH(H)), 4.91 (1H, s, CH3C=CH(H)), 4.88 (1H, s, OH), 3.30 (1H, dd, 

J=15.3 Hz and 9.6 Hz, H3), 2.97 (1H, dd, J=15.3 Hz and 8.0 Hz, H3), 1.78 (3H, s, 

CH3C=CH2). δC /ppm: 161.53 (C7a), 152.41 (C4), 143.85 (CH3C=CH2), 129.18 (C6), 112.20 (C3a), 

112.14 (CH3C=CH2), 107.64 (C5), 102.26 (C7), 86.16 (C2), 31.70 (C3), 17.14 (CH3C=CH2). 

νmax /cm
-1

: 3347 (OH str), 2947 (CH str), 1605, 1459, 1316, 1277, 1228. HRMS (ESI, +ve) 

C11H13O2
+
 [MH

+
] requires m/z 177.0917, found 177.0915. 

 

4.3.11 (-)-(R)-2-isopropenyl-2,3-dihydrobenzofuran-4-ol – (R)-78 

Into a two neck round bottom flask fitted with a dropping funnel and under Ar was placed dry 

dichloromethane (5 ml) followed by Pd2(dba)3CHCl3 (0.012 g, 0.012 mmol, 1.5 mol%). Ar was 

bubbled directly into the solution for 5 min and the chiral R,R’-Trost ligand (0.044 g, 0.063 mmol, 

8 mol%) was introduced against a flow of Ar. A colour change occurred over a 25 min period from 

violet to light orange as ligand exchange occurred. The reaction was left to stir at room temperature 

for another 10 min and degassed glacial acetic acid (0.052 g, 0.050 ml, 0.87 mmol) was then added 

in one portion. Following 5 min of stirring, the dropping funnel was charged with the carbonate 127 

(0.20 g, 0.79 mmol) and dichloromethane (5 ml) and the solution was added dropwise to the 

reaction mixture. The reaction was left to proceed at 23 °C for 18 h during which the colour 

changed to a pale yellow. The reaction mixture was transferred to a round bottom flask, 

concentrated in vacuo and the crude material adsorbed onto silica gel. Purification by column 

chromatography (5% EtOAc/Hexane) afforded the dihydrobenzofuran (R)-78 (0.12 g, 84%, 90-

94.8% ee). The ee was determined by HPLC analysis of the acetate derivative 198 as the 
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enantiomers of 78 did not resolve well using the Chiralcel OJ Column. Enantiomeric excesses as 

high as 94.8% were obtained, however, these values decreased slightly to 90% upon doubling the 

scale of the reaction. 

 

Rf = 0.37 (20% EtOAc/Hexane). δH /ppm: 6.99 (1H, t, J=8.0 Hz, H6), 6.43 (1H, 

d, J=8.0 Hz, H7), 6.31 (1H, d, J=8.1 Hz, H5), 5.21 (1H, t, J=8.8 Hz, H2), 5.09 (1H, 

s, CH3C=CH(H)), 4.91 (1H, s, CH3C=CH(H)), 4.88 (1H, s, OH), 3.30 (1H, dd, 

J=15.3 Hz and 9.6 Hz, H3), 2.97 (1H, dd, J=15.3 Hz and 8.0 Hz, H3), 1.78 (3H, s, 

CH3C=CH2). δC /ppm: 161.53 (C7a), 152.41 (C4), 143.85 (CH3C=CH2), 129.18 (C6), 112.20 (C3a), 

112.14 (CH3C=CH2), 107.64 (C5), 102.26 (C7), 86.16 (C2), 31.70 (C3), 17.14 (CH3C=CH2). 

νmax /cm
-1

: 3347 (OH str), 2947 (CH str), 1605, 1459, 1316, 1277, 1228. HRMS (ESI, +ve) 

C11H13O2
+
 [MH

+
] requires m/z 177.0917, found 177.0915. [α]D

19
 = ­22.5 (CHCl3). 

 

4.3.12 2-Isopropenyl-2,3-dihydrobenzofuran-4-yl acetate – rac-198 

To a solution of rac-78 (0.030 g, 0.17 mmol) in dry dichloromethane (2 ml) and under Ar was 

added triethylamine (0.034 g, 0.46 ml, 0.34 mmol) followed by a catalytic amount of DMAP and 

acetic anhydride (0.022 g, 0.021 ml, 0.22 mmol). The reaction was left to proceed at rt for 18 h after 

which TLC analysis indicated that all the starting material had reacted. The solvent was removed in 

vacuo and the crude material was adsorbed onto silica gel and purified by column chromatography 

(5% EtOAc/Hexane) to furnish the acetate rac-198 (0.031 g, 84%) as a clear oil which was analysed 

by HPLC. The procedure was repeated in the acetylation of (R)-78. 

 

Rf = 0.38 (20% EtOAc/Hexane). δH /ppm: 7.12 (1H, t, J=8.1 Hz, H6), 6.69 

(1H, d, J=8.0 Hz, H5), 6.57 (1H, d, J=8.1 Hz, H7), 5.20 (1H, t, J=8.8 Hz, H2), 

5.08 (1H, s, CH3C=CH(H)), 4.91 (1H, s, CH3C=CH(H)), 3.23 (1H, dd, 

J=15.7 Hz and 9.6 Hz, one of H3), 2.93 (1H, dd, J=15.7 Hz and 8.1 Hz, one of 

H3), 2.29 (3H, s, CH3CO2), 1.76 (3H, s, CH3C=CH2). δC /ppm: 168.43 (C=O), 161.30 (C7a), 147.30 

(C4), 143.58 (CH3C=CH2), 129.01 (C6), 119.28 (C3a), 113.41 (C7), 112.36 (CH3C=CH2), 106.99 

(C5), 86.21 (C2), 32.63 (C3), 20.86 (CH3CO2), 17.07 (CH3C=CH2). νmax /cm
-1

: 2920 (CH str), 1763 

(C=O str), 1620, 1461, 1369, 1197. HRMS (ESI, +ve) C13H15O3
+
 [MH

+
] requires m/z 219.1023, 

found 219.1022. [α]D
19

 = ­40.3 (CHCl3). 



Chapter 4 - Experimental Procedures: Enantioselective synthesis of rotenone 

________________________________ 

 

131 
 

 

4.3.13 (-)-(R)-2-isopropenyl-2,3-dihydrobenzofuran-4-yl-2-nitrobenzenesulfonate – 

(R)-199 

Into a two neck round bottom flask under Ar was placed (R)-78 (0.025 g, 0.14 mmol) followed by 

dry dichloromethane (5 ml). Triethylamine (0.027 g, 0.038 ml, 0.27 mmol) was added followed by 

2-nitrobenzenesulfonyl chloride (0.039 g, 0.18 mmol) and the reaction was stirred at rt for 18 h 

following which, TLC analysis indicated that all the starting material had been consumed and a new 

product had formed. The reaction mixture was concentrated in vacuo and the crude product 

adsorbed onto silica gel. Purification by column chromatography (20% EtOAc/Hexane) afforded 

the product (R)-199 as a white solid (0.047 g, 92%). Recrystallisation from diethyl ether afforded 

white needle-like crystals suitable for crystal structure analysis. 

 

Rf = 0.41 (50% EtOAc/Hexane). Mp. = 83-84 °C. δH /ppm: 7.99 (1H, 

d, J=7.8 Hz, H3‟), 7.86-7.85 (2H, m, H6‟ and H5‟), 7.78-7.65 (1H, m, 

H4‟), 7.05 (1H, t, J=8.2 Hz, H6), 6.74 (1H, d, J=8.0 Hz, H7), 6.55 (1H, d, 

J=8.3 Hz, H5), 5.19 (1H, t, J=8.7 Hz, H2), 5.05 (1H, s, CH3C=CH(H)), 

4.90 (1H, s, CH3C=CH(H)), 3.41 (1H, dd, J=16.3 Hz and 9.6 Hz, one of 

H3), 3.03 (1H, dd, J=16.3 Hz and 7.9 Hz, one of H3), 1.71 (3H, s, CH3C=CH2). δC /ppm: 161.80 

(C7a), 145.58 (C4), 143.14 (CH3C=CH2), 135.39 (ArCH), 132.03 (ArCH), 132.01 (ArCH), 129.29 

(C6), 128.84 (C2‟), 124.85 (ArCH), 120.75 (C3a), 113.89 (C5), 112.62 (CH3C=CH2), 108.68 (C7), 

86.47 (C2), 32.65 (C3), 17.00 (CH3C=CH2). νmax /cm
-1

: 2924 (CH str), 1620, 1542, 1460, 1380, 

1165, 1010. HRMS (ESI, +ve) C17H16 NO6S
+
 [MH

+
] requires m/z 362.0700, found 362.0706. X-ray 

data: C17H15NO6S; M=361.36; orthorhombic; 0.71073 Å; a=5.72710(10) Å, b=13.0745(3) Å, 

c=22.1624(4) Å, U=1659.50(6) Å
3
; 296(3) K, space group, P212121, Z=4;. μ(Mo-Κα)=0.229 mm

-1
 

17953 reflections measured, 3998 unique [R(int)=0.0366] which were used in all calculations. Final 

R indices [I>2σ(I)] R1=0.0365, Wr(F
2
)=0.0951. [α]D

19 
= ­12.903 (CHCl3). 

 

4.3.14 (R)-4-(methoxymethoxy)-2-isopropenyl-2,3-dihydrobenzofuran – (R)-200 

Into a two neck round bottom flask containing Ar was placed distilled dimethylformamide (8 ml) 

followed by (R)-78 (0.39 g, 2.2 mmol). The reaction flask was immersed in an ice bath and sodium 

hydride (60% dispersion in oil, 0.11 g, 2.6 mmol) was slowly added resulting in effervescence of 

the solution. Methoxymethyl chloride (0.22 g, 0.21 ml, 0.28 mmol) was then added and the ice bath 
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was allowed to melt and the reaction was stirred at rt for 18 h. Ammonia solution was added and the 

reaction mixture was decanted into a separating funnel and ethyl acetate (50 ml) and 0.1M NaOH 

(50 ml) were added. After mixing, the phases were separated and the organic layer was extracted 

with NaOH (100 ml) and then brine (150 ml). The organic fraction was dried over anhydrous 

magnesium sulfate, filtered and the solvent removed in vacuo. Purification by column 

chromatography (10% EtOAc/Hexane) afforded the desired product (R)-200 as a light yellow oil 

(0.34 g, 70%). 

 

Rf = 0.68 (20% EtOAc/Hexane). δH /ppm: 7.06 (1H, t, J=8.1 Hz, H6), 6.59 

(1H, d, J=8.3 Hz, H7), 6.51 (1H, d, J=8.0 Hz, H5), 5.18 (3H, overlapping 

signals, H2 and OCH2), 5.09 (1H, s, CH3C=CH(H)), 4.91 (1H, s, 

CH3C=CH(H)), 3.48 (3H, s, OCH3), 3.33 (1H, dd, J=15.7 Hz and 9.7 Hz, 

one of H3), 2.99 (1H, dd, J=15.7 Hz and 8.1 Hz, one of H3), 1.78 (3H, s, CH3C=CH2 ). δC /ppm: 

161.17 (C7a), 154.04 (C4), 143.99 (CH3C=CH2), 129.09 (C6), 114.73 (C3a), 111.93 (CH3C=CH2), 

106.43 (C7), 103.42 (C5), 94.39 (OCH2), 86.13 (C2), 56.11 (OCH3), 32.33 (C3), 17.23 (CH3C=CH2). 

νmax /cm
-1

: 2951 (CH str), 1607, 1461, 1230, 1152, 1040. HRMS (ESI, +ve) C13H17O3
+
 [MH

+
] 

requires m/z 221.1179, found 221.1176. 

 

4.3.15 (R)-4-(methoxymethoxy)-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde 

and (-)-(R)-4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde – (R)-201 and 

(R)-202 

Into a two neck round bottom flask fitted with a dropping funnel and under Ar was placed dry 

dichloromethane (10 ml) followed by tin tetrachloride (0.13 g, 0.058 ml, 0.50 mmol). The solution 

was cooled to ­78 °C using a frozen acetone slurry bath and dichloromethyl methyl ether (0.062 g, 

0.049 ml, 0.55 mmol) was added. Following 20 min of stirring, (R)-200 (0.10 g, 0.45 mmol) 

dissolved in dichloromethane (5 ml) was added dropwise. The reaction was maintained at ­78 °C 

for 1 h at which point TLC analysis indicated that two products were present. Saturated sodium 

bicarbonate solution (20 ml) and ethyl acetate (50 ml) were added and the reaction mixture was 

transferred to a separating funnel. After mixing, the layers were separated and the aqueous layer 

was extracted with ethyl acetate (3 × 50 ml). The combined organic fractions were washed with 

brine (100 ml), dried over anhydrous magnesium sulfate and the solvent removed in vacuo. The 

crude material was purified by column chromatography (10% EtOAc/Hexane) to yield both the 
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protected (R)-201 (0.012 g, 11%) and deprotected (R)-202 (0.023 g, 25%) formylated products as 

orange and yellow oils, respectively. 

 

Rf = 0.42 (20% EtOAc/Hexane). δH /ppm: 10.12 (1H, s, CHO), 7.61 (1H, d, 

J=8.8 Hz, H6), 6.69 (1H, d, J=8.8 Hz, H7), 5.37 (1H, t, J=8.8 Hz, H2), 5.25 

(2H, s, OCH2), 5.12 (1H, s, CH3C=CH(H)), 4.96 (1H, s, CH3C=CH(H)), 

3.49 (3H, s, OCH3), 3.33 (1H, dd, J=15.9 Hz and 9.8 Hz, one of H3), 2.98 

(1H, dd, J=15.8 Hz and 7.8 Hz, one of H3), 1.79 (3H, s, CH3C=CH2). 

δC /ppm: 187.43 (CHO), 163.88 (C7a), 158.85 (C4), 143.10 (CH3C=CH2), 129.39 (C6), 115.38 

(ArC), 114.90 (ArC), 112.65 (CH3C=CH2), 107.13 (C7), 94.09 (OCH2), 87.95 (C2), 56.43 (OCH3), 

31.38 (C3), 17.10 (CH3C=CH2). 

 

Rf = 0.62 (20% EtOAc/Hexane). δH /ppm: 11.47 (1H, s, OH), 9.68 (1H, s, 

CHO), 7.36 (1H, d, J=8.3 Hz, H6), 6.50 (1H, d, J=8.3 Hz, H7), 5.34 (1H, t, 

J=8.8 Hz, H2), 5.09 (1H, s, CH3C=CH(H)), 4.95 (1H, s, CH3C=CH(H)), 3.35 

(1H, dd, J=15.7 Hz and 9.9 Hz, one of H3), 3.00 (1H, dd, J=15.8 Hz and 7.7 Hz, 

one of H3), 1.77 (3H, s, CH3C=CH2). δC /ppm: 194.32 (CHO), 167.76 (C7a), 159.38 (C4), 143.01 

(CH3C=CH2), 136.44 (C6), 116.07 (ArC), 112.85 (CH3C=CH2), 112.76 (ArC), 102.93 (C7), 88.14 

(C2), 30.57 (C3), 16.99 (CH3C=CH2). νmax /cm
-1

: 2841 (CH str), 1630 (C=O str), 1484, 1437, 1252, 

1070. HRMS (ESI, +ve) C12H13O3
+
 [MH

+
] requires m/z 205.0866, found 205.0864. [α]D

19
 = ­125.6 

(CHCl3). 

 

4.3.16 (-)-(R)-4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde and (-)-

(R)-4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-7-carbaldehyde – (R)-202 and (R)-203 

To a solution of tin tetrachloride in dry dichloromethane (5 ml) at ­78 °C and under Ar, was added 

dichloromethyl methyl ether (0.031 g, 0.024 ml, 0.27 mmol). After 20 min, the reaction mixture 

was transferred by canula to another round bottom flask also under Ar and at ­78 °C, containing 

(R)-78 (0.039 g, 0.22 mmol) dissolved in dichloromethane (5 ml). After 5 min, TLC analysis 

indicated that two new products had formed, however, a significant amount of starting material 

remained. This persisted after 1 h at ­78 °C and the temperature was raised to 0 °C. Following an 

hour of stirring at this temperature, sodium bicarbonate (10 ml) and dichloromethane (50 ml) were 

added and the reaction was transferred to a separating funnel. After mixing, the phases were 
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separated and the aqueous layer was extracted with dichloromethane (3 × 50 ml). The combined 

organic fractions were washed with brine (100 ml), dried over anhydrous magnesium sulfate and 

the solvent removed in vacuo. Purification by column chromatography (5% EtOAc/Hexane) yielded 

the two formylated products as light and dark yellow oils. By NMR analysis these appeared to be 

very similar apart from a few differences. This led us to believe that both the ortho (R)-202 

(0.020 g, 45%) and para (R)-203 (0.0081 g, 18%) substituted products had formed. 

 

Rf = 0.62 (20% EtOAc/Hexane). δH /ppm: 11.47 (1H, s, OH), 9.68 (1H, s, 

CHO), 7.36 (1H, d, J=8.3 Hz, H6), 6.50 (1H, d, J=8.3 Hz, H7), 5.34 (1H, t, 

J=8.8 Hz, H2), 5.09 (1H, s, CH3C=CH(H)), 4.95 (1H, s, CH3C=CH(H)), 3.35 

(1H, dd, J=15.7 Hz and 9.9 Hz, one of H3), 3.00 (1H, dd, J=15.8 Hz and 7.7 Hz, 

one of H3), 1.77 (3H, s, CH3C=CH2). δC /ppm: 194.32 (CHO), 167.76 (C7a), 159.38 (C4), 143.01 

(CH3C=CH2), 136.44 (C6), 116.07 (ArC), 112.85 (CH3C=CH2), 112.76 (ArC), 102.93 (C7), 88.14 

(C2), 30.57 (C3), 16.99 (CH3C=CH2). νmax /cm
-1

: 2841 (CH str), 1630 (C=O str), 1484, 1437, 1252, 

1070. HRMS (ESI, +ve) C12H13O3
+
 [MH

+
] requires m/z 205.0866, found 205.0864. [α]D

19
 = ­125.6 

(CHCl3). 

 

Rf = 0.12 (20% EtOAc/Hexane). δH /ppm: 10.04 (1H, s, CHO), 7.54 (1H, d, 

J=8.6 Hz, H6), 7.43 (1H, br s, OH), 6.46 (1H, d, J=8.6 Hz, H5), 5.37 (1H, m, H2), 

5.11 (1H, s, CH3C=CH(H)), 4.95 (1H, s, CH3C=CH(H)), 3.33 (2H, dd, J=15.6 Hz 

and 9.8 Hz, one of H3), 2.99 (2H, dd, J=15.6 Hz and 7.7 Hz, one of H3), 1.78 (3H, 

s, CH3C=CH2). δC /ppm: 188.09 (CHO), 165.06 (C7a), 159.08 (C4), 142.97 

(CH3C=CH2), 129.47 (C6), 113.56 (ArC), 112.99 (CH3C=CH2), 112.86 (ArC), 109.72 (C5), 88.17 

(C2), 30.82 (C3), 16.99 (CH3C=CH2).  

 

4.3.17 (-)-(R)-4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde – (R)-

202 

Paraformaldehyde (0.46 g, .012 mmol) was added to a round bottom flask under Ar containing (R)-

78 (0.30 g, 1.5 mmol), anhydrous magnesium chloride (0.24 g, 2.6 mmol) and triethylamine 

(0.65 g, 0.90 ml, 6.4 mmol) dissolved in dry tetrahydrofuran (30 ml). The mixture was heated to 

reflux and after 2 h, TLC analysis indicated that the reaction had gone to completion and a single 

product had formed. The reaction was allowed to cool to rt and transferred to a separating funnel, 
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diluting with water (50 ml) and ethyl acetate (50 ml). Upon mixing, an emulsion formed which was 

broken by the addition of a small amount of 1 M HCl. After separating the layers, the aqueous 

phase was extracted with ethyl acetate (3 × 50 ml). The combined organic fractions were washed 

with brine (100 ml), dried over anhydrous sodium sulfate and filtered. Evaporation of the solvent in 

vacuo followed by purification by column chromatography (5% EtOAc/Hexane) afforded a single 

formylated product (R)-202 as a yellow oil (0.23 g, 75%). 

 

Rf = 0.62 (20% EtOAc/Hexane). δH /ppm: 11.47 (1H, s, OH), 9.68 (1H, s, 

CHO), 7.36 (1H, d, J=8.3 Hz, H6), 6.50 (1H, d, J=8.3 Hz, H7), 5.34 (1H, t, 

J=8.8 Hz, H2), 5.09 (1H, s, CH3C=CH(H)), 4.95 (1H, s, CH3C=CH(H)), 3.35 

(1H, dd, J=15.7 Hz and 9.9 Hz, one of H3), 3.00 (1H, dd, J=15.8 Hz and 7.7 Hz, 

one of H3), 1.77 (3H, s, CH3C=CH2). δC /ppm: 194.32 (CHO), 167.76 (C7a), 159.38 (C4), 143.01 

(CH3C=CH2), 136.44 (C6), 116.07 (ArC), 112.85 (CH3C=CH2), 112.76 (ArC), 102.93 (C7), 88.14 

(C2), 30.57 (C3), 16.99 (CH3C=CH2). νmax /cm
-1

: 2841 (CH str), 1630 (C=O str), 1484, 1437, 1252, 

1070. HRMS (ESI, +ve) C12H13O3
+
 [MH

+
] requires m/z 205.0866, found 205.0864. [α]D

19
 = ­125.6 

(CHCl3). 

 

4.3.18 (-)-(R)-4-(tert-butyldimethylsilyloxy)-2-isopropenyl-2,3-dihydrobenzofuran-5-

carbaldehyde – (R)-204 

To a solution of (R)-202 (0.050 g, 0.24 mmol) in dimethylformamide (2 ml) was added 

diisopropylethylamine (0.048 g, 0.065 ml, 0.37 mmol). The reaction was stirred for 5 min under Ar 

and TBSCl (0.044 g, 0.29 mmol) was added. After 10 min of stirring at rt, TLC analysis indicated 

that all the starting material had been consumed and a single product formed. Ice was added and the 

mixture was transferred to a separating funnel and diluted with diethyl ether (20 ml). After mixing, 

the phases were separated and the ethereal layer was extracted with cold water (2 × 20 ml) and 

saturated sodium bicarbonate (2 × 20 ml). The organic fraction was dried over anhydrous 

magnesium sulfate, filtered and the solvent removed in vacuo. The crude material was purified by 

column chromatography (5% EtOAc/Hexane) to yield the silylated compound (R)-204 as a yellow 

oil (0.069 g, 90%). 
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Rf = 0.68 (20% EtOAc/Hexane). δH /ppm: 10.15 (1H, s, CHO), 7.72 (1H, d, 

J=8.5 Hz, H6), 6.57 (1H, d, J=8.4 Hz, H7), 5.27 (1H, t, J=8.7 Hz, H2), 5.09 (1H, 

s, CH3C=CH(H)), 4.95 (1H, s, CH3C=CH(H)), 3.31 (1H, dd, J=15.5 Hz and 

9.8 Hz, one of H3), 2.96 (1H, dd, J=15.5 Hz and 7.7 Hz, one of H3), 1.77 (3H, 

s, CH3C=CH2), 1.04 (9H, s, C(CH3)3), 0.20 (6H, s, Si(CH3)2). δC /ppm: 188.18 

(CHO), 166.91 (C7a), 156.02 (C4), 143.09 (CH3C=CH2), 130.79 (C6), 122.45 (ArC), 117.34 (ArC), 

112.96 (CH3C=CH2), 104.77 (C7), 87.22 (C2), 32.50 (C3), 25.70 (C(CH3)3), 18.46 (C(CH3)3), 16.93 

(CH3C=CH2), ­3.79 (Si(CH3)2). νmax /cm
-1

: 2930 (CH str), 1674 (C=O str), 1588, 1453, 1391, 1330, 

1250, 1067. HRMS (ESI, +ve) C18H27O3Si
+
 [MH

+
] requires m/z 319.1731, found 319.1729. [α]D

19
 

= ­4.03 (CHCl3). 

 

4.3.19 (-)-(R)-4-isopropoxy-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde –

(R)-206 

Into a two neck round bottom flask fitted with a condenser was placed the dihydrobenzofuran (R)-

202 (0.089 g, 0.44 mmol) followed by dimethylformamide (2 ml). Potassium carbonate (0.076 g, 

0.55 mmol) and 2-bromopropane (0.068 g, 0.052 ml, 0.55 mmol) were added and the reaction was 

immersed in an oil bath preheated to 45 °C. The yellow reaction mixture intensified in colour and 

eventually turned brown after 3 h of stirring. TLC analysis indicated that starting material was still 

present and the reaction was left to stir for 18 h. The mixture was allowed to cool to rt, transferred 

to a separating funnel and water (20 ml) and diethyl ether (20 ml) were added. After mixing and 

allowing the phases to separate, the organic phase was extracted with water (2 × 20 ml) and washed 

with brine (50 ml). The organic fraction was dried over anhydrous sodium sulfate, filtered, the 

solvent removed in vacuo and the crude material purified by column chromatography (5% 

EtOAc/Hexane), giving the desired compound (R)-206 as a yellow oil (0.084 g, 78%).  

 

Rf = 0.50 (20% EtOAc/Hexane). δH /ppm: 10.23 (1H, s, CHO), 7.74 (1H, d, 

J=8.4 Hz, H6), 6.62 (1H, d, J=8.4 Hz, H7), 5.28 (1H, t, J=8.8 Hz, H2), 5.10 (1H, s, 

CH3C=CH(H)), 4.96 (1H, s, CH3C=CH(H)), 4.49 (1H, spt, J=5.8 Hz, 

CH3CHCH3), 3.42 (1H, dd, J=15.5 Hz and 9.7 Hz, one of H3), 3.06 (1H, dd, 

J=15.5 Hz and 7.8 Hz, one of H3), 1.78 (3H, s, CH3C=CH2), 1.35 (6H, d, 

J=5.8 Hz, CH3CHCH3). δC /ppm: 188.75 (CHO), 167.00 (C7a), 158.34 (C4), 143.07 (CH3C=CH2), 

130.77 (C6), 123.45 (ArC), 117.31 (ArC), 112.86 (CH3C=CH2), 105.48 (C7), 87.08 (C2), 75.34 
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(CH3CHCH3), 33.04 (C3), 22.45 (CH3CHCH3), 17.01 (CH3C=CH2). νmax /cm
-1

: 2976 (CH str), 

1672 (C=O str), 1583, 1446, 1320, 1246, 1104, 1058. HRMS (ESI, +ve) C15H19O3
+
 [MH

+
] requires 

m/z 247.1336, found 247.1336. [α]D
19

 = ­52.3 (CHCl3). 

 

4.3.20 (-)-(R)-4-methoxy-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde – (R)-

208 

Into a two neck round bottom flask fitted with a condenser and under Ar was placed (R)-202 

(0.40 g, 2.0 mmol) and acetone (20 ml) followed by potassium carbonate (0.68 g, 4.9 mmol). After 

stirring at rt for 30 min, dimethyl sulfate (0.62 g, 0.46 ml, 4.9 mmol) was added and the reaction 

was heated to reflux. From a clear solution, the reaction turned yellow and eventually a milky white 

over a 1 h period. TLC analysis indicated that the reaction was complete and the mixture was 

filtered through a bed of celite and the acetone removed in vacuo. Once cooled, diethyl ether 

(50 ml) was added and the ethereal layer was washed with 10% ammonia (50 ml) solution until 

frothing stopped. The aqueous layer was extracted with diethyl ether (3 × 50 ml) and 

dichloromethane (1 × 50 ml). The organic fractions were combined, washed with anhydrous 

magnesium sulfate and filtered. The solvent was removed in vacuo and the material purified by 

column chromatography to afford the desired methylated product (R)-208 as a waxy off-white solid 

(0.42 g, 98%). 

 

Rf = 0.37 (20% EtOAc/Hexane). Mp. = 56-58 °C. δH /ppm: 10.22 (1H, s, CHO), 

7.72 (1H, d, J=8.4 Hz, H6), 6.60 (1H, d, J=8.4 Hz, H7), 5.28 (1H, t, J=8.8 Hz, H2), 

5.11 (1H, s, CH3C=CH(H)), 4.97 (1H, s, CH3C=CH(H)), 4.00 (3H, s, OCH3), 3.55 

(1H, dd, J=15.4 Hz and 9.7 Hz, one of H3), 3.19 (1H, dd, J=15.4 Hz and 7.9 Hz, 

one of H3), 1.79 (3H, s, CH3C=CH2). δC /ppm: 188.32 (CHO), 167.31 (C7a), 

160.09 (C4), 142.96 (CH3C=CH2), 131.00 (C6), 121.89 (ArC), 115.30 (ArC), 112.89 (CH3C=CH2), 

105.23 (C7), 87.05 (C2), 60.12 (OCH3), 33.02 (C3), 17.03 (CH3C=CH2). νmax /cm
-1

: 2869 (CH str), 

1652 (C=O str), 1574, 1318, 1248, 1067. HRMS (ESI, +ve) C13H15O3
+
 [MH

+
] requires m/z 

219.1023, found 219.1031. [α]D
19

 = ­50.3 (CHCl3). 
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4.3.21 (-)-(R)-4-(3,4-Dimethoxyphenoxy)-1-(4-methoxy-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)but-2-yn-1-ol – 209 

Into a 2 neck round bottom flask under Ar was placed the alkyne 52 (0.075 g, 0.39 mmol) followed 

by dry tetrahydrofuran (4 ml). The solution was cooled to ­78 °C using a frozen acetone slurry bath 

and nBuLi (1.4 M, 0.17 ml, 0.24 mmol) was added dropwise. The reaction was stirred for 30 min at 

which point the dihydrobenzofuran (R)-208 (0.049 g, 0.220 mmol), dissolved in THF (2 ml) and 

under Ar, was added via canula. The solution was allowed to warm to rt and stirred for 1 h. TLC 

analysis showed that a trace amount of product had formed, however, most of the starting material 

remained. The reaction was heated to 40 °C and monitored hourly by TLC for the next 5 h. Since a 

significant amount of starting material was present, the reaction was left to stir for 18 h. Saturated 

ammonium chloride (10 ml) was added and the reaction was transferred to a separating funnel and 

diluted further with ethyl acetate (20 ml). After mixing, the phases were separated and the aqueous 

phase was extracted with ethyl acetate (3 × 30 ml). The combined organic fractions were washed 

with brine (100 ml), dried over anhydrous magnesium sulfate and the solvent evaporated in vacuo. 

Purification was achieved by column chromatography (30% EtOAc/Hexane), giving the coupled 

product (R)-209 as a yellow oil (0.038 g, 10-42%). 

 

Rf = 0.31 (40% EtOAc/Hexane). δH /ppm: 7.22 (1H, d, J=8.2 Hz, 

H6), 6.77 (1H, d, J=8.7 Hz, H5‟), 6.58 (1H, d, J=2.7 Hz, H2‟), 6.50-

6.48 (2H, overlapping signals, H6‟ and H7), 5.59 (1H, s, CHOH), 

5.18 (1H, t, J=8.8 Hz, H2), 5.09 (1H, s, CH3C=CH(H)), 4.93 (1H, s, 

CH3C=CH(H)), 4.73 (2H, s, CH2C≡C), 3.88 (3H, s, OCH3), 3.84 

(3H, s, OCH3), 3.82 (3H, s, OCH3), 3.47 (1H, dd, J=15.1 Hz and 

9.4 Hz, one of H3), 3.13 (1H, dd, J=15.3 Hz and 8.4 Hz, one of H3), 2.79 (1H, s, CHOH), 1.78 (3H, 

s, CH3C=CH2). δC /ppm: 162.24 (ArCO), 154.32 (ArCO), 152.23 (ArCO), 149.77 (ArCO), 144.03 

(ArCO), 143.50 (CH3C=CH2), 128.31 (C6), 124.11 (ArC)), 115.77 (ArC)), 112.49 (CH3C=CH2), 

111.55 (C5‟), 104.71 (ArCH), 104.02 (ArCH), 101.40 (C2‟), 87.53 (C≡C), 86.22 (C2), 80.70 (C≡C), 

61.16 (CHOH), 59.36 (OCH3), 56.93 (CH2C≡C), 56.38 (OCH3), 55.84 (OCH3), 33.56 (C3), 17.16 

(CH3C=CH2). νmax /cm
-1

: 3489 (OH str), 2936 (CH str), 1600, 1512, 1465, 1226. HRMS (ESI, +ve) 

C24H26O6Na
+
 [MNa

+
] requires m/z 433.1627, found433.1621. [α]D

19
 = ­10.3 (CHCl3). 
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4.3.22 (-)-(R)-4-(3,4-dimethoxyphenoxy)-1-(4-methoxy-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)but-2-yn-1-ol – 209 

Into a three neck round bottom flask fitted with a dropping funnel and under Ar was placed dry 

tetrahydrofuran (4 ml). Once immersed in a frozen acetone slurry bath at ­78 °C, lithium 

diisopropylamide (2.0 M, 0.19 ml, 0.37 mmol) and the alkyne 52 (0.048 g, 0.25 mmol) were added. 

After 2 h, the aldehyde (R)-208 (0.050 g, 0.23 mmol) was dissolved in tetrahydrofuran (2 ml) and 

added dropwise, resulting in a colour change from yellow to clear. The reaction was left to warm to 

rt and stirred for 1.5 h during which the reaction turned yellow. TLC analysis indicated that most of 

the starting material had converted to product and ammonium chloride (10 ml) was added. The 

mixture was transferred to a separating funnel and diluted with ethyl acetate (20 ml). After mixing, 

the phases were separated and the aqueous phase was extracted with ethyl acetate (3 × 30 ml). The 

combined organic fractions were washed with brine (100 ml), dried over anhydrous magnesium 

sulfate and the solvent evaporated in vacuo. Purification was achieved by column chromatography 

(30% EtOAc/Hexane) to furnish the coupled product (R)-209 as a yellow oil (0.070 g, 75%). 

 

Rf = 0.31 (40% EtOAc/Hexane). δH /ppm: 7.22 (1H, d, J=8.2 Hz, 

H6), 6.77 (1H, d, J=8.7 Hz, H5‟), 6.58 (1H, d, J=2.7 Hz, H2‟), 6.50-

6.48 (2H, overlapping signals, H6‟ and H7), 5.58 (1H, d, J=6.5 Hz, 

CHOH), 5.18 (1H, t, J=8.8 Hz, H2), 5.09 (1H, s, CH3C=CH(H)), 

4.93 (1H, s, CH3C=CH(H)), 4.73 (2H, s, CH2C≡C), 3.88 (3H, s, 

OCH3), 3.84 (3H, s, OCH3), 3.82 (3H, s, OCH3), 3.47 (1H, dd, 

J=15.1 Hz and 9.4 Hz, one of H3), 3.13 (1H, dd, J=15.3 Hz and 8.4 Hz, one of H3), 2.78 (1H, d, 

J=6.9 Hz, CHOH), 1.78 (3H, s, CH3C=CH2). δC /ppm: 162.24 (ArCO), 154.32 (ArCO), 152.23 

(ArCO), 149.77 (ArCO), 144.03 (ArCO), 143.50 (CH3C=CH2), 128.31 (C6), 124.11 (ArC), 115.77 

(ArC), 112.49 (CH3C=CH2), 111.55 (C5‟), 104.71 (ArCH), 104.02 (ArCH), 101.40 (C2‟), 87.53 

(C≡C), 86.22 (C2), 80.70 (C≡C), 61.16 (CHOH), 59.36 (OCH3), 56.93 (CH2C≡C), 56.38 (OCH3), 

55.84 (OCH3), 33.56 (C3), 17.16 (CH3C=CH2). νmax /cm
-1

: 3489 (OH str), 2936 (CH str), 1600, 

1512, 1465, 1226. HRMS (ESI, +ve) C24H26O6Na
+
 [MNa

+
] requires m/z 433.1627, found 433.1621. 

[α]D
19

 = ­10.3 (CHCl3). 
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4.3.23 (-)-(R)-4-(3,4-dimethoxyphenoxy)-1-(4-methoxy-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)but-2-yn-1-one – (R)-212 

The alcohol (R)-209 (0.060 g, 0.15 mmol) was dissolved in dry dichloromethane (10 ml) in a two 

neck round bottom flask under Ar. Manganese dioxide (0.25 g, 2.9 mmol) was added and the 

reaction was left to stir at rt for 1 h. TLC analysis indicated that the starting material had been 

consumed and the reaction was left to stir for another 15 min before filtering the suspension though 

a bed of celite. The solvent was removed in vacuo and the crude material purified by column 

chromatography (20% EtOAc/Hexane) to furnish the alkynone (R)-212 as an orange oil (0.048 g, 

80%).  

 

Rf = 0.43 (40% EtOAc/Hexane). δH /ppm: 7.85 (1H, d, J=8.5 Hz, 

H6), 6.80 (1H, d, J=8.7 Hz, H5‟), 6.62 (1H, d, J=2.8 Hz, H2‟), 6.59-

6.50 (2H, overlapping signals, H6‟ and H7), 5.28 (1H, t, J=8.8 Hz, 

H2), 5.08 (1H, s, CH3C=CH(H)), 4.95 (1H, s, CH3C=CH(H)), 4.90 

(2H, s, CH2C≡C), 3.86 (3H, s, OCH3), 3.85 (3H, s, OCH3), 3.82 

(3H, s, OCH3), 3.45 (1H, dd, J=15.7 Hz and 9.7 Hz, one of H3), 

3.09 (1H, dd, J=15.7 Hz and 7.8 Hz, one of H3), 1.76 (3H, s, CH3C=CH2). δC /ppm: 174.17 (C=O), 

166.68 (ArCO), 158.44 (ArCO), 152.01 (ArCO), 149.89 (ArCO), 144.37 (ArCO), 142.91 

(CH3C=CH2), 135.31 (C6), 122.84 (ArC), 118.13 (ArC), 112.83 (CH3C=CH2), 111.62 (C5‟), 104.97 

(ArCH), 104.85 (ArCH), 101.52 (C2‟), 87.39 (C2), 86.78 (C≡C), 86.44 (C≡C), 60.05 (OCH3), 56.81 

(CH2C≡C), 56.36 (OCH3), 55.89 (OCH3), 32.38 (C3), 16.99 (CH3C=CH2). νmax /cm
-1

: 2938 (CH 

str), 1635 (C=O str), 1594, 1509, 1464, 1226. HRMS (ESI, +ve) C24H25O6
+
 [MH

+
] requires m/z 

409.1653, found 409.1647. [α]D
19

 = ­38.3 (CHCl3). 

 

4.3.24 (-)-(R)-(6,7-dimethoxy-2H-chromen-4-yl)(4-methoxy-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)methanone – (R)-213 

Into a 2 neck round bottom flask fitted with a condenser and under Ar was placed the alkynone (R)-

212 (0.20 g, 0.49 mmol) followed by dry toluene (40 ml). The solution was degassed by bubbling 

Ar directly into the solution for 5 min and PtCl2 (0.021 g, 0.079 mmol, 16 mol%) was then added. 

The reaction was heated to 70 °C and stirred for 2 h. TLC analysis indicated that the starting 

material had been consumed and the solvent was removed in vacuo. The crude material was 
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adsorbed onto silica gel for purification by flash chromatography (20% EtOAc/Hexane), yielding 

the desired chromene (R)-213 as an orange oil (0.15 g, 77%).  

 

Rf = 0.52 (40% EtOAc/Hexane). δH /ppm: 7.43 (1H, d, J=8.3 Hz, 

H6), 7.14 (1H, s, ArCH), 6.58 (1H, d, J=8.3 Hz, H7), 6.50 (1H, s, 

ArCH), 6.10 (1H, t, J=4.1 Hz, H3‟), 5.25 (1H, t, J=8.7 Hz, H2), 5.10 

(1H, s, CH3C=CH(H)), 4.95 (1H, s, CH3C=CH(H)), 4.79 (2H, d, 

J=4.1 Hz, H2‟), 3.86 (3H, s, OCH3), 3.75 (3H, s, OCH3), 3.72 (3H, s, 

OCH3), 3.44 (1H, dd, J=15.6 Hz and 9.7 Hz, one of H3), 3.09 (1H, dd, 

J=15.6 Hz and 7.9 Hz, one of H3), 1.77 (3H, s, CH3C=CH2). δC /ppm: 193.97 (C=O), 164.93 (C7a), 

156.84 (C4), 149.94 (ArCO), 148.68 (C8a‟), 143.42 (ArCO), 143.16 (CH3C=CH2), 136.70 (C4a‟), 

132.52 (C6), 126.18 (C3‟), 124.29 (C5), 116.85 (C3a), 112.68 (CH3C=CH2), 112.31 (C4‟), 108.70 

(C5‟), 104.27 (C7), 100.48 (C8‟), 86.81 (C2), 64.77 (C2‟), 59.96 (OCH3), 56.20 (OCH3), 55.90 

(OCH3), 32.89 (C3), 17.07 (CH3C=CH2). νmax /cm
-1

: 2937 (CH str), 1650 (C=O str), 1589, 1506, 

1453, 1218. HRMS (ESI, +ve) C24H25O6
+
 [MH

+
] requires m/z 409.1653, found 409.1644. [α]D

19
 = 

­34.4 (CHCl3). 

Note: quaternary carbons were assigned using an HMBC spectrum. 

 

4.3.25 (-)-(R)-(6,7-dimethoxy-2H-chromen-4-yl)(4-hydroxy-2-isopropenyl-2,3-

dihydrobenzofuran-5-yl)methanone – (R)-214 

Into a two neck round bottom flask under Ar was placed (R)-213 (0.11 g, 0.27 mmol) followed by 

dry dichloromethane (7 ml). The solution was immersed in a frozen acetone slurry bath and boron 

trichloride (1 M, 0.32 ml, 0.32 mmol) was added resulting in a colour change from yellow to a dark 

red. The reaction was stirred at ­78 °C for 1 h before being transferred to an ice bath. Following 1 h 

at 0 °C, TLC indicated that all the starting material had been converted to a single product and 

saturated ammonium chloride (10 ml) was added. The reaction was transferred to a separating 

funnel and diluted with ethyl acetate (30 ml). After mixing, the phases were separated and the 

aqueous phase was extracted with ethyl acetate (2 × 30 ml) and dichloromethane (30 ml). The 

combined organic fractions were dried over anhydrous magnesium sulfate, filtered and the solvent 

removed in vacuo. Purification by column chromatography (10% EtOAc/Hexane) afforded the 

deprotected product (R)-214 as a yellow oil (0.087 g, 82%).  
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Rf = 0.66 (40% EtOAc/Hexane). δH /ppm: 12.59 (1H, s, OH), 7.61 

(1H, d, J=8.7 Hz, H6), 6.71 (1H, s, ArCH), 6.51 (1H, s, ArCH), 6.36 

(1H, d, J=8.7 Hz, H7), 5.86 (1H, t, J=4.0 Hz, H3‟), 5.35 (1H, dd, 

J=9.5 Hz and 8.0 Hz, H2), 5.09 (1H, s, CH3C=CH(H)), 4.95 (1H, s, 

CH3C=CH(H)), 4.85 (2H, d, J=4.0 Hz, H2‟), 3.87 (3H, s, OCH3), 3.74 

(3H, s, OCH3), 3.39 (1H, dd, J=15.8 Hz and 9.9 Hz, one of H3), 3.04 

(1H, dd, J=15.8 Hz and 7.7 Hz, one of H3), 1.78 (3H, s, CH3C=CH2). δC /ppm: 198.54 (C=O), 

167.73 (C7a), 161.26 (ArCO), 150.57 (ArCO), 148.61 (ArCO), 143.75 (ArCO), 143.07 

(CH3C=CH2), 135.87 (C6), 134.51, 121.77 (C3‟), 114.10, 113.15, 112.69 (CH3C=CH2), 112.01, 

108.47 (ArCH), 102.03 (C7), 100.83 (ArCH), 88.20 (C2), 64.62 (C2‟), 56.52 (OCH3), 55.97 (OCH3), 

30.90 (C3), 17.00 (CH3C=CH2). νmax /cm
-1

: 3081 (OH str), 2935 (CH str), 1635 (C=O str), 1600, 

1507, 1431, 1260, 1097. HRMS (ESI, +ve) C24H23O6
+
 [MH

+
] requires m/z 395.1496, found 

395.1485. [α]D
19

 = ­44.2 (CHCl3). 

 

4.3.26 Rotenone – 1a and 1b 

Into a two neck round bottom flask fitted with a condenser and under Ar was placed the phenol (R)-

214 (0.023 g, 0.058 mmol) followed by absolute ethanol (10 ml). Sodium acetate (0.022 g, 

0.27 mmol) was added and the reaction was set to reflux at 90 °C. The reaction was monitored by 

TLC and after 30 min, two new closely spaced products had formed. A small amount of starting 

material was still present and the reaction was left to proceed for another 2 h. Despite the persistent 

traces of starting material, water (20 ml) and ethyl acetate (20 ml) were added to the cooled reaction 

mixture and transferred to a separating funnel. After mixing, the phases were separated and the 

aqueous phase was extracted with ethyl acetate (3 × 30 ml). The combined organic fractions were 

washed with brine (100 ml) and dried over magnesium sulfate. Filtration and evaporation of the 

solvent in vacuo was followed by purification by flash chromatography (20% EtOAc/Hex). The two 

closely spaced products could only be partially separated by and the mixed fractions were separated 

by preparative layer chromatography (15% EtOAc/Hex) to furnish the two products 1a and 1b in an 

approximate 1:1 ratio (0.0205 g, 89%). NMR analysis of the two compounds confirmed that the two 

closely spaced products were in fact diastereomers of one another, as expected. Comparison of the 

NMR spectra of the two products with that of commercially available resorcinol allowed us to 

identify the naturally occurring form of rotenone 1a, which was recrystallised from diethyl ether to 

afford the product as off-white crystals suitable for X-ray analysis. 
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Rf = 0.54 (40% EtOAc/Hexane). Mp. = 155-157 °C. δH /ppm: 7.84 

(1H, d, J=8.5 Hz, H11), 6.77 (1H, s, ArCH), 6.51 (1H, d, J=8.6 Hz, 

H10), 6.46 (1H, s, ArCH), 5.24 (1H, t, J=8.9 Hz, H5‟), 5.08 (1 H, s, 

one of H7‟), 4.94 (2H, overlapping signals, one of H7‟ and H6a), 4.62 

(1H, dd, J=12.0 Hz and 2.9 Hz, one of H6), 4.19 (1 H, d, J=12.0 Hz, 

one of H6), 3.85 (1 H, d, J=3.8 Hz, H12a), 3.81 (3 H, s, OCH3), 3.77 

(3 H, s, OCH3), 3.32 (1 H, dd, J=15.7 Hz and 9.8 Hz, one of H4‟), 

2.96 (1 H, dd, J=15.8 Hz and 8.2 Hz, one of H4‟), 1.77 (3 H, s, H8‟). δC /ppm: 188.96 (C=O), 

167.38 (C9), 157.95 (C7a), 149.47 (ArCO), 147.35 (ArCO), 143.87 (ArCO), 143.03 (C6‟), 130.00 

(C11), 113.34 (C11a), 112.97 (C8), 112.60 (C7‟), 110.29 (ArCH), 104.91 (C10), 104.79 (C12b), 100.88 

(ArCH), 87.85 (C5‟), 72.21 (C6a), 66.28 (C6), 56.31 (OCH3), 55.86 (OCH3), 44.60 (C12a), 31.28 

(C4‟), 17.14 (C8‟). νmax /cm
-1

: 2920 (CH str), 1734(C=O str), 1672, 1606, 1511, 1455, 1213. HRMS 

(ESI, +ve) C23H23O6
+
 [MH

+
] requires m/z 395.1496, found 395.1486. X-ray data: C23H22O6; 

M=394.41; orthorhombic; 0.71073 Å; a=8.3722(7) Å, b=19.7994(17) Å, c=23.3482(19) Å, 

U=3870.3(6) Å
3
; 173(2) K, space group, P212121, Z=8, μ(Mo-Κα)=0.098 mm

-1
 28006 reflections 

measured, 5209 unique [R(int)=0.0650] which were used in all calculations. Final R indices 

[I>2σ(I)] R1=0.0479, Wr(F
2
)=0.0845. [α]D

18 
= ­97.959 (CHCl3). 

Note: A conventional numbering scheme normally employed for rotenoids was adopted.
29, 107

 Quaternary carbons were 

assigned using an HMBC spectrum. Rf of diastereomer = 0.51 
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CHAPTER 5 – APPENDIX I 

A1 X-ray crystallographic data 

A1.1 X-ray crystallographic data for (-)-(R)-2-isopropenyl-2,3-dihydrobenzofuran-4-

yl-2- nitrobenzenesulfonate – (R)-199 

 

 

Table A1.1.1. Crystal data and structure refinement for compound (R)-199 

Identification code  Compound (R)-199 

Empirical formula  C17 H15 N O6 S 

Formula weight  361.36 

Temperature  296(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 5.72710(10) Å α = 90°. 

 b = 13.0745(3) Å β = 90°. 

 c = 22.1624(4) Å γ = 90°. 

Volume 1659.50(6) Å3 

Z 4 

Density (calculated) 1.446 Mg/m3 

Absorption coefficient 0.229 mm-1 

F(000) 752 

Crystal size 0.42 x 0.16 x 0.14 mm3 

Theta range for data collection 1.81 to 27.99°. 

Index ranges -7<=h<=6, -15<=k<=17, -29<=l<=29 

Reflections collected 17953 

Independent reflections 3998 [R(int) = 0.0366] 

Completeness to theta = 27.99° 100.0 %  
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Absorption correction None 

Max. and min. transmission 0.9686 and 0.9098 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3998 / 0 / 226 

Goodness-of-fit on F2 1.083 

Final R indices [I>2sigma(I)] R1 = 0.0365, wR2 = 0.0951 

R indices (all data) R1 = 0.0417, wR2 = 0.0976 

Absolute structure parameter -0.02(7) 

Largest diff. peak and hole 0.525 and -0.344 e.Å-3 

 

 

A1.2 X-ray crystallographic data for munduserone – 8 

 

 

Table A1.2.1. Crystal data and structure refinement for munduserone - 8 

Identification code  Munduserone 8 

Empirical formula  C19 H18 O6 

Formula weight  342.33 

Temperature  296(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 4.6143(2) Å α = 90.116(2)°. 

 b = 12.4005(6) Å β = 97.386(2)°. 

 c = 13.8039(7) Å γ = 95.639(2)°. 

Volume 779.42(6) Å3 

Z 2 

Density (calculated) 1.459 Mg/m3 

Absorption coefficient 0.109 mm-1 
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F(000) 360 

Crystal size 0.32 x 0.11 x 0.07 mm3 

Theta range for data collection 1.49 to 28.31°. 

Index ranges -6<=h<=6, -16<=k<=16, -18<=l<=18 

Reflections collected 12559 

Independent reflections 3875 [R(int) = 0.0608] 

Completeness to theta = 28.31° 99.8 %  

Absorption correction None 

Max. and min. transmission 0.9924 and 0.9660 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3875 / 0 / 226 

Goodness-of-fit on F2 0.909 

Final R indices [I>2sigma(I)] R1 = 0.0445, wR2 = 0.0889 

R indices (all data) R1 = 0.0839, wR2 = 0.1010 

Largest diff. peak and hole 0.244 and -0.241 e.Å-3 

 

 

A1.3 X-ray crystallographic data for rotenone – 1a 

 

 

Table A1.3.1. Crystal data and structure refinement for rotenone 1a 

Identification code  Rotenone 1a  

Empirical formula  C23 H22 O6 

Formula weight  394.41 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 8.3722(7) Å α = 90°. 

 b = 19.7994(17) Å β = 90°. 
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 c = 23.3482(19) Å γ = 90°. 

Volume 3870.3(6) Å3 

Z 8 

Density (calculated) 1.354 Mg/m3 

Absorption coefficient 0.098 mm-1 

F(000) 1664 

Crystal size 0.41 x 0.26 x 0.06 mm3 

Theta range for data collection 1.35 to 28.00°. 

Index ranges -11<=h<=6, -26<=k<=26, -18<=l<=30 

Reflections collected 28006 

Independent reflections 5209 [R(int) = 0.0650] 

Completeness to theta = 28.00° 100.0 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5209 / 20 / 558 

Goodness-of-fit on F2 1.151 

Final R indices [I>2sigma(I)] R1 = 0.0479, wR2 = 0.0845 

R indices (all data) R1 = 0.0716, wR2 = 0.0913 

Absolute structure parameter -10(10) 

Largest diff. peak and hole 0.229 and -0.264 e.Å-3  
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