
The provision of a Generic
Application (GApp) Layer for the
Parlay/OSA Architecture

Opeyemi Oni

A project report submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, Johannesburg, South Africa, in partial fulfilment

of the requirements for the degree of Master of Science in Engineering.

Johannesburg, June 2006

Declaration

I declare that this project report is my own, unaided work, except where otherwise

acknowledged. It is being submitted for the degree of Master of Science in Engi-

neering at the University of the Witwatersrand, Johannesburg, South Africa. It has

not been submitted before for any degree or examination at any other university.

Signed on this the day of 20

Opeyemi Oni.

i

Abstract

The OSA/Parlay architecture supports the development of applications that con-

trol network connections through an open API. This research presents a proposal

on improving the rate at which applications are developed and deployed using the

Parlay/OSA architecture. The work seeks to facilitate software reuse by providing

logical groupings in the application layer of the Parlay/OSA architecture.

This research presents a new layer to provide a higher level of abstraction for ap-

plication developer using Parlay to provide telecommunication services. The layer

introduced is referred to as the Generic Application Programming (GApp) interface.

This document details the design and implementation of this interface.

ii

Acknowledgements

The following research was performed under the auspices of the Center for Telecom-

munications Access and Services (CeTAS) at the University of the Witwatersrand,

Johannesburg, South Africa. This center is funded by Telkom SA Limited and

Siemens Telecommunications. This financial support was much appreciated.

I would like to extend thanks to my supervisors, Prof. Hu Hanrahan for his guid-

ance and assistance throughout the duration of this research project. In addition, I

would like to thank Thabo Machethe, Mike Powell, Rolan Christian, David Van-

nuci, Brain Leke, Dany Kabongo, Andile Shiba and my other colleagues at CeTAS

for their valuable inputs during the research. Finally, I would like to thank my fi-

ance (Prudence Ramabulana), my brothers (Bola, Banji and Bunmi oni) and parents

(Stephen and Eunice Oni) for their love, support and patience throughout my ter-

tiary studies. Without them, I would have not been able to achieve my goals and

aspirations.

iii

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures viii

List of Tables xii

Acronyms xiii

1 Introduction 1

1.1 Next Generation Network (NGN) 1

1.1.1 The Existing Network . 2

1.1.2 General NGN Characteristics 3

1.2 Comparison of the NGN with its key Predecessors 4

1.3 NGN Architecture . 5

iv

1.4 Business Model for NGN . 7

1.5 NGN Strategies . 8

1.6 Research Justification and Aim . 8

1.7 Outline of Report . 10

2 Background 12

2.1 Parlay . 12

2.1.1 Objectives of the Parlay Group 13

2.1.2 Architectural view point 14

2.1.3 Framework Interface . 15

2.1.4 Parlay APIs . 17

2.2 Parlay X . 23

2.3 Telecommunication Information Networking Architecture (TINA) . 26

2.3.1 TINA service features . 27

2.4 Chapter Summary . 30

3 Architecture and Design Principles 32

3.1 Research Focus . 32

3.2 Architectural Overview . 33

3.2.1 Structural . 33

3.2.2 Service Session . 35

3.2.3 Overview of GApp use case analysis 37

v

3.3 The GApp Design Principle . 37

3.4 Chapter Summary . 40

4 GApp Components Design 41

4.1 GApp Frame Work . 41

4.1.1 Service Discovery . 44

4.1.2 Service Selection . 45

4.2 GApp API Manager Classes . 46

4.2.1 GApp GCC Manager . 52

4.2.2 GApp MPCC Manager . 54

4.2.3 GApp MMCC Manager 60

4.2.4 GApp CCC Manager . 61

4.2.5 GApp UI Manager . 64

4.3 Chapter Summary . 65

5 Implementation of GApp layer 66

5.1 Overview . 66

5.2 Client (ASP) and Server (SCS) . 67

5.3 Usage Scenario . 70

5.4 Chapter Summary . 71

6 Conclusion 72

vi

References 74

Appendix 77

A GAppGCCLogic 78

B GAppMPCCLogic 81

C GAppUILogic 85

vii

List of Figures

1.1 NGN Abstracted Architecture . 6

1.2 Business Model for NGN . 7

1.3 Current Parlay Implementation . 9

1.4 Target Parlay Implementation . 10

2.1 Parlay Architecture . 14

2.2 Frame work services setup . 17

2.3 MPCC API class diagram . 21

2.4 Click-to-Dial implementation on Parlay 22

2.5 Parlay Architecture . 24

2.6 Click-to-Dial using Parlay X API 25

2.7 Click-to-Dial implementation on proposed GApp interface 29

3.1 Architectural View . 34

3.2 Service Session Graph [1] . 36

3.3 Class diagram for GApp manager inheritance 38

3.4 Sequence of events used to accomplish opname1() in figure 3.3 . . 38

3.5 Class diagram for a GApp child Manager with a new functional block 39

viii

3.6 Sequence diagrams to accomplish parent and child class methods

of figure 3.5 on Parlay SCF . 39

3.7 Class diagram for a GApp child Manager with a changed functional

block . 39

3.8 Sequence diagrams to accomplish parent and child class methods

of figure 3.7 on Parlay SCF . 39

4.1 GApp Framework class . 42

4.2 Application Initiates Service . 42

4.3 Obtaining Service Information . 44

4.4 Selecting Service . 45

4.5 GApp Call manager inheritance Structure 47

4.6 GApp service relationships . 47

4.7 Application Gains control of the Call through notification 48

4.8 Application creates a call object 49

4.9 Application releases Call . 50

4.10 Application ends service . 50

4.11 Asynchronous Methods . 51

4.12 Synchronous methods on the SCF interface 51

4.13 Synchronous methods on the Application call back interface 52

4.14 Application releases call . 53

4.15 Application adds party . 54

4.16 Application starts existing session members 55

ix

4.17 Application adds new members to call object 56

4.18 Application releases call . 57

4.19 Application obtain member’s information 58

4.20 Application obtain session information 58

4.21 Application suspend or resumes call 59

4.22 Media Session Initiation . 60

4.23 Initiate Conference Service . 62

4.24 Application creates a user interaction call 64

5.1 Experimental Setup . 67

5.2 Linked List Data Type . 68

5.3 Welcome Menu . 70

5.4 Main Menu . 71

5.5 Client output for create call . 71

5.6 Server output for create call . 71

A.1 Application Sets up Call . 78

A.2 Application ends Service . 78

A.3 Asynchronous Methods . 79

A.4 Synchronous Method on SCF Interface 79

A.5 Synchronous Method on Call Back Interface 80

B.1 Application Sets up Call . 81

B.2 Application ends Service . 82

x

B.3 Asynchronous Methods . 82

B.4 Synchronous Method on SCF Interface 83

B.5 Synchronous Method on Call Back Interface 84

C.1 Application ends Service . 85

C.2 Asynchronous Methods . 86

C.3 Synchronous Method on SCF Interface 86

C.4 Synchronous Method on Call Back Interface 87

xi

List of Tables

1.1 Comparison of the NGN and its key Predecessors [2] 5

2.1 TINA Feature sets and allowed operation 28

xii

Acronyms

xiii

API Application Programming Interface

ASP Application Service Provider

CORBA Common Object Request Broker Architecture

CSM Communications Session Manager

ASP Application Service Provider

IDL Interface Definition Language

JAIN Java API’s for Integrated Networks

NGN Next Generation Network

OMG Object Management Group

OO Object Oriented

ORB Object Request Broker

OSA Open Services Access

PSTN Public Switched Telephone Network

NO Network Operator

SCF Service Capability Feature

FW Framework

GCC Generic Call Control

MPCC Multi-Party Call Control

MMCC Multi-Media Call Control

CCC Conferenec Call Control

UI User Interaction

SSM Service Session Manager

FS Feature Set

APL Application Logic

TINA Telecommunications Information Networking Architecture

UML Unified Modeling Language

USM User Service Session Manager

GApp Generic Application

GAppFW Generic Application’s Framework

GAppGCC Generic Application’s Generic Call Control

GAppMPCC Generic Application’s Multi-Party Call Control

GAppMMCC Generic Application’s Multi-Media Call Control

GAppCCC Generic Application’s Conference Call Control

GAppUI User Interaction

M Manager

CB Call Back

xiv

Chapter 1

Introduction

Over the past two decades there has been a convergence of fixed, mobile and packet

based networks. Convergence allows non-telecommunication programmers the use

of telecomm infrastructure. Thus, we have the enhancement of IT application

through telecommunication infrastructure and the enhancement of telecommuni-

cation services through external service logic, leading to the concept of the next

generation network (NGN).

One of the main objectives of the NGN is to enable an Application Service Provider

(ASP) to easily create services through the exposed service logic provided by a

Network Operator (NO). Therefore, telcos who provide a number of services will

have many ASPs using their infrastructure. Opening up the network in this way

allows competition amongst telcos and ASPs, since telcos need to offer services to

attract ASPs and ASPs need to offer their customers applications that are transparent

(service independent of network) to the user.

1.1 Next Generation Network (NGN)

To achieve communication and access to information anywhere, anytime, and in

any form, the NGN is employed by the major role-players in the telecomm indus-

try. The NGN is a multi-service bearer packet network that physically and logi-

cally separates packet switching from the service/call control intelligence. A NGN

supports multiparty, multimedia, real-time and information services with service

differentiation and mobility. The emergence of NGN is attributed to three factors

1

[3, 4]:

• Environmental Drivers: Deregulation and privatization of the telecommuni-

cation industry over the past two decades has lead to a competitive industry

operating in an open market.

• Service and Market Drivers: There has been a continuing increase in the set

of services that users demand (e.g. user and service mobility).

• Technological Drivers: There has been an emergence of distributed comput-

ing and communication.

Elaborating on the first point we observe that liberalization is leading to increased

business competition and new business opportunities. Liberalization enables growth

in the industry by allowing competition between existing and newly created compa-

nies. This competitive atmosphere is leveraged by the NGN as it provides a platform

for new businesses to easily create and deploy new features faster and cheaper [5, 6].

Therefore, telcos that provide new innovative services at cheaper prices will emerge

as the survivors in this new environment.

On analysis of the second point we observe that service and market drivers are fo-

cused on satisfying the user’s personal and professional needs. This was defined in

[7] as being User Centric. User centricity can further be divided into user satisfac-

tion and user mobility. The ability to customize user profiles is user satisfaction

while user mobility provides transparency (the same service, look and feel) across

different networks and terminals.

The third point is analyzed in the next section where we examine how the NGN

came about from existing networks.

1.1.1 The Existing Network

Today the two main networks that define our understanding of service provisioning

through connectivity are the packet based networks (e.g. Internet) and circuit based

networks (e.g. PSTN).

2

Due to the difference in the networks, alternate approaches were taken in providing

each network. The Public Switched Telephone Network (PSTN) provided service

to subscribers by placing intelligence in the network. This placing of intelligence

sees a small group of developers develop services they think the market needs. They

therefore try to develop an application that will be a “killer application” (an appli-

cation that is successful in terms of sales) [8]. This method of development and de-

ployment of services closes the market, since third-party service developers cannot

use the Telco’s network to provide services they developed. The Internet brought a

new architecture in which services are developed and deployed by service providers.

This new architecture is due to the end-to-end principle whereby all intelligence is

placed in the end systems. As a result of this, the Internet growth rate is tremen-

dous as different service providers provide services to customers connected to the

Internet. To provide an open network similar to that provided by the Internet, telcos

proposed the idea of the Open Service Market [9]. The Open Service Market key

attributes include [9, 5]:

• Allowing ASPs access to a telco’s network to deploy both voice and data

value-added services.

• Allowing ASPs with little or no knowledge of telecommunication network

technologies to develop and deploy value added services. This is achieved by

providing ASPs with an abstract view of the underlying network.

• Removing all value-added service and associated service logic from the un-

derlying network.

1.1.2 General NGN Characteristics

This section provides the characteristics of a NGN. The characteristics are provided

by detailing the attributes of the NGN [2, 10, 11, 9, 12]:

• The transport network is packet based, supporting a variety of Quality of

Service (QoS) levels for voice, video and data.

• The NGN provides broadband and multimedia services.

• The NGN supports user mobility.

3

• The NGN service architecture must be open (have standardized interfaces) to

allow third-party service providers access to services provided by the network

operators.

• The NGN separates service and associated service logic from the underlining

network.

• The NGN terminals can hold intelligence. This helps support the services

provided in the network.

• The NGN inter-works with legacy networks via signaling and media gate-

ways.

• The NGN supports a variety of services, applications and mechanisms based

on service building blocks (Application Programming Interface (API), in-

cluding real time/ streaming/ non-real time services and multi-media) allow-

ing a number of logical groupings in provisioning specific Application Logic

(APL).

1.2 Comparison of the NGN with its key Predeces-

sors

Table 1.1 shows the similarities and differences between the NGN and some of its

key predecessors. As the attributes in table 1.1 show, the NGN inherits from both the

PSTN and Internet, but it inherits more from the Internet than it does the PSTN. The

major difference between the Internet and the NGN is that the Internet transports

packets on a best effort basis (i.e., tries to deliver packets with no guarantee of

delivery) whilst the NGN provides different levels of quality of service that ensures

packet delivery. An important difference is that the Internet service providers do

not federate, and that intelligence in the Internet is kept at the end system with the

network strictly for providing transport [2].

4

Table 1.1: Comparison of the NGN and its key Predecessors [2]

Attribute PSTN/IN Internet NGN

Multimedia services No Yes Yes

QoS-enabled Yes (voice) No Yes

Network intelligence Yes No Yes

Intelligent Terminals No (except ISDN) Yes Yes

Underlying transport network TDM Packet Packet

Service Architecture Semi structured Ad hoc Structured

Service Reliability High Low High

Service Creation Complex Ad-hoc Systematic

Ease of use of application services Medium High High

Ease of creation of application services Low Medium High

Evolvability or Modularity Low Medium High

Time to market of service Long Short Shorter

Architectural openness Low Medium High

1.3 NGN Architecture

Nowadays voice communication has become a common commodity, the quest now

is to provide value-added services that have the greatest ability to generate revenue.

As the next money making application is unknown, it is not useful to spend enor-

mous amount of money on infrastructure to enable a single application, as too many

factors influence its commercial success. It is preferable to provide an environment

that enables the creation of applications by providing services that are commonly

needed for application development: and such an environment is referred to in [8]

as the killer environment. To achieve this environment a new architecture with

open access to, and programmability of network resources is required. This leads to

the use of the Application Programming Interface (API) which has been used with

much success in the IT world. An API provides application developers with pro-

grammability of software resources by defining these resources in terms of objects,

methods, data types and parameters that operate on those objects [13]. In other

words, a killer environment is an environment in which a number of ASPs provide

services to their consumers using Open APIs provided by telcos. Hence a killer en-

vironment will allow ASPs to easily and quickly create and deploy any application

without disrupting on going network services [8].

5

Application Layer
(IT/Telecom Application within

Feature Servers)

Service Intelligence Layer
(Rich, generic, stable functionality

Capable of controlling network
Resources)

Network Resource Layer
(Legacy equipment, IP/MPLS

Switches or Routers and
back-end Database)

•ASP use services provided by the
network operator (NO) in the

service layer.

•The application layer is where the
Application Service Providers

(ASP) are situated.

•Transport is provided by the network
layer

Figure 1.1: NGN Abstracted Architecture

To create a killer environment, the NGN architecture requires a clean separation of

functions and domains with the maximum degree of reuse built into the architecture

and its components [2]. As a result, the architecture should cater for middleware (in

the sense of generic service control) that can hide the complexity of the transport

layer from the ASP. This architectural requirement gives rise to the layers detailed

in figure 1.1

• The Application Layer: contains the logic specific to the application i.e., con-

tains the ASP applications.

• The Service Layer: A service is a software application that provides a tangible

functionality for the Application layer. Therefore, the service layer contains

data and logic required to perform services required by the application i.e it

contains open APIs.

• The Network Layer: This layer provides the connectivity required by the

service layer, according to QOS and policy constraints.

Two or more NGNs can be federated to provide more services to a user, imply-

ing that a user in one NGN domain can use applications or services provided in

another NGN domain [7]. The architecture ensures the “killer enabler” (openness

and programmability of network service capability) which allows a wider base of

developers for the introduction of value added services and future applications [8].

6

1.4 Business Model for NGN

Figure 1.2 shows the model adapted for this research. This model is a modification

of the TINA Consortium (TINA-C) business model. The modification was proposed

in [9], where a movement was made from a telco centric model to an ASP centric

model.

Consumer

Bkr - Broker Reference Point
RtR - Retailer to Reference Point
Tcon - Terminal Connectivity Reference Point
ConS - Connectivity Service Reference Point
CSLN - Client Server Layered Network Reference Point
LNFed - Layered Network Federation Reference Point

Retailer

Bkr

Bkr

Bkr

RtR

TCon/ConS

Open
API

Open
API

Connectivity
Provider

CSLN LNFed

Application
Service
Provider

Open
API

Broker

Bkr

Figure 1.2: Business Model for NGN

The components specified in this diagram include:

• The Broker: it allows for service location between domains.

• The Application Service Provider: it develops applications for consumer.

• The Consumer: it represents the end user.

• The Retailer/Network Operator: it is responsible for the provisioning of

reusable APIs that will enable the ASP to manipulate physical network re-

sources during service provision.

• The Connectivity Provider: it provides physical network resources and in-

frastructure.

This approach allows for the use of open APIs. It is ASP centric, and the interface

between the ASP, retailer and consumer is defined using a set of standardized and

7

open APIs. The federation of domains is accomplished through the broker and the

transport is provided by the connectivity provider.

1.5 NGN Strategies

Different strategies that contribute towards NGN are suggested by different indus-

try groups, these include Java APIs for Integrated Networks (JAIN), Telecommu-

nications Information Networking Architecture (TINA) and Open Services Access

(OSA)/Parlay [9].

Parlay was conceived by major telecommunication and Information Technology

companies. The purpose is to produce APIs that enable third-party application

service providers to develop value-added services that use the capabilities and re-

sources existing in telecommunications networks. These APIs are of two types,

known as the Framework and the Service Capability Feature (SCF). The Frame-

work provides ASPs with controlled access to SCFs whilst the SCFs provide ASPs

with access to network resources. Parlay is the NGN contributor this research fo-

cuses on. The Parlay specification is currently on version five at the time of writing,

but the research was conducted using version four. The issues addressed in this re-

search are based on version four but still apply in version five, as the specification

has not changed with respect to the APIs detailed in this research.

1.6 Research Justification and Aim

The complexity faced by a Parlay service developers has increased due to the in-

troduction of new functionality in the Parlay call control interface in version four

of the specification. For example developers need knowledge on manipulation of

telecomm related objects such as call-legs. This implies that Parlay developers us-

ing the Parlay gateway for development need telecommunication knowledge. To

avoid this requirement a modification to the Parlay gateway is required. This modi-

fication is usually achieved by providing an abstract view of the Parlay gateway.

The current method of attaining abstraction usually reduces the programmer con-

trol over the gateway. For example, the Parlay X gateway is an abstraction of the

8

Parlay gateway. The Parlay X gateway provides an interface for Web developers

to create and deploy services simply, by using simple synchronous method calls

which reduce the functionality of the API in comparison to the Parlay gateway. For

example, a request issued in Parlay X has to be satisfied before any further request

is issued. As Parlay X focuses on providing abstraction for web programmers, we

require a scheme that provides abstraction satisfying the needs of all programmers.

Such a scheme must maintain the same level of functionality as the Parlay gateway

and hide details that do not add functionality when providing a service with the

Parlay gateway.

Therefore this research aims to provide a simple interface to enable application de-

velopers to easily create services without requiring telecommunication knowledge,

whilst maintaining the same level of functionality currently provided by the Parlay

gateway. In other words, the research aims to provide an interface with a higher
level of abstraction and the same level of functionality as the current Parlay
gateway.

Frame-Work

Other OSA SCFs:Obj1 Obj3Obj2

Application Layer

Service Layer

Other Particular
Application (PApp) Logic

SCF1

PApp1 PApp2 PApp3

Figure 1.3: Current Parlay Implementation

Figure 1.3 (obj represent object in the figure) shows a simplified model of the cur-

rent implementation of services on the Parlay gateway. Each application needs to

coordinate the provision of its service in the gateway. As a result it needs to keep

information on:

• identity of the objects in the SCS (i.e reference and object ID)

9

• methods available on the objects

• logical grouping of method calls on objects

• object life cycle management

GApp(holds higher level methods)

PApp1 PApp2 PApp3

Frame-Work
Other OSA SCFs:

Obj1 Obj3Obj2

Application Layer

Service Layer

Other Particular
Application (PApp) Logic

SCF1

Figure 1.4: Target Parlay Implementation

This research aims to provide abstraction for the ASPs by providing a new layer

that provides a higher level of abstraction for the Parlay gateway. This new layer

is indicated in figure 1.4 as the Generic Application Programming (GApp) layer.

The Particular Application (PApp) Logic contains application specific logic that

use GApp functional blocks, therefore the application programmer provides the

PApp logic through the functional blocks provided in the GApp. The GApp layer

abstraction is attained by providing:

• a simple interface for the ASP to interact with.

• higher level methods on the GApp interface thereby simplifying the calls to

the SCF.

• life cycle management of objects created in the SCF during the execution of

a service instance.

1.7 Outline of Report

The rest of this report is organized as follows:

10

In Chapter 2, an overview of Parlay is given by providing the objectives of the Parlay

API and detailing the architectural view in terms of the computational division. The

TINA, and its service features are also examined together with other approaches

that have been used to try to introduce a higher level of abstraction.

In Chapter 3, the architectural design is detailed for the extended Parlay model.

This is done by looking at the computational interaction in the structural and service

session models.

In Chapter 4, details of the design of the GApp components (GAppFW, GAppGCC,

GAppCCC, GAppMPCC, GAppMMCC, GAppUI) are provided.

In Chapter 5, we provide an overview of the implementation of the GApp interface.

This is done by detailing the process used to implement a GApp MPCC interface.

Finally, in Chapter 6, conclusions are presented and recommendations for further

work are suggested.

11

Chapter 2

Background

The chapter provides the reader with an understanding of the levels of abstraction

currently provided for in Parlay and the level sought after for the Generic Applica-

tion Programming (GApp) components. We therefore give an overview of Parlay by

providing its objectives and detailing the architectural view in term of the computa-

tional division. We then detail Parlay X as a method of providing a higher level of

abstraction for the Parlay gateway and finally we examine the Telecommunication

Information Networking Architecture (TINA) and its service features as a possible

contributor to an API of greater abstraction.

2.1 Parlay

The Parlay Group was initiated in 1998 by a community of operators, IT vendors,

network equipment providers, and application developers. It was initiated to meet

the need for innovative applications that combine network features with Internet

services and critical enterprise data, thereby producing Application Programming

Interface (API) specifications that would combine the best of the telecomm and IT

worlds [14]. Parlay is a non-profit consortium of over 65 companies representing

the telecommunication and IT worlds including Alcatel, British Telecom, Ericsson,

Fujitsu, HP, IBM, Incomit, Lucent, NTT, Siemens, Sun, Telcordia Technologies,

Telecom Italia and Teltier [15, 16].

The Parlay architecture provides an open platform for service creation and delivery

12

in future multi-service networks. Chapter 1 showed that NGN is achieved by plac-

ing a service platform between the application and network layer. Parlay provides

this service platform through APIs. An API is thus a mechanism by which network

capabilities are accessed. As a result, application programming is abstracted from

protocol details within the network, which enables applications to evolve indepen-

dently from the network.

The specification of Parlay focuses on a number of APIs including call control,

user interaction and mobility management. The Parlay group specifies interaction

between its components through UML definitions and ensures backward compati-

bility with previous versions.

2.1.1 Objectives of the Parlay Group

One of the main objectives of Parlay APIs is to encourage third-party application

developers to develop applications on telco’s infrastructure. These APIs are thus

designed to be [9, 15]:

1. Open and secure. Despite the openness, security is a key issue since ASPs

and telcos need to be assured of the security of APIs to assure the security of

their domain.

2. Network and technology independent. Since the advent of Parlay APIs, there

is the possibility of writing applications that can work on a variety of proto-

cols. Therefore the APIs should address a broad range of network functional-

ity. Thus allows for the combination of different network capabilities that is

provided using different technologies [9, 17].

3. Simple to use and easily extendable through UML. This feature is to attract

ASPs to develop new application using the easy-to-use APIs. This objective

was not totally meet as the addition of new functionality to the APIs increased

its complexity in the later versions of the standards.

13

2.1.2 Architectural view point

The service architecture in Parlay is divided into two parts, the application layer

(that may be located in a third-party service provider domain) and the service layer

(that contains the Service Capability Server (SCS) and is located in the network

operator’s domain). The application layer contains objects that implement the call-

back interface and the application logic, whilst the service layer contains objects

that provide two categories of interfaces:

• The Service Capability Feature (SCF): is a logical grouping of associated

interfaces e.g., call control interfaces are grouped into the call control SCF.

• Framework: is a component whose main function is to cryptographically au-

thenticate the application, and return object references to the application for

those Parlay/OSA functions (or service capability features) it has been al-

lowed to use by the service provider [15] i.e., it provides interfaces that sup-

port capabilities necessary for SCFs to be secure, resilient and manageable

[9].

Frame-Work Other OSA SCFs:
User interaction
Mobility
Data Session

CM Call
LegCall

Application Layer

Service Layer

Application Logic

Application Service Provider (ASP) Domain

Network Operator (NO) Domain

App
CM

App
CL

App
Call

Call Control Application Programming Interface (API)

Network Layer

Figure 2.1: Parlay Architecture

Parlay uses the concept of APIs to describe a set of standardized programming in-

terfaces. APIs are implemented on the client side (application layer) as callback

interfaces and on the server side (service layer) as SCFs in SCSs, this is illustrated

14

in figure 2.1. As shown in figure 2.1, the client side API is implemented in the

application domain and the SCFs are implemented in the server/Network Oper-

ator (NO) domain. Communication between client and server objects is achieved

through Distributed Object Computing (DOC) (e.g., CORBA). The number of SCFs

and richness of methods of each SCF makes Parlay API powerful.

The ASP accesses the services provided in the service layer through SCF interfaces.

The SCFs are initially accessed through the Framework which stores information

about the applications and creates the required computational object (manager) for

each SCF that the application uses. Parlay thus separates application logic from

generic service logic in the SCFs, implementing the APIs (for example call control,

messaging and event notification) across the client and server sides.

2.1.3 Framework Interface

Framework interfaces provide the necessary capabilities for the SCFs to perform

their functions while maintaining the system integrity. In this section, the interfaces

enabling communication between an application and the framework is indicated by

FW App whilst the interfaces enabling communication between the framework and

a SCS is indicated by FW SCS . The framework offers the following interfaces [18]:

• Trust and Security Management (FW App): serves as a contact point between

the application and the framework interface, therefore it authenticates do-

mains.

• Service Access (FW App): ensures that the application is allowed to use spe-

cific SCFs and interfaces.

• Service Discovery (FW App): enables the location of interfaces supported by

the framework and SCFs Service.

• Registration (FW SCS): enables the registration of interfaces at the frame-

work to make a repository of interfaces available.

• Discovery and Service Registration (FW App): enables an application to dis-

cover what interfaces are available and provides information about each in-

terface.

15

• Event notification: reports the generic events that occur in the network.

• Integrity management (FW SCS): is achieved through the Load manager, the

Heartbeat Manager and Operation, Administration and Maintenance (OAM)

interface.

– Load manager: achieves load balancing according to a load management

policy.

– Heartbeat manager: allows the supervision of calls by keeping track of

message invocation and states of different object instances [9].

• Service Life Cycle Manager (FW SCS): creates a new instance of an API

implementation.

• Contract management: manages the contract between different domains (e.g.,

between an application provider and a network operator).

The functionalities of the framework are explained by means of an example where a

new SCS is installed and an application starts using it. These functionalities include:

1. Registration (adding a new SCS): This includes a SCS requesting a regis-

tration interface from the framework. After the framework provides this in-

terface, the SCS uses it to publish its type and capabilities and provides the

framework with an object reference allocated by the Service Life Cycle man-

ager.

2. Setup of Service Agreement: The information supplied by the SCS to the

framework and the condition under which an application is allowed to use

this SCS is captured in a service agreement in the management system.

3. Run-time communication establishment: The sequence in figure 2.2 illus-

trates the events that occur when an application requires the capability offered

at the SCS. The sequence in figure 2.2 is:

• The application logic uses the service discovery interface to find the

services that are registered at the Framework (1). The framework then

returns the set of services the application is allowed to use (2). The

application logic then selects a service (3); the framework then uses the

SCS to create a service manager (indicated by M in a box) object (4)

and the reference is returned to the application logic (steps (5)&(6)).

16

Application Logic CallBack
Mechanism

FrameWork SCS

4) Create Service Manager Object

5) Return Service Manager ObjectRef

 Application Layer

Service Layer

API

M I

M I

 2) Return List
6) Forward
Object Ref

8) Invoke Method

7) Create CallBack Manager
9) Create CallBack Instance

1) Service
 Discovery

 3) Select
 Service

10) Invoke Method

Figure 2.2: Frame work services setup

• The application logic then decides it needs to invoke a method on the

SCF. It creates the callback interface for the object manager (7); the

callback interface returns the reference of this object to the application

logic (not shown). The application logic then uses the callback refer-

ence to invoke a method (for example to create a call) on the service

manager object in the service layer (8), if the method invoked requires

object instance creation an object instant is created (indicated by I in a

box). The application logic can now create a callback object and invoke

methods on the object instant in steps (9) & (10).

2.1.4 Parlay APIs

An API provides the capabilities for application to control physical network re-

sources. Different APIs include [17, 15, 16]:

• Call Control: includes a range of APIs that provide different types of calls

ranging from a basic call to a multimedia conference call.

• User Interaction: enables an application to obtain and provide information to

the end user. Interaction is achieved through announcement, short messages

etc.

17

• Mobility: enables an application to obtain location and request notifications

on location update of a terminal.

• Data Session Control: enables application management of data sessions initi-

ated from terminals. It is mainly used for GPRS applications.

• Generic Messaging: enables an application to access mailboxes, send and

receive messages and interact with messaging systems, such as voice, FAX or

email.

• Connectivity Manager: enables an application to manage the quality of ser-

vice between the end systems in a Virtual Private Network.

• Terminal Capabilities: enables an application to determine the capability of

end-user terminals.

• Presence and Availability Management: enables an application to set and ob-

tain information about a user’s presence and availability.

• Account Management: enables an application to query accounts and obtain

transaction history.

• Charging: enables an application to request a particular payment method for

service usage. (e.g “content-based charging” or reserve payment for future

services “Pre-Paid Charging”)

• Policy Management: enables an application to setup and register for policy

related events.

Parlay Services

Parlay call service interfaces can be categorized according to the service manage-

ment work they perform. This categorization sees the more common service man-

agement interfaces grouped together in the service manager objects. Elaborating on

this, the interfaces include [19]:

• The Service manager: This object is created for each application that com-

municates with the SCF. Its purpose is to create new objects as needed by

the application in the SCF. The combination of the service manager and the

objects it creates are referred to as a service instance.

18

• Call: represents a relationship between parties i.e., it relates all parties that

have an association. Therefore it facilitates communication between parties.

Different applications can have access to the same call object (since different

applications might have similar trigger points resulting in them being passed

the same call object reference) but share different views, with one application

at the originating side and the other at the terminating side. As a result, the

applications are unaware of each other’s presence. This implies that the entire

call is released from the applications perspective if an application releases the

call object.

• Call-Leg: The CallLeg object associates a Call object with an address. As a

result, attaching a call-leg implies routing the call to the target address and

enabling the media or bearer channel to allow communication with the other

parties connected to the call.

Call Control API

This section details each Call control API catered for, by giving a brief explanation

of each.

The Generic Call Control (GCC) API provides the basic call control services. These

services are generally for two-party calls as the GCC API does not give explicit ac-

cess to legs and media channels. The GCC allows for call-setup by an application

or through the network. It provides access to network related services through its

interfaces IpCallControlManager and IpCall. The SCF communicates with the ap-

plication through the GCC call back API with interfaces IpAppCallControlManager

and IpAppCall.

The Multi-Party call control (MPCC) API extends the GCC by providing leg man-

agement functionality. It allows for establishment of multi-party calls, with the

total number of legs varying according to service requirements. Access to network

related services is provided through interfaces IpMultiPartyCallControlManager,

IpMultiPartyCall and IpCallLeg. The MPCC SCF communicates with the applica-

tion through the MPCC call back interface IpAppMultiPartyCallControlManager,

IpAppMultiPartyCall and IpAppCallLeg.

19

The Multi-Media call control (MMCC) API extends MPCC by providing multi-

media capabilities. It allows for the association of media streams with call-legs.

Access to network related services is provided through IpMultiMediaCallControl-

Manager, IpMultiMediaCall, IpMultiMediaCallLeg and IpMultiMediaStream. The

MMCC SCF communicates with the application through the MMCC call back inter-

faces IpAppMultiMediaCallControlManager, IpAppMultiMediaCall, IpAppMMul-

tiMediaCallLeg and IpAppMultiMediaStream.

The Conference Call Control (CCC) API extends the MMCC by providing the abil-

ity to manipulate sub-conferences within a conference. A subconference describes

the connection of call-legs within a conference. Access to the network resources is

provided through IpConfCallControlManager, IpConfCall and IpSubConfCall. The

CCC SCF communicates with the application through the CCC call back interfaces

IpAppConfCallControlManager, IpAppConfCall and IpAppSubConfCall.

There is increased complexity in the new Parlay specification (Version four) due to

the increased number of interfaces therefore making it difficult to use. The increased

complexity is brought about since the MPCC, MMCC and CCC provide interfaces

for detailed manipulation of resources (e.g call leg), as a result:

• An ASP needs to make sure that the interaction between the call manager

objects, call objects and call-leg objects leave the gateway in a consistent

state.

• An ASP needs to know the methods applicable to each computational object

and how these methods combine to provide a service.

Familiarizing a non-telecomm expert with these computational objects and their in-

terfaces will be difficult, which defeats the purpose of introducing the Parlay gate-

way. This research finds a solution to the problem.

To elaborate on the complexity we provide a class diagram of Parlay MPCC API in

figure 2.3. As can be seen, there are six classes. Each class contains its own meth-

ods. Therefore the application programmer will need to understand the functionality

attained by invoking a particular method on a particular interface. For example:

• one would need to set a notification point to be notified of network events

during service provisioning.

20

IpAppCallLeg

eventReportRes()
eventReportErr()
attachMediaRes()
attachMediaErr()
detachMediaRes()
detachMediaErr()
getInfoRes()
getInfoErr()
routeErr()
superviseRes()
superviseErr()
callLegEnded()

IpAppMultiPartyCallControlManager

reportNotification()
callAborted()
managerInterrupted()
managerResumed()
callOverloadEncountered()
callOverloadCeased()

IpAppMultiPartyCall

getInfoRes()
getInfoErr()
superviseRes()
superviseErr()
callEnded()
callAndRouteCallLegErr()

IpMultiPartyCallControlManeger

createCall()
creatNotification()
destroyNotification()
changeNotification()
<<deprecated>> getNotification()
setCallLoadControl()
enableNotification()
disableNotification()
getNextNotification()

IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

IpCallLeg

routeReq()
eventReportReq()
release()
getinfoReq()
getCall()
attachMediaReq()
detachMediaReq()
getCurrentDestinationAddress()
continueProcessing()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

uses

uses

1

0..*

1

0..*

1

0..*

uses

1

0..*

Figure 2.3: MPCC API class diagram

• to establish a call, one would need to create a call manager object, a call

object, a call-leg and attach media to enable communication.

All these procedures and interaction of the interfaces make Parlay complex for de-

velopers without telecommunication knowledge as they need to coordinate their

sequence of calls to the Parlay SCF interfaces.

We illustrate this complexity by providing an example of a Click-to-Dial application

using the Parlay SCF in Figure 2.4 (A Click-to-Dial call is a two-party web call).

21

Service
Provider APL

IpAppMPC
CManager

IpAppMPC
CCall

IpAppCallL
eg

IpMPCCMa
nager

IPMPCCC
all

IPMPCCC
allLeg

EndUser :
<Actor Name>

3: new()

5: new()

8: new()

19: forward

21: forward

11: new()

6: createCall()

4: setCallBack()

15: routeReq()

17: routeReq()

18: eventReportRes()

20: eventReportRes()

14: eventReportReq()

16: eventReportReq()

7: new()

9: createCallLeg()

12: createCallLeg()

10: new()

13: new()

1: Access portal

2: Use Click-to-Dail page

22: Report call in progress

Figure 2.4: Click-to-Dial implementation on Parlay

22

• Figure 2.4 shows the EndUser starting a Click-to-Dial service (2). The ser-

vice provider application logic (APL) provides a two-party call by invoking

a number of operations on the Parlay gateway. Firstly it executes new() on

IpAppMPCCManager (3), which creates a callback object and forwards the

reference to IpMPCCManager through the method setCallback()(4).

• (5) The service provider application logic then creates another call back ob-

ject IpAppMPCCCall and (6) forwards the call back object interface reference

to IpMPCCManager through the createCall() operation, which then creates a

new IpMPCCCall object (7).

• Messages 8,11 and 9,10 are then used for the creation of call back and call leg

objects respectively. Thereafter the application routes to the call legs target

addresses using messages 14-17. The corresponding responses are sent in

messages 18-21. This is then indicated on the web page as call in progress

(22).

As can be seen operations 3-21 need to be coordinated by the application service

provider logic which implies the ASP programmer require some telecomm knowl-

edge.

2.2 Parlay X

In order to provide a simple API for web developers, Parlay X API was conceived

late in 2001 to provide a higher level of abstraction and specific capabilities that are

not currently provided by the Parlay API. The Parlay API caters for the common

aspects of fixed, mobile and packet networks but does not account for specific as-

pects such as support for SMS (Short Messaging Service). Also, programming on

the Parlay interfaces to provide simple services such as Click-to-Dial is complicated

due to the interaction of different components and interfaces.

The Parlay X interface therefore seeks to produce predominantly simpler APIs with

reduced capabilities. This implies that developers who need advanced control over

a SCF will use the Parlay API. As a result, the Parlay X API is to be predominantly

deployed in a Web environment. This approach encourages the creation of appli-

cation by Web developers by providing APIs with a level of telecommunication

23

knowledge suited to them.

Due to the fact that Parlay X provides specific capabilities some capabilities will

not be mediated through the Parlay gateway and will rather be made available on

the resource layer [8]. Figure 2.5 illustrates the key points mentioned.

Parlay X Client

Parlay X Gateway

Resource Layer

Programmable Gateway (Service Layer)

Figure 2.5: Parlay Architecture

Figure 2.6 shows the Parlay X implementation of the Click-to-Dial application. In

this example the MakeCallRequest() message is invoked on the Parlay X API Third-

PartyCallWebService, which makes requests to set-up a voice call between two ad-

dresses (Calling Party and Called Party), provided that the invoking application is

allowed to connect them. The results to this request is passed back in messages 5 as

MakeCallResponse() which returns a call identifier for the call to be created. The

call identifier is used by the service application logic as a parameter to GetCall-

InformationRequest(). The GetCallInformationRequest() method is then invoked to

obtain information on the status of the call, therefore the service provider applica-

tion logic may have to invoke it a number of times, before obtaining a favorable

response, such as call in progress. On invoking MakeCallRequest() on the Third-

PartyCallWebService, it communicates with the Parlay gateway with a number of

messages between 3-30. This message sequence is similar to messages 3-21 in fig-

ure 2.4 which is explained in section 2.1.4.

As compared to the Click-to-Dial in section 2.1.4 the telecomm knowledge required

24

Third Party Call Web
Service

Service
Provider APL

IpAppMPC
CManager

IpAppMPC
CCall

IpAppCallL
eg

IpMPCCMa
nager

IPMPCCC
all

IPMPCCC
allLegEndUser :

<Actor Name>

4: new()

7: new()

12: new()

25: forward

27: forward

17: new()

10: createCall()

6: setCallBack()

21: routeReq()

23: routeReq()

24: eventReportRes()

26: eventReportRes()

20: eventReportReq()

22: eventReportReq()

11: new()

14: createCallLeg()

18: createCallLeg()

16: new()

19: new()

3: MakeCallRequest()

1: Access Portal

2: Use Click-to-Dail Page

5: MakeCallResponse()

30: Report call in progress

8: GetCallInformationRequest()

9: GetCallInformationResponse()

13: GetCallInformationRequest()

15: GetCallInformationResponse()

28: GetCallInformationRequest()

29: GetCallInformationResponse()

Figure 2.6: Click-to-Dial using Parlay X API

25

is minimal as a single call to MakeCallRequest() performs process 3-21 in figure 2.4.

But due to the high level of abstraction the ASP programmer does not have access to

certain Parlay objects such as the call leg and hence cannot perform operations that

require it to modify the state of a particular call leg. This limits the programmer’s

control as he/she cannot perform operations (e.g. add party, suspend and create) on

a particular party. Hence there is loss in functionality when compared to the Parlay

Gateway. The service provider application logic also needs to continuously poll

the ThirdPartyCallWebService in order to obtain information on the call status, this

increases the complexity of Parlay X as the ASP programmers need to add polling

facility to their programs.

2.3 Telecommunication Information Networking Ar-

chitecture (TINA)

The TINA consortium was started in 1992 by about 40 companies in “an inter-

national collaboration aiming at defining and validating an open architecture for

telecommunications systems for broadband, multi-media, and information era” [20].

The TINA architecture is made up of a number of sub-architectures. The architec-

ture this project focuses on is the Service Architecture. This architecture provides

for management, implementation, design and specification of telecommunication

services. The service architecture in TINA encapsulates a number of concepts and

principles. One relevant to this discussion is the session concept. A session is a

period of time during which activities are performed to accomplish service goals.

Of interest are the service session which provides management for a single service

and a user session which provides the management of a user within a service ses-

sion. TINA uses defined computational objects to implement sessions. The Service

Session Manager (SSM) contains the service logic while a User Session Manager

(USM) represents each party in the service. The SSM is used for overall service co-

ordination and the USM is used for user specific service management [20]. TINA

also defines feature sets by grouping interfaces on the SSM (and USM) by service

types of different complexity. For example TINA defines a set of methods to sus-

pend, modify and create calls. TINA is limited in that the available feature sets

(FSs) are confined to call control and that the SSM and USM are complex compu-

tational objects, containing both generic and application specific logic. Work in [9]

26

demonstrates the separation of the TINA’s USM and SSM into application-specific

and generic logical parts for different feature sets.

2.3.1 TINA service features

The TINA session model defines a number of feature sets and the interfaces they

work on. A number of feature set descriptions and what they are dependant on is

tabulated in table 2.1

The BasicFS is suitable for single party calls and only allows the application to end

or suspend the call. The multipartyFS is suitable for calls with two or more parties

whilst the multipartyIndFS allows a party to communicate the operation it invoked

to other parties in the session. The VotingFS allows parties to vote on the decisions

to be taken in a session, whilst the ParticipantSRBS and ParticipanSBIndFS allows

applications to manage their streams. Table 2.1 contains the feature set, allowed

operation, feature sets dependency and computational objects this feature sets apply

to. Feature sets dependency works by allowing simpler feature sets usage as the

basis for more sophisticated features sets, for example a multipartyFS depends on

the BasicFS.

The level of abstraction provided by TINA service feature is close to what we want

to achieve but is not high enough because:

• one still needs to keep information on the interface identity i.e whether a USM

or an SSM interface object and their corresponding object reference.

• TINA’s FS can only be mapped (super imposed) to Parlay call control SCFs

because TINA does not cater for the other SCFs provided in the Parlay gate-

way. Parlay call control SCF mapping to TINA FS exists because TINA ser-

vice architecture uses TINA FSs as a means of specifying capability levels

supported by different service components, whilst Parlay achieves a similar

concept by splitting the call control SCF into GCC, MPCC, MMCC and CCC.

We therefore use TINA FSs as guidelines in providing a higher level of abstrac-

tion. The level of abstraction sought after is higher than that of TINA FSs, since

we seek to provide all methods on a single simple interface. Communicating with a

27

Table 2.1: TINA Feature sets and allowed operation

Feature Set (FS) Allowed operation Dependent On Computation Object

BasicFS end Mandatory SSM

suspend

MultipartyFS create BasicFS SSM

suspend USM

modify

end

MultipartyIndFS create MultipartyFS USM

suspend

modify

end

resume

VotingFS create MultipartyIndFS SSM

suspend USM

modify

end

ParticipantSBFS create BasicFS SSM

suspend USM

modify

end

ParticipantSBIndFS create ParticipantSBFS USM

suspend

modify

end

resume

28

Service
Provider APL

GApp IpAppMPC
CManager

IpAppMPC
CCall

IpAppCallL
eg

IpMPCCMa
nager

IPMPCCC
all

IPMPCCC
allLeg

End User :
<Actor Name>

4: new()

6: new()

10: new()

22: forward

24: forward

7: createCall()

5: setCallBack()

18: routeReq()

20: routeReq()

21: eventReportRes()

23: eventReportRes()

8: new()

3: intiateSession()

9: initiateSessionMembers()

13: new()

11: createCallLeg()

14: createCallLeg()

12: new()

15: new()

17: eventReportReq()

19: eventReportReq()

16: addReq()

25: addRes()

1: Access portal

2: Use Click-to-Dail page

26: Report call in progress

Figure 2.7: Click-to-Dial implementation on proposed GApp interface

29

single simple interface enables abstraction from the identity of the SCF objects that

implement a service. Having this in mind the Click-to-Dial example is illustrated

in figure 2.7 using TINA-like FSs with the components identity abstracted. In fig-

ure 2.7 GApp stands for an interface where TINA-like FS operations are triggered,

the initiateSession() method serves the same purpose as a create() invoked on a

SSM MultiPartyFS interface, the initiateSessionMember() method is equivalent to

a create() invoked on a USM MultiPartyFS interface and the addReq() method is

equivalent to a create() invoked on a ParticipantSBFS interface. On invocation of

the Click-to-Dial application, the initiateSession() method is invoked on the GApp

interface. This is achieved on the Parlay gateway through messages 4-7. Thereafter

the initiateSessionMember() method is invoked to create objects required for a two

party call (9). The user then adds media connection through the addReq() method

in 16. The response is returned in 25, which is then forwarded to the end user as

call in progress (26).

The abstraction provided here still leaves the application programmer with control

as he/she can still perform operations on each party in the call, for example we can

add and suspend parties. This and other functionality are elaborated on in chapter

4.

TINA provides this research with the logical groupings required to provide an ab-

stracted interface and how this logic can be extended from simple to a more complex

interfaces. Functions obtained from TINA include create(), resume(), suspend() and

end(). These functions are used as guidelines when searching for reusable blocks

in the Parlay specification. TINA is used as it provides facilities for call services.

Starting from its abstracted interfaces (service features) as guide line, we could

provide a simple call by going through GCC specification; thereafter move on to

provisioning more complex services.

2.4 Chapter Summary

This chapter gives an overview of Parlay by providing its objectives and detailing

the architectural view in term of the computational division. It then details Parlay

X as a method of providing a higher level of abstraction for the Parlay gateway

and finally examines the Telecommunication Information Networking Architecture

30

(TINA) and its service features as a possible contributor to an API of greater ab-

straction.

31

Chapter 3

Architecture and Design Principles

This chapter formally states the research question and details the architecture and

design principle used to create the Generic Application Programming (GApp) inter-

faces. The architectural details include a structural and session model. The design

principles are provided as rules used as guidance for reusable block provisioning

and extendibility.

3.1 Research Focus

The number of SCFs and the richness of methods of each SCF make the Parlay

API powerful. A resulting problem is that the method calls used to provide services

proves complex for developers without telecommunication knowledge. While the

SCF contains the detailed control logic, the application must coordinate the se-

quence of calls on the SCF interface. We hypothesize that there will be recurring

logic in the application domain to implement this coordination. This research there-

fore seeks to improve service development and deployment by introducing a higher

layer of generic services that can be accessed by applications through simpler calls.

The research question is:

• Starting with Parlay APIs, how can one create reusable blocks that pro-
vide a higher level of abstraction:

– to enable rapid application creation and deployment by Application
Service Providers (ASPs)

32

– with the same level of functionality as the Parlay gateway

In the following section we provide a new architecture that provides a higher level

of abstraction on the Parlay gateway through a new programming interface called

GApp.

3.2 Architectural Overview

This section gives an overview of the architectural design for the extended (i.e GApp

API included) Parlay model. The architectural overview is provided by looking at

the interaction of components in the structural model. Figure 3.1 shows the sepa-

ration proposed in the application layer, with each application having its own Par-

ticular Application (PApp) logic and using the GApp logic provided in the GApp

layer. As a result, the ASP does not need detailed knowledge of the Parlay APIs,

and simply uses the methods provided in the GApp layer.

There are two types of abstraction identified in this research:

• Identity: This is an abstraction brought about by hiding the identity of the

Parlay computational objects.

• Logical: This abstraction is brought about by grouping Parlay methods, to

provide a new simpler method.

In this research a GApp API is provided to interact with all call control, framework

and UI APIs. The analysis for reusable blocks should be extended to cater for the

other APIs in the Parlay gateway.

3.2.1 Structural

The structural design was accomplished by dividing the GApp layer into two sub-

layers:

• The lower layer handles the complexity of Parlay APIs. In order to commu-

nicate with the APIs in a structured form, each Parlay API has a GApp API

33

FW Service
Layer

GCC MPCC MMCC CCC UI

FWCB GCCCB MPCCCB MMCCCB CCCCB UICB

Application
Layer

GApp Layer

GApp
FW

GApp
GCCM

GApp
CCCM

GApp
MPCCM

GApp
MMCCM

GApp
UIM

…...To be
extended

GAppM

Parlay X

Web-
Ser3

Web-
Ser2

Web-
Ser1

PApp3PApp2PApp1

Manager Object
Call Object
Call Leg Object

[A-z]M= [A-z] Manager
[A-z]CB= [A-z] Call Back

Figure 3.1: Architectural View

manager which manages complexities brought about by it specialization (e.g

GAppFW manages the interaction complexity for the Frame Work API).

• The higher layer (GAppM) provides a simplified interface for communication

with the ASP. The ASP communicates with the GApp API managers through

this layer, hence it hides GApp’s structure, therefore providing identity ab-

straction within the GApp layer.

We aim to provide abstraction by having SCF functions that do not refer explicitly to

objects that implement the service session being accessed from the GApp Manager

interface; otherwise a function is created in the GApp layer. This function acts as

a mediator containing the logical interaction of the SCF objects therefore hiding its

complexity from the application.

Figure 3.1 shows the architectural view of each of the components. The GApp layer

has seven components which are:

• GAppM hides GApp structural information from the ASP. It is included in the

design to provide a simple interface for the ASP, therefore it provides identity

34

abstraction for GApp API managers. The rest of the GApp interfaces (e.g

GAppFW, GAppGCCM , GAppMPCCM) provide a simple set of interfaces for

GAppM (north bound) and interact with the network operator interfaces and

call back through a more complex interface (south bound).

• GAppFW manages creation and removal of services at the ASP’s request;

also provides service discovery functionalities.

• GAppGCCM manages interaction with the Generic Call Control (GCC) API.

Therefore GAppGCCM hides GCC interface complexity.

• GAppMPCCM manages interaction with the Multi-Party Call Control (MPCC)

API. Therefore GAppMPCCM hides MPCC complexity.

• GAppMMCCM manages interaction with the Multi-Media Call Control (MMCC)

API. Therefore GAppMMCCM hides MMCC complexity.

• GAppCCCM manages interaction with the Conference Call Control (CCC)

API. Therefore GAppCCCM hides CCC complexity.

• GAppUIM manages interaction with the User Interaction (UI) API. Therefore

GAppUIM hides UI complexity.

As shown in figure 3.1 the specific application logic that interacts with GApp may

be a Particular Application (PApp) logic (written for a specific service), a logic

provided for web service (web-ser) application or the Parlay X gateway.

3.2.2 Service Session

This section analyses the active components during a session and provides session

identification details. Each of the active members has operations applicable to it.

Going through figure 3.2, the Session Member is a collection of participants and is

an abstract class [1]. A Session Member can be a party (Call-leg end) or resource.

Session Members are associated through calls, whilst the operation that can be ac-

complished is specified in the control SR. The Control SR also acts as an abstraction

provider by providing exception messages to the user at the level required. There-

fore it is a part of the GAppM interface shown in figure 3.1. Figure 3.2 provides a

35

Party

suspend()
resume()
getCall()

Resource Control SR

{}Session Relationship

Manager Interface

Service Session Graph

{}Session Member

InitiateSession()
endservice()
release()

Call

supend()
resume()
getMembers()
release()

0..*

0..*

0..*

0..*

0..*0..*

0..*

0..*0..*

0..*

Figure 3.2: Service Session Graph [1]

global view of the interaction between SCF objects and the GApp methods. For

example a party (SCF call-leg object) can be suspended, released etc.

Sessions are used to identify relationships between parties. Therefore, relationships

such as calls and call-legs are identified through sessionIDs using 32 bit integers.

Parlay requires that a session ID be “unique within the context of a specific instance

of an SCF” [21]. We adopt sessionID in GApp interface to uniquely identify each

call and call-leg objects in a GApp Manager instance. This is done through struc-

turally naming the call and the corresponding call-legs that belong to the call. The

call is identified by a call ID which is a 32 bit integer whilst the call-leg is identi-

fied by appending the call ID to the call-leg’s (target or originating depending on

whether the leg is an originating or terminating leg) E164 number. On invoking a

service with the call ID or call ID with the E164 number appended, the ID is mapped

by GApp to the appropriate call or call-leg identifier respectively. An identifier is a

location and a session ID; the location is used to find the SCF instance that performs

the logic and the session ID is used to identify the session.

36

3.2.3 Overview of GApp use case analysis

A number of generic GApp functions were identified by observing the different

stages that occur in the execution of services offered on the Parlay gateway. These

stages include:

• Creation of the service:

1. Obtain the SCF Manager.

2. Creation of the service instance:

(a) Enabling the notification points to prompt session

(b) Application creation of session

• Service Usage:

1. Detection of the notification point.

2. Initialization of appropriate interface.

3. Usage of this interface to perform the required service.

4. Deletion of the interfaces thereafter.

• Disabling Service:

1. Removal of the service instance

(a) Disabling or destruction of the Notification points.

(b) Deletion of the session.

2. Deletion of the SCF manager.

We apply these three identified use cases for all GApp manager classes through the

help of sequence diagrams in chapter 4.

3.3 The GApp Design Principle

We need to provide reusable logic in a structured and extendable way. To do this we

provide a clear way of defining logical blocks that hold the relationships between

different SCF. Structural provisioning of the reusable blocks was accomplished by

37

GAppParentManager

<<name, name2>> opname1()

GAppChildManager

Figure 3.3: Class diagram for GApp manager inheritance

ParentSCF
Interface1

ParentSCF
Interface2

ChildSCF
Interface1

ChildSCF
Interface2

SCFOp1(name)

SCFOp2(name2)

SCFOp1(name)

SCFOp2(name2)

Figure 3.4: Sequence of events used to accomplish opname1() in figure 3.3

analyzing the specification and sequentially combining SCF functions to provide

logical blocks (GApp functions) that provide the application developer with power-

ful functional interfaces.

Extensibility is provided by exploiting the relationships that exist between different

SCF interfaces (inheritance) and reproducing the same set of relationships between

the GApp API manager classes. We needed a way to transform inheritance relation-

ships between SCF classes to inheritance relationship between GApp API manager

Classes. Hence a child GApp API manager inherits all its parent GApp API man-

ager’s functions e.g. GAppMMCC will inherit all GAppMPCC functions. This is

elaborated in figure 3.3 and 3.4

To enable a structural design, we provide a rule for use when developing new or

modified functions for the child GApp API manager classes. A new function is a

function that provides a new functionality to the child GApp API manager class rel-

ative to the parent, whilst a modified function is one that has the same functionality

but the logic to achieve this functionality has being modified from the parent to the

child GApp class. The rule states a new or modified function is created in the child

GApp API manager class if logical changes occur in comparison to the parent’s

logical blocks. Logical changes occur when:

• A new SCF interface is introduced in the child SCF class. This is illustrated

in figure 3.5 and 3.6.

38

GAppChildManager1

<<name, name2>> opname2()

GAppParentManager

<<name, name2>> opname1()

Figure 3.5:Class diagram for a GApp child Manager with a new functional block

ParentSCF
Interface1

ParentSCF
Interface2

SCFOp1(name)

SCFOp2(name2)

ChildSCF
Interface1

ChildSCF
Interface2

ChildSCF
Interface3

SCFOp3(name1)

SCFOp3(name3)

SCFOp4(name4)

Figure 3.6:Sequence diagrams to accomplish parent and child class methods of

figure 3.5 on Parlay SCF

GAppChildManager2

<<name,name2>> opname1()

GAppParentManager

<<name, name2>> opname1()

Figure 3.7:Class diagram for a GApp child Manager with a changed functional

block

ParentSCF
Interface1

ParentSCF
Interface2

SCFOp1(name)

SCFOp2(name2)

ChildSCF
Interface1

ChildSCF
Interface2

SCFOp1(name)

SCFOp2(name2)

SCFOp3(name2)

Figure 3.8:Sequence diagrams to accomplish parent and child class methods of

figure 3.7 on Parlay SCF

39

• the method calls made to accomplish a function by the child GApp API man-

ager on the SCF interfaces are different relative to the parent function. This

is shown in figures 3.7 and 3.8.

Using this design principle we obtained the GApp class diagram in figure 4.5. In

the next chapter (Chapter 4), we show how GApp methods for each GApp class are

derived.

3.4 Chapter Summary

This chapter details the research question and principle used to generate the GApp

interfaces. This includes rules to provide reusable blocks and extendibility of it.

There exists a GApp interface manager for each SCF manager in the server. The

structural arrangement of SCF interfaces was used as a model for the GApp inter-

face arrangement. Therefore, inheritance in the SCF interface (e.g., between MPCC

and MMCC) translates to inheritance in GApp manager interface (e.g GAppMPCC

and GAppMMCC respectively).

40

Chapter 4

GApp Components Design

This chapter details the design of components GAppFW, GAppGCC, GAppCCC,

GAppMPCC, GAppMMCC and GAppUI, through the principles stated in section

3.3.

4.1 GApp Frame Work

The GApp Frame Work (GAppFW) main function is to manage the creation and

deletion of services, therefore it provides the ASP with access to:

1. Service list.

2. Service description.

3. A reference to a new SCF manager.

4. Disposition of SCF managers and resources.

This section therefore provides methods to accomplish these functionalities. The
GAppM is not included in all sequence diagrams in this chapter for simplicity,
but it is the only interface that the application communicates with. Hence the
application communicates with other GApp interfaces through GAppM . Figure

4.1 shows the methods available in the GAppFW class. To provide a service list

we require two functions, the first provides access to the service discovery interface

41

GAppFrameWork

CreateService()
ListService()
DescribeService()
DiscoverService()
SelectService()

Figure 4.1: GApp Framework class

(CreateService()) whilst the other is to list services available on this interface (List-

Service()). Figure 4.2 shows the way GApp is used to provide a service discovery

interface. A service discovery interface is provided through the following process:

AppLogic GAppFW IPInitial IpAPILevelAuth
entication()

IpAccess DataBas
e

1: CreateService()

3: InitiateAutheticationWithVersion()

4: SelectAuthenticationMechanism()

5: challenge()

6: autheticationSucceeded()

7: challenge()(optional)

8: autheticationSucceeded()(optional)

9: requestAccess()

10: SelectSigningAlgorithm()

11: ObtainInterface

2: query (ServiceName): configurationScript

Figure 4.2: Application Initiates Service

• The application logic executes createService() (1) on the GAppFW interface.

(2) GAppFW then queries the database to obtain the configuration script for

42

this particular service. The configuration script contains information such as

domain ID authentication interface, authentication mechanism, signing algo-

rithm, agreementText etc (These are information specific to the ASP, for the

SCF to be obtained).

• GAppFW then triggers initiateAuthenticationWithVersion() (3) which initi-

ates authentication with a publicly available framework (through url or orb)

by passing the client domain’s identifier, the authentication type, the frame-

work version number and returns the Frame Work identifier.

• The next operation invoked is the selectAutheticationMechanism() (4) which

provides the Frame Work with a list of authentication mechanisms the ASP

supports. The Frame Work selects one from the list and passes it back as the

return parameter. (5) Depending on the authentication mechanism a number

of challenges are invoked on the ASP, which it must respond correctly to using

the return parameter. (6) The authenticationSucceeded() is then invoked to

inform the ASP of its success. (7, 8) Thereafter, depending on the ASP’s

policy it might authenticate the Frame Work with a similar process.

• The ASP then invokes the requestAccess() (9) which returns the reference to

the Frame Work access interface. The Frame Work access interface provides

access to other Frame Work interfaces. (10) Before the client can use the

access interface it must provide a list of all signing algorithms it supports for

use in cases where digital signature is required through the operation select-

SigningAlgorithm(). The Frame Work selects one from the list and passes it

back as a return parameter. (11) The client then invokes obtainInterface()

which returns a reference to the required Frame Work interface, in this case

the service discovery interface, which is described in the following section.

In figure 4.2 message 3-11 is the normal sequence that was accomplished by the

ASP previously but know is provisioned by GAppFW through a simple call to cre-

ateService().

43

4.1.1 Service Discovery

The Service Discovery interface is used by the application to obtain a serviceID for

the SCF of interest as shown in figure 4.3. This ID is obtained by performing a num-

ber of operations, which might include obtaining a list of available SCFs through

ListServices() (1, 2) (usually a list of service names ”P MPCC”) and asking the

framework to describe the service types through DescribeService() (3, 4) which re-

turn properties of the services of interest. (5, 6) Thereafter the application fine tune

these properties to reflect its requirement and passes it to the framework through

DiscoverService(). The frame work then returns a list of serviceID matching the

needs put forward by the application.

These three operations (2, 4, 6) need to be performed by the application as they

provide functionality to the application logic as a result they are already at an ap-

propriate level of abstraction i.e the granularity provided by the Parlay gateway for

these functions is appropriate.

AppLogic GAppFW IpService
Discovery

1: ListServices()

2: listServiceTypes()

3: DiscribeService()

4: describeServiceType()

5: DiscoverService()

6: DiscoverService()

syncronous messages
Optional Process only required if user does not already have required infomation such as serviceID,
list etc.
All parameters.
listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription
discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList
listSubscribedServices () : TpServiceList

Figure 4.3: Obtaining Service Information

44

4.1.2 Service Selection

The application selects the required service by passing the service ID as shown

in figure 4.4. GAppFW then handles the service agreement signing, between the

application domain and the framework. As a result, a reference to the SCF manager

is returned to GAppFW in message sequence 5. GAppFW then creates a GApp

API manager (e.g GAppMPCCM, GAppCCCM etc) to manage the SCF manager by

querying the database to obtain a list of the appropriate interfaces and required

logic. A ManagerID is then assigned to the newly created GApp API manager.

The identity (reference and the ManagerID) is returned to GAppM, which returns a

ManagerID to the application.

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in
TpSigningAlgorithm)
selectService (serviceID : in TpServiceID)
initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

AppLogic GAppFW IpAppServiceAgree
mentManagement

IpServiceAgree
mentManagent

Framework DataBaseGAppServic
eManager

1: selectService(): GAppServiceMgrRef

2: SelectService(): TpServiceToken

3: initiateSignServiceAgreement()

4: signServiceAgreement(): TpOctetSet(Cryptographic Message Syntax object)

5: SignServiceAgreement(): signatureAndServiceMgrRef

6: query(SCF): script

7: new

Figure 4.4: Selecting Service

GApp API manager contains translation of higher level methods provided on its

interface to methods that are executed on the SCF and vice versa. Therefore when

application logic executes an operation on GAppM , it is forwarded to the appropriate

45

GApp API manager interface which checks its list of operation and executes the

logic for that operation. The logic of the operation is explained in the form of

sequence diagrams in this chapter. A GApp API manager exists for each service

manager obtainable in Parlay. Therefore there is a one to one relationship between

the GApp API managers and the service managers in the SCS.

4.2 GApp API Manager Classes

Firstly we provide a general view of Parlay service logic by discussing GAppSer-

viceManager. As shown in figure 4.5, GAppServiceManager is an abstract class

that forms the bases for all GApp API manager Classes. It contains methods that

all GApp API manager Classes should possess. This was obtained by studying

GCC (Work on GCC has been discontinued), MPCC, MMCC, CCC and UI. GCC

is dealt with in this research to provide a general view of the mechanism used to

deploy services in Parlay. It was identified that the logic used for service deploy-

ment in GCC is the same with the newly enhanced SCF (e.g MPCC), but some

of the methods have been further enhanced for example enableCallnotification() is

now implemented in MPCC by createNotification() and enableNotification() whilst

routeReq() is now provided through eventReportReg() and routeReq(). The study

of GCC provides us with the general concept of the logical groupings of reusable

blocks that can be obtained in Parlay. As a result, the design is robust as it is easily

comprehensible and extendable [22, 23, 21, 24, 25].

Figure 4.5 shows the overall view and relationship between GApp API manager

Classes. This was modeled using the relationship between GCC, MPCC, MMCC,

CCC and UI. The relationship is such that CCC inherits from MMCC which inherits

from MPCC. Therefore as the Parlay call control interfaces get more complicated

(through provisioning of more functionality) we can follow the inheritance structure

to structurally provide enhancement to the reusable logic obtained. As a result, we

obtain a basic set of reusable blocks for the base class and extend these blocks to

cater for the functionality provided by the more complex Parlay interfaces. There-

fore the complexity brought about in the child SCF class is handled by extension

of the logic from the parent GApp class and the creation of new logic in the child

GApp class as required.

46

{}GAppServiceManager

InitiateSession: CallID()
endService()
release()

UI

initiateSession: CallID()

GAppMMCCManager

GAppCCCManager

GAppGCCManager

addReq()
release()

GAppMPCCManager

initiateSessionMember()
release()
getMembers()
getSession()
suspend()
resume()

Figure 4.5: GApp Call manager inheritance Structure

{}Ip(App)ServiceManager

{}GAppServiceManager

InitiateSession: CallID()
endService()
release()

{}Ip(App)ServiceCall

Figure 4.6: GApp service relationships

The functions in the GAppServiceManager are the functions which are common

to all GApp API managers, these functions are used for object initialization and

removal similar to TINA’s create and delete.

Figure 4.6 shows the relationship between abstract classes. GAppServiceManager

47

is an abstraction of the GApp API managers whilst Ip(App)ServiceManager and

Ip(App)ServiceCall are abstractions of SCF managers and call classes with the

callbacks taken into consideration by indicating App in braces (make the diagram

neater). Moving onto the sequence diagram we try to follow the principles given

in section 3.3. Firstly we look at initiation of service i.e how an application gains

control of a call.

IpAppLogic GAppServic
eManager

IpAppServic
eManager

IpServiceMa
nager

IpAppServic
eCall

4: informNotification(): IpInterfaceRef

2: new()

3: indicateNotification():assignmentID

5: forward event()

1: InitiateSession():CallID

6: forward event(SessionID: in string, eventInfo : in TpCallEventInfo, assignmentID : in TpAssignment)

7: new()

Figure 4.7: Application Gains control of the Call through notification

One way of starting an application service is by obtaining notification of a call

which satisfies the required criteria, as a result being passed the call. This is done by

creating or enabling notification points in interrupt mode. This process is shown in

figure 4.7. (1) Application Logic (APL) executes initiateSession() on the GAppSer-

viceManager interface. GAppServiceManager then triggers the appropriate logic

for this service (2, 3, 6, 7). (2) It creates a callback IpAppServiceManager interface

48

with the operation new() which returns the object reference. (3) The object refer-

ence is then passed to the SCF service Manager object through the indicateNotifi-

cation() (createNotification() or enable(Call)Notification()). indicateNotification()

specifies the criteria for the application to be triggered and returns an assignment

ID. The asssignmentID enables correlation between the indicateNotification() and

informNotification()(reportNotification() or callNotify()). (4) An event occurs sat-

isfying the criteria specified and informNotification() is executed by the IpService-

Manager on the IpAppServiceManager passing the call object identifier of the call

satisfying the criteria specified as an input parameter. (5, 6) informNotification() is

then forwarded to GAppServiceManager, which forwards it to GAppM which then

forwards it to IpAppLogic at the right level of abstraction (not shown in sequence di-

agram). (7) GAppServiceManager also triggers the creation of a call back interface

for the call object identifier passed to it. The call back object reference is passed

back to the IpServiceManager through the return parameter of informNotification().

IpAppLogic GAPPServic
eManager

IpAppServic
eCall

IpServiceMa
nager

IpServiceCal
l

IpAppServic
eManager

4: new()

5: create(UI)Call (appCall : in IpAppCallRef) : TpCallIdentifier

6: new

create call object & callback

1: InitiateSession(): CallID
2: new()

3: setCallBack(appServiceManager)

Figure 4.8: Application creates a call object

Another way of initiating an application service is by creating the call. Figure 4.8

shows the APL starting a session by executing (1) initiateSession() on the GAppSer-

viceManager interface which then triggers the following logic. (2, 3) It creates a

callback object IpAppServiceManager and forwards the reference to IpServiceM-

anager through the method setCallback(). (4) Thereafter it creates another call

back object IpAppServiceCall to handle the session. (5) Forwards this object in-

terface to IpServiceManager through the create(UI)Call() operation which create a

49

new IpServiceCall object.

In general in this research multiple functions with the same name (e.g initiateSes-

sion()) within a class are resolved through polymorphism as the function will use

different parametric sets.

GAppService
Manager

IpService
Instant

IpAppLogic

1: release()

2: release()

release removes call related objects and network connections whilst infomation concerning the call can still be
sent to the callback interfaces. deassign releases the application from controlling the call whilst it goes on
in the network. the call related info requested is discarded

Figure 4.9: Application releases Call

Figure 4.9 shows the application releasing a call through release() which triggers

release.

IpAppLogic GAppServic
eManager

IpServiceMa
nager

1: EndService(assignmentID : in TpAssignmentID)

2: deallocateNotificationPoint (assignmentID : in TpAssignmentID)

Figure 4.10: Application ends service

Figure 4.10 shows how a service is disabled using Endservice on a GAppServiceM-

anager interface. GAppServiceManager performs the request by triggering deallo-

cateNotificationPoint (actually translates to disable(destroy)Notification depending

on whether enable(create)Notification was used in creating the service).

Figure 4.11 shows sequence of events which apply to services that can be accom-

plished on the SCF interfaces asynchronously; where the level of abstraction pro-

vided by Parlay is already adequate.

50

AppLogic GAppServic
eManager

IpAppServic
e

IpServiceCal
l

Network

1: ServiceReq()

3: Network request

4: perform action

5: Network response

8: ServiceRes()

2: forward

6: service{Err/Res}()

7: forward

Figure 4.11: Asynchronous Methods

AppLogic GAppServic
eManager

IpService{Ca
ll/Manager}

1: Service()

2: forward

3: resolve

Figure 4.12: Synchronous methods on the SCF interface

Figure 4.12 shows sequence of events which apply to services that can be accom-

plished on the SCF interface synchronously; where the level of abstraction provided

by Parlay is already adequate.

51

AppLogic GAppServic
eManager

IpAppServic
e

3: resolve(if reation is generic)

IpService{Ca
ll/Manager}

1: service()

2: forward

4: forward() (if reaction is specific)

Figure 4.13: Synchronous methods on the Application call back interface

Figure 4.13 shows sequence of events which apply to services that can be accom-

plished on the callback interface synchronously, where the level of abstraction pro-

vided by Parlay is already adequate.

In this research identity based abstraction is achieved in all cases (including syn-

chronous and asynchronous methods with adequate level of abstraction). This is

true as the user only needs knowledge of the GAppM class, whilst logical abstrac-

tion is achieved in all case apart from synchronous and asynchronous methods with

adequate level of abstraction.

4.2.1 GApp GCC Manager

GAppGCCM allows calls to be set up by the application through the initiateSession()

(shown in Appendix A) method on its interface and if the call is already setup, the

application can gain control of the call through the same methods but with different

parameters [21]. Each of these sequences returns a call object reference to the

application. In the second scenario (i.e. call already setup) the Application Logic

(APL) has to use the routeReq() method on the call object to indicate interested

in other events during the context of this particular call. We explain the reusable

logic provided in GAppGCCM by building on the logical reusable blocks that are

provided in section 4.2. Logical blocks are reused by replacing abstract interfaces

and there methods with GCC specific methods and interfaces. Appendix A shows

52

logical blocks that map directly from the GAppServiceManager to GAppGCCM .

Direct Mapping means that the sequence of events to accomplish the logic is the

same (e.g initiateSession()). In this section we only go through logical blocks that

are not direct maps and new logical blocks that are created due to the specialization

of the GCC relative to the abstract service classes in section 4.2. Extension to the

logic provided is shown in:

1. Figure 4.14.

The GCC SCF IPcall object triggers callEnded() on the application callback

which signals call ending in the network (e.g user hangs up). This is for-

warded to the GAppGCCM which then issues a release on the call object to

free resources used for the call. The application in addition to invoking re-

lease can also relinquish control of the call through releaseControl().

GAppGCCM
anager

IpAppLogic

2: forward event

4: releaseControl/Call(all)

IpAppcall Ipcall

1: callEnded(all_1):void

3: release(all_1):void

5: deassignCall/release(all)

Figure 4.14: Application releases call

2. Figure 4.15

A completely new logical block is introduced to accomplish the addReq()

method in figure 4.15. The logic takes the form of an asynchronous request

method in figure 4.11 but differs since it provides a higher level of abstraction.

Abstraction is provided since the application only provides one or two (if the

application is setting up the call) target addresses. addReq() then adds the

parties to the call by routing to the required destinations.

53

GAppGCC
Manager

IPAppcall IpCallIpAppLogic

2: routeReq()

3: routeRes/Err

4: forward event

1: AddReq(targetadress[1 or 2], CallID)

6: AddRes/Err

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress: in
TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID
routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in TpSessionID) : void
routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in TpSessionID) : void

5: in case of an error it forwards it to the application logic, else it forward a single sucess message of all attached legs

Figure 4.15: Application adds party

4.2.2 GApp MPCC Manager

In this section we provide details of GAppMPCCM design [22]. As in section 4.2.1

we will only go through the changes brought through specialization. The reusable

blocks that are direct maps of the GAppServiceManager are given in appendix B.

If an application obtains a call through notification, it has to restart the existing call

legs on the call (since their processing was interrupted). This is accomplished as

shown in figure 4.16. The application invokes activateSession() with the callID or

the userID[] as input parameters. The former activates all existing call legs associ-

ated with the callID by invoking continueProcessing() a number of times equal to

the number of call legs. In the later scenario GAppMPCCM converts the user IDs

obtained from the userID[] array to the appropriate session leg identifier (which is

known since this method can only be invoked after a notification, with notification

returning parameters call and call leg identifiers to GAppMPCCM).

Figure 4.17 shows two logical blocks which are:

54

AppLogic GAppMPCC
Manager

IpMPCall IpMPCallLeg

1: activateSession(callID)

3: ActivateSession(userID[])

4: continueProcessing(sessionLegID)

2: continueProcessing(sessionLegID)

continueProcessing (callLegSessionID : in TpSessionID) : void

Figure 4.16: Application starts existing session members

• initiateSessionMember: This logical block is an enhancement to initiateSes-

sion() since there are new objects that require creation in the MPCC SCF. The

new object is the call leg as a result initiateSessionMember() is used to create

one or more call legs. initiateSessionMember is invoked on GAppMPCCM

with input parameter that signify the target address(es) in an array and the

callID (for the call to add the users to). If an error occurs during the creation

of a leg it is forwarded to the APL.

• addReq: This is a logical block that allows the addition of one or more parties

to the call. The user invokes addReq() on GAppMPCCM which then performs

action 6 and 7 one or more times depending on the number of user IDs given

as input parameter with addReq(). If an error occurs during the routing of a

leg it is forwarded to the APL.

Figure 4.18 shows IpMultiPartycall and IpMultiPartyCallLeg triggering callEnded()

and callLegEnded() respectively on the application callback interfaces. This signals

call ending in the network (e.g user hangs up) which is forwarded to the GAppM-

PCCM . GAppMPCCM then issues a release on the call Leg and call object to free

resources used for the call. The application can also relinquish control of the call

through releaseControl().

To obtain members participating in a giving call session, getMemebers() is invoked

on the GAppMPCCM as shown in figure 4.19. The method returns the list of the

55

IpAppLogic GAppMPC
allManager

IPAppMPc
allLeg

IpMPCall IpCallLeg

9: forward event

1: initiateSessionMembers(targetadress[1 ...n],CallID): userID[]

11: addRes/Err

3: CreateCallLeg()

4: new()

6: eventReportReq

7: routeReq()

2: new()

5: addReq(userID[])

Initiatesession: adds users to application.
It uses parameters to differentiate where to stop the initialisation whether on call or call object.
routeReq(): make parameter indicate atached leg
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier
eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) :
void
routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void
eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

10: in case of an error it forwards it to the application logic, else it forward a single sucess message of all attached legs

8: eventReportRes/Err()

Figure 4.17: Application adds new members to call object

56

IpAppLogic

GAppCallMa
nager

IpAppcall Ipcall IpCallLegIpAppCallleg

4: callEnded(all_1):void

5: forward event

6: release(all_1):void

7: releaseControl/Call(all)

9: deassignCall/release(all)

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void
deassignCall (callSessionID : in TpSessionID) : void
callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void
deassign (callLegSessionID : in TpSessionID) : void
callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

1: callLegEnded(paraset1)

8: release/deassign(all)

2: forwardevent

3: release(paraset1)

Figure 4.18: Application releases call

users by returning an array with user IDs in the sequence of creation.

getSession() returns the callID for all active session in MPCC SCS when called with

no input parameters as shown in figure 4.20. In the event of it being called with a

user ID array userID[] it returns a call ID array callID[] matching the sequence of

user IDs in userID[]. Action 2 in the figure may be performed a number of times

depending on the number of user IDs supplied.

Figure 4.21 shows how an application can suspend (resume) the participation of a

member(s) from the call. There are two ways to accomplish this:

57

APL GAppMPCC
Manager

IpMPCall

returns all active call legs belonging to a session.
getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

1: getMembers(callID) : userID[]

2: getCallLegs (sessionID)

Figure 4.19: Application obtain member’s information

APL GAppMPCC
Manager

IpMPCallLeg

returns all active sessions if supplied with no parameter , if supplied with a calleg object it
returns session that the call leg belongs to.

1: getSession(userID[]) : CallID

2: getCall(sessionLegID)

3: getSession() : CallID[]

4: obtain all active session()

Figure 4.20: Application obtain session information

• the user can invoke suspend(resume)Req() with the callID (which implies

suspension (resumption) of the call as a whole)

• the user can invoke suspend(resume)Req() with the userID[] (which sus-

pends(resumes) the users specified in the array).

The first scenario is accomplished by obtaining all the call Legs related to the call

and detaching (attaching) them, which implies action 3 is invoked a number of times

equal to the number of call legs. In the later scenario GAppMPCCM performs the

translation of user IDs to sessionLegIDs and the rest of the sequence (9-13) is the

same as actions (3-7).

58

1: resume(suspend)Req(callID)

AppLogic GAppMPCC
Mgr

IpMPCall IpMPCallLegIpAppCallLe
g

8: resume(suspend)Req(userID[])

2: getcallleg(SessionID)

9: AttachMedia(detachMedia)Req(sessionLegID)

3: AttachMedia(detachMedia)Req(sessionlegID)

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet
attachMediaReq (callLegSessionID : in TpSessionID) : void
detachMediaReq (callLegSessionID : in TpSessionID) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void
detachMediaRes (callLegSessionID : in TpSessionID) : void

7: forwardevent

6: in case of an error it forwards it to the application logic, else it forward a single sucess message of all attached legs.

13: forwardevent

12: in case of an error it forwards it to the application logic, else it forward a single sucess message of all attached legs.

4: AttachMedia(detachMedia)Res(Err)

10: AttachMedia(detachMedia)(Res)Err()

5: forwardevent

11: forwardevent

Figure 4.21: Application suspend or resumes call

59

4.2.3 GApp MMCC Manager

The MMCC does not add additional interfaces to the call control logic. This is be-

cause the new interfaces provided in MMCC are interfaces that enable applications

with media logic. Media logic is the process required to provide an appropriate

media type for a particular application (e.g. video for video conferencing). As this

research focuses on abstraction in terms of call control, we will not delve into ab-

straction obtainable with media logic. One point to note is that abstraction with

media logic might be obtained by providing the appropriate media streams for dif-

ferent categories of application, therefore the application will be used to determine

the media stream required. All the GAppMMCC interfaces are inherited from the

GAppMPCC and thus can be used for call creation, manipulation and tear down.

createMediaNotification (appInterface : in IpAppMultiMediaCallControlManagerRef,notificationMediaRequest : in
TpNotificationMediaRequest) : TpAssignmentID
reportMediaNotification (callReference : in TpMultiMediaCallIdentifier, callLegReferenceSet : in
TpMultiMediaCallLegIdentifierSet, mediaStreams : in TpMediaStreamSet, type : in TpMediaStreamEventType, assignmentID
: in TpAssignmentID) : TpAppMultiMediaCallBack
InitiateSession(notificationMediaRequest : in TpNotificationMediaRequest):CallID

GAppMultiMediaCa
llControlManager

IpAppMultiMediaCa
llControlManager

IpMultiMediaCall
ControlManager

AppLogic

1: InitiateSession():CallID

2: new()

3: createMediaNotification()

4: reportMediaNotification()

5: forward event

Figure 4.22: Media Session Initiation

The GApp media logic for creation of a media service follows from initiateSession()

in GAppMPCC. There is little difference between figure 4.22 and figure 4.8. The

difference is createMediaNotification() is used in figure 4.22 to indicate interest in

media steams during call setup or media setup.

60

initiateSession() is invoked on GAppM (not shown). The GAppM then resolves the

message by polymorphism(parameters) and forwards it to GAppMMCCM . GApp-

MMCCM then performs the required logic by creating a call back object, enabling

a media notification point. An event happens (e.g. SIP INVITE) in the network

matching the criteria specified in the createMedianotification(), reportMediaNoti-

fication() is then invoked on the call back interface and is used to pass the call

identifier of the call requiring media to GAppMMCC.

4.2.4 GApp CCC Manager

We firstly would like to define the two central terms this section is built around as:

• Conference: Provides an application with the ability to manipulate sub-conference

within it.

• Subconference: Provide groupings for call legs within a conference. There-

fore only legs in the same sub-conference can have bearer connection (i.e.

communicate).

There are two ways of starting a conference in Parlay; firstly the resources required

for the conference can be reserved for commencement of the conference at a specific

time. Secondly the conference is started as needed. When a conference is started

an implicit subconference interface is created to enable communication between

parties in the conference [25]. The application can perform the following functions

on subconferences within the same conference:

• create new subconferences within the conference, either as an empty subcon-

ference or by splitting an existing subconference into two subconferences.

• move legs between subconferences.

• merge subconferences.

• get a list of all subconferences in the call.

61

AppLogic GAppConfCallC
ontrolManager

IpAppConfCallCo
ntrolManager

IpConfCallContr
olManager

IpConfCall

2: new()

5: forward event

3: reserveResource()

4: conferenceCreated()

1: InitiateSession():CallID

7: InitiateSession():CallID

8: new()

9: createConference()

10: getSubConference()

11: initiateSession():CallID

12: createSubConference()

createConference (appConferenceCall : in IpAppConfCallRef, numberOfSubConferences : in
TpInt32, conferencePolicy : in TpConfPolicy, numberOfParticipants : in TpInt32, duration : in
TpDuration) :TpConfCallIdentifier
reserveResources (appInterface : in IpAppConfCallControlManagerRef, startTime : in
TpDateAndTime,numberOfParticipants : in TpInt32, duration : in TpDuration, conferencePolicy :
in TpConfPolicy) : TpResourceReservation
conferenceCreated (conferenceCall : in TpConfCallIdentifier) : IpAppConfCallRef
getSubConferences (conferenceSessionID : in TpSessionID) : TpSubConfCallIdentifierSet
createSubConference (conferenceSessionID : in TpSessionID, appSubConference : in
IpAppSubConfCallRef, conferencePolicy : in TpConfPolicy) : TpSubConfCallIdentifier
InitiateSession(startTime : in TpDateAndTime,numberOfParticipants : in TpInt32, duration :...

6: getSubConference()

Figure 4.23: Initiate Conference Service

62

GApp provides abstraction on CCC interfaces by hiding details of the physical and

structural representation of objects that perform conference call control. A confer-

ence is created by initiating a conference session. For each conference or subcon-

ference created, a unique CallID is allocated by GApp. The relationship between

conferences and subconference is maintained within GApp by associating the Cal-

lID for all subconferences within the same conference. This is possible since the

creation of a conference implicitly creates a “principal” sub-conference, and all

other sub-conference created within this conference can simple be associated to this

sub-conference. Therefore a user creating a new conference will specify whether he

requires an association with an existing conference by specifying its CallID. Spec-

ifying a conference CallID, tells GApp to create the required sub-conference. As a

result the user can be abstracted from the internal objects that provide conference

calls (i.e sub-conferences) and it reference, all the user need know is their exist a

conference X which has a relationship with conference Y. If conference Y in turn

has been created with a relationship with conference Z, then X has a relationship

with Z, since within the Parlay gateway they all form sub-conferences within the

same conference.

Thus GApp (as illustrated in figure 4.23) can be used to create conferences in three

ways

• Scheduling and starting a conference with no relationship to an existing con-

ference. Message 1 is invoked on GApp with startTime, numberOfPartici-

pants and duration.

• Starting the conference as required with no relationship to existing confer-

ences. Message 7 is invoked on GApp with numberOfParticipants and dura-

tion.

• Starting a conference with a relationship to an existing conference. Message

11 is invoked on GApp with CallID.

Otherwise other methods such as splitConference(), mergeConference() etc, can be

applied through the GApp interface as synchronous or asynchronous methods as

explained in section 4.2

63

IpAppLogic GAppUIMan
ager

IpAppUICall IpUIManager IpUICallIpAppUIMan
ager

4: new()

5: createUICall (appCall : in IpAppCallRef, {session/sessionLeg}ID) : TpCallIdentifier

6: new

create UIcall object & callback

1: InitiateSession({user/call}ID): UICallID
2: new()

3: setCallBack(appServiceManager)

createUICall (appUI : in IpAppUICallRef, uiTargetObject : in TpUITargetObject) : TpUICallIdentifier

Figure 4.24: Application creates a user interaction call

4.2.5 GApp UI Manager

In this section we detail our work on GAppUIM by looking at its aspects that af-

fect user call processing. Therefore we provide reusable blocks for UI-Call based

processing. But the logic is similar for non UI-Call based processing. In confor-

mance with previous sections we only provide information on logical blocks that

have changed in relation to GAppServiceManager. The other blocks are given in

appendix C.

In order to make user interaction work with our model and provide abstraction by

abstracting leg management information, we need to provide the ASP with the abil-

ity to associate userID and callID with a UI object. This is done as shown in figure

4.24

The user needs to specify the userID or callID when invoking initiateSession() on

GAppUIM as shown in figure 4.24. This is then converted to the appropriate identifier

and used by the GAppUIM as the target address in the method createUICall() that

takes a target object as one of its parameters [24].

64

4.3 Chapter Summary

This chapter details the design of the components GAppFW, GAppGCC, GAp-

pCCC, GAppMPCC, GAppMMCC and GAppUI. Using the principles stated in

section 3.3 new logical blocks were identified for these GApp interfaces. The logi-

cal blocks include initiateSessionMember(), initiateSession() etc. The logic used to

provide this logical blocks is then detailed through sequence diagrams.

65

Chapter 5

Implementation of GApp layer

In this chapter we provide details of GApp layer implementation by detailing the

experimental setup and the functionality of the equipments within the setup.

5.1 Overview

The experimental setup includes three machines. The operating system running on

the three machines was SUSE 9.2 Linux. The three machines served the following

purposes:

1. Machine 1 served as the ASP. It served as home to the GApp API and callback

interfaces of the Parlay APIs.

2. Machine 2 served as the network operator, with the service layer part of the

API (SCF) implemented on it. The implemented SCF in this project was the

multi-party call control SCF.

3. Machine 3 served as the Domain Name Server, it is used for registration of

active server manager objects i.e. it holds information about the location of

registered server objects. This server can be queried by a client to obtain a

server manager object.

Figure 5.1 illustrates the experimental arrangement and the workings of each ma-

chine within the simulation.

66

Client Machine

Data Gener al

Domain Name
Server

Server Machine

Queries DNS

Registers Server

Client-Server
 Interaction

Holds GApp Components and
server call back objects

Hold Server
objects

Figure 5.1: Experimental Setup

In order to implement GApp we have to implement new classes on top of the Parlay

API. Since this is a proof of concept we choose to implement classes that simplify

communication with Parlay MPCC API. Hence in this simulation we implemented

the GApp MPCC API. This was done by using the MPCC IDL definition from

the standards and mapping it through CORBA into a C++ implementation of the

MPCC API. The skeletal output was filled with procedures that enable indication

of process taken place. The new GApp MPCC class methods were then made by

logically combining calls to the Parlay MPCC API. In the following sections we

give details of GApp MPCC class implementation and there functionality.

5.2 Client (ASP) and Server (SCS)

In this section we provide details of the simulated ASP and the functionalities that

were tested. GApp was implemented with the aid of a helper data structure (Linked

list) created for the purpose of storing reference of server objects. There are two

types of linked lists maintained:

1. one is used to hold the reference to all call object.

2. the other is used to hold the reference to the call leg objects.

67

The relationship between the two is each call object in the call list has a call leg

list associated with it. As a result for each call created and added to the call list a

corresponding call leg list is created to hold the parties participating in the call. A

linked list class diagram is shown in figure 5.2

Linked list

objRef
mediaStatus
ID
stackPtr

add()
delete()
search()

Figure 5.2: Linked List Data Type

The data structure has

• ID uniquely identifies this object.

• objRef is a reference to the server object.

• media status indicates whether media communication is enabled on objRef.

• stackPtr is a pointer to a linked list contained in this linked list object. This

is to enable storage of call leg references in the call object associated with it.

As a result, one can use a unique ID i.e call and call leg ID as explained in section

3.2.2 to address existing call and call legs.

GApp is implemented as specified in the sequence diagrams in chapter 4. The

service layer functionality is obtained by querying the DNS for a service manager

object reference. We then use this reference to perform the service functionality

needed by GApp methods. This includes:

• initiateSession: This includes the creation of a call object and its call back. On

creation a unique callID is created which is stored in the linked list together

with the reference to the call object.

• endService: This includes removing the callback for the service manager and

the service manager reference from the GApp manager.

68

• release: release works with two objects. These are

– call: This step is accomplished by querying the call linked list for the

reference of the call to be released. On obtaining the reference we then

delete the call object from the linked list and use the reference to release

the resource held by it in the server.

– call leg: This step is accomplished by querying the call linked list for

the reference of the call, and thereafter searching the call leg’s linked

list for the reference of the call leg to be released. On obtaining the call

leg reference we then delete the call leg object from the linked list and

use the reference to release the resource held by it in the server.

• initiateSessionMember: This includes the creation of a call leg object and its

call back object. On creation a unique callLegID (callID appended to E164

number) is created which is stored in the linked list together with the reference

to the call object.

• getmembers: returns all the callLegID for all the parties associated to a call

object. This is achieved by going through the call linked list to obtain the

appropriate call and then going through its call leg’s list and returning all the

parties (callLegIDs) in the call.

• getsession: returns all callIDs for all calls within a service. This is achieved

by going through the call linked list and returning all callIDs for all the call

objects in the list.

• suspend: suspend works with two objects. These are

– call: This step is accomplished by querying the call linked list for the

reference of the call to be suspended. On obtaining the reference we

check the status of the call object whether active or not. If active we

obtain all the call legs associated with this call and detach the media

stream from each one. The call status is then set to inactive.

– call leg: This step is accomplished by querying the call linked list for the

reference of the call, and thereafter searching the call object’s call leg

linked list for the reference of the call leg to be suspended. On obtaining

the call leg reference we check the status of the call leg object whether

active or not. If active we detach the media stream from it. The call leg

status is then set to inactive.

69

• resume: resume works with two objects. These are

– call: This step is accomplished by querying the call linked list for the

reference of the call to be resumed. On obtaining the reference we check

the status of the call object whether active or not. If inactive we obtain

all the call legs associated with this call and add a media stream to each

one. The call status is then set to active.

– call leg: This step is accomplished by querying the call linked list for the

reference of the call, and thereafter searching the call object’s call leg

linked list for the reference of the call leg to be resumed. On obtaining

the call leg reference we check the status of the call leg object whether

active or not. If inactive we add a media stream to it. The call leg status

is then set to active.

5.3 Usage Scenario

In this section we work through the application developed for GApp usage. This is a

simple text interaction menu application prompting the user for inputs depending on

the GApp functionality the user wants to test. This application enables users to test

the simplification attained by using GApp on top of the Parlay SCF layer. The first

menu is a simple welcome menu shown in figure 5.3 The second menu provides the

 Welcome to GApp MPCC Gateway

 Initialising system components....
 Found the Naming Service
 MPCCM reference obtained
 Creating call back for MPCCM
 MPCCM callback created

Figure 5.3: Welcome Menu

functionality attainable and prompts the user to choose from the options provided.

This is shown in figure 5.4.

Therefore if the user chooses to create a call session he will simple enter 1 and

GApp handles the whole call creation process for the user. This includes communi-

cation with the server, creation of a call object on the server and return of the object

70

 Enter 0 to quit
 Enter 1 to create a call session
 Enter 2 to create a session member
 Enter 3 to connect a session member to the session
 Enter 4 to remove a participant from a call session
 Enter 5 to end call session
 Enter 6 to suspend a user from a call session
 Enter 7 to enable a user to resume participation in a call session
 Enter 8 to view all call session Identity (getcall)
 Enter 9 to view all participants of a call session (getcallleg)

Figure 5.4: Main Menu

reference to the GApp interface. The GApp processing displayed on the client and

server is displayed in figure 5.5 and 5.6 respectively

 Creating a call back interface for the call object to be created
 Callback created
 Sending the Create Call message to the Parlay Gateway
 Created call with Call ID 1

Figure 5.5: Client output for create call

 Trying to create a call object
 Call object with session ID 1 created
 Call back set for call object 1

Figure 5.6: Server output for create call

5.4 Chapter Summary

This chapter provides an overview of the implementation of a GApp interface. This

is done by detailing the process used to implement the GApp MPCC interface. We

provide details of functions such as release, initiateSessionMember, initiateSession,

suspend, resume etc. We also provide screen shots of a simple text application that

uses GApp, and give explanations on the simplification attainable.

71

Chapter 6

Conclusion

The question answered in this research states:

• Starting with Parlay APIs, how can one create reusable blocks that pro-
vide a higher level of abstraction:

– to enable rapid application creation and deployment by Application
Service Providers (ASPs)

– with the same level of functionality as the Parlay gateway

This document provides the details of the mechanism by which this research ques-

tion is answered.

In chapter 3 we document details of a solution to the problem. The solution pro-

vides an architecture that adds a new layer called the GApp layer to the Parlay

architecture. The GApp layer is a simple model that solves the Parlay complexity

problem by becoming a mediator between the Parlay SCFs and the ASPs. The re-

sult is provisioning of a simple interface for an ASP to communicate with and a

complex interface for communication with the SCFs. As a result GApp’s internal

architecture has two sub layers, this is shown and explained in section 3.2.

After giving the architectural view in chapter 3 we then provide the logic used to

provide the GApp layer components in chapter 4. Thereafter we implement an ap-

plication that uses a GApp interface on the Parlay MPCC SCF. The solution proves

that GApp provides a higher level of abstraction with the same level of functionality

as the Parlay SCF interfaces. This is true because GApp interfaces where built by

72

examining the functionality (use case) of Parlay SCFs. As a result more developers

can provide Parlay services.

As explained in chapter 2 Parlay provides the developer with a number of meth-

ods and interfaces which require the user to possess telecomm knowledge thereby

limiting the developer base. Parlay X tries to solve this problem but due to its syn-

chronous message format, it takes control away from the programmer which results

in functionality lost.

In assessing the solution provided we observe that the architecture simplifies the

Parlay gateway and provides methods that allows one to communicate with the

gateway at a granularity level that is equal to the functionality provided by the gate-

way, therefore we provide abstraction with no functionality lost. Since we have not

oversimplified the Parlay gateway we believe it would encourage programmers to

program using Parlay APIs and also allow them to explore the full functionality of

the Parlay API.

In the future, the implementation of the full GApp design and its usage in creation

of complex application such as telemedicine and video conferencing should be ex-

plored. A further research may attempt to find functional blocks that make up these

complex applications. Therefore one would look for service independent blocks

that constitute these applications and check the relationship of these blocks to the

functions identified in this research.

73

References

[1] TINA Consortium, “Definition of Service Architecture. Computational Model

Overview,” June 1997. http://www.tinac.com.

[2] A. R. Modarresi and A. Mohan, “Control and Management in Next-

Generation Networks: Challenges and Opportunities,” IEEE Communications

Magazine, vol. 38, pp. 94–102, October 2000.

[3] Telcordia Technologies, “Next Generation Network (NGN) Services.”

http://www.mobilein.com/NGN Svcs WP.pdf.

[4] P. Nana and S. Mohapi and H.E. Hanrahan, “Re-usable TINA Service Compo-

nents based on the Parlay API and TINA for the Next Generation Network,” in

Proceedings of the South African Telecommunications Networks and Applica-

tions Conference, September 2002.

[5] A. Caric and K. Toivo, “New Generation Network Architecture and Software

Design,” IEEE Communications Magazine, vol. 38, pp. 108–114, February

2000.

[6] Web ProForum, “Next Generation Networks.”

http://www.iec.org/online/tutorials/next gen/.

[7] R. Christian, “Providing User Context Support for Next Generation Network

Services,” MSc(Eng) Project Report, University of the Witwatersrand, Johan-

nesburg, 2004.

[8] J. Bakker and D. Tweedie and M. Unmehopa, “Evolving Service Creation;

New Developments in Network Intelligence,” Telektronikk, vol. 4, 2002.

http://www.argreenhouse.com/papers/jlbakker/Bakker-telenor.pdf.

74

[9] P. Nana, “On a Hybrid TINA-Parlay Service Architectecture for Next Gener-

ation Networks,” MSc(Eng) Project Report, University of the Witwatersrand,

Johannesburg, 2003.

[10] C. Young-Han, “Next Generation Network activities in ITU-T ,” in Proceed-

ings of the 8th International Conference in Intelligence in Next Generation

Networks, (Bordeaux), pp. 46–51, April 2003.

[11] H.E. Hanrahan and D. Mwansa, “A Vision for the Next Generation Network,”

in Proceedings of the South African Telecommunications Networks and Ap-

plications Conference , September 2003.

[12] ITU, “NGN Working definition.”

http://www.itu.int/ITU-T/studygroups/com13/ngn2004/working definition.html.

[13] Parlay Group, “Parlay X Web Service White Paper .” http://www.parlay.org.

[14] Parlay Group, “Parlay Overview.”

http://www.parlay.org/imwp/idms/popups/pop download.asp?contentID=424.

[15] Z. Lozinski, “Parlay/OSA - a New Way

to Create Wireless Services,” May 2003.

http://www.parlay.org/docs/2003 06 01 Parlay for IEC Wireless.pdf.

[16] Rococo Software, “An Introduction to OSA/Parlay .”

http://http://www.rococosoft.com/docs/osa parlay wp.pdf.

[17] A. Moerdijk and L. Klostermann, “Opening the Networks with Parlay / OSA

APIS: Standards and Aspects behind the APIS.”

http://www.3gpp.org/ftp/tsg cn/WG5 osa/ Pesentation Tutorial Press-

Release/Opening the networks with Parlay OSA.PDF.

[18] ETSI ES 202 915-3, “Open Service Access (OSA); Application Programming

Interface (API); Part 3: Overview (Parlay 4),” August 2003.

[19] ETSI ES 202 915-4-1, “Open Service Access (OSA); Application Program-

ming Interface (API); Sub-part 1: Call Control Common Definition (Parlay

4),” ETSI Standard V1.2.1, August 2003.

[20] TINA Consortium, “Overall Concepts and Principles of TINA,” Febuary 1995.

http://www.tinac.com.

75

[21] ETSI ES 202 915-4-2, “Open Service Access (OSA); Application Program-

ming Interface (API); Sub-part 2: Generic Call Control SCF (Parlay 4),” ETSI

Standard V1.2.1, August 2003.

[22] ETSI ES 202 915-4-3, “Open Service Access (OSA); Application Program-

ming Interface (API); Sub-part 3: Multi-Party Call Control SCF (Parlay 4),”

ETSI Standard V1.2.1, August 2003.

[23] ETSI ES 202 915-4-4, “Open Service Access (OSA); Application Program-

ming Interface (API); Sub-part 4: Multi-Media Call Control SCF (Parlay 4),”

ETSI Standard V1.2.1, August 2003.

[24] ETSI ES 202 915-5, “Open Service Access (OSA); Application Programming

Interface (API); Part 5: User Interaction SCF (Parlay 4),” ETSI Standard

V1.2.1, August 2003.

[25] ETSI ES 202 915-4-5, “Open Service Access (OSA); Application Program-

ming Interface (API); Sub-part 5: Conference Call Control SCF (Parlay 4),”

ETSI Standard V1.2.1, August 2003.

76

Appendix

77

Appendix A

GAppGCCLogic

IpAppLogic GAPPGCC
Manager

IpAppcall Ipcallcontrol
Manager

IpCallIpAppServic
eManager

4: new

5: createCall (appCall : in IpAppCallRef) : TpCallIdentifier

6: new

create call object & callback

1: InitialiseSession():CallID

2: new()

3: setCallback()

Figure A.1: Application Sets up Call

IpAppLogic GAppGCCM
anager

IpCallControl
Manager

1: EndService(assignmentID : in TpAssignmentID) : void

2: disableCallNotification (assignmentID : in TpAssignmentID) : void

Figure A.2: Application ends Service

78

AppLogic GAppGCCM
anager

IpAppCallback ServiceCall Network

1: ServiceReq()

3: Network request

4: perform action

5: Network response

8: ServiceRes

2: forward

6: Service(Err)Res()

7: forward

Figure A.3: Asynchronous Methods

AppLogic GAppGCCM
anager

SCF

1: Service()

2: forward

3: resolve

Figure A.4: Synchronous Method on SCF Interface

79

AppLogic GAppCallMa
nager

AppCallback

3: resolve(if reation is generic)

SCF

1: Service()

2: forwardevent

4: forward(if reaction is specific)

Figure A.5: Synchronous Method on Call Back Interface

80

Appendix B

GAppMPCCLogic

IpAppLogic GAppMPCC
Manager

IpAppMPCC
Call

IpMPCCMan
ager

IpMPCCCallIpMPCCMan
ager

4: new

5: createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

6: new

create call object & callback

1: InitiateSession():CallID

2: new()

3: setCallBack()

Figure B.1: Application Sets up Call

81

IpAppLogic GAppMPCC
Manager

IpCallControl
Manager

1: EndService(assignmentID : in TpAssignmentID) : void

2: disableNotification/distroyNotification (assignmentID : in TpAssignmentID) : void

Figure B.2: Application ends Service

AppLogic GAppMPCC
Manager

Appcall
(leg)back

IpCall(leg) Network

1: ServiceReq()

3: Network request

4: perform action

5: Network response

8: ServiceRes()

2: forward

6: ServiceRes/Err()

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void
superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : void
eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void
getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void
superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallLegSuperviseTreatment) : void

7: forward

Figure B.3: Asynchronous Methods

82

AppLogic GAppMPCC
Manager

SCF

1: Service()

2: forward

3: resolve

These are syncronous methods that have not being abstrated

callleg
getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier
setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void
setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

call

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void
setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

Manager
changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : void
setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange :
in TpAddressRange) : TpAssignmentID
<<new>> getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

Figure B.4: Synchronous Method on SCF Interface

83

AppLogic GAppMPCC
Manager

IpAppManag
er

3: resolve(if reation is generic)

SCF

Manager
callAborted (callReference : in TpSessionID) : void
managerInterrupted () : void
managerResumed () : void
callOverloadEncountered (assignmentID : in TpAssignmentID) : void
callOverloadCeased (assignmentID : in TpAssignmentID) : void

1: service()
2: forward

4: forward(if reaction is specific)

Figure B.5: Synchronous Method on Call Back Interface

84

Appendix C

GAppUILogic

IpAppLogic GAppUIMan
ager

IpUIManager

1: EndService(assignmentID : in TpAssignmentID)

2: distroy(disable)Notification (assignmentID : in TpAssignmentID)

<<new>> disableNotifications () : void
destroyNotification (assignmentID : in TpAssignmentID) : void

Figure C.1: Application ends Service

85

AppLogic GAppUIMan
ager

IpAppUICall IpUICall Network

1: ServiceReq()

3: Network request

4: perform action

5: Network response

8: forward

2: forward

7: forward

6: Service(Err)Res()

sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo : in
TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in TpUIResponseRequest) : TpAssignmentID
sendInfoAndCollectReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo : in
TpUIVariableInfoSet, criteria : in TpUICollectCriteria, responseRequested : in TpUIResponseRequest) : TpAssignmentID
recordMessageReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, criteria : in TpUIMessageCriteria) : TpAssignmentID
deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID
abortActionReq (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

Figure C.2: Asynchronous Methods

AppLogic GAppUIMan
ager

IpServiceMa
nager

1: Service()

2: forward

3: resolve

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpUIEventCriteria) : void
getNotification () : TpUIEventCriteriaResultSet

Figure C.3: Synchronous Method on SCF Interface

86

AppLogic GAppUIMan
ager

IpAppUI{Man
ager/Call}

3: resolve(if reation is generic)

IpUI{Manage
r/Call}

4: forward(if reaction is specific)

2: forward

1: Service()

Manager
userInteractionAborted (userInteraction : in TpUIIdentifier) : void
<<deprecated>> reportNotification (userInteraction : in TpUIIdentifier, eventInfo : in TpUIEventInfo,
assignmentID : in TpAssignmentID) : IpAppUIRef
userInteractionNotificationInterrupted () : void
userInteractionNotificationContinued () : void
<<new>> reportEventNotification (userInteraction : in TpUIIdentifier, eventNotificationInfo : in
TpUIEventNotificationInfo, assignmentID : in TpAssignmentID) : IpAppUIRef

Call
userInteractionFaultDetected (userInteractionSessionID : in TpSessionID, fault : in TpUIFault) : void

Figure C.4: Synchronous Method on Call Back Interface

87

