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C H A P T E R       6 

FORECASTING EXCERISE APPLIED TO THE ECOLOGICAL DATA SET 

   

6.1        Forecasting Methodology 

 

Due to the experimental design, it was possible to split the data into two halves, such 

that plants from the same tub were separated into different data sets. Plants labeled as 

plant 1 were allocated to the training data set, and those labeled as plant 2 were 

allocated to the validation data set. The plant labels should have no significance. The 

forecasting exercise was carried out on both the linear mean model and the quadratic 

mean model. By fitting models to the training data set, model parameters were 

estimated, under both the linear mean model and under the quadratic mean model, for 

the no random effects model with ωi = UN, the random intercept and slope models 

with ωi = CSH and Σ = CSH, with ωi = CSH and Σ = UN, with ωi = ARH(1) and Σ = 

UN, ωi = AR(1) and Σ = UN, and with ωi = VC and Σ = UN, the no random effects 

model with a TOEP covariance structure, the random intercept model with ωi = 

AR(1), and the OLS model. The first three models were chosen as they obtained good 

AIC and BIC values when fitted to the full data set under the linear mean model, with 

the first model performing well under both mean models. The random effects models 

with ωi = ARH(1) and Σ = UN and with ωi = AR(1) and Σ = UN were selected as 

they performed well under the quadratic model. The random effects model with ωi = 

VC and Σ = UN and the no random effects model with TOEP errors were selected as 

they performed well in the simulation study, and the OLS model was selected for the 

purposes of comparison.  
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Fig. 6.1: Plot of observed responses for control plants according to each tub. The 
observations for plant 1 are offset to the left and those for plant 2 are offset to the 
right. 

Fig. 6.2: Plot of observed responses for sprayed plants according to each tub. The 
observations for plant 1 are offset to the left and those for plant 2 are offset to the 
right. 
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The data set was split according to tub in order to determine how well the marginal 

estimates performed in comparison to the conditional estimates for the fixed effects. 

Plants grown in the same tub, and therefore in the same water, should be expected to 

have the same environmental variables. For example, nutrient levels through time, 

exposure to sunlight, weevil predation, etc. should be expected to be the same in each 

tub. Therefore it would be a reasonable assumption to think that the random effects 

for subjects from the same tub should be similar. Fig. 6.1 and Fig. 6.2 give plots of the 

observed data points of the control plants and sprayed plants respectively. These plots 

indicate that measurements taken at the same time from plants in the same tub are not 

necessarily more similar to each other than to measurements taken from others plants 

at that time. Tub 20, with sprayed plants, shows the greatest similarity between 

measurements taken in the same tub. The values for weeks 0 and 1 are identical, but 

then for later weeks, the measurements of the two plants begin to differ. Therefore 

plots of the data do not support the assumption that random effects of plants in the 

same tub would be similar. Nevertheless, splitting plants that were in the same tub 

into the training and validation data sets is still a reasonable approach. 

 

The response yi, conditional on the random effect bi, is normally distributed with 

mean vector Xiβ + Zibi. Therefore conditional estimates are subject-specific. The 

marginal density of yi has mean structure Xiβ, and therefore these estimates can be 

interpreted as population averaged (Verbeke & Molenberghs, 2000). 

 

As in the model fitting exercise applied to the ecological data set, two different mean 

structures were considered for the forecasting exercise: the simplistic linear mean 

model, and the more complex quadratic mean model. This allowed the comparison 
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between the mean models as to which covariance structures resulted in the best 

predictions of the data. As in the model fitting exercise of the previous chapter, the 

quadratic model was applied to the logged lengths of the second petiole. 

 

6.2 Forecasting Results for the Simplistic Linear Model 
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The model fitting results for the simplistic model are presented in Table 6.1. The 

model with ωi = CSH and Σ = CSH did not converge even though results were 

obtained under the full data set, therefore it does appear that sample size plays a big 

Table 6.1: Model parameters and information criteria for models fitted to the training data. 
The fixed effects estimates appear in the same order as indicated by the model equation 
for the simplistic mean model described in Chapter five.  
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role in the success of this covariance structure type in reaching convergence and 

getting good estimates. The random intercept and slope models with AR(1) or 

ARH(1) errors did not obtain valid estimates for the covariance, as for the full data 

set. Once again the UN covariance model obtained the smallest AIC, BIC and AICc 

values. The no random effects model with TOEP errors (hereafter referred to as the 

TOEP model) also obtained smaller information criteria compared to the model with 

ωi = VC and Σ = UN, as in the original analysis of the data. Comparing the fixed 

effects parameter estimates, those estimates from the TOEP model and the model with 

ωi = VC and Σ = UN are more similar to each other compared to the estimates for the 

UN model. 

 

The estimates, both marginal and conditional, obtained from the models fitted to the 

training data set were compared to both the training data set and the validation data set 

and the forecasting statistics, mean square error (MSE) and mean absolute error 

(MAE), were obtained. The MSE is defined as ∑
=

−
n

i
ii yy

n 1

2)ˆ(
1

and the MAE is 

defined as ∑
=

−
n

i
ii yy

n 1

ˆ
1

, where yi and iŷ  represent an observed and predicted value 

pair, respectively. Models with smaller values for these statistics predict the data 

better compared to models with larger values. Pan and Fang (2002) describe a very 

similar technique to selecting between models. They state that this method of model 

selection by means of using model prediction is extensively accepted in the literature. 

 

The forecasting error statistics (Table 6.2) reveal that models with simpler covariance 

structures predicted both the test data set and the validation data set better than the 

models which obtained the best goodness-of-fit statistics. The random effects model 
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with ωi = CSH and Σ = UN in particular has relatively large errors. This is in the case 

of both the validation and test data sets.  

 

 

 

Marginal Estimates 
Covariance Fitted Data Paired Data 

ωi Σ MSE MAE MSE MAE 
VC None 28.74 4.16 26.85 3.87 
VC UN 28.74 4.16 26.85 3.87 

TOEP None 28.80 4.19 26.78 3.92 
AR(1) Intercept 

only 
28.97 4.25 27.02 3.94 

UN None 32.52 4.35 31.63 4.04 
CSH UN 48.87 5.20 49.13 5.07 

      
Conditional Estimates 

Covariance Fitted Data Paired Data 
ωi Σ MSE MAE MSE MAE 
VC UN 15.63 3.03 28.61 3.85 

AR(1) Intercept 
only 

19.77 3.55 25.80 3.80 

CSH UN 42.82 4.41 58.95 5.60 
 

Comparing the performance of the conditional estimates to those from their marginal 

counter parts, it seems that with regards to the test data set, the conditional estimates 

produced less error, as the MAE and MSE were smaller for the conditional estimates. 

When tested against the validation data set, the marginal estimates produced less 

error, except in the case of the random intercept model with AR(1) errors where the 

MAE and MSE were smaller for the conditional estimates but only slightly compared 

to the statistics for the marginal estimates. Therefore, from a “predictive power” point 

of view, it is better to use the marginal estimates to predict new data. Comparing the 

marginal estimates of the test data set to the marginal estimates of the validation data 

set, the models in fact performed better on the validation data set, except in the case of 

Table 6.2: Forecasting statistics for linear model estimates, both marginal and 
conditional, obtained using the training data set (fitted data) and the validation data set 
(paired data). 
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random effects model with ωi = CSH and Σ = UN. Conversely, the conditional 

estimates fitted the test data set better compared to the validation data set, as expected 

due to the random effects in the mean model. 

 

As in previous analyses, the model with TOEP error covariance structure performed 

well, obtaining error MSE and MAE values only marginally different from the 

minimum values. Interestingly, the OLS model, together with the random effects 

model with ωi = VC and Σ = UN, obtained the minimum MSE and MAE values. This 

is due to these two models having the same estimates for the mean structure. 

 

6.3 Forecasting Results for the Quadratic Model 

 

Table 6.3 presents the fitting results for the quadratic model fitted to the training data 

set. For the quadratic model, the no random effects model with unstructured 

covariance obtained the lowest AIC and AICc values, but obtained one of the highest 

BIC values. The random effects models with ωi = ARH(1) and Σ = UN and with ωi = 

AR(1) and Σ = UN obtained similar values for the information criteria, with the 

heterogeneous model obtain slightly lower AIC and AICc values, but higher BIC. The 

random effects model with ωi = AR(1) and Σ = UN obtained the lowest BIC value 

compared to all other model considered. The random intercept model with ωi = AR(1) 

obtained the next best set of AIC, BIC and AICc values, followed by the random 

intercept slope model with ωi = VC and Σ = UN and the TOEP model. The OLS 

model obtained the highest values for the information criteria. Comparing the 

estimates for the fixed effects, the values were very similar between all models, with 

the estimates of the adjustment parameters showing the most variability. As for the 
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linear model estimates, the no random effects model with ωi = VC (i.e. the OLS 

model) and the random intercept and slope model with ωi = VC and Σ = UN obtained 

the same fixed effects estimates. Under the quadratic mean model, the random effects 

models with CSH error structures resulted in non-covergence. 

 

 

 

 

ωi ∑ Βi AIC BIC AICc 
UN None 



































−
−

−

2788.0

1999.0

0551.0

3558.0

2866.0

1632.0

0101.0

0943.0

9989.2

 

-68.7 -5.6 -49.4 

ARH(1) UN 



































−
−

−

2981.0

2509.0

0459.0

3804.0

2319.0

0750.0

0127.0

1247.0

0857.3

 

-57.4 -39.2 -55.9 

AR(1) UN 



































−
−

−

2524.0

1983.0

0501.0

3272.0

2922.0

1607.0

0108.0

1000.0

9995.2

 

-48.3 -41.3 -48.3 

 

 

 

Table 6.3: Model parameters and information criteria for models fitted to the training data 
The fixed effects estimates appear in the same order as indicated by the model equation 
for the simplistic mean model described in Chapter five. 
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Table 6.3 (cont.): Model parameters and information criteria for models fitted to the 
training data The fixed effects estimates appear in the same order as indicated by the 
model equation for the simplistic mean model described in Chapter five. 
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The forecasting results appear in Table 6.4. The results show that for the validation 

data set, the marginal estimates for models with random effects perform better 

compared to the conditional counter parts. Therefore, as for the simplistic linear 

model, the marginal estimates are better at predicting a new data set. Comparing the 

training data set to the validation data set, marginal estimates predicted the validation 

data set better compared to the training data set, and conditional estimates predicted 

the training data set better compared to the validation data set. For the training data 

set, the conditional estimates from the random intercept and slope model with ωi = 

VC and Σ = UN gave the best predictions. For the validation data set, the random 

intercept and slope model with ωi = VC and Σ = UN and the OLS model obtained that 

lowest MAE values. The random intercept and slope model with ωi = ARH(1) and Σ 

= UN obtained the lowest MSE value. Several models obtained very similar 

forecasting statistics for both the training data set and for the validation data set. 

These include the OLS model, the random intercept and slope models with ωi = VC 

and Σ = UN and with ωi = AR(1) and Σ = UN, the random intercept model with ωi = 

AR(1), and the TOEP model. The model which gave the worst estimates for training 

data set was the no random effects model with unstructured errors. This is surprising, 

as this model obtained the lowest AIC value.  
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Marginal Estimates 
Covariance Fitted Data Paired Data 

ωi Σ MSE MAE MSE MAE 
VC None 0.0705 0.2048 0.0651 0.2001 
VC UN 0.0705 0.2048 0.0651 0.2001 

AR(1) Intercept 
only 

0.0705 0.2048 0.0654 0.2003 

TOEP None 0.0706 0.2049 0.0654 0.2003 
AR(1) UN 0.0706 0.2048 0.0652 0.2003 

ARH(1) UN 0.0708 0.2043 0.0650 0.2009 
UN None 0.0715 0.2049 0.0661 0.2017 

      
Conditional Estimates 

Covariance Fitted Data Paired Data 
ωi Σ MSE MAE MSE MAE 
VC UN 0.0228 0.1171 0.0821 0.2017 

AR(1) Intercept 
only 

0.0319 0.1432 0.0707 0.2007 

AR(1) UN 0.0247 0.1218 0.0783 0.2066 
ARH(1) UN 0.0272 0.1166 0.0825 0.2138 

 

 

6.4       Discussion 

 

This short forecasting exercise demonstrates that the information criteria may not 

necessarily be choosing the models that have the best mean structure estimates, as 

these measures include the estimates of the covariance parameters as well. The MSE 

and MAE measures on the other hand are only concerned with how well the model 

predicts the mean structure of the data. In this particular case, it appears that the 

models with simpler covariance structures gave better predictions compared to the 

models with more complicated covariance structures. This is the case under both the 

simplistic linear model and the more complicated quadratic model. In particular the 

Table 6.4: Forecasting statistics for quadratic model estimates, both marginal and 
conditional, obtained using the training data set (fitted data) and the validation data set 
(paired data). 
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random intercept and slope model with ωi = VC and Σ = UN and the OLS model 

obtained the best predictions under both mean models. 

 

The marginal estimates from the random effects models were better at predicting the 

validation data set compared to the conditional estimates from these models. 

Conversely, the conditional estimates predicted the training data set better. This can 

be attributed to “shrinkage” brought about by the random effects. A consequence of 

the individual-specific coefficients is to “shrink” the prediction for the ith individual 

towards the population-averaged response profile (Fitzmaurice et al., 2004). This 

demonstrates that the conditional estimates can be used when there is interest in the 

estimated response of a particular subject in the sample, but the marginal estimates 

should rather be used to estimate subjects outside of the sample. This data was 

originally modelled with the tub as the subject and the plant effect nested within tub. 

This approach did not perform any better compared to using the individual plants as 

subjects, and so was not used in order to keep the model as simple as possible. This 

approach is supported since the conditional estimates did not perform better at 

predicting the validation data set compared to the marginal estimates, or were very 

similar, indicating that the plants within the same tub were not more similar to each 

other compared to plants in other tubs. Plots of the observed responses for each plant 

against the tub in which the plant was located suggest the same conclusion (Fig. 6.1 

and Fig. 6.2). 

 

Of the models which were predicted to perform well under the simulation study, the 

random intercept and slope model with ωi = VC and Σ = UN obtained competitive 

information criteria compared to other models with relatively simple covariance 



 197 

structures, and obtained the best predictions compared to models under all other 

covariance structures. The model with the TOEP covariance structure performed well 

relative the information criteria, obtaining close to the minimum values for these 

measures compared to other models with simple covariance structures. This model 

also obtained values for the MAE and MSE that were close to the minimum, 

indicating good estimates for the parameters in the mean structure. Therefore it can be 

concluded that both the random intercept and slope model with ωi = VC and Σ = UN 

and the no random effects model with TOEP covariance structure are good choices for 

this relatively complex data set. The third model which performed well under the 

simulation study, the random intercept and slope model with ωi = AR(1) and Σ = UN, 

obtained good forecasting statistics under the quadratic model, but was unusable for 

the simplistic linear model as the estimated random effects covariance matrix was not 

positive definite. 

 

The OLS model obtained relatively poor information criteria, but obtained the best 

MAE and MSE values under both the linear and quadratic mean models. This 

indicates that the OLS model estimated the mean structure well, but estimated the 

covariance matrix poorly. This supports the fact that the OLS estimator for the mean 

is consistent and unbiased (Verbeke & Molenberghs, 2000; Demidenko, 2004). 

 


