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Abstract

Based on first principles calculations the structural, mechanical stability and electronic properties of

molybdenum chalcogenides 2H-MoX2 (X = S, Se, Te) have been studied using density functional theory

(DFT). The generalized gradient approximation (GGA) proposed by Perdew, Burke and Ernzerhof (PBE)

was employed together with the projector augmented plane wave (PAW) method. The van der Waals

interactions in the Grimme (DFT-D2) and Lundqvist and Langreth (vdW-DF) approximations have been

added on top of PBE or revised PBE in order to take into account the weak interactions between layers

of 2H-MoX2 (X = S, Se, Te). The structural properties include the equilibrium lattice parameters, the

cohesive energy and the formation energy. Besides we have studied the mechanical stability of these

compounds by examining the elastic constants using the PBE, vdW-DF, and DFT-D2 approximations.

Other quantities related to the mechanical properties such as the Young’s modulus, the Poisson’s ratio

and the bulk modulus were also calculated. Electronic properties of bulk 2H-MoX2 (X = S, Se, Te) have

been investigated using density functional theory (via band structure and projected density of state), and

a partially self-consistent GW (GW0) approximation. We have investigated electronic properties ( band

structure) for monolayers 1H-MoX2 (X = S, Se, Te) using a single shot GW (G0W0) approximation.

Optical properties for monolayer 1H-MoX2 (X = S, Se, Te) were studied using the Bethe-Salpeter

equation (BSE).
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1. Introduction

Amongst the major technological challenges of the twenty first century are the harvesting of renew-

able energy sources and the miniaturisation of electronic components. Molybdenum chalcogenides are

promising materials to investigate for meeting both these challenges. These layered materials have

structural properties similar to graphene, but in contrast to graphene, some of the molybdenum chalco-

genides, such as molybdenum disulfide, have an intrinsic band gap. A band gap is a property essential

for many applications. In this chapter we introduce some properties and applications of the molybdenum

chalcogenides and give a motivation for studying them.

1.1 Molybdenum chalcogenides

Nanoscience and nanotechnology have been dominated by low dimensional honeycomb structured carbon

based materials in the last two decades. Graphene, a two dimensional honeycomb structure of carbon,

has been investigated in great detail by researchers but has no band gap [1, 2]. However, molybdenum

chalcogenides are inorganic layered materials similar to graphene, but in contrast to graphene, some of

the molybdenum chalcogenides, such as molybdenum disulfide (MoS2), have an intrinsic band gap. A

band gap is a property essential for many applications including low dimensional transitors, optoelectronic

devices and solar energy harvesters. MoS2 has a layered structure with each layer consisting of S-Mo-S

sheets, consisting of an atomic plane of Mo sandwiched between two atomic planes of S in a trigonal

prismatic arrangement. While atoms in each layer are strongly bound, layers are attracted to each other

by weak van der Waals forces conferring on MoS2 an anisotropic structure, and anisotropic electrical,

optical, and mechanical properties [3]. There has been a search for other two dimensional materials that

can be split from the bulk into individual atomic layers for more intriguing properties and phenomena

[4, 5, 6].

Recently, layered molybdenum disulfide (MoS2) was synthesised for the first time [7]. As the number of

layers decreases from bulk (indirect gap) to a monolayer, the gap increases and changes from an indirect

to a direct band gap [1]. MoS2 is a promising material for electronic applications because of its stability

and transport characteristics [3]. The optical properties and the electronic structure of (MoS2) have

been investigated by optical spectroscopy. The indirect bulk band gap has a value of 1.23 eV and the

monolayer direct gap is 1.8 eV [1]. A direct band gap does not require phonon assisted photo-absorption.

In fact the energy band gap is a function of the momentum (k-vector) in the Brillouin zone, the latter

momentum is related to the minimum energy state in the conduction band and the maximum energy

state in the valence band. If the momentum of electron-holes is the same in both the conduction band

and the valence band, then an electron can be directly emitted by a photon without passing through

an intermediate state which refers to a direct band gap. Therefore offers the possibility of constructing

thin solar cells [8, 7]. For an indirect band gap an electron is assited by photon absorption.

For a semiconductor to be used in solar-energy conversion, its electronic band structure is one of the

1
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most important parameters and determines, among others, the range of the solar spectrum it can

absorb [9]. Various theoretical approaches have also been used to study electronic band structures of

molybdenum chalcogenides [10, 9]. Most of those studies are based on Kohn-Sham density functional

theory (KS-DFT) in the local-density or generalized gradient approximations (LDA/GGA). KS-DFT

with LDA/GGA suffers from the well-known band gap problem. A method of improving the band

gap is a hybrid functional which adds a certain amount of exact exchange to DFT exchange [11].

However, formally KS-DFT does not yield the correct band-gap [12]. A theoretically rigorous way to

solve the band gap problem is to go beyond the KS-DFT framework by formulating the electronic band

structure in terms of the single-particle Green’s function [13]. Many-body perturbation theory in the

GW approximation is currently the most accurate first principles approach to describe the electronic

band structure of crystalline systems. The GW method gives an approximation to the fundamental gap

(difference in energy between the ionisation energy and electron affinity) and not the optical gap. A

good band structure is not enough when one is interested in spectroscopy like absorption, where one

creates a neutral, i.e., electron-hole type excitation. One needs to go to the so called Bethe-Salpeter

equation (BSE) to include electron-hole interactions to calculate an approximation to the optical gap

which is necessary to know if optical absorption is of interest.

The challenges of ab-initio modelling of these materials are three fold:

Firstly, an accurate characterisation of structural and mechanical properties of these materials in their

bulk form.

Secondly, the ab-initio calculation must be capable of handling large systems and also be free of the

well-known band gap problem of the density functional theory (DFT)

Thirdly, to accurately predict the optical spectra of these materials which are directly accessible through

experimental techniques such as photoabsorption, and photoluminescence spectroscopy.

1.2 Motivation

An increased effort in the field of renewable energy in general and solar energy in particular is necessary

for the following reasons:

• The intensive use of fossil fuels (oil, natural gas, etc.) puts the global ecosystem in peril. The

combustion of these materials leads to, among others, the release of carbon dioxide, the main

greenhouse gas responsible for the warming of the planet. The results of such a warming could

be difficult to control and catastrophic for humanity. Most local effects to consumption of fossil

fuels are being felt in many cities (Athens, Bangkok, Tokyo, etc. ).

• Renewable energies can be a non-negligible factor in the development for both undeveloped and

developed countries. Renewable energies have the advantage of being available locally and not

being dependent on supply networks necessitating a heavy and expensive infrastructure [14, 15].

• Fossil energy sources are available in limited quantities. Even if the curve of new deposits follows
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the curve of consumption, it appears probable, according to many estimates, that after fifty years

of supply, problems could be felt.

It is desirable that the six billion inhabitants of the planet one day have access to the energy as easily

as people in industrialized countries. But if every person on the planet would consume as much as fossil

energy as do western countries currently, the result would be the increase in pollution and shortage of

fuel. The reduction of consumption of fossil energy has therefore become a challenge to the western

society, as well as the implementation of alternative strategies based on renewable energies. In developing

countries, many projects have been or are about to be realized such as the electrification by photovoltaic

which allows operation of water pumps, night lighting, powering a radio etc.

Layered molybdenum chalcogenides MoX2 (X = S, Se, Te) have attracted great interest because of their

distinctive structural, electronic and optical properties. Furthermore, layered molybdenum chalcogenides

MoX2 (X = S, Se, Te) are semiconductors with a high coefficient of absorption, and a band gap for

absorbing a large part of the solar spectrum. They are therefore potential candidates for being the active

element of a solar cell.

The most commonly used solar cell material is crystalline silicon (Si), despite the fact that it is indirect

band gap and therefore does not absorb light very well. Silicon solar cells are typically 100µm thick; if

it was much thinner, much of the light (particularly in the infrared) would simply pass through. On the

other hand, thin-film solar cells are made of direct band gap materials (such as MoX2 (X = S, Se, Te)),

which absorb the light in a much thinner region, and consequently can be made with a very thin active

layer (often less than 1µm thick) [16].

Recently a two dimensional, single layer MoS2 transistor was built [7] while CdS and CDTe, for example,

have been used in solar cell applications [17].

From a theoretical point of view, the inter-layer interaction of MoS2, a layered materials is dominated

by weak van der Waals-type interactions. It is fortunate at this time that theoretical and computational

tools to perform a systematic study of the structural, electronic, and optical properties are reaching the

level of accuracy that will allow a reliable identification of optimal materials [18].

Density functional theory with the inclusion of van der Waals interactions to deal with interlayer van der

Waals force, can give highly accurate structural information for molybdenum chalcogenide compounds.

Many-body techniques at the GW level have been developed to a point where accurate fundamental gap

energies can be calculated and the optical gap can be determined at the BSE level of approximation.

1.3 Aim

The objective of this work is as follows:

1. To computationally investigate the structural properties of bulk molybdenum chalcogenides MoX2

(X = S, Se, Te) within density functional theory in three different approximations for the exchange-



Section 1.4. Dissertation outline Page 4

correlation namely the Perdew-Burke-Ernzerhof (PBE), Grimme (DFT-D2), and Lundqvist and

Langreth (vdw-DF).

2. To investigate the mechanical stability of molybdenum chalcogenides at the calculated equilibrium

configuration, using elastic constants.

3. To investigate the electronic properties of bulk molybdenum chalcogenides MoX2 (X = S, Se,

Te) in density functional theory and the GW approximation in order to identify potential optimal

materials for low dimensional solar energy harvesters.

4. To investigate the electronic properties of monolayer molybdenum chalcogenides in the GW ap-

proximation.

5. To investigate the optical properties of monolayer molybdenum chalcogenides in the BSE approx-

imation.

1.4 Dissertation outline

This dissertation is organized as follows. In Chapter 2, we review the many body problem of electrons and

discuss density functional theory (DFT) with different approximations of exchange correlation energy.

We also discuss the long range dispersion interactions, generally denoted as van der Waals interactions.

In Chapter 3, we discuss elastic constants of solids and a practical method of obtaining them. In

Chapter 4 we describe the computational method that enables the calculation of the ground states

properties in DFT, in and we also review the Viena Ab-Initio Simulation Package (VASP) and the band

gap problem. In Chapter 5 we give a brief description of the key concepts of many-body perturbation

theory (MBPT) and the GW approximation. Chapter 6 is dedicated to the structural properties and

mechanical stability. In Chapter 7 we present the electronic properties for both bulk and monolayer of

molybdenum chalcogenides compounds. In chapter 8 we present the optical properties of the monolayer

of these compounds. Finally we present the conclusion.



2. Theoretical Methods

One of the most challenging problems in condensed matter physics, computational materials physics and

quantum chemistry is to describe the structure and electronic structure of many-atom, many-electron

systems. The interactions between atoms and electrons are governed by the laws of quantum mechan-

ics. The problem is to derive the properties of many-atom, many-electron systems from the quantum

mechanical laws. Furthermore, the properties of matter can broadly be ranged into two categories:

1) the electronic ground state properties such as cohesive energy, equilibrium crystal structure, elastic

properties, charge density, and 2) electronic excited states such as low-energy excitations in metals, sus-

ceptibility, higher energy excitation that determine insulating gaps, optical properties spectra for adding

and removing electrons. This distinction determines the framework for theoretical understanding and

development of the entire field of electronic structure calculations [19], hence, accurate and efficient

methods for solving the quantum mechanical equation for many-atom system must be developed [20].

Various electronic structure methods have been developed in the past. The most widely used method

for structural and electronic structure calculations is Density Functional Theory (DFT). It is one of the

most reliable theories for predicting potential materials with specific properties.

2.1 Many-body problem

The study and the analysis of the electronic structure of matter is done by solving the Schrödinger

equation of many-atom systems. Considering Ψ the wave function of a many-atom system, the general

form of the Schrödinger equation can be written as follows (excluding spin for simplicity of notation):

ĤΨ(R1, ...,RN ; r1, ..., rn) = EΨ(R1, ...,RN ; r1, ..., rn), (2.1.1)

where E is the energy of the system, Ri and ri are respectively the positions of the nuclei and the

positions of the electrons. N and n are respectively the number of nuclei and electrons of the system.

The Hamiltonian operator is given by:

Ĥ = T̂n + V̂nn + T̂e + V̂ee + V̂en. (2.1.2)

In (2.1.2), T̂n represents the kinetic energy of the nuclei,

T̂n =

N∑
i

− ~2

2Mi
∇2

Ri (2.1.3)

where Ri represents the position of the atom i with mass Mi. The second term represents the interaction

energy of the nuclei with charges (Zie)

V̂nn =

N∑
i<j

ZiZje
2

|Ri − Rj |
. (2.1.4)

5
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The remaining terms in (2.1.2) are respectively the electronic kinetic energy, the electron-electron in-

teraction energy and the electron-nuclei interaction energy operators:

T̂e =
N∑
i

− ~2

2m
∇2

ri (2.1.5)

V̂ee =

N∑
i<j

e2

|ri − rj |
(2.1.6)

V̂en =
N∑
i=1

N∑
j=1

Zie
2

|Ri − rj |
. (2.1.7)

The standard step to solve (2.1.1) is the Born-Oppenheimer approximation in which the wave function

of many-atom systems can be written as the product of the following form:

Ψ(Ri, rj) = Ψn(Ri)Ψe(Ri, rj), (2.1.8)

where Ψn(Ri) in (2.1.8) represents the wave function of the nuclei and Ψe(Ri, rj) is the electronic wave

function. Substituting (2.1.8) in (2.1.2) we obtain the following equations

ĤeΨe(Ri, rj) = (T̂e + V̂ee + V̂en)Ψe(Ri, rj) (2.1.9)

which gives

ĤeΨe(Ri, rj) = EeΨe(Ri, rj) (2.1.10)

and

ĤnΨn(Ri) = (T̂n + V̂nn + Ee)Ψn(Ri) (2.1.11)

from which we get

ĤnΨn(Ri) = EnΨn(Ri). (2.1.12)

If we consider the potential of the nuclei in (2.1.9) as static, and let V̂en = V̂ext, we get the time

independent electronic Hamiltonian

Ĥ = T̂ee + V̂ee + V̂ext. (2.1.13)

Let

Ĥ = F̂ + V̂ext, (2.1.14)

where F̂ is the sum of the kinetic and mutual Coulomb interaction energy operator and V̂ext the

external potential energy which describes the attraction between the electrons and nuclei. The many-

body problem is still immensely difficult to solve; various approximations have been developed over the

years such as: Hartree-Fock (HF) approximation and density function theory (DFT).



Section 2.2. Electronic density Page 7

2.2 Electronic density

Let ri be the position of electron i, with spin coordinate σi =↑ or ↓ and N the total number of

electrons. The wave function of a many-electron system describes the quantum mechanical behaviour

of that system and depends on the position and spin coordinates Ψe(r1σ1, r2σ2, . . . , rNσN ). This wave

function satisfies two conditions: firstly it must be normalized

〈Ψe|Ψe〉 =
∑

σ1...σN

∫
dr1

∫
r2 . . .

∫
drN |Ψe(r1σ1, r2σ2, . . . , rNσN )|2 = 1, (2.2.1)

and secondly it must be antisymmetric,

Ψe(. . . , riσi, . . . , rjσj , . . .) = −Ψe(. . . , rjσj , . . . , riσi, . . .). (2.2.2)

In an electronic system, the electronic density n(r) for a given state is defined as the number of electrons

per unit volume at the point r for that state. The total number of electrons is given by∫
n(r)d3r = N, (2.2.3)

The density can be expressed as the expectation value of the density

n(r) =
N∑
i=1

δ(r− ri) (2.2.4)

so that the relation between n(r) and many-electron wave function is

n(r) = N
∑

σ2...σN

∫
dr2

∫
dr3 . . .

∫
drN |Ψe(r2σ2, r3σ3, . . . , rNσN )|2. (2.2.5)

The expression on the right hand side looks similar to the wave-function normalization integration

(2.2.1), but without one of the spatial integrals, and thus one coordinate is left free.

We define the electron spin density nσ(r) so that nσ(r)d3r is the probability to find the electron with

spin σ in volume element d3 at r . Integrating over the coordinates and spin of the (N-1) other electrons

we have

nσ(r) =
1

(N − 1)!

∑
σ2...σN

∫
d3r2 . . .

∫
d3rNN !|Ψ(rσ, r2σ2, . . . , rNσN )|2. (2.2.6)

Combining (2.2.1) and (2.2.6) yields∑
σ

∫
drnσ(r) =

∫
(n↑(r) + n↓(r)) = N. (2.2.7)

2.3 Hartree-Fock Approximation

The Hartree-Fock (HF) approximation can be viewed as a variational method in which the wave functions

of many-electron system have the form of an antisymetrised product of one-electron wave functions.
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This restriction leads to an effective Schrödinger equation for individual one-electron wave functions

called orbitals with a potential determined by the orbitals occupied by the other electrons [21].

Let ΨH(r) be a many-electron wave function for non-interacting electrons called Hartree wave function

and given by

ΨH(ri) = Φ1(r1)Φ2(r2) . . .ΦN (rN ) (2.3.1)

with the index i running over all electrons and Φi(ri) are the one-electron wave functions. The total

energy of the system is given by

EH = 〈ΨH |Ĥ|ΨH〉 (2.3.2)

EH =
∑
i

〈Φi| −
~2

2m
∇2

r + V̂ext(r)|Φi〉+
e2

2

∑
ij(j 6=i)

〈Φi(ri)Φj(r
′
)| 1

|r− r′ |
|Φi(r)Φj(r

′
)〉. (2.3.3)

On using a variational argument, we arrive at the single-electron Hartree equation−~2∇2
r

2m
+ V̂ext(r) + e2

∑
j 6=i
〈Φj(r

′
)| 1

|r− r′ |
|Φj(r

′
)〉

Φi(r) = εiΦi(r) (2.3.4)

where εi are Lagrange multipliers introduced to take into account the normalization of the single-electron

wave functions Φi. We define the Hartree potential as

V H
i (r) = e2

∑
j 6=i
〈Φj(r

′
)| 1

|r− r′ |
|Φj(r

′
)〉. (2.3.5)

Since the Hartree wave function does not obey the Pauli Exclusion Principle [22], we incorporate the

Fermionic nature of electrons in the many-body wave function so that we can build a wave function

which is antisymmetrized for the Hartree wave function, this latter wave function changes sign when the

coordinates of two electrons are interchanged. This is known as the Hartree Fock (HF) approximation.

In order to describe the Hartree-Fock wave functions, we combine the Hartree version wave function

to form a properly antisymmetrized wave function for the system [23]. For simplicity we will neglect

the spin of electrons and deep only the spatial degrees of freedom. We obtain the Hartree Fock wave

function as

ΨHF (ri) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
Φ1(r1) Φ1(r2) · · · ΦN (rN )

Φ2(r1) Φ2(r2) · · · ΦN (rN )
...

...
...

ΦN (r1) ΦN (r2) · · · ΦN (rN )

∣∣∣∣∣∣∣∣∣∣
.



Section 2.3. Hartree-Fock Approximation Page 9

The total energy with the Hartree-Fock wave function is given by

EHF = 〈ΨHF |Ĥ|ΨHF 〉

=
∑
i

〈Φi| −
~2

2m
∇2

r + V̂ext(r)|Φi〉

+
e2

2

∑
ij(j 6=i)

〈ΦiΦj |
1

|r− r′ |
|ΦiΦj〉

− e2

2

∑
ij(j 6=i)

〈ΦiΦj |
1

|r− r′ |
|ΦjΦi〉 (2.3.6)

Minimising the energy a variational calculation gives[
− ~2

2m
∇2r + Vext(r) + V H

i (r)

]
Φi(r)− e2

∑
j 6=i
〈Φj |

1

|r− r′ |
|Φi〉Φj(r) = εi(r)Φi(r). (2.3.7)

Equation (2.3.7) has an extra term in first term compare to the Hartree (2.3.4). This term describes

exchange between electrons. Now construct a single-electron exchange density as

nxi (r, r
′
) =

∑
j 6=i

Φi(r)Φ∗i (r
′
)Φj(r

′
)Φ∗j (r

′
)

Φi(r)Φ∗i (r)
. (2.3.8)

A single-electron Hartree-Fock equation can be written as[
−~2∇2

r

2m
+ Vext(r) + V H

i (r) + V x(r)

]
Φi(r) = εiΦi(r) (2.3.9)

where V x(r) is the exchange potential and given by

V x
i (r) = −e2

∫
nxi (r, r

′
)

|r− r′ |
dr
′

(2.3.10)

The Hartree and the exchange potentials give the electron-electron interaction in the Hartree-Fock

approximation

V HF
i = e2

∫
n(r

′
)

|r− r′ |
dr
′ − e2

∫
ni(r

′
) + nxi (r, r

′
)

|r− r′ |
dr
′
. (2.3.11)

It follows that the total electron-electron interaction potential

V HF
i (r) = e2

∫
n(r

′
)− nHFi (r, r

′
)

|r− r′ |
dr
′
. (2.3.12)

The Hartree-Fock is commonly used in chemistry and gives accurate results for a small number of

electrons, but is inefficient in the study of solids. In this work we will focus on density functional theory

which is a theory of correlated many-atom systems, based on the electronic density n(r), and transforms

the problem into a minimization of a functional using a fictitious system of independent electrons.
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2.4 Density Functional Theory

Density functional theory (DFT) is a mathematical tool for solving problems in many-body systems

such as those encountered in studies of correlated many-electrons systems in general, and crystalline

solids in particular. In contrast to the theory of Hartree-Fock (Hartree-Fock approximation) which

describes individual electrons in interaction with the rest of the electrons and nuclei of these systems,

DFT is based on a description of the entire system, and provides a better approximation for solving

many-electron problems. The formalism of DFT is developed on the basis of two theorems proposed

by Hohenberg and Kohn in 1964, through the consideration of the effects of correlation studies of the

physical properties of the ground state of many-electron systems [24]. The correlations, thus introduced

in terms of contributions of exchange-correlation (xc) provide highly accurate energy calculations of

many-electron systems. In this part we introduce the concept of density functional theory and some of

its approximations.

2.4.1 Hohenberg-Kohn theorems. In 1927 the original density functional theory of quantum systems

was proposed by Thomas and Fermi in which the energy can be written in terms of the electronic

density. Their approach is not accurate enough for realistic calculations. In 1964, Hohenberg and

Kohn formulated and proved a theorem that puts former ideas on solid mathematical ground [24]. The

theorem is divided into two parts [25].

• Theorem 1 : An external potential is uniquely determined by the corresponding ground state

density, to within an additive constant.

Proof : Let V 1
ext(r) and V 2

ext(r) be respectively two external potentials that differ by more than a

constant, but which lead to the same ground state density n(r). The total number of particles is

given by :

N =

∫
n(r)d3r. (2.4.1)

Let Ψ1 and E1 = 〈Ψ1|Ĥ1|Ψ1〉 be the ground state wave function and ground state energy of

Hamiltonian Ĥ1 = F̂ + V̂ 1
ext. Similarly let Ψ2 and E2 = 〈Ψ2|Ĥ2|Ψ2〉 be the ground state wave

function and ground state energy of Hamiltonian Ĥ2 = F̂ + V̂ 2
ext. Since Ψ2 is not the ground

state of Ĥ1, it follows

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉. (2.4.2)

The strict inequality above follows if the ground state is non-degenerate. Using the Rayleigh-Ritz

variational principle we have

E1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 (2.4.3)

E1 < E2 +

∫
n(r)

[
V 1
ext(r)− V 2

ext(r)
]
d3r. (2.4.4)

Also

E2 < 〈Ψ1|Ĥ2|Ψ1〉 = 〈Ψ1|Ĥ1|Ψ1〉+ 〈Ψ1|Ĥ2 − Ĥ1|Ψ2〉 (2.4.5)
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E2 < E1 +

∫
n(r)

[
V 2
ext(r)− V 1

ext(r)
]
d3r. (2.4.6)

Adding (2.4.4) and (2.4.6) we find that E1 +E2 < E1 +E2, which is a contradiction. Therefore

there cannot be an external potential V 2
ext(r) which is equal to V 1

ext(r)+c and gives the same density

state n(r), where c is a constant. Since n(r) determines the external potential and N , it also

determines Ĥ. Hence, all properties are derivable from n(r) through the solution of Schrödinger

equation.

• Theorem 2 : For any external potential Vext(r), we can define the energy functional E[n] in

terms of the electronic density n(r) so that the density which minimizes the energy is the ground

state density.

Proof : We saw that all properties are derivable from n(r) such as kinetic energy, electron-electron

interaction energy, such properties can be viewed as a functional of n(r), including the total energy

E[n] = 〈Ψ[n]|T̂ + V̂ee|Ψ[n]〉+ Vext[n] (2.4.7)

and

F [n] = 〈Ψ[n]|T̂ + V̂ee|Ψ[n]〉. (2.4.8)

F [n] is the functional of n(r) through Ψ(r1σ1, r2σ2, . . . , rNσN ). Since the kinetic energy and

the interaction of the particles are functionals of the density n(r) only, F [n] must be universal

by construction i.e, it is the same for any electronic systems therefore F [n] does not depend on

anything else than the electron density (which is determined uniquely by the external potential

Vext that differs from system to system) [23]. Thus such of density is called v − representable.

Let ñ(r) be a positive density normalized to N and the corresponding energy functional E[ñ] is

defined by

E[ñ] = F [ñ] +

∫
ñ(r)Vext(r)d

3r (2.4.9)

and

F [ñ] = 〈Ψ[ñ]|T̂ + V̂ee|Ψ[ñ]〉. (2.4.10)

Here Ψ[ñ] represents the ground state wave function which has ñ(r) as ground state density. Also

for any n(r) 6= ñ(r), where n(r) is the ground state density of E[n], we have

〈Ψ[n]|Ĥ|Ψ[n]〉 = F [n] +

∫
n(r)Vext(r)d

3r (2.4.11)

and

〈Ψ[ñ]|Ĥ|Ψ[ñ]〉 = F [ñ] +

∫
ñ(r)Vext(r)d

3r, (2.4.12)

Then

E[ñ] > E[n] = 〈Ψ[n]|Ĥ|Ψ[n]〉. (2.4.13)

The knowledge of universal functional F [n] implies the knowledge of the solution of the many-body

Schrödinger equation. The problem now becomes finding the universal functional in Equation (2.4.11)

from which the exact energy and the ground state density can be found by minimizing the energy. These

two theorems form the mathematical basis of density functional theory [25].



Section 2.4. Density Functional Theory Page 12

2.4.2 Constrained search approach. The second HK assumes that the density that minimizes the

energy is the density of the ground state and the latter density must be v − representable. However

Levy and Lieb [26] extend that theorem to degenerate ground state by a weaker constraint, that the

density is N − representable. The proof involves a constrained search over all any antisymmetric wave

functions (N -particle wave functions) Ψ
′

generated by the ground state density n(r). Let Ψ be the true

wave function for the ground state density n(r), the variational principle gives

E[n] = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′ |Ĥ|Ψ′〉. (2.4.14)

On recalling the energy due to the external potential, we obtain

〈Ψ[n]|T̂ + V̂ee|Ψ[n]〉+

∫
n(r)Vext(r) < 〈Ψ

′
[n]|T̂ + V̂ee|Ψ

′
[n]〉+

∫
n(r)Vext(r)d

3r. (2.4.15)

We define the Levy-Lieb universal functional as

F [n] = min
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉. (2.4.16)

F [n] differs from the universal functional defined in the HK theorem in (2.4.8) by the fact that it is

defined for all wave functions that yield the input density n(r) and allows the energy to be expressed as

E = min
n

[
min
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉+

∫
n(r)Vext(r)d

3r

]
. (2.4.17)

The constraint of fixed N can be defined by introducing a Lagrange multiplier µ

δ

{
F [n] +

∫
d3rVext(r)n(r)− µ

∫
d3rn(r)

}
= 0 (2.4.18)

which is equivalent to the Euler equation

δF [n]

δn(r)
+ Vext(r) = µ (2.4.19)

where Vext(r) is uniquely determined by the ground state density n(r) so that∫
n(r)d3r = N and

∫
|∇n1/2(r)|2d3r <∞. (2.4.20)

The constrained search formulation has introduced the concept of N − representable. In addition, the

restriction to non-degenerate ground states of the original Hohenberg-Kohn theorem is lifted and the

restriction requiring no degeneracy has also been removed.

2.4.3 Kohn-Sham equation. We are now able to determine the density n(r) and all properties of the

ground state of any system by searching the minimum energy of the many electron system, which can

be expressed in the form of the density and can be written as:

E[n] = F [n] +

∫
n(r)v(r)d3r (2.4.21)
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where

F [n] = T [n] + Vee[n], (2.4.22)

where T [n] is the interacting kinetic energy functional and Vee[n] the Coulomb interaction energy

functional. The density that minimizes the energy can be found from the Euler-Lagrange equation

δF [n]

δn(r)
+ v(r) = µ, (2.4.23)

where µ is the Euler-Lagrange multiplier associated with the constraint∫
n(r)d3r = N. (2.4.24)

The formulation of Kohn-Sham (KS) is to replace the interacting system with a fictitious non-interacting

system with the same ground state density and where each electron moves in the same external potential

[27]. Let Hs denote the Hamiltonian of the non-interacting with the same ground state density n(r)

than the interacting system and vs(r) the external potential. The wave functions Φi satisfy the following

Schrödinger equation:

ĤsΦi = εiΦi (2.4.25)

so (
−1

2
∇2 + vs(r)

)
Φi = εiΦi. (2.4.26)

The density is defined as

n(r) =
N∑
i

|Φi|2 (2.4.27)

and

Ts[n] =
N∑
i

〈Φi| −
1

2
∇2|Φi〉. (2.4.28)

Here s represents single electron and Ts[n] is the kinetic energy of the non-interacting system usually

called the Kohn-Sham kinetic energy. The Euler-Lagrange that describes these equations is given by

δTs[n]

δn(r)
+ vs(r) = µ (2.4.29)

Since the functional F [n] and the Kohn-Sham kinetic energy Ts[n] are defined only for the ground state

density, we can write the functional as a large part Ts[n] and the Hartree energy as

F [n] = Ts[n] +

∫
n(r)n(r

′
)

|r− r|
d3rd3r

′
+ Exc[n] (2.4.30)

where

Exc[n] = T [n]− Ts[n]−
∫
n(r)n(r

′
)

|r− r′ |
d3rd3r

′
+ Vee[n]. (2.4.31)
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Exc[n] is called the exchange correlation energy and is the functional which contains everything that is

unknown, which we do not know how to handle exactly [28], thus must be approximated. Substituting

Equation (2.4.30) into Equation (2.4.23) and comparing with (2.4.29), we obtain

vs(r) = v(r) +
δ

δn(r)

[∫
n(r)n(r

′
)

|r− r′ |
d3rd3r

′

]
+
δExc[n]

δn(r)
(2.4.32)

then

vs(r) = v(r) +

∫
n(r

′
)

|r− r′ |
d3r

′
+ vxc(r) (2.4.33)

with the exchange correlation potential

vxc(r) =
δExc[n]

δn(r)
. (2.4.34)

We find that the ground state density can be obtained by solving the non-interacting system of Kohn-

Sham equation which is given by[
−1

2
∇2 + v(r) +

∫
n(r

′
)

|r− r′ |
d3r

′
+ vxc(r)

]
Φi(r) = εiΦi(r). (2.4.35)

The problem of finding the universal functional in the many particle interacting system has been reduced

to a non-interacting system by introducing the exchange correlation energy Exc[n]. The Kohn-Sham

equations determine the exact density and energy of the ground state of a many-body electrons using the

non-interacting system approach. In practice, we will solve the Kohn-Sham equations self-consistently,

by diagonalizing the Hamiltonian matrix and iterating on the charge density (or potential) until self-

consistency is achieved. Indeed we will consider the charge density (or potential vs(r)) as the quantity to

be determined self-consistently. We start by supplying an input charge density nin(r) to the Kohn-Sham

equations and we get an output charge density nout(r), hence we define a functional A as

nout(r) = A[nin(r)]. (2.4.36)

At self consistency,

n(r) = A[n(r)]. (2.4.37)

In the following, the first algorithm use nout(r) as the new input charge density:

n
(i+1)
in = n

(i)
out. (2.4.38)

where i is the iteration number. Since the algorithm works only for a smaller error on the output than

the error on input, we consider an error δnin(r) on input, the error on output, close to self-consistency,

will be

δnout(r) '
∫

δA

δn(r)
δnin(r)dr ≡ Jδnin (2.4.39)

There is no guarantee the output error is smaller than the input error, this assumption depends on the

size of the largest eigenvalue, eJ , of the operator J , which is related to the dielectric response of the
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system. For eJ > 1 the iteration does not converge. The algorithm which leads to the converge is

obtained by defining a new input charge density generated by mixing the input and output charges:

n
(i+1)
in = (1− α)niin + αniout. (2.4.40)

At any step of iteration we can define the deviation from the correct density as

δn ≡ n− nKS , (2.4.41)

then near the solution, the error in output density is given by

δnout[nin] = nout − nKS = (χ̃+ 1)(nin − nKS), (2.4.42)

where

χ̃+ 1 =
δnout
δnin

. (2.4.43)

Here the function χ̃ is called a response function and can be calculated. The best choice for the new

density would make the error zero, i.e, ni+1
in = nKS and if χ̃ is known, then (2.4.42) can be solved for

nKS ,

nKS = niin − χ̃−1(nouti − niin) (2.4.44)

Equation (2.4.44) is not exact but gives the best input for the next iteration. If it were exact, this would

be the answer and the iterations could stop. The response kernel χ̃ is very demanding to calculate since

it costs many iterations, it can be more efficient to consider χ̃ as a Jocobian J (the second derivative

matrix) of the system [19].

2.5 Functional for exchange and correlation

The crucial quantity in the Kohn-Sham approach is the exchange-correlation energy which is expressed

as a functional of the density Exc[n]. In this section we present relevant approximate functionals, in

particular the local density approximation (LDA), and generalized gradient approximation (GGA).

2.5.1 Local density approximation. Within the Kohn-Sham equation the exchange correlation energy

is unknown, the greatest challenge in density functional theory is to find an accurate Exc[n]. The most

commonly used and successful approximation for calculating Exc[n] is the local density approximation

(LDA). This approximation assumes that the density varies slowly. It replaces the exchange and corre-

lation potential at each point of space by an uniform interacting electron gas. The exchange correlation

energy can be expressed as:

ELDAxc [n] =

∫
d3rn(r)εunifxc (n), (2.5.1)

where εunifxc (n) is the exchange correlation energy per particle of uniform electron gas of density n.The

corresponding exchange correlation potential to (2.4.34) is

vLDAxc (r) =
δELDAxc [n]

δn(r)
=

[
εunifxc + n

∂εunifxc

∂n

]
r

. (2.5.2)
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The function εunifxc can divided into two parts so that:

εunifxc (n) = εunifx (n) + εunifc (n), (2.5.3)

where εunifx (n) is the exchange. The accurate value of the exchange part is known from the Dirac

exchange energy [29] and given by

εunifx (n) = −3

4

(
3

π

)1/3

n1/3 = −3

4

(
9

4π2

)1/3 1

rs
= −0.458

rs
a.u., (2.5.4)

where rs = (3/4πn)1/3 is the mean interelectronic distance expressed in atomic units (a.u.).

Several approximations for correlation part are also available [30]. The most accurate results available

have been calculated by Ceperley and Alder using the quantum Monte Carlo method in 1980 [31]. This

correlation part has been parameterized by Perdew and Zunger (1981) for a spin-polarized (P) and spin-

unpolarized (U) uniform electron gas. For the spin polarized electron gas the paramatrized expression

is of the form

εPc (n) =

{
A ln rs +B + Crs ln rs +Drs, rs ≤ 1,

γ/(1 + β1
√
rs + β2rs), rs > 1.

For rs ≤ 1 the above expression derives from the random phase approximation, and has been calculated

by Gell-Mann and Brueckner (1957). This is valid in the limit of very dense electronic systems, and

fixes the values of the leading coefficents: AU = 0.0311.BU = −0.048. The relations given by Misawa

in 1965 allows us to obtain the values for the fully polarized gas: AP = 0.015555, BP = −0.0269 and

the remaining coefficients have been fitted to the quantum Monte Carlo results of Ceperley and Alder

(1980): CU = 0.002, DU = −0.0116, and CP = 0.0007, DP = −0.0048. The numerical values of the

fitted coefficients of Perdew and Zunger are: γU = −0.1423, βU1 = 1.0529, βU2 = 0.3334 for unpolarized

gas, and γP = −0.0843, βP1 = 1.3981, βP2 = 0.2611 for full polarized electron gas [25].

Another parameterization is the one proposed by Vosko et al (1980),

εVWN
c (rs)

A
= ln

(
rs

F (
√
rs)

)
+

2b√
4c− b2

tan−1

(√
4c− b2

2
√
rs + b

)

− bx0

F (x0)

[
ln

(√
rs − x0

F (
√
rs)

)
+

(√
4c− b2

2
√
rs + b

)
2(b− 2x0)√

4c− b2
tan−1

(√
4c− b2

2
√
rs + b

)]
(2.5.5)

where F (x) = x2 + bx + c, and A, b, c and x0 are fitting coefficients that differ for the spin polarized

and spin unpolarized cases.

The local density approximation predicts very accurately the physical properties of many systems. LDA

does not work for system where the density has strong spatial variations or for weakly interacting systems

such as van der Waals bonded molecules. It usually overestimates atomization energy, it overestimates

correlation and underestimates exchange.

2.5.2 Local spin density approximation. Local spin density approximation (LSDA) is the extension

of the LDA to the spin polarized cases and it is based on the spin interpolation proposed by Von Barth
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and Hedin [30] and by Vosko, Wills, and Nusair [32]. The idea of the LSDA is to replace the exchange

correlation energy density with a spin polarized expression:

ELSDAxc [n↑(r), n↓(r)] =

∫
(n↑(r) + n↓(r))ε

unif
xc [n↑(r), n↓(r)]d

3r (2.5.6)

=

∫
n(r)εunifxc [n(r), ζ(r)]d3r. (2.5.7)

where ζ(r) is the magnetization density. As for the LDA, the LSDA exchange correlation energy can be

divided into two pieces the exchange energy and the correlation energy so that the exchange energy is

given by

ELSDAx [n↑, n↓] =
1

2
Cx

∫
[(1 + ζ)4/3 + (1− ζ)4/3] (2.5.8)

=

∫
nεx(n, ζ)d3r (2.5.9)

where

εx(n, ζ) = ε0x + [ε1x(n)− ε0x(n)]f(ζ). (2.5.10)

The contribution for the exchange density for the spin compensated (paramagnetic) and for spin com-

pletely polarized (ferromagnetic) for uniform electron gas are respectively

ε0x(n) = εx(n, 0) = Cxn
1/3 (2.5.11)

and

ε1x(n) = εx(n, 1) = 21/3Cxn
1/3 (2.5.12)

where Cx = 3
4

(
3
4

)1/3
and f(ζ) has been proposed by Von Barth and Hedin (1972) as

f(ζ) =
(1 + ζ)4/3 + (1− ζ)4/3 − 2

24/3 − 2
. (2.5.13)

Many workers have been proposed for LSDA correlation energy (Von Barth and Hedin 1972, Gunnarsson

and Lundqvist 1976). The most realistic formula for correlation was proposed by Vosko et al. (1980),

based on the random phase approximation (RPA) so

ELSDAc [n↑(r), n↓(r)] = εUc [n] +

(
f(ζ)

f ′′(0)

)
[1− ζ]εAc [n] + f(ζ)ζ4(εPc [n]− εUc [n]), (2.5.14)

where εUc [n] and εUc [n] are the correlation energy densities for the unpolarized and fully polarized uniform

gas, and εAc [n] has the same expression as the former, but different fitting coefficients.

2.5.3 Generalized gradient approximation. When the density increases rapidly such as for the

molecules, the LDA (LSDA) does not give the good approximation, the improvement of this approxi-

mation can be made by considering the gradient of the electron density, and so called the Generalized

gradient approximation (GGA) in which the exchange correlation energy can be written as [33]

EGGAxc [n↑, n↓] =

∫
d3rn(r)εunifxc

(
n↑(r), n↓(r),∇n↑(r),∇n↓(r), . . .

)
(2.5.15)

=

∫
d3rn(r)εunifx Fxc

(
n↑(r), n↓(r),∇n↑(r),∇n↓(r), . . .

)
, (2.5.16)
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where Fxc is dimensionless and depends on the density and εunifx is the exchange energy of the unpolar-

ized gas. The exchange correlation potential of GGA is obtained by including the derivatives regarding

the gradient density so

vGGAxc (r) =
δEGGAxc

δn(r)
=

[
εxc + n

∂εxc
∂n
−∇

(
n
∂εxc
∂n

)]
r

. (2.5.17)

From (2.5.16), there exists differents parameterizations of Fxc. The parameterization realized by Perdew,

Burke and Enzerhof (PBE) [33] is employed this work. Perdew, Burke, and Ernzerhof (PBE) defined

the enhancement factor Fx(n, ζ, s) over the local exchange in (5.2.10) depends on the density n,

magnetization density ζ (including spin), and the dimensioless density gradient

s = |∇n(r)|/(2kFn). The factor can be written as

Fx(s) = 1 + k − k

1 + µs2/k
, (2.5.18)

where µ = β(π2/3) = 0.21951, β = 0.066725 and k = 0.804. Other authors have proposed the

same form, but with values of k and µ fitted empirically to a database of atomization energies . The

correlation energy takes the form of

EGGAc =

∫
n(r)(εunifc (n, ζ) +H[n, ζ, t])d3r (2.5.19)

with

H[n, ζ, t] = (e2/a0)γφ3 ln

{
1 +

β

γ
t2
[

1 +At2

1 +At2 +A2t4

]}
(2.5.20)

where t = |∇(r)|/(2φksn) is the dimensionless density gradient, with ks = (4kF /πa0) being the Thomas

Fermi screening wave number, and φ(ζ) = [(1 + ζ)2/3 + (1 − ζ)2/3]/2 is a spin scaling factor. Here

β has the same value for the exchange term β = 0.066725, and γ = (1 − ln 2)/π2 = 0.031091. The

function A has the form of

A =
β

γ

[
exp{−εunif/(γφ3e2/a0)} − 1

]−1
. (2.5.21)

The correlation correction term H satisfies the following conditions:

(a) In slowing varying limit (t→ 0), H tends to the correct second order gradient expansion as

H → (e2/a0)βφ3t2, (2.5.22)

(b) In the rapidly varying limit (t→∞), H approaches the uniform electron gas correlation so

H → −εunifc , (2.5.23)

(c) H cancels the logarithmic singularity of εunifc in the high density limit, thus forcing the correlation

energy to scale to a constant under uniform scaling of the density so that

H → − e
2

a0

∫
d3rnγφ3 ln

[
1 +

1

χs2/φ2 + (χs2/φ2)2

]
(2.5.24)

where s = |∇n|/2kfn is dimensionless density gradient, and χ = (β/γ)c2 exp(−ω/γ) ' 0.72161.

The GGA for the exchange energy will be constructed by the following conditions:
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(d) Under the uniform density, Ex must satisfy the scaling condition ζ = 0, we obtain

EGGAx =

∫
d3rnεunif (n)Fx(s). (2.5.25)

From (2.5.18), it recovers the correct uniform electron gas limit when Fx(0) = 1.

(e) The exchange energy obeys the spin scaling relationship

Ex[n↑, n↓] = (Ex[2n] + Ex[2n])/2. (2.5.26)

(f) The LSDA linear response for (s→ 0) is recovered [33], thus

Fx(s)→ 1 + µs2. (2.5.27)

(g) It satisfies the local Lieb-Oxford bound [34]

Ex[n↑, n↓] ≥ Exc[n↑, n↓] (2.5.28)

≥ −1.679e2

∫
d3rn4/3. (2.5.29)

For Fx(s) ≤ 1.804 and k = 0.804.

2.6 Hybrid functionals

The hybrid functionals are constructed by mixing a fraction Hartree Fock (HF) exact exchange energy

and an explicit density functional. The construction is motivated by predicting accurate gaps and

accurate total energies [35]. This mixture can be justified by the ab-initio adiabatic connection formula

in which the exchange correlation energy can be written as [20, 36]

Exc =

∫ 1

0
Uλxcdλ, (2.6.1)

where λ is an interelectronic coupling strength parameters, Uλxc is the exchange correction potential

energy at the intermediate coupling strength λ. This integral can be approximated using the mean-

value theorem of integration as

Exc '
1

2

(
U0
xc + U1

xc

)
=

1

2

(
Ex + U1

xc

)
(2.6.2)

with U0
xc is the exchange correlation potential energies of the Kohn-Sham system and U1

xc is the exchange

correlation potential energy of the full interaction real system. U1
xc can be similarly approximated as

LDA reads

U1
xc ' ULDAxc =

∫
uxc(n(r))d3r (2.6.3)
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The LDA-like functional uxc is derived as an LDA approximation of potential energy [37]. Becke proposed

the scheme as a method for incorporating exact exchange into DFT calculation called half-and-half theory

so that the exchange correlation energy is given by

Exc
1

2
Ex +

1

2
ULDAxc (2.6.4)

which approximates (2.6.1) with λ = 0 and LDA for exchange correlation potential energy at λ = 1.

The half-and-half theory is followed by three parameter of Becke such that the exchange correlation

energy becomes

Exc = ELDAxc + a0

(
Ex − ELDAx

)
+ ax

(
EGGAx − ELDAx

)
+ ac

(
EGGAc − ELDAc

)
, (2.6.5)

whith a0 , ax, and ac are empirical parameters. Perdew, Ernzerhof and Burke looked at the formula

with ax = ac = 1 for the theoretical motivation which led to the hybrid function regarding the coupling-

constant dependence for a ' 0.25. One of the most popular hybrid is the three parameters B3LYP

functionals, mixing 80% of LDA with 20% of HF exchange and adding a certain amount of Becke ’s

correction ∆EB88
x , the exchange correlation turn out to the following equation [20]

EB3LY P
xc = 0.8ELDAx + 0.2EHFx + 0.72∆EB88

x + 0.19EWN3
c + 0.81ELY Px . (2.6.6)

Here 81% of the semi-local Lee-Yang-Parr for correlation energy is used [35], the remaining part 19%

of the local correlation energy is added from the Vosko-Wilk-Nusair correlation functional III (VWN3).

Apart from B3LYP, several forms of the hybrid method have been proposed such as PBE0 and Heyd-

Scuseria-Ernezerhof (HSE) functionals. These functionals differ on how the exact exchange energy is

mixed in the energy functional [38]. The Hartree-Fock (HF) exact exchange energy Ex is given by

EHFx = −e
2

2

∑
ij

∫ ∫
d3rd3r

′ φ
∗
i (r)φ

∗
j (r
′
)φi(r

′
)φj(r)

|r− r′ |
(2.6.7)

where φi are the occupied wave functions and i represents a quantum-number set comprising band and

k-point indexes. The PBE0 hybrid is constructed by a rational mixing of 25% Fock exchange with 75%

of well-know PBE exchange [39], and the exchange correlation energy of PBE0 takes the form of

EPBE0
xc = αEx + (1− α)EPBEx + EPBEc (2.6.8)

Besides HSE has been found to give satisfactory results of energy gap on various solid systems. This is

done by splitting the Coulomb operator into short-range (SR) and long-range (LR) parts [38]:

1

r
= Sµ(r) + Lµ(r) =

erfc(µr)

r
+
erf(µr)

r
(2.6.9)

then the HF exchange energy in (2.6.1) is calculated by the use of Sµ(r). The resulting exchange

correlation energy of HSE is given as follows

EHSExc = αESRx (µ) + (1− α)EPBE,SRx (µ) + EPBE,LR(µ) + EPBEc . (2.6.10)

In above equations, r = |r − r
′ |, and µ is the parameter that defines the range separation related to a

characteristic distance (2/µ) at which the short-range interactions become negligible.
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2.7 Van der Waals approximation

In static density functional theory using LDA and GGA, we can describe physical properties of many

atoms, molecules and solids with good accuracy, but these approximations fail to describe the long

range dispersion interactions, generally denoted as van der Waals interactions. Interaction between

the layers of layered molybdenum chalcogenides are dominated by van der Waals-type interactions and

are therefore important for this study. We distinguish two directions in the approaches undertaken to

overcome this deficiency of DFT. Firstly we present the approach proposed by Grimme which leads to

a better description of these interactions [40, 41]. To begin with, there is a term EDisp added to the

DFT interaction energy to obtain the total energy as

Etot = EDFT + EDisp (2.7.1)

where EDFT is the DFT interaction energy computed with an approximate exchange correlation function,

and EDisp is the dispersion energy which is defined for periodic system as two-body interaction of the

following form

EDisp = −s6

N∑
i=1

N∑
j=i+1

Cij6
r6ij

f(rij), (2.7.2)

where −s6 is a scaling factor and depends on the DFT used, Cij6 are coefficients of dispersion and

f(rij) is the damping function. The damping function requires the specification of an atom pairwise

cuttof radius Rr which determines in which interatomic distance region the dispersion is decreasing.

The damping function can be written as

f(rij) =
1

1 + e−d(
rij

Rr−1
)
. (2.7.3)

Here d is a damping parameter.

Secondly the groups of Lundqvist and Langreth have presented a density functional to treat the long-

range dispersion. The key is the inclusion of a long range piece of the correlation energy, Enlc [n] [42, 43],

a fully nonlocal functional of the density n. In this functional, the exchange correlation energy takes

the form of [44]

Exc = EGGAx + ELDAc + Enl (2.7.4)

where the exchange energy EGGAx uses the PBE generalized gradient approximation (GGA) functional,

and ELDAc is the local density approximation (LDA) to the correlation energy. Enlc is the nonlocal energy

term defined as

Enlc =

∫
d3r

∫
d3r

′
φ(r, r

′
)n(r

′
). (2.7.5)

Here φ is called Kernel and is given as a function of Rf(r) and Rf(r
′
), where R = |r− r

′ | and f(r) is a

function of n(r) and its gradient. In fact f(r) is proportional to the exchange correlation energy density

εxc of the gradient corrected LDA at the point r [45].



3. Elastic constants of solids

The elastic constants determine the responses of solids to external forces. They are characterized by the

Young’s modulus, the Poisson ratio, and the bulk modulus and play an important role in determining the

strength and the stability of materials [46]. The knowledge of elastic constant is essential in practical

applications related to the mechanical properties of solids: load deflection, thermoelastic stress, stain,

fracture toughness [47]. In this part, the description of obtaining elastic constants of solids are carried

out in order to further confirm the mechanical stability of molybdenum chalcogenides. We present a

discussion of Hooke’s law, this law is a basic statement of linear elasticity. A brief review of reduced elastic

constants matrices for seven different crystal systems: triclinic, monoclinic, orthorhombic, trigonal,

tetragonal, tetragonal, hexagonal and cubic is underlined.

3.1 Generalized Hooke’s Law

The elastic properties are described by considering a crystal as a homogeneous continuum medium rather

than a periodic array of atoms. In a general case, the problem is formulated as follows:

• When stress σ is applied to the crystal, the crystal is deformed and the parameters which describe

it are modified.

• For small deformations, the elastic constants C relate the stress σ and strain ε in the linear

relationship, so that σ = Cε; this is called Hooke’s law.

The theory of obtaining the elastic constants is described as follows: The total energy of a crystal in a

strained state can be expressed by the means of a Taylor expansion in the distortion parameters as

E = E0 + V0

∑
ij

σijεij +
1

2

∑
ijkl

Cijklεijεkl

 (3.1.1)

[48] where E0 is the total energy of unstrained crystal, V0 is the volume of the unstrained crystal and

E is the corresponding total energy, σijεij is an element in the distortion tensor and the indices i, j, k,

and l run over the x, y, and z. In (3.1.1) σij is the tensor of stress defined as

σij =
1

V0

(
∂E

∂εij

)
, (3.1.2)

Cijkl is the tensor of elastic constants derived from second order derivative of E and given by

Cijkl =
1

V0

(
∂2E

∂εij
.εkl

)
ε=0

. (3.1.3)

At equilibrium, i.e. when the energy is a minimum,(
∂E

∂εij

)
ε=0

= 0 (3.1.4)

22
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then

σij =
∑
kl

Cijklεkl (3.1.5)

In (3.1.5), elastic constants relate stress and strain in a linear relationship, which is the general form of

the Hooke’s law. The Cijkl has 81 elastic components. However, due to the symmetry of σij and εij

each of them have 6 independent components. There is a convention to denote these constants called

Voigt notation in order to reduce the number of indices [49]. In this notation, the elastic constants are

written as Cij where the indices i and j will run over 1, 2, 3, 4, 5 and 6 so that 1 = xx, 2 = yy, 3 = zz

define the compression components, and 4 = yz, 5 = zx, 6 = xy define shear components.

For example C11 = Cxxxx, C12 = Cxxyy =, C44 = Cyzyz.

Therefore, the general form of the Hooke’s law is given by

σxx = C11εxx + C12εyy + C13εzz + C14εyz + C15εzx + C16εxy,

σyy = C21εxx + C22εyy + C23εzz + C24εyz + C25εzx + C26εxy,

σzz = C31εxx + C32εyy + C33εzz + C34εyz + C35εzx + C36εxy,

σyz = C41εxx + C42ε4y + C23εzz + C44εyz + C45εzx + C46εxy,

σzx = C51εxx + C52εyy + C53εzz + C54εyz + C55εzx + C56εxy,

σxy = C61εxx + C62εyy + C63εzz + C64εyz + C65εzx + C66εxy.

Thus, we obtain 36 elastic constants. In matrix form, these elastic constants can be written as

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


For some applications, it is sometimes preferable to express strain in terms of stress. This can be done

by inverting (3.1.5) so that

εij = Sijklσkl (3.1.6)

where Sijkl is the elastic compliance constants tensor and can be written in full, Equation (3.1.6)

becomes

εxx = S11σxx + S12σyy + S13σzz + S14σyz + S15σzx + S16σxy,

εyy = S21σxx + S22σyy + S23σzz + S24σyz + S25σzx + S26σxy,

εzz = S31σxx + S32σyy + S33σzz + S34σyz + S35σzx + S36σxy,

εyz = S41σxx + S42σyy + S43σzz + S44σyz + S45σzx + S46σxy,

εzx = S51σxx + S52σyy + S53σzz + S54σyz + S55σzx + S56σxy,

εxy = S61σxx + S62σyy + S63σzz + S64σyz + S65σzx + S66σxy.
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For completeness, the elastic compliance constants tensor are given by

Sij =
(−1)i+j∆c

ij

∆c
, (3.1.7)

where ∆c is the determinant of the Cij terms, and is the minor obtained by suppressing the ith row and

the jth column. Since Cij = Cji it follows that Sij = Sji.

3.2 Reduced elastic constant matrices

In three dimensions, there are 32 symmetric point groups that can be subdivided into fourteen Bravais

or space lattices. These lattices are further grouped into seven crystal system: triclinic, orthorhombic,

monoclinic, tetragonal, trigonal, hexagonal and cubic. The elastic constant components of matrices of

these seven crystal systems can be described as follows [50]:

The triclinic has 21 elastic constants

C11 C12 C13 C14 C15 C16

0 C22 C23 C24 C25 C26

0 0 C33 C34 C35 C36

0 0 0 C44 C45 C46

0 0 0 0 C55 C56

0 0 0 0 0 C66


Orthorhombic has nine elastic constants

C11 C12 C13 0 0 0

0 C22 C23 0 0 0

0 0 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


The monoclinic system has 13 elastic constants

C11 C12 C13 0 C15 0

0 C22 C23 0 C25 0

0 0 C33 0 C35 0

0 0 0 C44 0 C46

0 0 0 0 C55 0

0 0 0 0 0 C66


The tetragonal system has 7 independent elastic constants
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C11 C12 C13 0 C16

0 C11 C13 0 0 −C16

0 0 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66


The trigonal system has 6 independent elastic constant

C11 C12 C13 C14 −C15 0

0 C11 C13 −C14 C25 0

0 0 C33 0 0 0

0 0 0 C44 0 C25

0 0 0 0 C44 −C14

0 0 0 0 0 1
2(C11 − C12)


The hexagonal system has 5 independent elastic constants

C11 C12 C13 0 0 0

0 C11 C13 0 0 0

0 0 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1
2(C11 − C12)


The cubic system has 3 independent elastic constants

C11 C12 C12 0 0 0

0 C11 0 0 0 0

0 0 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


In summary, all 36 elastic constant are independent. However, in crystals, many of them are the same

due to symmetry. As for cubic system, we can see from the matrix C11 = C22 = C33, C12 = C21 =

C23 = C32 = C13 = C31, C44 = C55 = C66 = due the fact that x, y and z are identical by symmetry.

Also the off diagonal shear are zero, i.e C45 = C54 = C56 = C65 = C46 = C64 = 0, and mixed

compression/shear coupling does not occur, i.e C14 = C41 = . . . = 0 [51].



4. Outline of calculations

In this work, the Vienna-ab initio Simulation Package (VASP) [52] has been used to perform the elec-

tronic structure calculations. The projector-augmented wave formalism (PAW) implemented in this

package were used to represent the valence electrons [53]. The electronic exchange and correlation

functions are treated within DFT by using a generalized gradient approximation (GGA) [33], and per-

formed by using the van der Waals approximation proposed by Grimme [40, 41], and Lundqvist and

Langreth [42, 43]. We have optimized the kinetic energy cutoff and mesh of k-points by carrying out

self-consistent calculations. We have used a kinetic energy cutoff of 520 eV for the plane wave basis

set and a Monkhorst-Pack grid of 9 × 9 × 2 for MoX2 (X = S, Se, Te) in space group P63/mmc for

Brillouin-zone integrations.

4.1 Vienna Ab-Initio Simulation Package

The viena ab-initio package (VASP) is a plane-wave all-electron code using the pseudopotential or

projector augmented wave method (PAW) and plane wave basis set [52]. In order to describe the

interaction between ions and electrons fully, VASP uses ultra-soft Vanderbilt pseudopotentials (US-PP)

or uses the projector augmented wave (PAW) method. The code uses fast iterative techniques for

the diagonalization of DFT Hamiltonian which allows efficient total energy calculations and structural

optimizations for systems. VASP calculates forces and stress tensors [52]. VASP is applied in many

different areas such as structure and phase stability, mechanical and dynamical properties, liquids, glasses

and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces,

interfaces and thin films, chemical reactions, and catalysis [20]. The structural properties within DFT ,

GW approximation for band structure energy have been applied using various smearing or tetrahedron

methods implemented in VASP.

4.2 Equation of state

The equation of state (EOS) of solids describes the relationship between thermodynamic variables of

compressed solids, applied in investigating thermodynamic properties of materials [54].

Many, semi-emperical relations have been proposed to describe the EOS [55]. In this work, we are going

to use the Murnaghan-Birch equation of state [56]. To begin with, we define the energy of a compressed

system as a Taylor series based on the finite strain as

E(f) = a+ bf + cf2 + . . . (4.2.1)

where f is a finite strain given by

f =
1

2

[(
V0

V

)2/3

− 1

]
. (4.2.2)
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The pressure and bulk modulus are respectively define as

P = −∂E
∂f
· ∂f
∂V

, (4.2.3)

B = −V
(
∂P

∂f
· ∂f
∂V

)
. (4.2.4)

The second order of (4.2.3) gives

P =
3B0

2

[(
V0

V

)7/3

−
(
V0

V

)5/2
]
. (4.2.5)

In above equations V0 is the equilibrium volume of the system, and B0 is the isothermal bulk modulus.

The third order shows increased accuracy over the Murnaghan equation of state and has a relatively

simple analytical form

P =
3B0

2

[(
V0

V

)7/3

−
(
V0

V

)5/3
][

1 +
3

4
(B
′
0 − 4)

((
V0

V

)2/3

− 1

)]
. (4.2.6)

Here B
′
0 is the bulk modulus derivative. The energy is obtained by integration of the pressure

E = E0 +
9V0B0

16


[(

V0

V

)2/3

− 1

]3

B
′
0 +

[(
V0

V

)2/3

− 1

]2 [
6− 4

(
V0

V

)2/3
] . (4.2.7)

Using data from the GGA in the PBE parametrization and Van der Waals (Grime, and Langreth

and Lundqvist ) calculations, we obtain the total energy versus the volume by fitting the third or-

der Murnaghan-Birch EOS, and deduce the ground state properties of the equilibrium lattice constant

(a) the ratio ( a/c), bulk modulus B0 and pressure derivative of the bulk modulus (B
′
0).

4.3 Cohesive energy

The cohesive energy of a solid is defined as the energy required for separating the condensed material

into isolated free atoms. For molybdenum chalcogenides MmXn(Mm = Mom, Xn = Sn), the cohesive

energy is given by

EMmXn
coh =

EMmXn
solid − Z × (mEMm

atom + nEXnatom)

Z × (m+ n)
, (4.3.1)

where Z is the number of MmXn per unit cell, EMm
atom and EXnatom are the energies of the spin-polarized

non-spherical isolated M and X atoms in its electronic ground state. These energies are computed by

placing a free atom in a big orthorhombic unit cell.

EMmXn
solid are the bulk cohesive energies with respect to spherical non spin-polarized reference atoms,

and m,n = 1, 2 are the stoichiometric weights. The cohesive energy will be obtained from the fit to

a Murnaghan-Birch third order equation of state and will be used to deduce the structural parameters

and to predict the stability of the structures.



Section 4.4. Formation energy Page 28

4.4 Formation energy

Apart from the cohesive energy, another measure of relative stability is the formation energy. The

formation energy is defined as the heat of formation per atom of the structure under consideration. Let

us consider that the solid MmXn result from the interaction between the molybdenum (solid) Mm and

the gaseouse chalcogenide X2 through the chemical reaction [57]

mM solid +
n

2
Xsolid

2 
MmX
solid
n . (4.4.1)

To compare the relative stabilities of the various structures, we define the formation energy as

Ef (MmX
solid
n ) = Ecoh(MmX

solid
n )−

mEcoh(Mm) + n
2Ecoh(Xgas

2 )

m+ n
(4.4.2)

where m,n = 1, 2 are the stoichiometric weights and Ecoh(MmX
solid
n ) is the cohesive energy per atom

as described in (4.3.1), and Ecoh(M solid) and Ecoh(Xgas
2 ) are the ground state cohesive energy of M solid

and Xgas
2 respectively.

4.5 Electronic Density of state

The response of electrons in a solid to external perturbations such as absorption or emission of light

can be elucidated by the energy eigenvalues (band structure). This response is related to the electronic

properties (band gap) and optical properties (color, reflectivity, and dielectric response of the solid) [23].

A useful concept in analyzing the band structure of solids is the density of states as a function of the

energy [23]. The density of states N(E)dE is defined as the number of states per volume Ω of the solid

(for each direction of the electron spin separately) in the range [E,E + dE] [58]. Since the states are

characterized by their wave-vector k, and taking into account the usual foctor of 2 for spin degeneracy,

it follows that

N(E)dE =
1

Ω

∑
Ek∈[E,E+dE]

2 =
2

(2π)3

∫
Ek∈[E,E+dE]

dk =
1

π2
k2dk (4.5.1)

where (4.5.1) has been obtained by the use of the spherical coordinates in k-space. In the free-electron

model we get

Ek =
~2|k|2

2m
=⇒ kdk =

m

~2
dE, k =

(
2mE

~2

)1/2

. (4.5.2)

These relations give for the density of states in this simple model in 3 D:

N(E) =
1

2π2

(
2m

~2

)3/2√
E. (4.5.3)

Using the band structure calculation for Ek, the density of states becomes

N(E) =
1

Ω

∑
n,k

2δ(E − E(n)
k ) =

2

(2π)3

∑
n

∫
δ(E − E(n)

k )dk

=
2

(2π)3

∑
n

∫
E

(n)
k =E

1

|∇kE
(n)
k |

dSk. (4.5.4)
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In (4.6.3) the integral goes over a surface in k- space on which E
(n)
k is constant and equals to E, and Sk

represents the two-dimensional surface. The energy surfaces are spherical and defined for a free electron

model as:

|∇kE| =
~2k

m
= ~

(
2E

m

)1/2

. (4.5.5)

In above equations, the subscript n represents the band index. It is difficult to evaluate (4.6.3) to

determine the density of states in most actual problems in band structure calculation. In order to express

the contribution of the atoms for layered molybdenum chalcogenides MmXn to the total density, we

will calculate the projected density of states for each atom.

4.6 Band Gap

In an electronic system, the fundamental band gap is defined as the difference between the ionization

energy and electron affinity [59]. However, the well-known band gap problem, in which DFT in LDA and

GGA fails to correctly predict the energy gap between occupied and unoccupied states, is a hindrance

to research in fields including semiconductors, optical, and photovoltaic materials [60]. Indeed in a DFT

calculation, the Kohn-Sham gap EKSgap is defined as the difference between the eigenvalues of lowest

unoccupied and highest occupied eigenvalues, but the eigenvalues obtained from Kohn-Sham equation

do not have the physical meaning. Typically, EKSgap underestimates band gaps of solids by about 30%

up to 100% [61, 62, 63]. For a neutral N electron system the ionization energy is I = E
(0)
N−1 −E

(0)
N ≡

−εHOMO, and the electron affinity is A = E
(0)
N −E

(0)
N+1 ≡ −εLUMO so that the gap can be written as

Egap = I −A = εLUMO − εHOMO, (4.6.1)

where HOMO and LUMO are the highest occupied and lowest unoccupied molecular orbitals respectively.

We can calculate the band gap Egap using KS-DFT through the expression

Egap = εKSN+1(N + 1)− εKSN (N) (4.6.2)

where εKSN+1(N + 1) is the energy of the highest occupied KS orbital of the N + 1 electron system, and

εKSN (N) is the HOMO level of the KS N - particle system.

For the non-interacting system, the band gap can be readily written in terms of its orbital energies as

EKSgap = εKSN+1(N)− εKSN (N) (4.6.3)

From (4.6.2) and (4.6.3), we get that the exact and KS gaps are related through

Egap = (εKSN+1(N)− εKSN (N)) + (εKSN+1(N + 1)− εKSN+1(N)) = EKSgap + ∆xc. (4.6.4)

Here ∆xc is the difference between the energies of the (N + 1)-th orbitals of the KS systems that

correspond to the neutral and ionized electron system. The addition of an extra electron only induces
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an infinitesimal change of the density [64], so ∆xc is the measure of a non-analytical behaviour of the

exchange correlation (xc) energy functional to an infinitesimal variation of n(r) [64] so that

∆xc '
(
δExc[n]

δn(r)
|N+1 −

δExc[n]

δn(r)
|N
)

(4.6.5)

which gives

∆xc = v(N+1)
xc (r)− v(N)

xc (r). (4.6.6)

We notice that when N increases, the exchange potential jumps discontinuously by ∆xc.This disconti-

nuity is the consequence of a position independent derivative discontinuity in the exchange correlation

potential vxc(r) = δExc
δn(r) when the particle number changes through an integer number [65]. Also this

discontinuity is the main cause of the difference between the experimental gaps and those given by LDA

or GGA [63]. There is some evidence that this discontinuity is responsible for a large part of the band

gap problem. In chapter 5, we will see how the energies of adding (removing) an electron to (from)

system can be calculated using many-body perturbation theory in the quasiparticle formalism.

4.7 Phenomenological study of the optical functions

The optical properties of solids provide an important tool for studying energy band structure. Observables

such as reflectivity, transmission, absorption, can be measured with techniques such as ellipsometry.

From these measurements, the dielectric function ε(ω), the optical conductivity σ(ω) can be deduced

[66]. The optical properties of solids are best represented by the real and imaginary part of the dielectric

function ε, which appears in Maxwell’s equations,

∇× ~H − 1

c

∂ ~D

∂t
=

4π

c
~j (4.7.1)

∇× ~E +
1

c

∂ ~B

∂t
= 0 (4.7.2)

∇ · ~D = 0 (4.7.3)

∇ · ~B = 0. (4.7.4)

In above equations, we assume that the charge density is zero. The constitutive equations are written

as:

~D = ε ~E (4.7.5)

~B = µ ~H (4.7.6)

~j = σ ~E (4.7.7)

From Maxwell’s equations and the constitutive equations, we obtain a wave equation for the field

variables ~E and ~H

∇2 ~E =
εµ

c2

∂2 ~E

∂t2
+

4πσµ

c2

∂ ~E

∂t
(4.7.8)
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and

∇2 ~H =
εµ

c2

∂2 ~H

∂t2
+

4πσµ

c2

∂ ~H

∂t
. (4.7.9)

For optical fields, we are going to look for a sinusoidal solution to (4.7.8) and (4.7.9)

~E = ~E0e
i( ~K·~r−ωt) (4.7.10)

where ~K is a complex propagation constant and ω is the frequency of the light. On substituting (4.7.10)

into the wave equation (4.7.8) yields the following relation for K

−K2 = −εµω
2

c2
− 4πiσµω

c2
. (4.7.11)

If there were no attenuation, K would be equal to

K0 =
ω

c

√
εµ (4.7.12)

and would be real, but since there are losses, K is complex and can written as:

K =
ω

c

√
εcomplexµ (4.7.13)

where we define the dielectric function as:

εcomplex = ε+
4πiσ

ω
= ε1 + iε2 (4.7.14)

where ε1 and ε2 are the real and imaginary parts of εcomplex respectively. From Equation (4.7.14) it

follows that

εcomplex =
4πi

ω

[
σ +

εω

4πi

]
=

4πi

ω
σcomplex. (4.7.15)

The complex dielectric function and the complex conductivity can be related to the reflectivity and other

properties such as relaxation time, energy band gaps etc.

Indeed, after substitution for K in (4.7.10), the solution equation (4.7.11) to (4.7.9) yields a plane wave

~E(z, t) = ~E0e
−iωt exp

(
i
ωz

c

√
εµ

√
1 +

4πiσ

εω

)
. (4.7.16)

In vacuum (ε = 1, µ = 1, σ = 0), (4.7.16) reduces to a simple plane wave solution, while for a propaga-

tion of the wave in a medium of finite electrical conductivity, the amplitude of the wave exponentially

decays over a characteristic distance δ given by

δ =
c

ωÑ2(ω)
=

c

ωk̃(ω)
(4.7.17)

where δ is called the optical skin depth, and k̃ is the imaginary part of the complex index of refraction

thus

Ñ(ω) =
√
µεcomplex =

√
εµ

(
1 +

4πiσ

εω

)
= ñ(ω) + ik̃(ω). (4.7.18)
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The above equation means that the intensity of the electric field, |E|2, falls off to 1/e of its value at

the surface in a distance
1

αabs
=

c

2ωk̃(ω)
(4.7.19)

where αabs is the absorption coefficient for the solid at frequency ω.

The complex index of refraction Ñcomplex is usually written in terms of its real and imaginary parts as:

Ñcomplex = ñ+ ik̃ = Ñ1 + iÑ2, (4.7.20)

where ñ and k̃ are called the optical constants of the solid, where ñ is the index of refraction and k̃ is

the extinction coefficient. For µ = 1, and with the definition for Ñcomplex

εcomplex = ε1 + iε2 = (ñ+ k̃)2. (4.7.21)

Thus

ε1 = ñ2 − k̃2 (4.7.22)

ε2 = 2ñk̃ (4.7.23)

where ε1, ε2, ñ and k̃ are all frequency dependent.

The reflectivity measurement, by which one measures the ratio |R|2 of reflected to the incident intensity,

is related to the indices of refraction by

R = |
1− Ñcomplex

1 + Ñcomplex

|2 =
(1− ñ)2 + k̃2

(1 + ñ)2 + k̃
. (4.7.24)

where the reflectivity R is a number less than unity.



5. Many-body perturbation theory

The Kohn-Sham approach in DFT provides good results for the ground state properties of many elec-

tronic systems, but the Kohn-Sham eigenvalues can not be identified as excitation energies and have no

physical meaning, therefore the eigenvalues do not correspond to the energy for adding or removing elec-

trons. However, excited state properties can be accessed by many- body perturbation theory (MBPT)

within the GW calculation in which the eigenvalues of Kohn-Sham are used as input. The widely used

density function theory (DFT) performs well for the determination of structural properties of many

materials but fails when used to calculate gaps of insulators or semiconductors such as molybdenum

chalcogenides. Its results underestimate the gaps. In order to obtain physically meaningful gaps we have

to go beyond DFT and resort to quasiparticle (QP) concepts. The quasiparticle energies are given by

the energy needed to add (remove) an electron from the system and are experimentally accessible from

direct or inverse photo-emission experiments. In this part we are going to describe this concept by the

many-body perturbation theory (MBPT) [67], introducing Green’s function formalism, the self energy

concept and the GW approximation.

5.1 Quasiparticle

Many-body perturbation theory (MBPT) in the GW approximation is a method to determine quasi-

particle excitations. It is one of the most accurate first principles approaches to describe electronic band

gaps of extended systems [9]. Photo-emission spectroscopy can be used to measure the band gap. The

direct photo-electron is described when a photon arrives with an energy ~ω and ejects an electron as

demonstrated in Figure 2.1 and the kinetic energy Ekin is measured. The binding energy of this electron

is given by the following difference εi = Ekin − ~ω [68]. In reality the electrons are correlated though

the Coulomb interaction and the ejection of an electron is a many-body process. Therefore the motion

of one electron depends on the motion of all other electrons. The single independent particle can be

described within the quasiparticle concept. Due to exchange and correlation effects, a Coulomb hole

forms around an electron and behaves together with it like a single entity, which is called a quasiparticle.

Quasiparticles interact via a weak screened interaction usually denoted by W instead of the strong

Coulomb interaction.

5.2 One particle Green’s function

In many-body perturbation theory the central quantity is the time ordered Green’s function G(rt, r
′
t
′
)

which is the probability amplitude for the propagation of an additional electron from (r
′
, t
′
) to (r, t) in

many electron system. The Green’s function contains the information of the excitation energies εi and

the excitation lifetime of the quasiparticle. On considering the ground state energy of the system, the

33
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Figure 5.1: Schematic illustration of photoemission. On left the direct photo-electron spectroscopy in

which the energy difference Ekin − ~ω corresponds to εi = EN0 − EN−1
i . On the right the energy

difference corresponds to εi = EN+1
i − EN0 in inverse photo-electron spectroscopy.

one particle Green’s function particle’s function is defined as

G(rt, r
′
t
′
) = − i

~
〈ΨN (t)|T̂ [ψ̂(rt)ψ̂†(r

′
t
′
)]|ΨN (t

′
)〉. (5.2.1)

Here Ψ(t) is the Heisenberg ground state vector of an N interacting electron system satisfying the

Schrödinger equation Ĥ|ΨN
0 〉 = EN0 |ΨN

0 〉, ψ̂(rt) and ψ̂†(r
′
t
′
) are the field operators that describe the

annihilation and creation of an electron and T̂ is the time ordering operator. More explicitly:

ψ̂(rt) = eiĤtψ̂(r)e−iĤt (5.2.2)

ψ̂†(r
′
t
′
) = e−iĤt

′
ψ̂†(r

′
)e−iĤt

′
. (5.2.3)

The anti-commutation relation gives

[ψ̂(rt), ψ̂†(r
′
t
′
)] = δ(r− r

′
)δ(t− t′) (5.2.4)

[ψ̂(rt), ψ̂(r
′
t
′
)] = [ψ̂†(rt), ψ̂†(r

′
t
′
)] = 0 (5.2.5)

and

T̂ [ψ̂(rt), ψ̂(r
′
t
′
)] =

{
ψ̂(rt)ψ̂†(r

′
t
′
) if t > t

′

−ψ̂(r
′
t
′
)ψ̂†(rt) if t < t

′
.

(5.2.6)

Let us consider the time-ordered Green’s function G(r, r
′
; τ) of stationary system with τ = t − t′ . On

introducing the complete set of the eigenstates to the Hamiltonian,for (N ±1) particle system, the field

operators transform to the Schödinger picture as

ψN+1
i (r) = 〈ΨN−1

i |ψ̂(r)|ΨN
0 〉 and ψN+1

i (r) = 〈ΨN
0 |ψ̂(r)|ΨN+1

i 〉 (5.2.7)
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with excitation energies

εN−1
i = EN0 − EN−1

i and εN+1
i = EN+1

i − EN0 . (5.2.8)

We obtain

G(r, r
′
; τ) = − i

~
∑
i

ψN+1
i (r)ψN+1∗

i (r
′
)e−iε

N+1
i τ/~δ(τ)

+
i

~
∑
i

ψN−1
i (r)ψN−1∗

i (r
′
)e−iε

N−1
i τ/~δ(−τ). (5.2.9)

The linear combination of excited sates is defined after adding an electron to the system (τ > 0) so

ψ̂†(r
′
)|ΨN 〉 =

∑
i

ψN+1∗

i (r
′
)|ΨN+1

i 〉. (5.2.10)

The propagation of an electron (hole) can be analogously defined from (5.2.10) for τ < 0. We can

see the Green’s function contains the excitation spectrum of the (N ± 1) particle system. Applying the

Fourier transform of δ(τ) from (5.2.9), we have

δ(ω) =
1

2π

∫ ∞
−∞

δ(τ)eiωτ−η|τ |dτ =
i

2π(ω + iη)
. (5.2.11)

Finally the Lehmann representation of the Green’s function

G(r
′
, r;ω) =

∑
i

ψN+1
i (r)ψN+1∗

i (r)

~ω − (EN+1
i − EN0 ) + iη

+
∑
i

ψN−1
i (r)ψN+1∗

i (r)

~ω − (EN−1
i − EN0 )− iη

(5.2.12)

where E
(N±1)
i are the energies which correspond to the excitation of an (N − 1)-particle and (N + 1)-

particle system, i.e. those energies measured in direct and inverse photo-electron emission.

For non-interacting system, the ψN+1
i (r) and ψN−1

i (r) are the unoccupied and the occupied single-

particle wave function respectively. The quantity ±iη are required to ensure the convergence of the

Fourier transformation. The superscript (N ± 1) are used to avoid overloading the notation. The

(fundamental) band gap is the minimum difference between the energies for adding and subtracting an

electron. In a many-body system, if the ground state has N electrons, the fundamental gap is

Egap = (EN−1 − EN0 )− (EN0 − EN+1). (5.2.13)

Correspondingly, EN±1 denote the energies of the electron addition (removal) state with the lowest

(highest) energy and EN0 represents the ground-state energy.

5.3 Self energy in GWA

The self energy
∑

is described by the interaction effects on the excitation energy and contains the

electron exchange and large part of electron correlation. Also in an interacting system the Green’s

function obeys to the Dyson equation

G(r1, r2) = GH(r1, r2) +

∫
GH(r1, r3)

∑
(r3, r4)G(r4, r2)dr3dr4 (5.3.1)



Section 5.3. Self energy in GWA Page 36

where GH is the Hartree Green’s function of the non-interacting system, and is a solution of equation

[ω − ĥ0(r1)]G(r1, r2;ω) = δ(r1 − r2) (5.3.2)

with ĥ0(r) the one electron Hamiltonian given by

ĥ0(r) = −1

2
∇2

r + Vext(r) + VH(r). (5.3.3)

We can see from (5.3.1) and (5.3.2) that the operator
∑

contains the exchange and correlation many

body effects:

[ω − ĥ0(r1)]G(r1, r2;ω) = δ(r1 − r2) +

∫
d3r

∑
(r1, r;ω)G(r, r2;ω). (5.3.4)

Expressing the Green’s function G in terms of the wave function ψn(r) and energies En we obtain

G(r1, r2;ω) =
∑
n

ψn(r1)ψ∗n(r2)

ω − En
. (5.3.5)

The latter wave function ψn(r) and energies En are solutions of the equation

ĥ0(r)ψn(r) +

∫
d3r

′∑
(r, r

′
;ω)ψn(r

′
) = Enψn(r). (5.3.6)

Since the self energy
∑

takes all dynamic many electron processes into account, the wave function

ψn(r) and the energies En must not be taken as single particle quantities. In general En is complex and

the imaginary part gives the lifetime of the excitation. If the lifetime of the quasiparticle is finite, the

real part of En corresponds to the energy of the quasiparticle En = EQPn ; we arrive at the quasiparticle

equation:

ĥ0(r)ψQPn (r) +

∫
d3r

′∑
(r, r

′
;EQPn )ψQPn (r

′
) = EQPn ψQPn (r). (5.3.7)

The energies EQP appear in a Schrödinger like equation containing the self energy
∑

in place of

exchange correlation potential [69]. The self energy contribution to the quasiparticle energy is obtained

by the Fourier transformation as:∑
(r, r

′
;ω) =

i~
2π

∫
G(r, r

′
;ω + ω

′
)W (r, r

′
;ω
′
)eiω

iδdω
′

(5.3.8)

In (5.3.8), the function at left is the Green’s function of the non-interacting system, the second function

at right is the screened interaction W (r, r
′
;ω
′
) and δ is an infinitesimal number. The Green’s function

can be expressed in terms of the quasiparticle (QP) wave function as

G(r, r
′
;ω) =

∑
n

ψQPn (r)ψQPn (r
′
)

ω − EQPn (ω)− iδn
(5.3.9)

where δn corresponds to the lifetime of the excitation which is the imaginary part of En in (5.3.5). The

quasiparticle energy is calculated to the first order which leads to

EQP = Re[〈ψQPn |ĥ0 +
∑

(EQPn )|ψQPn 〉]. (5.3.10)
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Since (5.3.10) requires the value of EQPn , the equation must be solved by iteration. On using the

Newton Raphson method we obtain

EQPn ← EQPn + ZiRe[ψn|ĥ0 +
∑

(EQPn )|ψn〉 − EQPn ] (5.3.11)

which gives the next iteration the energies ENn from the quasiparticle as

EN+1
n = ENn + ZiRe[ψ

QP
n |ĥ0 +

∑
(EQPn )|ψQPn − ENn ] (5.3.12)

where Zn is the normalization factor given by

Zn =

(
1−Re〈ψQPn |(

∂

∂ω

∑
(ω)|

EQPn
)|ψQPn

)−1

. (5.3.13)

The iteration usually starts from the DFT eigenvalues εi. The QP energies must be calculated using a

single iteration i.e., (5.3.11) should start from EQPn = εi, this is referred to the first order perturbation

theory.

5.4 Hedin’s equations

We saw that the energy of the quasiparticle can be calculated from (5.3.11). Indeed this task can be

solved by the use of the many body perturbation theory through the Hedin’s equations which link the

self energy
∑

with the screened Coulomb potential W , the single particle operator G and the vertex

function Γ as a perturbation series like in a set of five Dyson equations∑
(1, 2) = i

∫
G(1, 4)W (1+, 3)Γ(4, 2; 3)d(3, 4) (5.4.1)

W (1, 2) = V (1, 2) +

∫
W (1, 3)P (3, 4)V (4, 2)d(3, 4) (5.4.2)

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)

∑
(3, 4)G(4, 2) (5.4.3)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)

∂
∑

(1, 2)

∂G((4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (5.4.4)

P (1, 2) = −i
∫
G(2, 3)G(4, 2)Γ(3, 4; 1)d(3, 4) (5.4.5)

with above definition, 1+ = (r1t1 + δ), δ > 0 is infinitesimal number, V (1, 2) is the bare Coulomb

interaction, P is the irreducible polarization function defined as the variation of induced density of the a

classical potential (external+Hartree) and Γ is the vertex function given by the variation of the inverse

Green’s function with respect to a change in the total potential and G0 coincide with the Hartree Green’s

function (see (5.3.1)).

5.5 GW approximation

The GW approximation (GWA) corresponds to the first iteration of the Hedin’s equations. It sets the

vertex function to unity and starts for
∑

= 0 which leads to the random phase approximation level
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(RPA) for screened interaction W and subsequently to
∑

= GWRPA. In principle, GWA requires a

self-consistent determination of P and
∑

by setting G = GKS in (5.3.9). Thus

GKS =
∑
n

ΦKS
n (r)ΦKS

n (r
′
)

ω − εKSn (ω)− iδn
. (5.5.1)

On considering
∑

= 0 in (5.4.4), we get Γ(1, 2; 3) = δ(1, 2)δ(1, 3), P 0 = −G0(1, 2)G(2, 1+) in

this case P 0 corresponds to the polarizability which leads to the random phase approximation (RPA),

therefore the Hedin’s equations are reduced to

P 0(1, 2) = −iG0(1, 2)G0(2, 1+) (5.5.2)

W 0(1, 2) = V (1, 2) +

∫
d(3, 4)W 0(1, 3)P 0(3, 4)V (4, 2) (5.5.3)∑

(1, 2) = iG0(1, 2)W 0(1+, 2). (5.5.4)

The single particle Green’s function G is determined when the
∑

updates the quasiparticle wave func-

tions and energies in considering the Green’s function of the non-interacting KS system. The screened

interaction W can be calculated by the use of the dielectric matrix (see section 4.6).

Figure 5.2: This diagram is a sketch of the self-consistent in GW method. In the partially self-consitent

GW0 approximation only G is updated while in the fully self-consistent GW approximation both G and

W are updated.
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We expand to first order Taylor series the self energy (5.5.4) around the KS eigenvalues:

〈
∑

(EQPi )〉 ' 〈
∑

(εKSi )〉+ 〈∂
∑

(ω)

∂ω
|ω=εKSi

〉(EQPi − εKSi ). (5.5.5)

In the first order perturbation theory the quasiparticle energies give:

EQPi = εKSi +

∑
〈(εKSi )〉 − 〈vLDAxc 〉

1− 〈∂
∑

(ω)

∂ω
|ω=εKSi

〉
. (5.5.6)

The quasiparticle energies are related to the KS energies when an electron is added or subtracted in the

system. If the electron’s momentum is well defined in an infinite, periodic solid system, the quasiparticle

energies can be written as functions in terms of that momentum. These functions are known as the

band structure of the solid [69]. Several calculations have been done using GW approximation and agree

with the experiments

5.6 Dielectric matrix and Polarizability

Let ε−1
q be the inverse of the dielectric matrix in a solid. The screened interaction W is determined by

multiplying the bare Coulomb kernel with the inverse dielectric matrix:

Wq(G,G
′
, ω) = 4πe2 1

|q + G|
ε−1
q (G,G

′
, ω)

1

|q + G
′ |
. (5.6.1)

In (5.6.1) G and G
′

are the reciprocal lattice vectors, and q is a Bloch wave vector. The inverse of

the dielectric matrix ε−1
q (G,G, ω) represents the screening in a solid when local fields due to density

inhomogeneities and many-body effects are taken into account [70]. The dielectric matrix is calculated

from the random phase approximation (RPA) as

εq(G,G
′
, ω) = δ

G,G
′ − 4πe2

|q + G||q + G
′ |
χ0
q(G,G

′
, ω), (5.6.2)

where χ0
q(G,G

′
, ω) is the independent particle polarizability. The dielectric function ε−1

q (G,G, ω) is a

microscopic quantity. Therefore, spatial averages have to be performed in order to relate it to measurable

quantities. In solids, the macroscopic dielectric function is related to the microscopic dielectric function

ε by

εM (ω) = lim
q→0

1

ε−1
G=0,G=0(q, ω)

. (5.6.3)

The optical absorption spectrum is given by the imaginary part ε2(ω) of εM (ω). The dielectric constant

ε0 is the value of εM (ω) at ω = 0. If ε is diagonal in G,G′, εM is the spatial average of the microscopic

dielectric function (εM = limq→0 εG=0,G
′
=0

). This is in fact the case in the homogeneous electron gas.

The time ordered independent particle polarizability is given by

χ0
q(G,G

′
, ω) =

1

Ω

∑
nn′k

2wk(fn′k−q − fnk)

×
〈ψn′k−q|e

−i(q+G)r|ψnk〉〈ψnk|ei(q+G
′
)r
′
|ψn′k−q〉

ω + εn′k−q − εnk + iηsgn[εn′k−q − εnk]
. (5.6.4)
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Here Ω is the volume of the primitive cell, wk is the k-point weight, fn′k−q and fnk are the one electron

occupancies of the corresponding states, εnk and εn′k−q are energies of one electron states |ψnk〉 and

|ψn′fk−q〉, and η is an infinitesimal complex shift.

In (5.6.4), the summation is carried out over all possible pairs of occupied and unoccupied states, such

as the calculation of the polarizability becomes time consuming. The computational procedure can be

optimized by the use of the spectral representation in which the polarizability matrix takes the form of

χSq (G,G
′
, ω
′
) =

1

Ω

∑
nn′k

2wksgn(ω
′
)δ(ω

′
+ εnk − εn′k−q)

× (fnk − fn′k−q)〈ψn′k−q|e
−i(q+G)r|ψnk〉

× 〈ψnk|ei(q+G
′
)r
′
|ψnk−q〉, (5.6.5)

[71]. We arrive at the relationship between the spectral function and the imaginary part of the polariz-

ability

χSq (G,G
′
, ω
′
) =

1

π
Imχ0

q(G,G
′
, ω). (5.6.6)

For a given frequency ω
′
, each pair of states nk, n

′
k− q contributes to χ at the frequency

ω
′

= εn′k−q − εnk, this makes the evaluation of the spectral function efficient for ω
′
. On using the

Hilbert or Kramers-Kronig transformation the polarizability are obtained from the spectral functions as

χ0
q(G,G

′
, ω) =

∫ ∞
0

dω
′
χSq (G,G

′
, ω
′
)

×
(

1

ω − ω′ − iη
− 1

ω + ω′ + iη

)
(5.6.7)

In general ω and ω
′

are defined on different frequency grids but in the above Equation they are chosen

to the same set.

5.7 Two particles Green’s function

The quasiparticle picture in the GW approximation is generally sufficient to obtain accurate photoemiss-

sion spectra, but this approximation is still inadequate for photoabsorption processes in which electron-

holes are created (without addition or removal of electrons). This deficiency can be overcome by first

treating the quasielectron and quasihole within the GW approximation and then accounting for their

interaction by solving the Bethe-Salpeter equation (BSE) for the two particle Green’s function. In this

section the Bethe-Salpeter equation will be deduced in order to describe the two particles excitations.



Section 5.8. Second iteration of Hedin’s equation Page 41

5.8 Second iteration of Hedin’s equation

Let’s consider
∑

= iGW as our starting point, the second iteration of the Hedin’s equation can be

achieved though the inclusion of vertex Γ in (5.4.5) for P , we obtain

Γ(12, 3) = δ(12)δ(13) + iW (1+, 2)

∫
d(45)G(14)G(52)Γ(45, 3). (5.8.1)

Here, the approximation δ
∑
/δG = iW is used [72]. Now let us introduce a four point polarization

function P (1, 2; 3, 4) such that the polarization of (5.4.5) is obtained as P (1, 1; 2, 2) while a four point

screened interaction is W (1, 2; 3, 4) = W (1, 2)δ(13)δ(24). In following Equations (5.4.1) and (5.8.1)

we obtain the four-point polarization

P (1, 2; 3, 4) = P 0(1, 2; 3, 4)−
∫
d(5678)P (1, 2; 5, 6)W (5, 6; 7, 8)P 0(7, 8; 3, 4) (5.8.2)

From the solution of (5.8.2) the microscopic dielectric function with (5.6.2) and subsequently the

macroscopic dielectric function with (8.1). From [72] we define the new polarization function P̄ as:

P̄ = P + P v̄P (5.8.3)

where v̄ is the bare Coulomb potential without the long range term that in reciprocal space reads:

v̄G =

0, G(q) = 0

vG(q) G 6= 0

The macroscopic dielectric function can be written in terms of the new polarizability function as

εM (ω) = 1− lim
q→0

[v0(q)P̄00(q, ω)]. (5.8.4)

Substituting (5.8.2), in (5.8.3) we arrive at the so-called Bethe-Salpeter equation (BSE) that in matrix

form reads:

P̄ = P 0 + P 0KP̄ . (5.8.5)

The Kernel of the Bethe-Slapeter equation is given by

K(1, 2; 3, 4) = −iδ(1, 2)δ(3, 4)v̄(1, 3) + iδ(1, 3)δ(2, 4)W (1, 2). (5.8.6)

In Equation (5.8.6), the Kernel corresponds to the time dependent screened Hartree-Fock approxima-

tion, this Kernel has two terms; the first term is the exchange term, and the second term corresponds

to the variation of the self energy with respect the one particle Green’s function [73].

In summary, the Bethe-Salpeter approach to the calculation of two particle excited states is a straight-

forward extension of the GW approach for the calculation of one particle excited states; and it leads to

an effective two particle Hamiltonian [72].
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5.9 Excitonic Hamiltonian

We define the excitonic Hamiltonian as:

Hexc(n1,n2)(n3,n4) = (εn2 − εn1)δn1,n3δn1,n3 + i(fn2 − fn1)K(n1,n2)(n3,n4) (5.9.1)

where fn represents the occupation number. From (5.8.5), it can be shown that the polarizabity P̄ can

be expressed as:

P̄(n1,n2)(n3,n4) = [Hexc − Iω]−1
(n1,n2)(n3,n4) (fn4 − fn3) (5.9.2)

where I is the identity matrix I = δn1,n3δn1,n3 . We define the spectra representation by

[Hexc − Iω] =
∑
λ,λ′

|λ〉S−1
λ,λ′
〈λ′ |

Eλ − ω
(5.9.3)

where |λ〉 and Eλ indicate the eigenvalues and eigenvector of Hexc, so

Hexc|λ〉 = Eλ|λ〉 (5.9.4)

and Sλ,λ′ is the overlap matrix:

Sλ,λ′ = 〈λ′ |λ〉. (5.9.5)

We note that (5.9.3) holds for a general non-Hermitian matrix.

Explicitly, we define an effective two particle Schrödinger equation:

Hexc(n1,n2)(n3,n4)A
(n3,n4)
λ = EλA

(n1,n2)
λ (5.9.6)

that can be solved by diagonalization. Equation (5.9.6) couples the different two particle configurations

and the coefficients A
(n1,n2)
λ of the state |λ〉 permits to identify the character of each excitation.

The exciton amplitude is given by

Ψλ(r1, r2) =
∑
n1,n2

A
(n1,n2)
λ φ∗n1

(r1)φn2(r2). (5.9.7)



6. Structural properties

Molybdenum chalcogenides MoX2 ( X = S, Se, Te), with honeycomb structure offer many remarkable

structural, mechanical, electronic and optical properties. The bulk crystals of the compounds crystallise

in a 2H-MoX2 ( X = S, Se, Te) polytype in a hexagonal structure with space group P63/mmc corre-

sponding to space group number 194. The bulk 2H-MoX2 ( X = S, Se, Te) are composed of vertically

stacked, weakly interacting layers held together by van der Waals interactions. Also each of these sheets

are refereed to as a 1H-MoX2 ( X = S, Se, Te) monolayer. Many researchers have studied molybdenum

disulfide. Thin films of MoS2 particles have ultra low friction and wear, which stimulated some re-

searchers, interest in the study of these materials. Jeffrey R. Lince investigated the electrical properties

of the 2H-MoS2 based coatings during tribological action [74]. Some properties of 2H-MoS2 have been

studied with theoretical methods. Jeffery A. Spirko investigated the defect structure of MoS2 by den-

sity function methods [75]. S. Lebegue reported on ab initio calculations of the electronic structure of

MoS2 [76]. Also, Swashibrata Bhattacharya and Abhishek K. Singh studied semiconductor molybdenum

dichalcogenide including 2H-MoX2 ( X = S, Se, Te) based on first principles calculations [77].

In this chapter, the structural properties and mechanical stability of layered molybdenum chalcogenides

2H-MoX2 ( X = S, Se, Te) compounds are studied using the self consistent Kohn-Sham method in

DFT. Since the standard DFT is not able to describe correctly van der Waals interactions, we have

added a semi-empirical dispersion potential to the Kohn-Sham DFT energy as suggested by Grimme

(DFT-D2) [40, 41]. Also we have taken into account the non local correction functional for dispersion

interaction proposed by Langreth and Lundqvist (vdW-DF) [42, 43] using the algoritm of Roman-Perez

and Soler [78]. Layered molybdenum chalcogenides 2H-MoX2 ( X = S, Se, Te), have 2 Mo atoms and 4

X atoms in the unit cell. The full relaxation calculations were first performed to determine the accurate

internal positions of the atoms. All atomic positions and lattice constants were optimized by using

the conjugate gradient method. Numerical calculation was implemented in Viena Ab initio Simulation

Package (VASP).

6.1 Cohesive energy

The cohesive energy is the work which is needed when a solid is decomposed into a free isolated atoms.

The more negative the cohesive energy, the more stable the system, the expression of the cohesive

energy is given in (4.3.1).

In order to find the structural parameters, such as the equilibrium lattice parameter a, c/a-ratio, the

bulk modulus B0 and its pressure derivative B
′
0, we have computed the cohesive energies in Equation

(4.3.1) for each compound for different volumes. The cohesive energy as a function of volume are

fitted with Birch Murnaghan’s third order equation of state (EOS). The obtained cohesive energy versus

volume data for different compounds 2H-MoX2 (X = S, Se, Te) are visualized graphically in Figure

(6.2), Figure (6.3), and Figure (6.4) respectively. The corresponding obtained structural parameters are

43
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listed in Table (6.1) for these three compounds calculated with PBE, DFT-D2 and vdW-DF along with

other results available. To estimate the stability of these compounds, it can be seen from Table (6.1),

the calculated cohesive energies are negative, which indicate that these three compounds are structurally

stable in these three different approximations.

(a)

(b)

(c)

Figure 6.1: (a) Molybdenum chalcogenides: Bulk 2H-MoX2 (X = S, Se, Te) and monolayer 1H-MoX2

(X = S, Se, Te). The big and small balls represent Mo and X ( S, Se, Te) atoms respectively. The

interlayer distance is denoted by d. (b) and (c), top and side view of the 2H-MoX2 (X = S, Se, Te)

unit cell.
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Figure 6.2: Cohesive energy Ecoh(eV/atom) versus volume V(Å3 /atom) for 2H-MoS2 in three different

approximations.
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Figure 6.3: Cohesive energy Ecoh(eV/atom) versus volume V(Å3 /atom) for 2H-MoSe2 in three different

approximations.
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Figure 6.4: Cohesive energy Ecoh(eV/atom) versus volume V(Å3 /atom) for 2H-MoTe2 in three different

approximations.
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Table 6.1: Equilibrium parameters: lattice parameter a, a/c-ratio, equilibrium volume, Bulk modulus

B0 and its pressure derivative B
′
0 at zero pressure are calculated in PBE, DFT-D2 and vdW-DF.

Material a(Å) c/a-ratio (Å) V0 (Å3 /atom) B0 (GPa) B
′
0 Ecoh(eV/atom)

2H-MoS2

PBE 3.30 4.61 21.47 1.44 43.49 -5.02

vdW-DF 3.20 3.98 18.86 31.01 12.58 -5.26

DFT-D2 3.18 3.89 18.22 39.12 15.09 -5.27

Exp 3.16a 3.88a 17.76a - - -

Other 3.13b 3.84b - - - -

2H-MoSe2

PBE 3.33 4.67 24.69 4.28 34.95 -4.52

vdW-DF 3.32 4.02 21.72 28.64 12.08 -4.76

DFT-D2 3.31 3.92 20.68 47.22 12.48 -4.85

Exp 3.28a 3.93a 20.13a - - -

Other 3.30b 3.87b - - - -

2H-MoTe2

PBE 3.55 4.33 27.07 4.63 20.92 -3.98

vdW-DF 3.54 4.05 26.92 25.14 12.67 -4.23

DFT-D2 3.52 3.97 25.09 50.68 6.84 -4.39

Exp 3.51a 3.98a 24.96a - - -

Other 3.50b 3.93b - - - -
aReference [79]
bReference [1]

Fitting data to the Birch Murnaghan’s equation of state such as cohesive energy as a function of volume

(at equilibrium) has become a common practice to deduce the structural parameters of materials. For

all the 2H-MoX2 (X = S, Se, Te) compounds, the PBE curves ( cohesive energy versus volume ) are

flat at high volumes, this is because the PBE calculations do not take into account the weak van der

Waals interaction (long range dispersion) between the layers of the compounds. Indeed to determine

the equilibrium parameters of each compounds, we make an isotropic variation of the cell volume while

ions with free internal parameters are allowed to search for minima on the Born Oppenheimer potential

hyper-surface [80], until all Hellmann-Feynman force components [81] on each ion are smaller than

3 × 10-3 eV /Å. On increasing the volume, the layers move further apart and decouple, the ions in

the layers become stable, thus, there is no change on the cohesive energy above a system dependent

volume, consequently the curve becomes flat. Therefore it is difficult to see the equilibrium volume,
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only a small local minimum volumes at 21.47 Å3, 24.69 Å3, and 27.07 Å3 respectively, predicting a too

large lattice constant a and c/a ratio when compared with our other calculations and the experimental

values reported in reference [79]. As we can see, the PBE gives a ∼ 1% - 4% error and consequently

and error for c/a ∼ 8% - 18% deviation when compared to experiment. On the contrary, dispersion

effects included via atom pairewise interaction using the vdW-DF and DFT-D2 approximations, shift the

minimum of the cohesive energy to lower volumes indicating an increased interaction between 2H-MoX2

(X = S, Se, Te) layers, shrinking all the lattice parameters with respect to PBE. The vdW-DF curves

start going up as a function of volume above a system dependent volume and the curvature becomes

more clear in the DFT-D2 approximations so that we can easily see the equilibrium volume on the

curve. There is a sensible improvement: the lattice constant a value, when compared to experiment, is

corrected to within 0% - 1% and the c/a ratio to within 0% - 2%.

6.2 Formation energy

The relative stabilities of compounds can also be compared by means of their formation energies. In

order to test the formation possibility under consideration as well as their stability, we have calculated

the formation energy as expressed in Equation (4.4.2) for 2H-MoX2 (X = S, Se, Te). We carried out

the calculation using density function theory in PBE approximation, we have also taken into account the

van der Waals interactions by using the vdW-DF and DFT-D2 approximations. All the calculations have

been calculated at zero temperature (T = 0 K), and zero pressure (P = 0 GPa). Negative formation

energy means an exothermic process and indicates that the compound is stable. The obtained formation

energies Ef of these three compounds are given in Table (6.2) along with other available results, and

shown graphically in Figure (6.5). It can be seen that our results are in good agreement with other results

given in [79] and all the 2H-MoX2 (X = S, Se, Te) compounds have negative formation energies, which

means that the composing processes from the elemental forms are exothermic reactions and thus these

2H-MoX2 (X = S, Se, Te) compounds are stable. Furthermore the formation energy is an important

indicator of the strength of interlayer van der Waals interactions in bulk 2H-MoX2 (X = S, Se, Te).

The small formation energies indicate the ease to cleave a sheet of monolayer 1H-MoX2 (X = S, Se,

Te) from bulk crystals [82]. Based on the obtained formation energies of the bulk 2H-MoX2 (X = S,

Se, Te) which are small, it can be deduced that, it is possible to fabricate monolayer 1H-MoX2 (X = S,

Se, Te) by reducing layers from bulk. Besides, it has been shown that monolayer 1H-MoX2 (X = S, Se,

Te) compounds are stable [82]. We extend our investigation in Chapter 7 to the electronic properties of

monolayer 1H-MoX2 (X = S, Se, Te). These monolayer materials have attracted significant potential

applicatons [76, 83].
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Figure 6.5: Formation energy Ef (eV/atom) versus 2H-MoX2 (X = S, Se, Te) in PBE, vdW-DF and

DFT-D2, the more negative the energy is, the more favourable the stability. It can be seen that Ef (2H-

MoS2) < Ef (2H-MoSe2) < Ef (2H-MoTe2), thus at zero temperature 2H-MoSe2, and 2H-MoTe2 have

higher formation energies than 2H-MoS2.

Table 6.2: Formation energy Ef (eV/atom) of 2H-MoX2 (X = S, Se, Te) in three different

approximations.

2H-MoS2 2H-MoSe2 2H-MoTe2

PBE vdW-DF DFT-D2 PBE vdW-DF DFT-D2 PBE vdW-DF DFT-D2

Ef -0.891 -0.917 -0.877 -0.682 -0.677 -0.681 -0.270 -0.233 -0.265

Other -0.863a - - -0.670a - - -0.270a - -
aReference [79]

6.3 Mechanical stability

We present in this part the mechanical stability of 2H-MoX2 (X = S, Se, Te) using elastic constants

calculated from linear response. We have computed elastic constants using density functional theory in

the GGA approximation parametrized by PBE, and with inclusion of van der Walls interaction proposed

by vdW-DF, and DFT-D2. The linear elastic constants form a 6×6 symmetric matrix, having 27 different

components and 21 of which are independents. However, the number of independent components may
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be reduced for a given structure. For bulk 2H-MoX2 (X = S, Se, Te), having hexagonal structure, the

elastic independent elastic tensor reduces to 5 elastic constants: C11 = C22, C12, C13 = C23, C33,

and C44 = C55, in Voigt notation. All these values are calculated and listed in Table (6.3). The Born

stability criteria for mechanical stability of hexagonal system are:

C11 > 0 (6.3.1)

C44 > 0 (6.3.2)

C11 − |C12| > 0 (6.3.3)

(C11 + C12)C33 − 2C2
13 > 0 (6.3.4)

All these four conditions for mechanical stability given in above Equations (6.3.1)-(6.3.4) are simul-

taneously satisfied and this clearly indicates that the predicted compounds are mechanically stable.

These elastic constants are related to bulk modulus B and the four shear constants (C11 + C12, C11 −
C12, 1/2C33, and C44). In order to determine all the constants we arrive at a set of equations where

the first equation involves calculating the bulk modulus B, which is related to the elastic constants by:

B =
2

9

[
C11 + C12 + 2C13 +

1

2
C33

]
. (6.3.5)

The anisotropic shear modulus

G =
1

2
(Gv +GR) (6.3.6)

where Gv is Voigt’s shear modus corresponding to the upper bound of G values given by:

Gv =
1

30
(M + 12C44 + 12C66) (6.3.7)

where

M = C11 + C12 + 2C33 − 4C13. (6.3.8)

And GR is Reuss’s shear modulus corresponding to the lower bound of G values, which can be written

as:

GR =
5

2

C2C44C66

3BvC44C66 + C2(c44 + C66)
. (6.3.9)

Then

G =
1

2
(Gv +GR) (6.3.10)

where

Bv =
1

9
[2(C11 + C12) + C13 + C33] (6.3.11)

C2 = (C11 + C12)C33 − C2
13 (6.3.12)

C66 =
1

2
(C11 − C12) (6.3.13)

In the formulae, subscript v denotes the Voigt bound, R denotes the Reuss bound.

The Young’s modulus Y , and the Poisson’s ratio ν, are also calculated in terms of the computed data

and take the form of

Y =
9GB

3B +G
(6.3.14)
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and

ν =
1

2

[
3B − 2G

3B +G

]
. (6.3.15)

In summary, the elastic constants have been investigated using PBE, vdW-DF, and DFT-D2 approxima-

tions. It has been found that all elastic constants satisfied the mechanical stability of these compounds.

The highest bulk moduli values in Table (6.1) and in Table (6.3), the shear moduli in Table (6.3) are

small compared to the polycrystalline moduli of the diamond (with 459 GPa as bulk modulus and 478

GPa for shear modulus at room temperature [84, 85], indicating that these compounds are soft materi-

als. Apart from the mechanical stability, we have investigated other quantities related to the mechanical

properties such as the Young’s modulus Y which is defined as the ratio between stress and strain and

is used to provide a measure of the stiffness of solids. The larger the value of Y is, the stiffer the

material. The calculated Young’s modulus Y in Equation (6.3.14) and listed in Table (6.3) indicates

that the typical compounds having Young’s modulus below 280−380 are less stiffer than diamond [86].

The Poisson’s ratio is also calculated in Equation (6.3.15), which can quantify the stability of the solid

against shear. This ratio can formally take values in the range −1 to 0.5, where ν = −1 indicates that

the material does not change its shape, and ν = 0.5 means that the volume remains unchanged, this

occurs when an incompressible material deformed elastically at small strains [87]. The 2H-MoX2 (X

= S, Se, Te) compounds, have a slightly different Poisson’s ratio as demonstrated in Table (6.3), and

overall the obtained values are below 0.33 , which means that these compounds are brittle [88]. The

brittleness (ductility), of the materials can also be predicted by applying Pugh’s criteria [89] according

to which a high (low) G/B value is associated with brittleness (ductility), i.e., the material is brittle if

G/B is great than 0.57 otherwise the materials is ductile. From the calculated results in Table (6.3), it

can be deduced that 2H-MoX2 (X = Se, Te) are brittle materials. Our results on elastic constants are

in disagreement with theoretical calulations for 2H-MoS2 [90] (see Table (6.3)). The discrepancy with

our results and others in Table (6.3) is probably due to the method used. In reference [90], Li, Chen

Jun-Fang et al used the Castep program, based on density function theory with the PBE approximation

to evaluate exchange correlation energy and a plane wave cutoff energy of 340 was employed throughout.

Also non-local ultra-soft pseudo-potentials were used to describe the valence electrons.

Their results are consistentent with the mechanical stability, although our results are numerically differ-

ents but the conclusions are the same.
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Table 6.3: Elastic constants Cij (GPa), Bulk modulus B (GPa), Poisson’s ratio ν, Young’s modulus Y

(GPa), Shear modulus (GPa) are calculated at zero pressure

2H-MoS2 2H-MoSe2 2H-MoTe2

PBE vdW-DF DFT-D2 Other PBE vdW-DF DFT-D2 PBE vdW-DF DFT-D2

C11 181.70 204.97 211.20 211.22c 142.22 182.05 183.11 107.62 113.04 131.92

C12 45.41 53.40 56.58 49.38c 33 47.27 48.50 725.82 30.41 34.37

C13 2.46 7.67 8.46 3.078c 1.31 16 17.89 2.11 8.93 23.87

C33 3.82 34.96 44.10 36.73c 3.46 63.54 70.52 7.13 33.72 89.29

C44 2.45 11.72 13.27 30.04c 2.87 26.55 28.15 5.36 15.64 33.47

B 51 64.71 68.17 63.36c 39.91 65.16 67.26 31.38 36.62 57.48

G 19.90 32.94 35.39 55.11c 16.66 42.87 44.29 15.62 25.54 41.17

Y 52.93 84.49 90.50 199.52c 43.89 105.49 108.96 40.21 63.08 99.71

ν 0.27 0.28 0.32 - 0.31 0.23 0.23 0.28 0.23 0.21
cReference [90]



7. Electronic properties

In this part we are going to investigate the electronic properties both for bulk molybdenum chalco-

genides 2H-MoX2 (X = S, Se, Te) and for monolayer 1H-MoX2 (X = S, Se, Te). Bulk monolybdenum

chalcogenides 2H-MoX2 (X = S, Se, Te) as well as monolayer molybdenum chalcogenides 1H-MoX2 (X

= S, Se, Te) are a rich source two dimensional (2D) crystals.

There has been a resurgence of interest in properties of these materials, specifically in their 2D crystalline

form, for nanoscale electronics and photonics applications. These materials have band gaps falling in the

visible or near-infrared regime so that they are promising for efficient solar-energy conversion. In their

bulk states, 2H-MoX2 (X = S, Se, Te) molybdenum chalcogenides are indirect gap semiconductors. It

is well documented in the case of 2H-MoS2, through both theory and experiment, that the material

remains an indirect-gap semiconductor with a band gap of 1.29 eV until samples are thinned down to

a monolayer, at which point the band gap becomes direct with a band gap energy of 1.90 eV [91].

Besides, electronic band structure is one of the most important parameters for a semiconductor to be

used in solar-energy conversion [9].

Because of their relatively simple structure and the ease to form well-defined surfaces, electronic proper-

ties of the molybdenum chalcogenides have been intensively studied by direct and inverse photoemission.

Reducing the slab thickness systematically from bulk to a monolayer causes a shift in the band gap en-

ergies, resulting in tunability of the electronic band gap. This tunability in the electronic band gap and

transitions from indirect to direct band make these materials potential candidates for solar cell absorbers.

In this chapter, we present the electronic properties of molybdenum chalcogenides compounds in two

sections as follows.

In the first section we present a characterization of the electronic band structure for the bulk 2H-MoX2

(X = S, Se, Te) via DFT calculations in three different approximations, PBE, DFT-D2 and vdW-DF in

order to confirm the existence of the energy band gap of these compounds.

In the second section we present the energy band gap for the bulk and monolayer for molybdenum

chalcogenides compounds within the GW approximation in order to predict quasiparticle band gap

which is directly accessible through experimental techniques such as photoemission spectroscopy.

54
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7.1 Band Structure and Projected Density of States in DFT

The electronic band structure has been calculated along the high symmetry points Γ−M −K − Γ−
A−L−H −A−L−M −K −H in the Brillouin zone, see Figure (7.2). The band structure of bulk

molybdenum chalcogenides 2H-MoX2 (X = S, Se, Te) compounds as well as the projected density of

state (PDOS) in three different approximations are represented graphically in Figures (7.3)-(7.11)

We notice that for all of them, the conduction band has several different local minima, and the valence

band has also several local maxima at high symmetry points. The energy gap i.e., the minimum

separation between conduction and valence bands, is given by the difference in energy between the

minimum of the conduction band and the maximum of the valence band. Because the extrema of

conduction and valence bands lie at different k-points, this kind of band gap is called an indirect band

gap, i.e., a change in the momentum is required for an electron to make a transition from the top of

the valence band to the bottom of the conduction band. Therefore bulk 2H-MoX2 (X = S, Se, Te) is

indirect band gap semiconductor. These compounds have similar features in the band structure as well

as the projected density of state.

The obtained band gaps of 2H-MoX2 (X = S, Se, Te) in three different approximations are listed in

Table (7.1) along with other theoretical and experimental values. Our calculated band gaps are in good

agreement with the calculated gaps of 0.75 eV and 0.88 eV in [1, 9] but smaller than the experimental

gaps reported in [92, 10, 76]. The difference in the band gap energies with other reported results is that,

most of the results reported have been calculated with different approximations. Indeed the band gaps

of 0.75 eV, 0.80 eV, and 0.66 eV reported in reference [1] for these three compounds respectively have

been obtained using DFT with Troullier Martin, norm-conserving, relativistic pseudopotentials in fully-

separable Kleinman and Bylander form [93, 94]. The exchange and correlation energies were treated

within the local density approximation (LDA) according to the Ceperlay Alder (CA) parametrisation,

where the geometry optimisation, numerical atomic orbitals with double zeta polarization (DZP) basis

sets with a confinement energy of 30 meV were used. Also the convergence condition for energy was

chosen as 10-5 eV between two consecutive self-consistent field (SCF) steps and 15×15×15 Monkhorst-

Pack of k-points was used while in our calculations a 9× 9× 2 Monkhorst-Pack of k-points was used.

The band gaps of 0.88 eV and 0.80 eV reported in reference [9] for 2H-MoX2 (X = S, Se) have been

obtained by employing the WIEN2k package [95] in which Kohn-Sham DFT equations are solved in the

full-potential linearized augmented plane-wave (FP-LAPW) approach [96]. In these calculations, the

following parameters have been used for the FP-LAPW basis: the muffin-tin (MT) radii RMT are 2.15

Bohr for Mo, and 2.0 Bohr for S and Se; the LAPW basis functions with the angular quantum number

of l up to lmax = 0 in the MT region. The Brillioun zone was sampled by a k-mesh of 12× 12× 2.

Our results underestimate the experimental gaps by about 29%-40%. In fact, the underestimation of

the band gap is the well known drawback of DFT calculations [61, 62, 63].

We note that the error of DFT for these materials is significantly smaller than those in the ZrS2 family

[18], where a typical error of about 70% has been observed. This can be attributed to the intra-atomic
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nature of the band gap in these materials [9].

The band structure and the projected density of states (PDOS) for 2H-MoX2 (X = S, Se, Te) can be

divided into two regions of bands and states. The projected density of states (PDOS) curves around

−4 eV to −7 eV are mainly derived from molybdenum Mo (p orbitals) which contribute to the bonding

of Mo-X (X = S, Se, Te). The region originating from about −4 eV to the Fermi level is derived from

the contribution of the p orbitals of the chalcogen X and small contribution of p and d orbitals of the

molybdenum Mo. The region from the Fermi level to 4 eV is derived from d and p orbitals of Mo, also

from 4 eV to 7 eV is mainly dominated by p orbital of Mo. Overall, the region up to the band gap in

the valence bands and the region above the band gap are mainly contributed to by p orbitals of the

chalcogen X and p, and d orbitals of molybdenum Mo.

However, the band gap energies for 2H-MoX2 (X = S, Se, Te) decrease as we go from sulphides

to the tellurium of molybdenum Mo. This is because as we go from S to Te, the electronegativity

decreases and the orbital radii increase [1]. In fact the electronegativity (X in Pauling’s units) is a

measure of the ability of an atom to attract electrons to itself [97]. The electronegativity difference

between two atoms forming a compound is proposed as a measure of the type of binding; the lager

the electronegativity difference, the greater the ionic contribution to the binding. Various values for

electronegativities have been investigated by W. Gordy and W. J. O. Thomas, included those of S,

Se and Te, where XS > XSe > XTe [98]. It has been observed that electronegativity differences are

greatest for compounds in which the component atoms come from widely separated columns in the

Periodic Table [97]. Also for atoms in given column, electronegativity tends to decrease with increasing

atomic number. This empirical observation was translated into a simple linear relationship between

band gap and position of the components of a compound in the Periodic Table on the assumption that

increased electronegativity difference means increased ionic contribution to the bonding, which in turn

means increased band gap.

We also notice that the band gaps increase with the increased volumes as demonstrated in Figure (7.1).

The calculated equilibrium volumes are 21 Å3, 24 Å3, and 27.07 Å3 respectively. These values are larger

when compared to experimental values which are localized at 17.76 Å3, 20.13 Å3, and 24.96 Å3 in

Figure (7.1).

In order to compare the band gaps calculated with their respective approximations, we have calculated

the band gaps in the PBE using the DFT-D2 volumes. Indeed the PBE equilibrium volumes are too

large (in comparison to experiment) but the DFT-D2 volumes are closest to experiment. Once again the

band gaps in PBE approximation still larger than those of DFT-D2 but smaller than those of vdW-DF

and the experimatal ones. For PBE, the DFT-D2 volumes were used (volumes closest to the experiment

volumes) and the vdW-DF calculations have been performed with the equilibrium volumes listed in Table

(6.1) which are also closest to the experiment volumes but a bit larger than the DFT-D2.
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Figure 7.1: Band gap energies Egap (eV) versus volume V(Å3 /atom) for 2H-MoSX2 (X = S, Se, Te)

in PBE approximation.
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Figure 7.2: Brillouin zone with high symmetry points (Γ−M −K − Γ−A−L−H −A), b1, b2, and

b3 represent the lattices vectors.

Figure 7.3: DFT in PBE approximation: Left, band structure for 2H-MoS2 at zero pressure. The

minimum of conduction band is at 0.48 eV, at the K high symmetry point and the maximum of the

valence band is at −0.52 eV, at the Γ high symmetry point, thus an indirect band gap of 1.0 eV. Right,

the projected density of state (PDOS).
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Figure 7.4: DFT in DFT-D2 approximation: Left, band structure for 2H-MoS2 at zero pressure. The

minimum of conduction band is at 0.48 eV, at the K high symmetry point and the maximum of the

valence band is at −0.43 eV, at the Γ high symmetry point, thus an indirect band gap of 0.91 eV.

Right, the projected density of state (PDOS).

Figure 7.5: DFT in vdW-DF approximation: Left, band structure for 2H-MoS2 at zero pressure. The

minimum of conduction band is at 0.53 eV, at the K high symmetry and the maximum of the valence

band is at −0.49 eV, at the Γ high symmetry, thus an indirect band gap of 1.02 eV. Right, the projected

density of state (PDOS).
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Figure 7.6: DFT in PBE approximation: Left, band structure for 2H-MoSe2 at zero pressure. The

minimum of conduction band is at 0.44 eV, at the K high symmetry point, and the maximum of the

valence band is at −0.45 eV, at the Γ high symmetry point, thus an indirect band gap of 0.89 eV.

Right, the projected density of state (PDOS).

Figure 7.7: DFT in DFT-D2 approximation: Left, band structure for 2H-MoSe2 at zero pressure. The

minimum of conduction band is at 0.45 eV, at the K high symmetry point, and the maximum of the

valence band is at −0.42 eV at the Γ high symmetry point, thus an indirect band gap of 0.87 eV. Right,

the projected density of state (PDOS).
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Figure 7.8: DFT in vdW-DF approximation: Left, band structure for 2H-MoSe2 at zero pressure. The

minimum of conduction band is at 0.45 eV, at the K high symmetry point and the maximum of the

valence band is at −0.50 eV, at the Γ high symmetry point, thus an indirect band gap of 0.95 eV.

Right, the projected density of state calculated (PDOS).

Figure 7.9: DFT in PBE approximation: Left, band structure for 2H-MoTe2 at zero pressure. The

minimum of conduction band is at 0.29 eV, at the K high symmetry point, and the maximum of the

valence band is at −0.42 eV, at the Γ high symmetry point, thus an indirect band gap of 0.71 eV.

Right, the projected density of state (PDOS).



Section 7.1. Band Structure and Projected Density of States in DFT Page 62

Figure 7.10: DFT in DFT-D2 approximation: Left, band structure for 2H-MoTe2 at zero pressure. The

minimum of conduction band is at 0.29 eV, at the K high symmetry point, and the maximum of the

valence band is at −0.41 eV, at the Γ high symmetry point, thus an indirect band gap of 0.70 eV.

Right, the projected density of state (PDOS).

Figure 7.11: DFT in vdW-DF approximation: Left, band structure for 2H-MoTe2 at zero pressure.

The minimum of conduction band is at 0.40 eV, at K high symmetry point, and the maximum of the

valence band is at −0.43 eV at Γ high symmetry point, thus an indirect band gap of 0.83 eV. Right,

the projected density of state (PDOS).
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Table 7.1: Energy band gaps Egap for 2H-MoX2 (X = S, Se, Te) compounds calculated in DFT within

three different approximations.

This work

PBE DFT-D2 vdW-DF Other Exp

2H-MoS2

Egap 1.0 0.91 1.02 0.75d 1.23g

0.88e 1.29h

2H-MoSe2

Egap 0.89 0.87 0.95 0.80d 1.09h

0.84e 1.10g

2H-MoTe2

Egap 0.71 0.70 0.83 0.70f 1.0g

dReference [1]
eReference [9]
fReference [99]
gReference [92]
hReference [10]
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7.2 Energy band gap in the GW approximation

We have seen the band structure and density of states of 2H-MoX2 (X = S, Se, Te) in DFT approach.

Our results are represented in Table (7.1) and underestimated the experimental values, and as mentioned

before in section 7.1, the underestimation of the band gap is the well known drawback of DFT calcula-

tions. In order to correct the band gap energy, we have to go beyond DFT calculations by the use of a

more accurate method. The main goal of this part is to attempt to solve the energy band gap problem

of bulk 2H-MoX2 (X = S, Se, Te) by a more accurate method. The GW approximation has proven

to be a powerful tool to calculate the electronic structure of solid systems, by offering a strong formal

basis for obtaining the band gap energy using the single-particle Greens function. Various reports of

molybdenum chalcogenides for monolayers using GW approximation have been published [100, 9, 101].

We present in this part the electronic energy band gap of 2H-MoX2 (X = S, Se, Te) calculated in GW

approach on top of PBE, DFT-D2 and vdW-DF as well as the bandstructure for monolayer 1H-MoX2 (X

= S, Se, Te) calculated in GW approximation on top of PBE, DFT-D2 and vdW-DF DFT calculations.

7.3 Computational methods

Our calculations were performed with the Vienna Ab Initio Package (VASP). Core and valence electrons

were treated using the Projector Augmented Wave (PAW) method. The so-called GW version of the PAW

potentials supplied with VASP were employed here for all atoms; these potentials are designed to provide

improved scattering properties at high energies. At the DFT level, electron exchange and correlation

were treated using the PBE, DFT-D2, and vdW-DF. From convergence tests (bulk calculations), the

kinetic energy cutoff was set at 520 eV, and the brillouin zone sampled with a 9 × 9 × 1 Γ - centered

k-point (see Appendix E). The Kohn-Sham DFT electronic structures obtained have served as a starting

point for the excited state calculations. We have found that about 1008 bands for the response function

are sufficient to converge the GW band gap to within 3× 10-2 eV.

The calculations reported in this work were based on the partially self-consistent GW0 using DFT in

three different approximation (PBE, DFT-D2, and vdW-DF) eigenvalues as inputs. The quasiparticle

energies were obtained by iterating G at least 4 times in the self-consistency cycle while deeping W fixed

at its initial DFT W0 as discussed in sections 5.2, 5.3, and 5.4.

In the case of a monolayer the structure is displayed in Appendix C. Each unit cell contains one Mo

atom and two X atoms. A vacuum space of 19 Å between layers was enough to decouple a possible

periodic interaction. The electron exchange and correlation were treated using the PBE, DFT-D2, and

vdW-DF at the DFT level. From convergence tests, a kinetic energy cutoff of 400 eV was found to

be enough to reach convergence and the Brillouin zone sampled with 12 × 12 × 1 Γ - center k-points

mesh was used in all the calcualtions (see Appendix E). 184 bands for the response function bands are

sufficient to converge the GW gaps. The calculations reported in this work for monolayer structures

were based on the single shot GW ( G0W0) using DFT in three different approximation (PBE, DFT-D2,

and vdW-DF) eigenvalues as inputs.
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7.4 Quasiparticles in the GW approximation

Here we show the effect of the modified number of bands on the calculation of the quasiparticle band

gap in the GW approximation for the bulk 2H-MoX2 (X = S, Se, Te). The single shot GW (usually

called G0W0) has a tendency of producing small gaps compared to experiments. [102]. It is believed

that calculations beyond the usual single shot approximation will remedy this problem [103]. However,

GW calculations with a full update of Greens function G and screened interaction W carried for the

free-electron gas [104], and more recently for silicon (Si) semiconductor [105] show a significant overesti-

mation of the bandwith and band gap. Such poor performance is usually explained by a shift of intensity

from quasiparticle peaks into satellites, with a concomitant reduction of the screening. Technically, fully

self-consistent GW calculations are exceedingly demanding. Beside, partially self-consistent GW (GW0)

calculations yield larger gaps than the single shot G0W0 method for a wide range of materials, at least

within the applied approximations (model dielectric function and plasmon pole) [103].

We calculate the ground state electronic properties using the DFT in VASP. The calculations are per-

formed in three different approximations (DFT-D2, PBE and vdW-DF). The DFT-D2 (PBE and vdW-

DF) eigenvalues and eigenfunctions are then used to construct the Random Phase Approximation (RPA)

screened coulomb interaction W in Equation (5.6.1) and the GW self Energy
∑

described in Equations

(5.5.5) and (5.5.6). Thus the quasiparticle energies are obtained from Equations (5.3.12) and (5.3.13).

Figure 7.12: Band convergence of the quasiparticle band gap of 2H-MoX2 (X = S, Se, Te) employing a

9×9×1 k-point set in G0W0 with the DFT-D2 eigenvalues and wave functions as inputs approximation
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The convergence of the quasiparticle gaps for these three compounds are calculated in the G0W0

approximation. This approximation is obtained from a single iteration of the Dyson in (5.4.3), starting

from a Green function G0. The self-energy is given as
∑

xc[G0] = −G0W0 where W0 is calculated

by inserting G0 into (5.4.5) and solving (5.4.2) with this irreducible polarization. The Dyson equation

(5.4.3) is then solved with this self-energy to obtain an improved Green function G from which band gaps

are calculated. We further consider a partially self-consistent scheme (GW0) in calculating band gaps,

in which we write the self-energy as
∑

xc[G,G0] = −GW0, where the Green function G is determined

fully self-consistently by repeated solution of the Dyson equation and where W0 is calculated from G0

in the same way as for the G0W0 approximation.

The energy band gap as a function of number of bands is graphically represented in Figure (7.12). We

have chosen 1008 as a converge number of bands in G0W0, and further updated in 4 iterations type

of calculations corresponding to the partial GW (GW0). The band gap energies are listed in Table

(7.2) for these compounds in three different approximations. It can be observed from Table (7.2)

that the band gap energies calculated using the GW approximation are larger than those calculated

using DFT calculations. Our results overestimate the experimental gaps with about 6% - 18%. The

GW approximation describe more reliably the excitation energies than DFT. The discrepancy between

the calculated band gap in this work and the reported ones in references [9, 92, 10] is probably due

to different approximation levels. In this work we used three different approximations for exchange-

correlation energy and the lattice parameters are different from those used in [9, 92, 10]. For other

results in Table (7.2), the experimental lattice constants have been used, where the atomic positions

in the lattice were obtained by minimizing the total energy using the full-potential linearised muffin-

tin orbital method (FP-LMTO) within the local density approximation (LDA) and performed with an

8 × 8 × 2 k-points mesh [106]. We note that most of the experimental gaps listed in this work are

obtained from optical absorption spectroscopic data.

Table 7.2: Energy band gaps Egap for 2H-MoX2 (X = S, Se, Te) compounds calculated in GW (GW0)

within three different approximations

This work

PBE DFT-D2 vdW-DF Other Exp

2H-MoS2

Egap 1.37 1.37 1.46 1.23e 1.23g

1.29h

2H-MoSe2

Egap 1.23 1.22 1.32 1.11e 1.09e

1.10g

2H-MoTe2

Egap 0.93 0.93 1.06 1.0g

eReference [9]
gReference [92]
hReference [10]
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7.5 Band Structure of monolayer 1H-MoX2 (X = S, Se, Te) in the GW

approximation

The bulk 2H-MoX2 (X = S, Se, Te) structure is composed of two dimensional sheets held together by

weak van der Waals forces and strong intralayer bonds. Therefore the formation of ultra thin crystal

of 2H-MoX2 (X = S, Se, Te) known as monolayer 1H-MoX2 (X = S, Se, Te) by micromechanical

cleavage technique is possible. As demonstrated by Novoselov et al, individual sheets can be isolated

by an exfoliation technique similar to those used to produce graphene [4]. Besides it has been shown

that the band gap of the bulk 2H-MoX2 (X = S, Se, Te) increases dramatically when the sample

thickness is changed to a monolayer. Monolayer 1H-MoX2 (X = S, Se, Te) is a highly interesting two

dimensional system with a finite band gap and has recently been proposed for nanoelectronic and solar

cell applications [7, 17]. Monolayer 1H-MoX2 (X = S, Se, Te) unit cell contains 3 atoms (1 atom

of Mo and 2 of X). The structure is uniquely determined by the lattice constant a (hexagonal lattice

constant). For a structural relaxation of a monolayer a vacuum space of 19 Å between layers was

enough to decouple a possible periodic interaction. The electron exchange and correlation were treated

using the PBE, DFT-D2, and vdW-DF at the DFT level. From convergence tests, a kinetic energy

cutoff of 400 eV was found to be enough to reach convergence and the Brillouin zone sampled with

12× 12× 1 Γ - center k-points mesh was used in all the calcualtions (see Appendix E).

The equilibrium lattice constants were obtained by finding the minima of the total energy as a function

of the lattice constant. The latter total energy is obtained by varying the lattice constant in the plane.

Mo is fixed in three directions while X is allowed to move only in the z direction perpendicular to the

plane of the Mo atoms. The lattice constants a are listed in Table (7.3). One can see that our results

agree with other calculations [100].

We further present in this part convergence studies on quasiparticle energies as a function of number

of bands in order to obtain reliable band gap energies for monolayer 1H-MoX2 (X = S, Se, Te). The

convergence has been studied in the same way (G0W0) as the convergence of the bulk and represented

graphically in Figure (7.13). It can be seen that the quasiparticle bandgap decrease with increase of

the number of bands which is contrary to the bulk results where the quasiparticle bandgaps increased

with an increase of the number of bands. Convergence has been obtained with 180 valence bands, in

contrast to the bulk case where about 1008 valence bands are necessary for convergence.

The quasiparticle energies were then employed to obtain the G0W0 band structure through Wannier

interpolation using the WANNIER90 program [107]. The GW0 approximation has not been applied in

the case of monolayer systems because of the large computational effort involved when compared to the

bulk systems.

Due to the similarity on the band structure in these three approximations we have plotted only the

band structure calculated with DFT-D2 approximation for 1H-MoX2 (X = S, Se, Te) but the band gap

energies of these compounds are listed in Table (7.3) in three different approximations.
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Figure 7.13: Band convergence of the quasiparticle band gap of 1H-MoX2 (X = S, Se, Te) employing a

12×12×1 k-point set in G0W0 with the DFT-D2 eigenvalues and wave functions as inputs approximation

Figure 7.14: Quasiparticle band structure for 1H-MoS2 at zero pressure. The minimum of conduction

band is at 1.95 eV and the maximum of the valence band is at −0.85 eV, thus a direct band gap of

2.80 eV at K high symmetry point.
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Figure 7.15: Quasiparticle band structure for 1H-MoSe2 at zero pressure. The minimum of conduction

band is at 1.61 eV and the maximum of the valence band is at −0.87 eV, thus a direct band gap of

2.48 eV at K high symmetry point.

Figure 7.16: Quasiparticle bandand structure for 1H-MoTe2 at zero pressure. The minimum of conduc-

tion band is at 0.1.43 eV and the maximum of the valence band is at −0.92 eV, thus a direct band gap

of 2.18 eV at K high symmetry point.
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The electronic band structure for 1H-MoX2 (X = S, Se, Te) has been calculated along the high symmetry

points Γ −M − K − Γ (see Figure (7.2)), and are represented graphically in above Figures (7.14) -

(7.16). For all these compounds; we find a direct band gap. For instance, the band structure of 1H-

MoS2 is calculated at the lattice constant of 3.18 Å and by our G0W0 calculation is a K to K direct

band gap semiconductor with a band gap of 2.80 eV using DFT-D2. The same value has been obtained

with vdW-DF, but with the difference of 0.01 eV using PBE DFT input wavefunctions and energies

calculation. Overall, the different approximations do not have a large effect on the result as far as the

band gaps are calculated.

This prediction is in excellent agreement with the recent calculation for monolayer 1H-MoS2 at the

experimental lattice constant of 3.16 Å using full-potential linerarized muffin-tin-orbital method (FP-

LMTO), which predicted a K to K direct band gap of 2.76 eV. The band gap also agrees with the

reported gaps in reference [106]. The difference in the band gaps with other results reported in Table

(7.3) is probably due to the numeral methods used. In fact in reference [100], the calculations have

been done at the same lattice constant of 3.18 Å (our calculation) but 6× 6× 1 Γ - centered k-points

mesh was used, and the subsequent non-self-consistent with spin-orbit coupling (SOC) calculation.

Also it has been shown that using G0W0, the band gap of 1H-MoS2 is indirect with the value of 2.49

eV with a lattice parameter of 3.16 Å [108] while the direct band gap of 2.80 eV has been found with

a lattice parameter of 3.19 Å [101].

In reference [9] , the band gaps have been obtained using the experimental lattice of 3.16 Å, the

calculations were performed using FHI-gap (Green’s function with Augmented plave waves) package to

WIEIN2K with Brillouin zone k - mesh of 6× 6× 1.

Besides, for monolayer 1H-MoX2 (X = Se, Te) the discrepancy of band gaps , with other results is

mostly due to the difference on the lattice constants and the numerical method used. Comparing GW

(G0W0) and experimental values, we can see that, in general the GW direct gaps are consistently larger

than the experimental ones, obtained from direct fitting of the absorption data, by about 0.45−1.1 eV.

The question of how well the one-shot G0W0 approximation describes the true electronic structure of

these systems remains open. Partially self-consistent GW0 and fully self-consistent GW calculations for

1H-MoS2 have been shown to consistently yield direct band gaps of 2.75− 2.80 eV [101] which are in

good agreement with our results (G0W0).
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Table 7.3: Relaxed lattice parameter a (Å) and band gap energy Egap (eV) for 1H-MoX2 (X = S, Se,

Te) compounds calculated in GW (G0W0) within three different approximations.

This work

PBE DFT-D2 vdW-DF Other Exp

1H-MoS2

a 3.20 3.18 3.18 3.18i 3.16a

Egap 2.81 2.80 2.80 2.07e 1.90k

2.77i -

2.82j -

1H-MoSe2

a 3.32 3.31 3.31 3.32j

Egap 2.48 2.48 2.47 1.83e 1.38l

2.41j -

1H-MoTe2

a 3.18 3.18 3.22 3.55j

Egap 2.36 2.35 2.35 1.77j -

aReference [79]
eReference [9]
iReference [101]
jReference [100]
kReference [91]
lReference [92]



8. Optical properties

Molybdenum chalcogenides in its monolayer structure 1H-MoX2 (X = S, Se, Te) were successfully fab-

ricated using a micromechanical cleavage method in 2005 [4]. Since then, these monolayer materials

have attracted significant applications [76, 83]. For example, monolayer 1H-MoS2 has been employed

successfully in the fabrication of low-power field effect transistors [7], logic circuits [109], and phototran-

sitors [110]. Besides, optical properties of 1H-MoS2, which are directly accessible through experimental

techniques such as photoabsorption, and photoluminescence spectroscopy, have been thoroughly studied

experimentally [111, 112]. The absorption spectra shows two distinct low energy peaks at 1.88 eV and

2.06 eV for 1H-MoS2 [113], at 1.57 eV and 1.82 eV for 1H-MoSe2 and at 1.10 eV and 1.48 eV for

1H-MoTe2 [113]. These peaks are denoted by A and B respectively and derived from direct transitions

between a valence band and the conduction band at the K point of the Brillouin zone. Recall that

we showed in a previous chapter that the monolayer 1H-MoX2 (X = S, Se, Te) compounds all have a

quasiparticle direct gap at the K point.

The goal of this chapter is to accurately predict the optical spectra of monolayer molybdenum chalco-

genides 1H-MoX2 (X = S, Se, Te). As discussed in section 4.6, it is well known that density functional

theory (DFT) is ill equipped to describe photoemission as the Kohn-Sham energies do not correspond to

quasiparticle energies, which are required to correctly describe electron addition or removal events. As

mentioned before, a widely employed and efficient means to overcome this problem is the GW approxi-

mation, which goes beyond the mean-field, independent particle DFT approach and properly accounts

for many-body electron-electron interactions. While quasiparticle calculations are generally sufficient to

obtain accurate photoemission and inverse photoemission spectra, it is still inadequate to describe pho-

toabsorption processes [72, 114, 115] in which electron-hole pairs are created (without actual addition or

removal of an electron). This deficiency in DFT and GW approaches can be addressed by first calcualt-

ing the quasielectron and quasihole eigenvalues and eigenfunctions within the GW approximation and

then accounting for their interaction by solving the Bethe-Salpeter equation (BSE) for the two particle

Green’s function. In the past couple of years a number of theoretical studies of the electronic band

structure and optical excitations in monolayer 1H-MoS2 have been published [100, 101]. These studies

are based on many-body perturbation theory in the GW approximation (mainly the non-self consistent

G0W0 approach) for the band structure and Bethe-Salpeter equation (BSE) with a statically screened

electron-hole interaction for optical excitation [72, 114, 115].

While each additional level of theory in the GW-BSE ladder inevitably increases computational cost,

this process cannot be dispensed with for the monolayer molybdenum chalcogenides of interest here,

given the pre-existing evidence for strong exciton binding in 1H-MoS2 [106]. Therefore, this sequence of

calculations is systematically undertaken for each monolayer molybdenum chalcogenides in the following.

Standard Kohn-Sham DFT calculations with DFT (PBE, DFT-D2, and vdW-DF) exchange correlation

approximations were first performed for structural relaxation of the molybdenum chalcogenides mono-

layers. DFT calculations for the relaxed structures were then performed to get the DFT eigenvalues

72
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and wave functions as input to the GW calculations. Full frequency dependent GW calculations were

performed at the non-self-consistent G0W0 level, which involves only calculation of quasiparticle energies

while preserving the DFT input wave functions. As a final step, BSE calculations were performed in the

basis of the G0W0 quasielectron and quasihole wave functions to obtain optical absorption spectra for

the monolayers samples.

Due to the similarity of the results of the different approximations, in this chapter we present the BSE

spectra for DFT-D2 calculations only. BSE results for all three DFT exchange correlation approximations

as starting point are listed in Table (8.1) .

An important aspect of optical properties can be discussed by means of the dielectric function, which

depends on the momentum transfer q in the photon-electron interaction and the energy ω.

At lower energies (like that of solar radiation), one can assume q = 0 and consider only the dielectric-

dipole approximation. The total dielectric function is :

ε(ω) = ε1(ω) + ε2(ω), (8.0.1)

where ε1 is the frequency dependent real part while ε2 corresponds to the imaginary part.

Direct interband transitions, which are important for semiconducting materials, contribute to the imag-

inary part ε2(ω). Considering the appropriate transition matrix elements, ε2(ω) is calculated from

transitions from the occupied to unoccupied states:

εα,β2 (ω) =
4π2e2

Ω
lim
q→0

1

q2

∑
c,µ,k

2wkδ(εck − εµk − ω)× 〈uck+eαq |uµk〉〈uck+eβq |uµk〉, (8.0.2)

where the band indices c and µ refer to conduction and valence band states respectively. The vectors

uα are the unit vectors for the three cartesien directions, Ω is the volume of the unit cell, and uck is

the cell periodic part of the orbitals at the k-point k. The real part of the dielectric matrix ε1(ω) is

obtained by the Kramers-Kronig relation. Mathematically,

εα,β1 (ω) = 1 +
2

π
P

∫ ∞
0

εα,β2 (ω
′
)ω
′

ω′2 − ω2 + iη
dω
′
, (8.0.3)

where P denotes the principal value of the integral and η the complex shift.

The knowledge of both the real and imaginary parts of the dielectric matrix allows one to calculate other

important optical spectra such as the absorption coefficient α(ω):

α(ω) = ω

√
2
√
ε2

1(ω) + ε2
2(ω)− ε(ω) (8.0.4)
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Figure 8.1: Absorption coefficient spectra from BSE calculations for monolayer 1H-MoTe2, as a function

of photon energy (ω).
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Figure 8.2: Absorption coefficient spectra from BSE calculations for monolayer 1H-MoSe2, as a function

of photon energy (ω).

Figure 8.3: Absorption coefficient spectra from BSE calculations for monolayer 1H-MoTe2, as a function

of photon energy (ω).
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As a first approximation molybdenum chalcogenides monolayers can be treated as 2D materials. The

dielectric properties of atomically thin 2D materials are quite different from their 3D counterparts. For

example plasmons in 2D metals have acoustic dispersion relations (ωp(q) −→ 0 as q −→ 0), and

screening is generally much weaker leading to strong exciton binding energies in 2D semiconductors.

The main goal of this part is to attempt to reproduce the experimental absorption spectrum and to

examine the exciton binding energy for the 1H-MoX2 (X = S, Se, Te) family of compounds. In this work,

BSE calculations were performed using the VASP implementation in the basis of the G0W0 quasielectron

and quasihole wave functions. The five highest valence bands and the five lowest conduction bands were

used as a basis for excitonic eigenstates, which as been found sufficient to converge the energies of the

A and B peaks.

Figure 8.4: Real part of dielectric constant for monolayer 1H-MoS2, as a function of photon energy

(~ω). Computed spectra are presented at the BSE level.
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Figure 8.5: Imaginary part of dielectric constant for monolayer 1H-MoS2, as a function of photon energy

(~ω). Computed spectra are presented at the BSE level. The two energy peaks in the spectrum from

1 eV to 2.5 eV correspond to the A and B excitons.
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Figure 8.6: Real part of dielectric constant for monolayer 1H-MoSe2, as a function of photon energy

(~ω). Computed spectra are presented at the BSE level.

Figure 8.7: Imaginary part of dielectric constant for monolayer 1H-MoSe2, as a function of photon

energy (~ω). Computed spectra are presented at the BSE level. The two energy peaks in the spectrum

from 1 eV to 2.3 eV correspond to the A and B excitons.
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Figure 8.8: Real part of dielectric constant for monolayer 1H-MoTe2, as a function of photon energy

(~ω). Computed spectra are presented at the BSE level.

Figure 8.9: Imaginary part of dielectric constant for monolayer 1H-MoTe2, as a function of photon

energy (~ω). Computed spectra are presented at the BSE level. The two energy peaks in the spectrum

from 1 eV to 1.5 eV correspond to the A and B excitons.
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The absorption spectrum of monolayer 1H-MoS2 is represented graphically in Figure (8.5), which displays

the imaginary part of the frequency-depend dielectric constant ε2(ω), in the long wave length limit

q −→ 0, which corresponds to interaction with an electromagnetic wave in the plane of the monolayer.

We can see the appearance of two distinct absorption peaks at 1.93 eV and 2.32 eV for 1H-MoS2.

Similarly for for 1H-MoSe2 there are absorption peaks at 1.51 eV and 1.78 eV as can be seen in Figure

(8.7) 1.29 eV and at from Figure (8.9) there are peaks at 1.49 eV for 1H-MoTe2. These peaks lie

within the corresponding G0W0 band gaps and correspond to the strongly bound A and B excitons

(direct-gap transition at k-point of the Brillouin zone between the maximum of the valence band and

the minimum of the conduction band) respectively. The positions of these peaks are in good quantitative

agreement with experiments as confirmed by the values listed in Table (8.1). Note that the calculated

peak energies are insensitive to the DFT approximations used to calculate the DFT input for the GW

and BSE calculations.

The difference between our results and the results of reference [100] is probably due to the method

used. The authors of reference [100] included of spin-orbit coupling. However, it has previously been

shown that the spin-orbit does not have a large effect on the exciton binding energy [108].

Overall we conclude that all monolayer molybdenum chalcogenides 1H-MoX2 (X =S, Se, Te) studied

in this work display the presence of two exciton peak with excitation energies ranging from 1 eV to 2.5

eV, which would suggest possible optical applications in the near-IR to red regime.
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Table 8.1: Data from BSE calculations for monolayers 1H-MoX2 (X = S, Se, Te) calculated in DFT-D2.

Transition energy E(eV) for A and B excitons.

EA EB Other Exp (EA, EB)

1H-MoS2

PBE 1.93 2.32 (1.78 , 1.96)j (1.88 , 2.06)m

DFT-D2 1.93 2.31 (1.78 , 1.96)j -

vdW-DF2 1.94 2.33 (1.78 , 1.96)j -

1H-MoSe2

PBE 1.50 1.70 (1.50 , 1.75)j (1.57 , 1.82)n

DFT-D2 1.51 1.78 (1.50 , 1.76)j -

vdW-DF2 1.51 1.77 (1.50 , 1.77)j -

1H-MoTe2

PBE 1.29 1.49 (1.06 , 1.36)j (1.10 , 1.48)n

DFT-D2 1.29 1.49 (1.06 , 1.36)j -

vdW-DF 1.30 1.50 (1.06 , 1.36)j -
jReference [100]
mReference [111]
nReference [113]
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We also determined the binding energies for the excitons. The binding energy can be estimated from

the difference between the GW band gap and the lowest BSE absorption peaks (Transition energy). The

binding energy of the A exciton for 1H-MoS2 is then estimated to be EAb = EG0W0
gap − 1.93 = 0.87 and

for the B exciton is estimated to be EBb = EG0W0
gap − 2.32 = 0.48. The binding energy of all excitons

are listed in Table (8.2). Note that the binding energies are also insensitive to the DFT approximations

used in the DFT-GW-BSE ladder of calculations.

Table 8.2: Binding energy Eb for 1H-MoX2 (X = S, Se, Te) compounds for each exciton in three

different approximations.

Binding energy

PBE DFT-D2 vdW-DF

1H-MoS2

EAb 0.88 0.87 0.87

EBb 0.49 0.49 0.47

1H-MoSe2

EAb 0.98 0.97 0.96

EBb 0.70 0.70 0.70

1H-MoTe2

EAb 1.07 1.06 1.06

EBb 0.87 0.86 0.86

These results provide direct evidence for strong exciton binding in the 1H-MoX2 (X = S, Se, Te) mono-

layers, which was previously inferred in reference [100] using the Mott-Wannier model in conjugaison

with GW calculations. Overall, we can say that the G0W0-BSE ladder, as employed here, is clearly

capable of providing accurate absorption spectra for monolayer molybdenum chalcogenides.



9. Conclusion

In this work we have investigated structural, electronic and optical properties of molybdenum chalco-

genides within first principles calculations. We first studied the structural properties for molybdenum

chalcogenides in the bulk state 2H-MoX2 (X = S, Se, Te). DFT calculations in the PBE approximation

does not take into account of the long range disperse (van der Waals interaction) forces which are

the main form of interaction between layers in these compounds. As a consequence the equilibrium

structures calculated with the PBE approximation have too large volumes per unit cell when compared

to experiment. However, the inclusion of the van der Waals interaction in the DFT-D2 and vdW-DF

approximations significantly improve the structural parameters. Our calculated lattice parameters for

the 2H-MoX2 (X = S, Se, Te) compounds determined with the vdW-DF and DFT-D2 approximations

are in good agreement. This confirms that the PBE approximations fails in systems where van der

Waals forces are important.

In addition the cohesive energy and the formation energy have shown that these materials are stable

and can in principle be synthesized.

In addition the cohesive energy and the formation energy have suggested that these materials are ther-

modynamically stable and can in principle be synthesized.

Mechanical stability of these compounds have also been investigated using elastic constants. All three

2H-MoX2 (X = S, Se, Te) compounds were found to be mechanically stable in all three approximations

for the exchange correlation used.

The well known band gap problem in which DFT usually underestimates the band gap energy has been

confirmed. Our results underestimate the experimental gaps by about 29% - 40%. Also we have shown

that the band gap energy increases with increasing volume, thus the obtained gaps from the PBE cal-

culations were found to be larger than with other approximations as well as the experimental values.

For comparison we computed the band gaps for PBE at the same volume as the value calculated with

DFT-D2 in order to compare these approximations. Again the PBE gaps were larger than DFT-D2

results but smaller than the vdW-DF as well as the experimental ones.

We have demonstrated that many-body perturbation theory in the GW approximation describe the fun-

damental band gap energy for these compounds more accurately than DFT. The calculated results from

GW are larger than to those of DFT. The GW fundamental gaps overestimate the experimental gaps

by about 6% - 18%, but the error is significantly lower than for the DFT results.

In their monolayer state 1H-MoX2 (X = S, Se, Te), GW approximations have been applied as well and

the obtained results are in good agreement with the previous results. We have confirmed the obser-

vation that the band gap increases when we move from the bulk to a monolayer system. The band

gaps calculated for monolayer are larger than the corresponding bulk values by about 1 eV to 1.44 eV.

Also the fundamental band gaps (G0W0) for monolayer 1H-MoX2 (X = S, Se, Te) calculated here are

much larger than the measured energies for the A and B excitons. Naturally, fundamental band gaps

obtained from the GW approach should not be compared with optical transition energies due to the

missing electron-hole interaction (excitonic effects). For proper comparison with experiments, we have
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calculated the optical transition energies through BSE. Therefore, the last part of our study was focused

on the optical properties of monolayer molybdenum chalcogenides within the BSE approximation. The

results of the DFT-GW-BSE ladder of calculations were found to be insensitive to the approximation used

in the DFT part of the calculations. The presence of strongly bound excitons in monolayer 1H-MoX2 (X

= S, Se, Te) were directly confirmed from these calculations and were shown to be in good agreement

with experimental measurements. Overall, the absorption spectra of all monolayers studied in this work

indicate the presence of two strongly bound excitonic peaks, which correspond to the excitation energies

and are predicted to range from 1 eV to 2.5 eV, which suggests potential applications in the near-IR

to the red regime. As experiments on monolayers 1H-MoS2 have already demonstrated, molybdenum

chalcogenides ought to display strong photoluminescence upon thinning down to a monolayer due to an

indirect to direct gap transition. Therefore, there is potential for turning electronic and optical properties

both via quantum confinement of carriers as well as chemical composition, which then offers promise

for new optoelectronic devices.



Appendix A

Bloch Theorem

In the self consistence Kohn-Sham approach, the large number of electrons in a system (macroscopic

crystal) prohibits a direct solution of the Schrödinger equation. However, the solid has the periodic

symmetry, and this can be accessed to reduce the size of the problem significantly using Bloch’s theorem

which allows the use of mapping the Schrödinger equation for an infinite periodic solid by solving the

Schrödinger equation in a unit cell with a sery of different boundary conditions. The wave function of

one electron is symmetric, and can be written as

Ψk(r + R) = eikRΨk(r). (9.0.1)

where R is the translation vector and can be written as:

R = n1a1 + n2a2 + n3a3 (9.0.2)

with ni, i = 1, 2, 3 are integers and ai, are primitive lattice vectors and collect all equivalent points in

space. This set of points is referred to as the Bravais lattice. The primitive unit cell is defined as the

volume enclosed by the three primitive vectors:

Ω = |a1.(a2 × a3)|. (9.0.3)

The reciprocal lattice vectors are defined as:

aibj = 2πδij (9.0.4)

where bi, i = 1, 2, 3, the volume of the reciprocal space is given by

|b1.(b2 × b3)| = (2π)3

|a1.(a2 × a3)|
=

(2π)3

Ω
. (9.0.5)

Similarly to Equation (9.0.2) the vectors which connect all equivalent points in reciprocal space can be

defined as

G = m1b1 +m2b2 +m3b3, (9.0.6)

where mi, i = 1, 2, 3. We can construct the dot product of any R vectors with G

RG = 2πl, l = n1m1 + n2m2 + n3m3. (9.0.7)

Consequently, eiGR = 1. For all R and G in the Bravais lattice, any function that has a periodicity can

be written as

f(r) =
∑
G

eiGrf(G) (9.0.8)
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with f(G) Fourier transform components. Beside, Bloch’s theorem assumes that when the potential in

the one electron Hamiltonian has the translational periodicity of the Bravais lattice reads

V (r + R) = V (r), (9.0.9)

the one electron wave function has the same symmetry, so Equation (9.0.1) can be expressed as a

product of the phase factor exp(ikr) multiplied by the function uk(r) reads

Ψk(r) = eikruk(r), uk(r + R) = uk(r). (9.0.10)

The subscript k is an index for identifying the wave function. Bloch’s theorem has two equivalent

formulations whose the proof can be found in the book of solid state physics [23].

Projector augmented wave

Projector augmented wave (PAW) has been developed by P. Blöchl in 1994 [107, 53]. Since the wave

functions for real materials in different regions of space have very different signatures, for example the

bonding region, the wave function is fairly smooth, while close to the nucleus the wave function oscillates

rapidly. The idea is to divide the wave function into parts and find a transformation on the wave functions

which uses the fictitious wave functions with less oscillations close to the nucleus. It seeks to move from

the Hilbert space of wave functions {|Ψn〉}4 solutions of kohn-Sham equations to a pseudo-space (PS)

of the wave function of Hilbert { ˜|Ψn〉} which are more softer by a linear transformation:

|Ψn〉 = T |Ψ̃n〉. (9.0.11)

The Kohn-Sham equations take the form

T †ĤsT |Ψ̃n〉 = εnT †T ˜|Ψn〉, (9.0.12)

since the wave function oscillates rapidly near the nuclei we can defined the projector T as

T = I +
∑
i

TRi (9.0.13)

where I is the identity operator, and TRi is an operator acting within the sphere SRi which surrounds

the nuclei i at the points Ri. Thus the wave functions |Ψn〉 and ˜|Ψn are identical except in the core

regions. In order to define TRi , we consider two local basis centred on the nuclei i. The first basis {|φi〉}
is related to the true wave function |Ψn〉 and the second {|φ̃i〉} to |Ψ̃n〉, therefore we are inside of SRi
and we obtain

|Ψn〉 =
∑
i

ci|φi〉 and |Ψ̃n〉 =
∑
i

c̃i|φ̃i〉 (9.0.14)

The choice of these basis is define the local transformation the following expression of |φi〉 as

|φi〉 = (I + PRi) |φ̃i〉, (9.0.15)
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therefore

TRi |φ̃i〉 = |φi〉 − |φ̃i〉. (9.0.16)

Also, there is no overlapping sphere of PAW, thus inside SRi the wave function of the global system is

given by

|φi〉 = T |φ̃i〉 =
∑
i

c̃i|φi〉. (9.0.17)

On using the unicity ci = c̃i, we notice that the wave functions |φn〉 and |̃φn〉 are the same in their

basis. In addition T needs to be linear, it is necessary that ci must also be linear to |Ψ̃〉 i.e there exists

a family of projectors {|pi〉} such as:

ci = 〈p̃i|Ψ̃n〉. (9.0.18)

These projectors respect various properties. It turns out that the spheres of PAW do not overlap, inside

of SRi we obtain

|Ψ̃n〉 =
∑
i

|φ̃n〉〈p̃i|Ψ̃n〉. (9.0.19)

Equation (9.0.19) leads to the closure relation reads∑
i

|φ̃i〉〈p̃i| = I (9.0.20)

and the orthogonality gives

〈p̃i|φ̃j〉 = δi,j . (9.0.21)

We do not have the constraint outside of the PAW sphere for the projectors and can be taken as zero

in this case the local projector can be written as

TRi =
∑
i

TRi |φ̃i〉〈p̃i| (9.0.22)

=
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i|. (9.0.23)

In summing considering all nucleus and boundaries conditions the global projector is given by

T = I +
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i|. (9.0.24)

In terms of wave functions and their projectors in the real space we obtain

Ψn(r) = Ψ̃n(r) +
∑
i

∑
j

φj(r− Ri)− φ̃j(r− Ri)〈p̃j |Ψ̃n〉 (9.0.25)

where Ψ̃n is obtained from Equation (9.0.12). In summary, the transformation of PAW method is given

by Equation (9.0.25). The solutions of Kohn-Sham equations Ĥs|Ψn〉 = εn|Ψn〉, are functions which

oscillate slowly far from the nuclei but rapidly close to the core, and they are decomposed as follows

• One part oscillates slowly with Ψ̃n, solution of T †ĤsT |Ψn〉 = εnT †T |Ψn〉 and requires a grid in

Fourier space much coarser therefore a low cutoff energy.
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• Another part oscillates rapidly but localized near the nuclei, which is deduced by projection on a

local basis.

This method allows a gain of time for simulation and there is non loss of information on the real wave

function.

Observable in the PAW method

We saw that PAW method calculates the wave function on a Fourier space in such a way that it

transforms the local problem of eigenvalues of Kohn-Sham. In this part we are going to show how to

obtain the observable quantities as expectation values of the pseudo-space wave functions. Let A be an

operator and Ã the associate pseudo-operator. The expectation value is independent on the basis and

can be expressed by

〈A〉 =
∑
n

fn〈Ψ̃n|Ã|Ψ̃n〉, (9.0.26)

alternatively or as:

〈A〉 =
∑
n

fn〈Ψ̃n|Ã|Ψ̃n〉 (9.0.27)

where n is the band index and fn is the occupation of the state. The PS operator takes the form

Ã = T †AT (9.0.28)

= A+
∑
i,j

|p̃i〉
(
〈φi|A|φj〉 − 〈φ̃i|A|φ̃j

)
〈p̃j |. (9.0.29)

Also we can add an additional term arbritary in Equation (9.0.28) as:

B −
∑
i,j

|p̃i〉〈φ̃i|B|φ̃j〉〈p̃j |, (9.0.30)

where B is the operator localized in the PAW spheres. This latter equation does not change 〈A〉 but

offers an additional degree of freedom to smooth pseudo-wave function. If we consider the projection

operator |r〉〈, r| we obtain the charge density which follows the description given in Equation (9.0.28),

hence the charge density is given by

n(r) = ñ(r) + n1(r)− ñ1(r), (9.0.31)

where ñ(r) is soft PS charge density given by

ñ(r) =
∑
n

fn〈Ψ̃n|r〉〈r|Ψ̃n〉. (9.0.32)

The quantities ñ(r) and ñ(r) are defined as

n1(r) =
∑
i

∑
(n,j),k

fn〈Ψ̃n|p̃j〉〈φj |r〉〈r|φk〉〈p̃k|Ψ̃n〉, (9.0.33)
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and

ñ1(r) =
∑
i

∑
(n,j),k

fn〈Ψ̃n|p̃j〉〈φ̃j |r〉〈r|φ̃k〉〈p̃k|Ψ̃n〉. (9.0.34)

Equation (9.0.31) represents the charge density at point r, it is the expectation value of the real space

projection operator |r〉〈r| and described one of the physical quantity in the PAW method.



Appendix B

Brillouin zone and k-points

The Bloch’stheorem changes the problem of calculating an infinite number of electronic wave functions

to one of calculating a finite number of electronic wave functions at an infinite number of k points [116].

Beside the Brillouin zone is the volume in which the boundaries are defined by the planes that bisect

vectors from the origin of the reciprocal lattice to its closest reciprocal unit cell. The volume of the the

Brillouin zone is equal to that of the reciprocal unit cell [117], evaluation of many quantities such as

energy or density requires the integration over the brillouin zone with discrete set of k points [19]. Chad

and Cohen have discussed methods for finding sets of k points [118]. Nowadays the most widely used

method has been proposed by Monkhorst and Pack which provides an accurate integration and leads to

an uniform set of k points determined by the formulation valid for any crystal (in three dimensions)

kn1,n2,n3 =

3∑
i

2ni −N − 1

2N
Gi (9.0.35)

where Gi are the primitive vectors of the reciprocal lattice, ni = 1, 2, . . . , N . The energy is more difficult

to calculate for metallic system because the metals require careful integration near the Fermi surface,

thus k points are required to define the Fermi surface precisely, and lattice constants of solids [64, 119].

Ionic center and Pseudopentials

Now we have seen an approximation which allows us to calculate the total energy of a system with

the approach of Kohn-Sham in DFT. Moreover, to solve the equations of Kohn-Sham we use the self-

consistency as pointed in section 2.4.3 from which we consider the development of wave functions in

the plane wave basis sets ei(K+G)r. The choice of the plane wave basis sets is done by considering that

all plane waves whose kinetic energy is less than a certain limit called the cutoff energy, so that

K2 + G2 ≤ Ecutoff . (9.0.36)

The complete plane wave basis sets is obtained by increasing Ecutoff which is the critical parameter for

the time calculation. Thus to optimize the simulation we must find how to reduce Ecutoff . However, it

is near the nucleus that the most rapid variations of the electronic wave function are expected. Indeed,

near the nucleus the coulomb potential tends to infinity. In quantum mechanics, the more the potential

is deeper the more the wave function oscillates at high frequency. We can not deal with the part

close to the nucleus, this is particularly where the electrons are core and play an important role in

electronic structure. Several techniques have been proposed for electronic structure calculation in DFT,

from orthogonalized plane wave methods [120] to the norm-conserving pseudopotential [94, 93] which

provide better transferability of pseudopotential for different cases such as isolated atom, molecules ions,
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and crystal. A brief description of these techniques can be found in the book of R.Martin [19] as well

as their advantages and disadvantages. One major disadvantage is that there is a loss of information

between the real wave function and the calculated wave function. In this work we have used an efficient

method for describing electrons valence based on rigorous mathematical transformation called projector

augmented wave method (PAW see annex A).



Appendix C

The crystal structure of molybdenum chalcogenides

At room temperature and normal pressure, the bulk crystal of molybdenum chalcogenides MoX2 (X =

S, Se, Te) crystallise in the 2H-MoX2 hexagonal structure (Figure (9.1)) with space group P63/mmc

corresponding to space group number 194. They are made up of layered van der Walls-bonded X-Mo-X

units. Each of these stable units is referred to as a 1H-MoX2 monolayer, consisting of two hexagonal

planes of chalcohogen (X) atoms and an interaction hexagonal plane of molybdenum (Mo). Also Mo

atom falls in the center of the trigonal prismatic coordination. Since the interactions between the layers

are weak and strong within the layers, an interesting anisotropic behaviour, the formation of ultrathin

crystals of 1H-MoX2 by the micromechanical cleavage technique has been achieved by Novoselov et al.

They extracted 6.5 Å thick monolayers with a honeycomb structure.

Figure 9.1: Side view of 2H-MoX2 structure where the big and small balls represent Mo and X (S, Se,

Te) atoms respectively.
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Figure 9.2: Top view of 2H-MoX2 structure where the big and small balls represent Mo and X (S, Se,

Te) atoms respectively.
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Figure 9.3: Side view of 1H-MoX2 structure where the big and small balls represent Mo and X (S, Se,

Te) atoms respectively.
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Figure 9.4: Top view of 1H-MoX2 structure where the big and small balls represent Mo and X (S, Se,

Te) atoms respectively.



Appendix D

Charge density

We present in this part the charge density calculated in the 110 plane for both bulk 2H-MoX2 (X = S,

Se, Te) and monolayer 1H-MoX2 (X = S, Se, Te). The charge density is graphically represented in the

Figures (9.5), (9.6), and (9.7). The latter Figures describe the electron localization function (ELF) that

allows us to quantitatively analyse the nature of the chemical bounding. Therefore in both systems the

grade of the (ELF) [121] has the same features. If we consider more specially the Figure (9.5), the ELF

is encoded using a colour scheme in which high values correspond to green and low values to red. The

site of the Mo cation is characterized by the low values of ELF; whereas X sites display green annular

regions. The difference in ELF is a signature of an ionic kind of chemical bonding [122].

Besides that, there are also lobes between the adjacent X anions either in the same layer or in two

layers. Thus, the bonding between Mo and X is a mixture of ionic and covalent bonds, and there are

also slight covalent characteristic bonds between the adjacent X anions.

Figure 9.5: Top, charge density for 2H-MoS2 and bottom, charge density for 1H-MoS2 calculated in

110 plane .
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Figure 9.6: Top, charge density for 2H-MoSe2 and bottom, charge density for 1H-MoSe2 calculated in

110 plane .

Figure 9.7: Top, charge density for 2H-MoTe2 and bottom, charge density for 1H-MoTe2 calculated in

110 plane .



Appendix E

Convergence Test

(a) (b)

Figure 9.8: Convergence test for bulk 2H-MoX2 (X = S, Se, Te): (a), total energy E versus Kpoints

(Kx represents the component of kpoints along x direction, and Kz represents the component of kpoints

along z direction). (b), total energy E versus energy cuttoff (Ecut, using 9× 9× 1, and 9× 9× 2 Γ -

centered Monkorst-Pack mesh)

(c) (d)

Figure 9.9: Convergence test for monolayer 1H-MoX2 (X = S, Se, Te): (c), total energy E versus

Kpoints (Kx represents the component of kpoints along x direction). (d), total energy E versus energy

cuttoff (Ecut, using 12× 12× 1 Γ - centered Monkorst-Pack mesh)
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