CHAPTER 6

FORECASTING EXCERISE APPLIED TO THE ECOLOGICAL DATA SET

6.1 For ecasting M ethodology

Due to the experimental design, it was possiblgpld the data into two halves, such
that plants from the same tub were separated iffereht data sets. Plants labeled as
plant 1 were allocated to the training data setl #hose labeled as plant 2 were
allocated to the validation data set. The planglgishould have no significance. The
forecasting exercise was carried out on both tieali mean model and the quadratic
mean model. By fitting models to the training da&t, model parameters were
estimated, under both the linear mean model andruhé quadratic mean model, for
the no random effects model withh = UN, the random intercept and slope models
with ®; = CSH and = CSH, withe; = CSH and = UN, with®; = ARH(1) andX =
UN, o; = AR(1) andX = UN, and withe; = VC andX = UN, the no random effects
model with a TOEP covariance structure, the randotarcept model withw; =
AR(1), and the OLS model. The first three modelsenghosen as they obtained good
AIC and BIC values when fitted to the full data satler the linear mean model, with
the first model performing well under both mean eledThe random effects models
with @; = ARH(1) andX = UN and withe; = AR(1) andX = UN were selected as
they performed well under the quadratic model. fdrelom effects model witt; =
VC andX = UN and the no random effects model with TOEPrsrwere selected as
they performed well in the simulation study, and @LS model was selected for the

purposes of comparison.
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Fig. 6.1: Plot of observed responses for contrahtd according to each tub. The
observations for plant 1 are offset to the left Hrmse for plant 2 are offset to the
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Fig. 6.2: Plot of observed responses for sprayadtplaccording to each tub. The
observations for plant 1 are offset to the left Hmase for plant 2 are offset to the
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The data set was split according to tub in ordeddtermine how well the marginal
estimates performed in comparison to the conditiesimates for the fixed effects.
Plants grown in the same tub, and therefore irstimee water, should be expected to
have the same environmental variables. For exanmpigient levels through time,
exposure to sunlight, weevil predation, etc. shdaddexpected to be the same in each
tub. Therefore it would be a reasonable assumpgtiaihink that the random effects
for subjects from the same tub should be similay. &1 and Fig. 6.2 give plots of the
observed data points of the control plants andysgr@lants respectively. These plots
indicate that measurements taken at the same toneglants in the same tub are not
necessarily more similar to each other than to oreasents taken from others plants
at that time. Tub 20, with sprayed plants, shows gneatest similarity between
measurements taken in the same tub. The valueseeks 0 and 1 are identical, but
then for later weeks, the measurements of the tantp begin to differ. Therefore
plots of the data do not support the assumptiohrdradom effects of plants in the
same tub would be similar. Nevertheless, splitphants that were in the same tub

into the training and validation data sets is stittasonable approach.

The responsg;, conditional on the random effebt, is normally distributed with
mean vectorXip + Zb;. Therefore conditional estimates are subject-$igecihe
marginal density of;; has mean structur§;p, and therefore these estimates can be

interpreted as population averaged (Verbeke & Mudeghs, 2000).

As in the model fitting exercise applied to thelegaal data set, two different mean

structures were considered for the forecasting atsse=r the simplistic linear mean

model, and the more complex quadratic mean modes allowed the comparison
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between the mean models as to which covariancetstas resulted in the best
predictions of the data. As in the model fittingemise of the previous chapter, the

guadratic model was applied to the logged lengthiseosecond petiole.

6.2  Forecasting Resultsfor the Simplistic Linear M odel

Table 6.1: Model parameters and information crtéor models fitted to the training data.
The fixed effects estimates appear in the samea aslmdicated by the model equation
for the simplistic mean model described in Chafiter.

o; p) B; AlIC BIC AlCc
UN None 1897 1428.8 1491.9 1447.6
- 366
-017
- 0863
CSH UN 1641 1527.9 1546.1 1529.3
- 596
-011
- 060
AR(1) Intercept 2250 1583.2 1587.4 1583.3
only - 350
- 070
- 087
TOEP None 2266 1587.7 1600.3 1588.4
-355
- 081
- 090
VC UN 2226 1619.6 1625.2 1619.7
- 361
- 075
- 086
VC None 2226 1677.6 1679.0 1677.6
- 361
- 075
- 086
CSH CSH Non-convergence
AR(1) UN X not positive definite
ARH(1) UN X not positive definite

The model fitting results for the simplistic modmie presented in Table 6.1. The
model with ®; = CSH andX = CSH did not converge even though results were

obtained under the full data set, therefore it dgsear that sample size plays a big
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role in the success of this covariance structupe tyn reaching convergence and
getting good estimates. The random intercept angesimodels with AR(1) or
ARH(1) errors did not obtain valid estimates foe ttovariance, as for the full data
set. Once again the UN covariance model obtainedthallest AIC, BIC and AICc
values. The no random effects model with TOEP ser(bereafter referred to as the
TOEP model) also obtained smaller information dateompared to the model with
o; = VC andX = UN, as in the original analysis of the data. @anng the fixed
effects parameter estimates, those estimates frelM@EP model and the model with
o; = VC andX = UN are more similar to each other compared ¢oet$timates for the

UN model.

The estimates, both marginal and conditional, oleifrom the models fitted to the
training data set were compared to both the trgideta set and the validation data set

and the forecasting statistics, mean square eMSE) and mean absolute error

(MAE), were obtained. The MSE is defined &SZ(yi -Vy.)?and the MAE is
na=

defined as£2|yi - ¥,|, wherey;, and §; represent an observed and predicted value
No=

pair, respectively. Models with smaller values tbese statistics predict the data
better compared to models with larger values. FahFRang (2002) describe a very
similar technique to selecting between models. Tdtage that this method of model

selection by means of using model prediction ieesively accepted in the literature.

The forecasting error statistics (Table 6.2) revkat models with simpler covariance
structures predicted both the test data set andah@ation data set better than the

models which obtained the best goodness-of-fiistted. The random effects model
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with ;= CSH andZ = UN in particular has relatively large errors. 38 in the case

of both the validation and test data sets.

Table 6.2: Forecasting statistics for linear magstimates, both marginal and
conditional, obtained using the training data figefl data) and the validation data set

(paired data).

Marginal Estimates
Covariance Fitted Data Paired Data
[0y X MSE MAE MSE MAE
VC None 28.74 4.16 26.85 3.87
VC UN 28.74 4.16 26.85 3.87
TOEP None 28.80 4.19 26.78 3.92
AR(1) Intercept 28.97 4.25 27.02 3.94
only
UN None 32.52 4.35 31.63 4.04
CSH UN 48.87 5.20 49.13 5.07
Conditional Estimates
Covariance Fitted Data Paired Data
O X MSE MAE MSE MAE
VC UN 15.63 3.03 28.61 3.85
AR(1) Intercept 19.77 3.55 25.80 3.80
only
CSH UN 42.82 4.41 58.95 5.60

Comparing the performance of the conditional edi®&0 those from their marginal
counter parts, it seems that with regards to teedata set, the conditional estimates
produced less error, as the MAE and MSE were smialiehe conditional estimates.
When tested against the validation data set, thegine estimates produced less
error, except in the case of the random intercepdehwith AR(1) errors where the
MAE and MSE were smaller for the conditional esti@sabut only slightly compared
to the statistics for the marginal estimates. Tloeeg from a “predictive power” point
of view, it is better to use the marginal estimatepredict new data. Comparing the
marginal estimates of the test data set to the imalrgstimates of the validation data

set, the models in fact performed better on thelaabn data set, except in the case of
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random effects model witlm; = CSH andX = UN. Conversely, the conditional
estimates fitted the test data set better compar#tke validation data set, as expected

due to the random effects in the mean model.

As in previous analyses, the model with TOEP ecawariance structure performed
well, obtaining error MSE and MAE values only maaly different from the
minimum values. Interestingly, the OLS model, tbgetwith the random effects
model withm; = VC andX = UN, obtained the minimum MSE and MAE values. This

is due to these two models having the same estinfiatéhe mean structure.

6.3  Forecasting Resultsfor the Quadratic M odel

Table 6.3 presents the fitting results for the gaad model fitted to the training data
set. For the quadratic model, the no random effestdel with unstructured
covariance obtained the lowest AIC and AlCc vallres,obtained one of the highest
BIC values. The random effects models with= ARH(1) andX = UN and withm; =
AR(1) andX = UN obtained similar values for the informationtena, with the
heterogeneous model obtain slightly lower AIC an@®&values, but higher BIC. The
random effects model witlkb; = AR(1) andX = UN obtained the lowest BIC value
compared to all other model considered. The ranthd@encept model withw; = AR(1)
obtained the next best set of AIC, BIC and AlCcuesl followed by the random
intercept slope model witlw; = VC andX = UN and the TOEP model. The OLS
model obtained the highest values for the inforamatcriteria. Comparing the
estimates for the fixed effects, the values wemy gamilar between all models, with

the estimates of the adjustment parameters shothmgnost variability. As for the
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linear model estimates, the no random effects maodil o; = VC (i.e. the OLS
model) and the random intercept and slope modé ayit= VC andX = UN obtained
the same fixed effects estimates. Under the quadraan model, the random effects

models with CSH error structures resulted in nowecgence.

Table 6.3: Model parameters and information citéor models fitted to the training data
The fixed effects estimates appear in the samea aslmdicated by the model equation
for the simplistic mean model described in Chafiter.

W > B; AlIC BIC AlCc

UN None 29989 -68.7 -5.6 -49.4
-0.0943

0.0101
0.1632
0.2866
-0.3558
-0.0551
0.1999
0.2788
ARH(1) UN 30857 -57.4 -39.2 -55.9
-0.1247
0.0127
0.0750
0.2319
-0.3804
—-0.0459
0.2509
0.2981
AR(D) UN 29995 -48.3 41.3 -48.3
-0.1000
0.0108
0.1607
0.2922
-0.3272
-0.0501
0.1983
0.2524
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Table 6.3 (cont.): Model parameters and informatioteria for models fitted to the
training data The fixed effects estimates appeénersame order as indicated by the
model eqguation for the simplistic mean model désctiin Chapter five.

i p B; AlC BIC AlCc

AR(1) Intercept 29944 -44.0 -39.8 -43.9
only -0.0991
0.0108
0.1674
0.2988
-0.3255
-0.0501
0.1947
0.2478

VC UN 3.0068 -43.0 -37.4 -42.9
-0.1012

0.0108
0.1519
0.2800
—-0.3294
-0.0501
0.2019
0.2607

TOEP None 2.9917 -37.6 -25.0 -36.8
-0.0989

0.0108
0.1650
0.3018
-0.3193
—-0.0507
0.1989
0.2381

VC None 3.0068 99.6 103.1 99.6
-0.1012

0.0108
0.1519
0.2800
-0.3294
—-0.0501
0.2019
0.2607

CSH UN Non-convergence

CSH CSH Non-convergence
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The forecasting results appear in Table 6.4. Thalt® show that for the validation
data set, the marginal estimates for models withdoen effects perform better
compared to the conditional counter parts. Theegfais for the simplistic linear
model, the marginal estimates are better at prediet new data set. Comparing the
training data set to the validation data set, nmaigestimates predicted the validation
data set better compared to the training dataaset,conditional estimates predicted
the training data set better compared to the vididadata set. For the training data
set, the conditional estimates from the randomraef® and slope model wii; =
VC andX = UN gave the best predictions. For the validation d&ta the random
intercept and slope model wiéh) = VC andX = UN and the OLS model obtained that
lowest MAE values. The random intercept and slopelehwith®; = ARH(1) andX

= UN obtained the lowest MSE value. Several modgisained very similar
forecasting statistics for both the training da¢h and for the validation data set.
These include the OLS model, the random intercegtsdope models witly; = VC
andX = UN and withm; = AR(1) andX = UN, the random intercept model with =
AR(1), and the TOEP model. The model which gavewbest estimates for training
data set was the no random effects model with uctstred errors. This is surprising,

as this model obtained the lowest AIC value.
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Table 6.4: Forecasting statistics for quadratic ehedtimates, both marginal and
conditional, obtained using the training data fge@ data) and the validation data set

(paired data).

Marginal Estimates
Covariance Fitted Data Paired Data
[0y X MSE MAE MSE MAE
VC None 0.0705 0.2048 0.0651 0.200]
VC UN 0.0705 0.2048 0.0651 0.2001
AR(1) Intercept 0.0705 0.2048 0.0654 0.2003
only
TOEP None 0.0706 0.2049 0.0654 0.200
AR(1) UN 0.0706 0.2048 0.0652 0.2003
ARH(1) UN 0.0708 0.2043 0.0650 0.20049
UN None 0.0715 0.2049 0.0661 0.2017
Conditional Estimates
Covariance Fitted Data Paired Data
[0y X MSE MAE MSE MAE
VC UN 0.0228 0.1171 0.0821 0.2017
AR(1) Intercept 0.0319 0.1432 0.0707 0.2007
only
AR(1) UN 0.0247 0.1218 0.0783 0.2066
ARH(1) UN 0.0272 0.1166 0.0825 0.2139

6.4 Discussion

This short forecasting exercise demonstrates tmatirifformation criteria may not

necessarily be choosing the models that have teerbean structure estimates, as
these measures include the estimates of the cacarparameters as well. The MSE
and MAE measures on the other hand are only coadenith how well the model

predicts the mean structure of the data. In thidiquéar case, it appears that the
models with simpler covariance structures gaveebaitedictions compared to the
models with more complicated covariance structuféss is the case under both the

simplistic linear model and the more complicate@dmatic model. In particular the
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random intercept and slope model wih= VC andX = UN and the OLS model

obtained the best predictions under both mean model

The marginal estimates from the random effects nsodere better at predicting the
validation data set compared to the conditionainmedes from these models.
Conversely, the conditional estimates predictedttaming data set better. This can
be attributed to “shrinkage” brought about by taeadom effects. A consequence of
the individual-specific coefficients is to “shrinkhe prediction for thé™ individual
towards the population-averaged response profilznffaurice et al., 2004). This
demonstrates that the conditional estimates camsbd when there is interest in the
estimated response of a particular subject in #mepte, but the marginal estimates
should rather be used to estimate subjects outsiddne sample. This data was
originally modelled with the tub as the subject &inel plant effect nested within tub.
This approach did not perform any better compaoedsing the individual plants as
subjects, and so was not used in order to keepntiael as simple as possible. This
approach is supported since the conditional estisnalid not perform better at
predicting the validation data set compared torttagginal estimates, or were very
similar, indicating that the plants within the satub were not more similar to each
other compared to plants in other tubs. Plots efdbserved responses for each plant
against the tub in which the plant was located sagthe same conclusion (Fig. 6.1

and Fig. 6.2).

Of the models which were predicted to perform weltler the simulation study, the

random intercept and slope model with= VC andX = UN obtained competitive

information criteria compared to other models witdatively simple covariance
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structures, and obtained the best predictions coedpto models under all other
covariance structures. The model with the TOEP anee structure performed well
relative the information criteria, obtaining clos® the minimum values for these
measures compared to other models with simple @ structures. This model
also obtained values for the MAE and MSE that wel@se to the minimum,
indicating good estimates for the parameters imikan structure. Therefore it can be
concluded that both the random intercept and shopéel withew; = VC andX = UN
and the no random effects model with TOEP covaeatucture are good choices for
this relatively complex data set. The third moddiicla performed well under the
simulation study, the random intercept and slopdehwith ®; = AR(1) andX = UN,
obtained good forecasting statistics under the @i@dmodel, but was unusable for
the simplistic linear model as the estimated ran@diects covariance matrix was not

positive definite.

The OLS model obtained relatively poor informaticniteria, but obtained the best
MAE and MSE values under both the linear and quadnmean models. This

indicates that the OLS model estimated the mearctsire well, but estimated the
covariance matrix poorly. This supports the faett tihe OLS estimator for the mean

is consistent and unbiased (Verbeke & Molenbergb80; Demidenko, 2004).
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