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Chapter 1

Introduction

We consider the time t0 value of Forward Starting Call Options with payoffs of the form
[

ST2

ST1
−K

]+

and [ST2 −KST1 ]
+ where t0 < T1 < T2 with T1 the determination date, T2 the maturity date, S the

underlying stock price and K the strike price. We refer to these as % and $ type payoffs respectively,

with % type options more commonly traded. We restrict our attention to a specific affine framework

for the state variables S and V - the underlying process and the variance thereof. The affine framework

is defined such that the natural logarithm of the conditional joint characteristic function for X = lnS

and V is a linear function of these state variables. The characteristic function is the Fourier transform of

the corresponding density function. Within this framework, we focus on the Stochastic Volatility Jump

Jump (SVJJ) model, as presented in Duffie et al. [2000]. The model is driven by correlated Brownian

motions and a single Poisson process which yields simultaneous jumps in X and V where correlated

jump size distributions are assigned to the respective jumps. These dynamics are assumed under a

specific risk-neutral measure.

The semi-analytic valuation of such options requires us to first consider the corresponding results for

European Options, focussing on any technical issues that arise when numerically evaluating the pricing

formulae.

From the efforts of Carr and Madan [1999], Lewis [2001] and Lee [2005], we have semi-analytic pricing

formulae for European Options in terms of a damping parameter α. The role of this parameter is to

(effectively) specify the contour of integration in the complex plane when obtaining option prices by

means of complex Fourier inversion. The conditional characteristic function for X features in these

formulae. In subsection 2.1.1 we derive the semi-analytic formula for a European Call Option. Making

use of alternative versions of the option’s payoff function and the value of such an option as presented

in Bakshi and Madan [2000], we avoid having to directly introduce Residue Theory into the derivation.

In subsection 2.1.2 we obtain the corresponding pricing formulae for % and $ type Forward Starting

Call Options, making use of the insight provided in Hong [2004]. These formulae feature what we refer

to as the conditional forward (%, $) characteristic functions for X . In subsection 2.1.3 we re-iterate the

definition of this affine framework and point out how the conditional joint characteristic function may

be used to determine the conditional characteristic and forward (%, $) characteristic functions. In section

1



CHAPTER 1. INTRODUCTION

2.2 we derive the analytic form of the conditional joint characteristic function for X and V . In subsection

2.3.1 we highlight the fact that there is a discrepancy between forward implied volatilities obtained from

% and $ type Forward Starting Options. This discrepancy may be attributed to a shift between the risk-

neutral and the stock price measure over the period (t0, T1]. In subsection 2.3.2 we make use of the above

mentioned pricing formula from Bakshi and Madan [2000] to infer the effect of this shift in measure on

the dynamics of the model. In section 2.4 we present the form of the conditional characteristic and

forward (%, $) characteristic functions allowing for piecewise constant, time-dependent parameters.

Numerical evaluation of these semi-analytic pricing formulae requires us to consider several technical

issues. We begin section 3.1 by highlighting several useful results regarding the moment generating

function for X . In subsection 3.1.1 we consider the issue of discontinuities arising from the complex

logarithm featured in the conditional characteristic function for X . Within the context of the time-

homogenous Heston model, several authors have considered proving the conjecture that for an appro-

priate representation of the conditional characteristic function, discontinuities cannot arise. The issue

has been laid to rest in Lord and Kahl [2008]. In subsection 3.1.2 we address a potential discontinuity

noted in Albrecher et al. [2007] and show that the issue may be ignored. In section 3.2 we consider the

existence of these pricing formulae. This may be determined in terms of a valid range for the damping

parameter α. For the time-homogenous case, the issue is considered in Lee [2005], Lord and Kahl [2007]

and Lord and Kahl [2008] (excluding the case of jumps in the variance process). In subsections 3.2.1 we

address the issue for the diffusion component of the SVJJ model where we allow for piecewise constant,

time-dependent parameters. In subsections 3.2.2 and 3.2.3 we derive bounds for this valid range of α

assuming time-homogenous parameters. This yields the result for the Heston model. In Lord and Kahl

[2007] a result from Andersen and Piterbarg [2007] is used to determine this range. In subsection 3.2.4

we determine the valid range of α for the jump component of the SVJJ model allowing for piecewise

constant, time-dependent parameters. It is specifically the presence of jumps in the variance process

that requires us to consider the jump component in this context. In subsection 3.2.5 we determine the

valid range of α for Forward Starting Options, making use of the preceding results from this section.

Having obtained this valid range of α, we follow the novel approach of Lord and Kahl [2007] in section

3.3 to determine the optimal value of α for which the pricing integrand is neither too oscillatory nor too

peaked. This approach is not complicated by the presence of piecewise constant parameters as long as

the valid range of α has been determined appropriately. In section 3.4 we present the approach of Kahl

and Jackel [2005] to avoid having to truncate the domain of integration and obtain the corresponding

results allowing for piecewise constant parameters and for Forward Starting Options. In section 3.5 we

return to the issue of complex discontinuities and address the issue in the context of the Heston model,

for European and Forward Starting pricing formulae allowing for piecewise constant, time-dependent

parameters. We prove that branch cutting is not an issue for −1 ≤ α ≤ 0 (with parameter restrictions

only for the case α = 0).

Having obtained pricing formulae within this affine framework, we introduce the SABR model (or the

SABR approximation) in section 4.1. In subsection 4.1.1 we motivate approximate semi-analytic pricing

formulae for % type Forward Starting Options. In subsection 4.1.2 we highlight the complications that

arise when attempting to obtain similar results for $ type Forward Starting Options. In subsection 4.1.3

we briefly discuss the fact that consistent pricing of Forward Starting Options with determination date

2



CHAPTER 1. INTRODUCTION

T1 and maturity date T2, where the model is separately calibrated to the market prices of T1 and T2

maturity European Options, would require us to make use of the Dynamic SABR model as the SABR

model yields maturity specific constant parameters. This complication highlights a merit of the affine

framework - the analytic conditional joint characteristic function allows us to introduce piecewise con-

stant, time-dependent parameters into the semi-analytic pricing formulae, a result that we find has also

been documented in Mikhailov and Nogel [2005] and more recently in Elices [2007]. In section 4.2 we

digress to obtain an analytic forward parameter for a special case of the square root CEV model. The

term forward refers to the constant parameter value, as seen at time t0, that should apply over the period

(T1, T2], for example.

Finally, in section 4.3 we present an application of the methods of this thesis. In Piterbarg [2005], ap-

proximate forward parameters are obtained for two time-dependent parameters in an (uncorrelated)

stochastic volatility model. For one of these parameters, the result is specifically obtained for an at-

the-money option. We show that for this parameter an exact result is available (assuming piecewise

constant, time-dependence) and for an at-the-money option, can be evaluated efficiently. For alternative

strike levels, an exact result is still available but we are required to make use of the methods described,

to determine the valid range of α and the optimal value therein. Our approach illustrates that corre-

sponding results may be obtained for the entire parameter set of the SVJJ model, as an example of an

affine model.

3



Chapter 2

Semi-analytic pricing formulae

The Black-Scholes model yields a closed form solution for the value of a European Option at time t0

with maturity T and strike K . This can be derived from the analytic form of the conditional density

function, for the terminal value of the underlying asset ST given St0 . As an alternative to this map from

density function to option price, one can obtain the value, albeit in semi-analytic form, by mapping

from the corresponding analytic conditional characteristic function where the characteristic function is

the Fourier transform of the density function. The solution obtained from the latter approach is labeled

as semi-analytic as the resulting formula must be evaluated numerically and so, in this case, is not

preferable. However, when relaxing the assumptions of the model, specifically allowing for stochastic

(correlated) volatility and jumps (in the now coupled stochastic process), the characteristic function

approach remains valid (for judiciously specified dynamics) while the density function approach cannot

hope to.

Assuming an analytic conditional characteristic function, we derive the form of this semi-analytic value

for a European Call Option and apply the same approach to the valuation of Forward Starting Options.

2.1 Semi-analytic pricing formulae

To re-iterate, for XT = lnST and k = lnK , the value of an option at time t0 whose payoff Π̄
t0 ,T (XT , k)

depends only on the terminal value XT , may be expressed as

Π
t0 ,T (k) = e−rτ

∫ ∞

−∞
Π̄

t0 ,T (x, k)f
t0 ,T (x|x̄t0)dx (2.1)

where the value is an explicit function of the conditional risk neutral density function f
t0 ,T (x|x̄t0 ) with

x̄t0 the vector of state variables at t0, τ = T − t0 and r the constant discount rate that applies over the

period (t0, T ].

4



CHAPTER 2. SEMI-ANALYTIC PRICING FORMULAE

Alternatively, we can write

Π
t0 ,T (k) =

1

2π

∫ ∞−iα

−∞−iα

e−iz̄kΨ
t0 ,T (z̄)dz̄ (2.2)

Ψt0 ,T (z̄) =

∫ ∞

−∞
eiz̄kΠt0 ,T (k)dk (2.3)

where Ψt0 ,T (z̄) is the complex Fourier transform of Πt0 ,T (k) and z̄ := u − iα with u ∈ R. The value

−α specifies the contour of integration in the complex plane and must be chosen from within a valid

range. Inserting equation (2.1) into equation (2.3), we attempt to express Ψt0 ,T (z̄) as an explicit, analytic

function of Φ
t0 ,T (z̄), the conditional characteristic function of XT , i.e.

Φt0 ,T (z̄) := E
Q
t0

[
eiz̄XT |x̄t0

]
(2.4)

=

∫ ∞

−∞
eiz̄xft0 ,T (x|x̄t0 )dx (2.5)

If an analytic expression is available for Φt0 ,T (z̄) then inserting equation (2.3) into equation (2.2) yields

a semi-analytic result for the option price as we need only to perform a one dimensional integration to

obtain the final result. This approach is followed in subsections 2.1.1 and 2.1.2. The valid range of α is

defined such that the moment generating function Φ
t0 ,T (−i[α+ 1]) exists. We elaborate on this point in

subsection 2.1.1.

Switching from the complex variable z̄ to the real variable u, equation (2.2) may be simplified down to

Π
t0 ,T (k) =

1

π

∫ ∞

0

Re
[
e−i(u−iα)kΨ

t0 ,T (u, α)
]
du (2.6)

To see this, consider that

Ψ
t0 ,T (u, α) =

∫ ∞

−∞
ei(u−iα)kΠ

t0 ,T (k)dk

=

∫ ∞

−∞
eαkΠ

t0 ,T (k) cos(uk)dk + i

∫ ∞

−∞
eαkΠ

t0 ,T (k) sin(uk)dk (2.7)

Since cosine and sine are even and odd functions respectively, we see that Re
[
Ψt0 ,T (u, α)

]
is even in u,

while Im
[
Ψ

t0 ,T (u, α)
]

is odd in u where Re [Z] and Im [Z] refer to the real and imaginary parts of Z ∈ C,

respectively. Furthermore, we can write

Π
t0 ,T (k) =

1

2π

∫ ∞

−∞
e−i(u−iα)kΨ

t0 ,T (u, α)du (2.8)

=
1

2π

∫ ∞

−∞
e−αk

(
Re
[
Ψ

t0 ,T (u, α)
]
cos(−uk) − Im

[
Ψ

t0 ,T (u, α)
]
sin(−uk)

)
du (2.9)

+ i
1

2π

∫ ∞

−∞
e−αk

(
Re
[
Ψt0 ,T (u, α)

]
sin(−uk) + Im

[
Ψt0 ,T (u, α)

]
cos(−uk)

)
du (2.10)

From equation (2.10), we see that the imaginary integrand is odd in u and since the domain of integration

is symmetric about the point u = 0, the integral disappears. From equation (2.9), we see that the real

integrand is even in u. This gives us equation (2.6).

5



CHAPTER 2. SEMI-ANALYTIC PRICING FORMULAE

2.1.1 European Call Options

From the work of Carr and Madan [1999], Lewis [2001] and Lee [2005], we have the semi-analytic option

value

ΠC

t0 ,T (k) = e−rτRC

t0 ,T (α) +
e−rτ

π

∫ ∞

0

Re

[(
e−i(u−iα)k

−(u− iα)(u − i[α+ 1])

)
Φ

t0 ,T (u− i[α+ 1])

]
du (2.11)

where the superscript C specifies the Call value and

RC

t0 ,T (α) = E
Q
t0

[
eXT |x̄t0

]
I[α≤0] −

1

2
E

Q
t0

[
eXT |x̄t0

]
I[α=0] − ek

I[α≤−1] +
1

2
ek

I[α=−1] (2.12)

where I is an indicator function. The parameter α is chosen from within the interval (αmin, αmax) such

that Φ
t0 ,T (−i[α + 1]) exists and hence the integrand exists, subject to points of singularity at u = 0 and

α = −1, 0.

Proof: Making use of alternative versions of a European Call’s payoff function and a result of Bakshi and

Madan [2000], we verify the pricing formulae for European Options, as presented in Lee [2005] Theorem

5, without having to explicitly appeal to Residue Theory.

We can express the payoff of a European Call Option Π̄C
t0 ,T (XT , k) in four distinct forms

Case 1: max
[
eXT − ek, 0

]
(2.13)

Case 2: eXT − ek + max
[
ek − eXT , 0

]
(2.14)

Case 3: eXT − min
[
eXT , ek

]
(2.15)

Case 4: eXT I[XT >k] − ek
I[XT >k] (2.16)

From these cases, we derive the result.

Case 1: Working from Π̄C
t0 ,T (XT , k) = max

[
eXT − ek, 0

]
, we have

ΨC

t0 ,T (z̄) = e−rτ

∫ ∞

−∞
eiz̄k

∫ ∞

−∞
max

[
ex − ek, 0

]
f

t0 ,T (x|x̄t0 )dxdk (2.17)

= e−rτ

∫ ∞

−∞
f

t0 ,T (x|x̄t0 )

∫ x

−∞

[
eiz̄k+x − ei(z̄−i)k

]
dkdx (2.18)

= e−rτ

∫ ∞

−∞
ft0 ,T (x|x̄t0 )

[
eiz̄k+x

iz̄

∣∣∣∣∣

x

−∞
− ei(z̄−i)k

i(z̄ − i)

∣∣∣∣∣

x

−∞

]
dx (2.19)

= e−rτ

(
1

iz̄
− 1

i(z̄ − i)

)∫ ∞

−∞
ei(z̄−i)xf

t0 ,T (x|x̄t0 )dx (2.20)

= e−rτ

(
1

iz̄
− 1

i(z̄ − i)

)
Φt0 ,T (z̄ − i) (2.21)

where the integration leading up to equation (2.20) is valid only for −Im [z̄] > 0. Hence, for α > 0, we

have

ΠC

t0 ,T (k) =
e−rτ

π

∫ ∞

0

Re

[(
e−i(u−iα)k

−(u− iα)(u− i[α+ 1])

)
Φ

t0 ,T (u− i[α+ 1])

]
du (2.22)

Case 2: Working from Π̄C
t0 ,T (XT , k) = eXT − ek + max

[
ek − eXT , 0

]
, we consider the Fourier transform

6



CHAPTER 2. SEMI-ANALYTIC PRICING FORMULAE

of a European Put (P) Option

ΨP

t0 ,T (z̄) = e−rτ

∫ ∞

−∞
eiz̄k

∫ ∞

−∞
max

[
ek − ex, 0

]
f

t0 ,T (x|x̄t0 )dxdk (2.23)

= e−rτ

∫ ∞

−∞
ft0 ,T (x|x̄t0 )

[
ei(z̄−i)k

i(z̄ − i)

∣∣∣∣∣

∞

x

− eiz̄k+x

iz̄

∣∣∣∣∣

∞

x

]
dx (2.24)

= e−rτ

(
1

iz̄
− 1

i(z̄ − i)

)
Φ

t0 ,T (z̄ − i) (2.25)

where the integration leading up to equation (2.25) is valid only for −Im [z̄] < −1. Hence, for α < −1,

we have

ΠC

t0 ,T (k) = e−rτ
(
E

Q
t0

[
eXT |x̄t0

]
− ek

)
+
e−rτ

π

∫ ∞

0

Re

[(
e−i(u−iα)k

−(u− iα)(u − i[α+ 1])

)
Φt0 ,T (u− i[α+ 1])

]
du

Case 3: Working from Π̄C
t0 ,T (XT , k) = eXT − min

[
eXT , ek

]
, we consider the Fourier transform of a Cov-

ered Call (CC) Option

ΨCC

t0 ,T (z̄) = e−rτ

∫ ∞

−∞
eiz̄k

∫ ∞

−∞
min

[
ex, ek

]
ft0 ,T (x|x̄t0 )dxdk (2.26)

= e−rτ

∫ ∞

−∞
f

t0 ,T (x|x̄t0 )

[
eiz̄k+x

iz̄

∣∣∣∣∣

∞

x

+
ei(z̄−i)k

i(z̄ − i)

∣∣∣∣∣

x

−∞

]
dx (2.27)

= −e−rτ

(
1

iz̄
− 1

i(z̄ − i)

)
Φt0 ,T (z̄ − i) (2.28)

where the integration leading up to equation (2.28) is valid only for −1 < −Im [z̄] < 0. Hence, for

−1 < α < 0, we have

ΠC

t0 ,T (k) = e−rτ
E

Q
t0

[
eXT |x̄t0

]
+
e−rτ

π

∫ ∞

0

Re

[(
e−i(u−iα)k

−(u− iα)(u− i[α+ 1])

)
Φt0 ,T (u− i[α+ 1])

]
du

Case 4: Working from Π̄C
t0 ,T (XT , k) = eXT I[XT >k] − ekI[XT >k], we must value an Asset or Nothing

Call (AC) Option and a Cash or Nothing Call (BC) Option where the latter has a notional value of ek.

Regarding the Asset or Nothing Call Option, we choose to express the payoff as eXT
(
1 − I[XT ≤k]

)
and

so we consider the Fourier transform of an Asset or Nothing Put (AP) Option

ΨAP

t0 ,T (z̄) = e−rτ

∫ ∞

−∞
eiz̄k

∫ ∞

−∞
ex

I[x<k]ft0 ,T (x|x̄t0 )dxdk (2.29)

= e−rτ

∫ ∞

−∞
f

t0 ,T (x|x̄t0 )
eiz̄k+x

iz̄

∣∣∣∣∣

∞

x

dx (2.30)

= −e−rτ 1

iz̄
Φt0 ,T (z̄ − i) (2.31)

where the integration leading up to equation (2.31) is valid only for −Im [z̄] < 0 i.e. for α < 0.

Regarding the Cash or Nothing Call Option, we consider the Fourier transform specifically for a notional

7
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of ek

ΨBC

t0 ,T (z̄) = e−rτ

∫ ∞

−∞
eiz̄k

∫ ∞

−∞
ek

I[x>k]ft0 ,T (x|x̄t0 )dxdk (2.32)

= e−rτ

∫ ∞

−∞
ft0 ,T (x|x̄t0 )

ei(z̄−i)k

i(z̄ − i)

∣∣∣∣∣

x

−∞
dx (2.33)

= e−rτ 1

i(z̄ − i)
Φ

t0 ,T (z̄ − i) (2.34)

where the integration leading up to equation (2.34) is valid only for −Im [z̄] > −1 i.e. for α > −1.

Returning to the Asset or Nothing Call Option, we specify α = −1 and obtain

ΠAC

t0 ,T (k) = e−rτ
E

Q
t0

[
eXT |x̄t0

]
− 1

π

∫ ∞−iα

−∞−iα

Re
[
e−iz̄kΨAP

t0 ,T (z̄)
]
dz̄ (2.35)

= e−rτ
E

Q
t0

[
eXT |x̄t0

]
+
e−rτ

π

∫ ∞

0

Re

[
e−i(u+i)k 1

i(u+ i)
Φ

t0 ,T (u)

]
du (2.36)

while for the Cash or Nothing Call Option with notional ek, we specify α = 0 and obtain

ekΠBC

t0 ,T (k) =
1

π

∫ ∞−iα

−∞−iα

Re
[
e−iz̄kΨBC

t0 ,T (z̄)
]
dz̄ (2.37)

=
e−rτ

2π

∫ ∞

−∞
e−iuk 1

i(u− i)
Φ

t0 ,T (u− i)du (2.38)

From Bakshi and Madan [2000] Theorem 1 and Case 2, we have the following formula for the value of a

European Call Option

ΠC

t0 ,T (k) = e−rτ
(
E

Q
t0

[
eXT |x̄t0

]
P1 − ekP2

)
(2.39)

where

E
Q
t0

[
eXT |x̄t0

]
P1 =

1

2
E

Q
t0

[
eXT |x̄t0

]
+

1

π

∫ ∞

0

Re

[
e−iuk 1

iu
Φ

t0 ,T (u − i)

]
du (2.40)

P2 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iuk 1

iu
Φ

t0 ,T (u)

]
du (2.41)

Since ΠAC
t0 ,T (k) = e−rτEQ

t0

[
eXT |x̄t0

]
P1, we can write

ΠC

t0 ,T (k) = ΠAC

t0 ,T (k) − e−rτekP2

= e−rτ

(
E

Q
t0

[
eXT |x̄t0

]
− 1

2
ek

)
+
e−rτ

π

∫ ∞

0

Re

[
e−i(u+i)k

−u(u+ i)
Φt0 ,T (u)

]
du (2.42)

for α = −1 where we have used the fact that 1
i(u+i) = 1

iu − 1
u(u+i) .

Since ekΠBC
t0 ,T (k) = e−rτekP2, we can write

ΠC

t0 ,T (k) = e−rτ
E

Q
t0

[
eXT |x̄t0

]
P1 − ekΠBC

t0 ,T (k) (2.43)

= e−rτ
E

Q
t0

[
eXT |x̄t0

]
+
e−rτ

π

∫ ∞

0

Re

[
e−iuk

−u(u− i)
Φ

t0 ,T (u− i)

]
du (2.44)

for α = 0 where we have used the fact that 1
i(u−i) = 1

iu + 1
u(u−i) .

8



CHAPTER 2. SEMI-ANALYTIC PRICING FORMULAE

Hence, from these cases we obtain the option value in terms of the specified value of α.

To determine the valid range of α, we refer to the integrand in equation (2.11), for which we have

∣∣∣∣∣Re

[(
e−i(u−iα)k

−(u− iα)(u − i[α+ 1])

)
Φt0 ,T (u− i[α+ 1])

] ∣∣∣∣∣

≤
( ∣∣e−i(u−iα)k

∣∣
|(u − iα)(u− i[α+ 1])|

)∣∣∣Φt0 ,T (u− i[α+ 1])
∣∣∣ (2.45)

The inequality results from the fact that |Z| =

√
Re [Z]

2
+ Im [Z]

2, for Z ∈ C. The fraction in equation

(2.45) exists at all points except z̄ = 0, i i.e. at u = 0 and α = −1, 0. Regarding the characteristic function

Φ, Jensen’s inequality gives us

∣∣∣EQ
t0

[
ei(u−i[α+1])XT |x̄t0

] ∣∣∣ ≤ E
Q
t0

[∣∣∣ei(u−i[α+1])XT

∣∣∣|x̄t0

]

= E
Q
t0

[
e[α+1]XT |x̄t0

]
(2.46)

= E
Q
t0

[
Sα+1

T |x̄t0

]
(2.47)

The moment generating function for XT in equation (2.46) exists for α in an open interval about the

point −1 i.e. the interval (αmin, αmax). �

From Lee [2005] Appendix A.2, αmin is the largest value in the range (−∞,−1) and αmax is the smallest

value in the range (0,∞) such that EQ
t0

[
Sα+1

T |x̄t0

]
no longer exists i.e. the valid range of α is free of any

moment explosions in ST .

Considering the range α ∈ [−1, 0], we have

E
Q
t0

[
Sα+1

T |x̄t0

]
≤ max

(
E

Q
t0

[ST |x̄t0 ] , 1
)

(2.48)

since Sα+1 ≤ S for S > 1 and Sα+1 ≤ 1 for S ≤ 1. So assuming the forward price exists, we have

αmin < −1 and 0 < αmax.

2.1.2 Forward Starting Call Options

Proposition 1. The time t0 value of a % type Forward Starting Call Option with determination date T1 and

maturity date T2 is

Π%C

t0 ,T1 ,T2
(k) = e−rτR%C

t0 ,T1 ,T2
(α)

+
e−rτ

π

∫ ∞

0

Re

[(
e−i(u−iα)k

−(u− iα)(u − i[α+ 1])

)
Φ

t0 ,T1 ,T2
(−u+ i[α+ 1], u− i[α+ 1])

]
du

(2.49)

R%C

t0 ,T1 ,T2
(α) = E

Q
t0

[
eXT2−XT1 |x̄t0

]
I[α≤0] −

1

2
E

Q
t0

[
eXT2−XT1 |x̄t0

]
I[α=0] − ek

I[α≤−1] +
1

2
ek

I[α=−1]

(2.50)

9
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The time t0 value of a $ type Forward Starting Call Option with determination date T1 and maturity date T2 is

Π$C

t0 ,T1 ,T2
(k) = e−rτR$C

t0 ,T1 ,T2
(α)

+
e−rτ

π

∫ ∞

0

Re

[(
e−i(u−iα)k

−(u− iα)(u − i[α+ 1])

)
Φ

t0 ,T1 ,T2
(−u+ iα, u− i[α+ 1])

]
du

(2.51)

R$C

t0 ,T1 ,T2
(α) = E

Q
t0

[
eXT2 |x̄t0

]
I[α≤0] −

1

2
E

Q
t0

[
eXT2 |x̄t0

]
I[α=0] − ek

E
Q
t0

[
eXT1 |x̄t0

]
I[α≤−1]

+
1

2
ek

E
Q
t0

[
eXT1 |x̄t0

]
I[α=−1]

(2.52)

Regarding these pricing formulae, the subscripts t0, T1, T2 refer to the valuation, determination and maturity dates

respectively, τ = T2 − t0 and r is the constant discount rate that applies over the period (t0, T2]. Furthermore,

Φ
t0 ,T1 ,T2

(z(%,$), z) := EQ
t0

[exp (iz(%,$)XT1 + izXT2) |x̄t0 ], x̄t0 is the vector of state variables at t0, z := u− i[α+1],

z% := −z and z$ := −(z + i) with z(%,$) := z% for a % type option and z(%,$) := z$ for a $ type option. We refer to

Φ
t0 ,T1 ,T2

(z%, z) as the conditional forward % characteristic function and Φ
t0 ,T1 ,T2

(z$, z) as the conditional forward

$ characteristic function.

The parameter α is chosen from within the interval (αmin,(%,$), αmax,(%,$)) such that Φ
t0 ,T1 ,T2

(z(%,$), z)
∣∣
u=0

exists

and hence the respective integrand exists, subject to points of singularity at u = 0 and α = −1, 0.

Proof: Having obtained pricing formulae for European Options, we can determine the corresponding

results for Forward Starting Options by expressing the value of the latter as

Π(%,$)

t0 ,T1 ,T2
(k) = e−r1τ1E

Q
t0

[
e−r2τ2E

Q
T1

[
Π̄(%,$)

t0 ,T1 ,T2
(k)|x̄T1

]
|x̄t0

]
(2.53)

where Π̄(%,$)
t0 ,T1 ,T2

(k) is the appropriate payoff function, the superscript (%, $) specifies whether the option

is of a % or of a $ type. The term is split into two increments τ1 = T1 − t0 and τ2 = T2 − T1, allowing for

piecewise constant parameters. Specifically, r1 is the constant discount rate that applies over the period

(t0, T1] and r2 is the constant discount rate that applies over the forward period (T1, T2].

For a % type Call Option, we have

Π̄%C

t0 ,T1 ,T2
(k) = max

[
ST2

ST1

−K, 0

]
= max

[
eXT2−XT1 − ek, 0

]
(2.54)

while for a $ type Call Option, we have

Π̄$C

t0 ,T1 ,T2
(k) = max [ST2 −KST1 , 0] = max

[
eXT2 − ek+XT1 , 0

]
(2.55)

Rather than obtaining the risk neutral t0 value of the payoff at maturity directly, we first obtain the T1

value of the payoff. At T1, the payoff depends only on an uncertain outcome at the maturity date and

so is European in nature. We can, therefore, make use of the form of the pricing formula for a European

Call Option to obtain the option value at this point. We then obtain the t0 value of this T1 value.
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For a % type option, we have the value at T1

Π%C

T1 ,T1 ,T2
(k)

= e−r2τ2E
Q
T1

[
max

[
eXT2−XT1 − ek, 0

]
|x̄T1

]

= e−r2τ2

(
E

Q
T1

[
eXT2−XT1 |x̄T1

]
I[α≤0] −

1

2
E

Q
T1

[
eXT2−XT1 |x̄T1

]
I[α=0] − ek

I[α≤−1] +
1

2
ek

I[α=−1]

)

+
e−r2τ2

π

∫ ∞

0

Re

[(
e−i(u−iα)k

−(u− iα)(u− i[α+ 1])

)
E

Q
T1

[
ei(u−i[α+1])(XT2−XT1 )|x̄T1

]]
du

(2.56)

and at t0, the value is

Π%C

t0 ,T1 ,T2
(k)

= e−r1τ1E
Q
t0

[
Π%C

T1 ,T1 ,T2
(k)|x̄t0

]

= e−(r1τ1+r2τ2)R%C

t0 ,T1 ,T2
(α)

+
e−(r1τ1+r2τ2)

π

∫ ∞

0

Re

[(
e−i(u−iα)k

−(u− iα)(u − i[α+ 1])

)
Φt0 ,T1 ,T2

(−u+ i[α+ 1], u− i[α+ 1])

]
du

(2.57)

where

R%C

t0 ,T1 ,T2
(α) = E

Q
t0

[
eXT2−XT1 |x̄t0

]
I[α≤0] −

1

2
E

Q
t0

[
eXT2−XT1 |x̄t0

]
I[α=0] − ek

I[α≤−1] +
1

2
ek

I[α=−1]

(2.58)

For a $ type option, we express the payoff in terms of the payoff of % type option

Π̄$C

t0 ,T1 ,T2
(k) = eXT1 max

[
eXT2−XT1 − ek, 0

]
(2.59)

and so we have the T1 value

Π$C

T1 ,T1 ,T2
(k) = eXT1Π%C

T1 ,T1 ,T2
(k) (2.60)

Making use of equations (2.56), (2.57), (2.58) and (2.60), we see that the t0 value follows in a straight-

forward manner. For the piecewise constant, time-dependent discount rate arbitrage arguments yield

r1τ1 + r2τ2 = rτ .

Regarding the valid range of α for % and $ type Forward Starting Options, we determine the values

αmin,(%,$) and αmax,(%,$) from the respective conditional forward (%, $) characteristic functions, in the same

manner that αmin and αmax are determined from the conditional characteristic function. �

It is worth noting that we have not required a change of measure argument to obtain the pricing formula

for a $ type option. Such an approach is followed in Kruse and Nogel [2005] where a ‘Black-Scholes’ type

pricing formula of the form in equation (2.39) is obtained for a $ type option, within the Heston model.
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2.1.3 The affine framework

We define the affine framework as that where the conditional joint characteristic function, for the state

variables X and V , has the form

E
Q
t0

[exp (izXT + izvVT ) |Xt0 , Vt0 ] = exp [izXt0 +D(τ, iz, izv)Vt0 + C(τ, iz, izv)] (2.61)

where z := u− i(α+1) and we leave izv unspecified, for the moment. The analytic form of the functions

C and D is derived in proposition 2 of section 2.2.

Regarding the arguments of the functions C and D, iz and izv refer to the coefficient of X and V re-

spectively, at the terminal time T where we have the value exp (izXT + izvVT ). Setting zv = 0 yields the

conditional characteristic function for X

E
Q
t0

[exp (izXT ) |Xt0 , Vt0 ] = exp [izXt0 +D(τ, iz, 0)Vt0 + C(τ, iz, 0)] (2.62)

while setting z = 0 yields the conditional characteristic function for V

E
Q
t0

[exp (izvVT ) |Xt0 , Vt0 ] = exp [D(τ, 0, izv)Vt0 + C(τ, 0, izv)] (2.63)

From equation (2.11), we see that an analytic expression for E
Q
t0

[exp(izXT )|Xt0 , Vt0 ] allows us to value

European Options in semi-closed form. Equation (2.62) lies at the heart of models presented in Heston

[1993], Bates [1996], Scott [1997], Duffie et al. [2000] and Yan and Hanson [2006], for example.

From equation (2.49), we see that an analytic expression for the conditional forward % characteristic

function Φ
t0 ,T1 ,T2

(z%, z) allows us to value % type Forward Starting Options in semi-closed form. Within

the affine framework, we have

Φ
t,T1 ,T2

(z%, z) = E
Q
t0

[
exp (iz%XT1) E

Q
T1

[exp (izXT2) |XT1 , VT1 ] |Xt0 , Vt0

]
(2.64)

= E
Q
t0

[exp (iz%XT1 + izXT1 +D2;2(τ2, iz, 0)VT1 + C2;2(τ2, iz, 0)) |Xt0 , Vt0 ] (2.65)

= exp [C2;2(τ2, iz, 0)]EQ
t0

[exp (D2;2(τ2, iz, 0)VT1) |Xt0 , Vt0 ] (2.66)

= exp [D1;2(τ1, 0, D2;2(τ2, iz, 0))Vt0 + C1;2(τ1, 0, D2;2(τ2, iz, 0)) + C2;2(τ2, iz, 0)]

(2.67)

where we have made use of the tower property to obtain equation (2.64), the analytic form of the con-

ditional characteristic function for X to obtain equation (2.65), the fact that z% = −z to obtain equation

(2.66) and the analytic form of the conditional characteristic function for V to obtain equation (2.67).

Regarding the subscripts of the functionsCm;n andDm;n,m specifies the increment currently considered

while n specifies the total number of increments. We clarify the use of this subscripting in section 2.4.

From equation (2.51), we see that an analytic expression for the conditional forward $ characteristic

function Φt0 ,T1 ,T2
(z$, z) allows us to value $ type Forward-Starting options in semi-closed form. Within

12
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the affine framework, we have

Φ
t0 ,T1 ,T2

(z$, z) = E
Q
t0

[
exp (iz$XT1) E

Q
T1

[exp (izXT2) |XT1 , VT1 ] |Xt0 , Vt0

]
(2.68)

= E
Q
t0

[exp (iz$XT1 + izXT1 +D2;2(τ2, iz, 0)VT1 + C2;2(τ2, iz, 0)) |Xt0 , Vt0 ] (2.69)

= exp [C2;2(τ2, iz, 0)]EQ
t0

[exp (XT1 +D2;2(τ2, iz, 0)VT1) |Xt0 , Vt0 ] (2.70)

= exp [Xt0 +D1;2(τ1, 1, D2;2(τ2, iz, 0))Vt0 + C1;2(τ1, 1, D2;2(τ2, iz, 0)) + C2;2(τ2, iz, 0)]

(2.71)

where what differs from the corresponding result for % type options is that we have made use of the fact

that z$ = −(z + i) to obtain equation (2.70) and the analytic form of the joint conditional characteristic

function for X and V to obtain equation (2.71).

We can now specify the conditional forward (%, $) characteristic function in a more compact manner

Φ
t0 ,T1 ,T2

(z(%,$), z)

= exp [IXt0 +D1;2(τ1, I, D2;2(τ2, iz, 0))Vt0 + C1;2(τ1, I, D2;2(τ2, iz, 0)) + C2;2(τ2, iz, 0)] (2.72)

where z(%,$) := z% for a % type option, z(%,$) := z$ for a $ type option and I := I[z(%,$):=z$].

2.2 The analytic conditional joint characteristic function for the SVJJ

model

From Duffie et al. [2000], we have the affine jump-diffusion stochastic volatility model

dXt =

(
r − q − λω − 1

2
Vt

)
dt+

√
VtdW

X

t + JXdNt (2.73)

dVt = κ(θ − Vt)dt+ ν
√
VtdW

V

t + JV dNt (2.74)

dWX

t dW
V

t = ρdt (2.75)

where

JV ∼ exp

(
1

η

)
(2.76)

JX|JV ∼ N
(
µ+ ρJJV , σ

2
)

(2.77)

Regarding the specified state variablesX and V , each process has a drift, diffusion and jump component.

The drift of X includes the parameter ω which provides a degree of freedom to ensure that the arbitrage

condition EQ
t0

[ST |St0 ] = St0e
(r−q)τ is not violated by the presence of jumps in the state variables. The

drift of V mean reverts with the long term mean θ and rate of mean reversion κ. The Brownian motions

driving the continuous component of each process are correlated by the parameter ρ. This may be

specified in terms of the independent Brownian motions W V and B where WX := ρW V +
√

1 − ρ2B.

The jump component of each process is driven by the same Poisson process N (with intensity parameter

λ) which counts the number of jumps in a certain interval. The jump sizes JV and JX are correlated with

an exponential distribution specified for JV where EQ [JV ] = η and the conditional distribution of JX

13
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given JV is specified to be normal with the correlation parameter ρJ controlling the conditioning of JX

on JV . Setting λ = 0 yields the dynamics of the Heston model.

Proposition 2. For the period (t0, T ] and τ = T − t0, the conditional joint characteristic function for X and V ,

within the SVJJ model, has the analytic form exp [izXt0 +D(τ, iz, izv)Vt0 + C(τ, iz, izv)] where

D(τ, iz, izv) =

(
b(iz)− γ(iz)

ν2

)

 Ā(iz, izv) − e−γ(iz)τ

Ā(iz, izv) −
(

b(iz)−γ(iz)
b(iz)+γ(iz)

)
e−γ(iz)τ



 (2.78)

C(τ, iz, izv) = (r − q)izτ + C̄(τ, iz, izv) + λJ(τ, iz, izv) (2.79)

C̄(τ, iz, izv) =
κθ

ν2
[b(iz)− γ(iz)] τ − 2κθ

ν2
log [ψ(τ, iz, izv)] (2.80)

ψ(τ, iz, izv) =
A−1(iz, izv)e

−γ(iz)τ − 1

A−1(iz, izv) − 1
(2.81)

J(τ, iz, izv) = eizµ− 1
2 z2σ2

J̄(τ, iz, izv) −
(
eµ+ 1

2σ2

1 − ηρJ
− 1

)
izτ − τ (2.82)

J̄(τ, iz, izv) =
Ā(iz, izv)τ

ϑ(iz, izv)
+

1

γ(iz)



 Ā(iz, izv)

ϑ(iz, izv)
+

(
b(iz)−γ(iz)
b(iz)+γ(iz)

)

ϑ̄(iz)



 log

(
ϑ(iz, izv) + ϑ̄(iz)e−γ(iz)τ

ϑ(iz, izv) + ϑ̄(iz)

)

(2.83)

ϑ(iz, izv) = Ā(iz, izv)

[
1 − izηρJ − η

(
b(iz) − γ(iz)

ν2

)]
(2.84)

ϑ̄(iz) =

[
η

(
b(iz)− γ(iz)

ν2

)
− (1 − izηρJ)

(
b(iz) − γ(iz)

b(iz) + γ(iz)

)]
(2.85)

Ā(iz, izv) = A(iz, izv)

(
b(iz)− γ(iz)

b(iz) + γ(iz)

)
(2.86)

A(iz, izv) =
ν2izv − b(iz) − γ(iz)

ν2izv − b(iz) + γ(iz)
(2.87)

γ(iz) =
√
b2(iz) − 2ν2c(iz) (2.88)

b(iz) = κ− ρνiz (2.89)

c(iz) =
1

2
iz(iz − 1) (2.90)

(2.91)

We assume the arguments z and zv are specified such that the characteristic function exists. In particular, we have

the restriction Re [1 − izηρJ − ηD(s, iz, izv)] > 0 for 0 ≤ s ≤ τ and the parameter restriction 1 − ηρJ > 0.

Proof: As stated in Rockinger and Semenova [2005], the conditional joint characteristic function

E
Q
t [exp (izXT + izvVT ) |Xt, Vt] =: φt(Xt, Vt; iz, izv)

must satisfy the PDE

∂φt

∂t
+

(
r − q − λω − 1

2
Vt

)
∂φt

∂Xt
+

1

2
Vt
∂2φt

∂X2
t

+ κ(θ − Vt)
∂φt

∂Vt
+

1

2
ν2Vt

∂2φt

∂V 2
t

+ ρνVt
∂2φt

∂Xt∂Vt
+

λE
Q
t [φt(Xt + JX , Vt + JV ) − φt(Xt, Vt)] = 0

(2.92)
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This follows from the appropriate version of Itô’s formula and the Feynman-Kac theorem. We assume

the solution φt(Xt, Vt; iz, izv) has the form

exp [izXt +D(T − t, iz, izv)Vt + C(T − t, iz, izv)] (2.93)

and must now determine the analytic form of C and D subject to the terminal conditions

C(0, iz, izv) = 0 (2.94)

D(0, iz, izv) = izv (2.95)

The partial derivatives of φt are

∂φt

∂t
=

(
∂C

∂t
+
∂D

∂t
Vt

)
φt

∂φt

∂Xt
= izφt

∂2φt

∂X2
t

= −z2φt

∂φt

∂Vt
= Dφt

∂2φt

∂V 2
t

= D2φt

∂2φt

∂Xt∂Vt
= izDφt (2.96)

Having specified the form of φt, we have

φt(Xt + JX , Vt + JV ; iz, izv) = φt(Xt, Vt; iz, izv) exp (izJX +DJV ) (2.97)

Inserting these partial derivatives and equation (2.97) into equation (2.92) yields

(
∂C

∂t
+ (r − q − λω)iz + κθD + λE

Q
t

[exp (izJX +DJV ) − 1]

)
+

(
∂D

∂t
+

1

2
iz(iz − 1) − (κ− ρνiz)D +

1

2
ν2D2

)
V = 0

Switching variables from t to s = T − t, we must solve the ordinary differential equations

∂D

∂s
=

1

2
ν2D2 − b(iz)D + c(iz) (2.98)

∂C

∂s
= (r − q − λω)iz + κθD + λE

Q
t

[exp (izJX +DJV )] − λ (2.99)

where

b(iz) = κ− ρνiz (2.100)

c(iz) =
1

2
iz(iz − 1) (2.101)
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From Spiegel and Liu [1999] equation (17.12.1), we know

∫
dx

ax2 − bx+ c
=

1√
b2 − 4ac

ln

(
2ax− b−

√
b2 − 4ac

2ax− b+
√
b2 − 4ac

)
(2.102)

for the coefficients a, b and c.

We choose to express this as

∫
dx

ax2 − bx+ c
=

1

−
√
b2 − 4ac

ln

(
2ax− b+

√
b2 − 4ac

2ax− b−
√
b2 − 4ac

)
(2.103)

which can be viewed as working with the non principal square root function −
√
b2 − 4ac. The signifi-

cance of this choice (regarding the relevant literature) is discussed in subsection 3.1.1.

Using equation (2.95) (to obtain the integrating constant) and equation (2.103), for τ = T − t0, we obtain

D(τ, iz, izv) =

(
b(iz) − γ(iz)

ν2

)

 Ā(iz, izv) − e−γ(iz)τ

Ā(iz, izv) −
(

b(iz)−γ(iz)
b(iz)+γ(iz)

)
e−γ(iz)τ



 (2.104)

where

γ(iz) =
√
b2(iz) − 2ν2c(iz) (2.105)

A(iz, izv) =
ν2izv − b(iz) − γ(iz)

ν2izv − b(iz) + γ(iz)
(2.106)

Ā(iz, izv) = A(iz, izv)

(
b(iz)− γ(iz)

b(iz) + γ(iz)

)
(2.107)

We defer a discussion of the existence of the function D(τ, iz, izv) to section 3.2.

From Spiegel and Liu [1999] equation (17.1.4), we know
∫

dx

x(ax + b)
=

1

b
ln

(
x

ax+ b

)
(2.108)

for the coefficients a and b.

Using equation (2.104), we make the substitution x = e−γ(iz)s for 0 ≤ s ≤ τ where dx
ds = −γ(iz)x to

obtain

∫ τ

0

D(s, iz, izv)ds =

∫ 1

e−γ(iz)τ

(
b(iz)− γ(iz)

ν2γ(iz)x

)

 Ā(iz, izv) − x

Ā(iz, izv) −
(

b(iz)−γ(iz)
b(iz)+γ(iz)

)
x



 dx

=

(
b(iz)− γ(iz)

ν2γ(iz)

)
Ā(iz, izv)

∫ 1

e−γ(iz)τ

[
Ā(iz, izv) −

(
b(iz)− γ(iz)

b(iz) + γ(iz)

)
x

]−1
1

x
dx

−
(
b(iz)− γ(iz)

ν2γ(iz)

)∫ 1

e−γ(iz)τ

[
Ā(iz, izv) −

(
b(iz)− γ(iz)

b(iz) + γ(iz)

)
x

]−1

dx

=

(
b(iz)− γ(iz)

ν2γ(iz)

)
log



 x[
Ā(iz, izv) −

(
b(iz)−γ(iz)
b(iz)+γ(iz)

)
x
]




∣∣∣∣∣

1

e−γ(iz)τ

(2.109)

+

(
b(iz) + γ(iz)

ν2γ(iz)

)
log

(
Ā(iz, izv) −

(
b(iz) − γ(iz)

b(iz) + γ(iz)

)
x

) ∣∣∣∣∣

1

e−γ(iz)τ

=

(
b(iz)− γ(iz)

ν2

)
τ − 2

ν2
log

(
A−1(iz, izv)e

−γ(iz)τ − 1

A−1(iz, izv) − 1

)
(2.110)
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where we have made use of equation (2.108) to determine equation (2.109). Again, we defer a discussion

of the existence of equation (2.110) to section 3.2.

Regarding the joint characteristic function for the jump sizes JX and JV , we have

E
Q
t

[
eizJX+D(s,iz,izv)JV

]
(2.111)

=

∫ ∞

0

∫ ∞

−∞
eizjX+D(s,iz,izv)jV f(jX |jV )f(jV )djXdjV

=

∫ ∞

0

∫ ∞

−∞
eizjX+D(s,iz,izv)jV

1√
2πσ2

e−
1

2σ2 (jX−(µ+ρJjV ))2 1

η
e−

1
η jV djXdjV

= eizµ− 1
2 z2σ2 1

η

∫ ∞

0

e−jV
1
η (1−izηρJ−ηD(s,iz,izv))djV (2.112)

= eizµ− 1
2 z2σ2 e−jV

1
η (1−izηρJ−ηD(s,iz,izv))

− (1 − izηρJ − ηD(s, iz, izv))

∣∣∣∣∣

∞

0

(2.113)

=
eizµ− 1

2 z2σ2

(1 − izηρJ − ηD(s, iz, izv))
(2.114)

where equation (2.112) is obtained by completing the square in the previous equation and re-arranging

terms. The result in equation (2.114) is valid only for Re [1 − izηρJ − ηD(s, iz, izv)] > 0.1 We defer any

further discussion of the existence of EQ
t

[
eizJX+D(s,iz,izv)JV

]
to subsection 3.2.4.

Furthermore, we have

J̄(τ, iz, izv)

:=

∫ τ

0

1

(1 − izηρJ − ηD(s, iz, izv))
ds (2.115)

=

∫ τ

0

Ā(iz, izv) −
(

b(iz)−γ(iz)
b(iz)+γ(iz)

)
e−γ(iz)s

ϑ(iz, izv) + ϑ̄(iz)e−γ(iz)s
ds

=
1

γ(iz)

∫ 1

e−γ(iz)τ




(

Ā(iz, izv)

x
[
ϑ(iz, izv) + ϑ̄(iz)x

]
)

−





(
b(iz)−γ(iz)
b(iz)+γ(iz)

)

ϑ(iz, izv) + ϑ̄(iz)x







 dx (2.116)

=
1

γ(iz)



 Ā(iz, izv)

ϑ(iz, izv)
log

(
x

ϑ(iz, izv) + ϑ̄(iz)x

)
−

(
b(iz)−γ(iz)
b(iz)+γ(iz)

)

ϑ̄(iz)
log[ϑ(iz, izv) + ϑ̄(iz)x]

∣∣∣∣∣

1

e−γ(iz)τ





(2.117)

=
Ā(iz, izv)τ

ϑ(iz, izv)
+

1

γ(iz)



 Ā(iz, izv)

ϑ(iz, izv)
+

(
b(iz)−γ(iz)
b(iz)+γ(iz)

)

ϑ̄(iz)



 log

(
ϑ(iz, izv) + ϑ̄(iz)e−γ(iz)τ

ϑ(iz, izv) + ϑ̄(iz)

)
(2.118)

where

ϑ(iz, izv) = Ā(iz, izv)

[
1 − izηρJ − η

(
b(iz)− γ(iz)

ν2

)]
(2.119)

ϑ̄(iz) =

[
η

(
b(iz) − γ(iz)

ν2

)
− (1 − izηρJ)

(
b(iz)− γ(iz)

b(iz) + γ(iz)

)]
(2.120)

We have switched variables from s to x = eγ(iz)s in equation (2.116) and used equation (2.108) to obtain

equation (2.117). Again, we defer a discussion of the existence of J̄(τ, iz, izv) to section 3.2.

1This point is not specifically made in Duffie et al. [2000] equation (4.5).
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Using equation (2.94) (to obtain the integrating constant) and equations (2.110), (2.114) and (2.118), we

solve equation (2.99) and obtain

C(τ, iz, izv) = (r − q)izτ + C̄(τ, iz, izv) + λJ(τ, iz, izv) (2.121)

where

C̄(τ, iz, izv) =
κθ

ν2
[b(iz) − γ(iz)] τ − 2κθ

ν2
log

(
A−1(iz, izv)e

−γ(iz)τ − 1

A−1(iz, izv) − 1

)
(2.122)

J(τ, iz, izv) = eizµ− 1
2 z2σ2

J̄(τ, iz, izv) − τ − iz

∫ τ

0

ωds (2.123)

From Gatheral [2006], the compensating drift factor ω is specified such that the arbitrage condition

EQ
t0

[ST |St0 ] = St0
e(r−q)τ is satisfied. For z = −i and zv = 0, the conditional joint characteristic function

yields EQ
t0

[ST |St0 ] and we can show

D(τ, 1, 0) = 0 (2.124)

C̄(τ, 1, 0) = 0 (2.125)

J̄(τ, 1, 0) =

(
1

1 − ηρJ

)
τ (2.126)

since γ(1) = |b(1)|. We require J(τ, 1, 0) = 0 so that C(τ, 1, 0) = (r − q)τ and so we must have

∫ τ

0

ωds =

(
eµ+ 1

2σ2

1 − ηρJ

)
τ − τ (2.127)

ω =
eµ+ 1

2σ2

1 − ηρJ
− 1 (2.128)

with the restriction

1 − ηρJ − ηD(s, 1, 0) = 1 − ηρJ > 0

Finally, we have

J(τ, iz, izv) = eizµ− 1
2 z2σ2

J̄(τ, iz, izv) −
(
eµ+ 1

2 σ2

1 − ηρJ
− 1

)
izτ − τ

(2.129)

subject to the parameter restriction 1 − ηρJ > 0 and the restriction 1 − izηρJ − ηD(s, iz, izv) > 0 for

0 ≤ s ≤ τ . �

The dynamics of the model are specified under a risk neutral measure. The specified value of the market

price of variance risk λV
t (Vt) determines exactly which risk neutral measure we are working under. To

determine the value of λV
t (Vt) implied by the model, we consider the effect of shifting from the real

world to the risk neutral measure, on the variance process (ignoring the jump component). Had we

specified the square-root, mean-reverting dynamics in equation (2.74) with the parameters κ∗ and θ∗

under the real world measure, Girsanov’s theorem would yield the risk neutral dynamics

dVt = κ∗(θ∗ − Vt)dt− ν
√
Vtλ

V

t (Vt)dt+ ν
√
VtdW

V

t (2.130)
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For λV
t (Vt) :=

√
Vt

ν λV , we can write

dVt = κ(θ − Vt)dt+ ν
√
VtdW

V

t (2.131)

where κ = κ∗ + λV and θ = κ∗θ∗

κ∗+λV . This yields the result presented in Heston [1993]. By calibrating the

parameters κ and θ to market prices, we implicitly specify λV and hence, the risk neutral measure.

2.2.1 The analytic conditional characteristic function

Working from proposition 2 and setting zv = 0, we have

D(τ, iz, 0) =

(
b(iz)− γ(iz)

ν2

)

 1 − e−γ(iz)τ

1 −
(

b(iz)−γ(iz)
b(iz)+γ(iz)

)
e−γ(iz)τ



 (2.132)

C̄(τ, iz, 0) =
κθ

ν2
[b(iz)− γ(iz)] τ − 2κθ

ν2
log

(
A−1(iz, 0)e−γ(iz)τ − 1

A−1(iz, 0)− 1

)
(2.133)

J̄(τ, iz, 0) =
[b(iz) + γ(iz)] τ[

(1 − izηρJ) [b(iz) + γ(iz)] − η
ν2 [b2(iz) − γ2(iz)]

]

+

(
2η
ν2

[
b2(iz) − γ2(iz)

]

(1 − izηρJ)2γ2(iz) −
[
(1 − izηρJ)b(iz) −

(
η
ν2

)
[b2(iz) − γ2(iz)]

]2

)

× log



1 −
[(

η
ν2

) [
b2(iz) − γ2(iz)

]
− (1 − izηρJ) [b(iz)− γ(iz)]

] (
1 − e−γ(iz)τ

)

2(1−izηρJ )[b(iz)−γ(iz)]γ(iz)
[b(iz)−γ(iz)−ν2izv]





(2.134)

C(τ, iz, 0) = (r − q)izτ + C̄(τ, iz, 0) + λeizµ− 1
2 z2σ2

J̄(τ, iz, 0) − λτ − λ

(
eµ+ 1

2σ2

1 − ηρJ
− 1

)
izτ (2.135)

where A(iz, 0) = b(iz)+γ(iz)
b(iz)−γ(iz) and using our notation, equation (2.134) confirms the result d obtained in

Duffie et al. [2000] Pg 1362. The functions D(τ, iz, 0) and C(τ, iz, 0) yield the conditional characteris-

tic function for X as can be seen from equation (2.62) of subsection 2.1.3. For λ = 0, we obtain the

conditional characteristic function for the Heston model.

2.2.2 The analytic conditional forward % characteristic function

Working from proposition 2 and setting z = 0, we have γ(0) = b(0) = κ > 0 which yields

D(τ, 0, izv) =

(
izve

−κτ

1 − izv

̟κ

)
(2.136)

C̄(τ, 0, izv) = −2κθ

ν2
log

(
A−1(0, izv)e

−κτ − 1

A−1(0, izv) − 1

)
(2.137)

= −2κθ

ν2
log

(
1 − izv

̟κ

)
(2.138)

J̄(τ, 0, izv) = τ +

[
κ− ν2

2η

]−1

log



1 −

(
1 − ν2

2κη

)
(1 − e−κτ )

(
1 − 1

izvη

)



 (2.139)

C(τ, 0, izv) = C̄(τ, 0, izv) + λJ̄(τ, 0, izv) − λτ (2.140)
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where ̟κ = 2κ
ν2(1−e−κτ ) and A(0, izv) = 1 − 2κ

ν2izv
.

The analytic form of the functions C(τ, 0, izv) and D(τ, 0, izv) feature in the conditional forward % char-

acteristic function as can be seen from equation (2.72) of subsection 2.1.3 (for I = 0). The form of the

functions D(τ, iz, 0) and C(τ, iz, 0) presented in subsection 2.2.1 also feature in the conditional forward

% characteristic function. In particular, izv takes the form of D(τ, iz, 0). To clarify, we have

D2;2(τ2, iz, 0) = D(τ2, iz, 0) (2.141)

C2;2(τ2, iz, 0) = C(τ2, iz, 0) (2.142)

D1;2(τ1, 0, D2;2(τ2, iz, 0)) = D(τ1, 0, D(τ2, iz, 0)) (2.143)

C1;2(τ1, 0, D2;2(τ2, iz, 0)) = C(τ1, 0, D(τ2, iz, 0)) (2.144)

in equation (2.72) (for I = 0) with a constant parameter set over the period (t, T2].

Setting λ = 0, we confirm the result presented in Hong [2004] for the Heston model.

2.2.3 The analytic conditional forward $ characteristic function

Working from proposition 2 and setting z = −i, we have γ(1) = |b(1)| = |κ− ρν|. For b(1) 6= 0, we have

D(τ, 1, izv) =

(
izve

−b(1)τ

1 − izv

̟b

)
(2.145)

C̄(τ, 1, izv) = −2κθ

ν2
log

(
A−1(1, izv)e

−|b(1)|τ − 1

A−1(1, izv) − 1

)
(2.146)

= −2κθ

ν2
log

(
1 − izv

̟b

)
(2.147)

J̄(τ, 1, izv) =
1

(1 − ηρJ)



τ +

[
b(1) − ν2

2η̄

]−1

log



1 −

(
1 − ν2

2b(1)η̄

) (
1 − e−b(1)τ

)

(
1 − 1

izv η̄

)







 (2.148)

C(τ, 1, izv) = (r − q)τ + C̄(τ, 1, izv) + λeµ+ 1
2 σ2

J̄(τ, 1, izv) − λ

(
eµ+ 1

2 σ2

1 − ηρJ

)
τ (2.149)

where η̄ = η
1−ηρJ , ̟b = 2b(1)

ν2(1−e−b(1)τ )
. For b(1) = 0, we apply l’Hôpital’s rule to obtain

lim
b(1)→0

D(τ, 1, izv) =

(
izv

1 − izv
1
2ν

2τ

)
(2.150)

lim
b(1)→0

C̄(τ, 1, izv) = −2κθ

ν2
log

(
1 − izv

1

2
ν2τ

)
(2.151)

lim
b(1)→0

J̄(τ, 1, izv) =
1

(1 − ηρJ)



τ − 2η̄

ν2
log



1 +

ν2

2η̄ τ(
1 − 1

izv η̄

)







 (2.152)

The analytic form of the functions C(τ, 1, izv) and D(τ, 1, izv) feature in the conditional forward $ char-

acteristic function as can be seen from equation (2.72) of subsection 2.1.3 (for I = 1). Again, the form

of the functions D(τ, iz, 0) and C(τ, iz, 0) presented in subsection 2.2.1 also feature in the conditional
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forward $ characteristic function with izv taking the form of D(τ, iz, 0). To clarify, we have

D2;2(τ2, iz, 0) = D(τ2, iz, 0) (2.153)

C2;2(τ2, iz, 0) = C(τ2, iz, 0) (2.154)

D1;2(τ1, 1, D2;2(τ2, iz, 0)) = D(τ1, 1, D(τ2, iz, 0)) (2.155)

C1;2(τ1, 1, D2;2(τ2, iz, 0)) = C(τ1, 1, D(τ2, iz, 0)) (2.156)

in equation (2.72) (for I = 1) with a constant parameter set over the period (t, T2].

The analytic results obtained may be used to confirm simulation results for specific examples of $ type

Forward Starting Call Options in Broadie and Kaya [2006] table 8.

2.3 The discrepancy between % and $ type Forward Starting Options

2.3.1 % and $ type forward implied volatilities

We have analytic values for % and $ type Forward Starting Options in the Black-Scholes world where we

allow for a term structure of parameters - specifically, piecewise constant parameters for the increments

(t0, T1] and (T1, T2].

In the Black-Scholes world, the value for a % type Call Option is

BS% C

t0 ,T1 ,T2
= e−r1τ1BS (1,K, r2, q2, σ2, τ2) (2.157)

and that for a $ type Call Option is

BS$ C

t0 ,T1 ,T2
= St0e

−q1τ1BS (1,K, r2, q2, σ2, τ2) (2.158)

where BS (S,K, r2, q2, σ2, τ2) refers to the Black-Scholes value with underlying S, strike K , risk-free rate

r2, dividend yield q2, volatility σ2 and period τ2. Furthermore, τ1 = T1− t0, τ2 = T2−T1, the parameters

r1 and q1 apply over (t0, T1] and the parameters r2, q2 and σ2 apply over (T1, T2].

Proposition 3. For a % type option, the forward implied volatility σ%

2 satisfies

BS (1,K, r2, q2, σ
%

2 , τ2) = e−r2τ2E
Q
t0

[
E

Q
T1

[(
ST2

ST1

−K

)+
]]

(2.159)

while for a $ type option, the forward implied volatility σ$

2 satisfies

BS (1,K, r2, q2, σ
$

2, τ2) = e−r2τ2E
QS
t0

[
E

Q
T1

[(
ST2

ST1

−K

)+
]]

(2.160)

Proof:

In general, the value of a % type Call Option can be expressed as

Π% C

t0 ,T1 ,T2
= e−(r1τ1+r2τ2)E

Q
t0

[
E

Q
T1

[(
ST2

ST1

−K

)+
]]

(2.161)

21



CHAPTER 2. SEMI-ANALYTIC PRICING FORMULAE

while that for a $ type Call Option can be expressed as

Π$ C

t0 ,T1 ,T2
= e−(r1τ1+r2τ2)E

Q
t0

[
E

Q
T1

[(
ST2

−KST1

)+]]
(2.162)

= St0e
−(q1τ1+r2τ2)E

QS
t0

[
E

Q
T1

[(
ST2

−KST1

)+] 1

ST1

]
(2.163)

= St0e
−(q1τ1+r2τ2)E

QS
t0

[
E

Q
T1

[(
ST2

ST1

−K

)+
]]

(2.164)

We have shifted from the risk neutral to the stock price measure in equation (2.163) where we specify

that dividends are reinvested into the stock and so the value of the numeraire at time t0 is St0
e−q1τ1 . The

usefulness of shifting to the stock price measure, in the context of pricing $ type options, is pointed out

in Kruse and Nogel [2005].

Setting the values of such options in the Black-Scholes world i.e. equations (2.157) and (2.158) equal to

their respective general versions in equations (2.161) and (2.164) gives us the results. �

From proposition 3, we see that solving for the forward implied volatility depends on the form of the

Forward Starting Option. The resulting difference between the forward implied volatilities can be at-

tributed to the shift between the risk neutral and the stock price measures over the period (t, T1].

2.3.2 The effect of a shift from the risk-neutral to the stock price measure on the

dynamics of the model

In Kruse and Nogel [2005], the authors confirm that Girsanov’s theorem may be used to shift from the

risk-neutral to the stock price measure, within the Heston model. Furthermore, it is shown that under

the stock price measure, the dynamics are

dXt =

(
r − q +

1

2
Vt

)
dt+

√
VtdW

X, QS
t (2.165)

dVt = κ̄(θ̄ − Vt)dt+ ν
√
VtdW

V, QS
t (2.166)

dW
X, QS
t dW

V, QS
t = ρdt (2.167)

where κ̄ = κ− ρν and θ̄ = κθ
κ̄ .

We now confirm the effect of this shift in measure on the dynamics of the Heston model (i.e. the con-

tinuous diffusion component of the SVJJ model) and show that this shift in measure affects the jump

component by adjusting the jump rate intensity to λ

(
eµ+ 1

2
σ2

1−ηρJ

)
and the jump size distributions to

JV ∼ exp

(
1

η̄

)

JX |JV ∼ N
(
µ+ σ2 + ρJJV , σ

2
)

under the stock price measure with η̄ = η
1−ηρJ , the parameter restriction 1 − ηρJ > 0 and the restriction

Re [1 − izη̄ρJ − η̄D(s, iz, izv)] > 0 for 0 ≤ s ≤ τ .

Following the same methodology as that in section 2.2 (where we derive the analytic form of the condi-

tional joint characteristic function) and focussing on the Heston model, we assume the dynamics under
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the stock price measure (where the drift of each process is adjusted) as specified in equations (2.165)-

(2.167). We obtain the Ricatti equation

∂D

∂s
=

1

2
ν2D2 − b̄(iz)D + c̄(iz) (2.168)

where

b̄(iz) = κ̄− ρνiz (2.169)

c̄(iz) =
1

2
iz(iz + 1) (2.170)

The coefficients b̄(iz) and c̄(iz) differ from the corresponding coefficients b(iz) and c(iz) for the Ricatti

equation in (2.98) where the risk-neutral dynamics are assumed. Furthermore, we now have

γ̄(iz) =
√
b̄(iz)2 − ν2iz(iz + 1) (2.171)

To determine the effect of a shift from the risk-neutral to the stock price measure on the dynamics of

the model, we refer to equations (2.40) and (2.41), where P1 = EQS
t

[
I[X>k]

]
and P2 = EQ

t

[
I[X>k]

]
.

Comparing P2 with P1 allows us to determine this effect where the two expressions differ as P2 is a

function of

Φ
t0 ,T (u) = exp

[
iu(Xt + r − q)τ +D(τ, iu, 0)Vt + C̄(τ, iu, 0) + λJ(τ, iu, 0)

]
(2.172)

while P1 is a function of

Φ
t0 ,T (u− i)

Φ
t0 ,T (−i)

=
exp

[
(Xt + r − q)τ + iu(Xt + r − q)τ +D(τ, i[u− i], 0)Vt + C̄(τ, i[u− i], 0) + λJ(τ, i[u− i], 0)

]

exp [(Xt + r − q)τ ]

(2.173)

where Φt0 ,T (−i) yields the forward price.

Setting λ = 0 in equations (2.172) and (2.173), we focus on the functions P1 and P2, within the Heston

model. Regarding equation (2.172), D(τ, iu, 0) and C̄(τ, iu, 0) are functions of b(iu) and γ(iu) while

C̄(τ, iu, 0) is also a function of κθ. Regarding equation (2.173), D(τ, i[u − i], 0) and C̄(τ, i[u − i], 0) are

functions of b̄(iu) and γ̄(iu) while C̄(τ, iu, 0) is also a function of κ̄θ̄ = κθ. This confirms the effect of the

shift in measure on the dynamics of the continuous diffusion component of each process.

The effect on the jump component i.e. the jump rate intensity and the jump size distributions can be de-

termined by focusing on the functions λJ(τ, iu, 0) and λJ(τ, i[u − i], 0) in equations (2.172) and (2.173),

respectively. To this end, we consider the risk neutral jump-rate intensity multiplied by the joint char-

acteristic function for the jump sizes JX and JV , in equation (2.114) of section (2.2), in terms of the

arguments u and u− i

λE
Q
t

[
eiuJx+D(s,iu,0)Jv

]
= λ

(
eiuµ− 1

2u2σ2

1 − iuηρJ − ηD(s, iu, 0)

)
(2.174)
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with the restriction Re [1 − iuηρJ − ηD(s, iu, 0)] > 0 and

λE
Q
t

[
ei[u−i]Jx+D(s,i[u−i],0)Jv

]
= λ

(
eµ+ 1

2σ2

eiu(µ+σ2)− 1
2u2σ2

1 − ηρJ − iuηρJ − ηD(s, i[u− i], 0)

)

= λ

(
eµ+ 1

2σ2

1 − ηρJ

)(
eiu(µ+σ2)− 1

2u2σ2

1 − iuη̄ρJ − η̄D(s, i[u− i], 0)

)

with η̄ = η
1−ηρJ and the restriction

Re [1 − i[u− i]ηρJ − ηD(s, i[u− i], 0)] =
Re [1 − iuη̄ρJ − η̄D(s, i[u− i], 0)]

1 − ηρJ
> 0 (2.175)

so we must have Re [1 − iuη̄ρJ − η̄D(s, i[u− i], 0)] > 0 since we already have the restriction 1− ηρJ > 0.

From this, we have

λJ(τ, iu, 0) = λ

[∫ τ

0

eiuµ− 1
2u2σ2

(1 − iuηρJ − ηD(s, iu, 0))
ds− τ

]
− λ

(
eµ+ 1

2σ2

1 − ηρJ
− 1

)
iuτ (2.176)

λJ(τ, i[u− i], 0) = λ

(
eµ+ 1

2σ2

1 − ηρJ

)[∫ τ

0

eiu(µ+σ2)− 1
2u2σ2

(1 − iuη̄ρJ − η̄D(s, i[u− i], 0))
ds− τ

]
(2.177)

− λ

(
eµ+ 1

2σ2

1 − ηρJ
− 1

)
iuτ (2.178)

Comparing λJ(τ, iu, 0) with λJ(τ, i[u− i], 0), we see that a shift, from the risk-neutral to the stock price

measure, yields the jump rate intensity λ

(
eµ+ 1

2
σ2

1−ηρJ

)
and the jump size distributions

JV ∼ exp

(
1

η̄

)

JX |JV ∼ N
(
µ+ σ2 + ρJJV , σ

2
)

The constant term λ

(
eµ+ 1

2
σ2

1−ηρJ − 1

)
iuτ ensures that EQ

t0
[ST |St0 ] = St0

e(r−q)τ holds true (as already men-

tioned) and we see that this compensating term is a function of the difference between the jump rate

intensities under the two measures.

Focusing on our pricing formulae for Forward Starting Options, we have

Π% C
t0 ,T1 ,T2

e−r1τ1
= e−r2τ2E

Q
t0

[
E

Q
T1

[(
ST2

ST1

−K

)+
]]

(2.179)

Π$ C
t0 ,T1 ,T2

St0e
−q1τ1

= e−r2τ2E
QS
t0

[
E

Q
T1

[(
ST2

ST1

−K

)+
]]

(2.180)

from the proof of proposition 3.

Within the affine framework and regarding the state variables S and V , E
Q
T1

[(
ST2

ST1
−K

)+
]

is a func-

tion of VT1 only. Therefore, by comparing our semi-analytic formulae for
Π%C

t0 ,T1 ,T2

e−r1τ1
and

Π$C
t0 ,T1 ,T2

St0e−q1τ1
we can

confirm the effect of a shift, from the risk-neutral to the stock price measure, on the dynamics of the

variance process as the shift in measure over the period (t, T1] is the only difference between the two
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expressions. Making use of the pricing formulae in equations (2.49) - (2.52) of section 2.1, we can show

that
R% C

t0 ,T1 ,T2

e−r1τ1
=

R$ C
t0 ,T1 ,T2

St0e−q1τ1
and so we need only to compare Φ

t0 ,T1 ,T2
(−u + i[α + 1], u − i[α + 1]) with

Φt0 ,T1 ,T2
(−u+ iα, u− i[α+ 1]) to confirm that the parameters of the mean reverting drift of V , the jump

size distribution parameter of V and the jump rate intensity differ according to the discussion above.

2.4 The conditional characteristic and forward (%, $) characteristic

functions allowing for piecewise constant, time-dependent pa-

rameters

From equation (2.11), we know that an analytic expression for the conditional characteristic function for

X allows us to price European Options in semi-closed form and so the formulae may be used to calibrate

the model’s time-homogenous parameter set2. Consider the period τ = tn − t0 (where tn is the maturity

date and t0 is the valuation date) divided into n increments with the mth increment τm = tm − tm−1.

Replacing E
Q
t0

[exp (izXtn) |Xt0 , Vt0 ] in the semi-analytic formula for a European Option with its iterated

extension

E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
exp (izXtn) |Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]
(2.181)

allows us to incorporate piecewise constant time-dependent parameters into the model by providing

a practical approach with which to calibrate these piecewise constant parameters when an analytic ex-

pression is available for equation (2.181). To determine the form of equation (2.181), we must solve a

time-homogenous PDE for each increment where from one increment to the next, the constant parame-

ter set may differ. At tn−1, we must solve the PDE presented in equation (2.92), assuming the solution

φtn−1(Xtn−1 , Vtn−1 ; iz, 0) := EQ
tn−1

[
exp (izXtn) |Xtn−1 , Vtn−1

]
has the form

exp
[
izXtn−1 +Dn;n(τn, iz, 0)Vtn−1 + Cn;n(τn, iz, 0)

]
(2.182)

subject to the terminal conditions

Cn;n(0, iz, 0) = 0 (2.183)

Dn;n(0, iz, 0) = 0 (2.184)

At this point, for the time-homogenous model, the task of solving for the analytic characteristic function

(for the entire period (t0, tn]) would be complete. For the extended model, we move on to the preceding

increment. At tn−2, we must solve the same PDE, assuming the solution

φtn−2(Xtn−2 , Vtn−2 ; iz,Dn;n(τn, iz, 0)) := EQ
tn−2

[
EQ

tn−1

[
exp (izXtn) |Xtn−1 , Vtn−1

]
|Xtn−2 , Vtn−2

]
has the

form

exp [Cn;n(τn, iz, 0)]EQ
tn−2

[
exp

(
izXtn−1 +Dn;n(τn, iz, 0)Vtn−1

)
|Xtn−2 , Vtn−2

]
(2.185)

= exp [Cn;n(τn, iz, 0)] (2.186)

× exp
[
izXtn−2 +Dn−1;n(τn−1, iz,Dn;n(τn, iz, 0))Vtn−2 + Cn−1;n(τn−1, iz,Dn;n(τn, iz, 0))

]

2Assuming these vanilla options represent the most liquid options on the underlying, the model must, at the very least, repro-

duce the corresponding market prices.
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subject to the terminal conditions

Cn−1;n(0, iz,Dn;n(τn, iz, 0)) = 0 (2.187)

Dn−1;n(0, iz,Dn;n(τn, iz, 0)) = Dn;n(τn, iz, 0) (2.188)

We continue in this manner until we reach t0. Regarding the subscripts of the functions Cm;n and Dm;n,

m specifies the increment currently considered while n specifies the total number of increments.

The semi-analytic formulae for % and $ type Forward Starting Option prices can also accommodate for

piecewise constant, time-dependent parameters by replacing the respective conditional forward (%, $)

characteristic functions with their iterated extensions. We divide the period τ = (tn−tl)+(tl−t0) (where

tl is the determination date) into n increments where 1 ≤ l ≤ n − 1 and require an analytic expression

for

E
Q
t0

[
...EQ

tl−1

[
exp (iz(%,$)Xtl

) E
Q
tl

[
...EQ

tn−1

[
exp (izXtn) |Xtn−1 , Vtn−1

]
...|Xtl

, Vtl

]
|Xtl−1

, Vtl−1

]
...|Xt0 , Vt0

]

(2.189)

Consider the case l = n−1 i.e. only one increment separates the determination date tl from the maturity

date tn. At tl, we then have

exp (iz(%,$)Xtl
) E

Q
tl

[exp (izXtn) |Xtl
, Vtl

] (2.190)

= exp (i [z(%,$) + z]Xtl
+Dn;n(τn, iz, 0)Vtl

+ Cn;n(τn, iz, 0)) (2.191)

For a % type option, iz% + iz = 0 while for a $ type option, iz$ + iz = 1. Hence, for l = n − 1, we can

re-express equation (2.189) as

E
Q
t0

[
...EQ

tl−1

[
exp (IXtl

+Dn;n(τn, iz, 0)Vtl
+ Cn;n(τn, iz, 0)) |Xtl−1

, Vtl−1

]
...|Xt0 , Vt0

]

where I := I[z(%,$)=z$]. At the terminal time tl, the coefficient of Xtl
, to which the exponent is raised, is

I rather than iz. So regarding the functions C and D, for each increment m where m ≤ l, the second

argument iz is replaced by I.

We now present the form of the conditional characteristic and forward (%, $) characteristic functions,

allowing for piecewise constant, time-dependent parameters, in more detail.

Proposition 4. Considering the period τ = (tn − tl) + (tl − t0) expressed in terms of n increments where

0 ≤ l ≤ n− 1 and the mth increment is τm = tm − tm−1, we have

E
Q
t0

[
exp

(
iz(%,$)ÎXtl

+ izXtn

)
|Xt0 , Vt0

]

= exp
[(

[I − iz] Î + iz
)
Xt0 +D(%,$)

l;1;n(τ1, I, D
(%,$)

l;2;n)Vt0

]

× exp

[
l∑

m=1

C (%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n) +

n∑

m=l+1

Cm;n(τm, iz,Dm+1;n)

]

(2.192)

where Î := I[l 6=0], z(%,$) := z% for a % type option, z(%,$) := z$ for a $ type option and I := I[z(%,$)=z$]. Furthermore,

we define the following:
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For m > l,

D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
= Dm;n(τm, iz,Dm+1;n) (2.193)

Dm;n(τm, iz,Dm+1;n) := Dm;n(τm, iz,Dm+1;n(τm+1, iz, ...Dn−1;n(τn−1, iz,Dn;n(τn, iz, 0))...))

(2.194)

C (%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
= Cm;n(τm, iz,Dm+1;n) (2.195)

Cm;n(τm, iz,Dm+1;n) := Cm;n(τm, iz,Dm+1;n(τm+1, iz, ...Dn−1;n(τn−1, iz,Dn;n(τn, iz, 0))...))

(2.196)

with Dn+1;n := 0.

For m ≤l,

D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
:= D(%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n(τm+1, I, ...D
(%,$)

l;l;n(τl, I, Dl+1;n(τl+1, iz,Dl+2;n))...))

(2.197)

C (%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
:= C (%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n(τm+1, I, ...D
(%,$)

l;l;n(τl, I, Dl+1;n(τl+1, iz,Dl+2;n))...))

(2.198)

Regarding the subscripts of C (%,$)

l;m;n and D(%,$)

l;m;n, l specifies the determination date tl, m specifies the increment

currently considered and n specifies the total number of increments.

Proof:

For l = 0, we have Î = 0 and require an analytic expression for

E
Q
t0

[exp (izXtn) |Xt0 , Vt0 ] = E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
exp (izXtn) |Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]

For n = 1, we have

E
Q
t0

[exp (izXt1) |Xt0 , Vt0 ] = exp [izXt0 +D1;1(τ1, iz, 0)Vt0 + C1;1(τ1, iz, 0)] (2.199)

For n = 2, we have

E
Q
t0

[
E

Q
t1

[exp (izXt2) |Xt1 , Vt1 ] |Xt0 , Vt0

]

= E
Q
t0

[exp [izXt1 +D2;2(τ2, iz, 0)Vt1 + C2;2(τ2, iz, 0)] |Xt0 , Vt0 ]

= exp [izXt0 +D1;2(τ1, iz,D2;2(τ2, iz, 0))Vt0 + C1;2(τ1, iz,D2;2(τ2, iz, 0)) + C2;2(τ2, iz, 0)]

(2.200)

Continuing in this manner, for n > 2, we obtain

E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
exp (izXtn) |Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]

= exp

[
izXt0 +D1;n(τ1, iz,D2;n)Vt0 +

n∑

m=1

Cm;n(τm, iz,Dm+1;n)

]

(2.201)
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For l > 0, we have Î = 1 and require an analytic expression for

E
Q
t0

[exp (iz(%,$)Xtl
+ izXtn) |Xt0 , Vt0 ]

= E
Q
t0

[
exp (iz(%,$)Xtl

) E
Q
tl

[exp (izXtn) |Xtl
, Vtl

] |Xt0 , Vt0

]

= E
Q
t0

[
...EQ

tl−1

[
exp (iz(%,$)Xtl

) E
Q
tl

[exp (izXtn) |Xtl
, Vtl

] |Xtl−1
, Vtl−1

]
...|Xt0 , Vt0

]

(2.202)

For a % type option, we have z% = −z and so iz%+iz = 0 while for a $ type option, we have z$ = −(z+i)

and so iz$ + iz = 1. Hence, we define I := I[z(%,$)=z$] = iz(%,$) + iz. In what follows, we make use of the

appropriate version of equation (2.201) to determine EQ
tl

[exp (izXtn) |Xtl
, Vtl

].

For l = 1, we have

E
Q
t0

[
exp (iz(%,$)Xt1) E

Q
t1

[exp (izXtn) |Xt1 , Vt1 ] |Xt0 , Vt0

]

= E
Q
t0

[
exp

[
IXt1 +D2;n(τ2, iz,D3;n)Vt1 +

n∑

m=2

Cm;n(τm, iz,Dm+1;n)

]
|Xt0 , Vt0

]

= exp
[
IXt0 +D(%,$)

1;1;n(τ1, I, D2;n(τ2, iz,D3;n))Vt0

]

× exp

[
C (%,$)

1;1;n(τ1, I, D2;n(τ2, iz,D3;n)) +
n∑

m=2

Cm;n(τm, iz,Dm+1;n)

]

(2.203)

For l = 2, we have

E
Q
t0

[
E

Q
t1

[
exp (iz(%,$)Xt2) E

Q
t2

[exp (izXtn) |Xt2 , Vt2 ] |Xt1 , Vt1

]
|Xt0 , Vt0

]

= E
Q
t0

[
E

Q
t1

[exp [IXt2 +D3;n(τ3, iz,D4;n)Vt2 ] |Xt1 , Vt1 ] |Xt0 , Vt0

]

× exp

[
n∑

m=3

Cm;n(τm, iz,Dm+1;n)

]

= E
Q
t0

[
exp

[
IXt1 +D(%,$)

2;2;n(τ2, I, D3;n(τ3, iz,D4;n))Vt1

]
|Xt0 , Vt0

]

× exp

[
C (%,$)

2;2;n(τ2, I, D3;n(τ3, iz,D4;n)) +

n∑

m=3

Cm;n(τm, iz,Dm+1;n)

]

= exp
[
IXt0 +D(%,$)

2;1;n(τ1, I, D
(%,$)

2;2;n(τ2, I, D3;n(τ3, iz,D4;n)))Vt0

]

× exp
[
C (%,$)

2;1;n(τ1, I, D
(%,$)

2;2;n(τ2, I, D3;n(τ3, iz,D4;n)))
]

× exp

[
C (%,$)

2;2;n(τ2, I, D3;n(τ3, iz,D4;n)) +
n∑

m=3

Cm;n(τm, iz,Dm+1;n)

]
(2.204)

Continuing in this manner for l > 2, we obtain

E
Q
t0

[
E

Q
t1

[
...EQ

tl−1

[
exp (iz(%,$)Xtl

) E
Q
tl

[exp (izXtn) |Xtl
, Vtl

]Xtl−1
, Vtl−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]

= exp
[
IXt0 +D(%,$)

l;1;n(τ1, I, D
(%,$)

l;2;n)Vt0

]

× exp

[
l∑

m=1

C (%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n) +

n∑

m=l+1

Cm;n(τm, iz,Dm+1;n)

]

(2.205)
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�

The analytic expression for the conditional joint characteristic function for X and V , derived in sec-

tion 2.2, is all we require to determine the functions C (%,$)

l;m;n( ·, ·, ·) and D(%,$)

l;m;n( ·, ·, ·) with the piecewise

constant, time-dependent parameter set

(κt, θt, νt, ρt, λt, ηt, µt, σt, ρ
J

t , rt, qt) :=

n∑

m=1

(κm, θm, νm, ρm, λm, ηm, µm, σm, ρ
J

m, rm, qm) I[tm−1<t≤tm]

(2.206)

where xm := x(t0;tm−1,tm] for m = 1, ..., n and all parameters x i.e. xm is the constant parameter seen at

t0 that applies over the period (tm−1, tm].

We have the iterative expressions

Cm;n(τm, iz,Dm+1;n) = C(τm, iz,Dm+1;n) (2.207)

Dm;n(τm, iz,Dm+1;n) = D(τm, iz,Dm+1;n) (2.208)

Dm+1;n := Dm+1;n(τm+1, iz,Dm+1;n) (2.209)

with Dn+1;n := 0. Regarding the subscripts of Cm;n and Dm;n, the first subscript m specifies the current

increment and so the constant parameter set (κm, θm, νm, ρm, λm, ηm, µm, σm, ρ
J
m, rm, qm) that applies

over the period (tm−1, tm] where τm = tm−tm−1. The functionsD(τm, iz,Dm+1;n) andC(τm, iz,Dm+1;n)

are presented in equations (2.78) and (2.79) of proposition 2 respectively, where izv = Dm+1;n.
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Chapter 3

Issues regarding the semi-analytic

pricing formulae

3.1 The conditional characteristic function

For z := u− iζ and ζ := α+ 1, the characteristic function

E
Q
t0

[
eizXT |Xt0 , Vt0

]
=

∫ ∞

−∞
eζx cos(ux)ft0 ,T (x|x̄t0 )dx+ i

∫ ∞

−∞
eζx sin(ux)ft0 ,T (x|x̄t0 )dx (3.1)

is single-valued where ft0 ,T is the corresponding density function and x̄t0 = (Xt0 , Vt0). The restriction

ζ ∈ (ζmin, ζmax) ensures that the real integrals do, in fact, exist. Within the affine framework, we can

work with ±γ(iz) (where γ(iz) is defined in equation (2.88)) as seen from equations (2.102) and (2.103)

and can express the conditional characteristic function as

exp [ζXt0 + Re [D(τ, iz, 0)]Vt0 + Re [C(τ, iz, 0)]] cos (uXt0 + Im [D(τ, iz, 0)]Vt0 + Im [C(τ, iz, 0)])

+ i exp [ζXt0 + Re [D(τ, iz, 0)]Vt0 + Re [C(τ, iz, 0)]] sin (uXt0 + Im [D(τ, iz, 0)]Vt0 + Im [C(τ, iz, 0)])

(3.2)

We can show that the functions D(τ, iz, 0) and Re [C(τ, iz, 0)] are even in γ(iz). Since Im [C(τ, iz, 0)]

features only as part of the argument of the trigonometric functions sine and cosine, Im [C(τ, iz, 0)] must

be even in γ(iz) modulo a factor of 2π to ensure that the characteristic function is, in fact, even in γ(iz)

and so single-valued.

At u = 0 where iz = ζ, we obtain the moment generating function EQ
t0

[
eζXT |Xt0 , Vt0

]
which is both real

and positive. Within the affine framework, EQ
t0

[
eζXT |Xt0 , Vt0

]
= exp [ζXt0 +D(τ, ζ, 0)Vt0 + C(τ, ζ, 0)].

We now highlight several results, regarding the moment generating function, which will be referred to

within the chapter.

Proposition 5. For u = 0 and ζ ∈ [ζ−, ζ+]

γ(ζ) =
√

(κ− ρνζ)2 − ν2[ζ − 1]ζ (3.3)
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with γ(ζ) = 0 for the roots ζ± where ζ− < 0 and ζ+ ≥ 1. For u = 0 and ζ ∈ (−∞, ζ−) ∪ (ζ+,∞)

γ(ζ) = iIm [γ(ζ)] (3.4)

Im [γ(ζ)] :=
√
−[(κ− ρνζ)2 − ν2[ζ − 1]ζ] (3.5)

Proof: The quadratic function γ2(ζ) = −ν2(1−ρ2)ζ2+ν(ν−2κρ)ζ+κ2 is concave in ζ since −ν2(1−ρ2) <

0. At ζ = 0, we have γ2(ζ) = κ2 while at ζ = 1, we have γ2(ζ) = (κ− ρν)2. Therefore, we have the roots

ζ− < 0 and ζ+ ≥ 1 with γ2(ζ) ≥ 0 for ζ ∈ [ζ−, ζ+]. �

Proposition 6. Within the affine framework, we have

Im [D(τ, ζ, 0)] = 0 (3.6)

and require that, for some n ∈ Z,

Im [C(τ, ζ, 0)] = 2πn (3.7)

Proof: We can express the moment generating function as

exp [ζXt0 + Re [D(τ, ζ, 0)]Vt0 + Re [C(τ, ζ, 0)]] cos (Im [D(τ, ζ, 0)]Vt0 + Im [C(τ, ζ, 0)])

+ i exp [ζXt0 + Re [D(τ, ζ, 0)]Vt0 + Re [C(τ, ζ, 0)]] sin (Im [D(τ, ζ, 0)]Vt0 + Im [C(τ, ζ, 0)])

(3.8)

Since the moment generating function is both real and positive, we must have

Im [D(τ, ζ, 0)]Vt0 + Im [C(τ, ζ, 0)] = 2πn (3.9)

for some n ∈ Z to ensure that both

sin (Im [D(τ, ζ, 0)]Vt0 + Im [C(τ, ζ, 0)]) = 0 (3.10)

cos (Im [D(τ, ζ, 0)]Vt0 + Im [C(τ, ζ, 0)]) > 0 (3.11)

Since equation (3.9) must hold for any positive Vt0 , we must have1

Im [D(τ, ζ, 0)] = 0

leaving us with the requirement that for some n ∈ Z

Im [C(τ, ζ, 0)] = 2πn

�

From the proof of proposition 6 it follows that

D(%,$)

l;1;n(τ1, I, D
(%,$)

l;2;n|u=0) ∈ R (3.12)

1We originally derived this result by tediously splitting the function into its real and imaginary parts and then made use of

the properties of even and odd functions. Subsequently, it was pointed out by Roger Lord, in a personal communication, that

the coefficient of the variance process can be shown to be real by simply appealing to the definition of the moment generating

function.
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for 0 ≤ l < n. Given n and l,D(%,$)

l;2;n(τ2, I, D
(%,$)

l;3;n|u=0) has the same form (regarding the terminal conditions

specified by the arguments I and D(%,$)

l;3;n|u=0) as D(%,$)

l−1;1;n−1(τ1, I, D
(%,$)

l−1;2;n−1|u=0), D
(%,$)

l;3;n(τ3, I, D
(%,$)

l;4;n|u=0)

has the same form as D(%,$)

l−2;1;n−2(τ1, I, D
(%,$)

l−2;2;n−2|u=0) and so on. Hence, we have

D(%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n|u=0) ∈ R (3.13)

for m = 1, ..., n and 0 ≤ l < n.

The logarithm of a complex number Z is multi-valued since its imaginary part is the argument or angle

of Z . Specifically, we have

log (Z) := ln (|Z|) + i arg (Z) (3.14)

arg (Z) := Arg(Z) + 2πn (3.15)

where ln (Z) is the natural logarithm of Z , |Z| is the modulus or absolute value of Z , Arg(Z) ∈ (−π, π]

is the principal branch of arg(Z), n ∈ Z where values of n other than zero shift the argument of Z to

alternative branches with each branch specifying a single-valued portion of the argument of Z . Defined

as such, arg (Z) has a branch cut along the negative real axis in the complex plane (including the origin).

Working counter-clockwise, as Z crosses the branch cut, its argument increases from say, the value π

along the branch cut to the value π+ ǫ where these two points lie in different branches. When evaluated

with a software package such as MatLab, the argument of a function is restricted to its principal branch.

In this example, as the function crosses the branch cut it is forced to jump from the value π along the

branch cut to the value −π + ǫ.

Regarding the condition characteristic function for the Heston model, we work with the logarithm of

the complex function ψ(τ, iz, 0). Focussing on the moment generating function, we have the following.

Proposition 7. For u = 0 and ζ ∈ (−∞, ζ−) ∪ (ζ+,∞), re-defining

arg [ψ(τ, ζ, 0)] := −1

2
Im [γ(ζ)] τ (3.16)

ensures equation (3.7) of proposition 6 is satisfied for any value of 2κθ
ν2 . In particular, we have Im [C(τ, ζ, 0)] = 0.

Proof: From proposition 5, we have γ(ζ) = iIm [γ(ζ)] for u = 0 and ζ ∈ (−∞, ζ−)∪(ζ+,∞) and working

from equation (2.103) of the proof of proposition 2 in section 2.2, we obtain

Im [C(τ, ζ, 0)] = −2κθ

ν2

(
1

2
Im [γ(ζ)] τ + arg [ψ(τ, ζ, 0)]

)
(3.17)

Working from equation (2.102), we would obtain

Im [C(τ, ζ, 0)] =
2κθ

ν2

(
1

2
Im [γ(ζ)] τ − arg

[
ψ(τ, ζ, 0)eγ(ζ)τ

])
(3.18)

From equation (3.7) of proposition 6, we know that Im [C(τ, ζ, 0)] must be an integer multiple of 2π.

Focussing on equation (3.17) and assuming that this requirement is satisfied for a particular branch

of arg [ψ(τ, ζ, 0)], it does not necessarily follow that the requirement is satisfied for alternative branch

choices because of the constant 2κθ
ν2 attached to this multi-valued function. Re-defining

arg [ψ(τ, ζ, 0)] := −1

2
Im [γ(ζ)] τ (3.19)
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ensures that the requirement is satisfied for any particular choice of the parameters κ, θ and ν i.e.

Im [C(τ, ζ, 0)] = 0. We can show that ψ(τ, ζ, 0)eγ(ζ)τ is the complex conjugate of ψ(τ, ζ, 0)2 and so we

obtain the same result if we work from equation (3.18) instead. �

From the proof of proposition 10 in subsection 3.2.2 (which follows) it will be clarified that for ζ ∈
(ζmin, ζ−) ∪ (ζ+, ζmax) we have

1

2
Im [γ(ζ)] τ ∈ (0, π) (3.20)

and so by making use of proposition 7 we are effectively restricting the multi-valued argument to its

principal branch.

3.1.1 Discontinuities introduced by the complex logarithm in the Heston model

Regarding the conditional characteristic function for the Heston model and working from equation

(2.103) of the proof of proposition 2 in section 2.2, we obtain

Im [C(τ, iz, 0)] = (r − q)uτ +
κθ

ν2
[Im [b(iz)] − Im [γ(iz)]] τ − 2κθ

ν2
arg [ψ(τ, iz, 0)] (3.21)

Had we started off working with equation (2.102) (where only the sign of the square root function differs

from that in equation (2.103)), we would have obtained

Im [C(τ, iz, 0)] = (r − q)uτ +
κθ

ν2
[Im [b(iz)] + Im [γ(iz)]] τ − 2κθ

ν2
arg
[
ψ(τ, iz, 0)eγ(iz)τ

]
(3.22)

The conditional characteristic function as originally presented in Heston [1993] is expressed in terms of

equation (3.22). In principle, equations (3.21) and (3.22) are the same (multi-valued) function. However,

when evaluated within a software package, arg
[
ψ(τ, iz, 0)eγ(iz)τ

]
is restricted to its principal branch

which introduces discontinuities when the function crosses the negative real axis. This problem was

originally noted in Schobel and Zhu [1999] footnote 7 where the authors suggest keeping track of the

complex logarithm along its integration path. Effectively, one must correct any discontinuities arising

from the restriction to the principal branch of the multi-valued argument. In Kahl and Jackel [2005], an

algorithm is presented to avoid having to track the function. The key step is to redefine the imaginary

part of the complex logarithm as

arg
[
ψ(τ, iz, 0)eγ(iz)τ

]
:= Arg

[
A(iz, 0)eγ(iz)τ − 1

]
− Arg [A(iz, 0)− 1] + 2π(n−m) (3.23)

2We can write

Re [ψ(τ, ζ, 0)] =
Im [γ(ζ)] (1 + cos[−Im [γ(ζ)] τ ]) − b(ζ) sin[−Im [γ(ζ)] τ ]

2Im [γ(ζ)]

Im [ψ(τ, ζ, 0)] =
b(ζ)(cos[−Im [γ(ζ)] τ ] − 1) + Im [γ(ζ)] sin[−Im [γ(ζ)] τ ]

2Im [γ(ζ)]

For ζ ∈ (−∞, ζ−) ∪ (ζ+,∞), Euler’s formula gives us eγ(ζ)τ = cos[−Im [γ(ζ)] τ ] − i sin[−Im [γ(ζ)] τ ]. It follows that

Re
h

ψ(τ, ζ, 0)eγ(ζ)τ
i

= Re [ψ(τ, ζ, 0)]

Im
h

ψ(τ, ζ, 0)eγ(ζ)τ
i

= −Im [ψ(τ, ζ, 0)]

33



CHAPTER 3. ISSUES REGARDING THE SEMI-ANALYTIC PRICING FORMULAE

where3

m = int

[
Arg[A(iz, 0)] + π

2π

]
(3.24)

n = int

[
Arg[A(iz, 0)] + π + Im [γ(iz)] τ

2π

]
(3.25)

For a detailed discussion of equation (3.23), we refer the reader to the original article.

However, in Lord and Kahl [2007], the authors observe that an ‘alternative’ expression for the condi-

tional characteristic function has emerged in the relevant literature since Heston’s seminal work. The

defining difference being that Im [C(τ, iz, 0)] is a function of arg [ψ(τ, iz, 0)] rather than

arg
[
ψ(τ, iz, 0)eγ(iz)τ

]
i.e. the alternative arises from working with equation (3.21) rather than equation

(3.22). It has been noted that using this alternative leads to results free of any complex discontinuities.

In Gatheral [2006], it is conjectured that arg [ψ(τ, iz, 0)] may be restricted to its principal branch without

introducing any discontinuities (this claim is made at least for Heston’s original representation of the

option price which has the ’Black-Scholes’ form of equation (2.39) and so makes use of the characteristic

function for ζ = 0, 1). Several attempts have been made to prove this result. In Lord and Kahl [2006]

a proof is provided for ζ ∈ (ζmin, ζmax) with the restriction ρ < κ
ν or ζ ≤ κ

ρν and κ
ν ≤ ρ < 2κ

ν . In Al-

brecher et al. [2007] a restriction free proof is provided for ζ > 1. In Fahrner [2007], a proof is provided

for the ‘displaced-diffusion’ extention of the Heston model (which we elaborate on in subsection 3.5.3),

specifically for the case ζ = 1
2 . Finally, for the (time-homogenous) Heston model, the issue is laid to rest

in Lord and Kahl [2008] where a restriction free proof is provided for ζ ∈ (ζmin, ζmax). Hence, we can

restrict arg [ψ(τ, iz, 0)] to any one branch, for all u ∈ [0,∞). We return to the issue of branch cutting in

section 3.5, where we allow for piecewise constant, time-dependent parameters.

Discontinuities arise when the branch cut is crossed. However, this in itself is not the reason for the prob-

lem. Referring to the form of the conditional characteristic function as presented in equation (3.2), we

see that Im [C(τ, iz, 0)] features only as part of the argument of the trigonometric sine and cosine func-

tions. The problem arises specifically because of the constant coefficient of the multi-valued argument

or angle, 2κθ
ν2 . The value Im [C(τ, iz, 0)] may be specified modulo a factor of 2κθ

ν2 2π. Hence, restricting the

argument to a specific branch when the branch cut is attainable by the original function leads to discon-

tinuities when the function crosses the branch cut, the argument is forced to jump by an integer multiple

of 2π and Im [C(τ, iz, 0)] jumps by a non-integer multiple of 2π. When working with equation (3.21)

where the range of ψ(τ, iz, 0) does not include the branch cut, one can specify any particular branch, for

all u ∈ [0,∞). The principal branch avoids any complications introduced by the constant coefficient 2κθ
ν2 .

3.1.2 A second discontinuity

In Albrecher et al. [2007], a second discontinuity is noted at u = 0. As effectively stated by the authors,

for z = u− iζ, to avoid a discontinuity in γ(iz) at u = 0, let γ(ζ) := limu→0 γ(iz).

We analyse this issue in more detail to illustrate that it can, in fact, be ignored. From the definition of

3int(x) refers to the integer part of x
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γ(iz) in equation (2.88) of proposition 2 in section 2.2, we have

γ(iz) =
√

[κ− ρνζ]2 − ν2(ζ − 1)ζ + u2ν2(1 − ρ2) − iu [ν2(2ζ − 1) + 2ρν[κ− ρνζ]] (3.26)

Restricting ourselves to the principal square root (whose real part is positive), we have the following

result from Rabinowitz [1993]:

Theorem 1. If a and b are real (b 6= 0), then
√
a+ bi = p+ qi where p and q are real and are given by

p =
1√
2

√√
a2 + b2 + a (3.27)

q =
sign(b)√

2

√√
a2 + b2 − a (3.28)

Theorem 1 allows us to highlight the case within which a discontinuity arises. For a < 0, we have

lim
b↑0

√
a+ bi =

1√
2

√
|a| + a+ i

−1√
2

√
|a| − a

= −i
√
−a (3.29)

since limb↑0 sign(b) = −1 while for b = 0, we have

√
a = i

√
−a (3.30)

From equation (3.26), we see that as u ↓ 0, the problem arises for ν2(2ζ − 1) + 2ρν[κ − ρνζ] > 0 and

[κ− ρνζ]2 − ν2(ζ − 1)ζ < 0. At u = 0, we have γ(ζ) = iIm [γ(ζ)] while

lim
u↓0

γ(iz) = −iIm [γ(ζ)] (3.31)

and so a discontinuity arises, at u = 0, as the function switches sign from its limit at this point.

For γ(ζ) = iIm [γ(ζ)], Matlab evaluates Im [C(τ, ζ, 0)] (from the representation in equation (3.17)) as

Im [C(τ, ζ, 0)] = −2κθ

ν2

(
1

2
Im [γ(ζ)] τ + Arg [ψ(τ, ζ, 0)]

)
(3.32)

For γ(ζ) = −iIm [γ(ζ)], Matlab evaluates Im [C(τ, ζ, 0)] (from the representation in equation (3.18)) as

Im [C(τ, ζ, 0)] =
2κθ

ν2

(
1

2
Im [γ(ζ)] τ − Arg

[
ψ(τ, ζ, 0)eγ(ζ)τ

])
(3.33)

However, as pointed out in the proof of proposition 10, ψ(τ, ζ, 0)eγ(ζ)τ is the complex conjugate of

ψ(τ, ζ, 0). Hence, Arg
[
ψ(τ, ζ, 0)eγ(ζ)τ

]
= −Arg [ψ(τ, ζ, 0)] and Im [C(τ, ζ, 0)] is evaluated as an odd

function of Im [γ(ζ)].

Assuming Im [C(τ, ζ, 0)] satisfies equation (3.7) of proposition 6 for −Im [γ(ζ)] it then follows from the

odd property that the requirement is also satisfied for +Im [γ(ζ)]. Therefore, the sign change in Im [γ(ζ)]

does not affect the moment generating function.
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3.2 Strip of regularity

The range of ζ := α + 1 such that the moment generating function EQ
t0

[
eζXT |Xt0 , Vt0

]
exists is referred

to as the strip of regularity. For this strip, the option price obtained via a Fourier inversion in equation

(2.11) exists subject to points of singularity at u = 0 and ζ = 0, 1. From the discussion in subsections

2.1.1 and 2.1.2, we need only to consider the respective conditional characteristic and forward (%, $)

characteristic functions to determine these strips for European and Forward Starting Options where, for

the latter, we refer to the strip as a (%, $) strip of regularity.

In this section, we determine the strip of regularity for the SVJJ model (allowing for piecewise constant,

time-dependent paremeters) with respect to European and Forward Starting Options. Making use of

proposition 4 in section 2.4 and Jensen’s inequality, we have

∣∣∣EQ
t0

[
exp

(
iz(%,$)ÎXtl

+ izXtn

)
|Xt0 , Vt0

] ∣∣∣

≤ E
Q
t0

[∣∣∣ exp
(
iz(%,$)ÎXtl

+ izXtn

) ∣∣∣|Xt0 , Vt0

]

= E
Q
t0

[
exp

(
Re [iz(%,$)] ÎXtl

+ ζXtn

)
|Xt0 , Vt0

]

= exp
[(

[I − ζ] Î + ζ
)
Xt0 +D(%,$)

l;1;n

(
τ1, I, D

(%,$)

l;2;n

∣∣
u=0

)
Vt0

]

× exp

[
l∑

m=1

C (%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
+

n∑

m=l+1

Cm;n (τm, ζ,Dm+1;n)

]

(3.34)

To clarify our notation

D(%,$)

l;m+1;n

∣∣
u=0

= D(%,$)

l;m+1;n(τm+1, I, D
(%,$)

l;m+2;n(τm+2, I, ...D
(%,$)

l;l;n(τl, I, Dl+1;n(τl+1, ζ,Dl+2;n))...))

i.e. C and D are functions of ζ rather than iz. The required strips of regularity may all be determined

from equation (3.34). Focussing on the European case (̂I = 0) in subsections 3.2.1, 3.2.2, 3.2.3 and 3.2.4,

we determine the effect of the continuous diffusion and jump components of the characteristic function

on this strip separately and allow for piecewise constant, time-dependent parameters. In subsection

3.2.5 we determine the % and $ strips for the corresponding Forward Starting Options (̂I = 1).

We begin by identifying useful properties of the cumulant generating function in the affine framework

where the cumulant generating function is the natural logarithm of the moment generating function.

Proposition 8. The cumulant generating function K(ζ) := ln
(
EQ

t0

[
eζXT |Xt0 , Vt0

])
is convex in ζ. Within the

affine framework, where K(ζ) = ζXt0 +D1;n(τ1, ζ,D2;n)Vt0 +
∑n

m=1 Cm;n(τm, ζ,Dm+1;n), the functions

Dm;n(τm, ζ,Dm+1;n) for m = 1, ..., n and
∑n

m=1 Cm;n(τm, ζ,Dm+1;n) are also convex in ζ.

Proof: We have

∂2

∂ζ2
K(ζ) =

1

E
Q
t0

[eζXT |Xt0 , Vt0 ]
2

[
E

Q
t0

[
eζXT |Xt0 , Vt0

]
E

Q
t0

[
eζXTX2

T |Xt0 , Vt0

]
− E

Q
t0

[
eζXTXT |Xt0 , Vt0

]2]

In Venezian [2005] the author points out that the convexity ofK(ζ) may be determined from the Cauchy-

Schwarz Inequality:
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Theorem 2. Let y1(x) and y2(x) be real, integrable functions in [a, b] then

[∫ b

a

y1(x)y2(x)dx

]2

≤
∫ b

a

[y1(x)]
2
dx

∫ b

a

[y2(x)]
2
dx (3.35)

with equality if and only if y1(x) = k̄y2(x) where k̄ is a constant.

Setting y1(x) =
√
eζxft0 ,T (x|x̄t0 ) and y2(x) =

√
eζxft0 ,T (x|x̄t0 )x yields the inequality

E
Q
t0

[
eζXTXT |Xt0 , Vt0

]2
< E

Q
t0

[
eζXT |Xt0 , Vt0

]
E

Q
t0

[
eζXTX2

T |Xt0 , Vt0

]
(3.36)

where the restricted range (ζmin, ζmax) for ζ ensures that the integrability assumption is satisfied and so

we have

∂2

∂ζ2
K(ζ) > 0 (3.37)

Furthermore, in the affine framework, we have K(ζ) = ζXt0 + D(τ, ζ, 0)Vt0 + C(τ, ζ, 0) and so we can

write

∂2

∂ζ2
K(ζ) =

∂2

∂ζ2
D(τ, ζ, 0)Vt0 +

∂2

∂ζ2
C(τ, ζ, 0) (3.38)

Equation (3.38) must be strictly positive for any positive Vt0 and so we must have

∂2

∂ζ2
D(τ, ζ, 0) > 0 (3.39)

∂2

∂ζ2
C(τ, ζ, 0) > 0 (3.40)

Considering the iterated extension for K(ζ)

ln
(

E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
exp (ζXtn) |Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

])
(3.41)

we have

ζXt0 +D1;n(τ1, ζ,D2;n)Vt0 +

n∑

m=1

Cm;n(τm, ζ,Dm+1;n) (3.42)

at t0 and so from the argument above, we must have

∂2

∂ζ2
D1;n(τ1, ζ,D2;n) > 0 (3.43)

∂2

∂ζ2

n∑

m=1

Cm;n(τm, ζ,Dm+1;n) > 0 (3.44)

This holds for any n ≥ 1.

Given n, D2;n(τ2, ζ,D3;n) has the same form (regarding the terminal conditions specified by the argu-

ments ζ and D3;n) as D1;n−1(τ1, ζ,D2;n−1), D3;n(τ3, ζ,D4;n) has the same form as D1;n−2(τ1, ζ,D2;n−2)

and so on. From this, we have

∂2

∂ζ2
Dm;n(τm, ζ,Dm+1;n) > 0 (3.45)

for m = 1, ..., n. �
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3.2.1 Strip of regularity for the diffusion component

For the diffusion component of the SVJJ characteristic function i.e. the Heston characteristic function,

we now determine appropriate conditions to identify the critical values ζmin and ζmax of the strip of

regularity, allowing for piecewise constant parameters.

Proposition 9. For m = 1, ..., n we can write

ψm;n(τm, ζ,Dm+1;n) =
[bm(ζ) + γm(ζ)] + [γm(ζ) − bm(ζ)]e−γm(ζ)τm − ν2

mDm+1;n[1 − e−γm(ζ)τm ]

2γm(ζ)

with

lim
ζ→ζ±

m

ψm;n(τm, ζ,Dm+1;n) =
[2 + bm(ζ±m)τm] − ν2

mDm+1;n|ζ=ζ±
m
τm

2

where ζ±m are the roots of the quadratic function γ2
m(ζ). The critical values ζmin

m and ζmax
m satisfy

ψm;n(τm, ζ,Dm+1;n) = 0 (3.46)

with ζmin
m the largest value in the range (−∞, 0) and ζmax

m the smallest value in the range (1,∞).

Proof: Working from equations (2.78) of proposition 2 in section 2.2 (and bearing in mind the iterative

expression in equation (2.208)), we can write

Dm;n(τm, ζ,Dm+1;n)

=
ν2

mDm+1;n

(
[bm(ζ) + γm(ζ)]e−γm(ζ)τm + [γm(ζ) − bm(ζ)]

)
− [γ2

m(ζ) − b2m(ζ)][1 − e−γm(ζ)τm ]

ν2
m

(
[bm(ζ) + γm(ζ)] + [γm(ζ) − bm(ζ)]e−γm(ζ)τm − ν2

mDm+1;n[1 − e−γm(ζ)τm ]
)

Working from equations (2.80) of proposition 2 (and bearing in mind the iterative expression in equation

(2.207)), we can write

C̄m;n(τm, ζ,Dm+1;n)

=
κmθm

ν2
m

[bm(ζ) − γm(ζ)] τm

− 2κmθm

ν2
m

log

(
[bm(ζ) + γm(ζ)] + [γm(ζ) − bm(ζ)]e−γm(ζ)τm − ν2

mDm+1;n[1 − e−γm(ζ)τm ]

2γm(ζ)

)

For

[bm(ζ) + γm(ζ)] + [γm(ζ) − bm(ζ)]e−γm(ζ)τm − ν2
mDm+1;n[1 − e−γm(ζ)τm ] = 0 (3.47)

both Dm;n(τm, ζ,Dm+1;n) and C̄m;n(τm, ζ,Dm+1;n) explode.

At ζ = ζ±m we have γm(ζ) = 0 with Dm;n(τm, ζ,Dm+1;n) and C̄m;n(τm, ζ,Dm+1;n) both functions of the

indeterminant 0
0 form. Applying l’Hôpital’s rule, we have

lim
ζ→ζ±

m

Dm;n(τm, ζ,Dm+1;n) =
ν2

mDm+1;n|ζ=ζ±
m

[2 − bm(ζ±m)τm] + b2m(ζ±m)τm

ν2
m([2 + bm(ζ±m)τm] − ν2

mDm+1;n|ζ=ζ±
m
τm)

(3.48)

lim
ζ→ζ±

m

C̄m;n(τm, ζ,Dm+1;n) =
κmθm

ν2
m

bm(ζ±m)τm − 2κmθm

ν2
m

log

(
[2 + bm(ζ±m)τm] − ν2

mDm+1;n|ζ=ζ±
m
τm

2

)
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When the denominator in equation (3.48) is zero the numerator is 4
τm

so Dm;n(τm, ζ
±
m, Dm+1;n) explodes

to positive infinity. At this point, C̄m;n(τm, ζ,Dm+1;n) also explodes to positive infinity.

When equation (3.47) is satisfied for γm(ζ) 6= 0, C̄m;n(τm, ζ,Dm+1;n) explodes to positive infinity while

the sign of Dm;n(τm, ζ,Dm+1;n) is unclear. At this point, the numerator of Dm;n(τm, ζ,Dm+1;n) is

4γ2
m(ζ)e−γm(ζ)τm

1 − e−γm(ζ)τm
(3.49)

and so for γm(ζ) 6= 0 there are no further complications. The convexity of Dm;n(τm, ζ,Dm+1;n), estab-

lished in proposition 8, tells us that the sign of the explosion must be positive and so C̄m;n(τm, ζ,Dm+1;n)

explodes to positive infinity only whenDm;n(τm, ζ,Dm+1;n) (whose integral it is a function of) explodes

to positive infinity.

At these points of explosion, we have the logarithm of zero in C̄m;n(τm, ζ,Dm+1;n) and so, for ζ ∈
(ζmin, ζmax) and all u

ψm;n(τm, iz,Dm+1;n) 6= 0 (3.50)

We now show that the range [0, 1] always lies in the strip of regularity. At ζ = 0, 1, we have γ(ζ) = |b(ζ)|.
For b(ζ) 6= 0, this gives us

Dm;n(τm, ζ,Dm+1;n) =
2Dm+1;nbm(ζ)e−bm(ζ)τm

(
2bm(ζ) − ν2

mDm+1;n[1 − e−bm(ζ)τm ]
) (3.51)

For b(ζ) = 0, we have an indeterminant 0
0 form. l’Hôpital’s rule gives us

lim
b(ζ)→0

Dm;n(τm, ζ,Dm+1;n) =
2Dm+1;n

2 − ν2
mDm+1;nτm

(3.52)

For m = n, we have Dn+1;n := 0 and so from equations (3.51) and (3.52), we have Dn;n(τm, ζ, 0) = 0.

Working backwards, from m = n− 1 to m = 1 an inductive argument yields

Dm;n(τm, ζ,Dm+1;n) = 0 (3.53)

form = 1, ..., n and ζ = 0, 1 and from proposition 8 we know Dm;n(τm, ζ,Dm+1;n) is convex in ζ. Hence,

ζmin
m < 0 and ζmax

m > 1. �

For a piecewise constant parameter set, we must work backwards from the nth to the 1st increment to

determine the effect of each increment on the strip of regularity. For the nth increment, we determine

ζmin
n < 0 and ζmax

n > 1 from equation (3.46) for m = n. For each preceding increment m < n, we then

determine whether equation (3.46) is satisfied for ζ ∈ (ζmin
m+1, 0) and ζ ∈ (1, ζmax

m+1). If so, these critical

values ζmin
m and ζmax

m replace ζmin
m+1 and ζmax

m+1, respectively.

3.2.2 Bounds for the strip of regularity within the Heston Model

We now derive bounds for the critical values ζmin
n and ζmax

n . For n = 1, these are bounds for the strip of

regularity (ζmin, ζmax) in the Heston model.
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Proposition 10. For x ≥ 0 and τ > 0, we define

ζx,± :=
(ν − 2κρ) ±

√
(ν − 2κρ)2 + 4

(
κ2 + x2

τ2

)
(1 − ρ2)

2ν(1 − ρ2)
(3.54)

where ζ0,± = ζ± (the roots of the quadratic function γ2(ζ)).

Case 1: −1 < ρ ≤ 0

ζmin ∈ (ζ2π,−, ζ−) (3.55)

ζmax ∈ (ζ+, ζ2π,+) (3.56)

Furthermore, at ρ = 0, we have

ζmin = 1 − ζmax (3.57)

Case 2: 0 < ρ < 1

ζmin ∈ (ζ2π,−, ζ−) (3.58)

with subcases for ζmax

Case 2a: 0 < ρ < 1 and κ− ρν < 0

We search for ζmax in the range (1, ζ+). If ζmax does not fall in this range, we must determine whether ζ+ =
κ+ 2

τ

ρν .

If so ζmax = ζ+. If not ζmax ∈ (ζ+, ζ2π,+).

Case 2b: 0 < ρ < 1, κ− ρν > 0 and κ
ρν < ζ+

We search for ζmax in the range ( κ
ρν , ζ

+). If ζmax does not fall in this range, we must determine whether ζ+ =
κ+ 2

τ

ρν . If so ζmax = ζ+. If not ζmax ∈ (ζ+, ζ2π,+).

Case 2c: 0 < ρ < 1, κ− ρν = 0

We have ζ+ = 1 and ζmax ∈ (ζ+, ζ2π,+).

Proof: From proposition 9, we know that the moment generating function explodes to positive infinity

only when ψ(τ, ζ, 0) = 0. We can write

ψ(τ, ζ, 0) =
[b(ζ) + γ(ζ)] + [γ(ζ) − b(ζ)]e−γ(ζ)τ

2γ(ζ)
(3.59)

lim
ζ→ζ±

ψ(τ, ζ, 0) =
2 + b(ζ±)τ

2
(3.60)

which yields the conditions

b(ζ)
(
1 − e−γ(ζ)τ

)
+ γ(ζ)

(
1 + e−γ(ζ)τ

)
= 0 (3.61)

b(ζ±) +
2

τ
= 0 (3.62)

from which we can determine ζmin and ζmax.

We have b(ζ) = κ − ρνζ ∈ R and from proposition 9, we know that ζmin < 0 and ζmax > 1. We now

consider the range [ζ−, 0) ∪ (1, ζ+]. To satisfy equation (3.61) for some ζ ∈ (ζ−, 0) ∪ (1, ζ+) where, from

40



CHAPTER 3. ISSUES REGARDING THE SEMI-ANALYTIC PRICING FORMULAE

proposition 5, we know γ(ζ) ∈ R, we require b(ζ) < 0 since γ(ζ) > 0. To satisfy equation (3.62) for

ζ = ζ±, we also require b(ζ±) < 0.

Case 1: −1 < ρ ≤ 0

Making use of the inequality

(ν − 2κρ)2 + 4κ2(1 − ρ2) < (ν + 2κ)2 (3.63)

we obtain, for −1 < ρ < 0,

b(ζ−) = κ− ρν

[
(ν − 2κρ) −

√
(ν − 2κρ)2 + 4κ2(1 − ρ2)

2ν(1 − ρ2)

]

> κ

(
1 + ρ

1 − ρ2

)

> 0 (3.64)

and since ∂b(ζ)
∂ζ = −ρν > 0, we have b(ζ) > 0 for ζ ≥ ζ−. For ρ = 0, we have b(ζ) = κ > 0. Hence, for

−1 < ρ ≤ 0, ζmin < ζ− and ζmax > ζ+.

Case 2: 0 < ρ < 1

Here ∂b(ζ)
∂ζ = −ρν < 0 and b(0) = κ > 0 and so we need only to consider the range (1, ζ+]. Since

b(1) = κ− ρν, we must consider the sign of κ− ρν:

Case 2a: 0 < ρ < 1 and κ− ρν < 0

Here b(1) < 0 and so we must consider the entire range (1, ζ+]. At ζ = ζ+, we have an explosion if

b(ζ+) = − 2
τ and so we need to confirm whether ζ+ =

κ+ 2
τ

ρν if ζmax 6∈ (1, ζ+).

Case 2b: 0 < ρ < 1, κ− ρν > 0 and κ
ρν < ζ+

Here b(1) > 0 and for ζ = κ
ρν , b(ζ) = 0 so we need to consider the range

(
κ
ρν , ζ

+
]
. Again, we need to

confirm whether ζ+ =
κ+ 2

τ

ρν if ζmax 6∈
(

κ
ρν , ζ

+
)

.

Case 2c: 0 < ρ < 1, κ− ρν = 0

Here we have ζ+ = 1 and b(ζ+) = 0 and so ζmax > ζ+.

Hence, for 0 < ρ < 1, ζmin < ζ− and if ζmax does not fall within the intervals considered for cases 2a and

2b, we have ζmax > ζ+.

For ζmin < ζ− or ζmax > ζ+, we must consider the intervals (−∞, ζ−) and (ζ+,∞) respectively where,

from proposition 5, we know γ(ζ) = iIm [γ(ζ)]. We now derive bounds for ζmin < ζ− and ζmax > ζ+.

Following proposition 7, we re-define

arg [ψ(τ, ζ, 0)] := −1

2
Im [γ(ζ)] τ (3.65)

For x ≥ 0 and τ > 0, we define ζx,± as that in equation (3.54) such that Im [γ(ζx,±)] = x
τ and ζ0,± = ζ±

where γ(ζ±) = 0. We restrict our attention to x ∈ [0, 2π] i.e. to the principal branch of arg [ψ(τ, ζ, 0)].

From the RHS of equation (3.65), we see that ∂
∂ζ Arg [ψ(τ, ζ, 0)] > 0 for ζ ∈ (ζ2π,−, ζ−) and

∂
∂ζ Arg [ψ(τ, ζ, 0)] < 0 for ζ ∈ (ζ+, ζ2π,+). Furthermore, Arg [ψ(τ, ζ, 0)] is continuous in ζ. At ζ = ζ±, we

have ψ(τ, ζ±, 0) = 2+b(ζ±)τ
2 ∈ R. From subsection 3.1.1, we know ψ(τ, ζ±, 0) > 0 assuming ζmax 6= ζ+
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for cases 2a and 2b where 0 < ρ < 1 (in which case we would not need to obtain bounds for ζmax). From

the fact that exp
[
iIm

[
γ(ζ2π,±)

]
τ
]

= 1 where Im
[
γ(ζ2π,±)

]
= 2π

τ and equation (3.59), we can see that

ψ(τ, ζ2π,±, 0) = 1 .

For ζmax > ζ+, we start off on the positive real axis with Arg [ψ(τ, ζ+, 0)] = 0. Since Arg [ψ(τ, ζ, 0)] is

strictly decreasing in ζ for ζ ∈ (ζ+, ζ2π,+), we rotate about the complex plane in a strictly clockwise

manner, into the negative imaginary plane, where the positive real axis cannot be attained again from

this plane. Furthermore, ψ(τ, ζ, 0) cannot attain the negative real axis (again, from subsection 3.1.1) and

yet, we have ψ(τ, ζ2π,+, 0) = 1. Since Arg [ψ(τ, ζ, 0)] is continuous in ζ, for ζ ∈ (ζ+, ζ2π,+), we must

have ζmax < ζ2π,+ where ψ(τ, ζ, 0) attains the origin at ζmax. The same reasoning holds for ζmin < ζ−

where Arg [ψ(τ, ζ−, 0)] = 0, the argument on this principal branch is strictly increasing and continuous

in ζ for ζ ∈ (ζ2π,−, ζ−) and ψ(τ, ζ2π,−, 0) = 1. The only difference, in this case, is that we rotate about

the complex plane in a strictly anti-clockwise manner, into the positive imaginary plane.

Finally, for ρ = 0, we have ζmin = 1− ζmax. We see this from the following argument. For ε := ζ − 1
2 , we

have

γ(ζ) =

√
κ2 +

1

4
ν2 − ν2ε2 (3.66)

Therefore, γ(ζ) is even in ε about the point ε = 0 and so even in ζ about the point ζ = 1
2 .

This symmetry which arises for ρ = 0 is noted in Lord and Kahl [2007]. �

This result tells us that ζmin → ζ− and ζmax → ζ+ as τ → ∞ and accommodates for Proposition 3.1 of

Lord and Kahl [2007] which says that ζmax ≈ ζ2π,+ for ρ ≈ −1.

The proof of proposition 10 illustrates that ζ2π,± are bounds for the critical values of ζ. However, the

proof does not determine whether these bounds are appropriate, meaning that it is not clear whether the

conditions used to determine these critical values in proposition 9 (for n = 1) can be satisfied for more

than one value of ζ within these bounds. We now address this issue for ρ ≤ 0.

Proposition 11. For ρ ≤ 0, the explosion condition ψ(τ, ζ, 0) = 0 can only be satisfied once in the respective

ranges (ζ2π,−, ζ−) and (ζ+, ζ2π,+). Furthermore, we tighten the bounds for ζmin and ζmax.

For ρ ≤ 0

ζmax ∈ (ζπ,+, ζ2π,+) (3.67)

where one can make use of the fact that for ρ = 0, ζmin = 1 − ζmax.

For ρ < 0

ζmin ∈ (ζπ,−, ζx0,−) for x0 < π (3.68)

ζmin = ζπ,− for x0 = π (3.69)

ζmin ∈ (ζmin[2π,x0],−, ζπ,−) for x0 > π (3.70)

where

x0 :=

√
κ

ρ2
(κ− ρν) τ2 (3.71)
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Proof: For ζ ∈ (ζ2π,−, ζ−)∪(ζ+, ζ2π,+) where γ(ζ) = iIm [γ(ζ)] and re-expressing the explosion condition

ψ(τ, ζ, 0) = 0, both ζmin and ζmax satisfy the pair of equations

sin(−Im [γ(ζ)] τ) =
2b(ζ)Im [γ(ζ)]

b(ζ)2 + Im [γ(ζ)]
2 (3.72)

cos(−Im [γ(ζ)] τ) =
b(ζ)2 − Im [γ(ζ)]

2

b(ζ)2 + Im [γ(ζ)]
2 (3.73)

For ζ = ζx,± (where ζx,± is defined in equation (3.54) of proposition 10 with Im [γ(ζx,±)] τ = x and

ζ0,± = ζ±), we can show

∂

∂x

(
2b(ζ)Im [γ(ζ)]

b(ζ)2 + Im [γ(ζ)]
2

)
= −2ξ(ζ)

(
b(ζ)2 − Im [γ(ζ)]2

b(ζ)2 + Im [γ(ζ)]
2

)
∂ζ

∂x
(3.74)

∂

∂x

(
b(ζ)2 − Im [γ(ζ)]

2

b(ζ)2 + Im [γ(ζ)]
2

)
= 2ξ(ζ)

(
2b(ζ)Im [γ(ζ)]

b(ζ)2 + Im [γ(ζ)]
2

)
∂ζ

∂x
(3.75)

with

∂ζ

∂x
< 0 for ζ = ζx,− (3.76)

∂ζ

∂x
> 0 for ζ = ζx,+ (3.77)

and for ρ ≤ 0

ξ(ζ) :=
ν2

2Im [γ(ζ)]

(
ρνζ + κ (1 − 2ζ)

b(ζ)2 + Im [γ(ζ)]2

)
(3.78)

< 0 for ζ = ζx,+ > 1 (3.79)

> 0 for ζ = ζx,− < 0 (3.80)

With respect to equation (3.73), we have

∂

∂x
cos(−Im [γ(ζ)] τ) = sin(−Im [γ(ζ)] τ)

∂Im [γ(ζ)] τ

∂x
= sin(−Im [γ(ζ)] τ) (3.81)

and we know

sin(−Im [γ(ζ)] τ) < 0 for x ∈ (0, π) (3.82)

= 0 for x = π (3.83)

> 0 for x ∈ (π, 2π) (3.84)

For ζmax, we consider the range (ζ+, ζ2π,+) where ζ+ > 1, ξ(ζ) < 0, ∂ζ
∂x > 0 and b(ζ) = κ − ρνζ > 0 for

ρ ≤ 0. The RHS of equation (3.72) is, therefore, positive and so, from equation (3.84), we need only to

consider x ∈ (π, 2π) to ensure that equation (3.72) is satisfied. To satisfy equation (3.73), in this range of

x and for b(ζ) > 0, consider that from equations (3.81) and (3.84), we have

∂

∂x
cos(−Im [γ(ζ)] τ) > 0 (3.85)
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and from equation (3.75), we have

∂

∂x

(
b(ζ)2 − Im [γ(ζ)]2

b(ζ)2 + Im [γ(ζ)]
2

)
< 0 (3.86)

Therefore, equation (3.73) can only be satisfied for one value of ζ ∈ (ζπ,+, ζ2π,+).

For ζmin, we consider the range (ζ2π,−, ζ−) where ζ− < 0, ξ(ζ) > 0, ∂ζ
∂x < 0. The sign of b(ζ) is, however,

unclear. We have three cases to consider.

Case 1: b(ζ) > 0

The same reasoning followed when considering ζmax yields the result that equation (3.73) can only be

satisfied for one value of ζ ∈ (ζ2π,−, ζπ,−).

Case 2: b(ζ) < 0

The RHS of equation (3.72) is negative and so, from equation (3.82), we need only to consider x ∈ (0, π)

to ensure that equation (3.72) is satisfied. To satisfy equation (3.73), in this range of x and for b(ζ) < 0,

consider that from equations (3.81) and (3.82), we have

∂

∂x
cos(−Im [γ(ζ)] τ) < 0 (3.87)

and from equation (3.75), we have

∂

∂x

(
b(ζ)2 − Im [γ(ζ)]2

b(ζ)2 + Im [γ(ζ)]
2

)
> 0 (3.88)

Therefore, equation (3.73) can only be satisfied for one value of ζ ∈ (ζπ,−, ζ−).

Case 3: b(ζ) = 0

The RHS of equation (3.72) is zero and from equation (3.83), we see that equation (3.72) can only be

satisfied at ζ = ζπ,−.

From these cases, we now show that the presented bounds are appropriate for ζmin. Using equation

(3.76), we have

∂b(ζ)

∂x
= −ρν ∂ζ

∂x
< 0 (3.89)

Solving for the point ζx0,− such that b(ζx0,−) = 0, we have

κ− ρν




(ν − 2κρ) −

√
(ν − 2κρ)2 + 4

(
κ2 +

x2
0

τ2

)
(1 − ρ2)

2ν(1 − ρ2)



 = 0

Re-arranging terms, we obtain

x0 =

√
κ

ρ2
(κ− ρν) τ2 (3.90)

Since b(ζ) is decreasing in x we have b(ζ) > 0 for x < x0 and b(ζ) < 0 for x > x0.

If x0 = π then b(ζ) > 0 for x ∈ (0, π) and b(ζ) < 0 for x ∈ (π, 2π). Hence, from the cases above we see

that ζmin = ζπ,−.
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If x0 < π then b(ζ) > 0 for x ∈ (0, x0) and b(ζ) < 0 for x ∈ (x0, π) and x ∈ [π, 2π). From case 1 we see that

ζmin 6∈ (0, x0) and from case 2 we see that ζmin 6∈ [π, 2π). Hence, from case 2 we have ζmin ∈ (ζπ,−, ζx0,−).

If π < x0 < 2π then b(ζ) > 0 for x ∈ (0, π] and x ∈ (π, x0) and b(ζ) < 0 for x ∈ (x0, 2π). From case 1 we

see that ζmin 6∈ (0, π] and from case 2 we see that ζmin 6∈ (x0, 2π). If x0 > 2π then b(ζ) > 0 for x ∈ (0, 2π)

and from case 1 we see that ζmin 6∈ (0, π]. Hence, from case 1 we have ζmin ∈ (ζmin[2π,x0],−, ζπ,−). �

The results of proposition 11 are valid for the nth increment in a piecewise constant setting.

As noted in Lord and Kahl [2008] for the time-homogenous case (n = 1), solving for the critical values

of ζ, in the manner presented in proposition 9, is not a well-posed problem as these values are not

unique. The bounds we have derived in propositions 10 and 11 are useful for dealing with this problem.

However, a slightly different approach is followed in Lord and Kahl [2007] where the critical values ζmin

and ζmax are obtained by referring to Andersen and Piterbarg [2007] Proposition 3.1 (as presented in

Lord and Kahl [2007]):

The ζ-th moment of ST is finite for T < T ∗ and infinite for T ≥ T ∗ where T ∗ is given by one of three possibilities:

1. For γ(ζ)2 ≥ 0, b(ζ) ≥ 0 or ζ ∈ [0, 1]

T ∗ = ∞ (3.91)

2. For γ(ζ)2 ≥ 0, b(ζ) < 0

T ∗ =
1

c̄(ζ)
ln

(
b(ζ) − c̄(ζ)

b(ζ) + c̄(ζ)

)
(3.92)

3. For γ(ζ)2 < 0

T ∗ =
2

c̄(ζ)

[
I[b(ζ)>0]π + arctan

(
− c̄(ζ)
b(ζ)

)]
(3.93)

where c̄(ζ) = |γ(ζ)|.4

The approach proves useful when searching for the critical values of ζ given T (or the period τ ) partic-

ularly for case 3 where γ(ζ) = iIm [γ(ζ)] and our explosion condition ψ(τ, ζ, 0) = 0 is not unique for

ζ ∈ (−∞, 0) and ζ ∈ (1,∞). Regarding this critical time approach, we now motivate equation (3.93)

where b(ζ) ∈ R and the explosion condition may be written as

−iIm [γ(ζ)] τ = log

(
b(ζ) + iIm [γ(ζ)]

b(ζ) − iIm [γ(ζ)]

)
(3.94)

= ln

(∣∣∣∣
b(ζ) + iIm [γ(ζ)]

b(ζ) − iIm [γ(ζ)]

∣∣∣∣

)
+ i arg

(
b(ζ) + iIm [γ(ζ)]

b(ζ) − iIm [γ(ζ)]

)
(3.95)

We have
∣∣∣ b(ζ)+iIm[γ(ζ)]
b(ζ)−iIm[γ(ζ)]

∣∣∣ = 1 and arg
(

b(ζ)+iIm[γ(ζ)]
b(ζ)−iIm[γ(ζ)]

)
= 2 arg (b(ζ) + iIm [γ(ζ)]). Since Im [γ(ζ)] > 0 we

know that b(ζ) + iIm [γ(ζ)] does not cross the branch cut and we have

Arg (b(ζ) + iIm [γ(ζ)]) ∈ (0, π) (3.96)

4The function c̄(ζ) was originally defined as 1
2
|γ(ζ)| in Lord and Kahl [2007], the typo was observed by Roger Lord as a result

of a discrepancy between the outcome of our respective approaches.
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From the proof of proposition 10 we know that for ζ ∈ (ζ2π,−, ζ−) ∪ (ζ+, ζ2π,+) we have

−Im [γ(ζ)] τ ∈ (−2π, 0) (3.97)

Hence, the critical period for a given value of ζ satisfies

τ∗ = − 2

Im [γ(ζ)]
[Arg (b(ζ) + iIm [γ(ζ)]) − π] (3.98)

For a given τ equation (3.98) may be used to solve for ζmin and ζmax where one can conveniently make

use of the bounds we have derived in this subsection.

3.2.3 Bounds for the strip of regularity within the Heston Model allowing for piece-

wise constant parameters

Proposition 12. For the increments m = 1, ..., n− 1, x ≥ 0 and τm > 0, we define

ζx,±
m :=

(νm − 2κmρm) ±
√

(νm − 2κmρm)2 + 4
(
κ2

m + x2

τ2
m

)
(1 − ρ2

m)

2νm(1 − ρ2
m)

(3.99)

bm;n(ζ,Dm+1;n) := bm(ζ) − ν2
mDm+1;n (3.100)

and assume ψm;n(τm, iz,Dm+1;n) cannot lie on the branch cut (−∞, 0).

We search for ζmin
m in the range (ζ−m, 0). If ζmin

m does not fall in this range, we must determine whether

bm;n(ζ−m, Dm+1;n) = − 2
τm

. If so ζmin
m = ζ−m. If not ζmin

m ∈ (ζ2π,−
m , ζ−m).

We search for ζmax
m in the range (1, ζ+

m). If ζmax
m does not fall in this range, we must determine whether

bm;n(ζ+
m, Dm+1;n) = − 2

τm
. If so ζmax

m = ζ+
m. If not ζmax

m ∈ (ζ+
m, ζ

2π,+
m ).

For ρm = 0, we have

ζmin
m = 1 − ζmax

m (3.101)

Proof: From proposition 9, we know that ψm;n(τm, ζ,Dm+1;n) = 0 at ζmin
m and ζmax

m . We can write

ψm;n(τm, ζ,Dm+1;n) =
[bm;n(ζ,Dm+1;n) + γm(ζ)] + [γm(ζ) − bm;n(ζ,Dm+1;n)]e−γm(ζ)τ

2γm(ζ)

(3.102)

lim
ζ→ζ±

m

ψm;n(τm, ζ,Dm+1;n) =
2 + bm;n(ζ±m, Dm+1;n)τ

2
(3.103)

We follow the same approach as that used to prove proposition 10 as we have bm;n(ζ,Dm+1;n) ∈ R since

Dm+1;n = Dm+1;n(τm+1, ζ,Dm+2;n) ∈ R from equation (3.13) with ζ−m < 0 and ζ+
m ≥ 1. However ap-

proaching the problem in terms of the sign of bm;n(ζ,Dm+1;n) is not as convenient as the corresponding

case in proposition 10 where we need only consider the sign of bm(ζ).

Following the proof of proposition 7, we re-define

arg [ψm;n(τm, ζ,Dm+1;n)] := −1

2
Im [γm(ζ)] τm (3.104)
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For x ≥ 0 and τm > 0, we define ζx,±
m as that in equation (3.99) where Im [γ (ζx,±

m )] = x
τm

and ζ0,±
m = ζ±m

with γ(ζ±m) = 0. We restrict our attention to x ∈ [0, 2π] i.e. to the principal branch of arg [ψm;n(τm, ζ,Dm+1;n)].

From the RHS of equation (3.104), we see that ∂
∂ζ Arg [ψm;n(τm, ζ,Dm+1;n)] > 0 for ζ ∈ (ζ2π,−, ζ−) and

∂
∂ζ Arg [ψm;n(τm, ζ,Dm+1;n)] < 0 for ζ ∈ (ζ+, ζ2π,+). Furthermore, for the intervals considered,

Arg [ψm;n(τm, ζ,Dm+1;n)] is continuous in ζ.

At ζ = ζ±m, we have ψm;n(τm, ζ
±
m, Dm+1;n) =

2+bm;n(ζ±
m,Dm+1;n)τm

2 ∈ R. If bm;n(ζ±m, Dm+1;n) = − 2
τm

then ζmax
m = ζ+

m and ζmin
m = ζ−m respectively. For ζmin < ζ− and/or ζmax > ζ+, we consider that

ψm;n(τm, ζ,Dm+1;n) > 0 (by assumption) and make use of the fact that ψm;n

(
τm, ζ

2π,±
m , Dm+1;n

)
= 1.

The result follows from the same reasoning as that followed in the proof of proposition 10 as does the

fact that ζmin
m = 1 − ζmax

m for ρm = 0. �

Regarding the critical time approach and equation (3.98) in particular, we can accommodate for piece-

wise constant parameters by replacing b(ζ) with bm;n(ζ,Dm+1;n) ∈ R and so we have the critical period

τ∗m = − 2

Im [γm(ζ)]
[Arg (bm;n(ζ,Dm+1;n) + iIm [γm(ζ)]) − π] (3.105)

For a given τm, equation (3.105) may be used to solve for ζmin
m < ζ−m and ζmax

m > ζ+
m where the critical

values lie in the respective intervals (ζ2π,−
m , ζ−m) and (ζ+

m, ζ
2π,+
m ).

3.2.4 Strip of regularity for the jump component

We now present an approach with which to determine the critical values Jζmin
m and Jζmax

m of the strip of

regularity for the jump component of the SVJJ characteristic function, allowing for piecewise constant,

time-dependent parameters.

Proposition 13. For the increments m = 1, ..., n, the strip of regularity for the jump component (Jζmin
m , Jζmax

m )

is specified such that

min [1 − ζηmρ
J

m − ηmDm;n(τm, ζ,Dm+1;n), 1 − ζηmρ
J

m − ηmDm;n(0, ζ,Dm+1;n)] (3.106)

is positive. Subject to the parameter restriction 1 − ηmρ
J
m > 0, Jζmin

m < 0 and Jζmax
m > 1 and at these critical

points equation (3.106) is zero.

Proof: Referring to the joint characteristic function for the jump sizes JX and JV , derived in the proof of

proposition 2 in section 2.2 and making use of Jensen’s inequality, we have
∣∣∣EQ

t [exp (izJX +D(s, iz, izv)JV )]
∣∣∣ ≤ E

Q
t

[∣∣∣ exp (izJX +D(s, iz, izv)JV )
∣∣∣
]

= E
Q
t

[exp (ζJX + Re [D(s, iz, izv)JV ])]

=
eζµ+ 1

2 ζ2σ2

(1 − ζηρJ − ηRe [D(s, iz, izv)])
(3.107)

From the derivation of equation (2.114) in the proof of proposition 2, we know that equation (3.107) is

valid only for 1 − ζηρJ − ηRe [D(s, iz, izv)] > 0.

From proposition 19 (which follows), we have Re [Dm;n(s, iz,Dm+1;n)] ≤ Dm;n(s, ζ,Dm+1;n) so

1 − ζηmρ
J

m − ηmRe [Dm;n(s, iz,Dm+1;n)] ≥ 1 − ζηmρ
J

m − ηmDm;n(s, ζ,Dm+1;n) (3.108)
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From the inequality in equation (3.108), we need only to ensure that

1 − ζηmρ
J

m − ηmDm;n(s, ζ,Dm+1;n) > 0 (3.109)

to ensure that the joint characteristic function for the jump sizes JX and JV exists.

From proposition 2, we have the parameter restriction 1 − ηmρ
J
m > 0 and so for ζ ∈ [0, 1], we have

1− ζηmρ
J
m > 0. From proposition 20 (which follows), we have Dm;n(s, ζ,Dm+1;n) ≤ 0 for ζ ∈ [0, 1]. This

yields

1 − ζηmρ
J

m − ηmDm;n(s, ζ,Dm+1;n) ≥ 1 − ζηmρ
J

m > 0 (3.110)

and so from equation (2.115) in the proof of proposition 2 we have

J̄m;n(τm, ζ,Dm+1;n) =

∫ τm

0

1

(1 − ζηmρJ
m − ηmDm;n(s, ζ,Dm+1;n))

ds (3.111)

≤ τm

1 − ζηmρJ
m

(3.112)

Therefore, the range [0, 1] always lies in the strip of regularity for the jump component subject to the

restriction 1 − ηmρ
J
m > 0.

For ζ 6∈ [0, 1], we restate the defining ODE from the proof of proposition 2 in section 2.2,

∂

∂s
Dm;n(s, ζ,Dm+1;n) =

1

2
ν2

mD
2(s, ζ,Dm+1;n) − bm(ζ)D(s, ζ,Dm+1;n) + c(ζ) (3.113)

where bm(ζ) = κm−ρmνmζ and c(ζ) = 1
2ζ(ζ−1) and from equation (3.13) we knowDm;n(s, ζ,Dm+1;n) ∈

R. The function ∂
∂sDm;n(s, ζ,Dm+1;n) is quadratic inDm;n(s, ζ,Dm+1;n) and convex since 1

2ν
2
m > 0, with

roots at Dm;n(s, ζ,Dm+1;n) = bm(ζ)±γm(ζ)
ν2

m
.

For ζ ∈ (ζ−, 0) ∪ (1, ζ+), we have bm(ζ), γm(ζ), Am(ζ,Dm+1;n), Ām(ζ,Dm+1;n)∈ R where the form of

Am and Ām is presented in proposition 2. We can write

Dm;n(s, ζ,Dm+1;n) =

(
bm(ζ) − γm(ζ)

ν2
m

)

 Ām(ζ,Dm+1;n) − e−γm(ζ)s

Ām(ζ,Dm+1;n) −
(

bm(ζ)−γm(ζ)
bm(ζ)+γm(ζ)

)
e−γm(ζ)s



 (3.114)

=

(
bm(ζ) + γm(ζ)

ν2
m

)[
Ām(ζ,Dm+1;n) − e−γm(ζ)s

Am(ζ,Dm+1;n) − e−γm(ζ)s

]
(3.115)

From equations (3.114) and (3.115), we see that Dm;n(s, ζ,Dm+1;n) 6= bm(ζ)±γm(ζ)
ν2

m
as this would require

(
bm(ζ)−γm(ζ)
bm(ζ)+γm(ζ)

)
= 1 i.e. γm(ζ) = 0 which is not possible for the considered range of ζ since γm(ζ) = 0

for ζ = ζ±m. Furthermore, at ζ = ζ±m, the function Dm;n(s, ζ,Dm+1;n) is of the indeterminant 0
0 form.

However, we need only point out that, at ζ = ζ±, the function ∂
∂sDm;n(s, ζ,Dm+1;n) has a single root at

Dm;n(s, ζ,Dm+1;n) = bm(ζ)
ν2

m
. For ζ ∈ (−∞, ζ−) ∪ (ζ+,∞), we have γ(ζ) ∈ C i.e. the quadratic function

has no real roots. This analysis yields

∂

∂s
Dm;n(s, ζ,Dm+1;n) 6= 0 for ζ ∈ (ζ−, ζ+) (3.116)

≥ 0 for ζ = ζ± (3.117)

> 0 for ζ ∈ (−∞, ζ−) ∪ (ζ+,∞) (3.118)
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For ∂
∂sDm;n(s, ζ,Dm+1;n) ≥ 0 and 0 ≤ s ≤ τm, we have

Dm;n(0, ζ,Dm+1;n) ≤ Dm;n(s, ζ,Dm+1;n) ≤ Dm;n(τm, ζ,Dm+1;n) (3.119)

and so

1 − ζηmρ
J

m − ηmDm;n(s, ζ,Dm+1;n) ≥ 1 − ζηmρ
J

m − ηmDm;n(τm, ζ,Dm+1;n)

Therefore

J̄m;n(τm, ζ,Dm+1;n) =

∫ τm

0

1

(1 − ζηmρJ
m − ηmDm;n(s, ζ,Dm+1;n))

ds (3.120)

≤ τm

1 − ζηmρJ
m − ηmDm;n(τm, ζ,Dm+1;n)

(3.121)

for 1−ζηmρ
J
m−ηmDm;n(τm, ζ,Dm+1;n) > 0. This ensures that Jm;n(τm, iz,Dm+1;n) exists where J(τ, iz, ·)

is defined in equation (2.82) of proposition 2 in section 2.2.

For ∂
∂sDm;n(s, ζ,Dm+1;n) < 0 and 0 ≤ s ≤ τm, we have

Dm;n(0, ζ,Dm+1;n) > Dm;n(s, ζ,Dm+1;n) > Dm;n(τm, ζ,Dm+1;n) (3.122)

This yields

1 − ζηmρ
J

m − ηmDm;n(s, ζ,Dm+1;n) > 1 − ζηmρ
J

m − ηmDm;n(0, ζ,Dm+1;n) (3.123)

and

J̄m;n(τm, ζ,Dm+1;n) =

∫ τm

0

1

(1 − ζηmρJ
m − ηmDm;n(s, ζ,Dm+1;n))

ds (3.124)

<
τm

1 − ζηmρJ
m − ηmDm;n(0, ζ,Dm+1;n)

(3.125)

for 1 − ζηmρ
J
m − ηmDm;n(0, ζ,Dm+1;n) > 0. This ensures that Jm;n(τm, iz,Dm+1;n) exists. �

From proposition 13, we see that setting ηm = 0 for all m ≤ n, explosions cannot occur in the jump

component. Hence, in the SVJJ model, only if we allow for jumps in the variance process do we need to

consider the strip of regularity for the jump component.

Solving for the critical values of ζ, from proposition 13, is a well-posed problem. We see this since, from

proposition 8, we know Dm;n(τm, ζ,Dm+1;n) is convex in ζ for m = 1, ..., n and Dm;n(0, ζ,Dm+1;n) =

Dm+1;n(τm+1, ζ,Dm+2;n). Hence, the equations 1 − ζηmρ
J
m − ηmDm;n(τm, ζ,Dm+1;n) and

1 − ζηmρ
J
m − ηmDm;n(0, ζ,Dm+1;n) are concave in ζ and positive for ζ ∈ [0, 1] (subject to the specified

parameter restriction).

The strip of regularity for the characteristic function is given by
(
max[ζmin

m ,J ζmin
m ],min[ζmax

m ,J ζmax
m ]

)
and

so we may conveniently use ζmin
m and ζmax

m as bounds for Jζmin
m and Jζmax

m , respectively.

3.2.5 Strip of regularity for Forward Starting Options

For % and $ type Forward Starting Options where the period tn − tl + tl − t0 is split into n increments

with the determination date tl, we make use of the forward (%, $) characteristic functions where u = 0 to
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determine the corresponding strip of regularity. The defining difference between the characteristic and

the forward (%, $) characteristic functions, expressed in terms of piecewise constant parameters for the

same number of increments n, is that for the incrementsm = 1, ..., l, we replace iz (where iz is the second

argument of the functions C and D) with I := I[z(%,$)=z$]. Hence, for the increments m = l + 1, ..., n, we

have the critical values ζmin,(%,$)
m = ζmin

m , ζmax,(%,$)
m = ζmax

m , Jζmin,(%,$)
m = Jζmin

m and Jζmax,(%,$)
m = Jζmax

m and we

need only to address the effect of this argument specification on the strip of regularity for the diffusion

and jump components of the characteristic function for the increments m = 1, ..., l where we have

γm(I) =
√
bm(I)2 − ν2

mI(I − 1) (3.126)

= |bm(I)| (3.127)

Proposition 14. For m = 1, ..., l, we have

ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)

=
2bm(I) − ν2

mD
(%,$)

l;m+1;n

∣∣
u=0

(
1 − e−bm(I)τm

)

2bm(I)
for bm(I) > 0 (3.128)

=

[
2bm(I) − ν2

mD
(%,$)

l;m+1;n

∣∣
u=0

(
1 − e−bm(I)τm

)

2bm(I)

]
ebm(I)τm for bm(I) < 0 (3.129)

=
2 − ν2

mD
(%,$)

l;m+1;n

∣∣
u=0

τm

2
for bm(I) = 0 (3.130)

For a % type option, we have bm(0) = κm > 0, while for a $ type option, we have bm(1) = κm − ρmνm.

ζmin,(%,$)
m and ζmax,(%,$)

m satisfy

ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
= 0 (3.131)

with ζmin,(%,$)
m < 0 and ζmax,(%,$)

m > 1.

Proof: From proposition 23 (which follows) we haveD(%,$)

l;m+1;n

∣∣
u=0

≤ 0 and soψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)

> 0 for ζ ∈ [0, 1]. Hence, ζmin,(%,$)
m < 0 and ζmax,(%,$)

m > 1. The remainder of the result follows from the

comments above and the proof of proposition 9. To clarify our notation

D(%,$)

l;m+1;n

∣∣
u=0

= D(%,$)

l;m+1;n(τm+1, I, D
(%,$)

l;m+2;n(τm+2, I, ...D
(%,$)

l;l;n(τl, I, Dl+1;n(τl+1, ζ,Dl+2;n))...))

(3.132)

�

Proposition 15. For the increments m = 1, ..., l, the strip of regularity for the jump component

(Jζmin,(%,$)
m , Jζmax,(%,$)

m ) is specified such that

min
[
1 − Iηmρ

J

m − ηmD
(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
, 1 − Iηmρ

J

m − ηmD
(%,$)

l;m;n

(
0, I, D(%,$)

l;m+1;n

∣∣
u=0

)]
(3.133)

is positive. We have Jζmin,(%,$)
m < 0 and Jζmax,(%,$)

m > 1 and at these critical points equation (3.133) is zero where
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the parameter restriction 1 − ηmρ
J
m > 0 (for m = 1, ..., l) applies to the case of a $ type option only and we have

D(%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n

∣∣
u=0

) =
2D(%,$)

l;m+1;n

∣∣
u=0

bm(I)e−bm(I)τm

(
2bm(I) − ν2

mD
(%,$)

l;m+1;n

∣∣
u=0

[1 − e−bm(I)τm ]
) for bm(I) 6= 0

(3.134)

=
2D(%,$)

l;m+1;n

∣∣
u=0

2 − ν2
mD

(%,$)

l;m+1;n

∣∣
u=0

τm
for bm(I) = 0

(3.135)

where bm(I) = 0 can occur only for a $ type option with κm − ρmνm = 0.

Proof: The result follows from the comments above and proposition 13. �

Following the proof of proposition 8, we can see that D(%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n

∣∣
u=0

) is convex in ζ for m =

1, ..., n. From equation (3.53) of the proof of proposition 9 in subsection 3.2.1, we know

Dm;n(τm, ζ,Dm+1;n) = 0 for m = l + 1, ..., n and ζ = 0, 1. From equations (3.134) and (3.135) it follows

thatD(%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n

∣∣
u=0

) = 0 form = 1, ..., n and ζ = 0, 1. Hence, from propositions 14 and 15, we

see that identifying ζmin,(%,$)
m , ζmax,(%,$)

m and Jζmin,(%,$)
m , Jζmax,(%,$)

m are well-posed problems as the equations

from which we determine these critical values are concave in ζ and positive for ζ ∈ [0, 1] (subject to any

specified parameter restrictions).

Furthermore, the values ζmin
l+1 , ζmax

l+1 and Jζmin
l+1 , Jζmax

l+1 serve as bounds for the respective critical values.

3.3 The optimal contour of integration

An important point to consider is the chosen value of α where −α specifies the contour of integration

in the complex plane. Starting with Carr and Madan [1999], who introduced this damping parameter

to option pricing, it has been observed that the shape of the pricing integrand is sensitive to the value

of α passed through it. In particular, for far out-the-money and short maturity options, the shape may

become highly oscillatory. Several ad hoc suggestions have been made to deal with this significant

problem - Carr and Madan [1999] suggest working with αmax

4 , Schoutens et al. [2005] suggest working

with α = 0.75 while Lewis [2001] specifies α = −0.5.

In Lee [2005], a bound is obtained for the truncation and discretization errors that arise for a discrete

Fourier transform of the option price. A constant value of α is then chosen such that this bound is

minimised. With this constant value, one then prices a set of options ranging in strike via the Fast

Fourier Transform (FFT) method. It should be noted, however, that this approach relies on a bound for

the truncation error that is decreasing in u. Obtaining such a bound is model specific and non-trivial.

With respect to the Heston model, the author provides such a bound in Appendix A.2. Its derivation is

presented in Lee [2006]5. The issue of identifying an appropriate value of α is tackled in Lord and Kahl

[2007] where the authors suggest working with the value α∗ that minimises the total variation of the

integrand

α∗ =
argmin

α ∈ (αmin, αmax)

∫ ∞

0

∣∣∣
∂

∂u
Ψ̃t0 ,T (u, α)

∣∣∣du (3.136)

5Thanks to the author for providing this derivation on request http://www.math.uchicago.edu/∼rl/dftHestonBound.pdf
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where

Ψ̃
t0 ,T (u, α) := Re

[(
e−i(u−iα)k

−(u− iα)(u − i[α+ 1])

)
Φ

t0 ,T (u− i[α+ 1])

]
(3.137)

Practically, the authors suggest determining α∗ by assuming that Ψ̃
t0 ,T (u, α) is a monotone function of

u ∈ [0,∞). This leads to

∫ ∞

0

∣∣∣
∂

∂u
Ψ̃t0 ,T (u, α)

∣∣∣du =
∣∣∣Ψ̃t0 ,T (0, α) − Ψ̃t0 ,T (∞, α)

∣∣∣

=
∣∣∣Ψ̃t0 ,T (0, α)

∣∣∣ (3.138)

since Ψ̃t0 ,T (∞, α) = 0. Therefore, we have

α∗

:=
argmin

α ∈ (αmin, αmax)

∣∣∣Ψ̃t0 ,T (0, α)
∣∣∣ (3.139)

=
argmin

α ∈ (αmin, αmax)
ln
(∣∣∣Ψ̃t0 ,T (0, α)

∣∣∣
)

(3.140)

=
argmin

α ∈ (αmin, αmax)

[
−αk − ln(|α(α + 1)|) + ln

(
E

Q
t0

[
e(α+1)XT |Xt0 , Vt0

])]
(3.141)

=
argmin

α ∈ (αmin, αmax)
[−αk − ln(|α(α + 1)|) + (α+ 1)Xt0 + Re [D(τ, α+ 1, 0)]Vt0 + Re [C(τ, α+ 1, 0)]]

(3.142)

We distinguish between equation (3.141), which is effectively the form of α∗ specified in Lord and Kahl

[2007], and equation (3.142) as we wish to avoid the evaluation of any exponents when solving for α∗.

In MatLab, we have ex := ∞ for values of x > ln(realmax) ≈ 709.6 It is possible for (α+ 1)Xt0 +

Re [D(τ, α+ 1, 0)]Vt0 + Re [C(τ, α+ 1, 0)] > 709 for some parameter set. If this occurs, for a range of α

containing α∗, then the approach may fail to determine α∗ from equation (3.141).

In proposition 8, we confirm that the cumulant generating function (α+ 1)Xt0 +D(τ, α+ 1, 0)Vt0 +

C(τ, α+1, 0) is convex in α and explodes to positive infinity atαmin and αmax. The remaining term −αk−
ln(|α(α + 1)|) is also convex in α and explodes to positive infinity at α = −1, 0. The sum of two convex

functions remains convex and since we have positive vertical asymptotes at α = αmin,−1, 0, αmax, we

must have local minima in the ranges (αmin,−1), (−1, 0) and (0, αmax) as stated in Lord and Kahl [2007].

Hence, we search for α∗ in these three ranges. This approach avoids specifying α = −1, 0 and so we

avoid the points of singularity u = 0 and α = −1, 0 mentioned in subsection 2.1.1.

Referring to equations (2.45) and (2.46), we can show that for the range of α considered

∣∣∣Ψ̃t0 ,T (u, α)
∣∣∣ ≤

( ∣∣e−i(u−iα)k
∣∣

|(u− iα)(u − i[α+ 1])|

)
Φt0 ,T (u− i[α+ 1])|u=0 (3.143)

≤
∣∣∣Ψ̃t0 ,T (0, α)

∣∣∣ (3.144)

and so by following the α∗ approach we are, in fact, minimizing the absolute value of the integrand at

its maximum point - this minimization is also considered in Ng [2005].

6realmax is the largest value that can be represented as a double-precision floating-point number
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In general, the simplifying assumption of monotonicity is not valid for values of α in the interval

(αmin, αmax) as we are considering the issue of an oscillating integrand for u ∈ [0,∞). At the very

least, however, this approach should prove to be effective for parameter sets where the assumption is

valid over the bulk of the integrand (evaluated at the optimal value α∗) i.e. for u ∈ [0, u∗) and some

value u∗ where the magnitude of Ψ̃t0 ,T (u, α∗) is insignificant for u ≥ u∗. As an example, we consider the

integrand Ψ̃
t0 ,T (u, α) in figure 3.1 for a parameter set considered in figure 2(a) of Lord and Kahl [2007].

In figure 3.1(a) we present the integrand (scaled such that the value at u = 0 is 1) evaluated at α∗ as

well as at α = −0.5, 400. We see that, as a function of α∗, the integrand appears to be monotone in u.

Taking a closer look at this α∗ integrand in figure 3.1(b), we see that its decay to zero is not monotone,

though insignificantly so. In figures 3.1(c) and 3.1(d) we present the unscaled integrand evaluated at α∗

and α = −0.5 respectively. The latter is more peaked.

Following the approach suggested in Lord and Kahl [2007], we transform the domain of integration (as

described in section 3.4) and make use of the adaptive Gauss-Lobatto quadrature algorithm of Gander

and Gautschi [2000] to evaluate the call value. We, very briefly, discuss the implementation of this algo-

rithm in subsection 4.3.2. Evaluated at α∗, we obtain the value 3.2521 × 10−126 while at α = −0.5, we

obtain −1.9984 × 10−15. We refer the reader to Lord and Kahl [2007] sections 3.2, 3.3 and 4 for a more

detailed discussion of the optimal contour of integration.
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Figure 3.1: Heston integrand as a function of α for the parameter set: S = 1, K = 2, r = 0, q = 0, κ = 1,

ρ = −0.9, ν = 1, θ = 0.1, Vt0 = 0.1, τ = 1
52 with α = α∗ = 541.93 for —–, α = 400 for · · · and α = −0.5

for - - -.
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3.4 Transforming the domain of integration

Numerical evaluation of the semi-analytic formulae for European and Forward Starting Options re-

quires one to truncate the domain of integration [0,∞). Alternatively, as suggested in Kahl and Jackel

[2005] and Lord and Kahl [2007], an appropriate transformation of the integration variable u yields the

domain of integration [0, 1]. To determine this transformation, we make use of the following result from

Lord and Kahl [2007] Proposition 2.2 (assuming the dynamics of the Heston model), for the pricing in-

tegrand in equation (2.6) of section 2.1. We make use of the functions derived in proposition 2 of section

2.2 throughout this section.

Theorem 3. Assuming κ, ν, θ, τ > 0 and ρ ∈ (−1, 1), we have

lim
u→∞

e−iukΨC

t0 ,T
(u, α) ≈ ΨC

t0 ,T
(0, α)e−uℜ∞

cos(uℑ∞)

−u2
(3.145)

where

ℜ∞ =

√
1 − ρ2 (Vt0 + κθτ)

ν
(3.146)

ℑ∞ = Xt0 + (r − q)τ − k − ρ (Vt0 + κθτ)

ν
(3.147)

The proof follows from Kahl and Jackel [2005] Appendix A Proposition 3.1. We now work through the

proof in order to obtain the corresponding results for the SVJJ model allowing for piecewise constant,

time-dependent parameters in proposition 16 and for Forward Starting Options in proposition 17.

From equation (3.26) and equation (3.27) of theorem 1 in subsection 3.1.2, we see

lim
u→∞

Re [γ(iz)] = ∞ (3.148)

and so

lim
u→∞

e−γ(iz)τ = 0 (3.149)

Working from the authors’ proof, we have

lim
u→∞

b(iz)

u
= −iρν (3.150)

and making use of equation (3.26) again, we have

lim
u→∞

γ(iz)

u

= lim
u→∞

√
[κ− ρν(α + 1)]2 − ν2α(α+ 1) + u2ν2(1 − ρ2) − iu [ν2(2α+ 1) + 2ρν[κ− ρν(α+ 1)]]

u2

= ν
√

1 − ρ2 (3.151)

Using equations (3.150) and (3.151), we have

lim
u→∞

A−1(iz, 0) = lim
u→∞

b(iz)−γ(iz)
u

b(iz)+γ(iz)
u

=
−iρν − ν

√
1 − ρ2

−iρν + ν
√

1 − ρ2

= −1 + 2ρ2 − i2ρ
√

1 − ρ2 (3.152)
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From equations (3.149) and (3.152), we have

lim
u→∞

D(τ, iz, 0)

u
= lim

u→∞
1

u

(
b(iz) − γ(iz)

ν2

)[
1 − e−γ(iz)τ

1 −A−1(iz, 0)e−γ(iz)τ

]
(3.153)

= lim
u→∞

1

ν2

(
b(iz) − γ(iz)

u

)

=
−
√

1 − ρ2 − iρ

ν
(3.154)

Again, from equations (3.149) and (3.152), we have

lim
u→∞

C̄(τ, iz, 0)

u
= lim

u→∞
1

u

[
κθ

ν2
[b(iz) − γ(iz)] τ − 2κθ

ν2
log

(
A−1(iz, 0)e−γ(iz)τ − 1

A−1(iz, 0)− 1

)]
(3.155)

= lim
u→∞

κθ

ν2

(
b(iz) − γ(iz)

u

)
τ

= κθ

(
−
√

1 − ρ2 − iρ

ν

)
τ (3.156)

The authors state that this analysis leads to the result in theorem 3.

We elaborate by observing that Re
[
e−iukΨC

t0, T
(u, α)

]
may be written as

eℜ
(

[−u2 + α(α + 1)] cos(ℑ) + u(2α+ 1) sin(ℑ)

[−u2 + α(α + 1)]2 + u2(2α+ 1)2

)
(3.157)

where

ℜ = −rτ + (α+ 1)Xt0 + Re [D(τ, iz, 0)]Vt0 + Re [C(τ, iz, 0)] (3.158)

ℑ = u(Xt0 − k) + ℑD(τ,iz,0)Vt0 + ℑC(τ,iz,0) (3.159)

From equations (3.154) and (3.156), we have

lim
u→∞

ℜ
u

= −ℜ∞ (3.160)

lim
u→∞

ℑ
u

= ℑ∞ (3.161)

with

[−u2 + α(α + 1)] cos(ℑ) + u(2α+ 1) sin(ℑ)

[−u2 + α(α + 1)]2 + u2(2α+ 1)2
∈ O

(
1

u2

)
(3.162)

where g1(x) ∈ O (g2(x)) as x→ ∞ if and only if there is a constant M and a value x0 such that |g1(x)| ≤
M |g2(x)| for x > x0.

From their result in equation (3.145), the authors observe that the asymptotic decay of the integrand is

at least exponential. Focussing on the term e−uℜ∞ , since ℜ∞ > 0 the following transformation is valid

u(x) = − ln(x)

ℜ∞

(3.163)

where x ∈ [0, 1]. In this range of x the pricing integrand is a function of

Re
[
e−iu(x)kΨC

t0, T
(u(x), α)

]

xℜ∞

(3.164)

which is undefined at x = 0. Making use of equation (3.145) (as suggested in Kahl and Jackel [2005]), we

see that the limit at this point is zero.
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Proposition 16. For the valuation of European Options with piecewise constant, time-dependent parameters

u(x) = − ln(x)

ℜ∞

(3.165)

where

ℜ∞ =

√
1 − ρ2

1

ν1
Vt0 +

n∑

m=1

κmθm

(√
1 − ρ2

m

νm

)
τm (3.166)

and x ∈ [0, 1] is an appropriate transformation from u ∈ [0,∞).

Proof:

Following exactly the same approach as that outlined above for the time-homogenous case, we write

Re
[
e−iukΨC

t0, T (u, α)
]

as

eℜ
(

[−u2 + α(α + 1)] cos(ℑ) + u(2α+ 1) sin(ℑ)

[−u2 + α(α + 1)]2 + u2(2α+ 1)2

)
(3.167)

where we now have

ℜ = −rτ + (α+ 1)Xt0 + Re [D1;n(τ1, iz,D2;n)]Vt0 +

n∑

m=1

Re [Cm;n(τm, iz,Dm+1;n)] (3.168)

ℑ = u(Xt0 − k) + Im [D1;n(τ1, iz,D2;n)]Vt0 +
n∑

m=1

Im [Cm;n(τm, iz,Dm+1;n)] (3.169)

with

Cm;n(τm, iz,Dm+1;n) = (rm − qm)τm + C̄m;n(τm, iz,Dm+1;n)

+ λm

[
eizµm− 1

2 z2σ2
m J̄m;n(τm, iz,Dm+1;n) −

(
eµm+ 1

2σ2
m

1 − ηmρJ
m

− 1

)
izτm − τm

]

Again, from equations (3.149) and (3.152), we have

lim
u→∞

Dm;n(τm, iz,Dm+1;n)

u
(3.170)

= lim
u→∞

1

u

(
bm(iz) − γm(iz)

ν2
m

)

 Ām;n(iz,Dm+1;n) − e−γm(iz)τm

Ām;n(iz,Dm+1;n) −
(

bm(iz)−γm(iz)
bm(iz)+γm(iz)

)
e−γm(iz)τm



 (3.171)

= lim
u→∞

1

ν2
m

(
bm(iz) − γm(iz)

u

)
(3.172)

=
−
√

1 − ρ2
m − iρm

νm
(3.173)

From equations (3.152) and (3.173), we have

lim
u→∞

A−1
m;n(iz,Dm+1;n) = lim

u→∞

bm(iz)−γm(iz)−ν2
mDm+1;n

u
bm(iz)+γm(iz)−ν2

mDm+1;n

u

(3.174)

=

−iρmνm − νm

√
1 − ρ2

m + ν2
m

[√
1−ρ2

m+1+iρm+1

νm+1

]

−iρmνm + νm

√
1 − ρ2

m + ν2
m

[√
1−ρ2

m+1+iρm+1

νm+1

]

:= A−1
m;n (3.175)
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From equations (3.149), (3.150), (3.151) and (3.175), we have

lim
u→∞

C̄m;n(τm, iz,Dm+1;n)

u
(3.176)

= lim
u→∞

1

u

[
κmθm

ν2
m

[bm(iz)− γm(iz)] τm − 2κmθm

ν2
m

ln

(
A−1

m;n(iz,Dm+1;n)e−γm(iz)τm − 1

A−1
m;n(iz,Dm+1;n) − 1

)]
(3.177)

= lim
u→∞

κmθm

ν2
m

(
bm(iz) − γm(iz)

u

)
τm (3.178)

= κmθm

(
−
√

1 − ρ2
m − iρm

νm

)
τm (3.179)

We can write

J̄m;n(τm, iz,Dm+1;n) =
τm

gm(iz)
− 2ηm

ν2
mgm(iz)hm(iz)

log

[
Am;n(iz,Dm+1;n)gm(iz) − hm(iz)e−γm(iz)τm

Am;n(iz,Dm+1;n)gm(iz) − hm(iz)

]

(3.180)

where

gm(iz) = 1 − izηmρ
J

m − ηm

(
bm(iz) − γm(iz)

ν2
m

)
(3.181)

hm(iz) = 1 − izηmρ
J

m − ηm

(
bm(iz) + γm(iz)

ν2
m

)
(3.182)

lim
u→∞

gm(iz)

u
= −iηmρ

J

m + ηm

(√
1 − ρ2

m + iρm

νm

)
(3.183)

:= gm (3.184)

lim
u→∞

hm(iz)

u
= −iηmρ

J

m + ηm

(
−
√

1 − ρ2
m + iρm

νm

)
(3.185)

:= hm (3.186)

and so from equations (3.149), (3.175), (3.184) and (3.186), we have

lim
u→∞

J̄m;n(τm, iz,Dm+1;n) = lim
u→∞

(
τm

ugm
− 2ηm

ν2
mu

2gmhm
log

[
Am;ngm

Am;ngm − hm

])

= 0 (3.187)

Therefore,

lim
u→∞

ℜ
u

= −ℜ∞ (3.188)

lim
u→∞

ℑ
u

= ℑ∞ (3.189)

where

ℜ∞ =

√
1 − ρ2

1

ν1
Vt0 +

n∑

m=1

κmθm

(√
1 − ρ2

m

νm

)
τm (3.190)

ℑ∞ = Xt0 +

n∑

m=1

(rm − qm)τm − k − ρ1

ν1
Vt0 −

n∑

m=1

κmθm

(
ρm

νm

)
τm −

n∑

m=1

λm

(
eµm+ 1

2σ2
m

1 − ηmρJ
m

− 1

)
τm

�
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For a set of constant parameters, the result in proposition 16 reduces to that which follows from theorem

3.

Proposition 17. For the valuation of % and $ type Forward Starting Options with piecewise constant, time-

dependent parameters

u(x) = − ln(x)

ℜ∞

(3.191)

where

ℜ∞ =

n∑

m=l+1

κmθm

(√
1 − ρ2

m

νm

)
τm (3.192)

and x ∈ [0, 1] is an appropriate transformation from u ∈ [0,∞).

Proof:

The distinction from the European case (for the same number of increments n) is that for % and $ type

Forward Starting Options with determination date tl, the conditional forward (%, $) characteristic func-

tions are functions of γm(I) and bm(I) where γm(I) = |bm(I)| and bm(I) = κm−ρmνmI for the increments

m = 1, ..., l and functions of γm(iz) and bm(iz) for the increments m = l + 1, ..., n. The conditional char-

acteristic function is a function of γm(iz) and bm(iz) for all increments m = 1, ..., n. Since bm(I) is not a

function of u, we see from equations (3.172) and (3.178) respectively that for m = 1, ..., l

lim
u→∞

D(%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n)

u
= 0 (3.193)

lim
u→∞

C̄ (%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n)

u
= 0 (3.194)

From equation (3.174) and equations (3.180)-(3.186) of proposition 16, we see that only Am;n(I, D(%,$)

l;m+1;n)

is a function of u and limu→∞ Am;n(I, D(%,$)

l;m+1;n) = 1. It follows that for m = 1, ..., l

lim
u→∞

J (%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n)

u
= 0 (3.195)

Hence, ℜ∞ consists of the contributions made from
∑n

m=l+1 C̄m;n(τm, iz,Dm+1;n) which we obtain from

equation (3.179). �

From the proofs of propositions 16 and 17, it is clear that the presence of jumps does not influence the

form of the transformations - this is pointed out in Lord and Kahl [2007].

3.5 Branch cutting in the presence of piecewise constant, time-dependent

parameters

We now return to the issue of branch cutting raised in subsection 3.1.1 and make use of the notation of

proposition 4 in section 2.4. Allowing for piecewise constant, time-dependent parameters in the Heston

model, introduces a series of complex logarithms into the conditional characteristic function

−
n∑

m=1

2κmθm

ν2
m

log [ψm;n(τm, iz,Dm+1;n)] (3.196)
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where

ψm;n(τm, iz,Dm+1;n) := ψm;n(τm, iz,Dm+1;n(τm+1, iz, ...Dn−1;n(τn−1, iz,Dn;n(τn, iz, 0))...))

(3.197)

for the increments m = 1, ..., n with Dn+1;n := 0, z := u− iζ and ζ := α+ 1.

For the forward (%, $) characteristic functions, we have the series

−
l∑

m=1

2κmθm

ν2
m

log
[
ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)]
−

n∑

m=l+1

2κmθm

ν2
m

log [ψm;n(τm, iz,Dm+1;n)] (3.198)

where

ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
= ψm;n(τm, iz,Dm+1;n) (3.199)

for the increments m = l + 1, ..., n and

ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
:= ψ(%,$)

l;m;n(τm, I, D
(%,$)

l;m+1;n(τm+1, I, ...D
(%,$)

l;l;n(τl, I, Dl+1;n(τl+1, iz,Dl+2;n))...))

(3.200)

for the increments m = 1, ..., l with I := I[z(%,$)=z$].

We aim to show that the range of the complex function ψ(%,$) does not include the negative real line for

ζ ∈ [0, 1]. We achieve this by first identifying a property that must be satisfied by the conditional charac-

teristic and forward (%, $) characteristic functions in this stochastic volatility setting. We then show that

if the function ψ lies on the negative real line then this property is violated. To illustrate the approach, we

consider the time-homogenous Heston model and the corresponding conditional characteristic function.

We can express D(τ, iz, 0) as an explicit function of ψ(τ, iz, 0),

D(τ, iz, 0) =
[b(iz) + γ(iz)]

ν2

(
1 − 1

ψ(τ, iz, 0)

)
(3.201)

Assuming that ψ(τ, iz, 0) = −ϕ ∈ R where ϕ > 0 we then have

Re [D(τ, iz, 0)] =
[Re [b(iz)] + Re [γ(iz)]]

ν2

(
1 − 1

−ϕ

)
(3.202)

If we can show that Re [D(τ, iz, 0)] ≤ 0 and Re [b(iz)] + Re [γ(iz)] > 0 then the assumption yields a

contradiction.

We consider the issue separately for the conditional characteristic function and the conditional forward

(%, $) characteristic functions. In both cases, however, we will make use of the following proposition

and the notation established in section 2.4.

Proposition 18. For z := u− iζ, ζ ∈ [0, 1] and increments m = 1, ..., n, we have

Re [γm(iz)] ≥ |Re [bm(iz)] | (3.203)

with an equality only for u = 0 and ζ = 0, 1. For u = 0 and ζ = 0, we have Re [bm(0)] > 0 while for u = 0 and

ζ = 1, the restriction ρm < κm

νm
gives us Re [bm(1)] > 0. Furthermore, for u = 0 and ζ ∈ [0, 1], we have

γm(ζ), bm(ζ) ∈ R (3.204)
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Proof: We have

bm(iz) = [κm − ρmνmζ] − iρmνmu (3.205)

From equation (3.26) of subsection 3.1.2, we can write

γm(iz) =

√[
Re [bm(iz)]

2 − ν2
m(ζ − 1)ζ + u2ν2

m(1 − ρ2
m)
]
− iu [ν2

m(2ζ − 1) + 2ρmνm(κm − ρmνmζ)]

=:
√

Re [γ2
m(iz)] + iIm [γ2

m(iz)] (3.206)

From theorem 1 of subsection 3.1.2, we have

Re [γm(iz)] =
1√
2

√√
Re [γ2

m(iz)]
2

+ Im [γ2
m(iz)]

2
+ Re [γ2

m(iz)] (3.207)

(3.208)

For ζ ∈ [0, 1], we have Re
[
γ2

m(iz)
]
> 0 and so

Re [γm(iz)] ≥
√

Re [γ2
m(iz)]

=

√
Re [bm(iz)]

2 − ν2
m(ζ − 1)ζ + u2ν2

m(1 − ρ2
m)

≥ |Re [bm(iz)] | (3.209)

For u = 0 and ζ = 0, 1, we have Re [γm(iz)] = |Re [bm(iz)] |. At u = 0, we have Re [bm(ζ)] = κm − ρmνmζ.

Specifically, Re [bm(0)] = κm > 0 and Re [bm(1)] = κm − ρmνm > 0 where the latter holds for ρm < κm

νm
.

We have Im [bm(iz)] = −ρmνmu and so bm(ζ) ∈ R and from equation (3.206), we have γm(ζ) ∈ R for

ζ ∈ [0, 1]. �

3.5.1 European Options

The semi-analytic formula for a European Option features the conditional characteristic function for X

as can be seen from equation (2.11) of subsection 2.1.1. We prove that ψm;n(τm, iz,Dm+1;n) cannot lie on

the negative real line for ζ ∈ [0, 1] (subject to parameter restrictions for ζ = 1). To achieve this, we focus

on Dm;n(τm, iz,Dm+1;n) for m = 1, ..., n, identifying properties of this function in propositions 19 and

20 which allow us to then prove the final result in proposition 21.

Proposition 19. For the increments m = 1, ..., n, we have

Re
[
Dm;n

(
τm, iz,Dm+1;n

)]
≤ Dm;n

(
τm, ζ,Dm+1;n

)
(3.210)

Proof: Jensen’s inequality gives us

∣∣EQ
t0

[exp(izXtn)|Xt0 , Vt0 ]
∣∣ ≤ E

Q
t0

[∣∣ exp(izXtn)
∣∣|Xt0 , Vt0

]

= E
Q
t0

[exp(ζXtn)|Xt0 , Vt0 ] (3.211)
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Making use of proposition 4 in section 2.4, for l = 0, we have

∣∣EQ
t0

[exp(izXtn)|Xt0 , Vt0 ]
∣∣

= exp

[
ζXt0 + Re [D1;n(τ1, iz,D2;n)]Vt0 + Re

[
n∑

m=1

Cm;n(τm, iz,Dm+1;n)

]]

(3.212)

E
Q
t0

[exp(ζXtn)|Xt0 , Vt0 ]

= exp

[
ζXt0 +D1;n(τ1, ζ,D2;n)Vt0 + Re

[
n∑

m=1

Cm;n(τm, ζ,Dm+1;n)

]]

(3.213)

within the affine framework where we know D1;n(τ1, ζ,D2;n) ∈ R from equation (3.13) and so

0 ≤ [D1;n(τ1, ζ,D2;n) − Re [D1;n(τ1, iz,D2;n)]]Vt0

+

[
Re

[
n∑

m=1

Cm;n(τm, ζ,Dm+1;n)

]
− Re

[
n∑

m=1

Cm;n(τm, iz,Dm+1;n)

]]

(3.214)

Equation (3.214) must hold for any positive Vt0 and so we must have

Re [D1;n(τ1, iz,D2;n)] ≤ D1;n(τ1, ζ,D2;n) (3.215)

Given n, D2;n(τ2, iz,D3;n) has the same form (regarding the terminal conditions specified by the argu-

ments iz andD3;n) asD1;n−1(τ1, iz,D2;n−1),D3;n(τ3, iz,D4;n) has the same form asD1;n−2(τ1, iz,D2;n−2)

and so on. From this, we obtain the result, for m = 1, ..., n. �

Proposition 20. For the increments m = 1, ..., n, we have

Dm;n(τm, ζ,Dm+1;n) < 0 for ζ ∈ (0, 1) (3.216)

and

Dm;n(τm, ζ,Dm+1;n) = 0 for ζ = 0, 1 (3.217)

Proof: From equation (2.78) of proposition 2 in section 2.2 and for u = 0, we can write

Dm;n(τm, ζ,Dm+1;n) =

1
ν2

m
[bm(ζ) − γm(ζ)] [bm(ζ) + γm(ζ)]

(
1 − e−γm(ζ)τm

)

[bm(ζ) + γm(ζ) − ν2
mDm+1;n]

(
1 − e−γm(ζ)τm

)
+ 2γm(ζ)e−γm(ζ)τm

−
(
[bm(ζ) − γm(ζ)] − [bm(ζ) + γm(ζ)] e−γm(ζ)τm

)
Dm+1;n

[bm(ζ) + γm(ζ) − ν2
mDm+1;n]

(
1 − e−γm(ζ)τm

)
+ 2γm(ζ)e−γm(ζ)τm

(3.218)

From proposition 18 we have bm(ζ), γm(ζ) ∈ R, bm(ζ) − γm(ζ) < 0 and bm(ζ) + γm(ζ) > 0 for u = 0 and

ζ ∈ (0, 1). For m = n and Dn+1;n := 0, we have

Dn;n(τn, ζ, 0) =

1
ν2

n
[bn(ζ) − γn(ζ)] [bn(ζ) + γn(ζ)]

(
1 − e−γn(ζ)τn

)

[bn(ζ) + γn(ζ)]
(
1 − e−γn(ζ)τn

)
+ 2γn(ζ)e−γn(ζ)τn

< 0 (3.219)
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For 1 ≤ m < n, the above mentioned inequalities (which follow from proposition 18) and equation

(3.219) may be used to induct the final result.

From proposition 18 we have γm(ζ) = |bm(ζ)| for u = 0 and ζ = 0, 1. Hence, equation (3.218) reduces to

Dm;n(τm, ζ,Dm+1;n) =
Dm+1;nbm(ζ)e−bm(ζ)τm

bm(ζ) − 1
2ν

2
m

(
1 − e−bm(ζ)τm

)
Dm+1;n

(3.220)

lim
bm(ζ)→0

Dm;n(τm, ζ,Dm+1;n) =
Dm+1;n

1 − 1
2ν

2
mDm+1;nτm

(3.221)

For m = n and Dn+1;n := 0, we have Dn;n(τn, ζ, 0) = 0 where, again, an inductive argument yields the

result for 1 ≤ m < n. �

Proposition 21. For the increments m = 1, ..., n and ζ ∈ [0, 1), ψm;n(τm, iz,Dm;n) cannot lie on the branch

cut (−∞, 0]. Subject to the parameter restriction ρm < κm

νm
, the same is true for ζ = 1.

Proof: From the proof of proposition 9 in subsection 3.2.1, we know that for ζ ∈ (ζmin, ζmax) and all u

ψm;n(τm, iz,Dm+1;n) 6= 0 (3.222)

Asψm;n(τm, iz,Dm+1;n) hits the origin, the conditional characteristic function explodes to infinity. Hence,

we can ignore the origin when considering the range of the function. Regarding the negative real line,

we can express Dm;n(τm, iz,Dm+1;n) in a far more enlightening form

Dm;n(τm, iz,Dm+1;n) =
Dm+1;n

ψm;n(τ, iz,Dm+1;n)
+

[bm(iz) + γm(iz)]

ν2
m

(
1 − 1

ψm;n(τ, iz,Dm+1;n)

)

From propositions 19 and 20, we have

Re [Dm;n(τm, iz,Dm+1;n)] ≤ 0 (3.223)

for m = 1, ..., n and ζ ∈ [0, 1].

We now obtain the result by means of a contradiction. Assume ψm;n

(
τm, iz,Dm+1;n

)
= −ϕ ∈ R and

ϕ > 0. This gives us

Re [Dm;n(τm, iz,Dm+1;n)] =
Re [Dm+1;n]

−ϕ +
[Re [bm(iz)] + Re [γm(iz)]]

ν2
m

(
1 − 1

−ϕ

)
(3.224)

From equation (3.223), we see that the RHS of equation (3.224) must be non-positive. From proposition

18, we have Re [bm(iz)] + Re [γm(iz)] > 0 (where the parameter restriction ρm < κm

νm
applies to the case

ζ = 1) and since the sign of Re
[
Dm+1;n

]
is the same as that of Re [Dm;n(τm, iz,Dm+1;n)], the assumption

ϕ > 0 implies that the RHS of equation (3.224) is always positive. �

The available literature only considers this issue of branch cutting for the time-homogenous case where

n = 1. For this case, proposition 21 confirms the result proved in Lord and Kahl [2008] (granted only

for ζ ∈ [0, 1)). However, the major result of Fahrner [2007] - proving that branch cutting is not an issue

for ζ = 1
2 in the ’displaced diffusion’ extension of the Heston model - is confirmed without having to

introduce any parameter restrictions (we elaborate on this in subsection 3.5.3). For n > 1, proposition

21 tells us that for the considered range of ζ (and the specified parameter restrictions) branch cutting is
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not an issue and hence, discontinuities will not arise when valuing European Options with piecewise

constant, time-dependent parameters in terms of the functions presented in proposition 2 of section 2.2.

However, we claim that the range of the function ψm;n(τm, iz,Dm+1;n) does not include (−∞, 0] for all

ζ ∈ (ζmin, ζmax) where ζmin < 0 and ζmax > 1. Unfortunately, we must leave this claim as a conjecture.

3.5.2 Forward Starting Options

The semi-analytic formulae for % and $ type Forward Starting Options feature the corresponding con-

ditional forward (%, $) characteristic functions as can be seen from equations (2.49) and (2.51) of propo-

sition 1 in subsection 2.1.2. We prove that the function ψ(%,$)
m;n(τm, iz,D

(%,$)

m+1;n) cannot lie on the negative

real line for ζ ∈ [0, 1] (subject to parameter restrictions for ζ = 1). For the period τ = (tn − tl) + (tl − t0)

split into n increments with the determination date tl and 1 ≤ l < n, the form of the conditional forward

(%, $) characteristic functions differ from the form of the conditional characteristic function for the same

period (with n increments) only because the argument iz is replaced with I := I[z(%,$)=z$], for the incre-

ments 1, ..., l. The form of the respective functions are exactly the same for the increments l + 1, ..., n.

Hence, for increments m > l, the result follows from proposition 21. To prove the result for increments

m ≤ l and ζ ∈ [0, 1] (subject to parameter restrictions for ζ = 1), we follow the same approach as

that taken in subsection 3.5.1. Focussing on the function D(%,$)
m;n(τm, iz,Dm+1;n), we determine two of its

properties in propositions 22 and 23 which then allow us to directly prove the final result in proposition

24.

Proposition 22. For the increments m = 1, ..., n, we have

Re
[
D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)]
≤ D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
(3.225)

where

D(%,$)

l;m+1;n

∣∣
u=0

= D(%,$)

l;m+1;n(τm+1, I, D
(%,$)

l;m+2;n(τm+2, I, ...D
(%,$)

l;l;n(τl, I, Dl+1;n(τl+1, ζ,Dl+2;n))...))

(3.226)

Proof: For m > l, we have

D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
= Dm;n(τm, iz,Dm+1;n) (3.227)

and the result follows from proposition 19.

For m ≤ l, we consider the forward (%, $) characteristic function EQ
t0

[
eiz(%,$)Xtl

+izXtn |Xt0 , Vt0

]
for n ≥ 2

and 1 ≤ l < n. Jensen’s inequality gives us

∣∣∣EQ
t0

[
exp(iz(%,$)Xtl

)EQ
tl

[exp(izXtn)|Xtl
, Vtl

] |Xt0 , Vt0

] ∣∣∣

≤ E
Q
t0

[∣∣ exp(iz(%,$)Xtl
)
∣∣EQ

tl

[∣∣ exp(izXtn)
∣∣|Xtl

, Vtl

]
|Xt0 , Vt0

]

= E
Q
t0

[
exp(Re [iz(%,$)]Xtl

)EQ
tl

[exp (ζXtn) |Xtl
, Vtl

] |Xt0 , Vt0

]
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Making use of proposition 4 in section 2.4, for l > 0, we have

∣∣∣EQ
t0

[
exp(iz(%,$)Xtl

)EQ
tl

[exp(izXtn)|Xtl
, Vtl

] |Xt0 , Vt0

] ∣∣∣

= exp

[
IXt0 + Re

[
D(%,$)

l;1;n

(
τ1, I, D

(%,$)

l;2;n

)]
Vt0 +

l∑

m=1

Re
[
C (%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)]]

× exp

[
n∑

m=l+1

Re
[
Cm;n

(
τm, iz,Dm+1;n

)]
]

(3.228)

E
Q
t0

[
exp (Re [iz(%,$)]Xtl

) E
Q
tl

[exp (ζXtn) |Xtl
, Vtl

] |Xt0 , Vt0

]

= exp

[
IXt0 +D(%,$)

l;1;n

(
τ1, I, D

(%,$)

l;2;n

∣∣
u=0

)
Vt0 +

l∑

m=1

Re
[
C (%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)]]

× exp

[
n∑

m=l+1

Re
[
Cm;n

(
τm, ζ,Dm+1;n

)]
]

(3.229)

within the affine framework where we know D(%,$)

l;1;n

(
τ1, I, D

(%,$)

l;2;n

∣∣
u=0

)
∈ R from equation (3.13) and for

z(%,$) = z%, we have I = 0 while for z(%,$) = z$, we have I = 1. This leads to

Re
[
D(%,$)

l;1;n

(
τ1, I, D

(%,$)

l;2;n

)]
≤ D(%,$)

l;1;n

(
τ1, I, D

(%,$)

l;2;n

∣∣
u=0

)
(3.230)

Given n and l, D(%,$)

l;2;n(τ2, I, D
(%,$)

l;3;n) has the same form (regarding the terminal conditions specified by the

arguments I and D(%,$)

l;3;n) as D(%,$)

l−1;1;n−1(τ1, I, D
(%,$)

l−1;2;n−1), D
(%,$)

l;3;n(τ3, I, D
(%,$)

4;n) has the same form as

D(%,$)

l−2;1;n−2(τ1, I, D
(%,$)

l−2;2;n−2) and so on. From this, we obtain the result. �

Proposition 23. For the increments m = 1, ..., n, we have

D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
< 0 for ζ ∈ (0, 1) (3.231)

and

D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
= 0 for ζ = 0, 1 (3.232)

Proof: For m > l, we have

D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
= Dm;n(τm, ζ,Dm+1;n) (3.233)

and the result follows from proposition 20.

For m ≤ l, we have γm(I) = |bm(I)| from proposition 18. For z(%,$) = z%, we have I = 0 while for z(%,$) = z$,

we have I = 1. From equation (2.78) of proposition 2 in section 2.2 and for γm(I) = |bm(I)|, we have

D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
=

D(%,$)

l;m+1;n|u=0bm(I)e−bm(I)τm

bm(I) − 1
2ν

2
m

(
1 − e−bm(I)τm

)
D(%,$)

l;m+1;n|u=0

(3.234)

lim
bm(I)→0

D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

∣∣
u=0

)
=

D(%,$)

l;m+1;n|u=0

1 − 1
2ν

2
mD

(%,$)

l;m+1;n|u=0τm
(3.235)

64



CHAPTER 3. ISSUES REGARDING THE SEMI-ANALYTIC PRICING FORMULAE

To clarify our notation

D(%,$)

l;m+1;n

∣∣
u=0

= D(%,$)

l;m+1;n(τm+1, I, D
(%,$)

l;m+2;n(τm+2, I, ...D
(%,$)

l;l;n(τl, I, Dl+1;n(τl+1, ζ,Dl+2;n))...))

(3.236)

For m = l, ζ ∈ (0, 1) and making use of equations (3.234) and (3.235), we have

D(%,$)

l;l;n

(
τl, I, Dl+1;n

∣∣
u=0

)
< 0

since D(%,$)

l;l+1;n|u=0 = Dl+1;n(τl+1, ζ,Dl+2;n) < 0 from equation (3.216) of proposition 20.

Similarly, for m = l and ζ = 0, 1, we have

D(%,$)

l;l;n

(
τl, I, Dl+1;n

∣∣
u=0

)
= 0

since D(%,$)

l;l+1;n|u=0 = Dl+1;n(τl+1, ζ,Dl+2;n) = 0 from equation (3.217) of proposition 20.

For m < l, an inductive argument yields the result. �

Proposition 24. For the increments m = 1, ..., n and ζ ∈ [0, 1), ψ(%,$)

l;m;n(τm, I, D
(%,$)

l;m;n) cannot lie on the branch

cut (−∞, 0]. Subject to the parameter restriction ρm < κm

νm
for m > l, the same is true for ζ = 1.

Proof: For m > l, we have

ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
= ψm;n(τm, iz,Dm+1;n) (3.237)

and the result follows from proposition 21.

From equation (2.81) of proposition 2 in section 2.2 we have the following for the increments m ≤ l. For

bm(I) > 0

ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
= 1 −

1
2ν

2
mD

(%,$)

l;m+1;n

[
1 − e−bm(I)τm

]

bm(I)
(3.238)

For bm(I) < 0

ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
=

(
1 −

1
2ν

2
mD

(%,$)

l;m+1;n

[
1 − e−bm(I)τm

]

bm(I)

)
ebm(I)τm

For bm(I) = 0

ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)
= 1 − 1

2
ν2

mD
(%,$)

l;m+1;nτm (3.239)

Since bm(I) = κm − ρmνmI ∈ R, Re
[
ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)]
is a function only of Re

[
D(%,$)

l;m+1;n

]
and not

Im
[
D(%,$)

l;m+1;n

]
. From propositions 22 and 23, we have

Re
[
D(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)]
≤ 0 (3.240)

for m = 1, ..., n and so

Re
[
ψ(%,$)

l;m;n

(
τm, I, D

(%,$)

l;m+1;n

)]
> 0 (3.241)

�
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3.5.3 An additional parameter

Regarding the Heston model, we can introduce the parameter σ̄ to the underlying process such that

dSt = rStdt+ σ̄St

√
VtdW

X

t (3.242)

without complicating the analytic tractability of the model. For X = lnS, Itô’s formula yields the dy-

namics

dXt =

(
r − q − 1

2
σ̄2Vt

)
dt+ σ̄

√
VtdW

X

t

dVt = κ(θ − Vt)dt+ ν
√
VtdW

V

t

dWX

t dW
V

t = ρdt

Solving for the analytic characteristic function, one need only replace the functions b(iz) and c(iz) in

equations (2.100) and (2.101) of the proof of proposition 2 in section 2.2, respectively with

b(iz) = κ− ρνσ̄iz (3.243)

c(iz) =
1

2
σ̄2iz(iz − 1) (3.244)

and so

γ(iz) =

√
(κ− ρνσ̄iz)

2 − ν2σ̄2iz(iz − 1) (3.245)

Focussing on the functions b(iz) and γ(iz), we see that the results derived in subsections 3.5.1 and 3.5.2

accommodate for this extension of the Heston model where σ̄ > 0 as we then have νσ̄ > 0 in the

functions b(iz) and γ(iz).

In Fahrner [2007], the issue of branch cutting is considered regarding the dynamics

dSt = σ [βSt + (1 − β)L]
√
VtdW

X

t

dVt = κ(θ − Vt)dt+ ν
√
VtdW

V

t

dWX

t dW
V

t = ρdt

where 0 < β ≤ 1, σ > 0 and L > 0. For X̄ = βS + (1 − β)L (as considered in Andersen and Brotherton-

Ratcliffe [2005]) and X = ln X̄ , Itô’s formula yields the dynamics

dXt = −1

2
σ2β2Vtdt+ σβ

√
VtdW

X

t (3.246)

dVt = κ (θ − Vt) dt+ ν
√
VtdW

V

t (3.247)

dWX

t dW
V

t = ρdt (3.248)

Since σ > 0 and 0 < β ≤ 1 we can treat this specification as that arising from equation (3.242) where

σ̄ > 0 as we have

b(iz) = κ− ρνσβiz (3.249)

γ(iz) =

√
(κ− ρνσβiz)

2 − ν2σ2β2iz(iz − 1) (3.250)
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However, we restrict the parameter β to a constant when allowing for piecewise constant, time-dependent

parameters as specifying X̄ = βS + (1 − β)L complicates the evaluation of a European payoff. Specifi-

cally, we have the payoff

[ST −K]
+

=
1

β

[
X̄T − K̄

]+
(3.251)

where K̄ = βK + (1 − β)L and so it follows that within the valuation formulae for European Options,

the parameter β is not restricted to feature only within the characteristic function.

For time-homogenous parameters, Fahrner [2007] specifically considers a proof for the case ζ = 1
2 as-

suming that Re [b(iz)] > 0 and states that, in this case, Im [γ(iz)] and Re [b(iz)] Im [b(iz)] have the same

sign. However, from this we know that Im [γ(iz)] and Im [b(iz)] have the same sign (and specifying

Re [γ(iz)] > 0)7, we then have

Re [b(iz)] Re [γ(iz)] + Im [b(iz)] Im [γ(iz)] > 0 (3.252)

From Lord and Kahl [2008] Lemma 2, equation (A.17) and Theorem 2, we know that if the form of the

inequality in equation (3.252) is satisfied then ψ(τ, iz, 0) cannot lie on the branch cut (−∞, 0].8 Hence,

for the assumption made, the result may be inferred from the work of Lord and Kahl [2008].

Furthermore, our method of proof accommodates for the specified dynamics and ζ = 1
2 within the

context of both European and Forward Starting Options with piecewise constant, time-dependent pa-

rameters, without the need to introduce any parameter restrictions.

3.5.4 A more general problem

The jump component of the conditional characteristic function for the SVJJ model also features a complex

logarithm. Working from equation (2.83) of proposition 2 in section 2.2, we can express this as

log

(
ϑ(iz, izv) + ϑ̄(iz)e−γ(iz)τ

ϑ(iz, izv) + ϑ̄(iz)

)
= log

(
Ã−1(iz, izv)e

−γ(iz)τ − 1

Ã−1(iz, izv) − 1

)
(3.253)

where

Ã(iz, izv) = A(iz, izv)




1 − izηρJ − η

(
b(iz)−γ(iz)

ν2

)

1 − izηρJ − η
(

b(iz)+γ(iz)
ν2

)



 (3.254)

and so for η > 0, we have a more general version of the complex logarithm that appears within the

diffusion component of the conditional characteristic function. However, again it would seem that the

function, whose logarithm we are considering in equation (3.253), cannot lie on the branch cut (−∞, 0].

Having pointed out articles, in subsection 3.1.1, which prove that the branch cut is not crossed for the

diffusion component of the SVJJ model for ζ ∈ (ζmin, ζmax) and presented a proof, in this section, allow-

ing for piecewise constant parameters where ζ ∈ [0, 1], it would seem that there is an underlying reason

that has, as of yet, not been identified which ensures that, even for the jump component, branch cutting

is not an issue.
7This choice represents the principal value for the complex square root.
8This appears in an earlier version of the result in Lord and Kahl [2007] Lemma 3, equation (A.19) and Theorem 3.
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Chapter 4

Obtaining forward parameters from the

semi-analytic pricing formulae

4.1 The SABR model and Forward Starting Options

From Hagan et al. [2002], we assume the following dynamics for the forward value F and volatility α

dFt = αtF
β
t dW

F
t

dαt = ναtdW
α
t (4.1)

dWF
t dW

α
t = ρdt

where Ft0 is the current forward price.

Had we first considered the dynamics of α under the real world measure, we would have obtained

dαt = [p(αt) − q(αt)λ
α
t (αt)] dt+ q(αt)dW

α
t (4.2)

under the forward λα
t (αt) measure. Hence, in the SABR model

λα
t (αt) :=

p(αt)

q(αt)
(4.3)

where q(αt) = ναt but p(αt) is left unspecified.

In Hagan et al. [2002], an approximate solution is derived for the value of a European Option in terms
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of a skew in Black’s model1 where the implied volatility is given by

σ
t0 ,T ,K(Ft0 , αt0 , β, ρ, ν) =

αt0

(
1 +

[
(1−β)2

24

α2
t0

(Ft0K)1−β + 1
4

ρβναt0

(Ft0K)(1−β)/2 + 2−3ρ2

24 ν2
]
τ

)

(Ft0K)(1−β)/2
[
1 + (1−β)2

24 ln2
(

Ft0

K

)
+ (1−β)4

1920 ln4
(

Ft0

K

)]
(

y

ξ(y)

)
(4.4)

with

y =
ν

αt0

(Ft0K)(1−β)/2 ln

(
Ft0

K

)

ξ(y) = ln

(√
1 − 2ρy + y2 + y − ρ

1 − ρ

)

where l’Hôpital’s rule is used to deal with the indeterminant 0
0 form that arises in equation (4.4) for

K = Ft0 .

4.1.1 Forward Starting % Call Options

To obtain the time t0 value of the Forward Starting % payoff
[

ST2

ST1
−K

]+
, we first obtain the time T1

value. Assuming the specified dynamics, we have the approximate time T1 value,

Π%C

T1 ,T1 ,T2
= BT1,T2

[
FT1

ST1

N(d+) −KN(d−)

]
(4.5)

d± =
ln
(

FT1

ST1K

)
± 1

2σ
2
2τ2

σ2
√
τ2

with τ2 = T2 − T1, σ2 = σ
T1 ,T2 ,K

(
FT1

ST1
, αT1 , β2, ρ2, ν2

)
where the constant parameters β2, ρ2 and ν2 are

valid for the period (T1, T2]. Assuming a constant dividend yield q2 for the period (T1, T2], arbitrage

arguments yield
FT1

ST1
= e−q2τ2

BT1,T2
. Regarding the state variables F and α, it is clear that the value of the

option at T1 is only a function of αT1 and so the time t0 expectation (under the forward-T1 measure) of

Π%C
T1 ,T1 ,T2

takes into account only one source of randomness. Furthermore, for τ1 = T1 − t0 and ν1 the

constant parameter that applies over the period (t0, T1], we have

lnαT1 ∼ N

(
lnαt0 −

ν2
1

2
τ1, ν

2
1τ1

)
(4.6)

This follows from equation (4.1).

1Referring to Hull [2002], Black’s Model gives us the value at t0 for a European Call Option on the underlying S, maturing at

T with strike K

ΠC
t0 ,T = Bt0,T [Ft0N(d1) −KN(d2)]

d± =
ln

“

Ft0
K

”

± 1
2
σ2τ

σ
√
τ

where F is the forward price of S for a contract maturing at T , Bt0,T is the price at t0 of a Zero Coupon Bond paying 1 at T , σ

is the volatility of F and we explicitly assume that ST is lognormally distributed where σ
√
τ is the standard deviation of lnST ,

E
QT
t0

[ST ] = Ft0 and QT refers to the forward-T measure where Bt0,T is our numeraire.
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From the approximate value of the option at time T1, in equation (4.5), and the fact that the marginal

distribution of αT1 is lognormal, we have the approximate value at time t0

Π% C

t0 ,T1 ,T2
= Bt0,T1E

QT1

t0

[
Π% C

T1 ,T1 ,T2
|αt0

]

= Bt0,T1

∫ ∞

0

[
e−q2τ2N(d+) −BT1,T2KN(d−)

]
f(αT1 |αt0 )dαT1 (4.7)

where f(αT1 |αt0) is a lognormal density function with parameters µ = lnαt0 − ν2
1

2 τ1 and σ = ν2
1τ1.

Equation (4.7) must be evaluated numerically. The analytic form of the integrand simplifies this exer-

cise as one must, effectively, carry out a one dimensional integration. A simple Gaussian or Adaptive

Quadrature rule may be used to determine Π% C
t0 ,T1 ,T2

. It may be useful to specify an upper bound for the

integration variable in terms of the standard deviation σ = ν2
1τ1. Alternatively, one could make use of

a one factor finite difference method, such as the Crank-Nicholson scheme, to determine Π% C
t0 ,T1 ,T2

. The

problem can be conveniently evaluated using this latter approach as the terminal condition Π% C
T1 ,T1 ,T2

is a

smooth function of αT1 with limαT1→0 σT1 ,T2 ,K = 0 and limαT1→∞ σT1 ,T2 ,K = ∞.

4.1.2 Forward Starting $ Call Options

For the $ type payoff [ST2 −KST1 ]
+, we have the approximate value at T1,

Π$C

T1 ,T1 ,T2
= BT1,T2 [FT1N(d+) − ST1KN(d−)]

= ST1

[
e−q2τ2N(d+) −BT1,T2KN(d−)

]
(4.8)

and d± is as specified for a % type option. Again, referring to Kruse and Nogel [2005], the valuation of

$ type options may be simplified by shifting to the stock price measure with numeraire ST1 (where we

assume that dividends are re-invested into the asset). The time t0 expectation (under the ST1 measure)

of Π$C
T1 ,T1 ,T2

would then take into account only one source of randomness as the numeraire would remove

ST1 from Π$C
T1 ,T1 ,T2

. This approach was specifically considered assuming the Heston dynamics. Unfortu-

nately, we cannot make use of this approach when assuming the SABR dynamics.

Firstly, there is a non-zero probability of the underlying process hitting zero. We do not prove this claim2

but simply motivate it by observing that the SABR model reduces to the form of the CEV (Constant Elas-

ticity of Variance) model3 when ν = 0. Cox [1996] presents the non-zero probability of the underlying

hitting zero, assuming the CEV dynamics. This implies that use of ST1 as a numeraire is not technically

valid. However, if one insists on making use of the underlying as a numeraire when the process can

become zero, Boyle and Tian [1999] describe an approach to circumvent the problem. As it stands, when

working with the CEV process, an absorbing barrier is specified at zero. Replacing this with a closely

related but strictly positive process would allow the underlying to be used as a numeraire. A minimum

value ε > 0 is specified and if this level is reached, one would effectively liquidate the position in the

underlying and invest the proceeds in a money market account. For more details, we refer the reader to

the original article.

Having addressed the validity of a shift in measure, one must then consider the effect of this shift on

2A proof is provided in Andersen and Piterbarg [2007] proposition 5.1

3For the underlying S, the CEV dynamics are dS = rSdt+ σS
β
2 dW where 0 ≤ β ≤ 2
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the dynamics of the model. Specifically, αT1 is no longer lognormally distributed and so tractability of

the density f(αT1 |αt0 ) would appear to have been lost, under the stock price measure. Hence, we are not

able to provide an approximate and efficient pricing methodology for a $ type option within the SABR

model.

4.1.3 The SABR model and forward parameters

Equation (4.4) may be used to calibrate the SABR model directly to the implied volatilities of European

Options for a range of strikes and a specific maturity. This yields maturity specific, constant parameter

sets. As stated in Hagan et al. [2002], the derived approximation is not intended to provide an adequate

fit to market prices when a single, constant parameter set is obtained from a calibration over a range of

both strike and maturity. Fitting the implied volatility surface requires use of the dynamic SABR model

Hagan et al. [2002] Appendix B with the specification

dFt = γtαtF
βt

t dWF
t

dαt = νtαtdW
α
t (4.9)

dWF
t dW

α
t = ρtdt

where the parameters γ, β, ν and ρ are all time-dependent. In a manner similar to that within the non-

dynamic model, an approximate solution for European Options is derived. The result, however, is not

easily interpreted.

In principle, an approximate formula for European Options incorporating time-dependence allows us to

calibrate the model to specific maturities, building up a term structure for the respective parameters and

so consistently price European and Forward Starting Options, for example. Elaborating on this point,

we start off at time t0 and assume the time-dependent parameters are all piecewise constant. For the first

maturity T1, the model is calibrated to the market prices of European Options with maturity T1, ranging

in strike. This yields a constant (t0, T1] parameter set i.e. we have
(
γ(t0,T1], β(t0,T1], ν(t0,T1], ρ(t0,T1]

)
.4 For

the second maturity T2, we use the already calibrated (t0, T1] parameter set as an input into the calibra-

tion procedure to determine the forward (t0;T1, T2] parameter set that provides the most appropriate fit

to the market prices of European Options with maturity T2. For t0 < t ≤ T2, this yields

(γt, βt, νt, ρt) :=
(
γ(t0,T1], β(t0,T1], ν(t0,T1], ρ(t0,T1]

)
I[t0<t≤T1]

+
(
γ(t0;T1,T2], β(t0;T1,T2], ν(t0;T1,T2], ρ(t0;T1,T2]

)
I[T1<t≤T2] (4.10)

allowing us to price % type Forward Starting Options (as presented in equation (4.7) for the determi-

nation date T1 and maturity date T2) with parameters that will return the calibrated model prices of

European options of maturities T1 and T2. Hence, the Forward Starting prices specified by the model are

consistent with the prices specified by the model for T1 and T2 European Options. Without the dynamic

model, we would be left calibrating the SABR model to the maturities T1 and T2 separately, resulting in

constant (t0, T1] and (t0, T2] parameter sets, respectively. Which of these parameter sets would we then

4In fact, if we can assume that γ(t0,T1] = 1 then the remaining (t0, T1] parameters can be calibrated directly from the non-

dynamic SABR approximation.
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use to price the specified Forward Starting Option in equation (4.7)? Using the (t0, T2] parameter set, for

example, would yield Forward Starting prices that are inconsistent with the model prices of T1 European

Options. For a consistent price, we would have to simultaneously calibrate the model to both maturities

and so obtain a single, constant parameter set. However, as already stated, the model’s resulting fit to

T1 and T2 European market prices may not be adequate.

4.2 A digression: forward parameters for a very special case

Proposition 25. For the affine square root process

dVt = κ(θt − Vt)dt+ νt

√
VtdW

V

t

where we assume κ is constant while θt and νt are piecewise constant and

θt

ν2
t

= k̄ (4.11)

for some constant k̄, we have the forward parameter

ν2 =

√
ν2 (eκτ − 1) − ν2

1 (eκτ1 − 1)

eκτ − eκτ1
(4.12)

for the periods τ = T2− t0, τ1 = T1− t0 and τ2 = T2−T1 where ν1 is the constant parameter that applies over the

period (t0, T1], ν is the constant parameter that applies over the period (t0, T2] and ν2 is the constant parameter

that applies over the forward period (T1, T2].

Proof: To obtain formulae for forward parameters, we attempt to analytically satisfy

E
Q
t0

[
eizvVT2 |Vt0

]
= E

Q
t0

[
E

Q
T1

[
eizvVT2 |VT1

]
|Vt0

]
(4.13)

Working from equation (4.13), we have

E
Q
t0

[
eizvVT2 |Vt0

]
= eD(τ,0,izv)Vt0+C(τ,0,izv) (4.14)

E
Q
t0

[
E

Q
T1

[
eizvVT2 |VT1

]
|Vt0

]
= eD1;2(τ1,0,D2;2(τ2,0,izv))Vt0+C1;2(τ1,0,D2;2(τ2,0,izv))+C2;2(τ2,0,izv) (4.15)

where from section 2.2, we have

D(τ, 0, izv) =
κizv

1
2ν

2izv(1 − eκτ ) + κeκτ
(4.16)

C(τ, 0, izv) = −2κθ

ν2
log

(
1 − izvν

2 (1 − e−κτ )

2κ

)
(4.17)

The forward parameters ν2 and θ2 must satisfy

D(τ, 0, izv) = D1;2(τ1, 0, D2;2(τ2, 0, izv)) (4.18)

C(τ, 0, izv) = C1;2(τ1, 0, D2;2(τ2, 0, izv)) + C2;2(τ2, 0, izv) (4.19)
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Working from equation (4.18), we make use of equation (4.16) and the assumption that κ is constant

D1;2(τ1, 0, D2;2(τ2, 0, izv)) =
κ
[

κizv
1
2ν2

2 izv(1−eκτ2 )+κeκτ2

]

1
2ν

2
1

[
κizv

1
2 ν2

2 izv(1−eκτ2 )+κeκτ2

]
(1 − eκτ1) + κeκτ1

=
κizv

1
2ν

2
1 izv(1 − eκτ1) + 1

2ν
2
2 izv(eκτ1 − eκτ ) + κeκτ

=
κizv

1
2ν

2
2 izv(1 − eκτ ) + κeκτ

(4.20)

= D(τ, 0, izv)

where equation (4.20) holds for ν2 defined as that in equation (4.12). Working from equation (4.19), we

make use of equation (4.17) and the assumptions that κ and the ratio θt

ν2
t

are constant

C1;2(τ1, 0, D2;2(τ2, 0, izv)) + C2;2(τ2, 0, izv)

= −2κk̄ log

(
1 −

[
κizv

1
2 izvν

2
2 (1 − eκτ2) + κeκτ2

]
1

2κ
ν2
1

(
1 − e−κτ1

))
− 2κk̄ log

(
1 − 1

2κ
izvν

2
2

(
1 − e−κτ2

))

= −2κk̄ log

(
1 −

[
izve

−κτ2

1 − 1
2κ izvν

2
2 (1 − e−κτ2)

]
1

2κ
ν2
1

(
1 − e−κτ1

))
− 2κk̄ log

(
1 − 1

2κ
izvν

2
2

(
1 − e−κτ2

))

= −2κk̄ log

(
1 − 1

2κ
izv

[
ν2
2 (1 − e−κτ2) + e−κτ2ν2

1

(
1 − e−κτ1

)])

= −2κk̄ log

(
1 − 1

2κ
izve

−κτ
[
ν2
2 (eκτ − eκτ1) + ν2

1 (eκτ1 − 1)
])

= −2κk̄ log

(
1 − 1

2κ
izvν

2
(
1 − e−κτ

))
(4.21)

= C(τ, 0, izv) (4.22)

where, again, equation (4.21) holds for ν2 defined as that in equation (4.12). �

From proposition 25, setting θt = 0, we can write

dY = µY dt+ νt

√
Y dW Y

for some process Y and constant drift parameter µ = −κ where the SDE for Y has the square root CEV

form. For this process, we then have

ν2 =

√
ν2 (1 − e−µτ) − ν2

1 (1 − e−µτ1)

e−µτ1 − e−µτ
(4.23)

To obtain our analytic formulae for the considered forward parameters, we have matched the functions

C and D, separately. This is a special case. The same approach immediately yields the forward parame-

ter for a piecewise constant, time-dependent volatility σ in the extended Black-Scholes model (working

from the corresponding conditional characteristic function for X = lnS). In general, we must match the

resulting European Option prices numerically.
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4.3 Stochastic Volatility Model with Time-dependent skew: An affine

approach for the ”effective” volatility

Consider the process

dSt = σt [βtSt + (1 − βt)St0 ]
√
VtdW

S

t (4.24)

dVt = κ (θ − Vt) dt+ ν
√
VtdW

V

t (4.25)

where β and σ are time-dependent while κ, θ and ν are constant and the Brownian motions driving

S and V are uncorrelated.5 As stated in Andersen and Brotherton-Ratcliffe [2005]6 ”Piterbarg [2005]

provides an approximative algorithm to reduce a time-dependent σ into a single representative constant; this is

particularly useful in calibrations, as option prices can always be represented by an implied constant σ before

the calibration algorithm is activated.” This single representative constant is referred to as the ”effective”

volatility. Furthermore, Piterbarg [2005] provides an analytic, approximate formula to reduce a time-

dependent β into a single representative constant. The latter result may be determined from theorem 3.1

and corollary 3.3 of Piterbarg [2005]. For the period (t0, tn], this yields

β =

∫ tn

t0

βtwtdt (4.26)

wt =
v2

t σ
2
t∫ tn

t0
v2

t σ
2
t dt

(4.27)

v2
t = θ2

∫ t

t0

σ2
sds+ θν2e−κt

∫ t

t0

σ2
s

(eκs − e−κs)

2κ
ds (4.28)

with Vt0 = θ.

This result is strike independent and allows us to approximate the SDE in equations (4.24) and (4.25) by

dSt = σt [βSt + (1 − β)St0 ]
√
VtdW

S

t (4.29)

dVt = κ (θ − Vt) dt+ ν
√
VtdW

V

t (4.30)

where β = β(t0,tn] is a constant value valid for the entire period (t0, tn].

We now focus on σt. Essentially, for the special case of an at-the-money (K = St0) European Call Option,

Piterbarg [2005] derives an approximate pricing formula that accommodates for a time-dependent σ.

From Piterbarg [2005] Theorem 4.1, we present the approximative algorithm for a maturity of tn.

Theorem 4. Denote the Laplace transform of the integral of σ2
t Vt by

L(u) := E

[
exp

(
−u
∫ tn

t0

σ2
t Vtdt

)]
(4.31)

and the Laplace transform of the integral of Vt by

L̄(u) := E

[
exp

(
−u
∫ tn

t0

Vtdt

)]
(4.32)

5As stated in Piterbarg [2005], the slope of the implied volatility smile is generated by the function βtSt + (1 − βt)St0 and so

one does not need to introduce correlation between the driving Brownian motions.
6regarding caplet pricing formulae
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The second-order accurate ”effective” volatility σ is given as a solution to the equation

L̄
(
−

∂2

∂ξ2 g(ξ)
∂
∂ξ g(ξ)

σ2

)
= L

(
−

∂2

∂ξ2 g(ξ)
∂
∂ξg(ξ)

)
(4.33)

where

ξ = θ

∫ tn

t0

σ2
t dt (4.34)

g(x) =
St0

β

[
2Φ

(
1

2
β
√
x

)
− 1

]
(4.35)

Φ(y) = P (Y < y) (4.36)

Y ∼ N(0, 1) (4.37)

In Piterbarg [2005] Appendix D, the application of this theorem is considered. From Andersen and

Brotherton-Ratcliffe [2005] Lemma 1, the RHS of equation (4.33) may be determined by observing that

L(u) has the affine form exp [A(t0, tn) −B(t0, tn)Vt0 ] where the functions A(t, tn) and B(t, tn) satisfy the

Ricatti system of ODEs

∂

∂t
A(t, tn) = κθB(t, tn) (4.38)

∂

∂t
B(t, tn) = κB(t, tn) +

1

2
ν2B2(t, tn) − uσ2

t (4.39)

with the terminal conditions

A(tn, tn) = 0 (4.40)

B(tn, tn) = 0 (4.41)

Furthermore, the LHS of equation (4.33) may be determined by observing that L̄(u) satisfies the same

system of equations where σt = 1 and so an analytic solution may be obtained. Specifically, we have

L̄ (u) = exp
[
Ā(t0, tn) − B̄(t0, tn)Vt0

]
(4.42)

where7

B̄(t0, tn) =
2u (1 − e−γτ)

(κ+ γ) (1 − e−γτ ) + 2γe−γτ
(4.43)

Ā(t0, tn) =
2κθ

ν2
log

[
2γ

(κ+ γ) (1 − e−γτ) + 2γe−γτ

]
− 2κθ

u

κ+ γ
τ (4.44)

γ =
√
κ2 + 2ν2u (4.45)

This result allows us to approximate the SDE in equations (4.29) and (4.30) by the time-homogenous

process

dSt = σ [βSt + (1 − β)St0 ]
√
VtdW

S

t (4.46)

dVt = κ (θ − Vt) dt+ ν
√
VtdW

V

t (4.47)

7Note the typo in Piterbarg [2005] equation (D3) for Ā(t0, tn) which appears within the denominator of the term whose loga-

rithm is considered.
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where σ = σ(t0,tn] is a constant value valid for the entire period (t0, tn] while β, κ, θ and ν are the same

constant parameters from the SDE in equations (4.29) and (4.30).

For the term τ = tn − t0 split into n increments with the mth increment τm = tm − tm−1, we restrict our-

selves to a piecewise constant, time-dependent σ and a constant β. In particular, for σm := σ(t0;tm−1,tm]

we have

σt =

n∑

m=1

σmI[tm−1<t≤tm]

ξ = θ

n∑

m=1

σ2
mτm (4.48)

Consider the case n = 2 where we have the periods (t0, t1] and (t0, t2] with t1 < t2. From the quote

above, one can represent option prices for the respective periods in terms of the implied constant values

σ(t0,t1] and σ(t0,t2] which correspond to the SDE in equations (4.46) and (4.47) for the respective periods

(t0, t1] and (t0, t2]. Given σ(t0,t1] and σ(t0,t2] (as well as β(t0,t2], κ, θ and ν), theorem 4 may be used to

approximate σ(t0;t1,t2]. One can then make use of the SDE in equations (4.29) and (4.30) for the entire

period (t0, t2] where σt = σ(t0,t1]I[t0<t≤t1] +σ(t0;t1,t2]I[t1<t≤t2]. The approach remains valid when solving

for σ(t0;tn−1,tn] with n > 2.

Regarding the implementation of theorem 4, it is not clear from Piterbarg [2005] Appendix D as to exactly

how the author intends for the algorithm to be implemented. Specifically, evaluation of the ODEs in

equations (4.38) and (4.39) requires some clarification. One can evaluate the simple system numerically

with, for example, MatLab’s ode45 function. This, however, is not an efficient approach. The merit

of theorem 4 lies in the fact that the RHS of equation (4.33) may also be determined analytically for a

piecewise constant σ and hence, forward parameters may be determined almost instantaneously.8

For the specified model, an exact semi-analytic pricing formula is also available, for a piecewise constant,

time-dependent σ and constant β, from which we can determine σ(t0;tn−1,tn] efficiently. In the following

subsections we describe how approximate and exact forward parameters may both be determined.

4.3.1 The conditional joint characteristic function

Following Andersen and Brotherton-Ratcliffe [2005], we set X̄ = βS + (1 − β)St0 and make use of Itô’s

formula together with equations (4.29) and (4.30) to obtain

dX = −1

2
σ2

t β
2V dt+ σtβ

√
V dW S (4.49)

dV = κ (θ − V ) dt+ ν
√
V dW V (4.50)

where X = ln(X̄) and so we have expressed the specified dynamics in the same affine form as that of

Heston [1993], for example, where the natural logarithm of the corresponding characteristic function is

linear in terms of the state variables (X and V ).

The corresponding conditional joint characteristic function for X and V ,

E
Q
t

[exp (izXtn + izvVtn) |Xt, Vt] =: φt(Xt, Vt; iz, izv) (4.51)

8The intention, to make use of available analytic results, was communicated to us by the author Vladimir V. Piterbarg.
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must satisfy the PDE

∂φt

∂t
− 1

2
σ2

t β
2Vt

∂φt

∂Xt
+

1

2
σ2

t β
2Vt

∂2φt

∂X2
t

+ κ(θ − Vt)
∂φt

∂Vt
+

1

2
ν2Vt

∂2φt

∂V 2
t

= 0 (4.52)

Switching variables from t to τ̄ = tn − t, we assume that the solution φt has the form

exp [izXt +D(τ̄ , iz, izv)Vt + C(τ̄ , iz, izv)] (4.53)

reducing the problem to a system of ODEs

∂

∂τ̄
D(τ̄ , iz, izv) =

1

2
ν2D2(τ̄ , iz, izv) − bD(τ̄ , iz, izv) + c (4.54)

∂

∂τ̄
C(τ̄ , iz, izv) = κθD(τ̄ , iz, izv) (4.55)

with

b = κ (4.56)

c(iz) =
1

2
σ2β2iz(iz − 1) (4.57)

and the terminal conditions

C(0, iz, izv) = 0 (4.58)

D(0, iz, izv) = izv (4.59)

Regarding the arguments of the functions C and D, iz and izv refer to the coefficients of Xtn and Vtn

respectively to which the exponent is raised at the terminal time tn. For τ = tn − t0, this yields the

analytic solution

D(τ, iz, izv) =

(
κ− γ(iz)

ν2

)

 Ā(iz, izv) − e−γ(iz)τ

Ā(iz, izv) −
(

κ−γ(iz)
κ+γ(iz)

)
e−γ(iz)τ



 (4.60)

C(τ, iz, izv) =
κθ

ν2
[κ− γ(iz)] τ − 2κθ

ν2
log

(
A−1(iz, izv)e

−γ(iz)τ − 1

A−1(iz, izv) − 1

)
(4.61)

Ā(iz, izv) = A(iz, izv)

(
κ− γ(iz)

κ+ γ(iz)

)
(4.62)

A(iz, izv) =
ν2izv − κ− γ(iz)

ν2izv − κ+ γ(iz)
(4.63)

γ(iz) =
√
κ2 − 2ν2c(iz) (4.64)

Setting zv = 0 yields the characteristic function for X

E
Q
t0

[exp(izXtn)|Xt0 , Vt0 ] = exp [izXt0 +D(τ, iz, 0)Vt0 + C(τ, iz, 0)] (4.65)

We allow for a piecewise constant σ by making use of the tower property

E
Q
t0

[exp(izXtn)|Xt0 , Vt0 ] = E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
exp(izXtn)|Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]

(4.66)
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and must now determine an analytic expression for the RHS of equation (4.66). To achieve this, we

make use of the analytic result for the conditional joint characteristic function presented in equations

(4.60)-(4.64). Dividing the term τ = tn − t0 into n increments with τm = tm − tm−1, we solve a time-

homogenous PDE for each increment where from one increment to the next, the constant parameter

set may differ. At tn−1, we must solve the PDE presented in equation (4.52) assuming the solution

φtn−1(Xtn−1 , Vtn−1 ; iz, 0) := EQ
tn−1

[
exp (izXtn) |Xtn−1 , Vtn−1

]
has the form

exp
[
izXtn−1 +Dn;n(τn, iz, 0)Vtn−1 + Cn;n(τn, iz, 0)

]
(4.67)

subject to the terminal conditions

Cn;n(0, iz, 0) = 0 (4.68)

Dn;n(0, iz, 0) = 0 (4.69)

The functions Cn;n(τn, iz, 0) andDn;n(τn, iz, 0) are determined from equations (4.60)-(4.64) where izv :=

0 and (τ, β, κ, θ, ν) := (τn, βn, κn, θn, νn).

At tn−2, we must solve the same PDE, assuming the solution φtn−2(Xtn−2 , Vtn−2 ; iz,Dn;n(τn, iz, 0)) :=

EQ
tn−2

[
EQ

tn−1

[
exp (izXtn) |Xtn−1 , Vtn−1

]
|Xtn−2 , Vtn−2

]
has the form

exp [Cn;n(τn, iz, 0)]EQ
tn−2

[
exp

(
izXtn−1 +Dn;n(τn, iz, 0)Vtn−1

)
|Xtn−2 , Vtn−2

]
(4.70)

= exp [Cn;n(τn, iz, 0)] (4.71)

× exp
[
izXtn−2 +Dn−1;n(τn−1, iz,Dn;n(τn, iz, 0))Vtn−2 + Cn−1;n(τn−1, iz,Dn;n(τn, iz, 0))

]
(4.72)

subject to the terminal conditions

Cn−1;n(0, iz,Dn;n(τn, iz, 0)) = 0 (4.73)

Dn−1;n(0, iz,Dn;n(τn, iz, 0)) = Dn;n(τn, iz, 0) (4.74)

The functions Cn−1;n(τn−1, iz,Dn;n(τn, iz, 0)) and Dn−1;n(τn−1, iz,Dn;n(τn, iz, 0)) are determined from

equations (4.60)-(4.64) where izv := Dn;n(τn, iz, 0) and (τ, β, κ, θ, ν) := (τn−1, βn−1, κn−1, θn−1, νn−1).

Continuing in this manner, until we reach t0, yields the analytic result

E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
exp(izXtn)|Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]

= exp

[
izXt0 +D1;n(τ1, iz,D2;n)Vt0 +

n∑

m=1

Cm;n(τm, iz,Dm+1;n)

]
(4.75)

where

D1;n(τ1, iz,D2;n) := D1;n(τ1, iz,D2;n(τ2, iz, ...Dn−1;n(τn−1, iz,Dn;n(τn, iz, 0))...))

Cm;n(τm, iz,Dm+1;n) := Cm;n(τm, iz,Dm+1;n(τm+1, iz, ...Dn−1;n(τn−1, iz,Dn;n(τn, iz, 0))...))

with Dn+1,n := 0. Regarding the subscripts of the functions C and D, the first argument specifies the

increment currently considered while the second specifies the total number of increments.

Returning to the implementation of theorem 4, we can make use of the analytic result in equations (4.60)-

(4.64) to determine the RHS of equation (4.33). For convenience, we specify exp [A(t, tn) +B(t, tn)Vt0 ] as
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the affine form of L(u) and set τ̄ := tn − t. This yields the Ricatti system of ODEs

∂

∂τ̄
A(τ̄ ) = κθB(τ̄ ) (4.76)

∂

∂τ̄
B(τ̄ ) =

1

2
ν2B2(τ̄ ) − κB(τ̄ ) − uσ2

t (4.77)

Setting c(iz) = uσ2
t , in equation (4.64), where σt is piecewise constant and specifying the terminal con-

ditions

A(0) = 0 (4.78)

B(0) = izv (4.79)

for an appropriate choice of the value izv, allows us to determine an analytic solution for L(u). For

σt = 1 and izv = 0, we obtain the solution for L̄ (u) as presented in equations (4.43)-(4.45).

4.3.2 Solving for the forward parameter

Regarding the payoff of a European Call Option, we have

[Stn −K]
+

=
1

β

[
X̄tn − K̄

]+
(4.80)

where X̄tn = βStn + (1 − β)St0 and K̄ = βK + (1 − β)St0 . For Xtn = ln(X̄tn) and k = ln(K̄), we have

the semi-analytic undiscounted value of the payoff
[
eXtn − ek

]+

ΠC

t0 ,tn
(σ(t0,tn]) = RC

t0 ,tn
(α) +

1

π

∫ ∞

0

Re

[
e−i(u−iα)k

−(u− iα)(u − i[α+ 1])
E

Q
t0

[
ei(u−i[α+1])Xtn |Xt0 , Vt0

]]
du

(4.81)

RC

t0 ,tn
(α) = E

Q
t0

[
eXtn |Xt0

]
I[α≤0] −

1

2
E

Q
t0

[
eXtn |Xt0

]
I[α=0] − ek

I[α≤−1] +
1

2
ek

I[α=−1] (4.82)

The result is valid for α ∈ (αmin, αmax) where EQ
t0

[
e(α+1)Xtn |Xt0 , Vt0

]
exists.

Replacing EQ
t0

[
ei(u−i[α+1])Xtn |Xt0 , Vt0

]
in equation (4.81) by its iterated extension yields the pricing for-

mula ΠC
t0 ,tn

(σ[t0, t1], σ(t0;t1,t2], ..., σ(t0;tn−1,tn]). From

ΠC

t0 ,tn
(σ(t0,tn]) = ΠC

t0 ,tn
(σ(t0,t1], σ(t0;t1,t2], ..., σ(t0;tn−1,tn]) (4.83)

we can solve for one of the parameters σ(t0,t1], σ(t0;t1,t2], ..., σ(t0;tn−1,tn] and σ(t0,tn] given that the rest are

inputs. We focus on solving for σ(t0;tn−1,tn].

At this point, we must acknowledge that, regarding semi-analytic pricing formulae, it has been noted in

Andersen and Andreasen [2002] that the specified dynamics can accommodate for a piecewise constant

σ. Hence, we can claim only to have identified the usefulness of this result when working through the

approach of Piterbarg [2005].

Regarding the chosen contour of integration i.e. the value −α, we make use of the optimal α∗ ap-

proach of Lord and Kahl [2007] where this optimal value is a function of all the parameters of the

model. Regarding the numerical search for σ(t0;tn−1,tn], at each iteration within our preferred algorithm,

ΠC
t0 ,tn

(σ(t0,t1], σ(t0;t1,t2], ..., σ(t0;tn−1,tn]) will be evaluated at a different value of σ(t0;tn−1,tn]. Hence, the
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corresponding α∗ will differ for each iteration. Furthermore, to obtain α∗ one must first determine the

range (αmin, αmax) numerically, as considered in section 3.2

When evaluating the option prices in equation (4.83), we specify the adaptive Gauss-Lobatto quadrature

algorithm of Gander and Gautschi [2000] (as suggested in Kahl and Jackel [2005]) with the optimal α and

the transformed domain of integration, as our benchmark approach.9 As pointed out in Kahl and Jackel

[2005], the algorithm evaluates the integrand at its boundary values. Having transformed the domain

of integration from u ∈ [0,∞) to x ∈ [0, 1], we must define the integrand to be zero at the boundary

x = 0. The MatLab code for the adaptive algorithm is conveniently presented in Gander and Gautschi

[2000], allowing us to specify the value of the integrand at this boundary. To work with the transformed

domain, we must determine the appropriate transformation. Following the approach in section 3.4, we

specify the transformation

u(x) = − ln(x)

ℜ∞

(4.84)

ℜ∞ =
β

ν

[
σ1Vt0 + κθ

n∑

m=1

σmτm

]
(4.85)

where x ∈ [0, 1].

Piterbarg [2005] focusses on obtaining results for at-the-money options (K = St0). Our affine approach

accommodates for alternative strike levels. However, for at-the-money options, we can obtain results

conveniently by reconsidering the contour of integration.

Proposition 26. For α = − 1
2 , we have the integrand

e−i(u+i 1
2 )k

−(u2 + 1
4 )

E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
ei(u−i 1

2 )Xtn |Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]
(4.86)

which is at its minimum at u = 0. For k = Xt0 , the integrand is strictly increasing in u where u ∈ (0,∞).

Proof: We can write

D(τ, iz, 0) =
[κ+ γ(iz)]

ν2

(
1 − 1

ψ(τ, iz, 0)

)
(4.87)

C(τ, iz, 0) =
κθ

ν2
[κ− γ(iz)] τ − 2κθ

ν2
ln [ψ(τ, iz, 0)] (4.88)

ψ(τ, iz, 0) =
A−1(iz)e−γ(iz)τ − 1

A−1(iz) − 1
(4.89)

A−1(iz) =
κ− γ(iz)

κ+ γ(iz)
(4.90)

For α = − 1
2 , we have

γ(iz) =

√

κ2 + ν2σ2β2

(
u2 +

1

4

)
∈ R (4.91)

and so γ(iz) > κ. This yields −1 < A−1(iz) < 0 and 1
2 < ψ(τ, iz, 0) < 1 with C(τ, iz, 0), D(τ, iz, 0) ∈ R.

9This is the preferred valuation methodology presented in Lord and Kahl [2007]
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Regarding D(τ, iz, 0), we can show that

∂

∂γ(iz)
D(τ, iz, 0) =

1

ν2

(
1 − 1

ψ(τ, iz, 0)

)
+

[κ+ γ(iz)]

ν2

(
∂

∂γ(iz)ψ(τ, iz, 0)

ψ2(τ, iz, 0)

)
(4.92)

∂

∂γ(iz)
ψ(τ, iz, 0) =

(
1 − e−γ(iz)τ

)
∂

∂γ(iz)A
−1(iz) −A−1(iz)

[
A−1(iz) − 1

]
e−γ(iz)ττ

[A−1(iz) − 1]2
(4.93)

∂

∂γ(iz)
A−1(iz) = − 2κ

[κ+ γ(iz)]2
(4.94)

where ∂
∂γ(iz)A

−1(iz) < 0, ∂
∂γ(iz)ψ(τ, iz, 0) < 0 and so

∂

∂γ(iz)
D(τ, iz, 0) < 0 (4.95)

Regarding C(τ, iz, 0), we can show that

∂

∂γ(iz)
C(τ, iz, 0) = −2κθ

ν2

1

[A−1(iz) − 1]2ψ(τ, iz, 0)
Y (u, τ) (4.96)

Y (u, τ) = −1

2
τ [A−1(iz)− 1][1 +A−1(iz)e−γ(iz)τ ] + [1 − e−γ(iz)τ ]

∂

∂γ(iz)
A−1(iz)

The sign of Y (u, τ) is not immediately clear. However, we have

∂

∂τ
Y (u, τ) =

γ(iz)

[κ+ γ(iz)]2

(
[κ+ γ(iz)][1 − e−γ(iz)τ ] + γ(iz)[γ(iz)− κ]e−γ(iz)ττ

)

> 0 (4.97)

for τ > 0 and any u while Y (u, 0) = 0. Therefore, Y (u, τ) > 0 for τ > 0 and so

∂

∂γ(iz)
C(τ, iz, 0) < 0 (4.98)

We aim to show that the integrand (evaluated atα = − 1
2 ) in equation (4.86) is monotonic in u for k = Xt0 .

Within the affine framework, we can write

e−i(u+i 1
2 )k

−(u2 + 1
4 )

E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
ei(u−i 1

2 )Xtn |Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]
(4.99)

=
1

−(u2 + 1
4 )

exp

[
Xt0 +D1;n

(
τ1, iu+

1

2
, D2;n

)
Vt0 +

n∑

m=1

Cm;n

(
τm, iu+

1

2
, Dm+1;n

)]
(4.100)

for k = Xt0 , α = − 1
2 and making use of the notation established in section 2.4. From equation 4.100

and the fact that D(τ, iz, 0), C(τ, iz, 0) ∈ R, we can see that the integrand is real and negative for z :=

u− i(α + 1). Furthermore, from equation 4.99 and making use of Jensen’s inequality, we can show that

the integrand is at its minimum at u = 0.

We have

∂

∂u
E

Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
ei(u−i[α+1])Xtn |Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

]

=
∂

∂u
E

Q
t0

[
ei(u−i[α+1])Xtn |Xt0 , Vt0

]
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and so it follows that for k = Xt0 , we have

=
∂

∂u

(
e−i(u−iα)k

E
Q
t0

[
E

Q
t1

[
...EQ

tn−1

[
ei(u−i[α+1])Xtn |Xtn−1 , Vtn−1

]
...|Xt1 , Vt1

]
|Xt0 , Vt0

])
(4.101)

=
∂

∂u

(
e−i(u−iα)k

E
Q
t0

[
ei(u−i[α+1])Xtn |Xt0 , Vt0

])
(4.102)

= eXt0+D(τ,iz,0)Vt0+C(τ,iz,0)

[
∂

∂u
D(τ, iz, 0)Vt0 +

∂

∂u
C(τ, iz, 0)

]
(4.103)

From equation (4.91), we have

∂

∂u
γ(iz) =

ν2σ2β2u

γ(iz)
≥ 0 (4.104)

for u ≥ 0 with an equality only at u = 0.

Making use of equations (4.95), (4.98) and (4.104), we have

∂

∂u
D(τ, iz, 0) =

∂

∂γ(iz)
D(τ, iz, 0)

∂

∂u
γ(iz) ≤ 0 (4.105)

∂

∂u
C(τ, iz, 0) =

∂

∂γ(iz)
C(τ, iz, 0)

∂

∂u
γ(iz) ≤ 0 (4.106)

with an equality only for u = 0.

Therefore ∂
∂u

(
e−i(u−iα)kEQ

t0

[
...EQ

tn−1

[
ei(u−i[α+1])Xtn |Xtn−1 , Vtn−1

]
...|Xt0 , Vt0

])
< 0 for k = Xt0 , α = − 1

2

and u > 0. It follows that the integrand is strictly increasing in u for u > 0. �

From proposition 26, we see that for k = Xt0 specifying the contour α = − 1
2 allows us to avoid the issue

of an oscillating integrand. Hence, rather than solving for the optimal α at each iteration of our numeri-

cal search, we suggest working with α = − 1
2 thoughout (which always lies in the strip of regularity). In

terms of the optimal α approach, we can also confirm that the local minimum for α ∈ (−1, 0) is always

− 1
2 for k = Xt0 .

The monotonicity of the integrand in u allows us to effectively make use of a simple Gauss-Legendre

Quadrature Rule to perform the required numerical integration. From Abramowitz and Stegun [1974]

equation (25.4.30), we make use of a 32-point rule for the integrand f(u)

∫ b

a

f(u)du ≈
(
b− a

2

) 32∑

i=1

wif(ui) (4.107)

where

ui =

(
b− a

2

)
xi +

(
b+ a

2

)
(4.108)

with the abscissas xi and weights wi specified in Abramowitz and Stegun [1974] Table 25.4.

The final point we consider is the range of σ(t0,tn] that the model can accommodate for by simply varying

σ(t0;tn−1,tn].

Proposition 27. For α = − 1
2 and k = Xt0 , ΠC

t0 ,tn
(σ(t0,tn]) is strictly increasing in σ(t0,tn] and

ΠC
t0 ,tn

(σ(t0,t1], σ(t0;t1,t2], ..., σ(t0;tn−1,tn]) is strictly increasing in σ(t0;tn−1,tn].
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Proof: For the time-dependent case, we can write

Dm;n(τm, iz,Dm+1;n) =
Dm+1;n(τm+1, iz,Dm+2;n)

ψm;n(τm, iz,Dm+1;n)
(4.109)

+
[κm + γm(iz)]

ν2
m

[
1 − 1

ψm;n(τm, iz,Dm+1;n)

]
(4.110)

Cm;n(τm, iz,Dm+1;n) =
κmθm

ν2
m

[κm − γm(iz)]τm − 2κmθm

ν2
m

ln[ψm;n(τm, iz,Dm+1;n)] (4.111)

ψm;n(τm, iz,Dm+1;n) = − ν2
m

2γm(iz)

[
1 − e−γm(iz)τm

]
Dm+1;n(τm+1, iz,Dm+2;n) (4.112)

+
[κm + γm(iz)] + [γm(iz)− κm]e−γm(iz)τm

2γm(iz)
(4.113)

We consider the case n ≥ 2 with σn := σ(t0;tn−1,tn) and σ := σ(t0,tn). We can show

∂

∂σn
Dm;n(τm, iz,Dm+1;n) =




n−1∏

j=m

e−γj(iz)τj

ψj;n(τj , iz,Dj+1;n)



 ∂

∂σn
Dn;n(τn, iz, 0)

∂

∂σn

n∑

m=1

Cm;n(τm, iz,Dm+1;n) =

n−1∑

m=1

κmθm

γm(iz)ψm;n(τm, iz,Dm+1;n)

[
1 − e−γm(iz)τm

]
(4.114)

× ∂

∂σn
Dm+1;n(τm+1, iz,Dm+2;n) +

∂

∂σn
Cn;n(τn, iz, 0) (4.115)

and from equation (4.91), we have

∂

∂σ
γ(iz) =

ν2σβ2
(
u2 + 1

4

)

γ(iz)
> 0 (4.116)

We know Dm+1;n(τm+1, iz,Dm+2;n) ∈ R from equation (3.13) and from proposition 20 and the discus-

sion in subsection 3.5.3 it follows that for α = − 1
2 and 1 ≤ m ≤ n, we have Dm+1;n(τm+1, iz,Dm+2;n) <

0. We also have γm(iz) > κm and so

ψm;n(τm, iz,Dm+1;n) > 0 (4.117)

Therefore, the sign of ∂
∂σn

Dm;n(τm, iz,Dm+1;n) and ∂
∂σn

∑n
m=1 Cm;n(τm, iz,Dm+1;n) depend on the sign

of ∂
∂σn

Dn;n(τn, iz, 0) and ∂
∂σn

Cn;n(τn, iz, 0).

The form of the functionsDn;n(τn, iz, 0) andCn;n(τn, iz, 0) is the same as that ofD(τ, iz, 0) andC(τ, iz, 0)

since the terminal conditions, which determine these analytic functions, are the same. So making use of

equations (4.95), (4.98) and the form of equation (4.116), we see that these partial derivatives are both

negative, the integrand is strictly increasing in σn and so the same is true for the option price. Regarding

σ, equations (4.95), (4.98) and (4.116) can be directly considered, to determine that the option price is

also strictly increasing in σ. �

From proposition 27, we see that setting σ(t0;tn−1,tn] = 0, we can determine σ∗
(t0,tn] - the minimum value

of σ(t0,tn] that the specified parameters can accommodate for.

4.3.3 Numerical results

To illustrate the efficiency of our ‘exact’ approach and the accuracy of the approximate approach, we

consider the case n = 4, where we specify σ(t0,t1], σ(t0;t1,t2], σ(t0;t2,t3] and σ(t0,t4] and so must determine
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σ(t0;t3,t4] restricting our search to the range [0, 10].

We first present results for the parameter set: σ(t0,t1) = 0.9, σ(t0;t1,t2] = 2, σ(t0;t2,t3] = 1.3, κ = 1, ν = .2,

θ = 0.1, Vt0 = 0.1, τm = 1 for 1 ≤ m ≤ 4 and β = 1 where σ∗
(t0,t4]

= 1.2689:

σ(t0;t3,t4] Evaluation time Discrepancy

σ(t0,t4] ‘Exact’ GQα=− 1
2

Piterbarg ‘Exact’ GQα=− 1
2

Piterbarg ‘Exact’ GQα=− 1
2

Piterbarg

1.27 0.1033 0.1033 0.1024 2.547s 0.024s 0.005s 4 × 10−9 4 × 10−7 1 × 10−5

1.3 0.5595 0.5594 0.5594 1.891s 0.022s 0.004s 1 × 10−7 4 × 10−7 2 × 10−6

1.8 2.5554 2.5554 2.5553 1.093s 0.024s 0.005s 7 × 10−8 6 × 10−8 9 × 10−6

1.9 2.8345 2.8345 2.8345 1.141s 0.029s 0.005s 2 × 10−7 3 × 10−7 9 × 10−6

2.0 3.1026 3.1025 3.1025 1.125s 0.020s 0.005s 5 × 10−7 5 × 10−7 1 × 10−5

2.5 4.3457 4.3457 4.3452 1.469s 0.021s 0.005s 1 × 10−7 1 × 10−6 6 × 10−5

The ‘Exact’ σ(t0;t3,t4] column refers to the solution obtained from our benchmark approach where we

specify a relative error tolerance of 10−6. The GQα=− 1
2

column refers to the solution obtained by means

of the specified Gauss-Legendre Quadrature Rule. We have left the domain of integration untrans-

formed, truncated the upper bound of integration to the point u = 100 and split the domain of inte-

gration into 2 equally sized pieces. The Piterbarg σ(t0;t3,t4] column refers to the solution obtained by

following the methodology of theorem 4.

The discrepancies refer to

|ΠC
t0 ,tn

(σ(t0,t1], σ(t0;t1,t2], σ[t0; t2, t3], σ[t0; t3, t4]) − ΠC
t0 ,tn

(σ[t0, t4])|
ΠC

t0 ,tn
(σ[t0, t4])

(4.118)

where the option values are evaluated using the benchmark approach and the value of σ(t0;t3,t4] is spec-

ified from the respective approaches.

Regarding the value of σ(t0;tn−1,tn] determined from our affine approach and equation (4.83), only the

RHS of equation (4.83) needs to be repeatedly evaluated. At each iteration of the optimisation algorithm,

the undiscounted option price must be determined by means of a numerical integration. However,

the Gauss-Legendre Quadrature Rule used to perform this integration can be efficiently implemented

in MatLab by making use of the software package’s vectorization feature. We have also made use of

Matlab’s fminbnd function (with TolX set to 10−5) when searching for α∗ and σ(t0;tn−1,tn].

Furthermore, it is worth noting that for α = − 1
2 and k = Xt0 the issue of branch cutting does not arise as

the functions involved are all real. For alternative values of α, the functions involved may be complex.

The ‘Exact’ approach makes use of the optimal value α∗ which lies in the range (αmin, αmax) and, in

particular, is not restricted to the range (−1, 0) (for which we have provided a proof in section 3.5 to

show that branch cutting cannot occur). The consistency of the ’Exact’ and GQα=− 1
2

solutions serves to

motivate the conjecture that branch cutting is not an issue for α ∈ (αmin, αmax).

We now consider the same parameter set with β set to 0.1 rather than 1 with σ∗
(t0,t4] = 1.2698:
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σ(t0;t3,t4] Evaluation time Discrepancy

σ(t0,t4] ‘Exact’ GQα=− 1
2

Piterbarg ‘Exact’ GQα=− 1
2

Piterbarg ‘Exact’ GQα=− 1
2

Piterbarg

1.27 0.0508 0.0508 0.0522 3.141s 0.020s 0.005s 8 × 10−9 5 × 10−7 1 × 10−5

1.3 0.5526 0.5526 0.5529 2.187s 0.018s 0.005s 5 × 10−8 3 × 10−7 2 × 10−5

1.8 2.5520 2.5520 2.5520 1.281s 0.021s 0.005s 2 × 10−7 3 × 10−7 1 × 10−5

1.9 2.8300 2.8300 2.8302 1.282s 0.018s 0.004s 3 × 10−7 1 × 10−7 2 × 10−5

2.0 3.0967 3.0967 3.0968 1.500s 0.018s 0.005s 4 × 10−8 5 × 10−7 3 × 10−5

2.5 4.3284 4.3284 4.3286 1.094s 0.020s 0.004s 3 × 10−7 1 × 10−6 5 × 10−5

For the value of σ(t0;t3,t4] obtained from the GQα=− 1
2

approach, we have left the untransformed, trun-

cated domain of integration as 1 piece.

In Piterbarg [2005], the author states that ”Test results indicate that the approximations are excellent, even

for high volatility of variance/ low mean reversion of variance parameters.” For the initial parameter set (with

β = 1), we increase ν from 0.2 to 2 with σ∗
(t0,t4] = 1.1355:

σ(t0;t3,t4] Evaluation time Discrepancy

σ(t0,t4] ‘Exact’ GQα=− 1
2

Piterbarg ‘Exact’ GQα=− 1
2

Piterbarg ‘Exact’ GQα=− 1
2

Piterbarg

1.136 0.0455 0.0454 0.2827 2.266s 0.031s 0.005s 9 × 10−9 9 × 10−7 1 × 10−2

1.3 1.1043 1.1043 1.1484 2.047s 0.030s 0.005s 2 × 10−7 3 × 10−7 7 × 10−3

1.8 3.0959 3.0959 3.0805 2.078s 0.030s 0.005s 2 × 10−8 6 × 10−7 2 × 10−3

1.9 3.4850 3.4850 3.4522 2.547s 0.038s 0.005s 6 × 10−8 6 × 10−7 4 × 10−3

2.0 3.8762 3.8762 3.8227 1.953s 0.029s 0.004s 7 × 10−8 7 × 10−7 6 × 10−3

2.5 5.8731 5.8731 5.6784 1.453s 0.030s 0.005s 8 × 10−8 3 × 10−7 1 × 10−2

With regard to the benchmark approach, we specify a relative error tolerance of 10−8 instead of 10−6.

With regard to the GQα=− 1
2

approach, we split the truncated, untransformed domain into 4 equally

sized pieces.

We now consider obtaining σ(t0;t3,t4] for alternative strike levels. For the original parameter set and the

case σ(t0,t4] = 1.9 with σ(t0;t3,t4] = 2.8345 for an at-the-money option, we obtain the following:

σ(t0;t3,t4] Evaluation time Discrepancy

K ‘Exact’ GQα=− 1
2

‘Exact’ GQα=− 1
2

‘Exact’ GQα=− 1
2

Piterbarg

25 2.8180 2.8180 2.344s 0.023s 2 × 10−8 3 × 10−7 4 × 10−4

50 2.8302 2.8302 2.641s 0.027s 1 × 10−7 5 × 10−8 3 × 10−4

75 2.8338 2.8338 2.218s 0.023s 4 × 10−7 4 × 10−7 9 × 10−5

125 2.8341 2.8341 2.281s 0.025s 1 × 10−7 3 × 10−7 9 × 10−5

150 2.8330 2.8330 2.297s 0.026s 6 × 10−8 9 × 10−8 4 × 10−4

175 2.8317 2.8317 2.141s 0.024s 2 × 10−7 4 × 10−7 8 × 10−4

200 2.8302 2.8302 2.656s 0.027s 6 × 10−7 2 × 10−7 2 × 10−3

With regard to the GQα=− 1
2

approach, we split the truncated, untransformed domain into 2 equally

sized pieces.
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The Piterbarg discrepancy refers to the discrepancy that arises from the at-the-money approximation

obtained from theorem 4.

For the original parameter set, we replace τm = 1 with τm = 1
365 for 1 ≤ m ≤ 4 and consider the case

σ(t0,t4] = 1.3 with σ(t0;t3,t4] = 0.5098 (obtained in 0.016s with α = − 1
2 ) for an at-the-money option. We

obtain the following:

σ(t0;t3,t4] Evaluation time Discrepancy

K ‘Exact’ GQα∗ ‘Exact’ GQα∗ ‘Exact’ GQα∗ Piterbarg

25 0.5631 0.5631 9.390s 0.734s+0.016s 8 × 10−8 1 × 10−7 0.96

50 0.5277 0.5277 11.562s 0.718s+0.016s 3 × 10−8 6 × 10−9 0.28

75 0.5132 0.5132 10.094s 0.609s+0.016s 1 × 10−8 5 × 10−8 1 × 10−2

125 0.5119 0.5119 9.000s 0.593s+0.016s 3 × 10−9 5 × 10−8 5 × 10−3

150 0.5164 0.5164 12.109s 0.641s+0.016s 1 × 10−8 4 × 10−7 4 × 10−2

175 0.5219 0.5219 11.922s 0.719s+0.016s 5 × 10−8 2 × 10−7 0.14

200 0.5277 0.5277 11.563s 0.718s+0.016s 3 × 10−8 6 × 10−9 0.28

The GQα∗ columns refer to use of the 32-point Gauss-Legendre Quadrature Rule in conjunction with the

optimal α (the GQα=− 1
2

approach does not provide adequate accuracy for this parameter set). We have

left the truncated, untransformed domain as 1 piece. Furthermore, when searching for σ(t0;t3,t4], we

have reduced the search to the range [0, 0.5098 + 1]. This reduces the evaluation time to approximately

two thirds of that taken to search the range [0, 10].

The Piterbarg discrepancy refers to the discrepancy that arises from the at-the-money approximation

σ(t0;t3,t4] = 0.5098 (obtained from theorem 4).

With regard to the parameter and discrepancy values obtained for the casesK = 25, 50 (and the discrep-

ancy values forK = 75), we observed a problem that arises for these extremely short maturity examples.

In MatLab, the value 1+1×10−16 is reported as 1. From the semi-analytic pricing formulae in equations

(4.81) and (4.82), we see that for α∗ < 0, we may have to add a constant (residue contribution) to the

value obtained from the numerical integration of the pricing integrand. If the value to which we add

this constant is less than or equal to 1 × 10−16 then we will not be able to determine an appropriate

solution for σ(t0;t3,t4]. However, from Lord and Kahl [2007], we have the following rule of thumb: For

F < K , α∗ > 0 while for F > K , α∗ < −1 where F is the forward price (this is not claimed to hold

for all parameter sets). From this we see that the problem is more likely to arise for F > K (as it has in

our example). Confirming that α∗ < −1 for the option value as a function of σ(t0,t4] and as a function

of σ(t0,t1], σ(t0;t1,t2], σ(t0;t2,t3] and σ(t0;t3,t4], we can ignore the residue contribution and simply compare

the values obtained from the numerical integration. For the case K = 25, numerical integration yields

the value 4.69 × 10−183 where the integrand is a function of σ(t0,t4] while the corresponding value for

K = 50 is 4.31 × 10−55. Ignoring the residue contributions in these cases yields the presented results. A

similar problem arises for the discrepancy which we address in the same manner.

To conclude, a simple Gauss-Legendre Quadrature Rule would seem to be an appropriate tool with

which to determine the forward values for a piecewise constant, time-dependent σ. For k = Xt0 , α = − 1
2
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specifies an appropriate contour of integration. For alternative strike levels, one may need to make use

of the optimal value of α.

The technique presented provides an approach to determine forward parameters within the SVJJ model,

as an example of an affine model.
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