by

I.U. JORDAAN

A thesis presented to the University of the Nitwater'srand, Johannesburg in partial fulfilment of the requirements for the degree of Master of Scierce in

Encineerint

December, 1964.

DECLARATION:

I hereby declare that thj 5 Thesis is my own work and ras not been submitted for a degree at any other University.

ACKNOWLEDGMENTS

The author wishes to express his gratitude for the financial assistance afforded him by bursaries from the South African Council for Scientific and Industrial Research and from the Hennen Jennings Fund.

In addition, the author is indebted to:

Professor A.J. Ockieston, who supervised the work, for the interest shown and the many helpful suggestions made during the course of the investigation, Mir. A.B. van Gorp, of the Jepartment of Statistics, for his advice on some of the statistical aspects of the work, and

The Staff of the Civil Lngineering Horkshop for their nelp in tre preparation of the apparatus.

SYNOPSIS

This work describes the behaviour at collafse oi steel aircular beams wher loade' at right angles to the plane of the beam. Methods for the calculation of collapse loads for girders with one and two corcentrated loads are given; the calculation has been carried out using, for the wost part, an electronic computer. The effect of torsional movements of the suyports is investigated. A kinematic appzoach to the calculation of collapse loads is given; the usual method is based on a static approach. Experimunts have been carried out on eight miniature bow girciers in which the analytical work was tested. Reasonable agreement between theory and exferiment was obtained.
Page
2. Tritroduction 1
2. Basic Principles 4
2.1 Background Ilastic Theory and Yield Criterion
2.2 General Picturn for Cir- cularo-Arc Br , 1 trders
2.3 Rules for the rermation of Elastic Hinges.
3. Single Concentrated Load 11
3.1 Introduction
3.2 Fully Fixed Case
3.3 No Torsion at Supports
3.4 No Bending at Supports
3.5 Effect of Lack of Toisional Restraint
4. Two Concentrated Loads 25
4.1 Introduction
4.2 Fully Fixed Case
4.3 Effect of Lack of TorsionalRestraint
4.4 Several Concentrated Loads
5. A Kinematic Approach 35
5.1 Introduction
5.2 Basic Principles
5.3 Exanples of Application
6. Experimental Investigation 43
6.1 Introduction
6.2 Preparation of Specimens andDescription of Apparatus
6.3 Scope of Tests
6.4 Results of Tests and Com- parison with mheory
7. Summary 63
8. Appendix 06
9. List of References 75

CHAPTER I

INTRODUCTION

The subject of this work is the behaviour at collapse of steel berms curved in a plane to a circular shape and lo ded at right aneles to the plane. The analysis of such beams is complicated by the presence of twisting moments in addition to the action of bending moment and shearing force whicn exists in a straight beam.

Cooprehensivd investigations ${ }^{1}$, ${ }^{2}$ covering voth theoretical and experimeatul asnects of the problem have been made of the elastic behaviour of circular-are bow girders.

The calculatior of collapse loads has received the attention of several authors. Johansen ${ }^{3}$ has described methods of calculating the collapse load for plane beams bent into shapes corposed of successions of straight lengths, and also uniformly curved beans and circular rings. Various support conditions were considered: the fully fixed support, the support with no torsional restraint, and the support with no bending restraint. Johansen has considered only single concentrated loads, and for the circular-arc girder has for the piost nart given solutions for the ioud at the central point of the girder. Boulton and Boonalakha ${ }^{4}$ have extended Joharsen's work for the fully fixed case to a graphical solution for a point load at any position on the girder arc and have also given a solution for a uniformly distributed load over the whole girder. Both theoretical treatmenta have used an approximate lower bound yield crilerion for combined bendinct and toraion proposed by Hili and Slebel ${ }^{5}$.

Tests have beer. cunducted uy johansen ${ }^{3}$ and by Boulton and Boonsukhat; the former were not to complete failure, but did provide some information on the formation of the plastic hinges. The tests by Boulton and Eoonsukha were to collapse and yielded results in reasonable agreement with the theory.

The present work includes both analytical and experimental aspects of the problem. The scope of the work is as follows:
(i) the extension of the existing graphical methods for a girder with a single load to complete solutions for the fully fixed case and the case with no torsion at the supports using the digital computer where direct comrutation was not possible. The results of these investigations form the basis of a circussion of the effect of sucport, novements, particularly rotations of the supports in a torsional sirection.
(id) the calculution of the collapse load for glrders witb two point loads and with fully fixed support conditions. Some comments on the effect of incomilete fixity and on the calculation of collapse loads for firders carrying several coricentrated loads have been included. The digital computer was lised for most of the solutions.
(iii) the calculation of collapee loade using a kinematic approach: the existing methods use a static approach. In this section a method for calculating the collapse louds applying the virtual work equation is described.
(iv) an experimental investigation in which eight mifiature bow girders oí different cross sectione were tested to isilure. Sufficient readings were taken sc that the behaviour of individual hinges couid be investigated. The collapse loads were com, mared with values predicted from control tests in pure vending and rure torsion. The behaviour of the hinges was also comiared with the theoretical behaviour, based on the results of the control tests.
The bulk of the theoretical aspectis of the present work is based on the eeometric approach developed by Johensen and by Boulton and Boonsukha.

3

After completion of the preseat work but before submissiun of the thesis, Imegwu describeत a general method for calculating collapse loads for plane curved girders. Imegwu also useत the digital corputer for his solutions.

Imegwu states that Johansen's method and extensions are not readily adapted to automatic computation; in the present work, however, automatic computation ic used without difficulty. Imeewu also states that these inethods are not easily used for more complicated loading cases. In the present work it is shown that most loading cases can be calculatea l!sing extensions of Johansen's meti.o\%, although the rethod due to Imegwu dues in some cases yield a 'fijcker solution. Imeswu's work is discussed further where it is pertinent, and is comeared to the solutions in the present work where applicable.

Une advantase of the methods used in the present work is that, particularly for the kinematic apuroach described, a clear visualization of the collapse mechanisir is necessary. This visualisation of the collapse mechanism is sometimes very important, as a false mode of failure may be obtained which superflcially appears to satisfy the equilibrium, yield and mechanism conditions. Examples of tinis are given in Chapter 5.

Aspects which it is considered require further study are sukgested in the final section of this work.

CHAPTER 2

BASIC PRINCIPLES

2.1 Yield Criterion

In most bow girders, belding boment and torsion are the most important structural actions: the effect of shear is usually neglisible. lence in the yiejd criterion the combination of bending moment and torsion winch causes full plasticity of a cross-section is sought.

For cross-sections with two orthoganal axes of symmetry, an approximate lower bound yield criterion for a plastic hinge at a section subjected to a bendins moment M and a torque I has been proposed bv Hill and Siebel ${ }^{5}$:

$$
\begin{equation*}
\left(\frac{\pi}{T_{p}}\right)^{2}+\left(\frac{T}{I p}\right)^{2}=1 \tag{2.1}
\end{equation*}
$$

where lap is full plastic moment ir pure bending, and Ip is the full plastic moment in pure tcraion.

This assumes that the effect of shearing force is negligiule, and also timat the material is rigid plastic.

Estimates of the error involved in equation (2.1) have been made analytically assuming the member to be fully plastic throughout its length which precticaliy never occurs in a circular-arc bow girder. If the square root of the left nand side equation (2.1) exceeds urifty bye, then:
(1) Steele ${ }^{7}$ has eßtimated $\varepsilon<0.15$ for a syuare solid or kol. ow aross-section: if $i n=0, \varepsilon$ j.s a maximun, and for $T=0, \quad \varepsilon=0$.
(ii) Boulton and Boonnukha? have ectimated for an I-secuion on the ansum tion that transverse shearing atress is horizontial in the flanges and vertical in the web. Tho value of k btained was $\varepsilon=.05$.

In the discussion 4 on the paper by Boulton and Boonsukha, Brown and Gent have pointed out that the yield criterion given by equation (2.1) is not necessarily a good one. The value of T_{p} obtained from the standard tersion test might be different from that in a torsion hinge in a bow girder, in which plasticity occurs at an isolated point. bsown and Gent further pointed out that the non-plastic parts cf the structure would restrict, if not envijely yrevent, plastic warping of the cross-section.

In the reply to the above discussion, Boulton and Boonsukha agreed that restraint on the warping of a pure torbion hinge would prevent the formation of a fully flastic Kirge.

The results of some tests carried out at the University of Sheffield were then described by Boulto: 1 and Boonsukha which showed that equation (2.1) gave a true lower bound to excrimental points for combined bending and torsion. It was also found trat the restriction of warping could increase the value of the plastic woments in cure torsion substantially.

Imegwu ${ }^{6}$ has described a method of estimating collapge loads usirie a more exact interaction equation.

Equation (2.1) has been adopted in the present work as the yield criterion. This is fustified by:
(a) the favourable analytical work already described,
(b) the experimental work conducted at the University of Sheifield described above,
(c) the favourable results of tests on miniature bow girders by Boulton and Boonaukha, and
(d) the testo described in the present work, in which reasonable results were obtained. The plastic hinges in pure torsion in circular bow girders showed considerable gipread and the mean value of torsion exceeded the value of pure torsion found in straight leugths of the same ross-section hy only 7 per cent.
If $T p / \mathbb{M} p$ is written as α, equation (2.1) becones: $\alpha^{2} M^{2}+T^{2}=T p^{2}$
It has also been shown ${ }^{3}$, 5 that if r is the angle between the radius of the bow girder anc the axis of rotation of a plastic hine that:

$$
\begin{equation*}
\tan r=T / a^{2} M \tag{2.3}
\end{equation*}
$$

2. 2 The Circular-Arc Bow Gjrder

For the equilibrium of a body in space, in which an arbitrary set of co-ordinates are $X-Y-2$, six equations are necessary:

$$
\begin{aligned}
& \Sigma P_{x}=0, \Sigma P_{y}=0, \Sigma E_{z}=0, \\
& \Sigma M_{x}=0, \Sigma M_{y}=0, \Sigma M_{z}=0,
\end{aligned}
$$

where ΣP_{r} denotes the sum of all the components of force in the X-direction, and Σ 沙 denotes the sum of all the coaponeuts of moments about Ran axis parallel to the x-axis; the other terms have a similar meaning. Considexing a bow girder which lies in the $X-Y$ plane. and which is loaded in the z-direction, then the forses and coments in the $X-Y$ piane may be assumed to be negligible compared with the forces and moments in the $X-2$ and $Y-乞$ flanes. Hence tire three equations of the first order of magnitude are

$$
\Sigma_{\Sigma z}=0, \Sigma \Sigma_{x}=0 \text { and } \Sigma \Sigma \Sigma_{y}=0 \text {. }
$$

Therefore three issential reactions are needed for the equilibrifu of a bow girder, and if it is fully fixed at the supporte, the three additional reactions are redundant. If there is no torsion at the supports of the bow girder, there is one redundant reaction.

The number of plastic hinges found in a bow eirder is not, in general, one more than the rumber of redundancies, as is the case for a plane frame loaded in its plane. The reason for this is that the number of hinges required to form a mechanism constituting complete collapse of a plane frame is one more than the nuriber of redundancaes, whereas in the case of the bow firder, the number of hinges reyuired to cause a collapse mechanisur ig not dependant on the number of redundancias. A slmple examile of this is collapse about an axis joining the supports, reytiring two hinces, one at each suphort. The number of hinges occurring during collapse of a bow girder is usually two, threc or four.

Joharisen has shown that in the case of four hinges, the static conditions are sufficient for solution; for three hinges the feometric condition that the axeo :f rotation of the hinges must intersect in a point is necessary, while if there ars two hinges collayse must take place about a common axis joining the two hinges.

FIGURE 2.1

FISURE 2.3

 Wivi but what
 zontrumed h, dis

$$
z=60 .=1 \pi x
$$

3us:
$4 \cdot \frac{1}{2}$
 potis stur.

FIGURE 2.2

Johansen does not give a proof of the condition necessary for the formation of three hinges, that is, that the axes of rotation of hinges must intersect, 1 m a point. This is suite easily demonstrated: consider the curved beam shown in Fig. 2.1. E'inges during collapse are assumed to form at the supports A and B and at any other point C; the rotations at A and B are ω_{1} and ω_{2} in the directions shown (rotations viewed in the direction of the arrows are clockwise). The point C, as a result of these rotations, moves vertically downward a distance x, where

$$
x=a w_{1}=\hbar \omega_{2}
$$

and a and b are the perpendicular distances shown.
Hence:

$$
\frac{\omega_{2}}{\omega_{2}}=\frac{b}{a}=\frac{c}{d},
$$

where c and d the lengths of the sides of the parailelogram CDEF as shown.

Since the rotation $E t$ the hinge at C is the rotation of leneth $C B$ relative to $C A$, it is equal to vectorjai difference between ωl and $\omega 2$, which are in the ratio of the sides c and d of parallelogram CDEF as demonstrated above. As a result of this, the axis of rotation at hinge C must fall alone the diagonal EC of CDEF, and must therefore pass thfough the woint E.

2.3 Rules for Formation of Hintes in a Circular-Arc Bow G1rder

The distiuction betwison free and fixed plastic binges has been recognised by Johansen and by Boulton and Boonsukha; a fixed hinge is one which occure at a. support or at the point of application of a concentrated load, while a free hinge occurs at any other point of the girder where the load is either distrihuted or zero.

Johansen has developed certain rules for the determination of free bince. Consider an element $A B$ of a circular beam of radius r with the central angle $d \theta$ of the element ds as shown in Fif. 2.2(a).

The girder is loaded with a uniformly distribute load w per unit length as shown in Fie. 2.2(b). The bending moment, torque and shearing force acting at the end B are M, T and U respectively. For vertical equilibrium:

$$
\begin{equation*}
w+\frac{d Q}{d s}=0 \tag{2.4}
\end{equation*}
$$

Taking moments about the tangent at i gives:
$\operatorname{Lu} d \theta+d T=0$,
or

$$
\begin{equation*}
\frac{M}{r}+\frac{d T}{d s}=0 \tag{2.5}
\end{equation*}
$$

Taking moments about radius os gives:
$3 H_{0}=\operatorname{d\theta }+\operatorname{TH} \theta$,
or $\quad \frac{d D_{i}}{d s}=Q+\frac{T}{r}$
In the above, quantities of second order of smallness and smaller have been neglected.

For the formation of a free hinge it follows from the yield criterion given by equation (2.2) that $a_{i i^{2}}+T^{2}$ must be a maximum,
i.e. $\frac{d}{d a}\left(a^{2} i^{2}+T^{2}\right)=0$,
or $\quad 2 a^{2}$ in $\frac{d a}{d a}+2$ I $\frac{d m}{d a}=0$,
where a is regarded as a constant.
Hence,
$W\left(a^{2} \frac{d}{d s}+\frac{T}{\|} \frac{d I}{d s}\right)=0$.
Substituting for $\frac{d \mathrm{~d}}{\mathrm{~d}}$ and $\frac{\mathrm{d} T}{\mathrm{dS}}$ from (2.5) and (2.6),
$\left.\operatorname{Lu} \alpha^{2} Q-\frac{I}{r}\left(1-a^{2}\right)\right\}=0$.
For this to te satisfied, either $N=0$, or if $H \leqslant 0$,

$$
\begin{equation*}
a^{2}+\frac{T}{x}\left(1-u^{2}\right) \tag{2.7}
\end{equation*}
$$

These two conditions are the necessary but not sufficient conditions for the formation of a plastic hinge; a plastic hinge will exist if the yield criterion Given by equation (2.2) is satisfied, in addition to the left hand side of (2.2) being a maximum.

For $a^{2} M^{2}+T^{2}$ to be a maximum, the second derivative must be negative, oi

$$
\begin{aligned}
& \text { five must be negative, } 01 \\
& a^{2}\left\{M \frac{d^{2} M}{d a^{2}}+\left(\frac{d M}{d s}\right)^{2}\right\}+T \frac{d^{2} T}{d s^{2}}+\left(\frac{d m}{d s}\right)^{2} \cdot 0 \ldots \text { (2.8) }
\end{aligned}
$$

Case $\mathrm{M}=0$

Equation (2.5) show s that $\frac{d T}{d S}=0$.
Inequality (2.8) reduces to:

$$
\alpha^{2}\left(\frac{d M}{d s}\right)^{2}+T \frac{d^{2} T}{d s^{2}}<0 .
$$

If (2.5) is differenilited, it is found that $\frac{d^{2} T}{d s^{2}}+\frac{1}{r} \frac{d M}{d s}=0$.

Using (2.6) and this expression, (2.8) becomes:
$\left(G+\frac{T}{T}\right)\left\{\alpha^{2} Q-\left(1-\alpha^{2}\right) \frac{T}{r}\right\}<c$.
Hence, for this to be true, either:
$-\frac{T}{r}\left(\frac{a^{2}-1}{a^{2}}\right)>Q>-\frac{T}{r}$,
or
$-\frac{\pi}{r}\left(\frac{a^{2}-1}{a^{2}}\right)<u<-\frac{T}{r}$
Since $\alpha>0$ always,
$-\frac{T}{r} s-\frac{T}{r}\left(\frac{a^{2}-1}{a^{2}}\right)$
and therefore (2.9a) applies and (2.9b) is invalid.
Case $h \neq 0$
Differentiating (2.6) gives

$$
\begin{aligned}
\frac{d^{2} w i}{d s^{2}} & =\frac{d q}{d s}+\frac{1}{r} \frac{d T}{d s} \\
& =-w-\frac{w}{r^{2}}, \text { using (2.4) and (2.5). }
\end{aligned}
$$

Differentiating (2.5) gives

$$
\begin{aligned}
\frac{d^{2} T}{d s^{2}} & =-\frac{1}{r} \frac{d!}{d s}=-\frac{s}{r}-\frac{T}{r^{2}}, \text { using }(2.6), \\
& =-\frac{T}{r^{2}}\left(1+r \frac{f}{f}\right),
\end{aligned}
$$

and since for the case $: \neq 0$, (2.7) applies, \& may be eliminated from this equation:

$$
\frac{d^{2} T}{d s^{2}}=-\frac{T}{r^{2} n^{2}}
$$

.. ubstituting these values in the iusquality (2.8):

$$
B^{2}\left(M\left(-w-\frac{M}{r^{2}}\right)+\left(Q+\frac{T}{r}\right)^{5}\right)+I\left(-\frac{T}{a^{2} r^{2}}\right)+\left(-\frac{b}{r}\right)^{2}<0
$$

$$
\text { Substituting } Q=\left(\frac{1}{2}-1\right) \frac{T}{r} \text { from (2.7): }
$$

$$
-a^{2} W W+\left(1-a^{2}\right)^{\frac{W^{2}}{M^{2}}}<0,
$$

or
iu $\left\{\left(1-a^{2}\right) \mathbb{K}-a^{2}{ }_{w r} r^{2}<0\right.$.
If $M<0$, then $\left(1-a^{2}\right)$ is $0(a s a \leqslant 1)$, and

$$
-a^{2} r^{2}<0 \text { if } w>0 ;
$$

hence $\left.\mathrm{Li}\left\{\left(1-\alpha^{2}\right) \mathbb{L}^{2}-\alpha^{2} \quad w r^{2}\right\}\right\}$ if $M<0$.
If $\mathrm{k}>0$, then

$$
\left(1-a^{2}\right) M-a^{2} w r^{2}<0
$$

or $\quad M<w r^{2}\left(\frac{a^{7}}{1-a^{2}}\right)$.
Hence $f 0$: the inequality to be true:

$$
\begin{equation*}
w r^{2}\left(\frac{a^{2}}{1-a^{2}}\right)>n>0 \quad \ldots \tag{2.10}
\end{equation*}
$$

The rule for the formation of a iree hinge as derived by Johanser. is as follows:

In Fig. 2.3 a section of the arc of a nircular bow girder is shown. If a free hinge is to cccus at F, ther if w equation (2.10) resuires that tilhe resultant Q of the internal forces in the hinee ast cut $A B$. If $w=0$ at $F, \lambda B=0$, and $\&$ must cut $O B$ produces, as required by equation (2.9b).

For the case $W=0$, the hinge must conseriuentiy be in pure toraion.

(a)
$m \neq 0, r=0$

(b)
$M=0, T \neq 0$ $\omega \neq 0, v=0$

(c)
$M \neq 0, T \geqslant 0$ $\omega=0, v=0$

FIGURE 3.1

FIGURE 3.2

FIGURE 3.3

$$
X=\text { POINT LOAD }
$$

 mas ys shet 1 f 虭 tont etion 50.10 ci

 rat :3: : a
 "ecely tit netion to -untionthendin
 De monture the
 (tai) whan 1210 th thimbluan than?

CHAPTER 3

SINGLE CONCENRRATED LOAD

3.1 Introduction

The notation used for the supports is the same as that used by Johansen: the three types of support illustrated in Fig. 3.1 are self-explanatory where ω, v are the rotations of the girder at the support about the bending and torsional axes respectively.

The general principles for the calcuiation of single, concentrated collapse loads have been developed by johansen ${ }^{3}$ ard extended by Boulton and Boonsukha ${ }^{4}$. Johar:sen has dealt with a central load only as the algebra becomes tedious in more complicated cases and ras considered the trree support types in Fig. 3 (a), (w) and (c). Bouiton and Boonsukha have introdused trial - and - error gnaphical procedures for calculation when the load is at any point on the girler for the fully fixed case shown in Fig. 3.1 (c). The present chapter is aimed at developing the graphisal method into a mathematical form suitable for a trial and - error solution, using digital comruters and also at extending the solution for the type of support reaction shown in Fife. 3.1 (a) to the case witr a point load at any joint on the arc.

The comparison of the results obtained Eron the study of raaction types (a) and (c) forms the basis of the final section of tials chauter which deals with cases of intermediate fixity. Certain conclusions useful for design purposes will be given.

3.2 Fully Hixed Case

Collapse can ocnur in three inodes, dependiag on the value of $a=\frac{T_{p}}{I_{p}}$. The position of the hinges is as shown in Fig. 3.2.p The approximate direction of the axes of rotation of the hinges is indicated by arrows; the rotations are clockwise when vieved in the direction of the arrows.

Mode 1 occurs at amall values of a, that is. when the torsional strengtr is small compared to the bending strength, and consists of four hinges, two fixed hinges at the supports and two free hinges on the arc on either side of the point luad. The pree ninges must be in pure torsion as demonstrated in the previous chapter. bode 2 consists of two fixed hinges aind one free hange, and occurs at intermediate values of a . In mode 3 there are three fixed hinges, at the supports and at the load. This mode occurs when the torsional strength is high.

Modes 1 and 2 are too complicated algebraically for direct soluticn: for these, the grafhical method of Boulton and Boonsukha will be described, and extended to a form soluble by electronic computer techriques.

Wode 1 - Low Torsional Strensth In this mode (referring to Fie. 3.3) plastic hinces form at A, B, C and D. As the load if is concentrated at G, the hirees at C and D inust be free hinges, and tirerefore in pure torsion.

The shear force: bending moment and torque at supporさa A and B may be represerted by the single forces F_{1} at E or $O C$ produced and F_{2} at F on $O D$ produced resnectively. Clearly, E, G and F must be colinear. This method of relresentirce the support reactions will be adopted throughout the present work.

Johansen has deduced an equation whiclu gives the locus of a reaction point (F or Ein Fie. 3.3), if threre is a fixed hinge at the supaurt to which it corresponds, and a iree hinge in pure torsion at a Foin's where the radius through the reaction foint intersects the girder. To illustrate this, the equation of the locus of E will be found, Eiven that there are hinges at A and C.

$$
\text { If } O E=01 \text { and if tise angle } A O E \text { is } \theta_{1} \text { as }
$$ shown, then for a plastic hinge at A :

$$
a^{2} R_{1}^{2} \rho_{1}{ }^{2} \sin ^{2} \theta_{1}+R_{1}^{2}\left(r-\rho_{1} \cos \theta_{1}\right)^{2}=T_{p}^{2}
$$

from the yield criterion (2.2), and since
$X_{1}=R_{1} \rho_{1} \sin \theta_{1}$ and $T_{1}=K_{1}\left(r-\rho_{1} \cos \theta_{1}\right)$.
For a plastic hirge at C (in pure torsion):

$$
R_{1}\left(0_{1}-r\right)=T n \text {. }
$$

The two equations may be combined:

$$
\begin{aligned}
\frac{r_{n}^{2}}{R_{1}^{2}} & =a^{2} 0_{1} \sin ^{2} \theta_{1}+\left(r-a_{1} \cos s_{1}\right)^{2} \\
& =(01-r)^{2} \\
2 p_{1} r\left(1-\cos \theta_{1}\right) & =\left(1-a^{2} b_{1} 1^{2} \sin ^{2} \theta_{1}\right. \\
& =\rho_{1} 1^{2}\left(1-a^{2}\right)\left(1-\cos ^{2} \theta_{1}\right)
\end{aligned}
$$

Cancelling pl $\left(1+\cos \theta_{1}\right)$ from each side, and solving for ρ_{1} :

$$
\begin{equation*}
\rho_{1}=2 r /\left(1-\alpha^{2}\right)\left(1+\cos \theta_{1}\right) \tag{3.1}
\end{equation*}
$$

Hence the locus $\left(\rho, \theta_{1}\right)$ of R_{1} at E depends only on r and a.

In essence, the graphical procedure previously referred to is as foilows:
The bow girder centre line, with given central angle 28 is plotted out to a large scale. For any value of α, curves at each support can be plotted, which give the locus of possible reaction points, as shown in Fie. 3.3.

A trial position for the pojnt E is selected on the curve ($0_{1}, e_{1}$). The position of F is then fixed since $E G F$ is a siraight ine and since F is on a curve similar to the curve for E . The values of R_{1} and k_{2} are given by the basic equations:

$$
\begin{equation*}
H_{2}+R_{2}=\ddot{H} \tag{3.2}
\end{equation*}
$$

and $\quad \mathrm{R}_{1} \mathrm{l}_{1}=\mathrm{R}_{2} \mathrm{l}_{2}$
where $I_{1}=E G$ and $I_{2}=F G$, which are found by scaling.
The condition which finally fixes the values of θ_{1} and $\theta_{2}(=$ the angle $B O F)$, is that the hinges A and C form at the same values of M_{p} and T_{p} as those at B and D. This is true if:
$\left(o_{1}-r\right) R_{1}=\left(o_{2}-r\right) k_{2}=I_{p} \ldots \ldots .$.
Fic any position of the load, there is a limiyue solution, dependine on the value of a.

The refinments of the graphical method may be found in the paper by Boulton and soonsukha ${ }^{4}$. In the present work, polar co-ordinties are used since a quicker solution in terms of machine time on the electronic computer is nbtained. A solution was first obtained usinf, a rectancular system, and the results of the two methods vere found to correspond exactly. In Fir. $3.3,0$ is the pole, and $O A$ the polar axis.

FIGURE $\quad 3.5$

FIGURE 3.6

Referring to Fig. 3.3, the equation of the locus of $E\left(\rho_{1}, \theta_{1}\right)$ is the parabola of equation (3.1):
$p_{1}=2 r /\left(1-\alpha^{2}\right)\left(1+\cos \theta_{1}\right)$.
Since E, G and F are the colinear, the soiution clearly requires the intersection of straight line EG with another parabola of the same shape as that given by equation (3.1), but with $O B$ as axis instead of $O A$. The equation of the second parabola (ρ_{2}, θ_{3}), where $\theta_{3}=$ the angle AOF, is given by the rotataon of the axis of the parabols (3.1) through an angle $2 B$. Hence the equation of the locus of $\mathrm{F}\left(\mathrm{P}_{2}, \epsilon_{3}\right)$ is given by

$$
\sigma_{2}=2 r /\left(1-a^{2}\right)\left(1+\cos \theta_{2}\right) \quad \cdots \cdots \cdots(3.5)
$$

where $\theta_{2}=2 \beta-\theta_{3}$.

$$
\begin{align*}
& \text { The equation of the dime EGF is of the form } \\
& r=p / \cos (\theta-\omega) \tag{3.6}
\end{align*}
$$

where (r, θ) are the polar co-ordinates of any point on the line, and the point $N(p, \mu)$ is such that $O N$ is normal to EGF (see Fig. 3.4).

The trial - and - error method requires an initial estimate of the size of ϵ_{1} and, using equation (3.1), ρ_{1} is obtained. Using tisese estimated coordinates of $E\left(\rho_{1}, \theta_{1}\right)$ and the eiven co-ordinates of $G\left(r_{C E}, \ell_{C E}\right)$, the line EGF is fixed i.e. constants p and u can be calculated by substitution of the known values in equation (3.6). (The reason for the use of the co-ordinates ($r_{\text {cg }}, X_{C g}$) will be clear in Chapter 4; for this chapter, $r_{c g}=r$, the radius of the bow girder).

Hence,
$r_{C g}=p /{ }_{C O A}\left(\phi_{C E}-\mu\right)$
and, $\rho_{1}=P / \cos \left(\theta_{1}-\mu\right)$
Therefore

$$
\begin{aligned}
{ }^{\rho} 1 / r_{C B} & =\frac{\cos \mu \cos \phi_{C B}+\sin \mu \sin \phi_{C E}}{\cos \mu \cos \theta_{1}+\sin \mu \sin \theta_{1}} \\
& =\frac{\cos \phi_{C E}+\tan \mu}{\cos \theta_{1}+\tan \mu} \frac{\sin \phi_{C E}}{\sin \theta_{1}} .
\end{aligned}
$$

Solving for $\tan \mu$,

$$
\begin{equation*}
\tan \mu=\frac{\cos \phi_{O K}-\left(\rho_{1} / r_{C g}\right) \cos \theta_{1}}{\left(\rho_{1} / r_{C H}\right) \sin \theta_{1}-\sin \phi_{C B}} \ldots \tag{3.7}
\end{equation*}
$$

The diatance p may now be solved for using either of the initial simultaneous equations.
Hence,

$$
\begin{equation*}
p=r_{c g} \cos \left(\varnothing_{c g}-u\right) \tag{3.8}
\end{equation*}
$$

The solution now requires the co-ordinates of F, which are given by the intersection of the line EGF and the parabola of equation (3.5).

If the intersection point is denoted by (\circ_{2}, θ_{3}) with respect to the polar co-ordinate system, fom (3.6),

$$
\rho_{2}=p / \cos \left(\theta_{3}-u\right),
$$

and from (3.5),

$$
p_{2}=2 r /\left(1-a^{2}\right)\left(1+\cos \left(2 \beta-\theta_{3}\right)!\cdot\right.
$$

Using these two equations to solve for B_{3}, i.e. eliminating \circ_{2} :

$$
\begin{aligned}
& \left.n i 1-a^{2}\right)\left\{1+\cos \left(2 B-\theta_{3}\right)\right\}=2 r \cos \left(\theta_{3}-\mu\right) \\
& p\left(1-u^{2}\right)\left(1+\cos 2 B \cos \theta_{3}+\sin 2 B \sin \theta_{3}\right) \\
& =2 r\left(\cos \theta_{3} \cos u+\sin \theta_{3} \sin u\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\cos \theta_{3}\left\{p\left(1-\alpha^{2}\right)\right. & \cos 2 B-2 r \cos \mu\}+\sin \theta\} \\
& \left\{p\left(1-a^{2}\right) \sin 2 B \cdot 2 r \sin \mu\right\} \\
& =-p\left(1-\alpha^{2}\right)
\end{aligned}
$$

Or $T \cos \theta_{3}+U \sin \theta_{3}=V$,
where $T=\left(1-x^{2}\right) \cos 2 B-2 r \cos \mu$,

$$
U=p\left(1-1^{2}\right) \sin 2 p-2 r \sin u,
$$

and $V=p\left(1 .-x^{2}\right)$.
Hence $T+U \tan \theta_{3}=V \sec \theta_{3}$.
Therefore

$$
\left(T+v \tan \theta_{3}\right)^{2}=v^{2}\left(1+\tan ^{2} \theta_{3}\right)
$$

1.e. $\left(U^{2}-V^{2}\right) \tan ^{2} \theta_{3}+2 U T \tan \theta_{3}+T^{2}-V^{2}=0$,
which is a quadratic in $\tan \theta_{3}$ of the form

$$
\begin{equation*}
A \tan ^{2} \theta_{3}+B \tan \theta_{3}+C=0 \tag{3.9}
\end{equation*}
$$

where

$$
\begin{align*}
& A=U^{2}-V^{2}=-p^{2}\left(1-\alpha^{2}\right)^{2} \cos ^{2} 2 \beta-4 r p\left(1-\alpha^{2}\right) \\
& \sin 2 \sin \mu+4 r^{2} \sin ^{2} \mu \\
& \text { (3.10a) } \\
& B=2 U T=2\left\{p\left(1-a^{2}\right) \sin 2 \beta-2 r \sin u \quad\left\{p\left(1-\alpha^{2}\right)\right.\right. \\
& \cos 2 B-2 r \cos \mu\} \ldots(3.10 b) \\
& C=T^{2}-V^{2}=-p^{2}\left(1-\alpha^{2}\right)^{2} \sin ^{2} 2 B-4 \operatorname{rp}\left(1-a^{2}\right) \\
& \cos 2 \cos \mu+4 r^{2} \cos ^{2} \mu \\
& \text { Hence } \tan \theta_{3}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 h} \tag{3.11}
\end{align*}
$$

and

Th. 1 trader line EhF intersects the parabola of equa .5) twice, given by the two solutions in equation 1」), and inspection (see Fig. 3.3) shows that the greater anele is the required solution. Then the cer.iral angle of the bow girder is less than. 180°, $1+ \pm 3$ clear by inspection that $V>\cup$ and therefore $A=U^{2}-V^{2}$ is negative. Hence the larger angie given by 3.11) corresponds to the negative sign before the square root.

As in the graphical ".cedure described, the final solution is obtained when the hinges at A and C occur at the same values of $K p$ and T_{p} as those at B and D. The equations (12), (13) and (14) are used in this siaj and the equations for the collapse load are easily deduced as:

$$
\begin{align*}
& \left(\frac{W_{r}}{M_{p}}\right)_{1}=\frac{a\left(\varepsilon_{1}+\ell_{2}\right)}{\ell_{2}} \frac{\left(p_{1}-1\right)}{V_{p}} \tag{3.12a}\\
& \left(\frac{W_{r}}{V_{p}}\right)_{2}=\frac{\alpha\left(l_{1}+\ell_{2}\right)}{z_{1}\left(p_{2}-1\right)} \tag{3.12b}
\end{align*}
$$

where $:_{1}=E G=\left\{o_{1}^{2}+r_{C g}^{2}-2 o_{1} r_{\operatorname{cg}} \cos \left(\phi-\theta_{1}\right)^{\frac{1}{2}}(3.13 a)\right.$

$$
\ell_{2}=F G=\left(\rho_{2}^{2}+r_{C E}^{2}-2 \rho_{2} r_{C g} \cos \left(2 \beta-\not \partial-\theta_{2}\right)\right\}^{\frac{1}{2}}
$$

Details of the complies programme used for the calculation are given in the Appendix. The values obtained for the collapse load are in the dimensionless form $W r / M p$ Each value of $\mathrm{Wr} / \mathrm{Mp}$. for any given value of $2 B$ and ϕ, de ends only on a. Hence the results may te plotted in a dimensionless form, as were the results obtained crapisically by Bolton and Boonsukha.

Imegwu ${ }^{\text {6 }}$ has described a methon, also using an electronic computer, which gives a simpler solution, in that 9_{1} is obtained directly in terms of θ_{2}. Some results published by Imegwu were checked and the results were found to agree almost exactly.

Mode 2 - Moderate Torsional Strength. For girders with the load placed unsymmetrically, at intermediate values of a, collapse by mode 2 occurs; in this mode the hinge at I Aisappears. A description of the transition from mode 1 to mode 2 is given in Chapter 5.
the failure mode now consists of hinges at A, B and C, the hinge at C being in pure torsion (see Fig. 3.5). The geometrical condition is imposed that the three axes of rotation of the hinges must intersect in one point S, as has been proved in section 2.3. The free plastic hinge occurs on the longer arc measured from , e point load at G to the supports. The graphical method devised by Boulton and Boonsukha for mode 2 is similar to that for mode 1 ; a trial position θ_{1} is selected, which fixes the position of \mathbb{A} which is on the parabcla defined by equation (3.1). As before, the line LGF is now fixed. The position of F is determined by the cordition that the axes of rotation of the hinges intersect in S. The point S is obtained by the intersecition of the tangent at C and the line IS which is defined by

$$
\begin{array}{r}
\tan \gamma_{1}=T 1 / \alpha N_{1}=R_{1}^{5} 1 / \alpha R_{1}^{2} R_{1}{ }^{n}={ }^{\xi} 1 / \alpha^{2} n_{1}, \text { from } \\
\text { equation }(2.3)
\end{array}
$$

where Y_{l} is the angle between $O A$ produced and the axis of rotation $A S$, and $\xi_{1}=A H,{ }^{n} 1=E H$; $E H$ is perpendicular to the radius (IA.

Hence tan $\gamma_{\text {a }}$ may be easily found graphically as r_{2} is the ancle between the radius $O B$ and $B S$. Now

$$
\mathrm{T}_{2} / \mathrm{N}_{2}=a^{2} \tan r_{2}
$$

which defines the slny of BF.
The condition which finally fixes the oorreot
trial value of θ_{1} is thet the hingea et A and C occur at the aame value of T_{2} as the hiace it B_{1} i.e. the equations

$$
\begin{align*}
& K_{1}\left(o_{1}-r\right)=T_{p} \ldots \ldots \ldots \ldots \ldots \ldots\left({ }_{p} \ldots 14 a\right) \\
& a^{2} R_{2}^{2} n_{2}^{2}+R_{2}^{2} \xi_{2}^{2}=I_{p}^{2} \ldots \ldots \ldots \ldots(3.14 b)
\end{align*}
$$

are satisfied.
For the numerical trial - and - error solution, the rectangular co-ordinate system OXY (see Fig. 3.5) has beer used. The locus of E, as before, is defired by equation (3.1):

$$
p_{1}=2 r /\left(1-a^{2}\right)\left(1+\cos \theta_{1}\right)
$$

The Cartesian co-ordinates oi b are given by

$$
\begin{align*}
& x_{E}=\rho_{1} \cos \theta_{1} \tag{3.15a}\\
& y_{E}=\rho_{1} \sin \theta_{1} \tag{3.15b}
\end{align*}
$$

The equation of ΔS is

$$
y=\left(\tan \gamma_{1}\right)(x-r)
$$

$$
=\frac{\xi_{1}}{a^{2} n_{1}}(x-r)
$$

i.e. $y=\frac{r-x_{E}}{a^{2} y_{E}}(x-r)$.

$$
\text { The ey } \quad \therefore \text { of } \mathrm{BS} \text { is }
$$

$$
y-r \sin \epsilon_{1}=\frac{-x_{E}}{y_{E}}\left(x-r \cos \theta_{1}\right) .
$$

The co-ordinates of S are eiver by the inter-
section of AS and BS. Hence:

$$
\frac{x_{S}}{T}=\frac{a^{2}\left(\frac{x_{E}}{I} \cos \theta_{1}+\frac{y_{E}}{I} \sin \theta_{1}\right)+1-\frac{x_{E}}{T}}{1-\frac{x_{E}}{T}\left(1-a^{2}\right)}, \ldots(3.15 a)
$$

and using the equation for $A S$:

$$
\begin{equation*}
\frac{y_{S}}{r}=\frac{1-\frac{x_{E} / r}{2}}{y_{B / r}}\left(\frac{x_{B}}{T}-1\right) \tag{3.16b}
\end{equation*}
$$

The angle r_{2} between the lines $O B$ and $\overline{S B}$ is given ry

$$
\tan r_{2}=\frac{m_{3 B}-m_{O B}}{1+m_{3 B} m O B}
$$

where $m_{O B}$ aid $m_{S B}$ are the slopes of $C B$ and $S B$ respectively.
and

$$
\begin{align*}
\text { Since } m_{O B} & =\tan 2 B \\
m_{S B} & =\frac{y_{B}-y_{S}}{x_{B}-x_{S}}, \\
\tan r_{2} & =\frac{\frac{x_{S}}{T} \sin 2 B-\frac{y_{S}}{r} \cos 2 B}{1-\frac{x_{S}}{r} \cos 2 B-\frac{y_{S}}{r} \sin 2 B} \cdots \tag{3.17}
\end{align*}
$$

The slope of BF iss given by $\tan { }^{5} 1, \delta_{1}$ being the angle between $B F$ and the X-direction. Now

$$
\begin{equation*}
\delta_{1}=2 B-\left(\pi / 2-\delta_{2}\right) \tag{3.18}
\end{equation*}
$$

where ${ }^{8} 2$ is the angle BFJ, and

$$
\begin{equation*}
\delta_{2}=\arctan \left(a^{2} \tan r_{2}\right) . \tag{3.19}
\end{equation*}
$$

The coordinates of F are found by the intersection of $B F$ and $E G$. The equation of $E G$ is given by

$$
\begin{align*}
\frac{y}{r}= & \left.\frac{\frac{Y_{E}}{r}-\frac{r_{C E}}{r} \sin \phi_{C E}}{\frac{x_{E}}{r}-\frac{r_{C E}}{r} \cos \phi_{C E}}\right) \frac{x}{r}+\frac{r_{C G}}{r} \sin \phi_{C E} \\
& -\left(\frac{\frac{y_{E}}{r}-\frac{r_{C G}}{2} \sin \phi_{C g}}{\frac{x_{E}}{r}-\frac{r_{C B}}{r} \cos \phi_{C G}}\right) \cos \phi_{C E} \cdots \tag{3.20}
\end{align*}
$$

the polar coordinates defining the point G are $\left(r_{c g}, \phi_{c g}\right)$: for this chapter $r_{C g}=r$. The reason for this notation will be clear in Chapter 4.

The equation of $B F$ is
$y=\left(\tan \delta_{1}\right) x+\sin 2 \beta-\tan \delta_{1} \cos 2 B \ldots$
Having determined the coordinates of F by the method given in the Appendix, the equations for the conditions (3.14) are to be derived. The first part of (3.14) reduces (as before) to:

$$
\begin{equation*}
\left(\frac{\|_{r}}{M_{p}}\right)_{1}=\frac{\left(\ell_{1}+\ell_{2}\right)}{\ell_{2}\left(\rho_{1}-1\right)}, \tag{3.22a}
\end{equation*}
$$

and the second part reduces to:

$$
\begin{equation*}
\left(\frac{w_{r}}{w_{p}}\right)_{2}=\frac{a\left(\varepsilon_{1}+\frac{12}{}\right)}{{ }^{\varepsilon_{1}}\left(a^{2}+2^{2}+2^{2}\right)^{\frac{1}{2}}} \tag{3.22b}
\end{equation*}
$$

Where $a^{2} n_{2}^{2}+\varepsilon_{2} 2^{2}=a^{2} \overline{\mathrm{BF}}^{2} \cos ^{2} \delta_{2}+\overline{\mathrm{BF}}^{2} \mathrm{Bin}^{2} \delta_{2}$

$$
\begin{align*}
=\left(a^{2} \cos ^{2} \delta_{2}\right. & \left.+\sin ^{2} \delta_{Z}\right)\left(\left(x_{F}-00 s 2_{B}\right)^{2}\right. \\
& \left.+\left(y_{F}-\sin 2 B\right)^{2}\right) \ldots(3.23 \tag{3.23}
\end{align*}
$$

and

$$
\begin{align*}
& { }^{\ell} 1=E G=\left\{\rho_{1}{ }^{2}+r_{C g}{ }^{2}-2 \rho_{1} r_{C g} \cos \left(\phi-\theta_{1}\right)\right\}^{\frac{1}{2}} \cdot(3.24 a) \\
& { }^{\ell}{ }_{2}=F G=\left\{\rho_{2}^{2}+r_{C g}{ }^{2}-2 \rho_{2} r_{C g} \cos \left(2 \beta-\phi-\theta_{2}\right)\right\}^{\frac{1}{2}} \tag{3.24b}
\end{align*}
$$

When the equations (3.22a) and (3.22b) are simuitaneously satisfied, the solution is complete.

Details of the solution using the computer are given in the Appendix.

Imegwn ${ }^{6}$ has given a solution using a computer which is different from the solution described here. Almost exact acreement was obtained between results published by Imegwu and results obtained from computation by the present nethod.

Mode 3 - Hich 'Porsional Strength. This mode occurs at large values of a and consists of three hinges in pure bending at A, G and B in Fig. 3.6. The axes of rotation at A, G and B intersect in one point 0 . The solution is comparatively simple and has been derived by Johansen ${ }^{3}$ as:

$$
\frac{W_{r}}{W_{p}}=\cot (B-\phi / 2)+\cot \phi / 2
$$

The necessary condition for tre solution is that a plastic hinge does not form at E, or

$$
\begin{equation*}
a>\tan \frac{\theta_{1}}{2}=\tan (\sqrt{8} / 2-\infty / 4) \tag{3.26}
\end{equation*}
$$

In Fig. 3.7 and 3.8 oome complete solutions are shown for bow girders with central ancles of 90° and 180°. The values of collapse load ara, as already mentioned, in the dinenoionless form $\frac{W r}{M p}$; for any given central angle $2 B$ and loadine point ϕ, the graphs give solutions for any torsional strenth. The values of 4 range fronil zero to 1.00 , the maximum value.

The curves show how the collapse load varies with change in α. The transition from mode 1 to mode 2 is sunooth, whereus the transition from mode 2 to mode 3 is not, except for girders with a central angle of 180°. It can be shown that a smooth transition takes plabe from mode 2 to a mode with hinges at A and B, that is, with $A B$ as axis of rotation. However, for $28<180^{\circ}$ such a mode cannot levelop, es the oalculated values of moment and torque at the load point violate the yield

MOLE I （SMALL α ）

MOUE 3
（LARGE α ）
FIGURE 3.9

FIGURE 3.10 Wirsise 4 whe Mat fifur

 qut
 y．n fand she
 （lat hat mant

2he．施数 2athat tyed wat it

Sitan rertisa bued

 anderes．

等

 4 tolionthos a ：
talhes to thy
Wher is deve

FIrJURE 3.11

criterion. For $2 B=180^{\circ}$, the two- and three-hinge modes coincide. For $2 \beta>180^{\circ}$, it is possible that collapse can take place about a common axis joining the supports.

3.3 No Torsion at Supports

As previously mentioned, this case has been dealt with by Johunsen for a single load on the centre of the girder: in the present section the solution is extenled for the load at any point on the girder.

The collapse modes are analogous to those for the fully fixed case and will be designated modes 1 , 2 and 3. In the present investigation modes 1 and 2 have been solved numerically using a digital computer.

In Fig. 3.9 the possible modes are shown. In mode 1 free hinges occur in pure torsion as shown; in mode 2 a hinge in pure torsion and a hinge in pure bending occur as shown. wode 3 is idertical to the mode 3 for tha fully ilxed case. The approximate direction of the axes of rotation at the kinges is shown.

It may sometimes happen that the free hinge and the bending hinge at the support occur at the same value of a : for this value of a modes 1 and 2 are combined, but this does not invalidate any of the followine solutions.

Mode 1 - Low Torsional Strength. Since there is no torsion at the supports, the reaction points R_{1} and R_{2} at E and F respectively always fall on the tangents a^{+} A and B (see Fig. 3.10). For mode 1 failure, hinges in pure torsion occur at C and D, and the yield criterion is not exceeded at any other point on the girder. In the following a trial - and - error solution similar to that obtained in the last section and using an electronic computer is developea.

The co-ordinates of E with respect to the rectangular co-ordinate systom $O X Y$ are ($r, r \operatorname{Tan} \theta_{2}$) and G has co-ordinates ($\mathrm{r} \cos \phi, r$ gin ϕ). The straight line EG is given by:

$$
\frac{y-r \tan \theta_{1}}{r \sin \phi-r \tan \theta_{1}}=\frac{x-r}{r \cos \phi-r} .
$$

Since the slope of BF is - ont $2 B$ and the com ordinates of B are $(r \cos 2 \varepsilon, r \sin 2 \beta)$, the equation of. $B F$ is

$$
y-r \sin 2 \beta=-\cot 2 \beta(x-r \cos 2 \beta) \text {. }
$$

The co-ordinates of the intersection point F of these two innes are given by:
 Hence,

$$
\tan \left(2 B-\theta_{<}\right)=y_{F} /_{x_{F}}
$$

01
$\tan \left(28-\theta_{2}\right)=\frac{\operatorname{cosec} 28(\sin \phi-\tan \theta 1)}{(\cos \phi-1) \operatorname{cosec} 2 \beta-\cot 2 \theta(\tan \theta} \frac{\cos \phi-\sin \phi)}{\cos \theta+\sin \phi}$

The equations which give the final solution are

$$
\begin{equation*}
R_{1}\left(p_{1}-r\right)=P_{p} \tag{3.28a}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}\left(o_{2}-r\right)=T_{p} \tag{3.28b}
\end{equation*}
$$

$R_{2}+R_{2}=W$.
Since $\theta_{1}=r \sec \theta_{1}$
and $\mathrm{H}_{2}=r \sec \theta_{2}$,
equations (3.28a) and $3.28 b$) reduce to

$$
\begin{align*}
& \left(\frac{W_{r}}{H_{p}}\right)_{1}=\left(\frac{\alpha}{\left.\sec \frac{\alpha}{\theta_{1}-1}\right)\left(\frac{\ell+\ell_{2}}{\ell_{2}}\right)}\right. \tag{3.29a}\\
& \left(\frac{W_{r}}{M_{p}}\right)_{2}=\left(\frac{a}{\sec \theta_{2}-1}\right)\left(\frac{\ell 1+\ell_{2}}{\ell 1}\right) \tag{3.29b}
\end{align*}
$$

where

$$
\begin{align*}
l_{1} & =E G=\rho_{1}^{2}+r^{2}-\rho_{1} r \cos \left(\phi-\theta_{1}\right) \ldots \tag{3.30a}\\
\text { and } \quad l_{2} & =F G=\rho_{2}^{2}+r^{2}-2 \rho_{2} r \cos \left(2 \beta-\phi-\theta_{2}\right) \ldots \tag{3.30b}
\end{align*}
$$

Mode 2 - Moderate Torsional Strenfth. This mode occurs when α is too large for the formation of the frea hinge at D, and a hinge in pure bending at B occurs; the support B is nearer to the load than the support A.

The equations developed in the preceding section all apply except for (3.28 b) of the simultaneous yield equations (3.28) which become

$$
R_{1}\left(\rho_{1}-r\right)=T_{p} \text {, as before, }
$$

and $\quad R_{2} r \tan \theta_{2}=u_{p}$.
Hence the equations corresponding to (3.29) are
$\left(\frac{W_{r}}{W_{p}}\right)_{1}=\left(\frac{\alpha}{\sec \theta_{1}-1}\right)\left(\frac{2_{1}+1_{2}}{2_{2}}\right)$
$\left(\frac{W_{r}}{W_{p}}\right)_{2}=\cot \theta_{2}\left(\frac{k_{1}+\ell_{2}}{\ell_{1}}\right)$
Node 3-High Torsional Strength. This rode is identical to mode 3 for the fully fixed case, and the equations (3.25) and (3.26) apply.

Some solutions for the no-torsion case can be seen in Figs. 3.7 and 3.8 . The solution is composed of a succession of straight lines.

3.4 No Bendine at Supports

This has not been solved in the general case in this work, as it is not of great practical inportance. Johansen has given a solution for a point load at the centre of the girder. In Fig. 3.11 a bow girder is shown with load at the centre. Since there is no berding moment at he supporta, the reactions R_{1} and R_{2} wus: Lie cn the radii at A and B produced, at E and F rereoctjvely. Plastic hinges can form at A, B and G oniy; the hineses it A and B inust be in pure torsion. For the central load, the hinge at B must be in pure bending. For the point load at any point on the girder, the same principles apply, except that a hinge forming at G would not necessarily be in pure bending.

3.5 Effect of Lack of Corsional Hestraint

It can be seen from Figs. 3.7 and 3.8 that for a bow girder with a single concentrated load and a given centiral angle and loading position, the value of $\frac{W r}{M}$ depends on " only; it is also evident that if α is above a certain value, collapse occurs by mode 3 whether the supports are torsionally restiained or not. From this it is clear that in the design of a bow girder, if a mode 3 failure is anticipated, an increase of torsional strengtin relative to bending strength doee not increase the strength of the bow girder; a Iurther conclusion is that the provision of an end connectior desigred to resist torsion does not increase the ultimate sirength of the bow girder.

Ficr cases of mode 1 and mode 2 failuie, the collapse load depends on the value of a, and the provision of torsional atrength at the support does increase the collapse i iad. In cases of partial fixity, where there is some torional movement of the support, greater d "entions than for the fully fixed case will result; tue ultimate load will be unaffected if there is enough forsior at the supports to cause full plastic hinges to form at the supports. If, on the other hand, the torsional support movement is sufficient to allow the formation of free hinges on the arc without fixed hinges at the supports, the ultimate load will be less than for the fully ilxed case.

It has beerl obse -ved from the tests in Chapter 6 that, at large deflections, the collapse load tenda to decrease. If torsional restraint is not provicied for girders with low α, the effects of changes in geometry and instability would tend to be more marked.
(a) MOOE I

(b) MODE IA

$$
\text { LOW } \alpha
$$

W

FIGIIRE 4.2

25
 CHAPTER 4
 TWO COI:CENTRATED LOADS

4. 1 Introduction

In this chayter, all the possible modes of failure for a sircular girder fully fixed at the supports and loaded with two concentrated loads are investigated. Asnost all of the solutions reyuire the use of an electronic computer; some of the solutions are based directly on the results of the preceding chupter.

The effect of lack of torbional restraint at the supports is discussed, and in the final section some sugestions : Or the calculation of collapse loads of a giruer loaded with several conceintrited loads are made.

4. 2 The Fully Fixed Case

There are various modes of failure for two corcentrated loads: the modes are designated $1,1 A, 2$, $2 A, 3 A, 3 B$ and 4 , and are analagous to those for a sincle concentreted load with the exception of mode 4 . The modes are illustrated in Fig. 4.1.

The modes which can occur at low values of a are shown in Fig. 4.1 (a) and (b), and involve tae formation of two frce hintes. The main difference from the mode 1 of Chapter 3 is that one of the free hinees can cocur between the two concentrated ioads.

In the modes which occur at intermediate values of u, the possibility $\Omega 130$ exists of a hinee occurring betweer the two. oint loads, as shown in kig. 4.1 (c) and (d).

When the resulta are miotteä as $\frac{\| r}{\ln }$ acringt a , the transition from modes $1,1 \mathrm{~A}, 2$ or $2 A$ is a shooth one to a mode with two hinge日 at the supports as was the case for the ainigle coneentrated loada. The two-hinge mode is depignatad mode 4 , and is illustrated in Fig. 4.1 (g), There are, as for the single loud case, certain "fcreigh" modes, designated $3 A$ and $3 B$, which correspund to the wode 3 of the previous chapter. The modes are $111 \mathrm{ua}-$ trated in Figs 4.1 (e) and (f), and involve the formation of fixed hinees, au the sup,orts and at the loads. When plotted on the curves mertioned above, the transition from lower modes to modes $3 A$ and $3 B$ is not necessarily a smooth one.

Modes 1, IA - Low Torsional Streneth. The conditions for mode lA to be possible will first be considered.

In Fig. $4.2, G_{1}$ and G_{2} are the positions of the luads W_{1} and W_{2} respectively. The position of the centre of gravity of the loads W_{1} and W_{2} is at G. The angles $\varnothing_{1}, \varnothing_{2}$ ant $\varnothing_{\mathrm{cg}}$ are measured from $O A$ to $U G 1, O G_{2}$ and $O \hat{G}$ respectively. The symbol rcg designates the distance OG. Clearly EGI must be a z"rright line.

Jonansen has shown that it is inpossible for two free hinges to exist on the same unloaded beam section. In mode la fallure, it is assumed that one hinge occurs between the lozds. Assuming the hinge on $G_{1} G_{2}$ to be near to G_{2}, i.e., that the reaction R_{2} must be between G_{1} and G_{2}, then the force acting on aly cross-section of the nember betweer G_{1} and G_{2} will be the resultant of iv2 and R_{2}, L.e. $\mathrm{H}_{2}-\mathrm{i}_{2}$, and is assumed to act upwarda at H. irhis imulies k2? N2, wirich is trise if K_{2} iles betiveen $G 1$ and G2. Unier these conditions the hinge illl form at K, the ir.tersection point of OH with the centre-line of the girder. Ihe condition for a plastic hinge at K is

$$
\begin{equation*}
\overline{H K}\left(R_{2}-I_{2}\right)=T_{p} \tag{4.1}
\end{equation*}
$$

For a hinge at the support

$$
\begin{equation*}
0^{2} R_{2}^{2} n_{2}^{2}+R_{2} \varepsilon_{2}^{z}=T_{0}^{2} \tag{4.2}
\end{equation*}
$$

Where ξ_{2} and η_{2} have the same meanilig as in the previous chapter.

The distance $G_{2} H$ may be found by taking moments about the perpendicular to $G_{2} H$ at G_{2}, i.e.,

$$
\begin{equation*}
\frac{\mathrm{R}_{2}}{\mathrm{G}_{2} \mathbb{H}}=\frac{\mathrm{K}_{2}-\mathrm{w}_{2}}{\left.\mathrm{FG}_{2}\right)} \tag{4.3}
\end{equation*}
$$

If $O F=0_{2}, O H=\rho_{3}$ and $\theta_{2}=$ the ancle $B O F$, then by the cosine rule

$$
\omega_{3}^{2}=\overline{\mathrm{OG}}_{2}^{2}+{\overline{G_{2} H}}^{2}-2 \overline{\mathrm{OG}}_{2} \cdot \overline{\mathrm{G}}_{2}{ }^{H} \cos \left(0 \mathrm{G}_{2} \mathrm{H}\right) .
$$

B_{y} the sine rule, and as the angle $G_{2} O F=\theta_{2}-2 B+\phi_{2}$,

$$
\operatorname{Bin}(O G \cdot 2 H)=\frac{\pi \sin \left(\theta_{2}-2 B+\phi_{2}\right)}{\Gamma_{2}}
$$

Substituting this and $\overline{O G_{2}}=r$ in the above equation:

$$
\rho_{3}^{2}=r^{2}+{\overline{G_{2} H^{2}}}^{2}-2 r \cdot \overline{G_{2} H}\left(1-\frac{\rho_{2}^{2} \sin ^{2}\left(\theta_{2}-2 B+\phi_{2}\right)}{\overline{P G}_{2}^{2}}\right) \text {. }
$$

Substituting from (4.3) for $\overline{G_{2} H}$:

$$
\begin{aligned}
& \text { Since } \overline{\mathrm{TG}}_{2}{ }^{2}=\rho_{2}{ }^{2}+r^{2}-2 \rho_{2} r \cos \left(\theta_{2}-2 \beta+\phi_{2}\right) \text {, } \\
& \left.\frac{\rho 3^{2}}{r^{2}}=1+\left(\frac{R_{2}}{R_{2}-i_{2}}\right)^{2} i^{0} \frac{2^{2}}{r^{2}}+1-2 \frac{\rho_{2}}{r} \cos \left(\theta_{2}-2 \beta+\phi_{2}\right)\right) \\
& -\left(\frac{2 R_{2}}{R_{2}-H_{2}}\right)\left\{\frac{\rho_{2}^{2}}{r^{2}} \cos ^{2}\left(\theta_{2}-2 B+\phi_{2}\right)-\frac{2 \rho_{2}}{r} \cos \left(\theta_{2}-2 B+\phi_{2}\right)+1\right)^{\frac{1}{2}}
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{03^{2}}{r^{2}} & =1+\left(\frac{R_{2}}{r_{2}-i_{2}}\right)^{2}\left(\frac{\theta_{2}^{2}}{r^{2}}+1-\frac{\sigma_{0}}{r} \cos \left(\theta_{2}-2 \theta+\phi_{2}\right)\right\} \\
& -\left\{\frac{2 R}{R_{2}-H_{2}}-1\left(\frac{\rho_{2}}{r} \cos \left(\theta_{2}-2 B+\phi_{2}\right)-1\right) \ldots \ldots(4.4)\right.
\end{aligned}
$$

Since $\overline{H K}=p_{3}-r$, the value of ρ_{3} from (4.4) could be substituted in (4.1) ard combined with (4.2) to give a new equation to replace equation (3.5) of the previous chapter, which gives the equation of the locus of possidle reaction points if there is a fixed hinge at the support and a free hinge on the span.

However, if $\left(\theta_{2}-\dot{\beta}+\varnothing_{2}\right)$ is small, so that $\cos \left(\theta_{2}-2 \theta+\phi_{2}\right)$ is nearly equal to unity, then

$$
\left.\frac{\rho_{3}^{2}}{r^{2}}=\left(\frac{H_{2}}{R_{2}-X_{2}}\right)\left(\frac{2}{r}-1\right)-1\right)^{2}
$$

or

$$
\frac{03}{r}-1=\left(\frac{R_{2}}{R_{2}-i_{2}}\right)\left(\frac{2}{r}-1\right),
$$

and equation (4.1) becomes

$$
\mathrm{R}_{2}\left(\frac{0_{2}}{\mathrm{r}}-1\right)=\frac{\mathrm{T}_{\mathrm{D}}}{\mathrm{r}},
$$

which is the condition for a free hinge on the arc opposite the reaction point, as if the girder was loaded with a single concentrated load at the centre of gravity of the two concentrated loads.

Hence it may be stated:
(i) if mode 1 in Fig. 4.l(a) occurs, the locus of reaction points is the sauce as for the single concentrated loau.
(ii) if the free hinge occurs between the point loads and the poaition of the hinge is such that K_{c} is close to \tilde{Z}_{2}, with the result that the ancle $\left(\theta_{2}-2 B+\varnothing_{2}\right)$ is swall, the locids of reactioin points is almost the same as for the single concentrated load.
(iii) if $\left(\theta_{2}-2 \beta+\phi_{2}\right)$ is not small, the locus of reaction points must be derived using equations (4.1), (4.2) and (4.4).

The fresent work is confined to the solutions of cases (i) and (ii), and it has been found that the enolution (iii) is not often necessary.

For the two solutions (i) and (ii), all the equetiors of the wode 1 solution for a sinble concentrated load may be used, if the two loads $\|_{2}$ and $\#_{2}$ are replaced by a load $\left(W_{1}+W_{2}\right)$ at a point with polar co-ordinates ($r_{C B}, \varnothing_{C R}$) with respect to CA, that is, by replacing the two loads by a single one at the centre of cravity. As the position of the load in Chapter 3 was at a point ($r_{C g}, \varnothing_{C g}$) the same computer programe has been used for the present solution. Details of this programme are given in the Appendix.

Hiodes 2 and $2 A-$ Noderite Torsional strength. The failure by mode 2 illustrated in Fig. 4.1 (c) is similar to the single load case. If the two loads acting are W_{1} and W_{2} and if these loads are sellaced by a single load ($\bar{N}_{1}+W_{2}$) acting at centre of gravity of the two lcads, snecified by the polar co-ordinates ' $r_{\mathrm{Cg}}, \psi_{\mathrm{cg}}$) then the equations derived in Chapter 3 for tise single concentrated load apply. Hence the computer programme used for the sinele concintrated load way be used. Details of the computer programe are given in the Appendix.
mode 2A, shown diagrammatically in Fig. 4.1 (d), is an unlikely failure mode. In this mode one free hinge is assumed to occur between the two loads. In the transition from mode 1 A to mode 2 A , the hinge on the shorter arc, mnasured frwm the centre of gravity of the loads to the supports, disappears first. Since une hinge between loads is usially on the shorter are, the mode 2 failure is most common.
liode 2 A could occur $1 \pm \mathrm{W}_{2} \gg W_{1}$ und, referring to Fig. 4.2, G is close to G_{2}. Since the position of the free torsion hinge in this rude is different from the position given by the aode 2 solution, the condition that the three hinges must intersect in one point requires calculation of the new position of the torsion hinge, involving the use of equations (4.1), (4.2) and (4.L).

The failure by mode 2 A has not been worked out in detail in this investigetion.

Lodes $3 A$ and $3 B-$ Hikh Torsional Strength. In failure by mode $3 A$, fixed plastic hinges occur at both loads and at the supports. isolution is easily obtained if the loading is symmetrical. However, the more general problem of unsymmetrical loading has been worked out in sich a form as to be solved using an electronic computer.

As before, ψ_{1} and W_{2} act at G_{1} and G_{2} respectively, which are defined in position by polar coordinates $\left(r, \phi_{1}\right)$ and $\left(r, \varnothing_{2}\right)$ with respert to OA. The centre of gravity of the loacis, the point G, is defined in position by co-ordinates ($r_{\mathrm{cg}}, \varnothing_{\mathrm{cg}}$). The reaction R_{1} actis at E, and K_{2} acts at F.

Plastic hinges form at A, G_{2}, G_{2}, and B. It can be shown that E and F usually lie on the blsector of the angles $A O G_{1}$ and $B O G_{2}$, respectively. For the formation of hinges at A and A_{1}, the yield criterion rust be satiafied at thesc foints. If the line EJJ is perpendicular to $O A$, and if $b_{1}=A L$ and $n_{1}=E L$, then the beliding moment and torque at A are giveri by

$$
\mathbb{N}_{A}=k_{1} n_{1}
$$

and

$$
T_{A}=R_{1} 5_{1} .
$$

FIGURE 4.3

FIGURE 44

FIGURE 4.5

The yield criterion at A becomes:
or

$$
\begin{aligned}
& R_{1}{ }^{2}\left(\alpha^{2} n_{1}{ }^{2}+\xi_{I}{ }^{2}\right)=T_{p}{ }^{2} \\
& \alpha^{2} n_{1}{ }^{2}+\xi_{1}{ }^{2}=\left(\frac{T}{R_{1}}\right)^{2} .
\end{aligned}
$$

This equation represents an ellipse, and for any given values of a and R_{1}, an ellipse can be plotted with axes alone the radius and tangent at A; such an ellipse gives the locus of the point i\& for the formation of a hinge at A. An identical ellipse can be drawn with the radius and tancent at \hat{G}_{j} as axes. The intersection points of the ellipses give the possible positions of \ddot{E}, as shown in Fig. 4.4. As the fallure mode usually occurs at laroe values of a, the ellipses are in moat cases nearly circular and the intersection points on the bisector of angles $A O G_{1}$ and $B O G_{2}$ are the correct ones; tilis case only is consiciered here. The correctness of this assumption must be checked for any particular case.

The metriod of solution is to try a value of $D_{1}=O E ;$ then, aince E has rectangular co-ordinates ($\rho_{1} \cos \phi_{1} / 2$, ρ_{1} sin $L_{1 / 2}$) and G has co-ordinates ($r_{c g} \cos \varnothing_{c g}, r_{c g}$ sin $\phi_{C B}$) with resfect to OXY, the equation of the straight Ine $E G$ is given by

$$
\begin{equation*}
\frac{y-y_{C G}}{y_{E}-y_{C E}}=\frac{x-x_{C E}}{x_{Z}-x_{C G}} \tag{4.5}
\end{equation*}
$$

OF is given by

$$
\begin{equation*}
y=\tan \left(B+\frac{\phi_{2}}{2}\right) x \tag{4.6}
\end{equation*}
$$

F is found by the intersection of these two straight lines, as described in the Appendix.

$$
\text { If } \xi_{1}, n_{1}, \xi_{2} \text { and } n_{2} \text { have the seme meaning as }
$$

$$
\begin{aligned}
& \text { before, and if }+_{2}=O F \text {, } \\
& \theta_{2}=\left(x_{F}{ }^{2}+y_{F}{ }^{2}\right)^{\frac{1}{F}} \text {, } \\
& \xi_{I}=r-x_{E}, \quad n_{\mathcal{I}}=y_{E}, \\
& \mathrm{E}_{2}=r-\rho_{2} 000\left(\beta-\frac{\phi_{2}}{2}\right) \text { and } n_{2}=\rho_{2} \sin \left(B-\frac{\phi_{2}}{2}\right) \ldots(4.9)
\end{aligned}
$$

If $E G={ }^{2} 1$ and $F G=\ell_{2}$,

$$
\begin{align*}
& \ell_{1}=\left\{\left(x_{E}-x_{O G}\right)^{2}+\left(y_{E}-y_{C G}\right)^{2}\right\}^{\frac{1}{2}} \tag{4.10a}\\
& \ell_{2}=\left\{\left(x_{F}-x_{C E}\right)^{2}+\left(y_{F}-y_{C G}\right)^{2}\right\}^{\frac{1}{2}}
\end{align*}
$$

and

The two simultanecus equations to be satisfied for the final solution are:

$$
\begin{equation*}
\left(\frac{W r}{W p}\right)_{1}=\frac{a\left(\ell_{1}+\ell_{2}\right)}{\ell_{2}\left(a^{2} n_{1}{ }^{2}+\varepsilon_{1}^{2}\right)^{\frac{1}{2}}} \tag{4.11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{W_{r}}{W_{p}}\right)_{2}=\frac{a\left(\ell_{1}+\ell_{2}\right)}{\ell_{1}\left(a^{2} n_{2}^{2}+\varepsilon_{2}^{2}\right)^{\frac{1}{2}}} \tag{4.11b}
\end{equation*}
$$

In mode $3 B$, hinges 1 orm at A, G_{1} and B. For this to happen, the loadine must obviously be unsymmetrical, and the exes of rotarion of the hine.es must intersect in one point S (sce Fig. 4.3). If the assumption is made (as for mode $3 A$) that the point E is on the bisector of angles $A O G_{1}$, then S must fall on the line EO, or EO produced.

$$
\text { Now } \tan r_{i}=\frac{y_{S}}{r-x_{S}},
$$

and

$$
\tan \frac{\varnothing_{1}}{2}=\frac{y_{S}}{x_{S}}
$$

Eliminating y_{S} from these two equations,

$$
\begin{equation*}
x_{g}=\frac{r \tan r_{1}}{\tan \frac{\gamma_{1}}{2}+\tan r_{1}} \tag{4.12}
\end{equation*}
$$

and the second of the two equations may be used to solve for y_{S} :

$$
\begin{equation*}
y_{S}=x_{3} \tan ^{x_{1} / 2} \tag{4.13}
\end{equation*}
$$

The equation for $\tan \gamma_{2}$, where y_{2} is the angle between $O B$ and BS has been determined in Chapter 3 in the section on mode 2 collapse as

$$
\begin{equation*}
\tan \gamma_{2}=\frac{\frac{x_{S}}{r} \sin 2 \beta-\frac{y_{S}}{r} \cos 2 \beta}{1-\frac{x_{S}}{F} \cos 2 \beta-\frac{y_{S}}{r} \sin 2 \beta} . \tag{3.17}
\end{equation*}
$$

The equations (3.18) and (3.19) of chapter 3 for the angles δ_{1} and δ_{2} also apply in this case and are repeated for convenience:

$$
\begin{align*}
& \delta_{1}=2 s-\frac{\pi}{2}+\delta_{2} \quad \cdots \cdots \cdots \tag{3.18}\\
& \delta_{2}=\arctan \left(\alpha^{2} \tan \gamma_{2}\right) \tag{3.19}
\end{align*}
$$

Equation (4.5) of this chapter for EG still applies, and $D F$ is given by (3.21) of Chapter 3:

$$
y=\left(\tan \delta_{1}\right) x+\sin 2 \beta-\tan \delta_{1} \cos 2_{2} \ldots \text { (3.21) }
$$

The co-ordinates of F are siver by the intersection of these tivo straicht lines. The distancea ρ_{2}, ξ_{2} and $\|_{1}$ may be fourd using equations (4.7), (4.8) and 4.9) of this chapter. Also, if $\theta_{3}=$ the angle $A O F$,

$$
\begin{align*}
& \theta_{3}=\arctan \left({ }^{y_{F}} / x_{-}\right) \tag{4.14}\\
& \dot{s}_{2}=\rho_{2} \cos (2 \beta--3)-r \\
& \mathrm{C}_{2} \mathrm{C}_{2} \text {.................(4.15) } \\
& n_{2}=\rho_{2} \text { sin. (2. }-y_{3} \text {) } \tag{4.16}
\end{align*}
$$

and
Equations (4.10) give valuee for ${ }_{1}$ and ${ }_{2}$, and (4.11a) and (4.110) are the final sinultaneous equations rez̧uired for complete solution.

Mode 4-Larse Torsional Streneth. As illustruted in Fig. 4.1 (g), in this mode there is a hinge at eack. support, and the axis of rotation is, for both hinges, a line joining the supports. Referring to Fig. 4.5, the centre of cravity of the loads is at $G\left(r_{C g}, \psi_{C g}\right)$ with respect to OA.

Clearly $\gamma_{1}=\gamma_{2}=\frac{7}{2}-\beta=r$, where γ_{1} and γ_{2} are the angles $O A B$ and $O B A$ resuectively; for both hinges,

$$
\begin{equation*}
\tan \gamma=\tan \left(\frac{\pi}{2}-\beta\right)=\frac{T}{\alpha^{2}} \tag{4.17}
\end{equation*}
$$

Taking moments about $A b$, and since $w_{1}+W_{2}=W$:

$$
\begin{aligned}
W \cdot \overline{G F} & =2(M \cos \gamma+T \sin \gamma) \\
& =2(\mathbb{M} \sin \beta+T \cos B),
\end{aligned}
$$

where GP is perpendicular to AB.
IF $O Q$ is parallel to $A B$, wide $G Q$ perpendicular to $O Q$, the angle $O G Q$ is equal to $\emptyset_{C g}-3$, and $\overline{G Y}=\overline{G Q}-\overline{P Q}$. Hence $\overline{G F}=r_{C G} \cos \left(\phi_{C g}-\beta\right)-r \cos \beta$
Therefore,
$\left.W I_{C_{C B}} \cos \left(\varphi_{C E}-\beta\right)-r \cos \beta\right\}=2(M \sin B+T \cos B) \cdots$ (4.18) If fore of the acluth Mether to thet tor a the raluea of a then "freatith on the 8024 hish relugs of a Stre 4 neplielble

Using equation (4.17) and the yield criterion
$a^{2} \mathbb{N}^{2}+T^{2}=T^{2}$,

$$
a^{2} M^{2}+a^{4} M^{2} \cot \quad B=T p^{2} .
$$

Solving for Mi:

$$
M=\frac{T_{p}}{r\left(1+a^{2} \cot ^{2}\right)^{\frac{1}{2}}} .
$$

Substituting this value for M and $T=\alpha^{2} M \cot \beta$ in (4.18): NI $\left.r_{C g} \cos \left(\varnothing_{C g}-B\right)-r \cos B\right\}$

$$
\left.=21 \frac{T_{p} \sin B}{\alpha\left(1+\alpha^{2} \cot t^{2} \beta\right)^{\frac{t}{2}}}+\frac{\alpha^{2} T_{p} \cot \rho \cos \beta}{\alpha\left(1+\alpha^{2} \cot ^{2} \beta\right)^{\frac{1}{2}}}\right\} .
$$

Therefore,

$$
\frac{\| r}{T_{p}}=\frac{2\left(\sin B+\alpha^{2} \cos \beta \cot \beta\right)}{\left.\alpha\left(1+a^{2} \cot ^{2} \beta\right)^{\frac{1}{2}} \frac{\Gamma}{\Gamma} \frac{\operatorname{cy}}{r} \cos \left(\varnothing_{0 g}-\beta\right)-\cos \beta\right)}(4.19 a)
$$

and hence

$$
\begin{equation*}
\frac{W r}{D \cdot p}=\frac{2 \sin \beta\left(1+a^{2} \cot ^{2} g\right)^{\frac{1}{2}}}{\frac{I_{g}}{T} \cos \left(\phi_{\operatorname{cg}}-b\right)-\cos B} \tag{4.19b}
\end{equation*}
$$

The occurrence of this mode of fallure is possible when the sentre of gravity of the loads is cumparatively clost to the line joining the supports.

A typical reault for a bow girder with the central angle equal to 90° and with loads eymmetrically placed at $22 \frac{1}{2}$ frou the axis of sym. etry is plotted in Fig. 4.6. The broken line on the curve represents an approximate result, obtained graphically, corresponding to mode 3 A fallure when the raaction points are not on the bisector of AOG_{1} (Fig. 4.1). Nhis case has not been deaj.t with analyticaliy in the previous sections.

4.3 Effect of Lack of Tursional Restraint

It is apparent from Fig. 4.6 and other results obtained that the form of the oulution for two corcentrated loads is aimjlar to that for a single concentrated joad. For low values of $/$, the effect of changes in *isional strength on the nollapse load is considerable, while for kifh values 0: a small changes in torsional strength have a negligible effect on the collapge lond. Durine
collapse at high values of a, the value of torsion in combined hinges is generally small compared with the value of bending moment, and the grnint of energy absorbed in torsion during failure is small compared with the energy absorbed in bending.

Hence the conclusions reached in section 3.5 fom single loaus also apply here; namely that an increasn in torsional strenth of the beam has a negligible effect on the ultimate load for high values of α, and that at these high values of u the rrovision of trisional restraint at the supports has a small effect on the collapse loau.

4.4 Girders with Several Concentrated Loads

For small a, the probable failure ruodes are simsiar to those for the two concentrated loads, that is, the modes 1, $1 \mathrm{~A}, 2$ and 2 A or similar modes are the most likely to oocur. The suggestea afproach is to replece the several concentrated loads with a single load at the centre of gravity of the loads and then to solve as a mode 1 or mode 2 failure. The position of the free hirges can then be compared with positions of the point loeds and an amended solution carried out usine e., adtions (4.1), (4.2) and (4.4) to take into account the effect of the concentrated loads on the hinge positions. This approach is tedious and an easier solution might be obtained using the approzch adopted wy Imegwu.

The higher modes for girders with several cuncentrated loads could be solved using the methods outlined in the previous sections: the correct configuration of hinges could be found by trial dependine on the position of the concentrated loads.

FIGURE 5.1

FIGURE 5.2

CHAFIER

A KINEDATI APPAOACH

E．i Introiuc：ion
The＝etticds of analysis jescribed in the presious chapters are based essentially on a static approack，and car jijeld incorrect resules if it is not ensured that the rJtaticns of the binges are compatible with the directions of the muments and torguss．in example is tre partial collapse of a Birder with a single point at G，shown in Eig．S．I．johansen kas demonstrated that coijafse with bi：．es Bu C ，j and D is imposs？ble．This is prored as foilows：

Lhe＝eaction fy at ב causes a torque acting on the seciici：oi the girder CuDZ at C directed as indi－ cated by twe ar．OW in Fเ5．5．1．（EOtations are clock－ bisg wher viewed in the jirection of the arrows）．If a clasic birige $W \in:=$ to form $3 * C$ ，then the rotation of CGD with respect so AL（which car be regarded a3 rigid） would be in the orrosite iirecilos to the morent vector sholr．Ikis would cause the load at G to move upwards and increase iss potentiai energy．The same reaso．ing ceri te anlied t＝the form．thon of a hinge at D ，irres－ pective of the direction or amcunt of rotation at ε possiole hir．at J．

造的ce the partial collense by the formation of birges at C ，G ard \bar{J} is inpossible，since the static and Reoユetri＝conditiona are ir coritict．

The method proposed in this chapter is aimed at the calci．Lsiton of cillapse loads by equating the energy atsorbea in the hinges during plastic deformation with the Losa ia potentiai nesergy by tha losh during oollapoe．

In the followirg complete solutions will be given ir some simute cases；methons of spproach will be gug－ gested for some more ccisplicatad cases．It is atggeated that use of the Einimum principle muy be made in compli－ cated cases；by the mininum princifle it is meant that the collapse loads obtaimed using the kinematic method gre efther greater or exual to the easct collapse load．

Imegwu ${ }^{6}$ has described a method similar to that suggested above; use has been made of the minimum principle. The work by Imegwu was published after completion of the present investigation.

5.2 Basic Principles

Energy absorbed in a wlastic hinge subjected to combined bending and torsion. Consider a hinge on a circular beam subjected to combined bending and torsion: the rotation w during plastic flow of the hinge is about an axis at, an angle γ to the radius at the hinge.

If a moment M and torque I act at the hinge, then the energy absorbed in the hinge during plastic deformation is:
:i \times Rotation about bending axis $+\mathbb{T} \times$ Rotation about torsional axis
$=\mu \omega \cos \gamma+T \omega \sin \gamma$.
Using the yield criterion (2.2) and the equation (2.5), the following resu-+s may be easily deduced:

$$
\mathrm{H}=\mathrm{T}_{\mathrm{p}} / a\left(1+a^{2} \tan ^{2} r\right)^{\frac{1}{2}},
$$

$$
\text { and } T=T p \propto \tan r /\left(1+\alpha^{2} \tan ^{2} r\right)^{\frac{1}{2}} \text {. }
$$

Subsiftuting for Ni and T in the above equation, the energy absorbed in the hinge is

$$
\begin{align*}
& \frac{T_{p} \omega \cos \gamma}{a\left(1+\alpha^{2} \tan ^{2} \gamma\right)^{\frac{1}{2}}}+\frac{T_{p} \omega \alpha \tan \gamma \sin \gamma}{\left(1+\omega^{2} \tan ^{2} \gamma\right)^{\frac{1}{\gamma}}} \\
= & \frac{T_{p} \omega \cos \gamma}{a}\left(1+\alpha^{2} \tan ^{2} \gamma\right)^{\frac{1}{2}} \\
= & M_{p} \omega \cos \gamma\left(1+\alpha^{2} \tan ^{2} \gamma\right)^{\frac{1}{3}} \ldots \ldots \ldots \ldots \tag{5.1}
\end{align*}
$$

Rotation of rigid segments. During collapae, the portions of the bow gi. 山er between hinges have been conBidered as rigid. In Fig. 5.2 a segment of a circular girder is shown: the end is is subjected to a rotation ω, about the axis at an angler, to the radius at A. The angle aubtended at the centre of the circular segment AC is θ.

FIGURE 5.3

FIGURE 5.4

If the segment $A C$ is rigid, then the rutation at the end C is equal in magnitude and in the same direction as at the end A.

By simple gecmetry,
$r_{1}=r_{2}+\rho$
or $\quad r_{2}=r_{1}-\theta$

Conditions for the existence of a hinge in pure

t sion. Fig. 5.3 shows a portion of a circular bow girder, with a hinge at C in pure torsion.

The absolute rotations of the segments $A C$ and $C D$ are ω_{1} and ω_{2} and are about the axes at angles r_{1} and r_{2} respectively to the radius at C.

The twiating which occurs at C due to plastic deformation is the vectorial difference retween tre absolute rotations of the segments $A C$ and $C D, i . e .$, if the discuntinuity at C is $i \omega$, then

$$
\Delta \omega=\vec{\omega}_{1}-\vec{\omega}_{2}
$$

Since the hince at C is in pure torsion, the bending rotation is zeio,
i.e. $\omega_{1} \cos \gamma_{1}=\omega_{2} \cos \gamma_{2}$
and $\Delta \omega=\omega_{1} \sin r_{1}+\omega_{2} \sin r_{2}$
for tiod darectio:2s shown.

5.3 Examples of Applicstion

Mode 4 Collarge. In tiris section, the mode 4 collapse of the Chapter 4 will be deduced. The collapse mode is illustrated in Fig. 5.4: the girder is losded at G_{1} and G_{2} with loads W_{1} and i_{2} respectively. Hinges furm at A and B and collapas takes place about an axis Joining, A and B. The mode can only occur when the centre of gravity is fajrly close so the mupports, or possibly for girders with contral angle? $\beta>180^{\circ}$.

FIGURE 5.5

If G is the centre of gravity of the loads, and if during plastic crilapse a rotation sw takes place, then the point G moves downwards a distance ($\Delta \omega$) ($\overline{G F}$), where $\overline{G P}=r_{c g} \cos \left(\dot{\chi}_{\mathrm{cg}}-e\right)-r \cos \mathrm{~B}$.

The energy absor d in each hinge is given by equation (5.1) and is
$K p \Delta \omega \cos y\left(1+a^{2} \tan ^{2} r\right)^{\frac{1}{2}}$.
Clearly in this case $\gamma_{1}=\gamma_{2}=\frac{\pi}{2}-\beta$.
Hence the virtual work equation may be written: $2 M_{p} \Delta \omega \cos (\pi / 2-\beta)\left(1+a^{2} \operatorname{can}^{2}(\pi / 2-\beta)\right)^{\frac{1}{2}}=$

$$
\left(i_{1}+W_{2}\right) \Delta \omega\left\{r_{O B} \cos \left(\varnothing_{\mathrm{Og}}-B\right)-r \cos B\right\}^{\frac{1}{2}},
$$

or, since $W_{1}+W_{2}=W$,

$$
\frac{W r}{W p}=\frac{\frac{2}{r} \sin B\left(1+\alpha^{2} \cot ^{2} B\right)^{\frac{1}{2}}}{\frac{r}{r} \cos \left(\phi_{C g}-B\right)-\cos \beta}
$$

which is the same as the reault obtained previousiy.
Collapse with no torgion at the supports - Mode 1.
This is the collapso mode already investigated in seation 3.3, and is illustrated in Fig. 5.5; plastic binees occur at C and D.

Using the equation (5.3) deduced in the previous ecction, for the exietence of a hinge in pure torsion at "; and D:

$$
\begin{equation*}
\omega_{A C} \cos \gamma_{A C}=\omega C D \operatorname{cus}^{1} C D \text {. } \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{B D} \cos \gamma_{B D}=\omega_{C D} \cos \gamma_{C D} \tag{5.6}
\end{equation*}
$$

where ${ }_{A C} \cdot{ }^{\omega}{ }_{B D}$ and ${ }^{\omega} C D$ are the absolute rotations of the segments $A C, B D$ and $C D$ respectively.

Uaing now the equation (5.2), and since the argle between the radil and the axes of rotation at the supports is $\pi / 2$,

$$
\begin{aligned}
& r_{A C}=\frac{\pi}{2}-\theta_{1} \\
& r_{B D}=\frac{\pi}{2}-\theta_{2}
\end{aligned}
$$

and
From triangle $O C H, r_{C D}+r_{C D}+\theta_{4}=\pi$,
or $\quad r^{l} C D=\pi-\theta_{4}-\gamma_{C D}$.

Substituting these values in equations (5.5) and (5.6):

$$
\begin{equation*}
{ }^{\omega_{A C}} \sin \theta_{1}=\omega_{C D} \cos \left(\pi-\theta_{4}-\gamma_{C D}\right) \tag{5.7}
\end{equation*}
$$

and $\quad \omega_{B D} \sin \theta_{2}=\omega_{C D} \cos \gamma_{C D}$.
The vertical movement of the points C and D due to the torsional rotations at the supports are $\left(\sec \theta_{1}-1\right) \omega_{A C}$ and $\left(\sec \theta_{2}-1\right) \omega_{B D}$, assuming the beam to be of unit radius.

Assuming that the supports A and D remain at the same levels during col: apse (this does not assume that A and D are on the same level: a small difference will not affect the following equation):

$$
\begin{equation*}
\left(\sec \theta_{1}-1\right) \omega_{A C}+x_{(I T}-\left(\sec \theta_{2}-1\right) \omega_{B D}=0 \ldots \tag{5.9}
\end{equation*}
$$

where $\%$ is the perpendicular distance $D K$ between the straight line $C H$ and a parallel line through D (see Fig. 5.5). The line $D H$ is parallel to the 2 .is of rotation of ${ }^{\omega} \mathrm{CI}$.

The distance x is found by consideration of the triangle CK.ク. The angle KCD is equal to $\frac{\pi}{2}-\frac{\theta 4}{2}-r^{1} C D$ or $\frac{\theta_{4}}{2}+r_{C D}-\frac{5}{2}$. Hence x is equal to $\overline{C D}$ ain $\left(\frac{\theta_{4}}{2}+r_{C D}-\frac{\pi}{2}\right)$, and since $\overline{C D}=2 \sin \frac{\theta_{4}}{2}$,

$$
x=2 \sin \frac{\theta_{4}}{2} \sin \left(\frac{\theta_{4}}{2}+r_{C D}-\frac{\pi}{2}\right) .
$$

Equation (5.9) becomes:
$\left(\sec \theta_{1}-1\right) \omega_{A C}+2\left(\sin \frac{\theta_{4}}{2} \sin \left(\frac{\theta_{4}}{2}+\gamma C D-\frac{\pi}{2}\right)_{; ~}{ }_{C D}-\left(\sec \theta_{2}-1\right)\right.$

$$
\begin{equation*}
w_{B D}=0 \ldots \ldots \tag{5.10}
\end{equation*}
$$

From (5.7) ard (5.8),

$$
\begin{align*}
& \frac{\omega_{A C}}{\omega_{O D}}=\frac{\cos \left(\pi \cdot \theta^{-} \frac{\theta^{4}}{\theta_{1}}-\gamma_{1}\right)}{\frac{\omega A D}{\omega_{C D}}=\frac{\cos r C D}{\theta \sin \theta_{2}} \ldots \ldots \ldots} \tag{5.11}
\end{align*}
$$

Substituting these values in (5.10):

$$
\begin{array}{r}
\frac{\left(\sec \theta_{1}-1\right) \cos \left(\pi-\theta_{4}-\gamma_{C D}\right)}{\sin \theta_{1}}+2 \sin \frac{\theta_{4}}{2} \sin \left(\frac{\theta_{4}}{2}+\gamma_{C D}-\frac{\pi}{2}\right) \\
-\frac{\left(\sec \theta_{2}-1\right) \cos r_{C D}}{\sin \theta_{2}}=0 \ldots \quad \text { (5.13) }
\end{array}
$$

Hence, since $\theta_{4}=2 \beta-\theta_{1}-\theta_{2}$, for any assumed values of θ_{1} and e_{2}, a value of $r_{C D}$ may be obtained from equation (5.13). The virtual work equation may now be written down, using equation (5.4) if the vertical displacement Δz of the load N is found. It may be shown by a method similur to that used in deriving equation (5.10) above that:
$\Delta z=\left(\sec \theta_{1}-1\right) \omega_{A C}+2(\sin$

Hence the virtual work equation may be wiitten (considering only the energy absorbed in plastic deformation):

$$
\left.\left.\begin{array}{rl}
T_{p l} \omega_{A C} \cos \theta_{1}+\omega & C D \\
\sin \left(\pi-\theta_{4}-\gamma\right. & C D \tag{5.14}
\end{array}\right)\right\}+T_{p}\left(\omega_{B D} \cos \theta_{2} .\right.
$$

By substituting the value of Δz obtained, equations (5.31) and (5.12) can be used to eliminate the rotations from equation (5.14). Hence for tie assumed values of θ_{1} and θ_{2} and the corresponding value of $\gamma_{C D}$ obtained from (5.13), a value of the cullapse load can be obtained.

The above method could be doveloped to such a forra as to jield solutions using the minimur principle; in the present form it can be used to check numerical solutions alresdy obtained.

Collapse with [ully fixed 3upporta - Mode 1. This collapse mode has been investifgated in section 3.2 . For the calculation of the collapse load by the present method, the approach adopted in the section above for the case with no torsion at the suppori, can be used. The chief difference is that enerey avsorbed in the hingea at the supports must be included in the virtual work equation; the axis of rotaticr at the supporta is not along the tangent at the supports. Equation (5.1) gives the onergy absorbed in a hinge in nombined beading and toraion.

(a)

(b)

FIGURE 5.6

Transition Irom Mode 1 to "rde 2. The transition from mode 1 to mode 2 fall, e as the valie of a is increased will now be iiscussed. In Fip." 5.6 (a) a portion 0. a bow girder with a free hinge at roint C on ike arc and a fixed hjnge at the support is shown. It is assumed that the hinge at C is on the shorter arc measured from the single load to the supports, and would be the hinge to disappear in the transition. The rotational movement of the hinge $(=\Delta \omega$ g) is tibe vectorial difference between ω AC and w $C D$, D beine the position of the second free hinge.

If α is increased, the value of o correaponing to any particular value 01θ in equation (3.1) increases and the (ρ, θ) curves giving nossible reaction points the supports more radially "utwards. Since the point load and the reaction points are on the same straicht line, the vaiues of θ_{1} and θ_{c} tena to decrease with an increase in α. Hence the axis of rotation at A will in general tend to move closer to the railus at A as a increases ard as tre reaction point $E\left(\rho_{1}, \theta_{1}\right)$ qoves further from 'He centre. In certain ciases tine axis of rotation may cross the radius at the support. If, at the transition from mode 1 to mode 2 , the value of of $\frac{\pi F}{F}$ corresponding to the transition value of u is the same for both moles, and if the position of the free kinfs in the aode 2 solution is the same as for the mode 1 solution, then the direction of 4 A , and wall wh be in the smme direction (see Fig. 5.6b). In examination of erfuation (5.3) siows at tnis etage that $\omega_{A} \sim \omega_{C D}$. Hence LNere $1 . s$ no torsional rotation at the hine?.

If the C uter solutions developed is chapter 3 aro ujed it 1 a found that values of collapae load can be obtained using the mode 1 solution at valueb of a sxceeding the transition volue, and that the vaiuea obtair.d for mode i are lesu than for mode 2 . amegwu ${ }^{6}$ explains this by means of a maximum principle: "Eich amklguity is easily resolved here and elsewhere by theorem I: the larger load is the required collapsed load".

> The Theorem I used by Imegwu is as follows: "Theorem I. The collapse load is the largest load for which the equetions of eq_ilorium are satisfied wi le at the same time the structure develops just eaough plastic hinges to cause collapse".

This explanation is not atisfactory as it appears to be bassed on the assumption that there are two possible modes of failure for the bow girder and that the solution corresponding to the larger load is the correct one. Clearly if the equilibriun, yield and mechanism conditions are gatisfied for the mode 1 solution, then it muat be ine correct one.

A suffgested answer to the above anowaly is that In the mode l computer solutions the direction of the rotation $1 w r$ of the tios ional hinge for values of a above the transition value is opposite to the direction before the trarsition. Since the applied torque remains in the sare directio?, this leads to the contradiction or static and geometric conditions at the hinge as the torque applied to the hinge and the torsional rotation of the hinge would be in cpposite directions; solutions could still be obsained using the mode 1 computer solvtion developed 1 ch Chapter 3.

The ideus proposed in this last section are not conclusive: as a full ma thematical treatment has not been developed.

CHAFTER 6

EXPLKINENTAL INVESTIGATIA

6.1 Introduction

The only known results of tests to failure on steel circular-arc bow girders are those by Boulton and Boonsukha ${ }^{4}$. Johansen ${ }^{3}$ has described some preliminary tests on circular rines but, unfortunately, the test set-up collapsed before complete failure of the rings took place.

The results of the tests by Johansen showed that the plastic hinges appeared as indicated by the theory and tart the deviation of the directions of the axes of rutation from theoretical was slight, liat the exact collapse load coula not ba determined. Boulton and Boonsukha obtained fairl: accurate predictions of the collayse load, based on experimentally found values of the full plastic moments in bending and torsion.

In the present work, tests were carried out on eight miniature mild steel bow firders of abcut 24 inches radius, all subtending a central angle of 90°, and under various loading and end support conditions.

The object of the tests was four-fold:
(i) to investigate the behaviour of the hinges in actual bovi Girders
(ii) to verify experimentally the conclusions reached in Chapter 3 with regard to the relation between $a=T_{p} / \mathrm{mp}$ ind the effect of torsional restraint at the supports of the bow girders
(iii) to verify the results of Chapter 4 in which the existing work wab extended to the calculation of collapse loads for the case of two concertrated loads
(iv) to calculate, in addition, elastic deflections for two of che eight tests.

The specimens were of three different cross-sections, elving trree different values of a. The values of T_{p} and M_{p} were determined experimentally in control tests, from which the torsional and bending rigidities were also obtained for the prediction of elastic deflections.

The statistical deviation of the control test results from the mean was determined where possible so that the difference between the predicted and actual collapse loads could be viewed in relation to the variation in strength of the metal.

6. 2 Preparation of Speciment and Descriotion of Apparatus

Preparation of Test Specimens. The three crosssections used ara designated A, B and C. In Table 6.1 details of the specimens are shown.

Table 6.1

Symbol	Crosesection	Shape	No.	Final Measured Radius (Mean)	Maximim Deviation from Measured Radiua
A	1"x1"	Square	2	24.0011	.10"
B	1臱"㛺"	Rectangular	2	24.65"	. 1011
C		Rectangular	4	23.55"	. 061

The girders were cold bent to a 2 foot radius, and cut to the correct lengths for \& 90° arc. Arms for the end fixing arrangement, the latter described in a later section, were then welded on the ends of the girders. The arms were designed to remain elastic throughout tho tests, and were at an angle of 45° to the tangent to the axis of the bow girder at the supports (see Fi. 6.5). The welds were double bevel butt welds and were made so as to ensure that the thickened portion at the weld wes stronger than the girder section.

The eirders were then annealed by heating to $920^{\circ} \mathrm{C}$, soaking for at least one hour per inch of crosssection, and then removing from the furnace at below $600^{\circ} \mathrm{C}$, and cooling in the a1r. Millscale resulting from the heat treatment was removed by sand blasting.

The radii of the girders were measured before and after heat treatment. The radii for the various sections were not exactiy the same, but for e particular section the radius was found to be nearly constant. The heat treatinent caused diatortion of the ' c ' girders, and they were bent back to a true radius. This unfortunately must have causea ..rme localised strain hardening, and will $b \in t a k e n$ intuc account in the discussion of the resulta. The final measured radii and the maximur deviations from the measured values ane given in Table 6.1.

Before testine the girders were cleased and costed with Stresscoat ST 1208, a brittle coating, for the purpose of detectine the position and spread of the hinges. It was found in the control tests that the coating ficited from the metal surface during plastic flow, and not at slastic strains.

Control Tests. For the ' A ' and ' C ' sections, five straight lengths for the torsion and five for the bending tests were prepared, while for the ' B ' section, three of each were prepared. The speolmens were subjected to the same reat treatment and surw ilasting as were the bow girders.

The tolsion tests were carried out in a tursion testirg machine in which the torque was moasured by the force exerted at a known distance along a lever arm which acted on a platform scale. The rotation measurements were made directly on the specimens using two sets of dial deflection eauces at a known distance apirt on the section, as can be seen in Fig. 6.1. Ine torque applied was constant over the length of the specimen.

The bending tests were done on simnly supported leneths, the doev narrow ' B ' and ' C ' sections being olamper between plater for part of thelr length to prevent buckilng, as shown in ifig. 6.2. The reaetions were measured by previoualy calilrated rroving I inga, and deflections were read on dial deflection gaugea.

The errors in readinga of bending monent and torque were amall compared with tite atandard deviatione of the control values.

FIGUKE 6.4

FIGUTE 6.5

FIGIRE 6.7

Bow Girder Tests. The general arrangement of typical tests can be seen in PLgs. 6.3 and 6.4. The girders were support a on a test bed and loaded through a calibrated loading device and a screw jack anchored to the test floor.

The supports of the bow girders consisted of two-way cylindrical bearjngs A (see Fig. 6.5), the bases of which were bolted to the test bed. Plates B were clamped to the top and bottom of the lever arms C at the supports: the plates were bolted together to form a unit with the lever arms. The bottom slate served as a bearing plate and ensured thet the recoction acted a the desired se: ion of the bow girder. The torsional and bending rotations of the supports were measured by the deflections of the ends of arms D secured to the top flute (Fig. 6.5).

The monents and torques at the supports were measured by calibrated proving rings courled to the gircer lever arms through ball connections: the rotational movement of tha supports was controlled by jacks connected to the proving rings (see Fig. 6.6).

The loading devices were designad to give an accuracy of about ± 2 per cent at he 5 per cent level of significarce. The two devices used were:
(i) a 5 mm . prestressing wire fitted with a NacklowSrifth type extensometer of 16 inch gauge length (see Fig. 6.7). This was used for the tests on: ' A ' and ' B ' sections, but the accuracy obtained was not sufficient for the ' C ' sections, which had a rather lower collapse inad
(ii) a provinf ring which had a range large enough and the required degree of sensitivity for the 'C' testr.

Both devices were calibrated using dead load, but on the device (i) it was found that torsional effects due to the inertia of the dead load influenced the readings coneiderably. During the actual tests toraion in the device would be caused by the friction on the grips at the ends of the tensioned preatressing wire. To overcome this, a thrust race was inoorporated in the device, which for practical purposes elinirated torsional effects. Re-calibration was carried out by
setting up the prestressing wire with a calibrated proving ring in order to simulate the test conditions. The test device (ii) showed very slight sensitivity to applied torsion, and the dead loud tests were used for the calibration.

It was found that, up to about 70 lb ., there was a deviation from linearity in both eauges because of effects such as slackness in the prestressing wire in the case of the device (i). Hence in the girder tests the loading up to 70 lb . was applied by means of accurately known dead load, and thereafter measured by the ioading devices. In the calibration the readings below 70 1b. were ignored.

The provine rings used for the measuranents of support moments and torques were also cajibrated using dead load (the gauge (i) was calibrated against one of these provink rings).

The data from all these calibrations were analysed on the University IBi. 1620 computer using the IBis Regression Analysis Programme No. 6.0.001 which gave the calibration constants and standard deviations using a least squares analysis. The results of this analysis yielded the following standard deviations:

$$
\begin{array}{ll}
\text { Device }(i): & \text { S.D. }=12.75 \mathrm{ib} . \\
\text { Device }(i): & \text { S.D. }=3.12 \mathrm{Ib} .
\end{array}
$$

Assuming the population to be normally distributed, the limits at the 5 per cant level of significance are:

$$
\begin{aligned}
& \text { Device (1): } \quad \pm 26.2 \mathrm{lb} . \\
& \text { Device (i1): } \quad 1 \quad 6.8 \mathrm{lb} .
\end{aligned}
$$

The tests were carried cut oy arlying a certain deflcction to the loading point, and measurint, the load. This deflection was effected by means of the sorew at the top of the prestressing wire (Fis. 6.7), and by the acrew juek ostunved under the provine ring (Fig. 6.4). once plastic flow had started. tha apparetun wes left uritil the difference between two suncessive Fasding at 15 minute incervals was negligible. The dead load for initial loading aan be Bent bleariy in then cose. The thriat bearing mentioned was pleoed under the channel supporting the dead load (Fig. 5.7).

CI - FULLY FIXED

81- FULLYFIXEO

C3-FULLYF゙XEO

AI-FUURFIXED

C2. NO TORSION AT SUPPORTS

62- NO TORSIDN AT SUPPORTS

AZ-FULET FIXED

* PREDICTSD FOSITION OF HINGE DOSITION OF DDINT LOAD
BEKRICAL OEFLECTION GAUGE
BUBBLE GAUGE

FIGURE 6. 8

23 sificie or 0 (1) whe $0^{6,20.28)}$
 $2+x_{1}$ mint plat.
Br man en (4tath dit 8 (4) 5 y
 9 prumet mo
 ant iffotes nos sithe 4 Inesu 2 at tocts. $1-1+1=1$? nee 4 : diter hetrec an worth

4 bectan
 cathy Ensticatis

An luit leva 1
 Whatom, the miter
 bretar iti for of ten 4 tone tovo mesy nes?

The single or double point loads were applied by me:ns of oalls fitting into slightly punched recesses on the girder. For the double point load the loads were applied by dividirg a single known load by means of a simply supported kar. The load was applied to the bar through a greased cylindrical bearing. The bar applied the load to the firder through balls at the two required points. This c in be seen in Fig. 6.3.
f'he rurfoge $n f$ the deflection rueasurements was to caluluate, where possible, the rotations at the plastic hingea. To this end, vertical deflection readings were taker at th puirts of applicution of the loads and at the redicted free hinge poir. 氵亏. Vertical rodz were placed hetween the deilection frauges and the points where deidections were weasured in order to eliminate the eifects of lateral movement of the girders during the tests. Rotetions of the sections were measured by means of bubble siope gau es placed, where possible, midwaj betwaen successive plantic hinees (as predicted).

6.3 Scoce of lests

The eight tests comducted do not represent an exraustive investigaticn of the objects (1), (ii) and (113) as set out in 6.1, but all attempt was made to cover is many asieutiz as possibie.

The elght testa all yielded results of value for the object (i), that is, the investigation of the yield critericn. The objects (ii) and (iii) were covered by four testis esch; for the object (11) the two "B" crosssections and tiwo of the "C" crosss-sections were used, and are denoted $\mathrm{Cl}, \mathrm{C} 2, \mathrm{Bl}$ and B 2 (see Fig. 6.8). The loads in these tests were centrally placed. The tests Cl and Bl were conducted inder conditions of full ifity at the supports, i.e., the rotations of the supporti were elininatsd after each loading by adjustment of the jacks connected to the suport lever arms. Tont ce was carried out with torsior. at the supports as near zero as possible until the collanse load was reached, at which stage the torsional rotation of the supports was stopped, In an attempt at causing the load to increase to the fully fixed value. Test B2 was conducted with no torsion at supports. Since the moments measured at supports Juring

the tests were at 45° to the tangent to the axis at the supports, the moments measured by the proving rings were adjusted until they were as nearly equal as possible in order to eifect the no-torsion support condition. The "C" tests ($\alpha=.2265$) corresponded to mode 1 failure of Chapter 3.2 and 3.3. In the "B" tests $(\alpha=.224)$ the value of a ls theoretically just above the transition (at $\alpha=.200$) from mode 1 to mode 3 (see Fig. 3.7).

The remainirg four tests were all conducted under fully-fixed support conditions with two concentrated loads. The tests C3 and C4 were arranged so as to verify failure by modes 1 and 1 A , as described in Chapter 4. The "A" tests - Al and A2 - were designed to verify failure by modes $3 A$ and $3 B$ respectively. The loads in test C3 were equal and placed at quarter points, as shown in Fig. 6.8. In test C4, the loads were unsymmetrically placed as shown in Fig. 5.8, and were such that $m!/ i 2=2.43$. This was the kest practical arrangement which gave, theoretically, the mude lA iailure (i.e. with a free hinge between the two point loads).

In the test $A l$ the loads ..ere equal and symmetrical: hence a mode 3A failure was favoured. In the test $A 2$, the Loads were equai and unsymmetrically placed and the three-hinge failure moie was predicted.

The arrangement of the deflectlon gauges is shown in Fis. 6.8.
6.4 Results of Tests and Comparison With Theory

Control rests. The results of the control tests are given in Taiole 6.2: the mean values of the full plastic meinents in torsion and bending are given, together with the standard deviations in the case of the "A" and "C" cross-sections. The plastic moments were obtained from the torcue-rotation and bending noment-rotation Eraphs; typical graphs are shown in Figs. 0.9 and 6.10. The standard deviation was calculated Ior the. "A" and "C" cross-sections as the number of specimens was five for the determinacion of each control value, whereas for the "B" orosa-section only three Bpecinions were available for each value, which was insuffioient for ari estimete of the standard deviation. It is seen that the standard

deviation of the "C" results is much higher than the "A" results.

Table 6.2

Section	$1 b^{T}-1 n$.	Standard Deviation	$\operatorname{Mb} \cdot-i n$	Etandard Leviation	$a=T p / M_{p}$
A	4160	$81=1.9 \%$	6380	$85=1.3 \%$. 652
B	1220	-	5450	-	. 224
C	446	$27=6 \%$	3526	$151=4.3 \%$. 1265
	$\begin{gathered} \mathrm{EI} \\ \mathrm{~b} .-\mathrm{in} .^{2} \end{gathered}$	$\begin{gathered} \mathrm{NJ} \\ 1 \mathrm{~b} .-\operatorname{in} \mathrm{c}^{2} \end{gathered}$	$\gamma=\frac{E I}{N J}$		
B	8.6×10^{6}	1.65×10^{5}	52		
C	2.79×10^{6}	2.60×10^{4}	107		

The value of a for each section was calculated from the mean plastic moments; the values of the flexural and torsional rigidities are alsu giver for the "B" and "C" sections (these are the sections for which elastic deflections in the main tests were calculated).

Tests on Miniature Bow Girders. The results will be discussed in the following manner:
firstly, the load-deflection curves for all the tests will be given, with the predicted elastic deflections, the prodioted and actual collapse loads, and the position and spread of the plastic hinges;
secondly, the results of the investigation of the yield criterion will be given and,
thirdly, the results of the investigation of the direction of axes of rotation will he discussed.

In Fige. 6.11 to 6.16 the load-deflection curves are plotted. From these graphs the values of the collapse loads have been ohtained and are shown with the predicted values in Table 6.3 .

Table 6.3

Test,	Wr	Wp Predicted (Ib;	W Actual (Ib)	Difference	(Ib)

The intervale given with the actual collapse loads are the confidence intervals of the loading devices at the 5 per cent level of significance.

The results are in fiair agreement with the theoretical collapse loads. In the appraisal of these results two approaches have been used:
(1) a statistical test to determine whether the difference between the actual and predicted collapse loade is significant, and,
(ii) a discussion of each failure load after the yield criterion investigations: deviations of particular values can be interpreted in terms of the messured values of moment and torque in the ringes.

The analysis (1) shows that the average amount by which the measured load; exceeded the predicted loads (. 8 per cent) was not aignificant. This was based on the assumption that, the percentage differences (the last colum in Table 6.3) were a sample from a normal population and the "Students t" distribution with 7 degrees of freedom was used.

FIGURE 6.17

FIGURE 6.18

On the basis of tests in beams and frames ${ }^{8}$, a small increase of experimental over calculated collapse loads would be expected because of strain hardering efiects. A further factor that would add to this is that the bending moment-torque interaction equation is a lower bound approximation. On the other hand, in the case of the "C" beams, the failure load decreased as collapse progressed, probably owing to the effect of changes in geometry and instability of the deep narrow sections. Hence an exact agreement between actual and predicted collapse loads would not be expected, fince these factors nave not been taken into accol he theory.

In . west C2, the load rncreased slightly after the fixing of the supports, as described in section 6.3, but did not increase to the failure load for the fully fixed case.

The position of the hinges as indicated by flaking of the brittle costing agreed with the theoretical in all cases excent ast C2, where in addition to the two free hinges, mill occurred as expected, a small amount of plastic flow was evident at the supports iefore the torsional rotation of the supports was atopped (wher there was no torsion at the supports, two free hinges were expected, and plasticity at the supports was only expected after the supports were fully i'ixed). Thie positions of the free hinges, teken as the centres of the flaked area on the girder arcs, agreed with the theoretical positions to within two inches; the lerath of the flaked area of the hinges was from about two inches to about four inches.

Figures 6.17 and 6.18 show the flaking of the brittle coating, in tests Bl. and C4 respectively, the latter showing formation of a free plastic hinge between the two point loads.

An interesting noint which might be of practical importarice is that, ir the tests $\mathrm{Cl}, \mathrm{C} 2$ and C 4 , the load decreased after failure hid taken place, and lid not show the usual increase in load due to strain hardening.

FIGURE 6.19

The explanation for this behaviour is probably that, in the case of the fairly flexible "C" girders, the effect of changes in geometry during collapse is no longer negligible, and that lateral instability of the deep, narrow section affects the load.

The load in the tests was applied to a point on the top edge of the rectangular section. At plastic collapse and therefore at e. stage when deformations were large, the section at the load was rotated through quite a large angle and the load consequently induced an additional torque in the beam equal to the product of the load and its eccentricity from the centre of gravity of the section (see Fig. 6.19).

Owing to the induced torsion in the beam, the plasticity at various points in the girder, and the very small resistance of tlie girder to bending about the vertical axis, it is J 'rely that the lessening of the collapse load of the "C" girders is at least partly a buckling effect; since the point of application of the load would tend to stay in the same vertical line, the girder would tend to buckle outwards at the positions of free hinges.

Further reference will be made to this point in the disclission ol :sion in the free hinges.

Elastic -ections of the loading point were calculated for tests B1 and C1, based on the elastic rigiaities found from the control tests, and are shown on Figs. 6.11 and 6.12. The agroement with the experimental values was very close in test Bl; in test Cl the deflections were slightiy less than predicted.

Yield Criterion Investigation. As the bending moment and torque st the supports were meastired during the testis, the value of bending moment and torque at any point on the girder could be calculated. The yield criterion has been checked by calcuiating the bending moment and torque at the hinge, and hence the square root of the left hand side of equation (2,2), i.e., by calculating $\left(a^{2} M^{2}+\mathbb{T}^{2}\right)^{\frac{3}{5}}$. Teing the rotation mesourements, the rotations corresponains to the values of torque and moment could be calaulated fo- most hingea, except in those cases where due to congestion of

5

$\frac{\square 1+1}{4+1!}$

a	a	a

$a=a$

$$
\frac{11}{1+1}
$$

$$
\frac{\pi}{a}
$$

$$
0
$$

$$
\frac{305}{9}
$$

in
AT LOND
LOND

$$
\frac{\pi}{\operatorname{Lo} 9}
$$

$$
\begin{aligned}
& 4917 \\
& 4 \frac{17}{17}
\end{aligned}
$$

$$
\begin{aligned}
& 80 \\
& 8: 8 \\
& 9.8
\end{aligned}
$$

4000
apparatus, sufficient gauges could not be used. The vilues of bending moment, torque and $\left(a^{2} M^{2}+T^{2}\right)^{\frac{1}{2}}$ have been plotted against the bending, torsional and resultant rotation, respectively, at the hinges. In the cases where it was not possible to calculate the rotation, the values of bending moment and torque in a hinge alone do not give much evidence of plastic flow, as it is known that elastic moments and torques remain approximately constant during cullapse. It was decided, therefore, to analyse the behaviour of only those hinges for which rotations were avallable.

As the equation (2.2) represents a theoretical lower bound, it would be expected that the substitution of actual bending moment and torque values would cause $\left(a^{2} M^{2}+T^{2}\right)^{8}$ to exceed T_{p} by a small amount.
"B" Tests. As predicted, hinges oscurred et the supports and at the loading point for both $B l$ and B 'a Theoretically, the hinges are in pure bending. The values of bending moment and bendine rotation have been calculated, and are plotted in Fig. 6.20 (test BI) and Fig. 6.21 (test B2). The rotations plotted are the bending rotations of the lengths of beam between the support and central point for the oupport hinges, and the rotations of the whole arr about the bending axis at the centre for the centre ninge. This is why the rotatinns at the centre hinges are much larger then at the support hinges. The maximum values of torsion In the hinees are shown on the eraphs.

The values of the plastic moment taken from the graphs are shown in cable 6.4 .

Table 6.4

The mean value of the plrstic moment, i.e., 5508 lb.-in. is very close to the mean value obtained in the control tests ($5450 \mathrm{lb} .-\mathrm{in}$.) ; all the values of plastic moment exceeded the control value except for the value of plastic moment in teat Bl at tise load. It is clear that the effect of the torsion in the hinges would tend to reduce the average value of plastic moment chtained below the average obtained in the control testis. An investigation reveals that this effect is negligible except in the case of the himge at support B in test Bl, in which case the contribution of torsion to the value of $\left(a^{2} M^{2}+T^{2}\right)^{\frac{1}{2}}$ is less than ten per cent. The effect of torsion on the plastic moments has therefore been neglected.

An inspection of the collapse $20 a d s$ for B1 and B2 reveals that the girder Bl failed at a value 6.4 per cent less than predicted whereas the failure load for B2 was almost exactly as predicted. The large difference for Bl is mainly due to the extremely small value of plastic moment at the ringe under the load. Since the rotation at tiae central hinge during plastic deformation is about tuice the rotation at the supports, the energy absorbed by the central hinge during ylastic collapse is about twice the energy absorbed by the support hinge. Hence the effect on the collapge load of the sinall value of plastic moment in the central hinge in teat BI ia double the effect of the same plastio moment at a support. This low velue of plastio morent appeara to be a random oocurrenee (the tor aion in the hinge has a hegligible effect) and explaina the low value of collapse load in test H.
"C" Teats. The "C" tests all invoived the formation of four hinges, namely, two free and two ifted (for test C 2 . four hirges formed fully only after torsional rotation was storper at the supports). As has been mentioned, those hinges for which it was not poonible to measure the deformations during collapse have not been used in the yield criterion investigation. The hinges that have been considered are: all hinges in Ol and C 2 , one ifxed and free hinge in each of C3 and CA, that is, in all, six fixed hinges (at supports) and six free hinges.

\square

a

00444	

2

In Figs. 6.22 to 6.30 the value of bending moment, torque and $\left(a^{2} M^{2}+\mathbb{T}^{2}\right)^{2}$ are plotted against the bending, torsional and total rotation of the various fixed hinges, and in Figs. 6.31 to 6.33 the values of torsion in the free hinges are plotted against the torsional rotation of the free hinge. In the case of the latter curves, to facilitate calculation, the positions on the arc for which the values of torsion were calcuiated were rot positions where the bending moment was zero, but were noints for which the bending moment was small and had a small effect on the value of torsicn. The rotations plotted are the rotations of the lengths of girder between bubble gauges on either side of the free hinces and the lengths from the support to the nearest vertical deflection gauge in the case of the fixed hinees.

The values of $\left(a^{2} \mathrm{Mi}^{2}+T^{2}\right)^{\frac{1}{2}}$ at full plastii ity of the sectior, taken from the graphs are shown in Table 6.5.

Table 6.5

Test	Location of Hinge	$\begin{gathered} \left(a^{2} m^{2}+m^{2}\right)^{\frac{1}{2}} \\ 1 b \cdot-i n \end{gathered}$
Cl	Support A	405
Cl	Support B	520
C2	Support A	390
C2	Support, B	665
C3	Support A	390
C4	Support A	580

The mean of the values in Table 6.5, i.e., 492 lb.-in., agrees reasonably with the value of $T p$ $(=446 \mathrm{lb} .-1 \mathrm{n}$.) from the control tests. The variation of the individual values, however, is out of all proportion to the consistency obtained in the main test results or the control test results.

The graphs of bending moment and torque against rotation show that in all cases the percentage difference between aotual and predicted bending moments at full plastioity was small, whereas the percentage difference for the torque was large, although the order of the variations was about the same in both cases. A comparison of actual and predicted bending moments is shown in Table 6.6.

Table 6.6

Test	Location of Hinge	Predicted Bending Moment lb-in.	Experimental Berifing Momen lb-in.	Percentage Differences
Cl	Support A	3065	3070	+ . 2
Cl	Support B	3065	3180	+ 3.3
C2.	Support A	3065	2900	- 5.4
C2	Support B	3065	2750	-10.3
C3	Support A	2890	2900	+ 0.3
CH_{4}	Support A	2850	2920	+ 2.5

The wide variation in the values of $\left(a^{2} u^{2}+T^{2}\right)^{\frac{1}{2}}$ is clearly a reflection of the large deviations in torque, since the effect of torque on $\left(\alpha^{2} M^{2}+T^{2}\right)^{\frac{1}{2}}$ is considerable as the berding moment values are multiplied by a ($=.1265$). Hence the effect of torsion on the yield criterion equation is large, for the small valuey of a in the "C" tests, whereas ita effect on the collapse load is quite small. This can be seen ir Fig. 6.22 where the values of torque against torsional rotation have been plotted on the same graph as the bending moment-bending rotation curva. The area under these cirves represents the energy absorbed during collapse by the bending and twisting comgonents, and it is evident that the twisting component has a comparatively small eifect on the collapse load.
:
-
forque
lo-in

\qquad
委

A rough estimate shows the standard deviation of the bending moment and torque measurements is about 80 ib.-in. Tha end moments and torques were measured or lever arms at an angle of 45° to the tangent at the supports; the end bending moment and torque is proportional to the sum and difference of the two readings respectively. The possible error in bending moment and torque is the same, but the percentage influence on torque is much greater than on the bending moment. A large proportion of the variation in torque values may therefore be attributed to possible measuring errors; an estimate of how much the torque actually variez would require tests with more refined apparatus.

The values of torque in the free hinges at full plasticity abstracted from Figs. 6.31 to 6.33 are shown in Table 6.7 .

Table 6.7

Test	Location of Hinge	$\begin{aligned} & \text { Torque } \\ & \text { ib.-in. } \end{aligned}$
C1	Side A	580
Cl	Side B	430
c2	Side A	565
C2	Side B	305
C3	Side A	650
C4	Side A	335

The mean vaiue, i.e. 477 lb.-in., is in fair agreement, is th the full plastic moment in pure torsion found from the control tests ($446 \mathrm{lb} .-1 \mathrm{n}$.) , but the deviations are much ereatar than in the control tests in whish the standurd deviation is 27 1h.-in. A large paret of this deviation is rossibly due to errors of measurement; but 11 the standard deviation of the individual values jo about $80 \mathrm{lb} .-1 \mathrm{n} .$, the standard deviation of the liern would be about $80 / 6=13 \mathrm{lb} .-1 \mathrm{n}$. The fairly cluse agreement of the mear plastic torque in the testa with the control value does provide some evidence which ontradicts the suggestion in the discussion ${ }^{4}$ on the paper by Boulton and Boonsukha that, alnce the free hinges in actual bow girders ocour at isolated points, restriction of plustic warping would
cause values of torsion considerably higher than those obtained where plasticity occurs over the whole length of member, as in the control tests. The results of this investigation have also shown that the free hinges spread from two inches to four inches.

Another feature of the free hinke results is that the values of torsion decrease steadily at high values of rotation. It is probable that this effect is connected with the decine in collapge load at large defilections.

The consistency of the values of bending moment at the supports shows that the localised strain hardening (mentioned in section 6.2) had little effect on the results.

The values of collapse load for the "C" tests agree with the rredicted valuer reasonably except for C2 (after the torsional rotall is at the supports was stopped) and C4.

In teat C2 it was wreted that the load, on fixirg the supports, would increase to the fully fixed value, but the load was already decreasing, probably owing to the effects of changes in geometry, and the attempt was unsuccessful.

The collapse load in test 6.4 was 8.9 per cent larger than predicted. The values of bending moment in the hinges at support A wure very close to the expected value; the values of torsion in the free hinges, as calculated, were rather lower then the expected value from the control teata. The explanation for the high collapse load appears to be in the high values of moment in the hinge at the support B. Unfortunately, complete values of the rotations are not available but a fairly accurate calculation shows that the bending rotation at collapse in the hinge at supports is almost inree times the bending rotation at hisege A. The value of the bending moment at collapse wa's about $4300 \mathrm{lb},-\mathrm{in}$., which $-s$ much greater than the value of bending mowent in pure bending from the control tests (3526 Lh. -1 .). The energy absorbed in this hinge is therefore much greater than the energy absorbed in any other hinge in the test, and the large value of bending moment would
3 (2)

cause a cunsiderable increase in collapse load. The reason for the high value of hending moment is probably strain hardening either due to the large potations, or the cold straightening which occurred in the preparation of the girders.
"A" Testa. The hinges investigated are those at the supports in Al and A2, four hinges in all. In Figs. 6.34 to 6.39 the results are plotted in the same way as for the "C" teste.

The values of $\left(\alpha^{2} M^{2}+T^{c}\right)^{\frac{1}{2}}$, benaing moment and torque at full plasticity of the section are compared with the predicted values in Table 6.8. It is seen thst good agreement has been obtained; the agreement botween the measured and predicted bending moments was, as ir the "C" testy, better than between the measured and predicted torque. The agreement between actual values of $\left(a^{2} u^{2}+T^{2}\right)^{\frac{1}{2}}$ and the predicted value $\left(=T_{p}\right)$ appears to be slightly better than the agreement between individinl valucs of moment and torque. The difference in the jorque values maght be largely experimental, but since the values of torque are much larger than in the "C" tests, the percentage deviaitions are much smaller.

As would be expected from the small standard deviations of the bending moment and torque in the control tests, and the results given above, the difference between measured and predioted collapse loads was very small.

Variation of Direction of Axes of Rotation. As the measurement of torque in the "C" tests yielded results which are not considered to be reliable, the directions of the axes of rotation has been calculated only for the four hinges at the supports in the "A" tests.

Th f results of this analysis are shown graphically in Figa. 6.10 and 6.41 . The angle r between the axis of rotation of the hinge and radius at the hinge is plotted against the value of load at values of load near collapse. © $\mathcal{C l}$ e values at small loas were not plotted becnuse the results at elastic deflections were not relianie as the rontitional monner.to were extremely small. The ungle r is theoreticalij related to the torque his moment through equetio (? 3), i.e.,

$$
\begin{equation*}
\tan r=T / \alpha^{2} \lambda \tag{2.3}
\end{equation*}
$$

Tabl2 6.8

Test	iocation of Hinge	Fredicted Values of M b．－in．	$\begin{gathered} \text { Experimental } \\ \text { Vaines of } \mathrm{v} \\ \text { lb. -in. } \end{gathered}$	lredicted Vallies of T lと．－in．	Experimental Values of T lb．－in．	Fredicted Values of $\left(a<M^{2}+T^{2}\right)^{\frac{1}{2}}$ Ib．－ir．	Experimental Values of $\left(a^{2} m^{2}+x^{2}\right)=$ 2も．－2ム．
51	support A	6100	6580	1220	960	4160	428 C
A1	Support E	6100	6400	1220	1200	4160	4150
42	Support A	6280	5800	760	920	4160	400 C
42	Support B	6240	0400	895	820	4160	4220
						Mean	4163

in order to test the accuracy of this expression, the values of arc tan $\left(T / \alpha^{2} M\right)=\gamma^{2}$, have also been plotted againgt the values of load.

The yalues of γ and γ^{2} differ widely at the value of load aseumed to be the collapse load except for hinge B in teat A. A feature of all the results Wa日 that the values of γ and r^{2} tended to agree probressively mone alosely at valuss of the load above the assumed collapse load.

CHAPTER 7

SLMMARY

The results of the analytical investigation described in this work may be sumnarised as follums:
(i) The use of the electronic computer provides a quick and useful solution to the many cases where ordinary solution would require a tedirus trial-and-error method.
(ii) Methous have been proposed for the automatic computation (whera this is advantageous) of collapse loads of girders loaded with a single concentrated load, bcth fully faxed and without torsional restraint; most of the possible modes of failure modes of circular beans under fully fixed support conditions with two concentrated loads have been investigated in detail.
(iii) A kinematic approsch has been suggested, which leads to a more detailed visualization of the collapse modes involved.
(iv) The investigation of the effect of lack of torsional restraint at the supports shows that torsional movement of the supports can reduce the stringth of a how girder with low torsional strength, whereas for girdere with torsionel atrenpth above a certain value the effect is negligilie.

The results of tire experinental Investigation lead to the iollowing conclusions:
(i) Tire application of the approximate interaction equatior $a^{2} \mathcal{W}^{2}+\mathbb{T}^{2}=\mathbb{I}_{p}^{2}$ for a plastic hinge yields satisfactory values of cullepse loads, based on experimentally found values of the full plastic moments in pure torsion and nure bending: the postitions of formation of the hinges was in close agre ment with the predicted positions.
(ii) In the testa on girders with single concentrated loads it was found that at values of a alightly above the transition value to mode 3 , the mode 3 failure occurred whether the bean was torsionally restrained or not. The feilure load of girders for which a was below the transition value was greater when the endis were fully fixed thar when the eids were torsionally unrestrained, and differert ialiure inodes occurred for the two support conditions. These reaults are in agreement with the theory.
(111) The strength of the beams of Low torsional strength decreased as failure progressed; no increase ilt to strain hardening was evident. Tkis decrease is attributed to effects of changes in geometry and inetability.
(iv) In the investigation of the bahaviour of the hinges in the tests on bears with high and intermediate torsional atrength $(a=.652$ and . 224 respectivejy), close agreement between the predicted and experimental values was obtained. In the tegts on girders with low torsional resistance $(\alpha * .1265)$ the values of toraion in the combined hinges showed a wide variation from the predicted values, while the beriding momenta ugreed reasonably with expected values. In the free hinges in these tests a wide variation in the individual values of torque was obtained; these variations aril those in torque in tha combined Kincers are partly attributable to inprecise inatrumentation. The mean value of torque in fre hinces was in roasonahle agrecment with the value of plastic moment in pure torsfor cbtained from the contrel teets, and did not show a marked increase due to warp reatriation.
(v) $T^{2}=$ direction of the axes of rotation of the hinges in the "A" tests showed poor agreement with the expected directions. Singeested subjects for further study are:
(1) The estimation of the strength of girders of other than circular shape, for instance, polygonal bow girders;
(ii) The prediction of the strength of girders under more diverse loading conditions, for instance, combinations of uniformly distributed and concentrated loads.
(ii1) The extension of the virtial work method.
(iv) The testing of mo+ a realistic experimental bow girders; the tests described in the present work were on girders with ideal support conditions and were of very mild steel.

The same principles apply to any type of structure where berding moment and torque are the precominant etructural actions.

APPENDIX

DETAILS OF COMPU'IER PROGRAMMES

All the computer work was done on the University IBM 1620 digital computer. A flow diagram and the source programnes, 18 writtelk ir the FORTKAN language, are giver in this Appendix.

The progranmes which hive been written and used are:

Programme 1: iode 1 - fully fixed supporta - single and jouble concentrated loads (sections 3.2 and 4.2).

Programme 2: Mode 2 - fully fixed supports - single and double concenträed losds (sections 3.2 and 4.2).

Prcgrame 3: Mode 1 - no torsion at supports - single concentrated load (section 3.3).

Pregramme 4: Mode 2 - no torsion at supports - single concentrated load (section 3.3).

Erogramme 5: inde 3A - fully fixed supports - two concentrated loads (section 4.2).

Erogramme 6: Mode 3B - fully fixed supports - two concentrated loads (section 4.2).

Before proceeding to a description of the individual programmes, some features common to all the progranmes will be discussed.
$\therefore 11$ the equations used were in a dimensionless form. For the collapse load, the form was $\frac{W_{r}}{\Pi_{p}}$, and the lengths were dividad by r, the radius of the girder, for example, $\frac{\Gamma_{g E}}{T}$ or $\frac{D_{Z}}{\mathrm{~T}}$.

The proerammes are all based on a trial-anderror procedure in the programres 1 to 4 above, a vilue of θ_{1}, known to be lower than the actual valua, was loaded. The computer then incremented the value of θ_{1}, uritil a satiafactory aolyifon was obtained. In the case of programmes 5 and 6 , a valle of ρ^{\prime} was loaded, and incremented in the same way by the computar.

COMPUTE ALL OUANTITIEA NECESEAREY FOR vis $=$
all cases the final solution deperded on the satisfaction of two simultanecus equations, the left hand side if which was in the form $\frac{W_{2}}{H}$. A number \mathbb{N} was caused to alternate between the falues 1 and 2 , corresponding to successive cycles of calculation; each cycle corresponded to a value of θ_{1} or p_{1}. At any value of θ_{1} or ${ }^{\circ}{ }_{1}$, the values of $\frac{W_{f}}{W_{p}}$ were calchlated corresponding to the two simultaneous equations, and if N was equal to l, these values were designated WII and W21; if N vas equal to 2 , the values wars designated $W 12$ and W22. For a certain increment or θ_{1} or ρ_{1} (designated $T 1$ and Rl respectively in the programmes), the sign! of (iv11 - iV21) (W12 - W22) was ascertained. If the sign was pusitive, θ_{1} or ${ }^{2} 1$ were incremented again, and if the sign was negative or zero the value of θ_{1} or o_{1} reverted to the previous value and smaller increments made (see below). If $\frac{\mathrm{Mr}}{\mathrm{Mp}}$ was close enough to the exact solution the final results were typed out. An $1 F$ (SuNSE SNTTCH 3) starerent was inserted vetween the statements 50 and 52 in tihe pri_rames as in the first cycle the values of W12 and W22 were not obtained; the sense switch ON setting in the first cycle transferred the programme to the 6 PAUSE statement, at which stage it wais switched to the OFF position.

The increments of Tl and Kl were initially equal to 0.1; the increments were continued ur.til (w1I - W21) (W12 - W22) was negatjve or zero. The increments were then 0.01 , and so on, until a solution was obteined corresponding to incremente of 0.00001 . The method of incrementing Tl, for example, is as follows:

$$
\begin{aligned}
& \text { DO } 56 \mathrm{~K}=1,5 \\
& 7 \mathrm{Tl}=\mathrm{Tl}+10 \cdot \cdots(-K)
\end{aligned}
$$

The flow diagram on which all the programmes vere hased is shown in Fig. A.l. Some details of the individual programmes foilow.

Programme 1: The values to be loaded are $2^{\prime}{ }^{\prime}=B$), $\varnothing_{C E}(=F C G), r_{C E}(=R C G), n(=A)$ and $\theta_{1}(=\|$,$) .$ Tise symbol for a^{2} is AA. Through referenc to equations (3.1), (3.5), (3.7) to (3.11) and (3. the deveiopment of the programe is clea.. Thi simultanevus equations for final solution ars (3.12a) and (3.12b). At some values of $2 \mathrm{~B}, \varnothing_{O G}$ and $r_{C B}$, as θ_{1} is incremented the value of u passes through $\frac{\pi}{2}$, and solutions are difficult, to obtain as tan μ becomes very large.

Procramme 2: The values to be loaded are as for programme 1. Equations (3.1) and (3.15) to (3.19) are used directly. The co-ordinates of F, which are (x_{F}, y_{F}), are determined (see section 3.2) by the intersection of $B F$ and EG.

$$
\begin{aligned}
& \text { If the equation of } E G \text { is w?itten } \\
& y=m_{1} x+d_{1}
\end{aligned}
$$

and $B F$ is written

$$
y=m_{2} x+c_{2},
$$

the point F is given by
$x_{F}=\left(c_{2}-c_{1}\right) /\left(m_{1}-m_{2}\right)$
and $\quad y_{F}=\left(m_{1} c_{2}-m_{2} c_{1}\right) /\left(m_{1}-m_{2}\right)$
In the progranme $\mathbb{m}_{1}=A M, m_{2}=B M, c_{1}=C l$ and $c_{2}=C 2$.

The vquations (3.22a) and (3.22b) are to be simultaneously satisfled for the final solution; equations (3.23), (3.24) and (3.25) are also used in the solution.

Prograrme 3: The values of $2 B(=B), \phi(=B), \alpha(=A)$ and $\theta_{1}(=T 1)$ are loaded. Equations (3.28), (3.29) and (3.30) are used; (3.29a) and (3.29b) are the two simultaneous equations to be satisfied.

Procramine 4: This 1s similar to programme 3 except that ($3.31 a$) and $3.31 b$) are the equations to be satiafied by the trial-and-error procedure.

Frogramme 5: The values loaded are $2 B(=B), \phi_{1}(=F l)$, $\phi_{2}(=F 2), \phi_{\mathrm{CE}}(=F C G), r_{C E}(=R C G), a(=A)$ ins $\rho_{1}(=R 1)$. Equations (4.5) aru (4.6) are used to find the co-ordinates of F by a method similar to that for programe 2 (see above). Equations (4.7) to (4.11) are used; (4.11s) and 4.11b) are the gimultaneous equations io be satisfied.

Pronramne 6: The bame values are loaded as for programe 5. The equations (4.13) to (4.16) are uuvd, in addition to (3.17), (3.18) and (3.19); the almuitaneous yield quations are the same as for programme 5.

```
FORMAT(Fn:'),Fn: ), Fn. ))
`ORMAT(F7:),F{:.))
FORMAT(F?.5,F?.5, FS.4. F?.4,F?.4,F?.4)
ACCEPT 1,B,FCG,RCG
ACCEPT 2,A,T1
    AA=1.-A*A
    N=2
5 PAUSE
    DO 5% K=1.5
7 T1=T1+10.*%(-K)
    R1=2./(AA*(1.+COS (T1)))
    ARAU=ATAN((COS(FCG)-R1*CCS(TI)/RCG)/(RI*SIN(TI)/RCG-SIN(FCG)))
    P=RCG*COS(FCG-Ai位)
    ZaP*AA
    AAA= -Z.*Z*COS(B)*COS(B)-4.*Z*S IN(B)*S IN(AMU) +4.*SIN(AMU)*SIN(AMU)
    BB=(2.*2*S IN(B)-4.*S IN(AMU))* (Z*\operatorname{cos}(B)-2.* * OS (AMU))
    C=-2*2*S IN(B)*SIN(B)-4.*2*COS(B)*COS(AMU) +4.*COS(AMU)*COS(AMU)
    13=ATAN((-BB-SQRT (BB*BB-4.*AAA *C))/(2.*AAA) )
    IF(T3) 31, 30,30
30 T2=B-T 3
    GO TO 32
31 T 2=8-3.1415y-T 3
32R2=2./(4ん*(1.+COS(T2)))
    AL1=SORT(R1*R1+RCG*RCG-2.*R1*RCG*COS(FCG-T1))
    AL 2=SCRT(R2*R2+RCG*RCG-2**R2*RCG*COS (B-FCG-i 2))
    IF(N-1)40,41,40
40 N=0
41 ram+1
    GOTO (50,51),1
50 W11m&*(AL1+AL2)/(AL2*(R1-1.))
    W2l=A*(ALi +AL2)/(AL1*(R2-1.)))
    IF(SEISSE SWITCH 3)S,55
51 W12=A*(ALL1+AL2)/(AL2*(R1-1:))
    W22mA*(AL.1+AL2)/(AL1*(R2-1.))
55 IF(SEINSE SWITCH 1)53,54
5 4 ~ i F ( ( W 1 1 - W 2 1 ) * ( W 1 ~ 2 - W 2 2 ) ) 5 5 2 , 5 2 , 7
52 T1=T1-(10.**(-K))
55 N=N-1
53 TYPE 3,T1, T2,W11,W21,W12,W22
    IF(SENSE SWITCH 2) 4,5
    END
```


FIOGKAMME 2

```
    I FORMAT(F\cap.),F:.J,F?.0)
    2 FORMAT(F\cap. ), FO. ))
    3 FORMAT(F?.5,F?.5,F3.4,F{.4,F{.4,F\cap.4})
    4 ACCEPT 1,B,FCG, RCG
    5 ACCEPT 2,A,T:
        AA=1. -A*A
        N=2
    6 PAUSE
    OO 5% K=1,5
    T1=T1+10.**(-K)
    RI=2./(AA*(1.+COS(TI)))
    XE=R1*COS(T1)
    YE=R1*S IN(1;)
    AM=(YE-RCG*SIII(FCG))/(XE-RCG*COS(FCG))
    CI=RCG*SIN(FCG) -A|*RCG*COS(FCG)
    XS=(A*A*XE*COS(T1)+A*A*YE*S IN(T1) +1. -XE)/(% .-AA*XE)
    YS=(1.-XE)*(XS-1.)/(A*A*YE)
    TAHG2=(XS*&!H(B)-YS*COS(B))/(1.-XS*COS(B)-YS*SIN(B))
    DFJ=ATAll(A*A*`AN!?2)
    D=8-1.57030+DFj
    B:I=S IN(D)/COS(0)
    C2=S IN(B)-8:1*COS(B)
    XF=(C2-C1)//(A/H-BM)
    YF=(Al快C2-Bl快C1 j/(AM-Br1)
    Si=SQRT(&*&*COS(OFJ)*COS(DFJ)+SIN(DFJ)*SIN(DFJ))
    S 2=SRRT ((XF-COS (B))*(XF-COS (B)) +(YF-SIN(B))*(YF-S IN(B)))
    T3a4TAN(YF/XF)
    IF(T3)31,30,30
30T2=8-丁T3
GO TO 32
31 T 2=B-3.1415Y-T 3
32 R2=SQRT (XF*XF +YF*YF)
ALI=SQRT(R1*R1+RCG*RCG-2.*R1*RCG*COS(FCG -T 1))
AL2=SCRT(R2*R2+RCG*RCG-2**R2*RCG*COS(B-FCG-T2))
    If (N-1)40, 41,40
40 N=0
4 1 N = N + 1
    GO TO (50,51),N
50 W11=A*(AL1+AL 2)/(AL2*(R1-1.))
    W21vA*(AL1+AL2)/(AL1*S1*S2)
    IF(SENSE SWITCH 3)5,55
51 W12=A*(AL1+AL2)/(AL 2*(R1-1.))
    W22=4*(ALI +AL2)/(AL1*S1*S2)
55 IF(SENSE SWITCH 1)53,54
5 4 ~ I F ~ ( ( W 1 1 - W 2 1 ) * ( W 1 ~ 2 - W ~ 2 2 ) ) 5 2 , 5 2 , 7
52T1^丁1-(10.**(-K))
56 NmN-1
53 TYPE 3,T1, T2,W11,W21,W12,W22
    IF(SENSE SWITCH 2) 4,5
EHO
```

```
    I FORMAT(F3. ),FJ:.))
    2 FORMAT(F&:J, F3..))
    3 FORMAT(F\Omega.1,F3.5, F{.4, F{.4,F\Omega.4,F3.4)
    4 ACCEPTI,B,F
5 ~ A C C E P T ~ 2 , ~ A , ~ T 1 ~
    Na}
6 ~ P A U I S E
    DO 5S K=1,5
7 T|mT1+10.**(-K)
    ANI=(SINCN)-SIN(11)/COS(T1))/SIN(B)
    AN2=(\operatorname{Cos}(B)/SIN(B))*(SIN(TI)/\operatorname{Cos}(T)*\operatorname{COS}(F)-\operatorname{Sin}(F))
    D=(COS(F)-1.)/S IN(B)-S IN(T1)/COS(T1)*COS(F)+SIN(F)
    IF (T 3) 31, 30,30
30 T2=6-T方
    GO TO 32
31 T2=B-3.1415y-T 3
32AL1=SCRT (1./(COS(T1)*\operatorname{COS}(T1))+1. -2.*\operatorname{COS}(F-T1)/\operatorname{COS}(T1))
    AL2=SCRT (1./(COS}(T2)*\operatorname{COS}(T2))+1.-2.*\operatorname{COS}(B-F-T2)/\operatorname{COS}(T2)
    IF (N-1)40,41,40
40 N=0
4 1 N = N + 1
    GO TO (50,51), It
50WI1=A/(1./COS(T1)-1.)*(ALI+AL2)/AL2
    W2I=A/(1./COS(T2)-1.)*(AL1+AL2)/AL1
        IF(SEISE SWITCH 3)6,55
51 W1 2mA/(1./COS(T1)-1.)*(A1.1+AL 2)/AL2
    W22=1/(1./COS(T2)-1.)*(AL1 +AL2)/AL1
55 IF(SENSE SWITCH 1)53,54
54 IF ((W11-W21)*(W1 2-W 22)) 52,52,7
52 T1=T1-(10,**(-K))
56 N=N-1
53 TYPE 3,T1, T2,Wi1,W21,Wi2,W22
    IF(SENSE SWITCH 2) 4,5
    END
```

Programme (4) is identical to this programme except for N 21 and W22, e.E.
$W 2 I=(\cos (T 2) / \sin (T 2))\rangle(A L I+A L 2) / A L L$.

```
    I FOR:AT(FR.0,FO.U,FO. ),FJ.J,FO.U)
    2 FORIKT(F\.J,FO.U)
    3 FORIAT(F3.5,F3.5,F3.4, FO.4, F3.4,F3.4)
    4 ACCEPT 1,B,F1,F2,FCG,RCG
    5 \text { ALCEPT 2,A,Ri}
    N|=2
6 ~ P A U L S E ~
    XCG=RC:G*COS(FC,G)
    YCGmRCG*SIN(FCG)
    DO 55 K=1,5
7 R =R1+10.**(-K)
    XE=R1*COS(F1/2.)
    YEaR1*SIM(F1/2.)
    Ait (YE-YCG)/(XE-XCG)
    C=YCG-A:^*XC.G
    XF=C/(SIN(B/2.+F2/2.)/COS(B/2.+F2/2.)-A11)
    YF=A||*XF+C
    X|=1.-XE
    ETA1=YE
    R2=SQRT(XF*XF +YF*YF)
    X/2=1,-R2*C OS(B/2.-F2/2.)
    ETA2mR2*SIN(B/2.-F2/2.)
    ALI=SCRT (XE-XCG)**2+(YE-YCG)** 2)
    AL2=SCRT((XF\cdotsXCG)** 2+(YF-YCG)** 2)
    IF(N-1) 40, 41,40
40 N=0
41N=N+1
    G0 TO(50,51),N
50W11=A*(AL1+AL 2)/(AL.2*SCRT(A*A*ETA1*ETA1+X11*X11))
    W2{=A*(AL1+AL2)/(AL1*SCRT(A*A*ETA2*ETA2+X12*X12))
    IF (SENSE SWITCH 3)'5,55
51 W12=A*(AL1+AL2)/(AL2*SORT (A*A*ETA1*ETA1+X11*X11))
    W22=A*(AL1+AL2)/(AL1*SORT (G*A*ETA2*ETA2+X12*X12))
55 IF((W11-W21)*(W12-W 22))52,52,7
52 RI=R1-(10.**i-K))
56 N=|-1
    TYPE 3, R1,R22,W11,W21,W12,W22
    IF(SEINSE SWITCH 2) 4,5
    EHO
```


PkontinMme 6

```
: FORMAT(FO.0,FO.),F\.U,F\cap.0,F?.1)
2 FORIAT(F:3. ), F3.O!
3 FORINAT(F3.5,F3.5,F゙\cap.5,FO.4,FO.4,FB.4,F\Omega.4)
4 ACCEPT 1,B,F1,F 2,FCG,RCG
5 \mp@code { A C C E P T ~ 2 , A , R 1 }
H=2
6 \mp@code { P A U S E }
    XCG\approxRCG*COS(FCG)
    YCG=RCG*S IN(FCG)
    DO 56 K=1,5
7R1=R1+10.**(-k)
    XE=R1*COS(F1/2.)
    YE=RI*SIN(F 1/2.)
    XII=XE-1.
    ETAI=YE
    TANGl=X|/(A*GRETA\)
    XS=TANG1/(SIN(FI/2.)/COS'F1/2.)+TAIIG1)
    YS=XS*SIN{F1/2.)/COS(F1/2.)
    TANG2=(XS*S IN(B)-YS*COS(B))/(1.-XS*COS(B)-YS*SIN(B))
    D2mATAN(A*A*TANG2)
    D1=B-1.570^0+02
    AMI=(YE-RCG*S IN(FCG))/(XE -RCG*COS(FCG))
    CI=RCG*S IN(FCG)-AMI*RCG*COS(FCG)
    AM2=S IN(DI)/COS(DI)
    C2=S IA(B)-4112*COS(B)
    XF=(C2-Ci)/(Al11-AM2)
    YF=(AM1*C 2-C!*AM2)/(Ail1 -AM2)
    R2=SQRT (XF *XF +YF*YF)
    THET2=ATAN(YF/Xr)
    X12=R2* COS(B-THET 2)-1.
    ETA 2=R2*S |IT(B-THET2.)
    ALI=SQRT((XE-XCG)**2+(YE-YCG)**2)
    AL 2=SQRT(!XF-XCG)** 2+(YF-YCG)**2)
    IF (N-1) 40,41,40
40 N=0
4 1 ~ N = N + 1
    G0 TO(50,51), H
50 W11=A* (AL 1+AL2)/(AL2*SCRT(A*A*ETA1*ETA1+X11*X11))
    W2l=A*(AL1+AL2)/(AL1*SURT(A*A*ETA2*ETA2+*12*X1?))
    IF (SENSE SWITCH 3)S.55
51 W12*A*!AL1+AL2)/(AL2*SORT {A*A*ETA1*ETA1+Y11*X|1))
    W22mA*(AL1 +AL 2)/(AL1*SCRT(A*A*ETA2*ETA 2+X12*X12))
55 IF((W11-W 21)*(W1 2-W 22))52,52,7
52 R1=R1-(10.**(-K))
55 HaN-1
    TYPE 3,R1,R2,THET 2,W11,W21,W12,W22
    IF(SEINSE SWITCH 2) 4,5
    END
```


LIST OF REFERENCES

1. A.H. Gibson and E.G. Ritchie, "A study of the Circular-Arc Bow-Girder". Constable, London, 1914.
2. A.J.S. Pippard, "Studies in Elastic Structires". p.202. Arnold, London, 1952.
3. K.N. Johanzen and F. Lange Hansen, "Studies on the Load Carryine Capacity of Steel structures", Technical. University of Denmark, Copenhagen, 1954.
4. W.S. Boulton and B. Boorisukha, "Plastic Collapse Loads for Circular-Arc Bow Girders". Proc. I.C.E., London, Vol. 13, 1959, and discussion, Vol. 15, 1960.
5. K. Hill ani ll.P.I. Siebel, "On the Plastic Distortion of Solid Bars by Combined Bending and Twisting". むं. Mech. Ihys. Sol., Vol. 1, 2952 - 1953, p.207.
6. E.O. Imegnu, "Ultimate Strength of Plane Curved Girders". J.I. Struct. E., London, Vo". 42, No. 4, April 1964.
7. M.C. Steele, MThe Fiastic Bending and Twisting of Square Section Nembers". J. Nech. Phys. Sol., Vol. 3, 1954 - 1955, p. 156.
Q. J.F. Baker, H.R. Horne and J. Fieymin, "The Steel Skeletorin, Vol. 2, Cambridge Univ. Press, 1956.

Author Jordaan I J
Name of thesis Ultimate loads and modes of failure for circular-arc bow girders 1964

PUBLISHER:

University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

