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ABSTRACT

CONVEX OPTIMIZATION FOR RANK-SPARSITY DECOMPOSITION, WITH

APPLICATION TO THE PLANTED QUASI-CLIQUE PROBLEM

We consider the rank-sparsity decomposition problem with its application to the

planted quasi-clique recovery in this thesis. Given a matrix which is a superposition

of a low rank and a sparse matrix, the rank sparsity decomposition problem answers

the question, “when is it possible to decompose the matrix into its low rank and sparse

components?”. The common convex formulation for this problem is to minimize a

weighted combination of the nuclear norm and the l1-norm. To prove optimality of

solutions with this formulation, it is customary to derive a bound on the dual matrix

which certifies the optimality of the solution. Among the methodological contributions

of this thesis is the sharp theoretical bounds obtained for the dual matrix. We have

improved the results on low rank matrix decomposition by deriving the bound on our

dual matrix, using the matrix l∞,2 norm. Moreover, we established conditions under

which recovery is achievable by deriving a dual matrix, certifying the optimality of our

solution.

We adapt the convex formulation for the rank-sparstity decomposition to the planted

quasi-clique problem. This problem is a generalization of the planted clique problem

which is known to be NP-hard. This problem has applications in areas such as com-

munity detection, data mining, bioinformatics, and criminal network analysis. We have

considered mathematical modelling, theoretical framework, and computational aspects

of the problem. We showed that the planted quasi-clique can be recovered using con-

vex programming. We have achieved this by adapting techniques from low rank matrix
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decomposition to the planted quasi-clique problem. Our numerical results show that

when the input graph contains the desired single large dense subgraph and a moderate

number of diversionary vertices and edges, the relaxation is exact.

We have shown, numerically, the superiority of our formulation over the only exist-

ing Mixed Integer Programming (MIP) formulations. Further, we present a simplified

proof to show that quasi-cliques also posses what is known as quasi-hereditary property.

This property can be exploited to develop enumerative algorithm for the problem.
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Chapter 1

Preamble

1.1 Introduction
In this chapater, we provide motivations for this research. Quasi-clique recovery

is a relatively new research area with only a handful of research papers reported in

the literature, despite its wide applicabilities. We open with some background to the

problem and proceed to highlight our contributions to the body of knowledge. The last

section of the chapter contains the organization of the remainder of the thesis.

1.2 Background and Motivation
Various real life problems can be modeled using graphs. For instance, the inter-

action between protein molecules (protein-protein networks) can be represented with

a graph whereby the nodes represent proteins and the edges show interaction [5, 93].

Also, the world-wide web can be viewed as a graph [22, 126, 127, 140]. Each static

HTML web page is a node and an edge between any two nodes means that a hyperlink

exists betweeen the two pages. Furthermore, a group of people with certain similar

traits (or interaction) can be described using graph. Each node represents a person and

there is an edge between two people if they share similar trait or they communicate. A

very large dense subgraph of any of these graphs can have different real-life implica-

tions. A highly connected subgraph of the protein-protein networks implies a protein

complex [105]. In the same vein, a dense subgraph of a group of people can mean a

group of allies or a group of people of the same origin [71].

A clique induces the densest subgraph of any undirected graph, G = (V,E). G[V ′],

induced by V ′ ⊆ V , forms a clique if its nodes are pairwise adjacent [109]. In this
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thesis, clique is used to refer to the subset of vertices or its induced subgraph inter-

changeably. The Maximum Clique Problem (MCP) is to find the clique with largest

cardinality in a given graph [36, 135, 136]. The maximum clique (MC), the maximum

independent set and the minimum vertex cover problem are computationally equiva-

lent [132]. The size of the largest clique in a graph is known as the clique number.

We denote it by ω(G). Although MCP is NP-hard [79], it has been well studied due

to its wide applications. Verily, cliques possess the ideal properties for cohesiveness

[139]. However, the requirement that every pair of nodes are adjacent is too restrict-

ing for some real-life applications. This necessitates the emergence of different clique

relaxations. Some of these relaxation models, emanating from soical network analysis

(SNA), are the k-clique, k-club, and k-plex, see for example, [19, 20]. A density based

relaxation known as quasi-clique or γ -clique was introduced by Abello et al. [3, 4].

Although γ-clique is the most recent of clique relaxations, it is one of the most popular

due to its suitability for a range of applications [165]. The following are some of the

application domains where the quasi-clique model is applicable.

• Community Detection in Social Network Analysis: One of the major areas in

which the quasi-clique model is widely applicable is in social networks [88, 139].

In this case, a set of vertices denote the actors in the network while the edges

translate to ties among the actors [71]. The actors in the network are people while

the relationship, interaction, connection, or association between them is referred

to as ties. These ties can be in term of friendship, acquaintances, family or any

kind of relationship. In another context, actors can be companies; while ties will

represent business dealings between the companies. In this case, a community is

characterized by a highly interconnected set of nodes. The density of the network

is a measure of the strength of the relationships in the community. Although
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cliques are sets of nodes with maximum density, the size of the community that

is detected from a network using clique model can be very small.

• Data clustering and data mining: Quasi-clique model can be used for data clus-

tering and data mining. Due to the advent of very high computing power, high

volume of data are being generated and stored nowadays. The task of analysing

these massive data is becoming challenging [143]. Data clustering can be defined

as an unsupervised classification of a dataset into subgroups known as clusters.

Each cluster contains objects that are similar to each other but different from

members/elements of the other clusters (subgroups). The more intra group (inter

group) similarity (dissimilarity) the better the clustering process. Quasi clique

has been used for analyzing biological networks [19] and network clustering

[166]. Data mining, on the other hand, entails automatic extraction of new in-

formation from a given large set of data. There are some other similar terms to

data mining; e.g, knowledge mining, knowledge extraction, pattern/data analy-

sis, and knowledge discovery [87]. Graph-based data mining [143] is applicable

in finding frequent structure and graph matching in a large domain. Quasi-clique

has been used in mining cross-graph in genomic data [142].

• Protein-protein network: Protein complexes are a collection of proteins which

interact with one another at the same location and time. Their role in regula-

tion of cellular processes and functions are essential. Protein-protein interaction

networks (PPINs) are collections of protein-protein interactions. Important bio-

logical information at the cellular or molecular level of interacting proteins can

be acquired from PPINs [68]. The protein-protein interaction network can be

modelled using undirected graphs [31]. Mining these networks can provide im-

portant directions for the study of biological pathways and protein function [36].
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It has been shown that quasi-clique is effective in mining protein complexes and

other biological structures [31, 91, 114, 142].

• Criminal Network Analysis: Crime analysis involves collection and analysis of

crime related data for prediction of crime occurrences based on distribution of

existing data [96]. The study of terrorist network, money laundering, drug traf-

ficking are all part of criminal network analysis [17]. Despite the fact that the

law enforcement and intelligence agencies have access to large volume of raw

data, criminal network analysis is currently neither efficient nor effective. This

is because of lack of sophisticated (data mining) tools and techniques that will

enhance effective and efficient utilization of the data [172]. Network analysis

[71] and data mining/clustering [93, 172] are effective tools for crime analysis

and intelligence [20]. Consider the 9/11 terrorist attack of 2001 in the US for

example. Figure 1.1 is the network of the suspected terrorists in the cruel at-

tack. The network shows the links between the attackers. The data used to build

this network were publicly available before the horrendous attack but were only

collected after the attack. Although this network may neither be complete nor

completely accurate, its analysis would have provided valuable insight into the

network and activities of the terrorist group. The terrorist network is a dense

graph but definitely not a clique. That means using a clique model to solve the

problem will not give an acceptable result. However, using a clique relaxation

model like γ-clique, where γ can be fine-tuned to the desired density, will give a

better result.

For the practical applications enumerated above and others that we could not men-

tion, a really random model may not give a good depiction of average case data. Indeed,

a good representation of generic input data would be those containing a particular hid-

den structure, obscured by random noise [11]. In this thesis, we study the planted
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Figure 1.1: The social network of the US September 11, 2001 terrorist.
Source: www.orgnet.com
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quasi-clique model. This model is more suitable in representing the real scenarios. The

contributions of this thesis are contained in the next section.

1.3 Contributions of the Thesis
The main contribution of this thesis is our proposed mathematical model for maxi-

mum planted quasi-clique recovery. Of utmost importance is the theoretical framework

for guaranteed recovery that we present. Our contributions can be summarised as fol-

low:

• Clique has hereditary property. This implies that every induced subgraph of a

clique is a clique. Many of the clique finding algorithms exploit this property.

Unfortunately, this is not true for quasi-clique. Nevertheless, we present a simple

and intuitive proof to show that quasi-clique is also endowed with what is known

as quasi-hereditary.

• We develop a convex program for planted quasi-clique recovery based on matrix

decompositon technique. Our convex program is an improvement and a gener-

alization of the convex program in [12] that was proposed for the planted clique

problem.

• We obtain a new result on the bound of the dual matrix, certifying the optimality

of the solution of our convex program.

• We use this result to establish the condition under which exact recovery of the

planted maximum quasi-clique is possible with our convex program. The result

obtained from our computational experiments corroborate the theory.
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1.4 Organization of the Thesis
The following is the outline of this thesis. We provide definitions and necessary

background results on graph theory, linear algebra, convex programming, and prob-

ability theory in Chapter 2. A review of the nuclear norm heuristic for matrix rank

minimization is contained in Chapter 3. Chapter 4 contains discussion on clique relax-

ations while Chapter 5 is dedicated to the study of quasi-clique and planted quasi-clique

in particular. We present the theoretical framework for planted quasi-clique recovery in

chapter 6. Chapter 7 contains the report of the numerical experiments we conducted to

support our claim. We summarize the work done in this thesis and give our concluding

remarks in Chapter 8.

Part of Chapter 3, 4, 5, 6 and 7 were used in preparing [1] and [2].
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Chapter 2

Mathematical Fundamentals

2.1 Introduction
In this chapter, we summarise the classical results on convex and matrix analysis.

We begin with some basic definitions from graph theory. We then proceed to the fun-

damental theories from linear algebra. These tools will be used in our analyses. We

conclude the chapter with some established results from convex analysis.

2.2 Basic Graph Theory
A graph G is an ordered triple (V (G), E(G), φ(G)) which comprises the vertex or

node set (we use these terms interchangeably) V (G), the edge set E(G) and a relation

φ(G). φ(G) associates two vertices, not necessarily distinct, with each edge. The

vertices are known as endpoints. An edge which has identical endpoints is known as

a loop, while an edge with distinct endpoints is called a link. Edges having the same

pair of endpoints is called multiple edges. A graph without any loop or multiple edges

are called simple graph. We specify a simple graph by its vertex and edge set only. In

addition, we write V instead of V (G) for the vertex set and E for the edge set E(G).

All the graphs considered in this thesis are simple graphs. A graph is finite if both its

vertex and edge set are finite, otherwise, it is infinite. We also note here that our study

only deals with finite graphs. For i, j ∈ V , a path between i and j is a sequence of

vertices such that each vertex in the sequence is adjacent to the vertex next to it. A

closed path is known as a cycle. An n-cycle is a cycle with n vertices. A cycle has

a chord if it contains a pair of vertices that are adjacent, but not along the cycle. Two

nodes are connected if there exists a path between them. G is a connected graph if
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all of its nodes are pairwise connected, otherwise, it is disconnected. The distance,

dG(i, j), between two vertices i and j in a graph is the number of edges in a shortest

path connecting them. If no such path exists, then dG(i, j) = ∞ [93]. It is possible to

have more than one shortest path in one graph. The longest shortest path between any

pair of nodes in G is known as the diameter of G and is denoted as diam(G). Indeed,

diam(G) = maxi,j∈V (dG(i, j)). i, j are said to be adjacent or neighbours if there exists

an edge (i, j) ∈ E and such an edge is incident to i and j. We denote the set of all

neighbours of i in G as NG(i). The degree of i in G, denoted by degG(i), is the number

of nodes adjacent to i. In other words, degG(i) = |NG(i)|. We denote the minimum

degree in G as δ(G) while the maximum degree is ∆(G). H = (V ′, E ′) is a subgraph

of G if V ′ ⊆ V and E ′ ⊆ E. H is a spanning subgraph if V ′ = V and E ′ ⊆ E. ρ(G)

is the edge density of G. It is defined as the ratio of the total number of edges in G to

the maximum number of possible edges. In other words, ρ(G) = |E|/
(|V |

2

)
. The vertex

connectivity of G, κ(G), is the minimum number of vertices to be removed to make G

become trivial or disconnected.

For every graph, G, with vertex set V of cardinality n, there is an associated matrix

known as the adjacency matrix of G. The adjacency matrix AG of G is an n × n

symmetric matrix such that AG(i, j) is the number of edges which has i, j ∈ V as

endpoints. The adjacency matrix of a simple graph has entries 0′s and 1′s with the

diagonal entries always being zeros. There exists, also, the incidence matrix MG of G.

MG is an n × m matrix such that MG(i, j) = 1 if node i is an endpoint of an edge

(i, j), and 0 otherwise. m is the number of edges in G. The complement of G is a

graph Ḡ = (V, Ē) such that (i, j) ∈ Ē if and only if (i, j) /∈ E. A subset D of V is

a dominating set if for all i ∈ V , either i is in D or i is adjacent to a vertex in D. A

clique is a set of pairwise adjacent vertices while an independent set (or stable set) is a

set of vertices that are pairwise non-adjacent.
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Proposition 2.2.1. Let C ⊆ V . G[C] is a clique if and only if one of the following

conditions hold:

(a) dG[C](i, j) = 1, ∀ i, j ∈ C

(b) diam(G[C]) = 1

(c) {i} is a dominating set of G[C], for every i ∈ C

(d) δ(G[C]) = |C| − 1

(e) ρ(G[C]) = 1

(f) κ(G[C]) = |C| − 1.

The chromatic number, χ(G), of G is the minimum number of colours required to

label the nodes of G such that adjacent nodes would be given different colours. G is

k-partite if the nodes of G can be partitioned into k-disjoint sets such that no pair of

vertices within the same set are adjacent. If k is equal to 2, we say G is bipartite. G

is a chordal graph if each cycle with at least four nodes has a chord. For additional

background details in graph theory, see [37, 170]

2.3 Vector and Matrix norms
Here and everywhere else, we denote vector spaces with bold capital letters, vectors

with bold lower case letters, matrices with capital letters and scalars with lower case

letters. Wherever this is not the case, it will be clearly stated. Let V be a vector space

and R be the set of real numbers. A vector norm on V is a mapping ||.|| : V 7→ R+

which satisfies the following conditions: for all x, y ∈ V and α ∈ R;

i. ||x|| ≥ 0 and ||x|| = 0 if and only if x = 0 (non-degeneracy property)

ii. ||αx|| = |α|||x|| (linearity)
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iii. ||x + y|| ≤ ||x||+ ||y|| (Triangle inequality)

The space V can be Rn or Cn, i.e, real or complex. Examples of norms on Rn include

the l2-norm or the Euclidean norm denoted by ||.||2, defined by
√

xTx =
√
〈x,x〉 =√∑n

i=1 |xi|2, ∀ x ∈ Rn; the l1-norm ||.||1 defined by
∑n

i=1 |xi|, ∀ x ∈ Rn; the infinity

norm or max norm ||.||∞, defined by max1≤i≤n |xi|. xT denotes the transpose of x.

Generally, an lp-norm (p ≥ 1) is denoted and defined as:

||x||p =

(
n∑
i=1

|xi|p
)1/p

∀ x ∈ Rn.

Theorem 2.3.1. All the norms on Rn are equivalent, i.e, for each pair of norm ||.||a

and ||.||b on Rn, there are constants 0 < c1 ≤ c2 <∞ such that:

c1||x||a ≤ ||x||b ≤ c2||x||a ∀ x ∈ Rn. (2.1)

For the l2-norm, the l1-norm, and the l∞-norm the uniform equivalence relations

are summarized by:

||x||2 ≤ ||x||1 ≤
√
n||x||2, (2.2)

||x||∞ ≤ ||x||2 ≤
√
n||x||∞, (2.3)

||x||∞ ≤ ||x||1 ≤ n||x||∞. (2.4)

Given any two vectors x,y ∈ Rn, the following holds:

|xTy| ≤ ||x||.||y||. (2.5)

The equality holds if and only if x = αy for some α ∈ R. (2.5) is referred to as the

Cauchy-Schwarz inequality. If x and y in an inner product space are orthogonal, i.e
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x.y = 0, then

||x + y||2 = ||x||2 + ||y||2. (2.6)

The matrix norm has analogous definition. Indeed, ||.|| : Rn1×n2 7→ R+ is a matrix

norm if:

(a.) ||X|| ≥ 0, ∀ X ∈ Rn1×n2 ,

(b.) ||λX|| = |λ|||X||, ∀ λ ∈ R and X ∈ Rn1×n2 ,

(c.) ||X + Y || ≤ ||X||+ ||Y ||, ∀ X, Y ∈ Rn1×n2 ,

In addition, when X and Y are matrices with appropriate dimensions, some matrix

norms satisfy the following additional property:

||XY || ≤ ||X||||Y ||.

This property is known as submultiplicity property or consistency condition.

Common example of matrix norm is the Frobenius norm. The Frobenius norm of

X ∈ Rn1×n2 is defined as:

||X||F =

(
n1∑
i=1

n2∑
j=1

X2
ij

)1/2

= (tr(XTX))1/2 =

(
r∑
i=1

σ2
i

)1/2

, (2.7)

where trace(A) is the trace of a matrix A, AT denotes the transpose of A; and σi, i =

1, . . . , r are the singular values of X (to be discussed later in Section 2.4). For any

A,B ∈ Rn×n,

trace(AB) = trace(BA) = trace(ATBT ) = trace(BTAT ).

The standard Inner Product, 〈., .〉, defined on Rn1×n2 is:
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〈X, Y 〉 =
∑
i

∑
j

XijYij = trace(XTY ), (2.8)

for X, Y ∈ Rn1×n2 .

Other examples of matrix norm include the sum-absolute-value norm known as en-

trywise matrix ||.||1 norm and defined as: ||X||1 =
∑n1

i=1

∑n2

j=1 |Xij|, and the maximum-

absolute-value norm called entrywise matrix ||.||∞ norm defined as:

||X||∞ = max{|Xij| : i = 1, . . . , n1; j = 1, . . . n2}.

An important class of matrix norm is the operator norms or induced norms. Let

||.||β be a norm on Rn2 . The operator norm of X ∈ Rn1×n2 , induced by ||.||β is defined

as

||X||β = sup{||Xu||β : ||u||β ≤ 1}. (2.9)

An alternative definition is given by

||X||β = sup
u6=0

||Xu||β
||u||β

= sup
||u||β≤1

||Xu||β = sup
||u||β=1

||Xu||β. (2.10)

If ||.||β is the Euclidean norm, then the induced norm of X is the largest singular value.

This norm is known as the spectral norm. It is denoted by ||X||2 and defined as

||X||2 = σmax(X) = (λmax(XTX))1/2, (2.11)

where λmax is the largest eigenvalue of XTX . Unless stated otherwise, we will denote

the Euclidean norm by ||u|| and the spectral norm by ||X||.

The norm induced by the l∞-norm, denoted by ||X||∞, is the maximum row sum of

X . The norm is defined as
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||X||∞ = sup{||Xu||∞ : ||u||∞ ≤ 1}

= max
1≤i≤n1

n2∑
j=1

|Xij|.

The last induced norm we are discussing here is the l1 induced norm, ||X||1, defined

as:

||X||1 = max
1≤j≤n2

n1∑
i=1

|Xij|. (2.12)

It is, basically, the maximum column sum of X . The Frobenius norm and induced

norms discussed above satisfy the following inequalities, for X ∈ Rn1×n2 (see [83]);

||X|| ≤ ||X||F ≤
√
n2||X||, (2.13)

1
√
n2

||X||∞ ≤ ||X|| ≤
√
n1||X||∞, (2.14)

1
√
n1

||X||1 ≤ ||X|| ≤
√
n2||X||1, (2.15)

||X|| ≤
√
||X||1||X||∞. (2.16)

Given any norm, ||.||, there exists a dual norm, ||.||d, defined as

||X||d = sup
Y
{〈X, Y 〉 : ||Y || ≤ 1}. (2.17)

In addition, the dual of a dual norm, ||(||.||d)||d, is the original norm, ||.||. For vectors

in Rn, the dual of lp-norm, p ∈ (1,∞), is the lq-norm, with 1
p

+ 1
q

= 1. The Euclidean

norm is self dual, the dual of l∞-norm is l1-norm while the dual of l1-norm is l∞-norm.

This concept extends to the matrix norms defined earlier. Equivalently, the dual of

Frobenius norm is Frobenius norm. However, the dual associated to the spectral norm

is defined as

||X||∗ = sup
Y
{trace(XTY ) : ||Y || ≤ 1}. (2.18)
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This norm is the sum of the singular values:

||X||∗ = σ1(X) + σ2(X) + . . .+ σr(X) = trace
(
(XTX)1/2

)
,

where r is the rank of X . The norm is mainly called the Nuclear norm. Nevertheless,

is known by some other names like Schatten 1-norm, the Ky Fan r-norm, and the trace

class norm [147]. The induced norms are related with the following inequality

||X|| ≤ ||X||F ≤ ||X||∗ ≤
√
r||X||F ≤ r||X||. (2.19)

2.4 Rank and Singular Value Decomposition
One of the important tools used in solving matrix rank problem is the Singular

Value Decomposition (SVD). Let M ∈ Rn1×n2 with rank(M) = r. Then, M can be

factorized as

M = ÛΣ̂V̂ T , (2.20)

where Û ∈ Rn1×r, V̂ ∈ Rn2×r, Σ̂ is a diagonal matrix with σ1 ≥ σ2 ≥ . . . ≥ σr on

the diagonal. The σi, i = 1, . . . , r are known as the singular values of M while the

columns of Û and V̂ are the singular vectors. The matrices Û and V̂ satisfy:

ÛT Û = V̂ T V̂ = I.

Any square matrix, A, such that ATA = AAT = I is said to be Orthogonal. We will

discuss more on orthogonality in the next section. The factorization of M into SVD

can alternatively be written as

M =
r∑
i=1

σiuiv
T
i , (2.21)
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where ui, vi is the i−th column of Û , V̂ respectively; and σi is the i−th singular value.

The columns of Û and V̂ are called the left and right singular vectors, respectively.

Furthermore, for a symmetric matrix, the left and the right singular vectors are the same.

The factorization in (2.20) and (2.21) is called reduced singular value decomposition

(see Figure 2.1).

Figure 2.1: Reduced SVD of a matrix M ∈ Rn1×n2 with rank r and n2 ≤ n1

The SVD used in most applications is the reduced form. However, that is not the

initial formulation of SVD. Observe that the columns of Û are r orthonormal vectors

in n1-dimensional space. Unless n1 = r, they do not form a basis of Rn1 . For them

to form a basis, we can adjoin an additional n1 − r orthonormal columns to Û to get

U ∈ Rn1×n1 . Similarly, V̂ will be adjoined with n2 − r orthonormal vectors while the

last n1 − r rows and n2 − r columns of Σ are padded with zeros. The decomposition

hence becomes

M = UΣUT , (2.22)
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where U ∈ Rn1×n1 , V ∈ Rn2×n2 and Σ ∈ Rn1×n2 . (2.22) is known as the full singular

value decomposition. Figure 2.2 is a schematic diagram of full SVD. The dashed lines

indicate the “silent” rows or columns of U, V and Σ that are discarded in (2.20).

Figure 2.2: Full SVD of a matrix M ∈ Rn1×n2 with rank r and n2 ≤ n1

The rank of a matrix, M , denoted by rank(M), is the number of its non-zero sin-

gular values. The rank is also equivalent to the number of linearly independent row(s)

or column(s) of M . On the other hand, the null-space of M is the set of solutions to the

homogeneous equation Mx = 0. Therefore,

nullspace(M) = {x ∈ Rn2 : Mx = 0}.

The dimension of null-space of M is known as the nullity of M and we denote it by

nullity(M). The following theorem states the relationship between the dimension, the

rank and the nullity of M . In fact, it is known as the fundamental theorem of Linear

Algebra.

Theorem 2.4.1. For any matrix M ∈ Rn1×n2 with n1 ≥ n2,
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Figure 2.3: A non-orthogonal (Oblique) Projection

n2 = rank(M) + nullity(M)

2.5 Orthogonal Projection
A projector, P , is a square matrix which satisfies

P2 = P . (2.23)

In other words, P is idempotent. The projector can be orthogonal or non-orthogonal. A

non-orthogonal projector can be called oblique projector [160]. One can see a projector

as a situation where a light is shone on the subspace range(P) from the right direction,

then the shadow projected by a vector, v, will be Pv. One can easily observe that if

v belongs to range(P), then v will lie exactly on its own shadow. Mathematically,

v ∈ range(P) implies that there exists some u, such that v = Pu. Hence,

Pv = P(Pu) = P2u = Pu = v. (2.24)
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Figure 2.4: An orthogonal Projection

One can draw a line from v to Pv (see Figure 2.3). Projecting along the line, we

have

P(Pv− v) = P2v− Pv = 0. (2.25)

This implies that Pv− v ∈ null(P). If P is a projector, then I − P is also a projector

because

(I − P)2 = I2 − 2P2 + P2 = I − P . (2.26)

This is called the complementary projector. I − P projects onto to the nullspace of P .

For any projector, P , the following holds:

range(I − P) = null(P). (2.27)

null(I − P) = range(P). (2.28)

range(P) ∩ null(P) = {0}. (2.29)
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P is an orthogonal projector (Figure 2.4) if P satisfies (2.23) and P = PT . We

denote an orthogonal projector by P⊥. Let V ⊆ Rn be a subspace. For any y ∈

Rn,Py ∈ V and (I − P)y ∈ V ⊥. If P1 and P2 are each orthogonal projectors, then

for any z ∈ Rn we have

||(P1 − P2)z||2 = (P1z)T (I − P2)z + (P2z)T (I − P1)z. (2.30)

Furthermore, if range(P1) = range(P2) = V , then the right-hand side of Equation

(2.30) is equal to zero. This proves the uniqueness of orthogonal projection of a sub-

space. Suppose the columns of U = {u1,u2, . . . ,uk} are an orthonormal basis for a

subspace V , then P = UUT is the unique orthogonal projection onto V .

2.6 Convex set, hulls, cone and functions
Let F ⊆ Rn be a set. F is an affine set if the line passing through any two different

points in F lies in F , i.e, F is an affine set if for any x1, x2 ∈ F and α ∈ R; αx1 +

(1−α)x2 ∈ F. This means that F contains the linear combination of any pair of points

in it, provided the coefficients of the linear combination sum to one. This idea can

be extended to more than two points. A point of the form α1x1 + . . . + αkxk, where

α1 + . . .+αk = 1, is an affine combination of the points x1, . . . , xk. The set of all affine

combination of points in F is called the affine hull of F , and it is denoted by affF .

Mathematically,

affF = {α1x1 + . . .+ αkxk : x1, . . . , xk ∈ F, α1 + . . .+ αk = 1}. (2.31)

The affine hull is the smallest affine set containing F . Closely related to affine set, is

the convex set. F is a convex set if
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αx1 + (1− α)x2 ∈ F, ∀ x1, x2 ∈ F, ∀α ∈ [0, 1];

that is the line segment between any two points in F lies in F . A point of the form

α1x1 + . . . + αkxk, where the α1 + . . . + αk = 1, and αi ≥ 0, i = 1, . . . , k is known

as the convex combination of the points x1, . . . , xk. The convex hull of F is denoted by

convF and is defined as

convF =

{
α1x1 + . . .+ αkxk : xi ∈ F,

k∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , k

}
. (2.32)

It is the set of all convex combination of points in F . Obviously, a convex hull is always

convex. As it is the case for affine set, the convex hull is the smallest convex set that

contains F . The following proposition states the operations that preserves convexity of

a convex set.

Proposition 2.6.1 ([29], Proposition 1.1.1). (a.) The intersection ∩i∈IFi of any col-

lection of convex sets {Fi : i ∈ I} is convex.

(b.) For any two convex sets F1 and F2, the vector sum F1 + F2 is convex.

(c.) For a convex set F and a scalar α, αF is convex. In addition, if F is convex and

α1, α2 are positive scalars then

(α1 + α2)F = α1F + α2F.

(d.) The interior and the closure of a convex set are convex. A point x ∈ F is an

interior point of F if there is a small ball centered at x that lies entirely in F .

The set of all interior points of F is the interior of F . Also, the closure of a set F

is the intersection of all the closed sets containing F .
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(e.) The image and the inverse image of a convex set under an affine function is con-

vex.

By convention, an empty set is a convex set. In addition, a singleton, the space

Rn, any subspace of Rn are common examples of convex set. We note here, however,

that there are some special examples of convex sets. One of these sets, the semidefinite

cone, is very important to our study. Hence, special attention is given to this set later in

Section 2.8. We briefly mention the other sets in this category here. A hyperplane is a

set of the form

{y : aTy = b},

where a ∈ Rn is a nonzero vector and b ∈ R. Analytically, it is the solution set of a

nontrivial linear equation. A closed halfspace is a set of the form

{y : aTy ≤ b},

where a ∈ Rn is a nonzero vector and b ∈ R. Simply put, it is the solution set of one

nontrivial linear inequality. A hyperplane divides Rn into two halfspaces: open and

closed halfspaces. The set {x : aTx < b} is the interior of the halfspace and it is known

as an open halfspace. The hyperplane {x : aTx = b} is the boundary of the halfspace.

We have the following theorem.

Theorem 2.6.1 ([150], Theorem 11.5). Every closed convex set is the intersection of

the closed half-spaces which contain it.

A polyhedron is the solution set of finite number of linear equalities and inequalities.

That is

P = {x : aTi x ≤ bi, i = 1, . . . , p; cTi x = di, i = 1, . . . , q}.
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Thus, a polyhedron is an intersection of finite number of hyperplanes and halfspaces.

A polyhedron that is bounded is sometimes called a polytope. Although, this is not a

general convention. A set C is a cone if for every x ∈ C and α ≥ 0, αx ∈ C. C is a

convex cone (see Figure 2.5) if it is a cone and convex. This implies that ∀x1, x2 ∈ C

and α1, α2 ≥ 0,

α1x1 + α2x2 ∈ C.

Any point of the form α1x1 + . . . + αkxk with αi ≥ 0, i = 1, . . . , k is called the

conic combination of x1, . . . , xk. C is a convex cone if and only if it contains the

conic combinations of all it elements. The conic hull of C is the set of all the conic

combinations of the entire points in C.

Figure 2.5: A Convex Cone

Convex functions have similar definition. Let F be a convex subset of Rn. A real

valued function f : F 7→ R is said to be convex on F if for all x1, x2 ∈ F and for any
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scalar α ∈ [0, 1], we have that

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2). (2.33)

f is strictly convex if ∀ x1, x2 ∈ F, x1 6= x2 and α ∈ (0, 1), the inequality in (2.33) is

strict. f is concave if (−f) is convex and strictly concave if (−f) is strictly convex.

An example of convex functions is a norm ||.||, since by triangle inequality, we have

||αx1 + (1− α)x2|| ≤ ||αx1||+ ||(1− α)x2||,

for any x1, x2 ∈ Rn and α ∈ [0, 1]. Given a scalar α ∈ R, the sublevel set of f

is the set {x ∈ F : f(x) ≤ α}. For any value of α, the sublevel sets of a convex

function is convex, but the converse is not true. That is, the sublevel sets of f can be

convex whereas f is not convex. If f is concave, then the superlevel set is defined by

{x ∈ F : f(x) ≥ α}. The superlevel set is also convex. The epigraph of f : Rn 7→ R,

denoted by epif , is a subset of Rn+1 and is defined as

epif = {(x, w) : x ∈ Rn, w ∈ R, f(x) ≤ w}. (2.34)

The epigraph is the link between convex sets and convex functions [41]. f : Rn 7→ R

is convex if an only if epif is convex. On the other hand, f is concave if and only if its

hypograph is a convex set. The hypograph of f is denoted by hypof and is defined as

hypof = {(x, w) : x ∈ Rn, w ∈ R, f(x) ≥ w}. (2.35)

The convex envelope of f , denoted by envf , is the supremum of all convex functions

g such that g(x) ≤ f(x) for all x ∈ F . For a convex function f : F 7→ R, g ∈ Rn is a
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subgradient of f at x0 ∈ F if

f(x) ≥ f(x0) + gT (x− x0), ∀ x ∈ F. (2.36)

The set of subgradients of f at x0 is known as the subdifferential of f at x0 and it

is denoted by ∂f(x0). Subgradients can be considered as an extension of the con-

cept of gradient to non-smooth (non-differentiable) functions. In fact, if f is continu-

ously differentiable, the subdifferential of f at x0 is exactly the gradient of f at x0, i.e,

∂f(x0) = {∇f(x0)}, where {∇f(x0)} is the vector of all partial derivatives of f at x0.

2.7 Convex Programming
A convex optimization program is a problem of the form

minimizef(x) (2.37a)

subject to x ∈ X, (2.37b)

where the objective function f : X 7→ (−∞,+∞] is a convex function and X ⊆

Rn is a non-empty set. Convex programming requires minimizing a given convex

function over a given convex set. When the convex set X is the intersection of a convex

cone and an affine subspace, we have a conic program. One important example of

conic programming is the Semidefinite programming (SDP). Detail discussion about

SDP is given in Section 2.8. Any x ∈ X ∩ dom(f) is called a feasible solution of

(2.37). Problem (2.37) is feasible if there exists at least one feasible solution, i.e, X ∩

dom(f) 6= ∅; otherwise, the problem is infeasible. x̂ is a minimum of f over X if

x̂ ∈ X ∩ dom(f) and f(x̂) = infx∈X f(x). In this case, x̂ is called the minimizer of f

over X . Alternatively, we say f attains a minimum over X at x̂ and write
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x̂ ∈ arg min
x∈X

f(x). (2.38)

If x̂ is the unique minimizer over X , then we write

x̂ = arg min
x∈X

f(x). (2.39)

The maximum point also has similar terminologies, i.e, x̂ ∈ X : f(x̂) = supx∈X f(x)

is the maximum point of f over X if x̂ is a minimum of (−f) over X . This is indicated

by writing

x̂ ∈ arg max
x∈X

f(x). (2.40)

And similarly, if x̂ is the unique maximum point over X , then

x̂ = arg max
x∈X

f(x). (2.41)

Suppose X is a subspace of Rn, then X is closed and convex. Problem (2.37) can also

be written in the following form (see [30, 41])

minimize f(x) (2.42a)

subject to gi(x) ≤ 0, i = 1, . . . , p; (2.42b)

hj(x) = 0, j = 1, . . . , q; (2.42c)

where f and gi, i = 1, . . . , p, are convex functions and hj, j = 1, . . . , q are affine. We

define the Lagrangian L : F ×Rq ×Rq 7→ R associated with (2.42) as

L(x, λ, ν) = f(x) +

p∑
i=1

λigi(x) +

q∑
j=1

νjhj(x), ∀ x ∈ F, λ ∈ Rp, ν ∈ Rq, λ ≥ 0.

(2.43)
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Hence, (2.42) can be written as the primal problem

probp = inf
x∈F

sup
λ∈Rp

+,ν∈Rq

L(x, λ, ν), (2.44)

where R+ is the set of positive real numbers. We switch the order of the supremum

and infimum in (2.44) to get the dual problem

probd = sup
λ∈Rp

+,ν∈Rq

inf
x∈F
L(x, λ, ν). (2.45)

We denote the optimal value of the Lagrange primal and dual problem as probp∗ and

probd∗ respectively. probd∗ is the best lower bound on probp∗ that can be obtained from

the Lagrange dual function. Indeed, we have the following important inequality

probd∗ ≤ probp∗ . (2.46)

The inequality (2.46) holds even if the original function is non-convex [41]. The prop-

erty stated in Equation (2.46) is known as the weak duality. It is possible that the dual

value is strictly less than the primal value, i.e,

probd∗ < probp∗ . (2.47)

In this case, we say duality gap exists between the primal and the dual problem. If the

equality

probd∗ = probp∗ (2.48)

holds, then there is no duality gap. Then, we say strong duality holds. The best bound

which can be obtained from the dual function of the Lagrange is tight in this case.

There are several results, establishing conditions under which strong duality holds.
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The conditions are known as constraint qualification. A simple constraint qualification

is the Slater’s condition. The convex program (2.42) satisfies the Slater’s constraint

qualification if there exists x0 ∈ dom(f) such that gi(x0) < 0,∀i = 1, . . . , p, and

hj(x0) = 0,∀j = 1, . . . , q. We have the following theorem.

Theorem 2.7.1 ([38], Theorem 4.3.7). If the Slater’s condition holds for the primal

problem (2.42), then the values of the primal and the dual are equal, and the dual value

is attained if finite.

We will now proceed to discuss an important class of convex programming known

as semidefinite programming. This class of optimization problem is fundamental to

this thesis.

2.8 Semidefinite Programming
In this section, we will introduce the standard formulation of a primal Semidefinite

program (SDP) together with its dual. We review some important properties of the

Semidefinite cone and program.

A matrix M ∈ Rn×n is symmetric if M = MT . Every symmetric matrix M can be

factorized into

M = QDQT , (2.49)

where Q ∈ Rn×n is an orthogonal matrix and D is an n × n diagonal matrix of the

eigenvalues of M arranged in non-increasing order. The columns of Q are the eigen-

vectors of M . The factorization in (2.49) is known as spectral decomposition of M .

The set of eigenvalue of M is called its spectrum. Recall that λ is an eigenvalue of M ,

with corresponding eigenvector v, if there exists a nonzero vector v ∈ Rn, such that

Mv = λv. Alternatively, λ is an eigenvalue of M if it is a root of the characteristic

polynomial p(λ) = |M − λI|. A symmetric matrix M is said to be positive semidef-
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inite (PSD) if for all v ∈ Rn, vTMv ≥ 0. If M is a symmetric positive semidefinite

matrix, then all its eigenvalues are real and non-negative. We denote the space of n×n

symmetric matrices as Sn and symmetric positive semidefinite matrices as Sn+. Note

that, for symmetric matrices, the spectral decomposition is equivalent to the singular

value decomposition with the singular values being the absolute value of the eigen-

values. Further, M ∈ Sn is known to be positive definite if for all nonzero vector,

v ∈ Rn, vTMv > 0. In other words, we say a symmetric matrix is positive definite if

all of its eigenvalues are strictly positive. In like manner, we denote the space of n× n

positive definite (PD) matrices as Sn++. Let M1,M2 ∈ Sn. We denote symmetric PSD

matrix M1 by M1 � 0 and write M1 � M2 if M1 − M2 � 0. Symmetric positive

definite matrix M1 is denoted by M1 � 0.

Sn+ = {M ∈ Sn|M � 0} is closed under addition. Moreover, consider M1,M2 ∈

Sn+ and scalars α, β ≥ 0. For any v ∈ Rn, we have

vT (αM1 + βM2)v = αvTM1v + βvTM2v ≥ 0,

where αM1 + βM2 ∈ Sn+. Hence, Sn+ is a close convex cone in Rn×n with dimension

n× (n+ 1)/2. Sn+ is known as the semidefinite cone.

A semidefinite program (SDP) is an optimization problem defined as follows

minimize 〈C,X〉, (2.50a)

subject to 〈Ai, X〉 = bi, i = 1, . . . , p, (2.50b)

X � 0, (2.50c)
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where the matrices C and Ai, i = 1, . . . , p are given symmetric matrices, the vector

b ∈ Rp is also given while X is the variable to be optimized. Let A : Sn 7→ Rp be a

given linear map, then (2.50) can be written as

minimize 〈C,X〉, (2.51a)

subject to A(X) = b, (2.51b)

X � 0. (2.51c)

Since the objective function 〈C, .〉 and the set {X|A(X) = b},Sn are convex, problem

(2.51) is a convex program. Therefore, we can define a dual problem and optimal-

ity condition for (2.51) as we did for (2.42). To define the dual of (2.51), we need

the adjoint operator to A. The adjoint of A is defined as A∗ : Rp 7→ Sn satisfying

〈AX, y〉 = 〈X,A∗y〉 ∀ X ∈ Sn. Observe that

〈AX, y〉 =

p∑
i=1

yi trace(AiX) = trace

(
X

p∑
i=1

yiAi

)
= 〈X,A∗y〉, (2.52)

so that

A∗y =

p∑
i=1

yiAi.

We follow the Lagrangian approach used earlier in defining the dual program of (2.42).

Let y ∈ Rp be the Lagrange multiplier, the primal problem is

inf
X�0

sup
y∈Rp

(〈C,X〉+ 〈b−AX, y〉) . (2.53)

The dual is also given by
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sup
y∈Rp

inf
X�0

(
bTy + 〈X,C −A∗y〉

)
. (2.54)

The weak duality

inf
X�0

sup
y∈Rp

(〈C,X〉+ 〈b−AX, y〉) ≥ sup
y∈Rp

inf
X�0

(bTy + 〈X,C −A∗y〉) (2.55)

also holds for this primal-dual formulation. Introducing a slack variable, W , the fol-

lowing is the standard dual formulation for the SDP (2.51):

maximize 〈b, y〉 (2.56a)

subject to A∗y +W = C (2.56b)

y ∈ Rp,W � 0. (2.56c)

The following Proposition and Theorem state the conditions under which strong duality

holds and when the optimal value is attained.

Proposition 2.8.1. Given a feasible solution X̂ of (2.51) and a feasible solution (ŷ, Ŵ )

of the dual program (2.56), the duality gap is 〈C, X̂〉 − 〈b, ŷ〉 = 〈Ŵ , X̂〉 ≥ 0. If

〈C, X̂〉−〈b, ŷ〉 = 0, then X̂ and (ŷ, Ŵ ) are each optimal solution of (2.51) and (2.56),

respectively. Furthermore, Ŵ X̂ = 0.

Theorem 2.8.1. Suppose that the Slater constraint qualification holds for (2.51) and

(2.56). Then X̂ is optimal for the primal problem and (ŷ, Ŵ ) is optimal for the dual

problem if and only if

A∗ŷ + Ŵ − C = 0 dual feasibility

b−A(X̂) = 0 primal feasiblity

Ŵ X̂ = 0 complementary slackness
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X̂, Ŵ � 0.

Semidefinite programming has wide applicabilities, especially, for NP-hard com-

binatorial optimization problems. Many of the problems in this category have convex

relaxation that are SDP. In many cases, the SDP relaxations are very tight. The simplest

and most successful SDP relaxation is the Max-Cut problem. Others are the Quadratic

Assignment Problem (QAP), Maximum Clique Problem (MCP), graph partitioning,

graph colouring, maximum satisfiability, etc (see [80], [90]). In this thesis, we are

proposing a new SDP relaxation for another very difficult but useful optimization prob-

lem; the Maximum Quasi-clique Problem (MQCP). This problem has the maximum

clique problem as a special case.

Essentially, there are two classes of algorithms that are known to solve SDP in

polynomial time, namely; the ellipsoid method [86] and the interior point method [80,

90, 125]. Both of these algorithms have different variants. Several software packages

have also been developed to solve SDP (e.g, see [63, 159, 176]).
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Chapter 3

Nuclear Norm Relaxation for Rank

Minimization Problem

3.1 Introduction
In this chapter, we introduce the Rank Minimization Problem (RMP), which is the

bedrock of the works done in this thesis. RMP is known to be non-convex and NP-hard.

Hence, we provide the convex hull of rank function and subsequently convex approx-

imation of RMP. We give some important examples of RMP and state the optimality

conditions. We conclude the chapter by listing some efficient algorithms for solving

the convex program.

3.2 The Rank Minimization Problem
There are many real-life problems involving constraints on rank of matrices. Low

order controller design, minimal realization theory, and model reduction are some ex-

amples from control theory [146]. Furthermore, applications of RMP in optimiza-

tion community include inference with partial information [148] and embedding in

Euclidean spaces [104]. Ames and Vavasis [12] recently applied rank minimization

technique to solve the planted clique problem. Moreover, modelling using low-rank

matrices is a popular technique in semidefinite relaxation of many combinatorial op-

timization problems, e.g maximum cut problem [82]. A prominent class of RMP is

the low-rank matrix completion. This has wide applications in recommender system,

system identification, collaborative filtering, remote sensing, global positioning and

quantum state tomography [11, 48, 49, 50]. We are often interested in finding the low-
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rank matrix satisfying some set of constraints. LetX ∈ Rn1×n2 be the decision variable

and suppose the set of feasible solutions for the constraints, C, is convex, then the rank

minimization problem can be stated as follows

minimize rank(X),

subject to X ∈ C.
(3.1)

If C is affine, then (3.1) is the affine rank minimization problem and can be written as

minimize rank(X),

subject to A(X) = b,
(3.2)

where A : Rn1×n2 7→ Rp is a linear map and b ∈ Rp. The rank minimization prob-

lem is NP-Hard, non-convex optimization problem in general. All the available al-

gorithms have exponential running time. Various heuristic algorithms based on local

optimization have been proposed. These include alternating projections and its varia-

tions [84, 130], alternating matrix inequalities [154], linearization [69], and augmented

Lagrangian methods [70]. Nevertheless, in some cases with special structure, RMP can

be reduced to solution of a linear system or solved by singular value decomposition

[117, 137, 147]. When X is a diagonal matrix, the affine rank minimization becomes

the cardinality minimization problem [147]. This problem is also known to be NP-hard.

Projection pursuit [76, 112] and orthogonal matching pursuit [56, 61] are some of the

the proposed algorithms for solving cardinality minimization problems.

Rank minimization problems are usually solved in the optimal controls community

using the “trace heuristic”. In this case, one minimizes the trace of a positive semidef-

inite decision variable in lieu of the rank (see, for example, [27], [117]). The trace

heuristic formulation is the following problem
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minimize trace(X),

subject to A(X) = b,

X � 0.

(3.3)

(3.3) relies on the fact that positive semidefinite matrices have non-negative eigenval-

ues. Therefore, the trace minimization is equivalent to the l1 norm minimization of

the vector of eigenvalues in this case [72]. A generalization of this heuristic to non-

symmetric matrices was introduced by Fazel et al. [72, 73] (see also [147]). In this

case, problem (3.2) becomes

minimize ||X||∗,

subject to A(X) = b.
(3.4)

In the next section, we will show that (3.4) is a convex optimization problem. There-

fore, it can be solved in polynomial time by casting it as a semidefinite program. Several

algorithms have been developed to solve (3.4), e.g [45, 106, 111, 158]. Although the

affine rank minimization problem is intractable in general, it has been shown that the

minimum rank solution can be obtained in polynomial time by solving (3.4) for many

cases. Essentially, the nuclear norm relaxation provably recovers the low rank solutions

with very high probability when the linear map A is restricted isometry [147]. Over

time, nuclear norm has been observed to produce very low rank solutions in practice.

However, the theoretical basis for when it does produce the minimum rank solution

recently emerged [72, 145]. The connection between the nuclear norm and rank of a

matrix can be shown using the conjugate function and the notion of convex hull from

convex analysis. We explore these in the next section.
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Figure 3.1: Illustration of convex hull of a function. h(x) is the convex hull of f(x)

3.3 Convex Hull of Matrix Rank
The convex hull or convex envelope of a real-valued function f : C 7→ R is the

largest convex function h such that h(x) ≤ f(x) for all x ∈ C [41, 162]. This implies

that among all the convex functions, h is the one that best approximates f . This is

illustrated in Figure 3.1. In dealing with intractable problems like (3.2) where the

objective function is non-convex, it is a common practice to use the convex hull as a

tractable convex approximation. The convex hull of the rank function is given in the

following theorem.

Theorem 3.3.1 ([72], Theorem 1). The convex hull of rank(X) on the set {X ∈

Rn1×n2| ||X|| ≤ 1} is the nuclear norm ||X||∗.

See [72], Section 5.1.5 for the proof of this Theorem 3.3.1. Summarily, the proof

establishes the fact that the biconjugate of the rank(X) on {X ∈ Rn1×n2|||X|| ≤ 1}

is ||X||∗ and concludes the arguement using the fact that the biconjugate of a rank

function is equal to its convex hull under certain conditions (see [162], Theorem 1.3.5).

We have the following corollary for the set {X ∈ Rn1×n2| ||X|| ≤ k}, ∀ k ≥ 0.

Corollary 3.3.1 ([11], Corollary 3.2.1). The convex hull of rank(X) on the set {X ∈

Rn1×n2| ||X|| ≤ k} is ||X||∗/k ∀ k.
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Recall from the chain of inequalities (2.19) that rank(X) ≥ ||X||∗/||X||, for allX .

Hence, if ||X|| ≤ 1, ||X||∗ ≤ rank(X) always holds. When the singular values are all

equal to one, then rank(X) is equal to the nuclear norm, i.e, rank(X) = ||X||∗. When

the singular values are less than or equal to one, then the sum is less than the rank.

Therefore, the nuclear norm is the tightest convex function that underestimates the

rank function on the unit ball in the spectral norm [147]. Therefore, the nuclear norm

heuristic provides bounds for solutions of affine rank minimization problem. That is,

suppose X0 is the minimum rank solution of A(X) = b, and X0 has the spectral norm

||X0|| = k. The convex hull of the rank on the set C = {X ∈ Rn1×n2 : ||X|| ≤ k} is

||X||∗/k. If X∗ is the minimum nuclear norm solution of A(X) = b, then we have:

||X∗||∗/k ≤ rank(X0) ≤ rank(X∗).

Thus, when the nuclear norm solution is known, it provides both the upper and lower

bound for minimum rank solution of (3.2). The nuclear norm is a convex function,

hence it can be easily optimized. In fact, it is the best known approximation of the rank

function over the convex set C.

As stated in Section 2.3, the nuclear norm is the dual of the spectral norm. Let

M ∈ Rn1×n2 . Suppose ||M || ≤ ω, then we have ω2I −MTM � 0. Then using Schur

complement (see [41], Appendix A.5.5), we have

ωIn1 M

MT ωIn2

 � 0.

Consequently, the spectral norm can be characterised as the following semidefinte op-

timization problem
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||M || = min

ω |
ωIn1 M

MT ωIn2

 � 0

 . (3.5)

Now, letX ∈ Rn1×n2 and supposeX = UΣV T is its SVD, where U ∈ Rn1×r, V ∈

Rn2×r and Σ ∈ Rr×r is a diagonal matrix. Define Y := UV T . Since the columns of U

and V are orthonormal vectors, ||Y || = 1 and trace(XTY ) =
∑r

i=1 σi(X) = ||X||∗.

Hence, the dual norm of ||.|| is greater than or equal to the nuclear norm (see Equation

(2.18)). To bound the dual norm above, we solve the following SDP

maximize trace(XTY )

subject to ||Y || ≤ 1.

(3.6)

Using (3.5), problem (3.6) is equivalent to

maximize trace(XTY )

subject to

In1 Y

Y T In2

 � 0.
(3.7)

The dual of (3.7) is

minimize
1

2
(trace(Z1) + trace(Z2))

subject to

Z1 X

XT Z2

 � 0.
(3.8)

If we set Z1 := UΣUT and Z2 := V ΣV T , then the triple (Z1, Z2, X) will be feasible

for (3.8), since Z1 X

XT Z2

 =

U
V

Σ

U
V


T

� 0.
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In addition, we have trace(Z1) = trace(Z2) = trace(Σ). Therefore, the objective

function satisfies 1
2
(2trace(Σ)) = trace(Σ) = ||X||∗. Hence, the dual of the spectral

norm is indeed the nuclear norm. This assertion can also be proved using the Slater’s

condition. Since there is no duality gap between (3.7) and (3.8), either of them can be

used to compute the nuclear norm.

Substituting (3.8) into problem (3.4), we get the following semidefinite formulation

minimize
1

2
(trace(Z1) + trace(Z2))

subject to

Z1 X

XT Z2

 � 0,

A(X) = b.

(3.9)

Now, having established that problem (3.4) is the best known approximation of (3.2),

we can go now ahead to write the dual problem to (3.4) as

maximize bT z,

subject to ||A∗(z)|| ≤ 1,

(3.10)

whereA∗ : Rp 7→ Rn1×n2 and z ∈ Rp. In like manner, using the SDP for characteriza-

tion of the operator norm given in (3.5), then (3.10) becomes

maximize bT z,

subject to

 In1 A∗(z)

A∗(z)T In2

 � 0.
(3.11)
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3.4 Optimality conditions for nuclear norm minimiza-

tion problem
The optimality condition of the nuclear norm heuristic is based on the notion of

subdifferential defined in Section 2.6 in Chapter 2. Suppose X ∈ Rn1×n2 and X =

UΣV T is the singular value decomposition ofX , where U, V are n1×r, n2×r matrices

respectively, and Σ is an r × r diagonal matrix. Then the subdifferential of the nuclear

norm at X is given by (see, [101, 168])

∂||X||∗ = {UV T +W |W TU = 0,WV = 0, ||W || ≤ 1}. (3.12)

Consequently, we have the following compact optimality conditions for the convex

problem (3.4).

Theorem 3.4.1 ([147], Equation (2.11), [11], Theorem 3.2.3). An n1 × n2 matrix X is

an optimal solution of (3.4) if there exists z ∈ Rp such that

A(X) = b (3.13)

A∗(z) ∈ ∂||X||∗. (3.14)

(3.13) ensures feasibility of the linear equations, while (3.14) certifies that there is no

feasible direction for improvement. To see this, let W be any other matrix in the primal

feasible set of (3.4). Since A∗(z) ∈ ∂||X||∗, we have

||W ||∗ ≥ ||X||∗ + 〈A∗(z),W −X〉

= ||X||∗ + 〈z,A(W −X)〉

= ||X||∗.
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The last equality follows from the fact that W and X both feasible.

3.5 Examples of rank minimization problem
As stated at the beginning of this chapter, there are many problems involving rank

constraints. However, we discuss three of them with direct link to our application.

3.5.1 The cardinality minimization problem

One of the important examples and a special case of rank minimization problem is

the cardinality minimization problem. The Cardinality Minimization Problem (CMP)

requires finding the sparsest vector which satisfies a given set of linear constraints. In

other words, given M ∈ Rn1×n2 and b ∈ Rn1 , we want to find the vector x̂ ∈ Rn2

which solves Mx = b and have the minimum number of non-zero entries. The number

of non-zero entries of a vector x ∈ Rn2 is known as its cardinality and is denoted as

card(x). It is also sometimes called the weight, sparsity or ||.||0 norm of x. We need

to stress here that ||.||0 norm is not a norm in the real sense since it does not satisfy the

linearity property, i.e, ||λx||0 = ||x||0,∀ λ 6= 0. A vector is sparse if it has few nonzero

entries, i.e x ∈ Rn2 and card(x) << n2.

To show that the CMP is a special case of the RMP, define the matrix X in (3.2) as

a diagonal matrix, that is X = diag(x) for x ∈ Rn. This way, the rank of X is equal

to the number of nonzero entries in x and rank(diag(x)) = ||x||0. Consequently, (3.2)

for CMP can be written as

minimize rank(diag(x))

subject to A(diag(x)) = b,
(3.15)
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where the n × n diagonal matrix diag(x) is the decision variable, A : Rn×n 7→ Rp

is a given linear map and the vector b ∈ Rp is also given. Since A acts only on the

diagonal entries, there exists M ∈ Rp×n such that A(diag(x)) = Mx, ∀ x ∈ Rn.

CMP is applicable in many domains, e.g, compressed sensing and single pixel cam-

era design. Let x̂ represents a particular sparse signal. The problem, in this case, is how

to take advantage of the sparsity of x̂ and encode it to reduce the amount of storage

space required. This could be achieved by encoding x̂ as a linear combination of known

signals. Hence, we store x̂ as b = M x̂, for some M and b. For this encoding to be

useful, we must be able to reconstruct x̂ from b. This process of reconstructing a sparse

signal from a small number of measurements is known as compressed or compressive

sensing. The term compressed sensing is from the fact that, in practice, the complete

signal is not recorded. Rather, the measurement vector b = Mx is acquired by under-

sampling x̂ several time, independently. Therefore, only a “compressed” form of the

original signal is “sensed”. So, if M is selected such that x̂ is the unique solution of

cardinality minimization of Mx = b, then we can recover x̂ by solving

minimize ||x||0,

subject to Mx = b.
(3.16)

Problem (3.16) is called the l0-norm minimization problem for the following reason.

Recall that, for p ≥ 1, the standard p-norm is given by

||x||p =

(
n∑
k=1

|xk|p
)1/p

,

whereas the p-norm minimization problem is given by

42



minimize
n∑
k=1

|xk|p,

subject to x ∈ Ψ,

(3.17)

where Ψ is a convex set. So, as p→ 0, the objective function in (3.17) converges to

lim
p→0

n∑
k=1

|xk|p = ||x||0.

The cardinality minimization problem (3.16) is non-convex and NP-hard [11]. A popu-

lar convex surrogate used instead of l0 minimization is the l1 minimization. Recall that,

for x ∈ Rn, the l1-norm is defined as

||x||1 =
n∑
k=1

|xk|.

The l1-norm relaxation for problem (3.16) is the following convex program:

minimize ||x||1,

subject to Mx = b.
(3.18)

The semidefinite formulation for (3.18) (see [54], Appendix A) is

minimize 1TnZ1n,

subject to − Zij ≤ Xij ≤ Zij ∀ (i, j)

MX = b,

(3.19)

where 1n ∈ Rn is an n-dimensional vector with all entries equal to one, Z ∈ Rn×n and

X = diag(x). Figure 3.2 gives an intuitive illustration of why l1- norm minimization

produces sparse solutions. (3.18) can be reformulated as a linear program by splitting

x into its positive and negative components such that x = x+ + x− where x+, x− are
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Figure 3.2: Illustration of sparse solution via l1-norm minimization

the absolute values of the positive and negative entries of x respectively. So we have

x+
k = xk for xk ≥ 0 and 0 otherwise. In like manner, x−k = xk for xk ≤ 0 and 0

otherwise. Consequently, we have the following linear program

minimize
n∑
k=1

(x+
k + x−k )

subject to x = x+ + x−

Mx = b

x+, x− ≥ 0.

(3.20)

Therefore, one can obtain solution to (3.18) by solving (3.20). (3.20) can be solved

using any linear programming method. In particular, simplex method and the interior

point methods can be used [125]. In a more difficult case, (3.18) is equivalent to a
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second order cone program (SOCP). This case can also still be solved using interior

point methods. However, a specialized method is expected to outperform such existing

standard methods. Orthogonal matching pursuit [62], iterative hard thresholding [34,

75], the homotopy method [131] are some of the efficient specialized algorithms for

solving (3.18).

3.5.2 The low-rank matrix completion problem

A very important class of linearly constrained matrix rank minimization problem is

the matrix completion problem. Low rank matrix recovery from partial sampling of its

entries is applicable in collaborative filtering [148], dimensionality reduction [169] and

multi-class learning [129]. Let M ∈ Rn1×n2 be a rectangular matrix. Suppose only m

entries of M are available with m << n1n2. Matrix completion problem answers the

question: can we recover M from its m partially observed entries? Obviously, this is

not possible in general. In fact, ifM is an n×n square matrix of unknown rank, r, then

it can easily be observed that matrix completion is impossible unless m ≥ (2n − r)r.

This is because an n×n matrix of rank r depends on 2nr− r2 degree of freedom. The

singular value decomposition (SVD) is helpful in revealing these degree of freedom. In

many cases where the matrix we intend to recover is known to be low ranked, recovery

may be possible. One of such scenario is when the columns of the matrix are indepen-

dent and identically distributed random samples with low covariance. Furthermore, this

problem can easily be ill-posed, even with prior knowledge that the unknown matrix

has low rank. For example, suppose y ∈ Rn is an n dimensional vector andM ∈ Rn×n

is a rank-one matrix where:

M = e1yT
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and e1 is the first element of the standard basis of the Euclidean vector space. In this

case, we cannot recover M by sampling its entries. Even if we have up to 95% ran-

dom sample of this matrix, we will probably miss the elements in the first row. Hence,

we will not be able to recover y, and by implication, M . This is analogous in com-

pressed sensing to the fact that one cannot recover a signal supposed to be sparsed in

time domain by sub-sampling in time domain [48]. Therefore, it is not possible to

recover all low-rank matrices from a sample of its entries. To avoid such scenario, it

has become a customary approach to presume that M has additional properties known

as the incoherence [49, 50, 52, 54, 85]. Suppose M ∈ Rn1×n2 has the singular value

decomposition M = UΣUT . M satisfies the incoherence conditions, with parameter

µ ∈ [1, min(n1,n2)
r

], if

max
i
||UT ei||2 ≤

µr

n1

, max
i
||V T ei||2 ≤

µr

n2

(3.21)

and

||UV T ||∞ ≤
√

µr

n1n2

, (3.22)

where ei′s are the canonical basis vectors with suitable dimensions and ||.||∞ is entry-

wise l∞ norm. Since the orthogonal projection onto the column space of U is given by

PU = UUT , maxi ||UT ei||2 ≤ µr
n1

and maxi ||PUei||2 ≤ µr
n1

are equivalent [52]. Similar

argument goes for PV . The incoherence condition asserts that for small values of µ,

the singular vectors are reasonably spread out [49, 50, 85]. The notion of incoherence

was studied in connection with recovery of sparse representation of vectors from “over

complete dictionary” [65]. In addition, incoherence has been used in compressed sens-

ing [54]. The main objective in compressed sensing is recovery of “low-dimensional”

objects, e.g sparse vectors [47, 67] or low-rank matrices [49, 147]; given incomplete

observations. Moreover, matrix completion, using nuclear norm minimization, was
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first proposed in [49]. It was based on ideas and techniques from compressed sensing.

Candés and Recht [49] showed that other structures, apart from sparse signals and im-

ages, can be recovered from a small set of observations. They introduced the incoherent

model. More importantly, Candés and Recht proved that a random matrix M ∈ Rn×n

of rank r with m < n2 observed entries can perfectly be recovered if

m ≥ Crn6/5 log n,

for some numerical constant C > 0 with high probability. On the other hand, from

information theory point of view, m = O(nr) for recovery to be possible with any

kind of method whatsoever. Since the emergence of this problem, several other works

have followed [49], providing theoretical guarantee and efficient algorithms for suc-

cessful recovery of low-rank matrices [48, 50, 95]. Although, other methods have

been proposed, e.g [95], the method of choice remains the use of convex optimization.

[48, 49, 50, 145] all proved the validity and effectiveness of this approach. Ames and

Vavasis [12] adapted the idea of low-rank matrix recovery to solve the planted clique

problem but with a different proof technique. [57] reduced the sample complexity for

recovery of semidefinite matrix from O(nr2 log2 n) to O(nr log2 n). The major step

used to achieve this improvement is by deriving a new bound using the l∞,2 − norm.

Let M ∈ Rn1×n2 is a rectangular matrix and that m entries of M are sampled such

that {Mij : (i, j) ∈ Ω} where Ω is a random subset of {1, . . . , n1} × {1, . . . , n2} with

cardinality m. Candés and Recht [49] established that most matrices M of rank r can

be perfectly recovered by solving the rank minimization problem

minimize rank(X),

subject to Xij = Mij, ∀ (i, j) ∈ Ω,

(3.23)
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Figure 3.3: Schematic diagram of low-rank matrix completion.

where X ∈ Rn1×n2 is the decision variable. If there was a unique low-rank matrix that

fits the sampled data, then M can be recovered with high probability (see Figure 3.3

for illustration). This holds if sufficient entries of M is sampled and M is a random

rank r matrix. However, since the rank function is known to be NP-hard, (3.23) is not

so useful. [49] proposed following convex relaxation instead

minimize ||X||∗,

subject to Xij = Mij ∀ (i, j) ∈ Ω.

(3.24)

Using (3.9), the SDP formulation for (3.24) is given as

minimize
1

2
(trace(Z1) + trace(Z2))

subject to

Z1 X

XT Z2

 � 0,

Xij = Mij ∀ (i, j) ∈ Ω.

(3.25)

The bound on minimum sample required for successful recovery in [49] has later been
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improved in [50, 85, 95]. However, the sharpest bound is the work of Recht [145]. The

result is contained in the following theorem.

Theorem 3.5.2.1 ([145], Theorem 2). Let M ∈ Rn1×n2 be of rank r with SVD UΣV T .

Without loss of generality, assume that n1 ≤ n2,Σ ∈ Rr×r, U ∈ Rn1×r and V ∈

Rn2×r. Assume that

A0 The row and column spaces of M have coherences bounded above by some pos-

itive µ0.

A1 The matrixUV T has a maximum entry bounded, in absolute value, by µ1

√
r/(n1n2)

for some positive µ1.

Suppose m entries of M are observed with locations sampled uniformly at random. If

m ≥ 32 max{µ2
1, µ0}r(n1 + n2)β log2(2n2), (3.26)

for some positive constant β, then the minimizer to problem (3.24) is unique and equal

to M with probability at least 1− 6 log(n2)(n1 + n2)2−2β − n2−2β1/2

2 .

3.5.3 The matrix decomposition problem

An extension of the matrix completion problem known as matrix decomposition

problem was studied in [52, 54, 58]. Some application domains of this problem include

face recognition, ranking and collaborative filtering, latent semantic indexing and video

surveillance as enumerated in [52]. Others are graphical model learning, linear system

identification and coherence optical systems discussed in [54]. In this setting, the low

rank matrix is a submatrix of a larger matrix with other additional unwanted entries

(sometimes called error or corruptions). Such a matrix is formed by adding an unknown

low-rank matrix to an unknown sparse matrix. The goal is to recover the low-rank and
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sparse components of the given matrix. A more difficult version of this is the case when

the low-rank matrix has some missing entries. Chen et al. [58] calls this case recovery

in presence of errors and erasures. Refer to Figure 3.3 for a pictorial description of

this problem. Generally, the matrix decomposition problem is stated as follows. We

are given a matrix M ∈ Rn1×n2 , which is a sum of a low rank matrix B0 ∈ Rn1×n2

and a sparse (errors) matrix C0 ∈ Rn1×n2 . The cardinality and the values of the non-

zero entries of C0 are not known; likewise the locations of the non-zero entries are

also not known. The goal is to recover B0 and C0 from M . The natural mathematical

formulation for this problem is:

minimize rank(B) + λ||C||0,

subject to B + C = M.

(3.27)

B,C ∈ Rn1×n2 are the decision variables while λ is a positive constant. From the

foregoing, and following from [52, 54, 171], the convex relaxation for (3.27) is

max ||B||∗ + λ||C||1,

subject to B + C = M,

(3.28)

where ||C||1 =
∑

ij |Cij| is the entry-wise l1 norm of C. By the foregoing, the SDP

formulation for (3.28) is given as

minimize
1

2
(trace(Z1) + trace(Z2)) + λ1TnZ1n,

subject to

Z1 B

BT Z2

 � 0,

− Zij ≤ Cij ≤ Zij ∀ (i, j)

B + C = M,

(3.29)
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Figure 3.4: Schematic diagram of low-rank plus sparse matrix decomposition.

where Z,Z1, Z2 ∈ Rn1×n2 . A pertinent question will be; under what condition is

decomposition possible? Wright et al. [171] showed that low-rank plus sparse matrices

can successfully be recovered by solving (3.28), with high probability, if the rank of

B0 is O(β m
logm

) for some m ≥ m0 where m is the number of known entries of the

low rank matrix B0, β and m0 are positive constants. This holds with high probability

as m increases. This is an instance of the so-called blessing of dimensionality [66].

Another important factor in the success of (3.28) is the choice of λ. [171] observed

that the right scaling for λ is λ = O(m−1/2), however fixed λ = 1
m2 . [54] presented

a solution using a geometric method of analysis, whereby the tangent spaces of the

algebraic varieties of the low-rank and sparse matrices play an important role. For the

result of Chandrasekaran et al. [54] to be valid, λ must satisfy

λ ∈
(

2inc(B0)

1− 8dgmax(C0)inc(B0)
,
1− 6dgmax(C0)inc(B0)

dgmax(A∗)

)
, (3.30)

where inc(M) := max{µ(row space(M)), µ(column space(M))} and dgmax(M) is the

maximum number of non-zero entries in each column/row of a matrix M . Note that

row space(M) and column space(M) refer to the row space and column space of a ma-

trix, M , respectively. In addition, their conditions for guaranteed success of the convex

program are based on the following two quantities. The first one is the maximum ratio
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between the ||.||∞ and the ||.||, restricted to the subspace generated by matrices with row

or column spaces agreeing with those of B0. The second quantity is the maximum ratio

between the ||.|| and the ||.||∞, restricted to the subspace of matrices that have support

in C0. Chandrasekaran et al. claim that if the product of the two quantites is small, the

recovery is exact, provided λ satisfies (3.30). Candès et al. [52] provide a unique way

of chosing λ which works for every problem instance. They found that when the input

matrix satisfies the incoherence conditions with some other little assumptions, (3.27)

perfectly recovers the low-rank and the sparse components. Let n = min{n1, n2}. The

main result is stated here.

Theorem 3.5.3.1 ([52], Theorem 1.1). Suppose B0 ∈ Rn×n obeys (3.21) - (3.22). Let

S ∈ Rn×n be any sign matrix. Suppose that the support set Ω of C0 is uniformly

distributed among all sets of cardinality m, and that sgn([C0]ij) = Sij for all (i, j) ∈

Ω. Then, there is a numerical constant c such that with probability at least 1 − cn−10

(over the choice of support of C0), (3.27) with λ = 1/
√
n is exact provided that

rank(B0) ≤ ρrn

µ
(log n)−2 and m ≤ ρsn

2, (3.31)

where ρr, ρs ≥ 0 are numerical constants.

The proof techniques follow the path in [49] but also rely very much on the powerful

Golfing Scheme introduced in [85]. Our work applies the matrix decomposition to a

specific problem, recovery of planted maximum quasi-clique. We are inspired by the

work of Ames and Vavasis [12] who applied the matrix completion technique to planted

maximum clique recovery. However, our problem formulation and proof technique

differ greatly from [12]. Indeed, we have the following theorem.

Theorem 3.5.3.2. Suppose B0 ∈ Rn×n obeys the incoherence conditions. Let λ = 1√
n

and S ∈ Rn×n be the random sign matrix. Suppose further that the entries of C0
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is such that Sgn([C0]ij) = Sij , where Sgn(.) is a sign function. Denote the optimal

pair of problem (3.28) as (B∗, C∗). There exists universal positive constants c and c0;

independent of n, such that if

c0
µr log n

n
≤ p ≤ 1,

where p denotes the sampling probability of entries of B0, then (B∗, C∗) is the unique

optimal solution of (3.28) with probability at least 1− c0n
−10.

In Chapter 5, we specialize Theorem 3.5.3.2 to our problem and proof the theo-

retical guarantee for maximum quasi-clique recovery using convex relaxation. Among

other things, this thesis extends the concept in [57] to matrix decomposition problem.

3.6 Conditions for guaranteed success of the nuclear

norm heuristic
At the beginning of Section 3.5.2, we addressed identifiability issues regarding the

low-rank matrix to be recovered. We stated that for recovery to be possible at all, the

matrix must satisfy the incoherence conditions (3.21) - (3.22) and certain number of

entries must be known. Let A : Rn1×n2 7→ Rd be a linear map and b = A(X0), where

X0 is a rank r matrix. Define

X∗ := arg min ||X||∗

subject to A(X) = b.

(3.32)

In this section, we provide theoretical guarantees that ensure that the low-rank matrix

X0 is the same as the nuclear norm solution X∗, i.e, X0 = X∗. The main conditions
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will be defined by a sequence of parameters δr which measure the action of the linear

map A, when restricted to the set of rank r matrices.

3.6.1 Restricted Isometries

Recht et al. [147] extended the restricted isometry property (RIP) from vectors to

matrices and gave the following definition. Let A : Rn1×n2 7→ Rd be a linear map and

assume n1 ≤ n2. For every integer r ∈ {1, . . . , n1}. The r-restricted isometry constant

is defined as the smallest number δr(A) such that

(1− δr(A))||X||F ≤ ||A(X)|| ≤ (1 + δr(A))||X||F (3.33)

holds for every matrix X with rank less or equal to r. This definition is a generalization

of the restricted isometry property (RIP) for sparse vectors developed by Candes and

Tao [46] to low-rank matrices. By definition, δr(A) ≤ δr′(A) for all r less than or

equal to r′ [147]. The following two theorems characterize when X0 is equal to the

minimizer of the nuclear norm heuristic, X∗, using the r-restricted isometry contstant

δr(A). The theorems are a generalization of similar results in cardinality minimization

to low-rank matrix recovery.

Theorem 3.6.1.1 ([147], Theorem 3.2). Suppose that δ2r < 1 for some integer r ≥ 1.

Then X0 is the only matrix of rank at most r satisfying A(X) = b.

Theorem 3.6.1.1 is an extension of Lemma 1.2 of [46] to low rank matrix recovery.

The next theorem gives the condition which guarantees X∗ = X0.

Theorem 3.6.1.2 ([147], Theorem 3.3). Suppose that δ5r ≤ 1/10 for some integer

r ≥ 1. Then X0 = X∗.

The proof of Theorem 3.6.1.2 follows the approach in [51] (see [147] for details).

Theorems 3.6.1.1 and 3.6.1.2 state the conditions under which the nuclear norm solu-
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tion is equivalent to the rank r solution. However, nothing has yet been said about the

linear mapping A for which δr < 1 holds. In the next subsection, we will show that

random linear maps, sampled from some distributions of matrices, have this property

with high probability.

3.6.2 Nearly Isometric Random Matrices

Recht et al. [147] established that when the linear map, A : Rn1×n2 7→ Rd, is

sampled from a class of probability distributions which obey some large deviation in-

equalities, then A will have small r-restricted isometry constant as d, n1 and n2 tend to

∞.

Definition 3.6.2.1 (Definition 4.1 of [147]). Let A be a random variable that takes

values in linear maps from Rn1×n2 to Rd. A is nearly isometrically distributed if for

all X ∈ Rn1×n2 ,

E[||A(X)||2] = ||X||2F (3.34)

and, for all 0 < ε < 1, we have

Pr(|||A(X)||2 − ||X||2F | ≥ ε||X||2F ) ≤ 2 exp

(
−d

2

(
ε2

2
− ε3

3

))
, (3.35)

and, for all t > 0, there exists some constant ζ > 0, such that

Pr

(
||A|| ≥ 1 +

√
n1n2

d
+ t

)
≤ exp(−ζdt2). (3.36)

The two factors for a random linear map to be nearly isometric are the following

[147]. First of all, the linear map must be isometric in expectation. In addition, the

probability of large distortions of length has to be exponentially small. As an example,

the family of random linear maps with matrix representations having independent and

55



identically distributed (i.i.d.) Gaussian entries, Mij ≈ N(0, 1/d), is nearly isometric.

Hence, the nuclear norm relaxation for rank minimization, subject to Gaussian con-

straints is exact with probability tending to 1 for large enough d [11]. Similarly, the

ensemble of random linear operators with matrix representations

Mij =


√

1
d

with probability 1
2
,

−
√

1
d

with probability 1
2
,

(3.37)

and

Mij =



√
3
d

with probability 1
6
,

0 with probability 2
3
,

−
√

3
d

with probability 1
6
,

(3.38)

sampled from an i.i.d. symmetric Bernoulli distribution are nearly isometric.

The top singular value of M is concentrated around 1 + (n1n2)/d for all the en-

sembles above [173]. Our last theorem for this section establishes the fact that if

A : Rn1×n2 7→ Rd is randomly sampled from a nearly isometric family of linear

operators then δr(A) is small for sufficiently large d with probability tending to 1 as d

tends to infinity.

Theorem 3.6.2.1 ([147], Theorem 4.2). Fix 0 < δ < 1. IfA : Rn1×n2 7→ Rd is a nearly

isometric random variable, then, for every 1 ≤ r ≤ min{n1, n2}, there exist positive

constants c0, c1 depending only on δ such that, with probability at least 1− exp(−c1d),

δr(A) ≤ δ whenever d ≥ c0r(n1 + n2) log(n1n2).

The low-rank matrix recovery guarantees given by Theorems 3.6.1.1, 3.6.1.2 and

3.6.2.1 have been improved upon subsequently (see [47, 48, 49, 50, 145], for example).
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3.7 Algorithms for Nuclear Norm Minimization
Several algorithms have been developed for effective minimization of the nuclear

norm constrained by affine subspace of matrices. We highlight a few of them that have

been known to be very successful in this section.

3.7.1 Interior Point Method

The interior point method for SDP is suitable for solving relatively small nuclear

norm minimization problems for which a high degree of numerical precision is re-

quired. Although interior point methods give fast convergence and very accurate, the

memory requirements and the number of computation per iteration are usually high.

The primal SDP problem (3.9) has one (n1 + n2) × (n1 + n2) semidefinite constraint

and p affine constraints while the dual problem (3.11) has one (n1 + n2) × (n1 + n2)

semidefinite constraint and p scalar decision variables. Hence, the total number of de-

cision variables for the primal-dual problem is
(
n1+n2+1

2

)
+p [147]. The state-of-the-art

interior point solvers for SDP generally use primal-dual methods. Update direction for

the current solution are computed by solving a suitable Newton system.

If the matrix dimensions is less than 100 × 100, then any good interior point SDP

solver, such as SeDuMi [155] or SDPT3 [159], will handle the problem with high

accuracy [52, 107, 147]. However, when the dimensions of the matrix are larger than

100 × 100, the number of equations will be running into thousands. In this case, the

corresponding Newton systems will be quite large, and without any specific additional

structure, the memory requirements of such dense systems limit the size of problems

that can be solved. This can be controlled to a reasonable extent by leveraging on

the problem structure when solving the Newton system. The specilaized interior point

method for nuclear norm of [107] is based on this idea.
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3.7.2 Iterative thresholding

Cai et al. [45] developed an algorithm known as singular value thresholding (SVT),

which performs nuclear norm minimization by repeatedly shrinking the singular val-

ues of an appropriate matrix. The iterative algorithm produces a sequence of matrices

{Xk, Y k} and performs a soft-thresholding operation on the singular values of the ma-

trix Y k. Essentially, this reduces the complexity of each iteration to the cost of an

SVD. Initializing Y 0 = 0 ∈ Rn1×n2 and fixing τ > 0 and a sequence of scalar step

sizes {δk}k≥1, the algorithm inductively defines


Xk = shrink(Y k−1, τ)

Y k = Y k−1 + δkPΩ(M −Xk)

until a stopping criterion is satisfied. PΩ(.) is the projection onto Ω while the shrink(Y, τ)

is a nonlinear operator which applies the soft-thresholding rule to the singular values

of its input matrix (see [45], Section 2 for details). For the right values of τ , the se-

quence {Xk} converges to a solution which approximately minimizes (3.24). For every

k ≥ 0, Y k vanishes outside of Ω, hence Y k is sparse. The sparsity can be exploited to

evaluate the shrink function quickly. Further, the Xk have low rank. Therefore, the

algorithm has low storage requirements since only the principal factors are stored.

3.7.3 Proximal Gradient Algorithm

Consider the following relaxed version of problem (3.28)

minµ||B||∗ + µλ||C||1 +
1

2
||M −B − C||2F , (3.39)

where f(B,C) = 1
2
||M−B−C||2F is a penalty function for any violation of the equality

constraint and the relaxation parameter µ is greater than zero. As µ → 0, any solution

58



of (3.39) tends to the solution set of (3.28). Since f(B,C) is convex, smooth, and has

Lipschitz continuous gradient, (3.39) is solvable by proximal gradient algorithms [161].

Iteratively, the algorithm forms separable quadratic approximations to the penalty term

f(B,C) at some chosen points Y k = (Y k
B , Y

k
C ). This is motivated by the fact that in

some cases, the iterates (Bk, Ck) have simple or closed form expression. This property

is exploited in [171] to develop an iterative thresholding algorithm for Robust Prin-

cipal Component Analysis (RPCA). Nevertheless, the iterative thresholding algorithm

proposed therein requires large number of iterations before it converges. Therefore, it

has limited applicability. A significant improvements on the algorithm has been made

in [158] for (3.24) by combining the technique for judicious choice of Y k suggested

in [26] with continuation techniques [171]. Ganesh et al. [78] propose the Accelerated

Proximal Gradient (APG) algorithm for matrix decomposition problem with a far better

performance by extending the soft-thresholding scalar operator

Sε :=


sign(x)(|x| − ε) if |x| > ε

0, otherwise,
(3.40)

to vectors and matrices.

3.7.4 Alternating Direction Method of Multipliers

In general, Alternating Direction Method of Multipliers (ADMM) is a first order

but improved Augmented Lagrangian method for solving convex programming with

linear constraints. A specialised ADMM algorithm for problem (3.28) is developed in

[175]. The Augmented Lagrangian function of (3.28) is given by

L(B,C,Z) := ||B||∗ + λ||C||1 − 〈Z,B + C −M〉+
β

2
||B + C −M ||2, (3.41)
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where Z ∈ Rn1×n2 is the multiplier while β is the penalty parameter. The classical

ADMM iterative scheme (see [30], for instance) for this problem is


Bk+1 ∈ arg minB∈Rn1×n2{L(B,Ck, Zk)},

Ck+1 ∈ arg minC∈Rn1×n2{L(Bk+1, C, Zk)},

Zk+1 = Zk − β(Bk+1 + Ck+1 −M),

where the triple (Bk, Ck, Zk) is a given iterate. Yuan and Yang [175] claim that this is

equivalent to


0 ∈ ∂(||Bk+1||∗)− [Zk − β(Ck +Bk+1 −M)],

0 ∈ λ∂(||Ck+1||1)− [Zk − β(Ck+1 +Bk+1 −M)],

Zk+1 = Zk − β(Bk+1 + Ck+1 −M).

(3.42)

Define Dτ (X) = USτ (Σ)V T , where X = UΣV T is any SVD of X and Sτ is the soft

thresholding operator defined in 3.40. The ADMM algorithm [103, 175] for low rank

plus sparse matrix recovery is Algorithm 1.
Algorithm 1: Alternating Directions Method for Low Rank plus Sparse Matrix

Decomposition
Result: B, C

initialize: C0 = Z0 = 0, β > 0;

while not converged do
compute Bk+1 = D1/β(M − Ck + 1

β
Y k);

compute Ck+1 = Sλ/β(M −Bk+1 + 1
β
Y k);

compute Y k+1 = Y k + β(M −Bk+1 − Ck+1);

end
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The performance of Algorithm 1 on a wide range of problems is excellent because

it requires relatively small numbers of iterations to converge with relatively good ac-

curacy [52]. The dominant cost of each iteration is the computation of Bk+1 by using

singular value thresholding.
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Chapter 4

Clique Relaxations

4.1 Introduction
In this chapter, we discuss the classes of clique relaxation models. We outline the

properties of each of them and point out their advantages and drawbacks. We present

existing solution approach to each of the models.

4.2 Classes of clique relaxations
Clique was introduced by Luce and Perry [109] to model the notion of cohesive

subgroup in social network analysis. Since then, cliques together with its associated

maximum clique problem have been extensively studied in graph theory [35], theoret-

ical computer science [79, 99] and operation research [36, 44] from different perspec-

tives. Cliques posses the ideal structures of a cohesive subgroup. They are endowed

with three important properties expected of a cohesive subgroup, namely; familiarity

(every members are neighbours and no strangers in the group), reachability (direct com-

munication to and from every member) and robustness (trying to destroy the group by

removing members is difficult). Despite the elegance of the clique model, it has been

criticized for its high level of restriction [42, 140, 151]. The major drawback of the

clique model is the fact that not every application problem requires that every pair of

nodes be adjacent. In addition, in most cases, real-life networks are build based on

experimental data that is either incomplete or contain errors [105]. Furthermore, since

cliques contain paths of length one from each node to every other node, studying its

internal structure is not interesting [151].
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All the inadequacies enumerated above motivated researchers to develop clique re-

laxation models to eliminate the drawbacks of the clique model. Each of the relaxations

weakens one of the properties of the clique or the other. The clique relaxation models

include: the k-clique [108], k-clan [119, 120], k-club [120], k-plex [20, 153], k-core

[157], k-defective clique [153] and γ-clique [3, 4, 140, 165]. These relaxations can

be categorised, broadly, into three namely: distance/diameter based, degree based and

density based. Furthermore, according to the taxonomy in [141], the relaxation can

be absolute or relative, standard or weak, structural or statistical. For standard relax-

ation, the relaxed clique-defining property is required to hold in the induced subgraph,

whereas the weak relaxation requires the property to hold in the original graph. Also,

in absolute relaxation, the relaxation parameter is an absolute bound on the relaxation

while the relative version is defined with respect to the cardinality of the node set and

a parameter ζ ∈ (0, 1). In addition, in structural relaxation, the relaxation property is

satisfied by each node, whereas, in statistical relaxation the desired property is satisfied

on average over-all members of the group. The general idea is to characterize a clique-

like structure with a well defined mathematical definitions and known graph theoretic

properties. Over the years, several works have been published on two of these three

categories, i.e the diameter/distance based and the degree based relaxations. Clique

relaxations based on edge density is relatively new. We discuss the first two classes in

this chapter. Density based relaxation forms the main concept in this thesis and is dealt

with in the next chapter.

4.3 Distance and Diameter Bases Relaxations
The first form of clique relaxations is the k-clique. It was introduced by Luce [108].

k-clique relaxes the requirement of having an edge between every pair of vertices in the

group by allowing them to be of distance at most k apart. A subgraph H = (V ′, E ′) of
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G is a k-clique if for all i, j ∈ V ′ ⊆ V, dG(i, j) ≤ k. V ′ is maximal by inclusion [17].

This implies that no vertex outside of V ′ is of distance k or less from every vertex in V ′.

Since H is maximal, any node w ∈ V \ V ′, there exists i ∈ V ′ such that dG(w, i) > k.

k-clique is a weak, absolute, structural clique relaxation.

Finding the largest k-clique in a graph, G, is known as the maximum k-clique

problem. Suppose the cardinality of the largest k-clique in the graph is ωk(G) and

is called k-clique number; the following binary integer linear program recovers the

maximum k-clique in G [17]:

ωk = max
∑
i∈V

xi (4.1a)

subject to:

xi + xj ≤ 1, ∀ i, j ∈ V : i < j, dG(i, j) > k (4.1b)

xi ∈ {0, 1},∀ i ∈ V, (4.1c)

where dG(i, j) is the pairwise distance between vertex i and j in V . The constraint

(4.1b) makes sure that either i or j is included in the k-clique whenever the distance

condition is satisfied. Hence, the feasible solutions will be incidence vectors of k-

cliques in G. xi corresponds to the nodes in V and xi = 1 if the node belongs to

the k-clique and 0 otherwise. Finding maximum k-clique in G is equivalent to finding

maximum clique in Gk [17]. Gk is the kth power of G. Gk = (V,Ek) where (i, j) ∈

Ek ∀ i, j ∈ V if dG(i, j) ≤ k. Thus, the solution approaches available for maximum

clique problem [36] can similarly be used to solve the maximum k-clique problem.

Recall that a k-clique is defined with respect to the given graph G and not the

induced subgraph H . Therefore, if two vertices i, j ∈ V belong to a k-clique H , then

dG(i, j) ≤ k. However, the diameter of the induced subgraph G[H] is not necessarily

k. In other words, dG[H](i, j) ≤ k does not necessarily hold. Consider Figure 4.1 for
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Figure 4.1: A graph illustrating the difference between a 2-clique and a 2-club

example. The vertex set H1 = {1, 3, 4, 5, 6} form a 2-clique, although the diameter

of H1 is 3 which is greater than 2. In fact, a disconnected subgraph can form a k-

clique [119]. Hence, k-clique lacks the tightness and connectedness property which is

a defining feature of a cluster. This deficiency motivates [6] to come up with the concept

of Sociometric clique [139]. This is later known as k-clan [119]. H is a k-clan if it is

a k-clique such that every pair of nodes i, j ∈ H are of distance at most k in H; i.e,

dH(i, j) ≤ k. In other words, a k-clan is a k-clique with diameter k. It is possible for

a graph to contain k-cliques but no k-clan. An example is given in Figure 4.2. Figure

4.2 contains a graph with 2-cliques: H2 = {1, 3, 4, 6, 7, 8}, H3 = {2, 3, 4, 5, 6, 7, 8} but

neither of them is a 2-clan.

A k-clan, H , that is a maximal subgraph of G is a k-club. The fact that H is

a k-club means that ∀ w ∈ G \ H , there exists u ∈ H such that dH(u,w) > k.

The subset of a k-club may not necessarily be a k-club. In other words, k-club lacks

heredity [141]. A graph property, φ, is hereditary on induced subgraphs, if the induced
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Figure 4.2: A graph with 2-cliques but no 2-clan

subgraphs obtained by deleting any subset of vertices does not violate φ. k-club lacks

heredity of any type. Due to the fact that k-clubs do not possess any kind of heredity, it

is not possible to easily adapt the maximum clique algorithms to the maximum k-club

problem. In fact, Pajouh and Balasundaram [134] have shown recently that, for k ≥ 2,

checking for maximality of a k-club is NP-hard. In addition, they gave conditions under

which a connected 2-clique will be a 2-club based on the concept of partitionable cycle.

G is a partitionable cycle, if it contains a spanning cycle, S, and a pair of nonadjacent

nodes i and j such that every edge inE\E(S) has one endpoint in VS(i, j) and the other

endpoint in VS(j, i), where VS(i, j) and VS(j, i) are the internal nodes on the two paths

between i and j in S. A partitionable cycle is asymmetric if |VS(i, j)| 6= |VS(j, i)|. If

no subset of vertices ν, 5 ≤ ν ≤ 2k + 1, ∀ k ≥ 2, induces an asymmetric partitionable

cycle inG, then every connected k-clique is a k-club [134]. As a corollary, in a bipartite

graph, every connected 2-clique is a 2-club [152]. In this case, checking maximality of

a k-club reduces to checking maximality of a connected k-clique.
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The maximum k-club problem seeks the k-club with maximum cardinality in a

given graph. We first present the general integer programming model for maximum

k-club problem and then describe special cases for k = 2, 3 that are of highest practical

interest and have received much attention in the literature. Let Ck
ij be the set of all

chains (paths) linking i, j ∈ V , with lenght at most k. Suppose Vp is the vertex set

of a chain p. Suppose, further, that xi ∈ {0, 1} ∀i ∈ V is equal to one if and only if

the vertex i belongs to the k-club. Define an auxiliary binary variable yp,∀p ∈ C =

∪ij∈VCk
ij . Then, the chain formulation [9, 40] for the k-club problem is the following:

max
∑
i∈V

xi, (4.2a)

subject to

xi + xj ≤
∑
p∈Ckij

yp + 1, ∀ (i, j) /∈ E,Ck
ij 6= ∅, (4.2b)

xi + xj ≤ 1, ∀ (i, j) /∈ E,Ck
ij = ∅, (4.2c)

yp ≤ xq, ∀ p ∈ C, ∀ q ∈ Vp, (4.2d)

xi, yp ∈ {0, 1}, ∀ i ∈ V, p ∈ C. (4.2e)

Constraint (4.2b) guarantees that any non-adjacent pair of nodes i, j in the k-club are

linked by at least a chain. Constraint (4.2c) ensures that nodes i, j are not both in the

k-club if d(i, j) > k. Constraint (4.2d) makes sure that all the nodes of a selected chain

belong to the k-club. The last constraint defines xi and yp as a binary variable. For

k = 2 the above chain formulation becomes:
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max
∑
i∈V

xi, (4.3a)

subject to

xi + xj ≤
∑

l∈N(i)∩N(j)

xl + 1, ∀ (i, j) /∈ E,N(i) ∩N(j) 6= ∅ (4.3b)

xi + xj ≤ 1, ∀ (i, j) /∈ E,N(i) ∩N(j) = ∅ (4.3c)

xi ∈ {0, 1}, ∀ i ∈ V. (4.3d)

Due to the number of possible distinct paths of length at most k between every pair of

nodes, the chain formulation may have a very huge number of variables when k >2.

Generally, we have |Ck
ij| = O(nk−1) for every pair of nodes. Hence, |C| = O(nk+1)

[152]. Therefore, this model does not scale well as k increases. In fact, to solve a small

instance of problem with k ≥ 3 is challenging. To reduce the number of variables in

the mathematical formulation for the maximum 3-club, the neighborhood formulation

was proposed in [8]. This formulation has |V | + |E| number of variables. Observe

that a pair of nonadjacent nodes i, j ∈ V belongs to a 3-club V ′ if there is a node

t ∈ V ′ such that t ∈ Ni ∩ Nj or there are two adjacent nodes u, v ∈ V ′ such that u

is a neighbour of i, and v is a neighbour of j. The first condition holds if and only if

dG[V ′](i, j) = 2. If the first condition does not hold and the second condition holds then

u ∈ {N(i) \ N(j)} and v ∈ {N(j) \ N(i)}. We denote the set of edges that connect

such intermediate vertices for i and j as Eij and define

Eij = {(u, v) ∈ E | u ∈ (N(i) \N(j)), v ∈ (N(j) \N(i))}, (4.4)

for all i, j such that dG(i, j) = 3. Define binary variables xi and zij for each node

i ∈ V and edge (i, j) ∈ E, respectively. Then the maximum 3-club problem can be

formulated as the following binary program:
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max
∑
i∈V

xi, (4.5a)

subject to

xi + xj ≤
∑

l∈Ni∩Nj

xl +
∑

(u,v)∈Eij

zuv + 1, ∀ (i, j) /∈ E, (4.5b)

zij ≤ xi, zij ≤ xj, xi + xj ≤ zij + 1, ∀ (i, j) ∈ E, (4.5c)

xi, zij ∈ {0, 1}, ∀ i ∈ V, ∀ (i, j) ∈ E. (4.5d)

Constraint (4.5b) ensures that two nonadjacent vertices i and j are not both in a 3-club

unless a common neighbour is in the 3-club or a pair of their neighbours, u and v, linked

by an edge, are in the solution set. Constraint (4.5c) guarantees that (i, j) is used if and

only if both its end nodes belong to the solution. [8] also proposed another formulation

known as node cut set formulation for the maximum 3-club problem. It has order |V |

variable but the growth in the number of constraints is exponential [152].

Veremyev and Boginski [163] presented an alternative integer programming for-

mulation for the k-club problem known as the recursive formulation. Consider a set of

vertices V ′ ⊆ V and its characteristic vector x. Define a binary variable v(l)
ij , (i, j =

1, . . . , n; l = 2, . . . , k) such that v(l)
ij = 1 if there is at least a path of length l from i to

j in G[V ′] and 0 otherwise. For l = 2, we have

v
(2)
ij = min{xixj

n∑
s=1

AisAsjxs, 1}, (4.6)

whereAij are entries of the adjacency matrix of the input matrix. The linearized version

of (4.6) is
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v

(2)
ij ≤ xi, v

(2)
ij ≤ xj

v
(2)
ij ≤

∑n
s=1 AisAsjxs, v

(2)
ij ≥ 1

n
(
∑n

s=1AisAsjxs) + (xi + xj − 2).

v
(l)
ij for 3 ≤ l ≤ k can recursively be found using

v
(l)
ij = min{xi

n∑
s=1

v
(l−1)
sj Ais, 1}, (4.7)

with the following linearization


v

(l)
ij ≤ xi v

(l)
ij ≤

∑n
s=1Aisv

(l−1)
sj ,

v
(l)
ij ≥ 1

n

(∑n
s=1Aisv

(l−1)
sj

)
+ (xi − 1).

Consequently, the maximum k-club can be formulated as the following integer program

[163]:

max
∑
i∈V

xi, (4.8a)

subject to
k∑
l=2

v
(l)
ij ≥ xi + xj − 1, ∀ /∈ E (4.8b)

v
(2)
ij ≤ xi, v

(2)
ij ≤ xj, ∀ i, j ∈ V, i < j (4.8c)

v
(2)
ij ≤

n∑
s=1

AisAsjxs, ∀ i, j ∈ V, i < j (4.8d)

v
(2)
ij ≥

1

n

(
n∑
s=1

AisAsjxs

)
+ (xi + xj − 2), ∀ i, j ∈ V, i < j (4.8e)

v
(l)
ij ≤ xi v

(l)
ij ≤

n∑
s=1

Aisv
(l−1)
sj , ∀ i, j ∈ V, i < j, 3 ≤ l ≤ k (4.8f)
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v
(l)
ij ≥

1

n

(
n∑
s=1

Aisv
(l−1)
sj

)
+ (xi − 1), ∀ i, j ∈ V, i < j, 3 ≤ l ≤ k, (4.8g)

xi, v
(l)
ij ∈ {0, 1}, ∀ i, j ∈ V, i < j, l = 2, . . . , k. (4.8h)

(4.8) has O(kn2) variables and constraints. A simpler and more efficient variant of

formulation (4.8) is developed in [164]. Moreover, other MIP-based techniques for

finding k-clubs have recently been considered in [43, 121]. Among the drawbacks of

the 2-club model is that it produces star-like hub-and-spoke structures as maximum-

cardinality solutions. An improved model that finds connected 2-clubs has recently

been studied in the literature [7, 97].

Due to the correspondence between the maximum clique and the maximum k-

clique problem, the heuristic and exact algorithms for the maximum clique problem can

be applied to the kth power of the graph to solve the maximum k-clique problem. This

is one of the major reasons why maximum k-clique has not been studied extensively.

Till date, there is no computational results for the problem [152]. In a similar vein, due

to computational intractability, very few exact methods exist for the maximum k-clique

problem. However, a number of heuristic algorithms exist for solving the maximum

k-club. Three algorithms (DROP, CONSTELLATION and k-CLIQUE & DROP) were

proposed in [39]. Among the three, DROP, with order O(|V |3|E|) time complexity,

was reported to be the most effective for dense graphs. CONSTELLATION, with or-

der (k(|V | + |E|)), performs well in finding the maximum k-club in sparse graphs

according to the report of the numerical experiments in [39]. The solutions found by k-

CLIQUE-DROP are dominated by either DROP or CONSTELLATION in most cases.

In addition, since finding the size of maximum k-clique is NP-hard for any fixed k

[39, 116], the running time of k-CLIQUE & DROP is not polynomial unless P = NP .

Another simple heuristic called Iterative DROP (or IDROP for short) was recently pro-
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posed in [55]. IDROP is a modified DROP and also has polynomial time complexity.

With all the instances of problems considered in [55], the solutions found by IDROP

are always as good as those found by DROP and CONSTELLATION or better. How-

ever, this is at the cost of more CPU time. Bourjolly et al. [40] present the first exact

algorithm for maximum k-club. Their branch-and-bound (B&B) algorithm also uses

DROP heuristic to direct its branching process. [55] showed that the time complexity

this algorithm is O(1.62n).

The k-club improves the reachability among the members of a cohesive subgroups,

however, they perform poorly in terms of cohesiveness properties [139]. For example,

a star graph1 posses the structure of a 2-club but has low familiarity and is susceptible

to hub disconnection.

4.4 Degree Based Relaxations
One of the popular degree-based clique relaxation models is called k-plex. It was

introduced by Seidman and Foster [151]. According to [151], a set of vertices V ′ ⊆ V

forms a k-plex if the minimum degree in the induced subgraphG[V ′] is at least |V ′|−k,

where k ≥ 1. The case k = 1 is equivalent to clique while k > 1 is a relaxation. We

illustrate this concept with the aid of Figure 4.3. The set of nodes {2, 3, 4, 5} is a 1-

plex (a clique), {1, 2, 3, 4, 5} is a 2-plex while the entire graph is a 4-plex. A k-plex is

maximal if it is not contained in a larger k-plex.

The maximum k-plex problem is to find the largest k-plex in a given graph. Finding

a k-plex for any positive integer constant, k, is proved to be NP-complete [20]. [17]

proposed a complementary problem to k-plex and called it a co-k-plex. A subgraph

H is a co-k-plex if the maximum degree in H is at most k − 1. Simply put, H is a

1A star graph is a graph with a vertex at the centre, hub, with other vertices linked to the centre but
no link with any other vertex
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Figure 4.3: A graph that illustrates k-plexes for k = 1, 2 and 4

co-k-plex if ∀ v ∈ V ′, |N(v) ∩ V ′| ≤ k − 1. A maximal co-k-plex is a co-k-plex that

is not contained in a larger co-k-plex in G. We remark here that H is a co-k-plex in

G if and only if H is a k-plex in Ḡ. As a consequence, H ⊆ G is a clique in G if an

only if H is an independent set in Ḡ, since a clique is a 1-plex while an independent set

is a 1-co-plex. [151] established the following graph theoretic properties of a k-plex.

Suppose H is a k-plex, then

1. any subgraph of H is a k-plex

2. if k < n+2
2

, where n is the number of nodes in H , then diam(H) ≤ 2

3. κ(H) ≥ n− 2k + 2.

With reference to the taxonomy of clique relaxations defined earlier at the beginning

of this chapter, a k-plex is a standard, absolute, structural clique relaxation. We also

remark here that k-plexes are endowed with hereditary property. In addition, every

k-plex is a (k + 1)-plex.
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The integer programming formulation of Pattillo et al. [17, 139] is the only known

deterministic method for maximum k-plex problem. Let zi = degḠ = |V \ NG(i)| be

the degree of node i in Ḡ. The following binary program finds the largest k-plex in G

max
∑
i∈V

xi, (4.9a)

subject to ∑
j∈V \NG(i)

xj ≤ (k − 1)xi + zi(1− xi), ∀ i ∈ V, (4.9b)

xi ∈ {0, 1}, zi ∈ N, ∀ i ∈ V. (4.9c)

Constraint (4.9b) makes sure that node i belonging to the k-plex has at most k − 1

non-neighbors inside the k-plex.

For any fixed k ∈ N, the maximum k-plex problem is NP-hard [20]. Nonetheless,

heuristics have been developed either to solve the problem or as a subroutine for the

exact branch-and-bound method. McClosky and Hicks [115] extended a simple clique

finding heuristic to find maximal k-plexes, which was then used as a lower bound for

branch-and-bound. If G = (V,E) is a k-plex and |V | ≥ 2k − 2, then diam(G) = 2

[139]. This condition is useful in the development of a branch and bound method

for this problem. Most of the exact methods available for solving the maximum k-

plex problem adapt either branch and bound or branch and cut. Balasundaram et al.

[20] developed a branch and cut algorithm for k-plex using valid inequalities based

on maximum independent set of size at least k. The authors successfully used the

algorithm to solve large-scale real life problem in social networks known as the Erdös

graphs. The algorithm was also able to find 2-plex in a dense graph of moderate size.

[122] compute k-plexes with maximum cardinality using the duality between maximum
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k-plex and d-bounded-degree (d-BDD for short) vertex deletion. The complement of

the input graph is computed and d-BDD is solved on the complement graph for d :=

k − 1. The minimum d-BDD-set is then translated back into a maximum k-plex in the

input graph. [28] present an efficient algorithm that enumerates all the maximal k-plex

in a given graph. Conte et al. [59] recently proposed the idea of coreness and cliqueness

filtering criteria as a mean to recover large k-plexes in a network.

A subgraph induced by V ′ ⊆ V is a k-core if ∀ i, j ∈ V ′, degG[V ′](i) = |N(i) ∩

V ′| ≥ k. That is G[V ′] is a k-core if the minimum degree of every of its vertices is k.

Finding the largest k-core in a graph is known as the maximum k-core problem. This

problem is solvable in polynomial time [139]. Indeed, the following simple greedy

algorithm can generate optimal solution for this problem. First, the vertex i with the

minimum degree, δ(G), is picked. Check if δ(G) ≥ k. If yes, the whole graph, G, is a

k-core. If not, delete i, update G := G − i and continue recursively until a maximum

k-core or ∅ is found. Finding the maximum k-core is mostly used as a pre-processing

step for solving maximum clique or some other clique relaxation problems. The reason

is because some of these structures are guaranteed to be a part of the largest k-core,

for a particular k. For instance, we know that a k-plex of size p cannot contain a

vertex with degree less than p − k. To find such a maximum k-plex, one can solve

for maximum (p − k) core first since a k-plex of size p will always be a subset of the

largest (p − k)-core in a given graph. Using the largest k-core as a preprocessing (or

scale-reduction step) for solving another problem is known as peeling [139]. Peeling

has been successfully applied for solving the maximum clique problem in [3] and the

maximum k-plex problem in [20].
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Figure 4.4: A graph illustrating a (k + 1)-plex that is not a k-defective clique

4.5 Density Based Relaxations
An alternative method for clique relaxation is the density based relaxation. The

k-defective clique, the k-densest sugraph and the maximum quasi-clique are density

based relaxations.

H = (V ′, E ′) is a k-defective clique if |E ′| ≥
(
V ′

2

)
− k, where k is a non-negative

integer. In other words, H is a k-defective clique if it differs from a clique by at most

k missing edges. A clique is equivalent to a 0-defective clique. This model was in-

troduced by Yu et al. [174]. A maximal k-defective clique is a k-defective clique that

is not contained in a larger k-defective clique. k-defective clique can be classified as

a standard, absolute structural clique relaxation model. The relationship between a

k-defective clique and a k-plex is stated in the following proposition

Proposition 4.5.1. IfH = (V ′, E ′) is a k-defective clique inG, thenH is a (k+1)-plex,

but the converse may not hold.

Proof. From definition,H is a k-defective clique implies that δ(H) ≥ |V ′|−(k+1) and

the result follows. On the contrary, consider the graphH∗ (see Figure 4.4) with vertices

{v1, v2, v3, v4} and edges {(v1, v2), (v2, v3), (v3, v4)}. H∗ is a 3-plex since δ(H∗) = 1.

However, H∗ is not a 2-defective clique.

The following gives the summary of the analytical properties of a k-defective clique.

Corollary 4.5.1. Let H , with the vertex set V ′, be a k-defective clique in G. Then
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1. Any k + 1 vertices in H form a dominating set

2. Any induced subgraph of H is a k-defective clique

3. If k < |V ′|
2

, then diam(H) ≤ 2

Item 2 in the corollary above states the hereditary property of the k-defective clique.

Since k-defective has hereditary property, developing an enumerative algorithm for the

problem becomes easy.

Observe that for small values of k, k-defective clique will be very close to clique

and hence can still be too restrictive to be practical. On the other hand, for large values

of k, it may lack structure, since it is possible that all missing edges are incident to a

very small subset of vertices, which may result in isolated vertices. A k-plex, however,

has a bound on the number of non-neighbors for each vertex. Thus when k is small, k-

plex provides a very good relaxation because it is less restrictive. In addition, it retains

some properties of a clique, e.g, low diameter and high connectivity; for small values

of k. Unfortunately, as k increases, this relaxation becomes less useful.

The k-densest subgraph problem can be defined as follows. Given G = (V,E)

and a nonnegative integer k ≤ |V |, the k-densest subgraph problem is to find a sub-

graph of cardinality k in G with the maximum edge density. This problem is also

known as the k-cluster problem [60], the heaviest (unweighted) k-subgraph problem

[98] and the maximum edge subgraph problem [15]. This problem has been shown

to be NP-hard on bipartite, perfect graphs [60] and planar graphs [94]. Assuming NP

does not have subexponential time algorithms, no polynomial-time algorithm exists

for k-densest subgraph problem in general. However, it is polynomially solvable if

(|E| = Ω(|V |2)) and k = Ω(|V |) [14]. Other approximation algorithms also exist (see

[18]). Billionnet and Roupin [33] present a deterministic approach for solving the k-

densest subgraph. They apply rounding technique to the optimal solution of the linear
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programming relaxation of the 0− 1 quadratic program:

maximize
∑

(i,j)∈E

xixj, (4.10a)

subject to ∑
i∈V

xi = k, (4.10b)

xi ∈ {0, 1}, ∀ i ∈ V, (4.10c)

where xi = 1 if and only if vertex i belongs to the densest subgraph. In addition, various

mixed integer programming formulations for this problem are presented in [32].

The second density based clique relaxation model, i.e the quasi-clique, is central to

this thesis, hence the next chapter is devoted to it.
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Chapter 5

Quasi-Clique

5.1 Introduction
This chapter deals with the maximum quasi-clique recovery. We discuss the com-

putational complexity of the problem and then state, the easy to compute, upper bound

for the quasi-clique number. We state our proposition for the quasi-hereditary property

of quasi-clique and present an intuitive proof for the proposition. We highlight the ex-

isting Mixed Integer Programming (MIP) formulations for quasi-clique recovery and

then present our convex relaxation model for the planted quasi-clique problem.

5.2 Maximum Quasi-clique Problem
The most recent but popular among the clique relaxation models is the edge based

model called quasi-clique. It is also called γ-quasi-clique or simply γ-clique. This

model was proposed by Abello et al. [3] and has been attracting attention since it was

proposed (see [138] and the references therein). Let H ⊆ G with the vertex set V ′ and

the edge set E ′. H is a γ-clique if |V ′ × V ′ ∩ E|/
(|V ′|

2

)
≥ γ, where γ ∈ (0, 1]. Alter-

natively, H is a γ-clique if |E ′| ≥ γ|V ′|(|V ′|−1)
2

, for γ ∈ (0, 1]. A 2 parameter variant to

this definition is contained in [42]. Quasi-clique is a relative, standard, statistical clique

relaxation.

Qγ is a maximal γ-clique in G if it is a γ-clique and there is no γ-clique Q′γ ⊆ G

such that Q′γ ⊇ Qγ . The maximum γ-clique problem is to find the largest maximal

γ-clique in a given graph. In other words, given an edge density threshold, find the

subset of vertices with the largest cardinality such that its induced subgraph satisfies

the edge density requirement. We use quasi-clique (γ-clique) to refer to the subgraph
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and the subset of vertices, interchangeably. The cardinality of the largest quasi-clique

in a given graph is known as γ-clique number and we denote it with ωγ . The size of

the largest quasi-clique in binomial random graphs has been proved to be concentrated

around some two integers and these integers have been explicitly derived in [21].

5.3 Computational Complexity
In this section, we present the results on the computational complexity for maxi-

mum γ-clique problem. To simplify the analysis, γ is replaced with a rational number

a
b
, for given positive integers a, b with a < b. Hence, the analysis will be for a

b
-clique

model. Following the approach in [79], the decision version of the problem can be

stated as follows: Given a graph G = (V,E) and positive integers a, b and k, does G

contain a a
b
-clique of size at least k?

Proposition 5.3.1 ([140], Proposition 1). The a
b
-clique problem is NP-complete for any

a, b > 0, a < b.

Proof. Observe that a
b
-clique belongs to the class NP since it is a generalization of the

classical clique. The main idea is to construct an auxiliary graph G′ = (V ′, E ′), for a

given k and a
b
, and to prove that G has a clique of size k if and only if G ∪ G′ has a

a
b
-clique of size |V ′| + k 2. The construction is done in the following way. A set of

vertices V ′ with the cardinality |V ′| = 4(|V |2 + k2)b − k is built and the edges were

also constructed to obtain a 2|V |-regular graph.3 Edges are arbitrarily placed such that

we have a
b

(|V ′|+k
2

)
−
(
k
2

)
number of edges between the |V ′| vertices. The expression

a
b

(|V ′|+k
2

)
−
(
k
2

)
always returns an integer value since |V ′| + k is a multiple of 2b. |V ′|

2Detailed proof of this proposition is contained in [140]. We have included a brief summary here for
completeness.

3Constructing such graphs with even regularity can always be achieved by placing all the vertices in
a circle and connecting each nodes to its immediate |V | neighbours on each side of the circle.
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is sufficiently large to ensure that the inequalities

(
|V ′|

2

)
≥ a

b

(
|V ′|+ k

2

)
−
(
k

2

)
≥ |V ||V ′| (5.1)

hold. The first inequality makes sure that the required number of edges for a a
b
-clique

of size |V ′| + k fit in G ∪ G′, with k vertices coming from a clique in G. The second

inequality makes it possible to build a 2|V | regular graph on |V ′| nodes with desired

number of edges.

The proof is completed by showing thatG has a clique of size k if and only ifG∪G′

contains a a
b
-clique of size |V ′| + k. Let a clique C be contained in G. The combined

vertices of G[C] and G′ will be |V ′|+ k and the total number of edges will be

a

b

(
|V ′|+ k

2

)
−
(
k

2

)
+

(
k

2

)
=
a

b

(
|V ′|+ k

2

)
, (5.2)

which shows that the vertex set form a a
b
-clique by definition. On the contrary, suppose

G ∪ G′ contains a a
b
-clique with |V ′| + k vertices. Note that there exists a a

b
-clique Q′

of size |V ′|+k in G∪G′. All the vertices of G′ are in Q′. Therefore, exactly k vertices

come from G contributing
(
k
2

)
edges. If the number of edges from the k vertices from

G is not
(
k
2

)
, then the set of vertices |V ′|+ k that form Q′ cannot have density a

b
.

Corollary 5.3.1 ([140], Corollary 1). The γ-clique problem is NP-complete, for γ ∈

(0, 1].

5.4 Quasi-inheritance
The clique has a property that many of the clique finding algorithms exploit. The

property is known as downward closure [42] or hereditary property [140]. This means

that, if G is a clique, then every induced subgraph of G must also be a clique. Unfortu-
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nately, this property is not possessed by quasi-clique. A subgraph of a γ-quasi-clique

may not necessarily be a γ-quasi-clique. Consider, for example, the graphs in Figure

5.1. G1 is a 0.8-quasi-clique but an induced subgraph of G1; G′1 is not. However, γ-

quasi-clique has a property called quasi-hereditary instead of downward closure [140].

That is, given a γ-quasi-clique, the subgraph induced by removing the vertex with the

least degree in the vertex set will also be a γ-quasi-clique. In fact, we have the following

proposition.
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(a) G1 is a 0.8-clique.

(b) G′1 = G1(V − {v1}) is an induced subgraph of G1 but not a 0.8-

clique

Figure 5.1: Illustration of lack of hereditary property of γ-clique.

Proposition 5.4.1. Let Qγ = (V,E) be a γ-clique. If vmin ∈ V is the vertex with the

minimum degree in Qγ , then the subgraph Qγ[V \ {vmin}] is a γ-clique.
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Proof. Recall that Qγ is a γ-clique implies that its edge density |EQγ | ≥ γ
(|V |

2

)
.

If a subgraph ofQγ , induced by removing an arbitrary vertex, v, and all its incidence

edges, forms a γ-clique, then:

|EQγ [V \{v}]| ≥ γ

(
|V | − 1

2

)
=

⌈
γ(|V | − 1)(|V | − 2)

2

⌉
, (5.3)

where the function d.e is defined by dxe = min{z ∈ Z : z ≥ x,∀ x ∈ R}. Note

that the average degree of vi ∈ V is given by degQγ (vi) = dγ(|V | − 1)e. Therefore,

vmin (the vertex with the minimum degree) has at most dγ(|V | − 1)e number of edges

connected to it. This means

degQγ (vmin) ≤ dγ(|V | − 1)e . (5.4)

Removing the edges attached to vmin from Qγ , we have:

|EQγ [V \{vmin}]| ≥
⌈
γ(|V |(|V | − 1))

2

⌉
− dγ(|V | − 1)e (5.5)

≥
⌈
γ(|V |(|V | − 1))

2
− 2γ(|V | − 1)

2

⌉
(5.6)

=

⌈
γ(|V | − 1)(|V | − 2)

2

⌉
= |EQγ [V−1]|. (5.7)

The inequality (5.5) follows from Equation (5.4) while (5.6) holds from the the

property of the d.e operator. The equality in (5.7) follows from Equation (5.3). This

completes the proof.
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5.5 Algorithms for maximum quasi-clique
With the quasi-hereditary property, γ-clique can still be recovered using enumer-

ative algorithms [140]. Majority of the existing works on γ-clique focused on devel-

oping heuristics for detection of large quasi-clique. Abello et al. [3] were the first to

publish on the maximum quasi-clique problem. They proposed a greedy randomized

adaptive search procedure (GRASP) for finding large quasi-clique in graphs generated

from communication data. The GRASP for quasi-clique first constructs a clique to

serve as a seed. It then grows the quasi-clique using a modified local search proce-

dure. Suppose Q with cardinality q is the seed. The local search procedure searches

for vertices (u, v, w) such that (u, v) ∈ E, w ∈ Q and u and v are adjacent to at least

γ(q − 1) vertices of Q \ {w}. If such vertices are found, then w is removed from Q

and u, v are added. The procedure continues iteratively. A similar approach using a

semi-external memory algorithms that handles massive graph together with GRASP so

as to be able to deal with graphs with millions of nodes is presented in [4]. A heuristic

solution approach to quasi-clique problem by extending Reactive Local Search (RLS)

and Dynamic Local Search (DLS) for MCP to γ-clique problem can be found in [42].

Reactive Local Search [24, 25] works by keeping the current and modifying it with

two essential moves namely; node addition and node removal. The search mechanism

of RLS is based on Tabu Search [81]. Whenever a node is added/removed from the

current clique, it becomes prohibited (i.e, cannot be considered for removal/addition)

for the next tmoves. This search heuristic is complemented by a memory based reactive

scheme that automatically adjust the parameter t to suit the problem instance.

Instead of node addition and removal, Dynamic Local Search, on the other hand,

modifies the current clique using node addition and plateau moves. Its basic search

mechanism is based on penalty values associated with each node. At the initial stage

of the search process, a single node is uniformly selected at random. This is set to a
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current clique and every other node’s penalty is set to zero. The algorithm then proceeds

by alternating between the following two search phases: the expansion phase and the

plateau phase. In the expansion phase, a node with the minimum penalty from the

set of nodes that could be added is selected (ties are broken randomly) and added to

the current clique. In the plateau phase however, the nodes in the current clique not

connected to the selected node with the minimum penalty are removed.

5.6 Analytical Upper Bound for ωγ(G)
There exists a constant-time computable upper bound on the clique number, ω(G),

for a given graph, proposed by Amin and Hakimi [13]. The following proposition is a

generalization of this upper bound to quasi-clique.

Proposition 5.6.1 ([140], Proposition 3). Let G = (V,E) be a graph with γ-clique

number ωγ(G), then the following holds:

ωγ(G) ≤
γ +

√
γ(γ + 8|E|)

2γ
. (5.8)

Furthermore, if G is a connected graph, then

ωγ(G) ≤
γ + 2 +

√
(γ + 2)2 + 8γ(|E| − |V |)

2γ
, (5.9)

where |V | and |E| are the cardinalities of the vertex set, and the edge set, respectively.

The following lower bound for clique number can be derived using Motzkin and

Straus [123] formulation for maximum clique problem:

ω(G) ≥ 1

1−Υ
, (5.10)

86



where Υ = 2|E|
|V |2 . From (5.10), the following relationship exists between ω(G) and

ωγ(G) [140]:
ω(G)− 1

ω(G)
≤ ωγ(G)− 1

ωγ(G)
≤ ω(G)− 1

γω(G)
. (5.11)

5.7 Mathematical Formulations for Quasi-clique
The existing deterministic algorithm for γ-clique recovery is based on MIP formula-

tions, which we now briefly present. The first study on quasi-clique from mathematical

perspective was carried out in [140], where γ-clique problem was proved to be NP-

complete. Also, an upper bound was derived for maximum γ-clique. For i ∈ V , define

xi ∈ {0, 1} such that xi = 1 if and only if i ∈ V ′ and 0 otherwise, where V ′ is the

vertex set of the maximum quasi-clique. The following linear MIP formulation was

proposed in [140]:

ωγ = max
∑
i∈V

xi, (5.12a)

subject to: ∑
(i,j)∈E

Aijxixj ≥ γ
∑

i,j∈V :i<j

xixj ∀ i, j ∈ V, (5.12b)

xi ∈ {0, 1} ∀ i ∈ V, (5.12c)

where Aij is the (i, j)-th entry of the adjacency matrix of the graph. The constraint

(5.12b) is non-linear. To linearize it, define zij = xixj . This is equivalent to the

following three linear constraints:

zij ≤ xi, zij ≤ xj, xi + xj − 1 ≤ zij. (5.13)
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Hence, problem (5.12) becomes:

ωγ = max
∑
i∈V

xi, (5.14a)

subject to: ∑
(i,j)∈E

(Aij − γ)zij ≥ 0 ∀ i, j ∈ V, (5.14b)

zij ≤ xi, zij ≤ xj, xi + xj − 1 ≤ zij, (5.14c)

xi, zij ∈ {0, 1} ∀ i, j ∈ V. (5.14d)

An alternative formulation was also presented in [140] by defining a new variable

hi = xi(γxi +
∑

(i,j)∈E

(Aij − γ)xj), (5.15)

based on the constraint (5.12b). The resulting MIP model is:

ωγ = max
∑
i∈V

xi, (5.16a)

subject to:∑
i∈V

hi ≥ 0 (5.16b)

hi ≤ νxi, hi ≥ −νxi ∀ i ∈ V, (5.16c)

hi ≥ γxi +
∑
j∈V

(Aij − γ)xj − ν(1− xi) ∀ i ∈ V, (5.16d)

hi ≤ γxi +
∑
j∈V

(Aij + γ)xj − ν(1− xi) ∀ i ∈ V, (5.16e)

xi ∈ {0, 1} ∀ i ∈ V, (5.16f)
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where, Aij are the entries of the adjacency matrix of the graph, ν is a constant that

is large enough and hi is defined by 5.15. (5.16) can only handle problems with small

graph size. Because of this drawback, Veremyev et al. [165] reformulated this model by

defining zij as a binary variable, such that zij = 1 if and only if (i, j) ∈ E ∩ (V ′× V ′).

In addition, a binary variable st, t = 1, . . . , |V |, which determines the size of the quasi-

clique is defined. This implies that st = 1 if and only if |V ′| = t. With these additional

variables and notations, the improved MIP model presented in [165] is:

max
∑
i∈V

xi, (5.17a)

subject to
∑

(i,j)∈E

zij ≥ γ
ωu∑
t=ωl

t(t− 1)

2
st, (5.17b)

zij ≤ xi, zij ≤ xj, ∀ (i, j) ∈ E, (5.17c)∑
i∈V

xi =
ωu∑
t=ωl

tst,
ωu∑
t=ωl

st = 1, (5.17d)

xi ∈ {0, 1}, zij ≥ 0, ∀ i, j ∈ V, i < j, (5.17e)

st ≥ 0, ∀ t ∈ {ωl, . . . , ωu}, (5.17f)

where ωl and ωu are the lower and upper bounds, respectively, on the size of quasi-

clique that could be found in the input graph. These lower and upper bounds can be set

to 0 and |V |, respectively, if no estimates are available. In addition, the lower bound

can be set to 1 if the input graph is non-empty or 2 if it has at least one edge. The

constraint (5.17b) is the edge density requirement while (5.17c) ensures that zij = 1 if

and only if i and j belong to the quasi-clique. Observe that the left hand side of (5.17b)

can be written as
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∑
(i,j)∈E

zij = 1/2
∑
i∈V

∑
j:(i,j)∈E

xixj = 1/2
∑
i∈V

xi ∑
j:(i,j)∈E

xj

 . (5.18)

Setting wi to the quantity in the bracket in equation (5.18) above, (5.17) can be refor-

mulated as [165]:

max
∑
i∈V

xi (5.19a)

subject to
∑
i∈V

wi ≥ γ
ωu∑
t=ωl

t(t− 1)st, (5.19b)

wi ≤ ψixi, wi ≤
∑

j:(i,j)∈E

xj, ∀ i ∈ V, (5.19c)

∑
i∈V

xi =
ωu∑
t=ωl

tst,
ωu∑
t=ωl

st = 1, (5.19d)

xi ∈ {0, 1}, zij ≥ 0, ∀ i, j ∈ V, i < j, , (5.19e)

st ≥ 0, ∀ t ∈ {ωl, . . . , ωu}, (5.19f)

where ψi is a parameter that is sufficiently large. In particular, ψi = degG(i).

Other various solution techniques have recently been developed for maximum quasi-

clique problem (see e.g, [113, 118, 149, 177])

5.8 The Planted Quasi-clique Problem
An variant of the MCP is the planted (hidden) clique problem. This problem is

applicable in community detection [88], computation of Nash equilibrium [23, 89],

cryptographic security [92], etc. The problem can be formulated in two different ways

namely: the randomized case and the adversarial case. For the randomized case, a graph

of order n is considered and a clique of size nc (nc ≤ n) is inserted using randomly

chosen nc nodes. The remaining pair of nodes are then connected depending on a
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given probability p. For the adversarial case, on the contrary, instead of joining the

diversionary edges in a probabilistic manner, an adversary is allowed add up O(n2
c)

edges to the graph. According to Kučera [99], if nc = Ω(c
√
n log n), where nc is the

clique size and c is a constant that is large enough, then the nodes of the planted clique

will be those with the largest degree with a very high probability. In this case, the

planted clique can easily be recovered. Alon et al. [10] and Feige and Krauthgamer

[74] improved this bound by developing an algorithm that can find a clique of size

nc = Ω(c
√
n) when c is large enough. The algorithm of Alon et al. relies on the spectral

properties of the adjacency matrix, A, of the input graph. Since A is symmetric, all its

eigenvalues and corresponding eigenvectors are real. Suppose G contains a planted

clique, C, of size nc = Ω(c
√
n). Alon et al. claim that, when the eigenvectors are

arranged in descending order of magnitude (absolute values), the nodes belonging to

C will correspond to the first nc-largest elements of the second largest eigenvector of

the adjacency matrix of G. Another work on planted clique recovery, also based on

spectral analysis is [124]. Nadakuditi [124] discovered that there is a sharp transition

between success and failure in clique detection based on eigen-analysis. Frieze and

Kannan [77] solved the planted clique problem by maximizing a cubic form or tensor

defined on D. D is a three dimensional array, obtained based on the properties of the

input graph. They declared that their method recovers the planted clique inasmuch as

the local maximum of the cubic form is attained. Furthermore, they conjectured that

the function attains local maximum if k = Ω(n1/3(log n)c), where k is the size of the

planted clique, n = |V | and c is a positive constant. Ames and Vavasis [12] on the

other hand presented a convex relaxation of this problem using the nuclear norm. Let

C be a clique contained in G. The adjacency matrix of C ′, obtained by taking the

union of C and the set of loop of all the nodes of C is a rank-one matrix. The entries of

C ′×C ′ corresponding to the indices of i ∈ C are equal to one and zero everywhere else.
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Therefore, the planted maximum clique recovery in this setting is equivalent to finding

the largest rank one submatrix of the adjacency matrix of the input graph. Techniques

from matrix completion was adopted in [12] to achieve this, and the following rank

minimization problem was presented:

min rank(X) (5.20a)

subject to
∑
i∈V

∑
j∈V

Xij ≥ n2
c , (5.20b)

Xij = 0, ∀ (i, j) /∈ E and i 6= j, (5.20c)

X = XT , (5.20d)

Xij ∈ {0, 1}, (5.20e)

where X ∈ Rn×n and nc is the size of the planted clique. The rank minimization

problem is known to be NP-hard. Fortunately, the nuclear norm is the convex surrogate

of the rank function. The nuclear norm of a matrix is the sum of its singular values.

That is, ||X||∗ = σ1(X) + σ2(X) + . . .+ σn(X), where σi(X), i ∈ {1, . . . , n}, are the

singular values. Hence, (5.20) becomes:

min ||X||∗, (5.21a)

subject to
∑
i∈V

∑
j∈V

Xij ≥ n2
c , (5.21b)

Xij = 0, ∀ (i, j) /∈ E and i 6= j, (5.21c)

X = XT , (5.21d)

Xij ∈ [0, 1]. (5.21e)

In our case, we adopt the technique from matrix decomposition (see Section 3.5.3) to

recover the planted quasi-clique in a graph. The planted quasi-clique problem is a more
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difficult problem than the planted clique. This is because the latter is a special case of

the former. Our proposed formulation is the following:

min ||X||∗ + λ||X̂||1, (5.22a)

subject to
∑
i

∑
j

Xij ≥ γη2, (5.22b)

X + X̂ = A, (5.22c)

Xij, X̂ij ∈ [0, 1], η ∈ N, (5.22d)

where X, X̂ ∈ Rn×n are matrix variables corresponding to the quasi-clique and the di-

versionary edges, λ is a parameter,A is the adjacency matrix of the input graph, N is the

set of natural number while the parameter γ ∈ (0, 1] is the desired edge density of the

quasi-clique to be recovered. The constraint (5.22b) ensures that the solution satisfies

the edge density requirement, while (5.22c) makes sure that the decomposition agrees

with the input matrix. η is a positive integer valued variable that determines the size

of the recovered quasi-clique. Indeed, our formulation (5.22) for planted quasi-clique

mirrors the rank sparsity decomposition problem since the setup and the output of the

quasi-clique problem is similar to that of rank-sparsity decomposition, i.e, our matrix is

sampled using Bernoulli model which has been shown to satisfy the incoherence con-

ditions required by the rank-sparsity problem and our expected solution is a low rank

matrix.

Since we are only interested in X , we can eliminate constraint (5.22c) and write

X̂ = A−X . Therefore, (5.22) can be reformulated as

min ||X||∗ + λ||A−X||1, (5.23a)
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subject to
∑
i

∑
j

Xij ≥ γη2, (5.23b)

Xij ∈ [0, 1], η ∈ N. (5.23c)

The semidefinite programming formulation for (5.23) is the following

minimize
1

2
(trace(Z1) + trace(Z2)) + λ1TnW1n,

subject to

Z1 X

XT Z2

 � 0,

−Wij ≤ Aij −Xij ≤ Wij, ∀ ij,∑
i

∑
j

Xij ≥ γη2,

Xij ∈ [0, 1], η ∈ N.

(5.24)

Problems (5.22) - (5.23) are convex optimization problems that can be solved using

one of the available convex optimization solvers. With the formulation above, Theorem

3.5.3.2 specializes to the following:

Theorem 5.8.1. Suppose Qγ = (V ′, E ′) is an nc-vertex γ-clique contained in a graph

G = (V,E) of n-vertices with the adjacency matrix A. Let X∗ ∈ Rn×n. If the con-

ditions of Theorem 3.5.3.2 holds with p = γ, where γ is the edge probability within

the quasi-clique, then X∗ is the unique optimal solution of (5.23) and Qγ is the unique

maximum γ-clique in G.

Theorems 3.5.3.2 and 5.8.1 provide the conditions, under which (5.23) will suc-

cessfully recover a planted quasi-clique. The proof of these Theorems is provided in

the next chapter.
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Chapter 6

Theoretical Guarantee for Planted Maximum

Quasi-Clique Recovery

6.1 Introduction
In this chapter, we present the proof of our main result, Theorems 3.5.3.2 and

5.8.1. The main steps follow the general idea in the low-rank matrix recovery liter-

ature [48, 49, 52, 58, 102]. The steps involved include constructing a dual matrix Q,

which certifies the optimality of (B∗, C∗) for the convex problem (3.28). This dual cer-

tificate must obey some subgradient-type conditions. One of these conditions is that the

spectral norm of Q, i.e ||Q||, must be small. In many of the previous approaches, ||Q||

is bounded by the matrix l∞ norm. Q can be decomposed to Q = UΣV . Therefore, by

virtue of Equation (3.22), there is a relationship between the bound on the dual certifi-

cate and the incoherence condition. We bound the norm of the dual certificate by the

l∞ and l∞,2 norm. The l∞,2 was first used in [57] to derive a tighter bound in the case

of matrix completion. Ours is an extension of this concept to the matrix decomposition

setting.

6.2 Incoherence Property for Matrix l∞,2 Norm
The l∞,2 norm is defined on a matrix M as:

||M ||∞,2 := max

max
i

√∑
b

M2
ib,max

j

√∑
a

M2
aj

 . (6.1)
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It is noteworthy that for any matrix Z ∈ Rn1×n2 , ||Z||∞,2 ≤
√

max{n1, n2}||Z||∞

[57]. Therefore, from the incoherence property, we have

||UV T ||∞,2 ≤
√

max{n1, n2}||UV T ||∞ ≤
√

µr

min{n1, n2}
,

or

||UV T ||∞,2 ≤
√
n||UV T ||∞ ≤

√
µr

n
, (6.2)

for a square matrix.

There is a norm similar to the l∞,2 norm which is the l2,∞ norm defined as ||M ||2,∞ :=

maxx6=0
||Mx||∞
||x||2 . The l2,∞ is the maximum Euclidean norm of the rows of M while the

l∞,2 is the maximum of both the rows and column norm of M [57, 144]. These norms

yield a tighter bound on the entries of a matrix than the commonly used ones [53, 57].

We show that the l∞,2 norm yields a tighter bound on the norm of the dual matrix. This

is achieved by expressing the bound as a sum of the l∞ and l∞,2 norm instead of the

previously derived bounds in matrix decomposition literature which use the l∞ norm

only. This is one of the main contributions of this thesis. In addition, we adopt some

novel simplifying ideas different from the existing works.

The l2,∞ norm has been used previously in [110] to prove that adjacency spectral

embedding clusters graphs perfectly, for some given stochastic block model. It was

also used in [53] to derive a new Procrustean matrix decomposition 4. More so, l∞,2

and l2,∞ were used in [144] to derive a bound for any random matrix with independent

and identically distributed entries, with mean zero and unit variance.

4The orthogonal Procrustes problem in linear algebra is about matrix approximation. In its basic
form, given two matrices A and B, one is required to find an orthogonal matrix C, which closely maps
A to B.
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6.3 Background to the Proof
Since every graph has a square adjacency matrix, our proof is for square matrices

only. The arguments follow easily for rectangular case. We denote universal constants

that does not depend on the parameters of the problem (i.e n, r, µ, etc) with c, c′, c1, c2,

etc. By with high probability, we mean with probability at least 1− c1n
−c2 , c1, c2 > 0.

Furthermore, we will make use of linear operators which act on the space of ma-

trices. We denote these operators by calligraphic letters, e.g PΓ(X). In addition, we

let Γ represent the linear space of matrices with their support (supp(.)) contained in Γ,

by abuse of notation. Therefore, PΓ⊥ is the projection onto the space of matrices with

support on ΓC . By implication, PΓ + PΓ⊥ = I, the identity operator.

Suppose B0 ∈ Rn×n is of rank r and has the singular value decomposition UΣV T ,

with U, V ∈ Rn×r. The subgradient of the nuclear norm at B0 is of the form:

UV T +Q,

where UTQ = 0, QV = 0 and ||Q|| ≤ 1. In addition, we define T , the linear space of

matrices that share the same row space or column space as B0, as

T := {UXT + Y V T : X, Y ∈ Rn×r}, (6.3)

and T⊥ is its orthogonal complement. Clearly, B0 ∈ T holds always. Recall that the

orthogonal projection of Q onto T is given as

PTQ = PUQ+QPV − PUQPV

= UUTQ+QV V T − UUTQV V T

= 0.
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This implies that PT⊥Q = Q, since PTQ+ PT⊥Q = Q. For any matrix Z,

PT⊥Z = (I − UUT )Z(I − V V T ), (6.4)

where I −UUT and I − V V T are the orthogonal projections onto the orthogonal com-

plement of the linear space spanned by the columns of U and V , respectively. As a

result of this, for any matrix Z, ||PT⊥Z|| ≤ ||Z||. We will make use of this fact several

times later.

The subgradient of l1− norm at C0, where Γ = supp(C0), is of the form:

Sgn(C0) +D

where PΓD = 0 and ||D||∞ ≤ 1

Definition 6.3.1. Given a matrix M , M ′ is a trimmed form of M if the support of M ′

is contained in the support of M , i.e, supp(M ′) ⊂ supp(M) and M ′
ij = Mij whenever

M ′
ij 6= 0.

Simply put, we get a trimmed version of M by setting few entries of its entries to

zero. The following theorem establishes that if a low-rank plus sparse decomposition

of M0 = B0 + C0 is exact, then it is also exact for M ′
0 = B0 + C ′0, where C ′0 is a

trimmed version of C0.

Theorem 6.3.1 (Theorem 2.2 of [52]). Suppose problem (3.28) has a unique and exact

solution with input M0 = B0 + C0. If M ′
0 = B0 + C ′0, where C ′0 is a trimmed version

of C0, then the solution to (3.28) is also unique and exact with input M ′
0.

The proof if this theorem can be found in [52].
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6.3.1 The Bernoulli Model and Derandomization

Bernoulli Model

Rather than showing that Theorem (3.5.3.2) holds with Γ sampled uniformly, where

Γ is a random subset such that Γ = {(i, j) : Cij 6= 0} of cardinality k, it is eas-

ier to prove Theorem 3.5.3.2 for Γ sampled according to the Bernoulli model, with

Γ = {(i, j) : ∆ij = 1}, where ∆ij’s are independent and identically distributed

Bernoulli random variables. ∆ij = 1 with probability % and 0 with probability 1 − %.

Hence, %n2 is the expected cardinality of Γ. By doing this, we exploit the statistical

independence of measurements. Based on the arguments presented in [48, 49, 52], any

theoretical guarantee proved for Bernoulli model is also valid for the uniform model

and the converse holds as well. Henceforth, we will write Γ ∼ Bern(%), for short, to

mean that Γ follows Bernoulli distribution with parameter %.

Note that the sign of the entries of C∗ in Theorem 3.5.3.2 is fixed. Surprisingly, it is

more convenient to prove the theorem under a stronger condition. We assume that the

sign of C∗ij , for C∗ij 6= 0, are independent symmetric Bernoulli random variables which

assume the value 1 or −1 with probability 1/2. The probability of recovering C∗ with

random sign on the support set of Γ is at least the same with C∗ with fixed sign. This

randomization technique was invented in [52] and has been previously used in [128]

and [102]. The supporting theorem is stated formally here.

Lemma 6.3.1.1 (Theorem 2.3 of [52]). Suppose B0 obeys the conditions of Theorem

(3.5.3.2) and that the positions of the non-zero entries of C0 follow the Bernoulli model

with parameter 2%, with the signs ofC0 independent and identically distributed±1 with

probability 1/2. Then if the solution to problem (3.28) is exact with high probability,

it is also exact for the model with fixed signs and location sampled from the Bernoulli

model with parameter % with at least the same probability.
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6.4 Subgradient Condition for Optimality
Now, we state a sufficient condition for the pair (B∗, C∗) to be the unique optimal

solution to problem (3.28). The conditions are stated in terms of the dual matrix, whose

existence certifies optimality. These conditions are given in the following lemma which

is similar to Proposition 2 of [54] and Lemma 2.4 of [52].

Lemma 6.4.1 (Proposition 2 of [54], Lemma 2.4 of [52]). Let M = B0 +C0. Suppose

Γ ∩ T = {0} (i.e, ||PΓPT || < 1). Then (B∗, C∗) = (B0, C0) is the unique optimal

solution to (3.28) if there exists a pair of dual matrix (D,Q) such that

UV T +Q = λ(Sgn(C0) +D),

with PTQ = 0, ||Q|| < 1,PΓD = 0 and ||D||∞ < 1.

Proof. To prove this proposition, we first show that (B0, C0) is an optimal pair to the

problem (3.28) and then show that it is unique. From the optimality condition base on

the subgradient condition at (B0, C0), there must exist a dual matrix, F , which simul-

taneously belong to the subdifferential of the norms of B0 (∂||B0||∗) and C0 (∂||C0||1).

The second condition of Lemma 6.4.1 shows that such matrix exists. Hence (B0, C0) is

an optimal pair. To show uniqueness, we consider a perturbation of (B0, C0), i.e, (B0 +

νB, C0 + νC), which is also a minimizer. Since B0 +C0 = B0 + νB +C0 + νC , νB + νc

must be equal to zero. Now, applying the subgradient condition, we have:

||B0 + νB||∗ + λ||C0 + νC ||1 ≥ ||B0||∗ + λ||C0||1 + 〈UV T +Q0, νB〉

+ λ〈Sgn(C0) +D0, νC〉

= ||B0||∗ + λ||C0||1 + ∆ + δ. (6.5)
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Recall that F ∈ ∂||B0||∗ and F ∈ ∂||C0||1 =⇒ there exists Q and D such that F =

UV T +Q = λ(Sgn(C) +D). Therefore, it follows that

∆ = 〈UV T +Q0, νB〉 = 〈UV T + PT⊥(Q0), νB〉

= 〈F − PT⊥(Q) + PT⊥(Q0), νB〉

= 〈PT⊥(Q0)− PT⊥(Q), νB〉+ 〈F , νB〉.

Likewise,

δ = λ〈Sgn(C0) +D0, νC〉 = 〈λSgn(C0) + λPΓC (D0), νC〉

= 〈F − λPΓC (D) + λPΓC (D0), νC〉

= 〈λPΓC (D0)− λPΓC (D), νC〉+ 〈F , νC〉

= λ〈PΓC (D0)− PΓC (D), νC〉+ 〈F , νC〉.

Hence,

∆ + δ = 〈PT⊥(Q0)− PT⊥(Q), νB〉+ 〈F , νB〉+ λ〈PΓC (D0)− PΓC (D), νC〉

+ 〈F , νC〉

= 〈PT⊥(Q0)− PT⊥(Q), νB〉+ λ〈PΓC (D0)− PΓC (D), νC〉+ 〈F , νB + νC〉

= 〈PT⊥(Q0)− PT⊥(Q), νB〉+ λ〈PΓC (D0)− PΓC (D), νC〉.

Therefore, equation (6.5) becomes:

||B0 + νB||∗ + λ||C0 + νC ||1 ≥ ||B0||∗ + λ||C0||1 + 〈PT⊥(Q0)− PT⊥(Q), νB〉+

λ〈PΓC (D0)− PΓC (D), νC〉

= ||B0||∗ + λ||C0||1 + (||PT⊥(Q0)|| − ||PT⊥(Q)) (||νB||∗) +
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λ (||PΓC (D0)||∞ − ||PΓC (D)||∞) (||νC ||1) .

Since (Q0, D0) is any subgradient of ||B||∗ + λ||C||1 at (B0, C0), we can choose

PT⊥(Q0) and PΓC (D0) freely inasmuch as they satisfy the following conditions:

||PT⊥(Q0)|| ≤ 1, and ||PΓC (D0)||∞ ≤ 1.

Letting PΓC (D0) = Sgn(PΓC (νC)) implies that ||PΓC (D0)||∞ = 1. Also, since the

dual of nuclear norm is the operator norm, there exists a matrix Q0 with ||PT⊥(Q0)|| =

1 such that 〈Q0, νB〉 = ||PT⊥νB||∗. Therefore, we have

||B0 + νB||∗ + λ||C0 + νC ||1 ≥ ||B0||∗ + λ||C0||1 + (1− ||PT⊥(Q)||)(||PT⊥(νB)||∗)

+ λ(1− ||PΓC (D)||∞)(||PΓC (νC)||1).

Since ||PT⊥(Q)|| < 1 and ||PΓC (D)|| < 1, the last two terms in the equation above are

strictly positive except if ||PT⊥(νB)||∗ = 0 and ||PΓC (νC)||1 = 0. Hence, ||B0+νB||∗+

λ||C0 + νC ||1 = ||B0||∗ + λ||C0||1 if and only if PT⊥(νB) = 0 and PΓC (νC) = 0. Note

that PT⊥(νB) = PΓC (νC) = 0 implies that PT (νB) + PΓ(νC) = 0, since νB + νC = 0.

So that PT (νB) = −PΓ(νC) = 0 (since Γ ∩ T = {0}). This implies that νB = νC = 0.

Therefore, ||B0 +νB||∗+λ||C0 +νC ||1 > ||B0||∗+λ||C0||1 except if νB = νC = 0.

Consequently, to prove exact recovery, it suffices to derive a dual certificateQwhich

satisfies:

(a) Q ∈ T⊥,

(b) ||Q|| < 1,

(c) PΓ(UV T +Q) = λSgn(C0),
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(d) ||PΓ⊥(UV T +Q)||∞ < λ.

However, relaxing on the constraint PΓ(UV T + Q) = λSgn(C0) yields a somewhat

different certificate with high probability. This relaxation was introduced in [85] and

used in [52] previously. This leads to the following lemma.

Lemma 6.4.2 (Lemma 2.5 of [52]). Suppose ||PΓPT || ≤ 1/2 and λ < 1. Then

(B∗, C∗) is the unique optimal solution of (3.28) if there exists a pair of dual matrix

(Q,D), such that

UV T +Q = λ(Sgn(C0) + F )

with PTQ = 0, ||Q|| ≤ 1/2, PΓD = 0, ||F ||∞ ≤ 1/2, and ||PΓF || ≤ 1/4.

Interested reader can check the proof of this Lemma in [52]. As a result of Lemma

6.4.2, it is sufficient to derive a dual matrix Q, which obeys

Q ∈ T⊥,

||Q|| < 1/2,

||PΓ(UV T − λSgn(C0) +Q)||F ≤ λ/4,

||PΓ⊥(UV T +Q)||∞ < λ/2.

(6.6)

6.5 Construction of Dual Certificate
We need to construct a dual matrix Q satisfying the conditions in (6.6). Q will

be constructed using a modified version of the Golfing Scheme [52, 57, 58, 85]. Set

k0 = 20dlog ne. We decompose the observed entries of Γ into independent entries,

so that we sample with respect to a different batch at every step. Recall that by initial

setup, Γ ∼ Bern(p), which implies that ΓC ∼ Bern(1− p). Now, we think of ΓC as a

union of k0 independent samples, so that ΓC =
⋃

1≤k≤k0 Γk, with each Γk following the

Bernoulli model with parameter q (probability of sampling for each batch). This gives
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the following Binomial model:

P ((i, j) ∈ Γ) = P(Bin(k0, q) = 0) = (1− q)k0 , (6.7)

and the two models are equivalent if p = (1 − q)k0 . Hence, this Γ has the same

distribution with the initial model. TheBin in equation (6.7) means binomial. Because

of the intersections between the Γk
′s q ≥ (1−p)

k0
[52].

We now proceed to construct a dual certificate Q = QB + QC . Details about the

two components of Q are as follow.

Constructing QB using Golfing Scheme

Let k0 and Γk, k ∈ [1, k0], be as defined above. Also, recall that ΓC = ∪1≤k≤k0Γk.

Starting with Y0 = 0 and proceeding inductively, define

Yk = Yk−1 + p−1PΓkPT (UV T − Yk−1), (6.8)

and set

QB = PT⊥Yk0 . (6.9)

Constructing QC using Least Square Method

Suppose ||PΓPT || < 1/2, then ||PΓPTPΓ|| < 1/4. Thus, the operator PΓ −

PΓPTPΓ is invertible. We write (PΓ − PΓPTPΓ)−1 for the inverse and set

QC = λPT⊥(PΓ − PΓPTPΓ)−1Sgn(C0). (6.10)

There is an alternative definition of (6.10) using the convergent Neumann series [50,

52]. The definition is as follows:
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QC = λPT⊥
∑
k≥0

(PΓPTPΓ)kSgn(C0). (6.11)

Observe that

PΓQC = λPΓPT⊥(PΓ − PΓPTPΓ)−1Sgn(C0)

= λPΓ(I − PT )(PΓ − PΓPTPΓ)−1Sgn(C0)

= λ(PΓ − PΓPTPΓ)(PΓ − PΓPTPΓ)−1Sgn(C0) ♥

= λSgn(C0).

♥ follows from properties of the projection operators, i.e for any two projection oper-

ators P1 and P2, P1 = P2
1 while P1P2 = P2P1 must hold for the product P1P2 to be

a projector [16]. Consequently, one can verify that among all the matrices Q ∈ T⊥

which satisfies PΓQ = λSgn(C0), QC is the one with minimum Frobenius norm [52].

Since, by construction, QB, QC ∈ T⊥ and PΓQC = λSgn(C0), it remains to show that

Q = QB +QC obeys:

||QB +QC || < 1/2

||PΓ(UV T +QB)||F ≤ λ/4

||PΓ⊥(UV T +QB +QC)||∞ < λ/2

to establish (6.6). Indeed, our approach yields a better bound on Q. Our new results is

proposed in the following lemma.

Lemma 6.5.1. Suppose Γ ∼ Bern(p) such that p ≤ pu with pu > 0. Let k0 =

20dlog ne, then under the assumption of Theorem 3.5.3.2, the matrix QB satisfies:

i. ||QB|| < 1/8,
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ii. ||PΓ(UV T +QB)|| < λ/8,

iii. ||PΓ⊥(UV T +QB)||∞ < λ/4.

Furthermore, if supp(C0) = Γ (Γ is as sampled earlier at the beginning of Section 6.5),

and the signs of C0 are symmetric iid, then when the assumptions of Theorem 3.5.3.2

holds, the matrix QC satisfies:

iv. ||QC || < 1/8,

v. ||PΓ⊥QC ||∞ < 1/4.

6.6 Key Lemmas
We now state some important Lemmas which are used to establish our results, The-

orem 3.5.3.2. Our proof differs here, substantially, from the existing works. We derive

bound on Q in terms of l∞,2 norm. This is done with the aid of the following two Lem-

mas. The first lemma is used to bound the operator norm of (p−1PΓ−I)Z, for a matrix

Z, in terms of the l∞,2 and l∞ norms of Z. The bound produced this way is tighter [57]

than the previous ones [52, 58].

Lemma 6.6.1 (Lemma 2 of [57]). Let Z be a square matrix of dimension n. For a

universal constant c > 1, we have

||(p−1PΓ − I)Z|| ≤ c

(
log n

p
||Z||∞ +

√
log n

p
||Z||∞,2

)
,

with high probability.

The next Lemma provides for further controls on the l∞,2 norm.
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Lemma 6.6.2 (Lemma 3 of [57]). SupposeZ ∈ Rn×n is a fixed matrix. If p ≥ c0
µr logn

n
,

for some c0 > 0 which is large enough, then

||(PΓ − p−1PTPΓ)Z||∞,2 ≤ 1/2

√
n

µr
||Z||∞ + 1/2||Z||∞,2,

with high probability.

The proof of these two lemmas can be found in [57]. We also need the following

standard results which enable us to manipulate the l∞ norm.

Lemma 6.6.3 (Lemma 4 of [57], Lemma 3.1 of [52], Lemma 13 of [58]). Suppose

Z ∈ Rn×n is a fixed matrix and that Γ0 ∼ Bern(p). If p ≥ c0
µr logn

n
, for some c0 > 0

large enough, then

||(PT − p−1PTPΓPT )Z||∞ ≤ 1/2||Z||∞,

with high probability.

Lemma 6.6.4 (Theorem 6.3 of [49], Lemma 3.2 of [52]). Suppose Z ∈ Rn×n is a fixed

matrix and that Γ0 ∼ Bern(p). If p ≥ c0
µr logn

n
, for some c0 > 0 sufficiently large, then

with high probability,

||(p−1PΓ0 − I)Z|| ≤ c′0

√
n log n

p
||Z||∞,

for some small numerical constant c′0 > 0.

Lemma 6.6.5 (Theorem 4.1 of [49], Theorem 2.6 of [52], Lemma 1 of [57]). Suppose

p ≥ c0
µr logn

n
for some sufficiently large c0, then (with high probability);

||PT − p−1PTPΓPT || ≤ 1/2.
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We will also need the following results on bounds of the operator norm of random

matrices.

Lemma 6.6.6 (Corollary 2.3.5 of [156]). Let Z ∈ Rn×n be a random matrix with

Zij being independent and identically distributed random variables. Suppose Zij is

uniformly bounded in magnitude by one and has mean zero. Then there exist constants

c, c∗ > 0 such that

P(||Z|| > $
√
n) ≤ c∗ exp(−c$n)

for all $ ∈ R greater than or equal to c∗.

As a consequence, we have ||Z|| ≤ $
√
n with high probability.

Definition 6.6.1 (Definition 5.1 of [167], Nets). Let (X, d) be a metric space and δ > 0.

A subset Nδ of X is called a δ-net of X if every point x ∈ X can be approximated to

within δ by some point y ∈ Nδ, such that d(x, y) ≤ δ.

Lemma 6.6.7 (Lemma 5.2 of [167]). The unit Euclidean sphere5 Sn−1 equipped with

the Euclidean metric satisfies, for every δ > 0, N (Sn−1, δ) ≤
(
1 + 2

δ

)n
.

Lemma 6.6.8 (Lemma 5.3 of [167]). Let Z ∈ Rn×n be a matrix, and suppose that Nδ

is a δ − net of Sn−1 for some δ ∈ [0, 1). Then

||Z|| ≤ (1− δ)−2 sup
x,y∈Nδ

〈y, Zx〉.

Equipped with these Lemmas, we are now ready to prove Lemma 6.5.1.

6.7 Proof of Lemma 6.5.1
Proof of (i.)

5The unit Euclidean (n− 1)-sphere is defined as Sn−1 = {x ∈ Rn : ||x|| = 1}
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Proof. Note that from the construction of the dual certificate, Q = QB + QC . Also,

from Equation (6.8), Yk = Yk−1 + p−1PΓkPT (UV T − Yk−1) and Y0 = 0. We set

Zk = UV T − PTYk for k = 0, . . . , k0; so that Z0 = UV T and

Zk = (PT − p−1PTPΓkPT )Zk−1. (6.12)

Hence,

Yk0 =

k0∑
k=1

p−1PΓkZk−1. (6.13)

Observe that Zk ∈ T , therefore PT⊥Zk = 0. Since QB = PT⊥Yk0 (see Equation 6.9),

then

||QB|| = ||PT⊥Yk0|| ≤
k0∑
k=1

||p−1PT⊥PΓkZk−1||

=

k0∑
k=1

||PT⊥(p−1PΓkZk−1 − Zk−1)||♦

≤
k0∑
k=1

||p−1PΓkZk−1 − Zk−1||

=

k0∑
k=1

||(p−1PΓk − I)Zk−1||

≤ c

k0∑
k=1

(
log n

p
||Zk−1||∞ +

√
log n

p
||Zk−1||∞,2

)♠

≤ c

k0∑
k=1

(
n

c0µr
||Zk−1||∞ +

√
n

c0µr
||Zk−1||∞,2

)♣
≤ c

k0∑
k=1

(
n

√
c0µr
||Zk−1||∞ +

√
n

c0µr
||Zk−1||∞,2

)†
≤ c
√
c0

k0∑
k=1

(
n
√
µr
||Zk−1||∞ +

√
n

µr
||Zk−1||∞,2

)
. (6.14)
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The expression in the first line is as a result of Equation 6.13. ♦ follows from the fact

that PT⊥Zk = 0. ♠ is application of Lemma 6.6.1. ♣ holds for p ≥ c0µr logn
n

while † is

valid since we can choose c0 such that c0µr > 1 so that n
c0µr
≤ n√

c0µr
holds. We will

now bound ||Zk−1||∞ and ||Zk−1||∞,2 by applying Lemma 6.6.3. Using (6.12), applying

Lemma 6.6.3 repeatedly (replacing Γ with Γk), we have (with high probability);

||Zk−1||∞ = ||(PT − p−1PTPΓk−1
PT ) . . . (PT − p−1PTPΓ1PT )Z0||∞

=

∣∣∣∣∣
∣∣∣∣∣
k−1∏
k=1

(PT − p−1PTPΓkPT )Z0

∣∣∣∣∣
∣∣∣∣∣
∞

≤ (1/2)k−1||UV T ||∞, (6.15)

since Z0 = UV T . In like manner, we apply Lemma 6.6.2 to ||Zk−1||∞,2, using Equation

(6.12) again and replacing Γ with Γk to get, with high probability,

||Zk−1||∞,2 = ||(PT − p−1PTPΓk−1
PT )Zk−2||∞,2

≤ 1/2

√
n

µr
||Zk−2||∞ + 1/2||Zk−2||∞,2 (6.16)

Combining (6.15) and (6.16) and using (6.12) repeatedly, then

||Zk−1||∞,2 ≤ k(1/2)k−1

√
n

µr
||UV T ||∞ + (1/2)k−1||UV T ||∞,2. (6.17)

Substituting (6.15) and (6.17) back into (6.14), we get;

||QB|| ≤
c
√
c0

k0∑
k=1

(
n
√
µr

(1/2)k−1||UV T ||∞+√
n

µr

(
k(1/2)k−1

√
n

µr
||UV T ||∞ + (1/2)k−1||UV T ||∞,2

))
=

c
√
c0

k0∑
k=1

(
n
√
µr

(k + 1)(1/2)k−1||UV T ||∞ +

√
n

µr
(1/2)k−1||UV T ||∞,2

)
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≤ c
√
c0

n
√
µr
||UV T ||∞

k0∑
k=1

(k + 1)(1/2)k−1 +
c
√
c0

√
n

µr
||UV T ||∞,2

k0∑
k=1

(1/2)k−1

≤ 6c
√
c0

n
√
µr
||UV T ||∞ +

2c
√
c0

√
n

µr
||UV T ||∞,2.

From (3.22) and (6.2), ||UV T ||∞ ≤
√
µr

n
and

||UV T ||∞,2 = max

{
max
i
||UT ei||2,max

j
||V T ej||2

}
≤
√
µr

n
.

So, we have

||QB|| = ||PT⊥Yk0|| ≤
6c
√
c0

+
2c
√
c0

=
8c
√
c0

≤ 1/8,

provided c0 ≥ (64c)2.

Proof of (ii.)

Proof.

PΓ(UV T +QB) = PΓ(UV T + PT⊥Yk0)

= PΓ(UV T + Yk0 − PTYk0)

= PΓ(UV T − PTYk0)F

= PΓ(UV T − PT (Yk0−1 + p−1PΓk0PT (UV T − PTYk0−1)))

= PΓ(UV T − PTYk0−1 − p−1PTPΓk0
PT (UV T − PTYk0−1))

= PΓ(Zk0−1 − p−1PTPΓk0
PTZk0−1)

= PΓ(PT − p−1PTPΓk0
PT )Zk0−1 = PΓ(Zk0).
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PΓYk0 = 0 (since Γ ∩ T = {0} from the conditions of Lemma 6.4.1), therefore F

holds. The last equality in the last line above follows from Equation (6.12). Hence,

||PΓ(UV T +QB)||F ≤ ||Zk0||F = ||PT − p−1PTPΓk0
PT )||.||Zk0−1||F . (6.18)

Notice that by the conditions of Theorem 3.5.3.2, p ≥ c0µr logn
n

and Γk is independent of

Zk−1. Using the recurrence relation (6.12) again and applying Lemma 6.6.5 repeatedly

(replacing Γ with Γk), we get with high probability;

||PΓ(UV T +QB)||F ≤ (1/2)k0||UV T ||∞

= (1/2)k0
√
µr

n2

<
1

8
√
n

=
λ

8
, (λ =

1√
n

)

(6.19)

The second line holds from Equation (3.22) while the last inequality is valid since

(1/2)k0 tends to zero as k0 increases.

Proof of (iii.)

Proof. We are required to show that ||PΓC (UV T +QB)||∞ < λ/4. Observe that Zk =

UV T − PTYk implies that UV T = Zk + PTYk. Hence,

UV T +QB = Zk0 + PTYk0 + PT⊥Yk0

= Zk0 + Yk0 .

We know that the support of Yk0 is ΓC and, by virtue of (6.18) and (6.19), we have

shown that ||Zk0||F = ||PT − p−1PTPΓk0
PT )Zk0−1||F < λ/8. Therefore, to show that

||PΓC (UV T +QB)||∞ = ||Zk0 + Yk0||∞ < λ/4, it is sufficient to show that ||Yk0||∞ <

λ/8. Recall from (6.13) that Yk0 =
∑k0

k=1 p
−1PΓkZk−1. It then follows that
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||Yk0||∞ ≤ p−1

k0∑
k=1

||PΓkZk−1||∞

≤ p−1

k0∑
k=1

||Zk−1||∞

≤ p−1(1/2)k0||UV T ||∞

≤ p−1(1/2)k0
√
µr

n

≤ n

c0µr log n
(1/2)k0

√
µr

n

≤ 1

c0
√
µr log n

(1/2)k0 <
1

8
√
n

=
λ

8
.

The same argument for the last line of (6.19) is applicable for the last inequality here

as well.

Proof of (iv.)

Proof. From equation (6.11),

QC = λPT⊥
∑
k≥0

(PΓPTPΓ)kSgn(C0)

= λPT⊥Sgn(C0) + λPT⊥
∑
k≥1

(PΓPTPΓ)kSgn(C0).

We define Φ = Sgn(C0) with the following probability distribution:

Φij =


1 with probability p/2,

0 with probability 1− p,

−1 with probability p/2.

Then,

113



QC = λPT⊥Φ + λPT⊥
∑
k≥1

(PΓPTPΓ)kΦ

:= PT⊥Q0
C + PT⊥Q1

C . (6.20)

Therefore, to derive a bound for QC , we only need to derive a bound for PT⊥Q0
C and

PT⊥Q1
C . Applying Lemma 6.6.6 to the first term of (6.20), the following holds with

high probability;

||PT⊥Q0
C || ≤ |λ|||Φ||

≤ λc∗
√
pn = c∗

√
p.

Recall that λ = 1√
n

, hence the last part of the equation above follows. For the second

term of (6.20), let R = PT⊥
∑

k≥1(PΓPTPΓ)k, so that ||Q1
C || = |λ|||R(Φ)||. We are

required to find a bound on the operator norm ofR(Φ). We make use of Lemmas 6.6.7

and 6.6.8 to achieve this. Let Nδ be a δ − net for a sphere Sn−1 of size at most (3/δ)n.

Then by Lemma 6.6.8,

||R(Φ)|| ≤ (1− δ)−2 max
x,y∈Nδ

〈y,R(Φ)x〉

We define a random variable Y (x, y) such that

Y (x, y) := 〈y,R(Φ)x〉

= 〈R(yx∗),Φ〉 (6.21)

for a fixed pair (x, y) ∈ Nδ × Nδ with unit norm. (6.21) holds because R is a self-

adjoint operator [52]. Note that the support of Φ is Γ and Φ is a symmetric matrix with

independent and identically distributed random signs. Using Hoeffding’s Inequality,
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conditioning on Γ, we have

P(|Y (x, y)| > τ |Γ) ≤ 2 exp

(
−2τ 2

||R(yx∗)||2F

)
,

for τ ≥ 0. Since (yx∗) is a unit-normed vector, ||yx∗||F = 1. Therefore, ||R(yx∗)||F ≤

||R|| holds. So, we have

P
(

max
x,y∈Nδ

|Y (x, y)| > τ |Γ
)
≤ 2|Nδ|2 exp

(
−2τ 2

||R||2

)
.

||R|| = ||PT⊥
∑
k≥1

(PΓPTPΓ)k||

≤
∑
k≥1

||(PΓPTPΓ)k|| =
∑
k≥1

||(PΓPT )||2k

=
||PΓPT ||2

1− ||PΓPT ||2
.

The equality in the immediate equation before the last line above holds with the as-

sumption that the product of PT and PΓ commute and for the fact that P2
Γ = PΓ.

Considering the event ψ := {||PΓPT || ≤ β},

||R|| ≤ ||PΓPT ||2

1− ||PΓPT ||2
=

β2

1− β2

Hence,

P (||R(Φ)|| > τ |Γ) ≤ 2(3/δ)2n exp

(
−2τ 2

((1− δ)−2( β2

1−β2 ))2

)

= 2(3/δ)2n exp

(
−2τ 2(1− β2)2(1− δ)4

β4

)
,

and marginally,
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P (||R(Φ)|| > τ) ≤ 2(3/δ)2n exp

(
−2τ 2(1− β2)2(1− δ)4

β4

)
+ P(||PΓPT || ≥ β).

Consequently,

P (λ||R(Φ)|| > τ) ≤ 2(3/δ)2n exp

(
−2τ 2(1− β2)2(1− δ)4

λ2β4

)
+ P(||PΓPT || ≥ β),

with λ = 1√
n

. Conclusively,

||QC || ≤ c∗
√
p+ |λ|||R(Φ)|| ≤ 1/8,

with high probability, provided that β is small enought and for an appropriate choice of

c∗ and δ.

Proof of (v.)

Proof. Recall that QC = λPT⊥(PΓ − PΓPTPΓ)−1Sgn(C0). Therefore,

PΓ⊥QC = λPΓ⊥PT⊥(PΓ − PΓPTPΓ)−1Sgn(C0)

= λPΓ⊥(I − PT )(PΓ − PΓPTPΓ)−1Sgn(C0)

= λ[PΓ⊥(PTPΓ − PΓPTPΓ)−1 − PT (PΓ − PΓPTPΓ)−1]Sgn(C0).

Since the operator PΓ − PΓPTPΓ maps Γ onto itself, (PΓ − PΓPTPΓ)−1 is in Γ and

PΓ⊥(PΓ − PΓPTPΓ)−1 = 0. So, we have

PΓ⊥QC = −λPΓ⊥PT (PΓ − PΓPTPΓ)−1Φ, (6.22)

where Φ = Sgn(C0). Now, for (i, j) ∈ ΓC ,
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QCij = 〈ei, QCej〉

= 〈eieTj , QC〉

= λ〈W (i, j),Φ〉,

where W (i, j) is the matrix−(PΓ−PΓPTPΓ)−1PΓPT (eie
T
j ). Since Γ = supp(Φ), the

signs of Φ are independent, symmetric and identically distributed. Applying Hoeffd-

ing’s inequality, we have

P(|QCij| > τλ|Γ) ≤ 2exp

(
−2τ 2

||W (i, j)||2F

)
,

therefore,

P(sup
i,j
|QCij| > τλ|Γ) ≤ 2n2exp

(
−2τ 2

supi,j ||W (i, j)||2F

)
.

For a matrix of the form eie
T
j , from (6.4), we have

||PT⊥eieTj ||2F = ||(I − UUT )ei||2||(I − V V T )ej||2 ≥
(

1− µr

n

)2

. (6.23)

The last inequality is based on (3.21) with the assumption that µr
n
≤ 1. From the fact

that ||PT eieTj ||2F + ||PT⊥eieTj ||2F = 1, we deduce

||PT eieTj ||F ≤
√

2µr

n
, (6.24)

so that

||PΓPT (eie
T
j )||F ≤ ||PΓPT ||||PT (eie

T
j )||F

≤ β

√
2µr

n
,
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on the event {||PΓPT || ≤ β}. Similarly, on the same event,

||(PΓ − PΓPTPΓ)−1||F ≤
1

1− β2
. (6.25)

Therefore,

||W (i, j)||2F ≤
2β2

(1− β2)2

µr

n
. (6.26)

Hence, unconditionally, we have

P
(

sup
i,j
|QCij| > τλ

)
≤ 2n2exp

(
−n(1− β2)2τ 2

2β2µr

)
+ P(||PΓPT || ≥ β). (6.27)

Similar proof to this part can be found in [52]. This concludes the proof of the

Theorems. We performed series of numerical experiments to corroborate our claim.

The report of these experiments is presented in the next chapter.
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Chapter 7

Numerical Experiments

In this chapter, we report the results of the numerical experiments performed to

test the efficiency and effectiveness of our convex program in finding planted quasi-

clique in a graph. The experiments were performed on a HP computer with 16GB

Ram and Intel core i7 processor. The machine runs on Debian Linux. The simulations

were performed using CVXPY [63] with NCVX [64]. CVXPY is a python package

used to solve convex optimization problems with different solvers, e.g SCS, CVXOPT,

and XPRESS. The Mixed Integer programs were solved using XPRESS MP while our

convex program was solved using SCS solver. For all the experiments, we chose λ =

1√
n

following the recommendation in [52]. Various other values of λ will also work

(see, e.g, [57, 58]). Every instance of the experiment was carried out ten times and the

average was taken.

7.1 Performance Comparison with the Existing Mixed

Integer Programming Formulations
We compare the performance of our nuclear norm minimization (NNM) formu-

lation (5.23) with the existing mixed integer programming models (5.16), (5.17) and

(5.19).

Two types of experiment were performed in this case. In the first case, we checked

whether the recovered quasi-clique satisfies the edge density requirement or not. The

second experiment focuses on the size of the recovered quasi-clique. The detailed

report of both experiments is as follows.
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The goal of the first experiment we performed was to examine the error in the

edge density of the recovered γ-clique with respect to the edge density of the planted

maximum γ-clique. We computed the relative error between the edge density of the

recovered γ-clique and the edge density of the planted γ-clique (i.e, the expected edge

density) for various γ. That is,

Relative Error =
||recovered γ-clique− planted γ-clique||F

||planted γ-clique||F
. (7.1)

All the errors computed in this chapter are relative errors.

We considered graphs with 50 and 100 nodes for this case with planted γ-cliques of

sizes 40 and 80, respectively. The planted γ-clique corresponds to a dense submatrix

of the 50 × 50 (100 × 100) input matrix with 40 (80) non-zero rows/columns. We

varied the edge density of the planted γ-clique by setting γ = 0.6, 0.65, 0.7, . . . , 1. The

probability, γ, determines whether an edge will exist between two nodes in the planted

quasi-clique. The smaller the γ, the fewer the edges and consequently, the more difficult

it is to recover what is planted. The setup follows the Stochastic Block Model (SBM)

[100]. Detail is as follows. For the case n = 50, we generate a 50 × 50 symmetric

matrix, M , with zero entries. We choose a 40× 40 submatrix of this matrix and assign

1 to its indices with probability 0.6 (suppose γ = 0.6), using Bernoulli trial. This

forms the dense component of the input matrix (the planted γ-clique). The entries of

the remaining 10 rows and columns are also assigned values 1 but with a much smaller

probability, (say ρ = 0.2). This forms the sparse component of the matrix (or the

random noise). The goal is to recover the dense submatrix from the input matrix. The

results of these experiments are reported in Tables 7.1 and 7.2. In both Tables, columns

2−4 contain errors in edge density of the planted quasi-cliques recovered using the MIP

models (5.16), (5.17) and (5.19) while column 5 contains the errors in edge density of
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γ
Relative Error in Edge Density of Recovered γ-Clique
MIP(5.16) MIP(5.17) MIP(5.19) NNM(5.23)

0.6 0.0922 0.1279 0.2093 0.3085
0.65 0.0688 0.1607 0.1897 0.2053
0.7 0.0809 0.1646 0.2086 0.1170
0.75 0.0809 0.1935 0.1558 0.0230
0.8 0.087 0.2044 0.1526 0
0.85 0.02 0.2265 0.1299 0
0.9 0.0215 0.2233 0.1806 0
0.95 0 0.2245 0.2026 0
1 0 0.2236 0.2434 0

Table 7.1: Relative Errors in edge density of the planted maximum γ-clique compared with
recovered γ-clique for a graph with 50 nodes. Result for each γ is average of 10 runs.

the γ-clique recovered using our nuclear norm minimization (NNM) approach. When

n = 50, MIP(5.16) performed better than the two other MIP models for all values of γ.

However, our nuclear norm minimization formulation has the best performance when

γ ≥ 0.75. For graphs with 100 nodes (see Table 7.2), MIP(5.19) performed better than

other MIP models except for when γ is equal to 0.75, 0.95 and 1 where MIP(5.16) has

shown better performances. Nevertheless, when γ ≥ 0.7, our model outperformed all

the mixed integer programs. One can also infer from Tables 7.1 and 7.2 that as the

graph size increases, the lower bound on γ for perfect recovery decreases. Figure 7.1

shows the CPU time for each of the methods for the experiments reported in Tables

7.1 and 7.2. Our off-the-shelf solver, SCS (splitting conic solver) [133], is faster than

the popular SDP solvers like SeDumi [155] and SDP3 [159]. However, it is not as

efficient as the well-developed FICO XPRESS optimizer used to solve the MIP models.

Nonethless, as γ increases, there is a drastic drop in the CPU time of our NNM method

in both instances.
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γ
Relative Error in Edge Density of Recovered γ-Clique

MIP(5.16) MIP(5.17) MIP(5.19) NNM(5.23)

0.6 0.0916 0.0736 0.054 0.2424

0.65 0.0892 0.0843 0.0492 0.1012

0.7 0.0879 0.0719 0.0634 0.0131

0.75 0.0879 0.1378 0.0905 0

0.8 0.0829 0.1001 0.0766 0

0.85 0.0783 0.1563 0.0603 0

0.9 0.0817 0.1144 0.0975 0

0.95 0.0735 0.1432 0.1376 0

1 0.0694 0.1581 0.1717 0

Table 7.2: Relative Errors in edge density of the planted maximum γ-clique compared with
recovered γ-clique for a graph with 100 nodes. Result for each γ is average of 10 runs

The second experiment was to find out if the number of nodes in the planted quasi-

cliques, nc, is the same as the number of nodes in the recovered quasi-cliques, η.

For this experiment, we considered graphs of sizes n = 50, 100, . . . , 250 and γ =

0.6, 0.7, . . . , 1. We fixed the size of the submatrix of the adjacency matrix correspond-

ing to the planted γ-clique to be 80% of the whole matrix, i,e, nc = 0.8× n. We varied

γ (the probability of an edge within γ-clique) but fixed ρ = 0.2 (the probability of

diversionary edges or random noise). We again ran the experiment 10 times for each

case and averaged the recovered quasi-clique size. The recovered quasi-clique size cor-

responds to the number of non-zero rows/columns in the recovered dense matrix. We

compute the relative error in recovered γ clique size using:
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(a) Average CPU time for planted quasi-clique recovery for a graph with 50 nodes

(b) Average CPU time for planted quasi-clique recovery for a graph with 100 nodes

Figure 7.1: Comparison of the CPU time for the MIP and NNM methods
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Relative Error in recovered γ-clique size =
|nc − η|
|nc|

, (7.2)

where nc is size of the planted γ-clique and η is size of the recovered γ-cliqe. The

results obtained are presented in Table 7.3. As shown in the last column of Table 7.3,

the relative errors in the size of quasi-clique recovered via nuclear norm minimization

are all zero since nc = η throughout. This shows that the convex formulation always

returns correct planted quasi-clique size. MIP(5.16) has the overall worst performance

in this experiment. Based on these two experiments, when γ > 0.75, nc = η and

the error in edge density is equal to zero. This implies that our convex formulation

perfectly recovers maximum planted quasi-clique when γ > 0.75 for n ≥ 50 and nc

large enough.

7.2 Exact recovery from varying γ-clique size
As mentioned at the end of the last section, for our model to recover γ-clique, nc

must be large enough. To check what size of γ-clique can be recovered from a given

network, we planted γ-clique of various sizes in some graphs and tried to recover them.

We randomly generated n× n symmetric binary matrices with n = 25, 50, 75, . . . 250.

We inserted γ-clique of sizes equal to 10%, 20%, . . . , 100% of the size of the matrices

using binomial distribution as described before. In each case, we fixed γ (the edge

density parameter of the quasi-clique) to be 0.85 and ρ (the probability of adding a

diversionary edge) was 0.25. We generated an n × n zero matrices X ∈ Rn×n and

X̂ ∈ Rn×n. Let Ω be the set of indices corresponding to the nodes belonging to the

quasi-clique. Consequently, Ωc is the set indices of the nodes of the diversionary edges.

The entries of Ω are equal to one with probability γ and zero with probability 1 − γ.

Hence, Ω has expected cardinality |Ω| = γn2
c . Ωc also follows a Bernoulli distribution

with parameter ρ and expected cardinality of ρ(n2−n2
c). nc is the size of planted quasi-
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γ = 0.6 Average Recovered Quasi-clique size/Average Relative Error
n nc MIP(5.16) MIP(5.17) MIP(5.19) NNM(5.23)
50 40 41 0.025 40.4 0.01 40.8 0.02 40 0

100 80 81.7 0.021 80.8 0.01 80.8 0.01 80 0
150 120 122.7 0.023 121 0.008 120.6 0.005 120 0
200 160 163.4 0.021 161.6 0.01 160.9 0.006 160 0
250 200 204.4 0.022 201.9 0.01 200.7 0.003 200 0
γ = 0.7
50 40 40.5 0.013 40.1 0.003 40.4 0.01 40 0

100 80 81.3 0.016 80.4 0.005 80.5 0.006 80 0
150 120 122.4 0.02 121 0.008 120.7 0.006 120 0
200 160 163 0.019 161 0.006 160.6 0.004 160 0
250 200 204 0.02 201.5 0.008 200.4 0.002 200 0
γ = 0.8
50 40 40.2 0.005 40 0 40.5 0.013 40 0

100 80 81 0.025 80.2 0.003 80.2 0.003 80 0
150 120 123 0.025 120.5 0.004 120.3 0.002 120 0
200 160 163.2 0.02 161.2 0.007 160.4 0.003 160 0
250 200 204 0.02 201.3 0.007 200.4 0.002 200 0
γ = 0.9
50 40 40.6 0.015 40 0 40.5 0.013 40 0

100 80 81.1 0.014 80.2 0.003 80.2 0.003 80 0
150 120 122 0.017 120.3 0.002 120.1 0.001 120 0
200 160 163 0.019 160.9 0.006 160.3 0.002 160 0
250 200 203.9 0.02 200.9 0.005 200.1 0 200 0
γ = 1

50 40 40 0 40 0 40 0 40 0
100 80 81 0.013 80 0 80 0 80 0
150 120 122 0.017 120.3 0.002 120 0 120 0
200 160 163 0.019 160.9 0.006 160 0 160 0
250 200 204 0.02 201 0.005 200 0 200 0

Table 7.3: Errors in the size of planted maximum γ-clique recovered using different methods
for γ ranging from 0.6 to 1. n is the graph size while nc is the size of the planted γ-clique. The
first column under each method contains the average size of recovered quasi-clique using the
method while the second contains the relative error of the method.
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Figure 7.2: Exact recovery of varying quasi-clique size from graphs of different sizes

clique. We formed A by adding X and X̂ and tried to recover X from A. We declare

a recovery attempt to be successful if the relative error (in Frobenius norm) of the

recovered matrix is less than or equal to 10−6, i.e, ||X −X∗||F/||X||F ≤ 10−6, where

X∗ is the recovered γ-clique. Figure 7.2 contains the plot of the probability of recovery

from different graph sizes and quasi-clique sizes. White area denotes perfect recovery

while the black area means the recovery attempt failed for every trial. We discovered

that when the γ-clique is less than 10% of the graph size, recovery is impossible and

when the quasi-clique size is bigger than 60% of the graph size, perfect recovery is

guaranteed for all the graph sizes in our experiment.
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7.3 Recovery from varying edge density and random

noise
Theorem 5.8.1 shows that convex programming can recover an incoherent, low-

rank noisy matrix with a reasonable level of missing entries. In the next experiment,

we determined, experimentally, the maximum tolerable level of diversionary edges

(noise) that can be added along with the minimum observing probability (edge den-

sity) required for perfect recovery. The set-up follows the previous experiment with

n = 100 and 200. In both cases, the γ-clique size, nc, was 85 and 170 respectively.

The results of this experiment is presented in Figures 7.3 and 7.4. In both cases, we

observed a phase transition, whereby the probability of recovery jumps from zero to

one as γ reached a particular threshold. This is in agreement with our theoretical claim

that when γ ≥ c0µr logn
n

, for some constant c0 > 0, exact recovery is guaranteed. In

addition, we recorded complete failure when the probability of adding a random noise,

ρ, is greater than or equal to 0.6, i.e, when ρ ≥ 0.6. This implies that when the random

noise becomes too much, recovery becomes impossible. As a conclusion, no γ-clique

of any size can be recovered by our method when γ is less than the recovery threshold

(i.e, the edge density of the planted γ-clique to be recovered is too low), the size of the

planted γ-clique is too small or ρ ≥ 0.6 meaning the random noise is too much.
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Figure 7.3: γ - clique recovery from varying edge density and random noise with n = 100 and
nc = 85

Figure 7.4: γ-clique recovery from varying edge density and random noise with n = 200 and
nc = 170
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Chapter 8

Conclusion

In this thesis, we have considered the mathematical modelling, theoretical frame-

work, and computational aspects of recovering a density-based clique relaxation, known

as quasi-clique, in networks. The planted quasi-clique problem is an extension of the

planted clique problem. We have shown that the planted quasi-clique can be solved by

relaxing it to a convex programming. This was achieved by borrowing techniques from

low rank matrix decomposition and adapting it to the problem under consideration.

We have used this formulation to solve the planted maximum quasi-clique problem in

the randomized case. In the case where the input graph contains the desired single

large dense subgraph and a moderate number of diversionary vertices and edges, then

the relaxation is exact. Therefore, in planted case, these difficult combinatorial opti-

mization problem can be efficiently solved using the tractable relaxation. Among the

methodological contributions of this thesis is sharp theoretical bounds obtained for the

dual matrix. Our proof follows the state of the art in the matrix decomposition liter-

ature. However, our innovations lie in the tools we used for our analysis to get better

results. We improved the results on low rank matrix decomposition by deriving the

bound on our dual matrix, using the matrix l∞,2 norm. This norm has previously been

used for matrix completion problem. We established conditions under which recov-

ery is achievable by deriving a dual matrix, certifying the optimality of our solution.

We present a simplified proof to show that quasi-cliques also posses what is known

as quasi-hereditary property. This property can be exploited to develop enumerative

algorithm for the problem.

Numerically, we have shown the superiority of our formulation over the existing

MIP formulations. The results in Section 7.1 show that when γ is greater than a partic-
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ular threshold, the planted quasi-clique formulation performs better than all the existing

MIP formulations. This model can be very useful in applications where high accuracy

is desired instead of speed. In addition, the results in Section 7.3 is consistent with our

theoretical findings that when γ ≥ c0µr logn
n

, our convex formulation is guaranteed to

recover the planted quasi-clique. However, this is constrained by the level of random

noise present. No matter what the value of γ is, when ρ ≥ 0.6 for the cases we consid-

ered, recovery is impossible. Furthermore, it can be deduced from Section 7.2 that as

the graph size increases, the proportion in size of the the planted quasi-clique required

for perfect recovery reduces.

As an extension, our proposed convex program can be applied to other rank min-

imization problems with little modification. In addition, it will be interesting if this

technique can be extended to recover disjoint quasi-cliques. One can then, possibly,

apply the method to graph partitioning problems like clustering. Also, there are some

special algorithms developed for nuclear norm minimization and low-rank plus sparse

matrix recovery like the iterative singular value thresholding [45], accelerated proxi-

mal gradient [158] and the alternating direction method [78, 175]. It will be interesting

to implement these algorithms for planted quasi-clique recovery to compare their per-

formances with the SCS used for this work. Another aspect will be to use truncated

nuclear norm instead of nuclear norm. These will form part of our future study.
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