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Abstract 

The impacts of mining on the environment continue to pose a risk in many regions. Palabora Mining 

Company (PMC) situated in Limpopo Province, South Africa is of environmental interest because of 

its shared border with South Africa’s Kruger National Park. PMC generates both gaseous (emitted 

from the reverberator (Rev; also known as a smokestack)) and solid (stored in the tailings storage 

facility (TSF)) waste products. To assess possible pollution to the environment from PMC’s activities, 

two study species were chosen, the Anomalous Emperor Moth (Imbrasia belina [Westwood 1849] 

(Lepidoptera: Saturniidae)) and its primary host the mopane tree (Colophospermum mopane [Kirk ex 

Benth.]). In addition to these two species being abundant on and around PMC, the mopane moth and 

all stages of its lifecycle are a source of food to many animals, and mopane caterpillars are a valuable 

source of food and income to many people in this region. Mopane caterpillars and mopane leaves 

were collected from on and around PMC at varying distances from the reverberator and TSF, as well 

as from several control sites. The elemental contents of these samples were analysed for 25 elements, 

focusing on copper, iron, aluminium, silicon, arsenic, zinc, nickel, lead, mercury, chromium and 

cadmium. In addition to these elemental analyses, the carbon and nitrogen isotopic compositions of 

these samples as well as caterpillar headwidth, body mass and mandible wear were also measured to 

assess the impacts of elemental concentrations on caterpillar growth. No mopane caterpillars were 

found at the two reverberator sites closest to the reverberator itself. Overall these two reverberator 

sites appear to be most contaminated, as concentrations of 14 of the 25 elements measured were 

highest in the mopane leaves from these two sites. The copper concentrations at these two sites, 42 

ppm and 29 ppm respectively, were at levels that are considered toxic to plants. Assuming that 10 

mopane caterpillars (each weighing 5g) are consumed a day, copper concentrations in the mopane 

caterpillar bodies across sites (between 8 ppm and 12 ppm) would equate to a maximum of 0.56 

mg.day-1, which is less than the recommended maximum intake level of 10 mg.day-1 suggested for 

humans. As there was little difference between sites in terms of leaf carbon and nitrogen composition, 

elemental concentrations do not appear to be affecting the nutritional content of the leaves. This 

would suggest that caterpillar growth is not affected by elemental concentrations at sites where they 
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can survive. Similarly, caterpillar headwidths did not vary greatly between sites for each instar, 

suggesting that elemental concentrations are not affecting mopane caterpillar growth. Headwidths and 

mandible wear were found to be useful tools to age mopane caterpillars within an instar, and can be 

used in future to ascertain if mopane caterpillars are bioaccumulating elements or eliminating excess 

elements when they moult.
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Chapter 1 

Mopane caterpillars and mopane trees 

Mopane caterpillars, commonly referred to as mopane worms, are the larval stage of the Anomalous 

Emperor Moth (Imbrasia belina [Westwood 1849] (Lepidoptera: Saturniidae)) (Banjo et al. 2006; 

Hrabar 2006; Akpalu et al. 2007). The species is widespread throughout central and southern Africa 

and occurs in abundance in Namibia, Zimbabwe, Botswana, Zambia, Angola and South Africa 

(Gaston et al. 1997; Frears et al. 1999; Picker et al. 2004; Banjo et al. 2006; Akpalu et al. 2007; 

Gondo et al. 2010). Although the name mopane worm is derived from the tendency of the caterpillars 

to defoliate mopane trees (Colophospermum mopane [Kirk ex Benth.]) (Gaston et al. 1997; Mpuchane 

et al. 2000), the caterpillars also forage on other plant species such as Carissa macrocarpa, Diospyros 

spp., Ficus spp., Searsia spp., Sclerocarya spp., Commiphora glandulosa, Acacia tortilis, Cassia 

abbreviata, Terminalia spp. and Trema orientalis (Pinhey 1972; Ditlhogo 1996; Illgner and Nel 2000; 

Picker et al. 2004).  

Although the contribution of various plant species to the diet of mopane caterpillars is well 

known, examining the diet at a finer scale can provide us with information on the quality of the diet. 

A tool that can be used to investigate the caterpillars’ diet at a finer scale is stable isotope analysis. 

Stable isotopes can be very useful to ecologists as they provide a method of tracking the movement of 

elements through the biosphere. Two of the elements that ecologists often use in isotopic studies are 

carbon and nitrogen.  

Carbon is most often used to broadly identify the diet of individuals, and is especially useful 

for distinguishing the diet of herbivores, as plants using different photosynthetic pathways produce 

different carbon isotope signatures (Cerling et al. 2003; Cerling et al. 2006; Fry 2006). Nitrogen 

isotopes on the other hand are often used to work out where organisms lie within a food web 

(Minagawa and Wada 1984; Post 2002; Fry 2006). Both carbon and nitrogen isotopes may provide us 

with a means to investigate the relationship between mopane caterpillars and their food sources, 

particularly the mopane tree. These isotopes can provide some insight into the trophic links between 
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the caterpillars and mopane leaves, as well as providing a means of assessing relative food quality of 

mopane leaves at each of the sites. 

The mopane tree, the primary host of mopane caterpillars, is a deciduous xeric savanna 

woodland species occurring in many regions of southern Africa including Namibia, Botswana, 

Zimbabwe, Mozambique and South Africa (Frears et al. 1997; van Wyk and van Wyk 1997). South 

Africa’s mopaneveld, located in Limpopo Province and Mpumalanga Province, is dominated by 

mopane trees and is an arid environment characterised by highly seasonal and variable rainfall and 

high summer temperatures (Frears et al. 1997; Rutherford et al. 2006a). Mopane trees tend to form 

monospecific stands, and range in height from shrubs of 1-2m to trees of 20m, termed cathedral 

mopanes, with most individuals growing to about 10m (van Wyk 1993; van Wyk and van Wyk 1997). 

These plants can easily be identified by their pinnate leaves with two large leaflets, together thought 

to resemble butterfly wings (van Wyk and van Wyk 1997; Hrabar 2006).  

Mopane leaves have a high total phenol and tannin content, the latter of which has been found 

to make leaves both unpalatable and indigestible to mammalian herbivores (Kumar and 

Vaithiyanathan 1990; Macala et al. 1992; Styles and Skinner 1997; Hooimeijer et al. 2005). Apart 

from a few species such as African elephants (Loxodonta africana), eland (Taurotragus oryx) and 

greater kudu (Tragelaphus strepsiceros) which supplement their diet with mopane leaves throughout 

the year, most mammalian browsers only feed on mopane leaves in the late dry season when high 

quality forage is not widely available (Styles and Skinner 1996, 1997; Smallie and O’Connor 2000; 

Hooimeijer et al. 2005). This is also when young green leaves with low tannin content are available 

(Styles and Skinner 1997).  

As there are trade-offs between the various plant functions  because of a plants’ limited 

resources (Bazzaz et al. 1987), the reduced tannin content in the young leaves is most likely because 

growth has been prioritised in order to generate new leaves, with defence possibly being prioritised at 

a later time. This is in line with the nutrient stress hypothesis which suggests that during times of 

higher nutrient availability, resources will be directed towards plant growth, and during times of lower 

nutrient availability, excess carbon will be focused toward anti-herbivore defences (Bryant et al. 
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1983; Tuomi et al. 1984). Styles and Skinner (1996) found this same temporal pattern in plant 

function and stated that younger mopane leaves utilise the products of photosynthesis for growth and 

not protection. Such a temporal pattern in plant function prioritisation was also shown by Ferwerda et 

al. (2005) who found that the concentration of chemical defences in mopane leaves was positively 

correlated with time since manual defoliation of a mopane tree.  

Unlike many other herbivores however, mopane caterpillars are able to survive solely on 

mopane leaves despite the high levels of phenols and tannins in the leaves. Young green mopane 

leaves, which emerge in spring, have the highest crude protein content and lowest total phenolic and 

tannin contents in spring as compared to other seasons (Styles and Skinner 1997; Smit 2001). Mopane 

caterpillars however appear to prefer mature mopane leaves over young green mopane leaves (Styles 

and Skinner 1996; personal observation). These mature green mopane leaves contain their highest 

crude protein content and their lowest tannin content during the summer season, which is when the 

majority of mopane caterpillars are abundant (Frears et al. 1997; Gaston et al. 1997; Styles and 

Skinner 1997; Hrabar 2006).  

Despite the high phenolic content of mopane leaves, mopane trees are sometimes completely 

defoliated by mopane caterpillars in some regions of the mopaneveld where large and unpredictable 

outbreaks of mopane caterpillars occasionally occur (Frears et al. 1997; Gaston et al. 1997; Frears et 

al. 1999; Picker et al. 2004; Hrabar 2006). After these defoliation events, leaf growth often occurs, 

commonly referred to as compensatory growth or compensatory regrowth (McNaughton 1983; Gold 

and Caldwell 1989; Haile et al. 1998; McIntire and Hik 2002; Khan and Lone 2005). In mopane trees, 

compensatory leaf growth is smaller in size than mature leaves, but has also been found to be 

nutritious for herbivores, most likely because compensatory growth has a lower total phenolic and 

tannin content than the older leaves (Styles and Skinner 1997; Hrabar 2006). Tuomi et al. (1984) have 

however suggested that the nitrogen content of leaves decreases following a defoliation event. These 

defoliation events typically occur in late spring or early summer after the larval stage of the first 

generation of the mopane moth has been completed, as this generation of larvae usually produce the 

largest caterpillar populations, and so the caterpillars’ need for mopane leaves would be highest at that 

time (Dithlogo 1996; Gaston et al. 1997).  
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Adult mopane moths live for just a few days and do not eat, having only rudimentary 

mouthparts, but rely instead on fat and water stores attained during the larval stage (Styles and 

Skinner 1996; Hrabar 2006; Gondo et al. 2010). Male mopane moths locate females by detecting 

female pheromones (Gondo et al. 2010). After mating has occurred, female mopane moths lay a 

single cluster of eggs around twigs or on leaves, with a cluster typically containing 30 to 335 eggs 

(Hrabar 2006; Akpalu et al. 2007; Gondo et al. 2010). Approximately 10 days after the eggs have 

been laid, small black larvae hatch and begin their 4-6 week long larval stage, during which time they 

pass through five growth stages, known as instars, with each instar lasting 5-7 days (Klok and Chown 

1999; Akpalu et al. 2007; Gondo et al. 2010). The first two instars are light brown in colour while the 

last three instars are black with aposematically coloured scales which are yellow, white and red in 

colour (Gaston et al. 1997). The last three instars are also covered in white hairs, which may act as 

irritants as has been found in other caterpillars (Allen 2010; Schabel 2010), and sharp black spines to 

deter predators (Ditlhogo 1996; Dube and Dube 2010; Gahukar 2011). As with many insects, mopane 

caterpillars undergo a large variation in body size over the course of their life. The caterpillars 

experience an estimated 4 000 fold increase in body size over the larval period (Gaston et al. 1997, 

Akpalu et al. 2007; Gondo et al. 2010), with fifth instar caterpillars usually weighing about 12-13g 

and measuring approximately 80 mm in length (Frears et al. 1999; Hrabar 2006). This increase in 

body size results in caterpillars moulting, because chitin is rigid and cannot stretch to accommodate 

the increased body size (Gondo et al. 2010).   

During the first three instar stages, the mopane caterpillars are gregarious and forage in 

groups of 20 to 200 caterpillars (Akpalu et al. 2007; Gondo et al. 2010), while caterpillars of the 

remaining two instars tend to be solitary (Akpalu et al. 2007; Gondo et al. 2010). At the end of the 

larval stage, the fifth instar caterpillars descend from the tree and burrow 10-15 cm into the ground 

where they undergo metamorphosis (Ghazoul 2006; Hrabar 2006; Akpalu et al. 2007; Gondo et al. 

2010). The mopane moth is bivoltine throughout most of its distribution, meaning there are usually 

two generations each year (Hrabar 2006; Akpalu et al. 2007). Both generations of the moth emerge 

during the summer months when temperatures are typically high, rainfall is most likely to occur and 
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mopane trees are in leaf (Frears et al. 1997). Depending on the generation, pupae remain underground 

for six to seven weeks (first generation) or experience a period of diapause and emerge six to seven 

months later (Hrabar 2006; Gondo et al. 2010). The life cycle of the first generation of the species for 

the season begins when adult moths from the previous season mate and lay eggs, usually between 

October and January, and the first generation of adults then gives rise to the second generation of eggs 

(Figure 1.1) between February and May (Frears et al. 1997; Gaston et al. 1997; Hrabar 2006; Akpalu 

et al. 2007; Gondo et al. 2010). In the case of bivoltine populations, the first generation tends to be 

more abundant than the second, but the size of the population for both generations is greatly variable 

from year to year and is dependent on many factors such as food availability and rainfall (Dithlogo 

1996; Gaston et al. 1997; Wiggins 1997). In some more arid areas, the species is univoltine (Hrabar 

2006; Akpalu et al. 2007), so only one emergence of moths occurs each year in summer (Wiggins 

1997).  

 

Figure 1.1. Life cycle of the Anomalous Emperor Moth (Imbrasia belina) in regions where the species is 

bivoltine. 

Mopane worms as a food source 

This life cycle of the mopane moth as well as the population size of each generation is very 

important for ecologists to understand, as all stages of the species’ life cycle are a source of food, with 

Gaston et al. (1997) estimating the species to form part of as many as 70 trophic links during periods 

of outbreak. Mopane larvae are eaten by mammals such as baboons (Papio ursinus) and vervet 

monkeys (Chlorocebus pygerythrus), as well as by at least 34 bird species, and invertebrates such as 
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spiders, ants and mantids (Styles 1995; Styles and Skinner 1996; Gaston et al. 1997; Hrabar 2006). 

The pupae are eaten by black-backed jackals (Canis mesomelas), bat-eared foxes (Otocyon 

megalotis), warthogs (Phacochoerus africanus) and aardvarks (Orycteropus afer) while the moths of 

the species fall prey to spiders, birds and bats (Hrabar 2006).  

In addition to forming an important part of the natural ecosystem, mopane caterpillars are also 

one of the most important edible insects for humans in southern Africa for both dietary and economic 

reasons (Frears et al. 1997; Barany et al. 2001; Akpalu et al. 2007; Ghaly 2009). Processed mopane 

worms (caterpillars that have had their gut content squeezed out, and are dried and ready for 

consumption) contain approximately 60% crude protein (three times the protein content of beef per 

unit weight), 17% crude fat and 11% minerals including calcium, iron and phosphorus (Akpalu et al. 

2007; Dube and Dube 2010). As a result of the high levels of iron that most caterpillars contain, they 

are often given to pregnant and nursing women as well as people suffering from anaemia to increase 

the amount of iron, calcium and protein in their diet (Akpalu et al. 2007). Mopane caterpillars are also 

rich in vitamins and contain high levels of essential amino acids such as lysine, tryptophan and 

methionine (Dreyer 1968; Dube and Dube 2010).  As caterpillars have numerous nutritional 

properties, dried caterpillars are even made into flour to feed children in some African countries in an 

attempt to suppress malnutrition where access to good quality food is limited (Akpalu et al. 2007).  

Mopane worms are in high demand in poor, rural areas of southern Africa because of their 

great nutritional value, but they are also a highly sought-after delicacy in many regions, such as 

Zambia and Malawi (Dreyer 1968; Frears et al. 1997; Mbata et al. 2002; Banjo et al. 2006; Gondo et 

al. 2010).  The caterpillars also contribute to peoples’ livelihoods through trade (Ditlhogo 1996; Stack 

et al. 2003; Hope et al. 2009; Dube and Dube 2010; Thomas 2013). Tonnes of caterpillars were 

recorded to be collected per annum in the early 1980s, with Dreyer and Wehmeyer (1982) indicating 

that approximately 1 600 000 kg of mopane caterpillars were being sold annually according to an 

estimate by the South African Bureau of Standards. The sales value of mopane caterpillars (dry mass) 

increased from less than US $0.5 / kg in the early1980s to US $10 / kg by 1996 (Ditlhogo 1996; Dube 

and Dube 2010).   
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As a result of the value placed on mopane worms, they are being unsustainably harvested in 

many regions (Barany et al. 2001; Banjo et al. 2006; Akpalu et al. 2007; Ghaly 2009; Gondo et al. 

2010) and this non-selective harvesting has led to the disappearance of many mopane worm 

populations in some parts of Botswana and South Africa (Banjo et al. 2006; Hrabar 2006; Akpalu et 

al. 2007). In South Africa, the demand for and overexploitation of mopane worms is so great that 

mopane worms are even being imported from other countries such as Zimbabwe (Gondo et al. 2010).  

Mines and impacts of mining 

Most South African mopane caterpillars are harvested for food in Limpopo Province, where 

the majority of South Africa’s mopaneveld is located, but this region is also the location of numerous 

mining operations (Rutherford et al. 2006b; Council for Geoscience 2011). Mining can adversely 

affect the environment through land clearing and pollution. Land clearing has the potential to lead to 

habitat fragmentation or even complete habitat loss. This can result in the extirpation of many species 

of plants and animals in those regions, particularly of species that are highly specialised, and that can 

only survive under specific conditions or in specific areas (Brown 1971; Owens and Bennett 2000). 

Pollution from mining activities however can affect both generalist and specialist species, and this 

includes adverse effects on the human population.  

The most well-known form of mine pollution is Acid Mine Drainage (AMD), which occurs 

when sulphide-bearing rocks come into contact with oxygen and water, and through a number of 

chemical reactions, can be transformed into compounds such as sulphuric acid (Johnson and Hallberg 

2005; Akcil and Koldas 2006). This polluted water can contaminate surface water and groundwater, 

as well as soil (Akcil and Koldas 2006). Contaminants may then be taken up from any of these 

sources by plants which can themselves be adversely affected and later affect other organisms at 

higher trophic levels. Organisms at higher trophic levels are more likely to be exposed to greater 

amounts of pollutants through biomagnification, particularly if large quantities of the pollutants are 

bioaccumulated in organisms that form part of that trophic link (Woodwell 1967; Connolly and 

Pedersen 1988; Gobas et al. 1993). Mining pollutants thus have the potential to cause a reduction in 
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biodiversity as a result of the potential toxicity of those pollutants (Akcil and Koldas 2006). Types of 

mining most commonly associated with AMD include copper, gold and nickel mining (Akcil and 

Koldas 2006). 

One group of mining pollutants that is of great interest to scientists ecologically are heavy 

metals. The term “heavy metals” is misleading as the elements to which the term refers are not all 

“heavy” in terms of atomic number, density or atomic weight, and some are not truly metallic at all in 

terms of their properties (Volesky 1990). The grouping of elements as heavy metals has instead been 

made because these elements are all identified as having the ability to be toxic. Heavy metals tend to 

have a disproportionate effect relative to their low concentration in the environment (Volesky 1990). 

Although some trace elements required by plants and other organisms are heavy metals, high 

concentrations of these substances can be toxic (Kumar et al. 1995; Hall 2002).  Metal toxicity could 

then pose lethal or sub-lethal threats to organisms exposed to heavy metal pollution, even in small 

doses (Boyd et al. 2006; Lürling and Scheffer 2007; Boyd 2010).  

Effects of heavy metals include inhibition of seed germination in plants, and inhibition of 

growth in both plants and animals (Scott et al. 2003; Sharma and Agrawal 2005; Lürling and Scheffer 

2007; Pavel et al. 2013). The sub-lethal effects of heavy metals are possibly of greatest concern 

because they can negatively impact important ecological relationships within and between species 

(Klaschka 2008; Boyd 2010).  This disruption can for example affect species interactions by altering 

normal predator avoidance behaviours (Lürling and Scheffer 2007; Klaschka 2008; Boyd 2010). Scott 

et al. (2003) showed that when exposed to high levels of waterborne cadmium (Cd) (2μg Cd l-1), 

juvenile rainbow trout (Oncorhynchus mykiss) did not respond to chemical alarm substances warning 

of nearby predators.  

In insects, heavy metals have been found to have a number of detrimental effects including 

reductions in survival, growth, fecundity, weight and eclosion success, and increases in development 

time (Haney and Lipsey 1973; Kazimírová and Ortel 2000; Scheirs et al. 2006; Butler and Trumble 

2008). In addition to the negative effects that heavy metals can have on organisms, heavy metals can 

also remain in the environment for long periods, increasing the likelihood that they may cause harm 
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(Kumar et al. 1995). The group of heavy metals includes elements such as mercury, arsenic, 

cadmium, chromium, lead, nickel and copper. 

Copper, like some other elements classed as a heavy metal, is an essential element for 

optimum plant and animal function, but at high concentrations can be toxic (Gaetke and Chow 2003; 

Dučić and Polle 2005). Copper functions as a cofactor in many enzymes, and also plays a key role in 

processes such as oxidative phosphorylation, transcription and iron mobilization (Fernandes and 

Henriques 1991; Gaetke and Chow 2003; Yruela 2005; Turnlund 2006). High concentrations of 

copper can however be toxic, with toxic effects including chlorosis, inhibition or stunting of growth, 

discolouration of leaves, necrosis, inhibition of protein function or enzyme activity, deficiencies of 

other essential elements, and disruption of photosynthesis and respiration (Marschner 1995; Yruela 

2005).  

The strength of the effect of copper toxicity in plants has been linked to the plant growth stage 

when the high copper concentration is applied (Maksymiec 1997). In brook trout (Salvelinus 

fontinalis), McKim and Benoit (1971) found that high levels of copper (>17.4 µg.L-1 (ppb) in the 

water) resulted in a reduction of both hatchability and the number of viable eggs produced as well as 

reducing adult brook trout growth and survival. In green crabs (Carcinus maenas) and rock crabs 

(Cancer irroratus), Thurberg et al. (1973) found that the osmoregulatory function of the crabs was 

lost with exposure to increasing concentrations of copper. 

Copper has also been found to affect the survival and fecundity of many insects. Gőrűr (2006, 

2007) found that cabbage aphids (Brevicoryne brassicae (Hemiptera: Aphididae)) which were fed 

copper contaminated cabbages (Brassica oleracea) and radishes (Raphanus sativus) showed higher 

fluctuating asymmetry and mortality, and lower fecundity, fitness and reproductive potential, than 

those fed on non-contaminated control plants. Larvae of the midge, Chironomus decorus, experienced 

lower growth and deformities of their mouthparts when exposed to high levels of copper in their food 

substrate (Kosalwat and Knight 1987). In tiger mosquitoes, Aedes albopictus (Diptera: Culicidae), the 

effects of exposure to high levels of copper included a reduction in the number of larvae, inhibition of 

larval growth, increases in larval mortality, and complete prevention of oviposition (Romi et al. 
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2000). Copper was also found to cause reduced feeding, reproduction and survival in Neochetina 

eichhorniae and Neochetina bruchi (Newete 2014). 

The Palabora Mining Company 

Copper is the main product of The Palabora Mining Company, currently the only producer of 

refined copper in South Africa (PMC 2012). The Palabora Mining Company Limited (PMC), situated 

in the town of Phalaborwa, Limpopo Province, South Africa, was the county’s first open-pit copper 

mine, with the mining of ore beginning in 1965 (Heinrich 1970). The mine is considered to be world-

class and produces 30 000 tonnes of copper ore per day and approximately 60 000 tonnes of refined 

copper per annum (PMC 2012). The mine also produces a number of by-products, including 

vermiculite, magnetite, nickel sulphate, phosphates, uranium, zirconium, palladium and small 

quantities of gold, silver and platinum (PMC 2012).  

The Palabora Mining Company shares a border with the Kruger National Park (PMC 2012). 

This park is one of South Africa’s largest national parks and one of Africa’s largest conservation 

areas, as well as being South Africa’s largest tourist attraction (Eckhardt et al. 2000; PMC 2012). As a 

result of this shared border, many environmental groups monitor the impact of PMC on its 

surrounding environment, including government, South African National Parks Board, environmental 

groups and the local community (PMC 2012). As part of PMCs environmental policy, the company 

attempts to minimize the negative impact that they have on the environment (PMC 2012).  

As with most mining operations, PMC generates waste products. The extraction and refining 

of copper at PMC involves smelting, with gaseous wastes being released into the environment via the 

reverberators (smokestacks) after being cleaned (PMC 2012).  This reverberator could be a substantial 

source of pollutants as smelting has been attributed as one of the primary sources of anthropogenic 

trace metal emissions (van Zyl et al. 2014). Solid waste products from PMC’s operations are stored in 

tailings storage facilities (commonly referred to as mine dumps). Tailings facilities have been shown 

to contain high concentrations of many heavy metals which can be leached by surface water and 

groundwater and released into the environment (Dudka and Adriano 1997; Concas et al. 2006). Plants 
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growing close to tailings and the organisms that consume these plants would therefore be good 

indicators of the levels of heavy metals in the system.  

 

Aims and objectives 

As mopane trees and mopane caterpillars both occur in abundance in the region of 

Phalaborwa, where PMC is located, they were selected as bioindicator species for this study. Insects 

play a vital role in the bioaccumulation and dispersal of pollutants in the environment (Andrahennadi 

and Pickering 2008), making the mopane caterpillars a good study species for an elemental study such 

as this. Mopane caterpillars are also easily harvested and have a relatively short generation time, with 

two generations in a season in this region, further making them a suitable study species. As mopane 

caterpillars and all other stages of the species life cycle are important sources of food in their natural 

environment as well as to humans, it is important to understand as much as we can about the life cycle 

and ecological interactions of this species and to ascertain if toxic concentrations of any of these 

elements are travelling through the local food web on and around PMC.  

The main aim of the study was to measure the concentrations of 25 elements, including 

copper and several other heavy metals, in both mopane leaves and mopane caterpillars, which 

provided information on whether or not the trees and caterpillars on and around PMC were taking up 

potentially toxic levels of these elements. It was expected that concentrations of copper, iron, 

aluminium and silicon would be higher at the PMC sites than at the control sites as these elements are 

components of the main products and by-products of PMC. As toxic elements have the potential to 

harm both the environment and human society, it is important to determine to what extent the 

environment around the mine is exposed to these substances. For this reason, elemental concentrations 

were measured at varying distances from the mine’s main sources of contamination (the reverberator 

and the tailings storage facility). It was expected that elemental concentrations would be highest at the 

reverberator sites, followed by the tailings storage facility sites and control sites respectively. 

Comparisons of the concentrations of these 25 elements were made between mature mopane leaves, 

mopane caterpillar bodies and mopane caterpillar gut contents, between sites, between mopane 

caterpillar bodies and gut contents, and between mature mopane leaves and compensatory growth. 
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The second aspect of the study examined the carbon and nitrogen isotopic composition of the 

mopane caterpillars and mopane leaves to ascertain if elemental concentrations have any effect on leaf 

nutrition and subsequently caterpillar growth. Carbon and nitrogen isotopes were also examined to 

ascertain if the relative compositions of the isotopes between trophic levels followed the expected 

trend of a 1‰ increase in δ13C and a 2-4 ‰ increase in δ15N between trophic levels. A number of 

carbon and nitrogen isotopic composition comparisons were made, including comparisons of mature 

mopane leaves to compensatory growth, mopane caterpillar bodies to mature mopane leaves, 

caterpillar bodies of the five mopane instars to each other, mopane caterpillar bodies to mopane 

caterpillar gut contents, and lastly comparisons of all these sample types across sites. Correlations 

between isotopic compositions and elemental concentrations were also made. It was expected that the 

varying levels of contamination at the study sites would be either positively or negatively correlated 

with the isotopic composition of the mopane leaves. 

The final portion of this study was to examine mopane caterpillars on and around PMC and in 

Musina (control site), and obtain measurements of headwidths of caterpillars which can be used to 

assign individual caterpillars to a particular instar. Measurements of mopane caterpillar body mass 

were also collected and mandible wear scores were allocated to mopane caterpillar mandibles. These 

two measures were taken to see which if they might be useful tools to further age caterpillars. All 

three measures were examined to ascertain if they could be used to assess caterpillar growth, and to 

establish if elemental concentrations may be affecting caterpillar growth. For each instar, an 

assessment of the relationship between mopane caterpillar headwidth and body mass were made, as 

well as an assessment of the relationship between mopane caterpillar body mass and mandible wear. It 

was expected that caterpillars from more contaminated sites would weigh less than those from control 

sites. It was also expected that the frequency of heavily worn caterpillar mandibles would be higher at 

contaminated sites than at the control sites.   
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Study Sites 

The field study was largely conducted on and around Palabora Mining Company Limited (PMC) 

property (23° 57' 21" S 31° 09' 13" E), located just south of the town of Phalaborwa, Limpopo 

Province, South Africa. The mean monthly minimum temperature in the area during the coldest part 

of the year (July) is 5.7 ºC and while the mean monthly maximum temperature during the hottest part 

of the year (January) is 38.4 ºC (Rutherford et al. 2006a). Phalaborwa receives most rainfall between 

September and May, with an annual mean of 514 mm (Rutherford et al. 2006a). The vegetation in this 

region is Phalaborwa – Timbavati Mopaneveld, with the sandy uplands dominated by Combretum 

apiculatum, Terminalia sericea and Colophospermum mopane (Rutherford et al. 2006a). In the clayey 

bottomlands, Colophospermum mopane becomes more dominant while Combretum apiculatum 

becomes sparse and Terminalia sericea is absent (Rutherford et al. 2006a).  

The two main sources of contamination at PMC are the reverberator (Rev) and the tailings 

storage facility (TSF) (Figure 1.2). Sampling sites were located at various distances from these 

sources. Reverberator sites (Rev 1, Rev 2 and Rev 3) were located approximately 0.7 km, 1.7 km and 

8.5 km respectively from the reverberator and all lay within the fallout area as determined by the 

dominant wind direction in the region (typically a south south easterly wind or a southerly wind 

(WindFinder 2014)) (Figure 1.2). Tailings storage facility sites 1 and 2 (TSF 1 and TSF 2) were 

located approximately 0.1km and 0.6 km respectively from the closest edge of the tailings storage 

facility, and 4.22 km and 5.56 km south-east of the reverberator respectively, upwind of the 

reverberator (Figure 1.2). Two control sites (Con1 and Con 2) were located approximately 5.5 km 

north and 28 km south-west (24° 5' 3.29" S 30° 53' 48.36" E) of the reverberator respectively (Figures 

1.2 and 1.3). Mopane leaf and caterpillar samples from the sites on and around PMC were collected 

between 26 November and 7 December 2012.  

An additional site was located on land portion Runde 592MS, Runde Farm (22° 44' 43.4142" 

S 29° 48' 0.6984" E), Limpopo Province, South Africa (Figure 1.3), approximately 193 km north west 

of PMC. The mean monthly minimum temperature in the coldest part of the year (June) in this region 
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is 0.9 ºC while the mean monthly temperature during hottest part of the year (November) is 39.9 ºC 

(Rutherford et al. 2006a). The area also receives mean annual rainfall of 334 mm, with most rain 

received between October and April (Rutherford et al. 2006a). The region is part of the Musina 

Mopane Bushveld vegetation unit (Rutherford et al. 2006a). This vegetation unit is dominated in its 

western section by Colophospermum mopane on clayey bottomlands and Combretum apiculatum on 

its hills (Rutherford et al. 2006a). The eastern basalt sections of this vegetation unit are dominated by 

Colophospermum mopane and Terminalia prunioides, while areas with deep sandy soils are 

dominated by Colophospermum mopane, Terminalia sericea, Grewia flava and Combretum 

apiculatum (Rutherford et al. 2006a). Mopane caterpillar samples from Runde Farm (RF) were 

collected between 25 December 2012 and 7 January 2013. As no leaf samples were collected from 

Runde Farm to serve as a reference point for caterpillars collected from here, caterpillars from Runde 

Farm were omitted from analyses of elemental concentration and isotopes.
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Figure 1.2. Study sites on and around the Palabora Mining Company property. The two sources of contamination are the reverberator (Rev) and the 

tailings storage facility (TSF) (open circle and open square respectively). There are three Rev sites (solid circles) at increasing distances away from the 

reverberator, and there are similarly two TSF sites (solid squares) at increasing distances away from the tailings facility. One of the control (Con) sites 

(open triangle) is located north of the town of Phalaborwa (open star). The prevailing winds in the region are south south easterlies. © 2015 Google 

Earth; © 2015 CNES/Astrium; © 2015 AfrisGIS (Pty) Ltd.; © 2015 DigitalGlobe. 
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Figure 1.3. Additional study sites were located elsewhere in Limpopo Province. A second Control site (Con 2) is located approximately 28 km south-west of the Palabora Mining 

Company (PMC) complex, while Runde Farm (RF), an additional control site for mopane caterpillars, is located approximately 193 km north-west of PMC. The yellow line 

indicates both the northern boundary of Limpopo Province as well as the national border between South Africa (bottom) and its neighbours Botswana, Zimbabwe and 

Mozambique respectively from left to right. © 2015 Google Earth; © 2015 AfriGIS (Pty) Ltd.; Landsat; US Dept of State Geographer. 
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Chapter 2  

Using mopane caterpillars (Imbrasia belina) as an indicator of elemental concentrations 

in the environment 

Abstract 

The Palabora Mining Company (PMC) is a copper mine situated in Limpopo Province, South Africa. 

As with most mining activity, PMC generates both gaseous and solid waste products. Gaseous wastes 

are released into the atmosphere via a reverberator (Rev) while solid wastes are stored in a tailings 

storage facility. The study aimed to assess differences in elemental concentrations between mopane 

leaves (Colophospermum mopane) and mopane caterpillars (Imbrasia belina), and mopane caterpillar 

bodies and mopane caterpillar gut contents. This was done to investigate if high concentrations of 

elements were reaching the environment and humans consuming the caterpillars. The study also 

aimed to ascertain if these elemental concentrations differed between sites. Mopane leaves and 

mopane caterpillars were collected from sites around the two sources of contamination as well as from 

several control sites, and the concentrations of 25 elements were measured in these samples. 

Concentrations of copper in the mopane leaves of sites Rev 1 and Rev 2 (42 ppm and 29 ppm), those 

sites closest to the reverberator, were more than double the copper concentrations found in mopane 

leaves from the other sites, which ranged between 8 ppm and 14 ppm. Concentrations of elements 

were not found to be consistently higher or lower in mopane caterpillars than in mopane leaves for all 

elements measured. Mopane caterpillar gut content elemental concentrations were mostly higher than 

mopane caterpillar body concentrations of the elements measured. No caterpillars were found at Rev 1 

and Rev 2, which could indicate that the dust fallout from the reverberator and the concentrations of 

elements within the fallout may be too high to allow mopane caterpillars to survive. Of all the sites 

examined, Rev 1 and Rev 2 had the highest elemental concentrations. Caterpillars from other sites 

were able to survive despite the elemental concentrations to which they were exposed. The elemental 

concentrations found in the caterpillars would also pose no health risk to humans who consume them. 
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Introduction 

Environmental impacts of mining 

South Africa has a large mining sector with the mining industry directly contributing more than 5% to 

the country’s Gross Domestic Product (GDP) each year (Chamber of Mines of South Africa 2012). 

Throughout the country, large areas of land have been set aside for mining. Although society has uses 

for these minerals, there are many environmental costs associated with obtaining them. Most mining 

activities have adversely affected the environment through land clearing and pollution. Land clearing 

can have far reaching effects because of the vast amounts of land set aside for the practice of mining. 

This land clearing results in the loss of habitat for many species and can also cause habitat 

fragmentation which may result in a number of species going locally extinct (Pimm and Raven 2000; 

Driscoll 2004). Pollution can also have far reaching effects, as pollutants can be transferred along 

food webs and in this way can be transported great distances both spatially and temporally (Woodwell 

1967; Connolly and Pedersen 1988; Gobas et al. 1993).  

The form of mine pollution that is often viewed as causing the greatest harm to the 

environment is Acid Mine Drainage (AMD). The production of AMD occurs when sulphide-bearing 

rocks react with oxygen and water and form compounds such as sulphuric acid (Johnson and Hallberg 

2005; Akcil and Koldas 2006). The acidic water produced provides suitable conditions for heavy 

metals to dissolve as many metals have increased solubility at low pH (Schindler et al. 1980; Bell et 

al. 2001; Sheoran and Sheoran 2006). This heavy metal rich acidic water can then contaminate 

surface water, groundwater or soil (Akcil and Koldas 2006). These pollutants can then be taken up by 

plants from the water or the soil. 

As plants are the primary producers in terrestrial systems, the majority of the macro- and 

micro-nutrients needed by organisms at higher trophic levels originate from plants (Boyd et al. 2006). 

A number of metallic elements are categorised as macro- and micro-nutrients, and are vital to the 

normal functioning of living organisms, filling both nutritional and physiological requirements 

(Volesky 1990). However the presence of these elements in excess may result in chronic or acute 
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toxicity or even death (Volesky 1990; Kumar et al. 1995; Hall 2002). If these trace elements or other 

contaminants released into the environment from AMD are bioavailable (referring to the proportion of 

metals that can be incorporated into the plant and used for metabolic processes (John and Leventhal 

1995; Adriano 2001)) to plants, plants have the potential to bioaccumulate large quantities of these 

substances.  

Elemental uptake by plants occurs in a number of ways including, (a) passive transport down 

a concentration gradient through the plant cell membrane, (b) through the action of plant growth-

promoting bacteria and/or (c) through the action of mycorrhizal fungi, which is the predominant route 

of elemental uptake (Schützendübel and Polle 2002; Glick 2003). If any heavy metals do become 

bioavailable to plants, organisms at higher trophic levels may then be exposed to even greater 

amounts of pollutants than the plants through the process of biomagnification, but this does not 

always occur as pollutants are not always bioaccumulated (Kazimírová and Ortel 2000). If primary 

consumers feed on plants with high concentrations of heavy metals, secondary consumers that feed on 

those primary consumers can then accumulate higher concentrations of the pollutants than each 

primary consumer. When this process is repeated as one moves up the food chain, the result is 

biomagnification (Laskowski 1991). Some organisms are able to survive high levels of pollutants by 

excreting or sequestering excess pollutants, while others are able to tolerate high levels of pollutants. 

If organisms are physiologically unable to excrete, sequester or tolerate the concentrations of harmful 

substances they have accumulated, this can result in the death of those organisms, or possibly even the 

death of whole populations or communities within a polluted area.  

Heavy metals 

One group of pollutants that are often associated with mining activities are a class of elements 

referred to as heavy metal. The term “heavy metals” does not truly represent the elements making up 

this group, as most of these elements are not heavy in terms of atomic number, density or atomic 

weight, and some are not even truly metallic in terms of their properties (Volesky 1990). This 

categorisation has rather been made because of the potentially toxic properties that all these elements 
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possess, even in small doses (Boyd et al. 2006). Heavy metals tend to have a very large effect on the 

environment despite them occurring in relatively low proportions in the environment (Volesky 1990). 

In addition to the negative effects that heavy metals can have on organisms, heavy metals can also 

remain in the environment for long periods, increasing the likelihood that the heavy metals may cause 

harm (Kumar et al. 1995).  Elements considered as heavy metals include arsenic, cadmium, 

chromium, nickel, lead and copper. 

 

Palabora Mining Company 

Copper is the main product of The Palabora Mining Company (PMC), which is situated in the 

town of Phalaborwa, Limpopo Province, South Africa. Apart from copper, the mine also produces 

several by-products including vermiculite, magnetite and nickel sulphate (PMC 2012). The extraction 

of copper and the other by-products of PMC results in the production of gaseous waste products such 

as sulphur dioxide (SO2). These gaseous waste products first go through a cleaning process, and are 

then released into the atmosphere via the reverberators (commonly referred to as smokestacks) (PMC 

2012). Small quantities of particulate matter from the products and by-products are also likely to be 

released into the atmosphere along with the gaseous waste products as a result of the processes used to 

extract these products from the ore and separate them into different grades. As with most mining 

operations, PMC also generates solid waste products, many of which are stored in tailings storage 

facilities (commonly referred to as mine dumps). These tailings are the unwanted materials leftover 

from mining. Most tailings are reported to leach heavy metals into the environment via AMD, giving 

many tailings facilities a poor environmental reputation. The reverberator and the copper tailings 

storage facility are the two main sources of contamination at PMC. 

As three of PMC’s main products are copper, vermiculite and magnetite, high concentrations 

of the elements making up these products were expected at the mine sites. Of the elements measured 

in the current study, those elements that form the products of copper, vermiculite and magnetite, or 

part thereof, are copper, iron, aluminium and silicon. In order to assess the potential impact of 

pollutants from PMC on the environment, the plants surrounding the reverberator and the tailings 
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storage facility, as well as the organisms feeding upon these plants, were considered as indicators of 

the levels of pollutants in the system.  

One of the most dominant trees in the Phalaborwa region where PMC is located is the 

mopane tree (Colophospermum mopane [Kirk ex Benth.]), making this a suitable plant study species 

of the elemental conditions in the area. In addition to this, the mopane tree is the primary host of the 

mopane caterpillar (Imbrasia belina [Westwood 1849] (Lepidoptera: Saturniidae)).  Mopane moths 

and all stages of their life cycle form part of many trophic links (Gaston et al. 1997). Mopane 

caterpillars are also a staple in the diet of many local people, sometimes even being a preferred meat 

source, with people in the region harvesting thousands of these caterpillars each year (Ferreira et al. 

2003; Banjo et al. 2006; Akpalu et al. 2007; Ghaly 2009; Gahukar 2011). High elemental 

concentrations in this region originating from the mine can therefore have serious and potentially far 

reaching consequences not only on the immediate environment but also on locals and people from 

other regions where mopane caterpillars are exported to. As insects are considered important 

organisms in the transfer of metals between different trophic levels, anything influencing the metal 

concentration in the insects could affect the distribution of metals throughout an ecosystem (Lindqvist 

and Block 1997). Owing to this, and the role that the mopane caterpillars play as a source of food, an 

assessment of insects in the area surrounding the mine was undertaken. Mopane caterpillars are 

abundant in the region and have a relatively short life cycle further making them a suitable study 

species for this region.  

Aims and objectives 

The aim of this aspect of the study was to measure the concentration of 25 elements in 

mopane leaves and mopane caterpillars on and around PMC in relation to various sources of 

contamination in order to assess the mine’s impact on the environment. The elements measured were 

aluminium (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), 

copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), 

molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), sulphur (S), selenium (Se), 
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silicon (Si), strontium (Sr), uranium (U), tungsten (W) and zinc (Zn). The first objective was to 

measure the concentrations of elements within mopane leaves and mopane caterpillars (bodies and gut 

contents measured separately) originating from the different sources of contamination, and secondly 

to compare elemental concentrations between sites. This was done to assess the relative amounts of 

contamination at each site. Thirdly differences in elemental concentrations between the bodies and gut 

contents of mopane caterpillars were assessed.  This was done to establish if the caterpillars were 

likely to be storing or eliminating a large proportion of the elements ingested. The fourth objective 

was to compare the elemental concentrations of mature mopane leaves and mopane leaf compensatory 

growth (where it could be collected). This was to assess if excess amounts of elements were moved 

into the new growth perhaps with the goal of elimination from the plant. 

 Materials and Methods 

Experimental design 

At each site, excluding Runde Farm, 10 mopane trees were randomly chosen. The GPS coordinates 

were noted. Five leaf clusters of mature leaves, identified as the tougher, bigger, darker leaves, were 

selected from each tree. Samples of compensatory growth, identified as the smaller, softer, often 

reddish leaves, were also collected from trees exhibiting these leaves. From each tree, five mopane 

caterpillars of each instar were collected where possible and immediately placed in boiling water for a 

minute. As much of the gut contents were then squeezed from the bodies as possible. Body and gut 

content samples of each caterpillar were stored separately in plastic bags and all samples were frozen 

on site. Samples were returned to the laboratory at the University of the Witwatersrand, Johannesburg, 

where they were then freeze dried. Leaves were not washed before being analysed as mopane 

caterpillars naturally exposed to these leaves would be exposed to unwashed leaves.   

 Elemental analyses of mopane leaf and mopane caterpillar samples were done using 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Three fifth instar caterpillars were 

selected for analysis from each of five trees per site for the four sites. Where fifth instar caterpillars 

were not available, fourth instar caterpillars were instead analysed. Caterpillar body and gut content 
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samples were analysed separately. A selection of mature leaves and compensatory growth (where 

available) were selected for analysis from each of the sites where leaves had been collected. No 

mopane caterpillars or evidence thereof was observed at Rev 1 or Rev 2. Although mopane 

caterpillars were collected from Control site 2, an insufficient number of fourth instar caterpillars and 

no fifth instar caterpillars were collected, and as such elemental analysis was not conducted on 

caterpillars from this site. Elemental data are represented as parts per million (ppm) but can also be 

read as mg.L-1. 

Data analysis 

All statistical analyses were completed using R software (R Development Core Team 2013). 

Kolmogorov-Smirnov tests showed that the elemental data did not follow a normal distribution and 

non-parametric statistical tests were subsequently used in data analysis. Kruskal-Wallis tests were 

used to ascertain if there were significant differences between mature leaves, caterpillar bodies and 

caterpillar gut contents, between sites for each of the elements measured. Kruskal Multiple 

Comparison post-hoc tests (from the package “pgirmess” (Giraudoux 2011)) were conducted after 

each Kruskal-Wallis test. Wilcoxon Rank Sum tests were used to establish whether or not there was a 

difference in concentration of each of the elements between mature leaves and compensatory growth.  

Results 

Mean concentrations of Cu in mopane leaves were highest from Rev 1 (43 ppm) and Rev 2 (29ppm) 

while Cu concentrations of mopane leaves from the remaining sites ranged between 8 ppm and  

13 ppm, with leaves from Con 2 having the lowest mean Cu concentration (Kruskal-Wallis χ2
 (6) = 

28.9285; n = 34; P < 0.0001) (Figure 2.1). Mean concentrations of Cu in caterpillar bodies were 

highest from Rev 3 and lowest from TSF 2 but ranged between 8 ppm and 11 ppm across all sites 

(Kruskal-Wallis χ2
 (3) = 18.2516; n = 60; P < 0.0001) (Figure 2.1). Mean concentrations of Cu in 

caterpillar gut contents ranged from 9 ppm to 13 ppm, with the highest concentrations from Rev 3 and 

the lowest concentrations once again from TSF 2 (Kruskal-Wallis χ2
 (3) = 17.5411; n = 60; P < 0.001) 

(Figure 2.1).  
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Mean concentrations of Fe in mopane leaves from Rev 1 (497 ppm) and Rev 2 (868 ppm) 

were much higher than from the remaining sites which ranged between 57 ppm and 242 ppm 

(Kruskal-Wallis χ2
 (6) = 30.6894; n = 34; P < 0.0001) (Figure 2.1). Mean concentrations of Fe in 

caterpillar bodies were highest from TSF 1 (225 ppm) and Rev 3 (145 ppm) and much lower at TSF 2 

(86 ppm) and Con 1 (63 ppm) (Kruskal-Wallis χ2
 (3) = 40.8155; n = 60; P < 0.0001) (Figure 2.1). 

Mean concentrations of Fe in caterpillar gut contents were highest at TSF 1 (185 ppm) and lowest 

from TSF 2 (89 ppm) and Con 1 (88 ppm) (Kruskal-Wallis χ2
 (3) = 17.3327; n = 60; P < 0.001) (Figure 

2.1).  

Mean concentrations of Al in mopane leaves were highest from Rev 1 (54 ppm) and lowest 

from Con 2 (23 ppm) (Kruskal-Wallis χ2
 (6) = 23.3982; n = 34; P < 0.001) (Figure 2.1). Mean 

concentrations of Al found in caterpillar bodies ranged between 26 ppm and 61 ppm, but were lowest 

and highest at TSF 2 and Rev 3 respectively (Kruskal-Wallis χ2
 (3) = 17.0901; n = 60; P < 0.001) 

(Figure 2.1). The highest mean concentration of Al in caterpillar gut contents was from Rev 3 (42 

ppm) while the lowest was from TSF 1 (22 ppm) (Kruskal-Wallis χ2
 (3) = 20.308; n = 60; P < 0.001) 

(Figure 2.1).  

Mean concentrations of Si in mopane leaves from Rev 3 (306 ppm), Rev 1 (257 ppm) and 

Rev 2 (235 ppm) were much higher than from the remaining sites, which ranged between 104 ppm 

and 164 ppm, with mopane leaves from Con 1 having the lowest mean Si concentration (Kruskal-

Wallis χ2
 (6) = 20.2398; n = 34; P < 0.005) (Figure 2.2). Mean concentrations of Si in caterpillar bodies 

ranged from 206 ppm to 224 ppm and were lowest and highest at Rev 3 and TSF 1 respectively 

(Kruskal-Wallis χ2
 (3) = 0.2101; n = 60; P > 0.05) (Figure 2.2). The highest mean concentration of Si in 

caterpillar gut contents were found from Rev 3 (316 ppm) while the lowest concentrations were found 

from TSF 2 (219 ppm) (Kruskal-Wallis χ2
 (3) = 9.929; n = 60; P < 0.05) (Figure 2.2).  



 

Page 34 of 112 
 

 

 

 

 

0

60

120

180

240

300

360

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2

C
on

ce
n

tr
at

io
n

 (
p

p
m

)

0

60

120

180

240

300

360

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2
0

60

120

180

240

300

360

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2

C
on

ce
n

tr
at

io
n

 (
p

p
m

)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2

0.00

0.01

0.02

0.03

0.04

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2C
on

ce
n

tr
at

io
n

 (
p

p
m

)

Study Sites

0.00

0.01

0.02

0.03

0.04

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2

Study Sites

0.00

0.01

0.02

0.03

0.04

Rev1 Rev2 Rev3 TSF1 TSF2 Con1 Con2

Study Sites

Silicon 

Arsenic 

Cadmium 

Figure 2.2. Effect of site position on mean concentrations (± standard error) of silicon, arsenic and cadmium in mopane leaves (green) (n = 24), mopane caterpillar bodies (blue) (n = 60) 
and caterpillar gut contents (red) (n = 60) from seven study sites on and around the Palabora Mining Company in Limpopo Province, South Africa. Letters indicate differences between 
means within sample groups. 
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Mean concentrations of As in mopane leaves at all sites were approximately 0.2 ppm (Figure 

2.2), but the lowest concentrations were from Con 1 while the highest concentrations were from TSF 

2 (Figure 2.2). Mean concentrations of As in mopane caterpillar bodies ranged from  0.276 ppm to 

0.438 ppm and were lowest and highest respectively from Rev 3 and TSF 2 (Kruskal-Wallis χ2
 (3) = 

4.115;   n = 60; P > 0.05). Mean concentrations of As in caterpillar gut contents ranged from 0.306 

ppm to 0.493 ppm and were lowest and highest from Con 1 and TSF 1 respectively (Kruskal-Wallis χ2
 

(3) = 0.5272; n = 60; P > 0.05) (Figure 2.2).  

The mean concentrations of Cd found in mopane leaves were highest from Rev 1 (0.03 ppm) 

and lowest from (0.005 ppm) and Con 2 (0.005 ppm) (Kruskal-Wallis χ2
 (6) = 25.2718;   n = 34; P < 

0.0005) (Figure 2.2). Mean concentrations of Cd in mopane caterpillar bodies ranged from 0.005 ppm 

to 0.01 ppm and were lowest and highest from Rev 3 and TSF 1 respectively (Kruskal-Wallis χ2
 (3) = 

5.185; n = 60; P > 0.05) (Figure 2.2). Mean concentrations of Cd in mopane caterpillar gut contents 

ranged from 0.009 ppm to 0.02 ppm with concentrations from Rev 3 being lowest and concentrations 

from TSF 2 being highest (Kruskal-Wallis χ2
 (3) = 3.9869;   n = 60; P > 0.05) (Figure 2.2).  

Mean concentration of Cr in mopane leaves from Rev 1 (0.75 ppm) and Rev 2 (0.65 ppm) 

were much higher than from the remaining sites, which ranged between 0.10 ppm (from Con 2) and 

0.25 ppm (from Rev 3) (Kruskal-Wallis χ2
 (6) = 28.0756; n = 34; P < 0.0001) (Figure 2.3). Mean 

concentrations of Cr in mopane caterpillar bodies ranged from 0.472 ppm to 1.135 ppm and were 

lowest and highest from Rev 3 and TSF 2 respectively (Kruskal-Wallis χ2
 (3) = 6.2509; n = 60; P > 

0.05) (Figure 2.3). Mean concentrations of Cr in mopane caterpillar gut contents were highest from 

TSF 1 (1.181 ppm) and this was almost double the concentrations found at the remaining sites, which 

ranged from 0.265 ppm at Con 1 to 0.641 ppm from TSF 2 (Kruskal-Wallis χ2
 (3) = 6.2509; n = 60; P > 

0.05) (Figure 2.3).  
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Figure 2.3. Effect of site position on mean concentrations (± standard error) of chromium, mercury and nickel in mopane leaves (green) (n = 24), mopane caterpillar bodies (blue) (n = 60) 
and caterpillar gut contents (red) (n = 60) from seven study sites on and around the Palabora Mining Company in Limpopo Province, South Africa. Letters indicate differences between 
means within sample groups. 
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Mature mopane leaves across all sites had mean Hg concentrations of 0.006 ppm (Figure 2.3). 

Mean concentrations of Hg in caterpillar bodies from Rev 3 (0.01 ppm) were highest while those from 

Con 1 (0.04 ppm) were lowest (Kruskal-Wallis χ2
 (3) = 9.2757; n = 60; P < 0.05) (Figure 2.3). 

Similarly the mean Hg concentrations of caterpillar gut contents were lowest from Rev 3 (0.009 ppm) 

and highest from Con 1 (0.028 ppm) (Kruskal-Wallis χ2
 (3) = 3.0402; n = 60; P > 0.05) (Figure 2.3). 

Mean concentrations of Ni in leaves were highest from Rev 2 (4 ppm) and lowest from TSF 2 

(0.51 ppm) (Kruskal-Wallis χ2
 (6) = 25.8529; n = 34;  P < 0.0005) (Figure 2.3).  Mean concentrations 

of Ni in caterpillar bodies ranged from 0.17 ppm to 0.51 ppm and were lowest and highest at TSF 2 

and TSF 1 respectively (Kruskal-Wallis χ2
 (4) = 20.5899; n = 75; P < 0.05) (Figure 2.3). Mean 

concentration of Ni in caterpillar gut contents were lowest at TSF 2 (0.40 ppm) and highest at Rev 3 

(1 ppm) (Kruskal-Wallis χ2
 (4) = 21.9495; n = 75; P < 0.0001) (Figure 2.3).  

Mean concentrations of Pb in leaves were highest from Rev 1 (0.32 ppm) and lowest from 

Con 2 (0.07 ppm) (Kruskal-Wallis χ2
 (6) = 25.0371; n = 34; P < 0.0005) (Figure 2.4). Mean 

concentrations of lead in caterpillar bodies ranged from 0.08 ppm to 0.15 ppm, with the lowest 

concentrations from TSF 2 and the highest from TSF 1 (Kruskal-Wallis χ2
 (3) = 15.7245; n = 60; P < 

0.005) (Figure 2.4). Mean concentrations of Pb in caterpillar gut contents were highest from TSF 2 

(0.09 ppm) and highest from Con 1 (0.15 ppm) (Kruskal-Wallis χ2
 (3) = 8.458; n = 60; P < 0.05) 

(Figure 2.4).  

Mean concentrations of Zn in mopane leaves ranged from 17 ppm to 33 ppm with the lowest 

concentrations from Rev 1 and the highest from Con 2 (Kruskal-Wallis χ2
 (6) = 21.8298; n = 34; P < 

0.005) (Figure 2.4). Mean concentrations of Zn in caterpillar bodies ranged from134.4 ppm to 160.6 

ppm and were lowest and highest at Con 1 and Rev 3 respectively (Kruskal-Wallis χ2
 (3) = 5.1928; n = 

60; P > 0.05) (Figure 2.4). Mean concentrations of Zn in caterpillar gut contents were highest from 

TSF 1 (113 ppm) and lowest at Con 1 (98 ppm) (Kruskal-Wallis χ2
 (3) = 0.3189; n = 60; P > 0.05) 

(Figure 2.4).  
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Figure 2.4. Effect of site position on mean concentrations (± standard error) of lead, zinc, and barium in mopane leaves (green) (n = 24), mopane caterpillar bodies (blue) (n = 60) and 
caterpillar gut contents (red) (n = 60) from seven study sites on and around the Palabora Mining Company in Limpopo Province, South Africa. Letters indicate differences between means 
within sample groups. 
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Mean concentrations of Ba in mopane leaves from Con 2 (30 ppm) were the highest of all 

sites, and four times higher than the lowest mean mopane leaf Ba concentration found at Rev 1 (7 

ppm) (Kruskal-Wallis χ2
 (6) = 22.6514; n = 34; P < 0.001) (Figure 2.4). The mean concentrations of 

barium in caterpillar bodies from Rev 3 (2 ppm) were highest while those from Con 1 (2 ppm) were 

lowest (Kruskal-Wallis χ2
 (3) = 33.5331; n = 60; P < 0.0001) (Figure 2.4). The mean concentrations of 

Ba in the caterpillar gut contents were much lower from TSF 1 (2 ppm) than at any of the remaining 

sites (all greater than 7 ppm) with mean caterpillar gut content Ba concentrations from Rev 3 (10 

ppm) being highest (Kruskal-Wallis χ2
 (3) = 32.3561; n = 60; P < 0.0001) (Figure 2.4).  

Mean concentrations of Ca in mopane leaves ranged from 5 853 ppm to 10 531 ppm across all 

sites with the lowest concentrations found at TSF 2 and the highest concentrations found at Rev 2 

(Kruskal-Wallis χ2
 (6) = 12.0017; n = 34;  P > 0.05) (Figure 2.5). Mean concentrations of Ca in 

caterpillar bodies from TSF 2 (1133 ppm) were lowest while those from Con 1 (1735 ppm) were 

highest (Kruskal-Wallis χ2
 (3) = 29.1193; n = 60; P < 0.0001) (Figure 2.5). Mean concentrations of Ca 

in caterpillar gut contents ranged from 3 890 ppm to 5 986 ppm, witht he lowest and highest 

concentrations from TSF 1 and Con 1 respectively (Kruskal-Wallis χ2
 (3) = 13.9031; n = 60; P < 0.005) 

(Figure 2.5).  

Mean concentrations of Co in mopane leaves were lowest from Con 2 (0.05 ppm) and highest 

from Rev 1 (0.53 ppm) (Kruskal-Wallis χ2
 (6) = 28.5238;  n = 34; P < 0.0001) (Figure 2.5). Mean 

concentration of Co in caterpillar bodies ranged between 0.04 ppm and 0.16 ppm with the lowest and 

highest concentrations from Con 1 and TSF 1 respectively (Kruskal-Wallis χ2
 (3) = 35.3099; n = 60; P 

< 0.0001) (Figure 2.5). Mean concentrations of Co in caterpillar bodies from Con 1 (0.07 ppm) were 

lowest while those from TSF 1 (0.14 ppm) were highest) (Kruskal-Wallis χ2
 (3) = 8.7789; n = 75; P < 

0.05) (Figure 2.5).  
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Figure 2.5. Effect of site position on mean concentrations (± standard error) of calcium, cobalt and potassium in mopane leaves (green) (n = 24), mopane caterpillar bodies (blue) (n = 60) 
and caterpillar gut contents (red) (n = 60) from seven study sites on and around the Palabora Mining Company in Limpopo Province, South Africa. Letters indicate differences between 
means within sample groups.
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Mean concentrations of K in mopane leaves ranged from 8 224 ppm to 13 447 ppm, with the 

lowest concentrations found at TSF 1 and the highest concentrations from Con 1 (Kruskal-Wallis χ2
 (6) 

= 12.2597; n = 34; P > 0.05) (Figure 2.5). Mean concentrations of K in caterpillar bodies from Rev 3 

(19 111 ppm) were highest while those from TSF 1 (14 958 ppm) were lowest (Kruskal-Wallis χ2
 (3) = 

18.228; n = 60; P < 0.0005) (Figure 2.5). Mean concentrations of K in caterpillar gut contents ranged 

from 29 533 ppm to 33 783 ppm, with the lowest and highest concentrations from TSF 1 and Con 1 

respectively (Kruskal-Wallis χ2
 (3) = 6.3731; n = 60; P > 0.05) (Figure 2.5).  

Mean concentration of Mg in mopane leaves from Con 1 (2 193 ppm) were lowest while 

those from Rev 3 (3 077 ppm) were highest (Kruskal-Wallis χ2
 (6) = 14.6462; n = 34; P < 0.05) (Figure 

2.6). Mean concentrations of Mg in caterpillar bodies ranged from 2 444 ppm to 2 669 ppm with the 

lowest concentrations from TSF 1 and the highest concentrations from Con 1 (Kruskal-Wallis χ2
 (3) = 

4.336; n = 60; P > 0.05) (Figure 2.6). Mean concentrations of Mg in caterpillar gut contents ranged 

from 3 162 ppm to 3 813 ppm with the lowest and highest concentrations from Con 1 and TSF 1 

respectively (Kruskal-Wallis χ2
 (3) = 6.2516; n = 75; P > 0.05) (Figure 2.6).  

Mean concentrations of Mn in leaves were lowest from Rev 1 (20 ppm) and highest from Rev 

3 (78 ppm) (Kruskal-Wallis χ2
 (6) = 23.1869; n = 34; P < 0.001) (Figure 2.6). Mean concentrations of 

Mn in caterpillar bodies ranged from 37 ppm to 46 ppm with the lowest and highest concentrations 

from TSF 1 and TSF 2 respectively (Kruskal-Wallis χ2
 (3) = 5.3987; n = 60; P > 0.05). Mean 

concentrations of Mn in caterpillar gut contents were lowest from TSF 1 (15 ppm) and highest from 

from Rev 3 (38 ppm) (38 ppm) (Kruskal-Wallis χ2
 (3) = 30.3443; n = 60; P < 0.0001) (Figure 2.6).  

Mean concentrations of Mo in mopane leaves were highest from Rev 2 (0.17 ppm) and lowest 

from Con 1 (0.07 ppm) (Kruskal-Wallis χ2
 (6) = 13.9338; n = 34; P < 0.05) (Figure 2.6). Mean 

concentrations of Mo in caterpillar bodies ranged from 0.41ppm to 0.56 ppm, with the lowest and 

highest concentrations from Con 1 and TSF 1 respectively (Kruskal-Wallis χ2
 (3) = 6.0728; n = 60;  

P > 0.05) (Figure 2.6). Mean concentrations of Mo in caterpillar gut contents ranged from 0.30 ppm to 

0.48 ppm and the lowest and highest concentrations were found at Con 1 and TSF 1 respectively 

(Kruskal-Wallis χ2
 (3) = 7.9315; n = 60; P < 0.05) (Figure 2.6).  
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Figure 2.6. Effect of site position on mean concentrations (± standard error) of magnesium, manganese and molybdenum in mopane leaves (green) (n = 24), mopane caterpillar bodies 
(blue) (n = 60) and caterpillar gut contents (red) (n = 60) from seven study sites on and around the Palabora Mining Company in Limpopo Province, South Africa. Letters indicate 
differences between means within sample groups. 
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Mean concentrations of Na in mopane leaves ranged between 4 ppm and 6 ppm for most sites, 

except for Rev 1 (16 ppm) which had a mean Na concentration in the mopane leaves that was more 

than double that of any other site (Kruskal-Wallis χ2
 (6) = 11.2663; n = 34; P > 0.05) (Figure 2.7). 

Mean concentrations of Na in caterpillar bodies ranged from 23 ppm to 40 ppm, with the lowest and 

highest concentrations found at TSF 1 and TSF 2 respectively (Kruskal-Wallis χ2
 (3) = 7.962; n = 60; P 

< 0.05) (Figure 2.7). Mean concentrations of Na in caterpillar gut contents were lowest from Rev 3 

(18 ppm) and highest from TSF 2 (33.8 ppm) (Kruskal-Wallis χ2
 (3) = 7.5902; n = 75; P > 0.05) (Figure 

2.7).  

Mean concentrations of P in mopane leaves ranged from 1 310 ppm to 2 624 ppm, with the 

lowest and highest concentrations from Con 2 and Rev 3 respectively (Kruskal-Wallis χ2
 (6) = 21.6292; 

n = 34; P < 0.005) (Figure 2.7). Mean concentrations of P in caterpillar bodies were lowest from Con 

1 (6 635 ppm) and highest from Rev 3(7 606 ppm) (Kruskal-Wallis χ2
 (3) = 7.3637; n = 60; P > 0.05) 

(Figure 2.7). Mean concentrations of P in caterpillar gut contents ranged from 6 343 ppm to 7 872 

ppm, with the lowest and highest concentrations found at Con 1 and TSF 1 respectively (Kruskal-

Wallis χ2
 (3) = 5.8813; n = 60; P > 0.05) (Figure 2.7).  

Mean concentrations of S in mopane leaves were lowest from TSF 1 (1 742 ppm) and highest 

from Rev 2 (2 449 ppm) (Kruskal-Wallis χ2
 (6) = 19.9255; n = 34; P < 0.005) (Figure 2.7). Mean 

concentrations of S in caterpillar bodies ranged from 5 291 ppm to 5 838 ppm, with the lowest and 

highest concentrations from TSF 1 and Con 1 respectively (Kruskal-Wallis χ2
 (3) = 4.2949; n = 60; P > 

0.05) (Figure 2.7). Mean concentrations of S in caterpillar gut contents were lowest from Con 1 

(4 229 ppm) and highest from TSF 1 (5 429 ppm) (Kruskal-Wallis χ2
 (3) = 2.9991; n = 60; P > 0.05) 

(Figure 2.7).  
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Figure 2.7. Effect of site position on mean concentrations of (± standard error) of sodium, phosphorus and sulphur in mopane leaves (green) (n = 24), mopane caterpillar bodies (blue) (n = 
60) and caterpillar gut contents (red) (n = 60) from seven study sites on and around the Palabora Mining Company in Limpopo Province, South Africa. Letters indicate differences between 
means within sample groups. 
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Mean concentrations of Se in mopane leaves ranged from 3.96 ppm to 4.04 ppm, with the 

lowest and highest concentrations found at Con 1 and TSF 2 respectively (Kruskal-Wallis χ2
 (6) = 

6.3016 n = 34; P > 0.05) (Figure 2.8). Mean concentrations of Se in caterpillar bodies were lowest at 

Rev 3 (5.52 ppm) and highest at TSF 2 (8.76 ppm) (Kruskal-Wallis χ2
 (3) = 4.193; n = 60; P > 0.05) 

(Figure 2.8). Mean concentrations of Se in caterpillar gut contents were lowest at Con 1 (6.27 ppm) 

and highest at TSF 1 (9.87 ppm) (Kruskal-Wallis χ2
 (3) = 0.4861; n = 60; P > 0.05) (Figure 2.8).  

Mean concentrations of Sr in mopane leaves ranged from 26 ppm to 73 ppm with the lowest 

and highest concentrations from TSF 1 and Rev 2 respectively (Kruskal-Wallis χ2
 (6) = 21.1682; n = 

34; P < 0.005) (Figure 2.8). Mean concentrations of Sr in caterpillar bodies were lowest at TSF 1 (3 

ppm) and highest at Rev 3 (8 ppm) (Kruskal-Wallis χ2
 (3) = 33.8319; n = 60; P < 0.0001) (Figure 2.8). 

Mean concentrations of Sr in caterpillar gut contents were much lower from TSF 1 (9 ppm) than the 

other sites, which ranged between 22 ppm and 38 ppm, with Rev 3 having the highest concentration 

(Kruskal-Wallis χ2
 (3) = 32.2643; n = 60; P < 0.0001) (Figure 2.8).  

Mean concentrations of U in mopane leaves ranged from 0.003 ppm to 0.086 ppm, with the 

lowest and highest concentrations found at Con 2 and Rev 2 respectively (Kruskal-Wallis χ2
 (6) = 

27.3095; n = 34; P < 0.0005) (Figure 2.8). Mean concentrations of U in caterpillar bodies were lowest 

at Con 1 (0.01 ppm) and highest at TSF 1 (0.03 ppm) (Kruskal-Wallis χ2
 (3) = 20.2059; n = 60; P < 

0.0001) (Figure 2.8). Mean concentrations of U in caterpillar gut contents were lowest at Con 1 (0.01 

ppm) and highest at TSF 1 (0.04 ppm) (Kruskal-Wallis χ2
 (3) = 16.0724; n = 75; P < 0.05) (Figure 2.8).  

Mean concentrations of W in mopane leaves ranged from 0.001 ppm to 0.003 ppm, with the 

lowest concentrations found at Con 1 (0.001 ppm) and Con 2 (0.001 ppm), and the highest 

concentrations found at Rev 2 (0.003 ppm) (Kruskal-Wallis χ2
 (6) = 5.13; n = 34; P > 0.05) (Figure 2.9). 

Mean concentrations of W in caterpillar bodies ranged from 0.003 ppm to 0.012 ppm, with the lowest 

and highest concentrations from Rev 3 and Con 1 respectively (Kruskal-Wallis χ2
 (3) = 2.4236; n = 60; 

P > 0.05) (Figure 2.9). Mean concentrations of W in caterpillar gut contents were lowest from TSF 2 

(0.003 ppm) and were highest at Con 1 (0.009 ppm) (Kruskal-Wallis χ2
 (3) = 0.8365; n = 60; P > 0.05) 

(Figure 2.9). 
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Figure 2.8. Effect of site position on mean concentrations (± standard error) of selenium, strontium and uranium in mopane leaves (green) (n = 24), mopane caterpillar bodies (blue) (n = 
60) and caterpillar gut contents (red) (n = 60) from seven study sites on and around the Palabora Mining Company in Limpopo Province, South Africa. Letters indicate differences between 
means within sample groups.
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Mean concentrations of elements only differed significantly between mopane caterpillar 

bodies and caterpillar guts for Ca (Wilcoxon Rank Sum Test; W = 0; n = 60; P < 0.05), K (Wilcoxon 

Rank Sum Test; W = 0; n = 60; P < 0.05), Mg (Wilcoxon Rank Sum Test; W = 0; n = 60; P < 0.05), Sr 

(Wilcoxon Rank Sum Test; W = 0; n = 60; P < 0.05) and Zn (Wilcoxon Rank Sum Test; W = 0; n = 

60; P < 0.05), across all sites (Figures 2.4 – 2.9). Mean concentrations of most elements did not differ 

significantly between mature mopane leaves and compensatory growth (Table 2.1). Mean Ba 

concentrations differed significantly between mature mopane leaves (19 ppm) and compensatory 

growth (3 ppm) across all sites (Wilcoxon Rank Sum Test; W = 0; n = 37; P < 0.0005) (Table 2.1). 

The mean Ca content of mature mopane leaves (8 649 ppm) differed significantly from those of 

compensatory growth (1 465 ppm) across all sites (Wilcoxon Rank Sum Test; W = 0; n = 37; P < 

0.0005) (Table 2.1). Mean concentrations of K in mature mopane leaves (11 089 ppm) differed 

significantly from those in compensatory growth (18 460 ppm) across sites (Wilcoxon Rank Sum Test; 

W = 101; n = 37; P < 0.001) (Table 2.1).  

The mean concentrations of Mn in mature mopane leaves (52 ppm) differed significantly 

from compensatory growth (13 ppm) across all sites (Wilcoxon Rank Sum Test; W = 1; n = 37; P < 

0.001) (Table 2.1). Mean concentrations of Na differed significantly between mature mopane leaves 

(8 ppm) and compensatory growth (50 ppm) across sites (Wilcoxon Rank Sum Test; W = 100; n = 37; 

P < 0.01) (Table 2.1). The mean P concentrations in mature mopane leaves (1 846 ppm) differed 

significantly from compensatory growth (2 547 ppm) across sites (Wilcoxon Rank Sum Test; W = 87; 

n = 37; P < 0.05) (Table 2.1). Mean concentrations of S differed significantly between mature mopane 

leaves (1 998 ppm) and compensatory growth (2 408 ppm) across sites (Wilcoxon Rank Sum Test; W 

= 90; n = 37; P < 0.05) (Table 2.1). The mean Sr content of mature mopane leaves (54 ppm) differed 

significantly from compensatory growth (8 ppm) across sites (Wilcoxon Rank Sum Test; W = 0; n = 

37; P < 0.0005) (Table 2.1).   
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Table 2.1. Mean concentration ± standard error of 25 elements measured in mature mopane leaves and mopane 

lead compensatory growth from seven sites on and around Palabora Mining Company, Phalaborwa, South 

Africa. All concentrations were measured in mg.L-1 (ppm). 

Element 
Mature mopane leaves 

Mopane leaf compensatory 
growth 

Al 39.53585 ± 2.28590 40.56526 ± 10.59363 
As 0.19944 ± 0.00043 0.19881 ± 0.00087 
Ba 19.14497 ± 1.91521 2.87783 ± 0.45198 
Ca 8648.75400 ± 406.33570 1464.53900 ± 196.13810 
Cd 0.01560 ± 0.00224 0.02367 ± 0.00760 
Co 0.29705 ± 0.03526 0.44581 ± 0.11072 
Cr 0.38881 ± 0.04974 0.68360 ± 0.25717 
Cu 21.13287 ± 2.31675 35.24472 ± 8.02419 
Fe 363.99290 ± 52.84210 485.22320 ± 90.17101 
Hg 0.00598 ± 0.00001  0.00596 ± 0.00003 
K 11088.78000 ± 385.12370 18460.35000 ± 1001.93600 

Mg 2520.29700 ± 82.67079 1574.31700 ± 83.84858 
Mn 51.63383 ± 5.06029 13.06862 ± 1.20402 
Mo 0.13698 ± 0.00802 0.11716 ± 0.00332 
Na 7.67092 ± 1.36398 50.25621 ± 13.63378 
Ni 1.87287 ± 0.22577 2.84710 ± 0.45595 
P 1845.98100 ± 103.25550 2546.78200 ± 291.10560 
Pb 0.16579 ± 0.01921 0.17570 ± 0.06445 
S 1997.70800 ± 52.95744 2407.99100 ± 112.82040 
Se 3.98872 ± 0.00861 3.97626 ± 0.01741 
Si 215.52510 ± 15.73671 103.88300 ± 4.54387 
Sr 53.57036 ± 3.56489 7.84669 ± 0.562700 
U 0.04211 ± 0.00627 0.06581 ± 0.00852 
W 0.00208 ± 0.00049 0.00192 ± 0.00007 
Zn 25.23908 ± 1.06604 24.44377 ± 1.33384 

 

Discussion 

Elemental concentrations differed across PMC sites in mopane trees (mature leaves and 

compensatory leaf growth) as well as in mopane caterpillar body and gut content samples. The 

concentrations of Al, Ca, Cd, Co, Cr, Cu, Fe, S, Pb and U in mopane leaves were higher at Rev 1 and 

Rev 2 than at the other sites. In mopane leaves, concentrations of Na were highest at Rev 1, 

concentrations of Ba, Ni and W were highest at Rev 2, and concentrations of Mg, Mn, P and Si were 

highest at Rev 3, and were some of the lightest of the elements sampled in terms of atomic mass. Of 

the 25 elements measured, leaves from Rev 1 and/or Rev 2 had the highest concentrations of 14 of 
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these elements. When all three reverberator sites are considered, they have the highest mopane leaf 

concentration of 18 of the 25 elements measured, suggesting that the reverberator sites are much more 

polluted than the other sites. For the most part the lighter elements (in terms of atomic mass), travelled 

further and were higher at sites that were further away, while the highest concentrations of the heavier 

elements generally occurred closest to the reverberator. This does show that concentrations of 

elements are usually highest closest to the reverberator, and decrease progressively further from the 

reverberator, as was found by Cartwright et al. (1977), Kuo et al. (1983), and McMartin et al. (1999). 

There does not appear to be a general trend of concentrations of elements increasing or decreasing 

with increased distance from the tailings storage facility or with increased distance from PMC. The 

reverberator sites are subjected to dust fallout from the reverberator and dust particles paired with the 

high concentrations of elements found at this site could be the reason for no mopane caterpillars being 

found at Rev 1 and Rev 2.  

Alexander et al. (1944), Kalmus (1944), Wigglesworth (1944), Korunic (1998) and Glenn 

(1999) all suggest that some dusts can damage the cuticle of insects through abrasion and adsorption, 

thereby making the cuticle more susceptible to water loss which increases insects’ likelihood of 

drying out and subsequently dying. Insects with bodies that are hairy or rough can collect more dust 

particles per unit area and can consequently undergo greater damage to the cuticle (Korunic 1998). As 

mopane caterpillars have hair and spines on their bodies as well as a rough body surface, dust could 

easily collect on the caterpillars which could make the mopane caterpillars particularly susceptible to 

desiccation. This may be why the mopane caterpillars have not established at Rev 1 and Rev 2 despite 

the abundance of suitable food at these sites.  

The reason for no eggs being laid at Rev 1 and Rev 2 may be as a result of the dust film that 

accumulates on the leaves at these two high dust fallout sites. Glenn et al. (1999) has suggested that a 

particle film barrier could make host plants unrecognizable either tactually or visually. Knight et al. 

(2000) and Unruh et al. (2000) found that female obliquebanded leafrollers, Choristoneura 

rosaceana, and codling moths, Cydia pomonella, respectively, oviposited less on host plants treated 

with a particle film than on those host plants with no particle film. Dusts containing silica or 
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aluminium have been found to be effective insecticides in the past (Alexander et al. 1944; David and 

Gardiner 1950; Ebeling and Wagner 1959). As aluminium and silicon concentrations were high in 

leaves from Rev 1 and Rev 2, the high concentrations of these elements could be an additional reason 

for mopane moths being deterred from these sites and not laying eggs here. Elemental concentrations 

found at the tailings storage facility and control sites however were similar to each other for most 

elements. This would suggest that the flora and fauna in the areas surrounding the tailings storage 

facility are able to tolerate the concentrations of elements present at these sites. 

Caterpillar body and gut content elemental concentrations were much higher than the 

corresponding mopane leaf values for a number of elements (As, Cr, Hg, K, Mo, Na, P, S, Se, W, and 

Zn) most of which were heavy metals or macronutrients. This follows Lindqvist (1992) who found 

that concentrations of metals were usually lowest in leaves, moderate in the larvae of phytophagous 

insects, and highest in the adults of these insects. This could indicate that the caterpillars are 

bioaccumulating these elements. In order to assess if the caterpillars are bioaccumulating certain 

elements, the concentrations of elements could be measured in each caterpillar several times through 

an instar, as done by Judy et al. (2012) examining bioaccumulation in the tobacco hornworm 

(Manduca sexta). If the concentrations of these elements increase at each successive time interval, this 

would indicate that the caterpillars are bioaccumulating those elements. Even if the caterpillars do 

appear to bioaccumulate within an instar, they may then eliminate excess elements when moulting 

occurs, so shed material should be collected and measured as well to ascertain if they are 

bioaccumulating elements or eliminating them when they moult. 

The concentrations of elements are similar in the caterpillar bodies and gut contents for many 

of the elements. In the cases where gut content concentrations of an element were higher than the 

body concentrations, there was probably an excess of that element, that instead of being absorbed into 

the body, remained in the gut to be eliminated as frass. This process was observed by Aoki and 

Suzuki (1984) who found that the fleshfly (Sarcophaga peregrina) excreted excess amounts of 

cadmium after eclosion from the pupae. Raubenheimer and Simpson (2004) also found generalist 

locusts (Schistocerca gregaria) were able to eliminate excess nutrients by excreting them. Similarly 
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Lee et al. (2002) found that a generalist caterpillar (Spodoptera littoralis) was able to regulate the 

nutrients in its body after ingesting these nutrients from their diet. Lindqvist and Block (1995) found 

that mealworms (Tenebrio molitor) were able to eliminate excess cadmium but eliminated more 

cadmium during metamorphosis than at any other point in the life cycle. The reason for this is that 

during the process of metamorphosis, many organs are broken down and new ones built from 

embryonic cells (Wigglesworth 1974), whereas with moulting, parts of the old cuticle are reabsorbed 

by the larvae (Chapman 1998). Concentrations of elements in frass from this instar, and in pupae 

would have to be measured and compared to each other and to final mopane instars measured, to 

ascertain if mopane caterpillars may be getting rid of any excess elements via frass or after eclosion.  

Hrabar et al. (2009) showed that compensatory growth in mopane trees defoliated by mopane 

caterpillars resulted in a much smaller leaf and shoot size, which was also seen in the current study 

(personal observation). Despite these leaves being smaller, the concentrations of Al, Ba, Ca, Cd, Co, 

Cr, K, Mn, Na, P, Pb, S, Sr and U were higher in the compensatory growth than in mature leaves, but 

not significantly higher for all these elements except Ba, Ca and K. The higher concentrations of 

copper in compensatory growth may be because photosynthetic rates are high in newer leaves, and Cu 

plays a vital role in photosynthesis (Dučić and Polle 2005; Yruela 2005). Alternatively, this could 

have been the result of Cu chelation, whereby excess Cu from plants is buffered by phytochelatins, 

metallothioneins, amino acids or organic acid, and transported by chaperones to metal-acquiring 

proteins, vacuoles, or other organelles (Fernandes and Henriques 1991; Cobbett 2000; Polle and 

Schützendübel 2004; Dučić and Polle 2005).  

As with Cu, the mopane compensatory growth also had higher concentrations of Ca, Fe, K, 

Ni, P, and S than the mature mopane leaves, which is likely also because of the importance of these 

elements to plant growth (Marschner 1995). Smith (1962) states that the mineral compositions of 

tissues are dynamic, with some elements being present in high concentrations in young leaves and 

these concentrations decreasing as the leaves age, while other elements are at first present at low 

concentrations and these concentrations increase with leaf age. The concentrations of Al, Cd, Co, Cr, 

Na, Pb and U could be elements naturally present in high concentrations in young mopane leaves. 
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Mopane leaves of various ages would need to be sampled from additional sites to examine if this is 

the case. 

Marschner (1995) suggests that Cu becomes toxic to plants when concentrations reach 20-30 

ppm, which indicates that the mopane leaves from Rev 1(42.3 ppm) and Rev 2 (28.8 ppm) contained 

toxic concentrations of Cu. The trees however looked healthy, which suggests that the plants must 

either be able to tolerate these levels of Cu, or excess Cu may be eliminated at a later stage, possibly 

through Cu chelation. Assuming a single caterpillar to weigh 5g (dry weight), one caterpillar from 

PMC would contain less than 0.6 mg of Cu. If 10 caterpillars were eaten each day that would indicate 

that 6 mg Cu would be consumed by a person each day, and acute copper toxicity in humans at 

concentrations lower than 10 mg.day-1 has been suggested to occur only in sub-populations of the 

general population that are more susceptible to copper toxicity and in children (EFSA 2006). If 

consumed by a person of average weight (60 kg), that would equate to 0.01 ppm.day-1, which is in line 

with the 0.01 ppm.day-1 indicated by the ATSDR’s (2014) as being the minimal risk level for acute-

duration copper toxicity when ingested orally. This would suggest that the ingestion of the caterpillars 

from PMC and its surrounds would result in minimal risk in terms of Cu content.  

Markert (1992) indicate that the average range of Fe in plants is 5 to 200 (ppm), which 

suggests that there is a possibility that the mopane leaves from Rev 1 (496.9 ppm) and Rev 2 (867.8 

ppm) of the current study contain harmful levels of Fe for the plants. As the trees appeared to be 

healthy however, it would suggest that the tress are either able to tolerate these concentrations of Fe or 

are able to eliminate any excess Fe. In humans, Wood and Ronnenberg (2006) indicate that Fe 

toxicity can occur with the ingestion of substances containing Fe concentrations ranging from 20 to 60 

ppm. If calculated similarly to Cu, this would suggest that the levels of Fe found in the mopane 

caterpillar bodies would be equivalent to 0.19 ppm in a person of average weight, and caterpillars 

from on and around PMC therefore contain less Fe than the recommended daily allowance.  

Aluminium toxicity in plants has been noted at concentrations ranging from 0.1 to 30 ppm 

(Markert 1992), suggesting that the Al concentrations of mopane leaves at Rev 1 (54.2 ppm), Rev 2 
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(47.5 ppm), Rev 3 (39.6 ppm) and Con 1 (31 ppm) may possibly be toxic to the plants. Again 

however the plants looked healthy, which indicates that they are able to tolerate these Al 

concentrations or eliminate any excess Al. In humans, 1 ppm.day-1 has been suggested as the minimal 

risk level for oral exposure of an intermediate duration (ATSDR 2011, 2014). For an individual 

weighing 60 kg, this suggests that the mopane caterpillars from PMC and its surrounds would contain 

the equivalent of 0.02 ppm.day-1 of Al, which would not exceed the recommended daily allowance of 

Al for humans. 

Other elements found in the mopane leaf and mopane caterpillar samples that are of 

importance, and need consideration in this study are As, Cd, Cr, Hg, Ni, Pb and Zn, as these elements, 

along with Cu, are all heavy metals (Sheoran and Sheoran 2006). The concentrations of all these 

elements within the mopane leaves fall within or below the normal levels for plants (Markert 1992), 

suggesting that none of these heavy metals pose any risk to the mopane trees on and around PMC. 

Campbell (1926) showed that 0.00001 ppm of As was fatal to silkworms. Assuming each caterpillar 

weighs 5 g, the most As contained in the mopane caterpillars was equivalent to approximately 0.002 

ppm. This suggests that if mopane caterpillars are as susceptible to As as the silkworms, they contain 

harmful concentrations of As. The caterpillars are however able to survive despite these levels of As, 

so these levels of As are probably not harmful to them. Ilijin et al. (2010) indicate that concentrations 

of Cd exceeding 100 µg reduced fitness components in the gypsy moth (Lymantria dispar). The 

mopane caterpillars contained a maximum of 0.05 µg of Cd, assuming a caterpillar to weigh 5 g (dry 

weight). If mopane caterpillars are similarly susceptible to Cd, this would suggest that the mopane 

caterpillars did not contain harmful levels of Cd.  

Concentrations of U found in the mopane leaves (0.003 ppm to 0.086 ppm) fall above the 

normal plant range (0.005 ppm to 0.06 ppm) only for those leaves sampled from Rev 1 (0.063 ppm) 

and Rev 2 (0.086 ppm), while other leaves sampled fall within the normal range. This could suggest 

that mopane leaves from Rev 1 and Rev 2 contained concentrations of U that may cause harm to these 

plants. These plants were however able to survive and appeared to be healthy, suggesting that they are 

able to tolerate these concentrations of U or they are able to eliminate excess concentrations. 
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Despite the levels of elemental concentrations at the sites where mopane caterpillars were 

found, the caterpillars are able to persist as the mopane moths and caterpillars continue to be observed 

each season. The concentrations of the 25 elements measured in the mopane caterpillars therefore 

appear not to pose any immediate detrimental effect to the caterpillars, if any at all. At most of the 

sites sampled, the elemental concentrations found have thus far not shown any adverse effects on 

mopane trees and mopane caterpillars. The concentrations of elements in mopane caterpillars also do 

not exceed the recommended daily allowances suggested for humans for the elements measured.  

Rev 1 and Rev 2 however, despite having safe concentrations of many heavy metals and most 

other elements, did have the highest concentration of more than 50 % of the elements analysed, which 

indicates that these two sites are more contaminated than the other sites. These two sites also appear 

to be unable to support the mopane caterpillar’s life cycle. In order to test this, caterpillars could be 

introduced to this site to see if they can survive at these two sites. If they can survive, and if the 

species is able to persist for several generations, then the elemental concentrations at these sites could 

be ruled out as the reason why the caterpillars were not found at these sites during data collection.  

As no caterpillars were found at Rev 1 and Rev 2, the threat of people consuming caterpillars 

containing potentially harmful concentrations of elements is unlikely. As the concentrations of 

elements are higher at the reverberator sites when compared to other sites in many cases, harvesting of 

plants or animals, and access by animals to this region should be limited. This may prevent possible 

harmful effects of these elements travelling further than these two reverberator sites.  

Additional methods of gaseous waste disposal at the reverberator sites could perhaps be made 

in an attempt to reduce the amount of dust released into the environment. One such addition could be 

the introduction of secondary hoods to trap fugitive gas emissions and particulate matter, or the 

addition of further hoods if secondary hoods are already present. This could help to reduce the 

quantities of gases and particulate matter that are released into the environment. If this is done, 

mopane caterpillars may have increased chances of surviving at these sites. To better assess the 

effects elemental concentrations may have on mopane caterpillars however, assessments of mopane 
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caterpillar growth was required. This was assessed by examining the food consumed by the 

caterpillars and by examining morphological features of the caterpillars themselves, and is addressed 

in Chapters 3 and 4.
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Chapter 3 

Assessing carbon and nitrogen isotopes in mopane caterpillars (Imbrasia belina) and 

mopane leaves (Colophospermum mopane) on and around a copper mine 

Abstract 

The movement of elements through the environment has been studied for many years, but a method 

for tracking these movements that is still in its infancy is that of stable isotope analysis. Two elements 

that ecologists typically focus on with stable isotope analyses are carbon and nitrogen, as they can 

provide us with information on the diet and trophic structure of an organism’s food web. The purpose 

of this study was to measure the carbon and nitrogen isotopic content of mopane leaves 

(Colophospermum mopane) and mopane caterpillars (Imbrasia belina) that were collected on and 

around the Palabora Mining Company, Limpopo Province, South Africa. This could provide 

information on whether or not elemental concentrations at these sites may be affecting the carbon and 

nitrogen content of leaves and subsequently caterpillar growth which is used as a proxy for food 

quality. If the isotopic compositions of leaves differed greatly between sites, elemental concentrations 

may have been affecting the carbon and nitrogen isotopic composition of the leaves, which could in 

turn affect how much carbon and nitrogen the caterpillars ingest, and eventually affect the growth of 

the caterpillars. Comparisons of carbon and nitrogen isotopic compositions were made between 

mopane leaves and mopane caterpillars, between mopane caterpillars of different ages, and between 

mopane caterpillar bodies and caterpillar gut contents. Comparisons of carbon and nitrogen isotopic 

signatures were also made between sites for all sample types. Although the δ15N content of the 

mopane caterpillars was higher than that of the mopane leaves as would be expected, the δ15N content 

of the caterpillars, particularly the oldest caterpillars (fifth instar), was not 2-4 ‰ higher than that of 

the mopane leaves as would be expected with an increase in trophic level, but less than 2 ‰ higher 

than the δ15N of the leaves.  Older mopane caterpillars may thus be able to assimilate nitrogen better 

than younger mopane caterpillars. These data also demonstrated that elemental concentrations do not 

appear to be affecting the carbon and nitrogen content of leaves, as there was little variation in 
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isotopes between sites, so there is unlikely to be an effect of food quality on caterpillar growth as the 

leaves from all sites had similar carbon and nitrogen compositions.  

Introduction 

Introduction to stable isotopes 

Ecosystems are complex and involve many interactions between organisms and their environment, 

including both biotic and abiotic factors. The working of the biosphere, and in particular the 

movement of elements throughout the biosphere, has received much attention. A useful way to 

monitor the movements of elements through the environment is with the use of stable isotopes (Fry 

2006).  

Isotopes refer to multiple forms of an element, where each form has a different number of 

neutrons in the nucleus (Rubenstein and Hobson 2004; Fry 2006). Stable isotopes refer to those 

isotopes that are not radioactive and do not decay, and it is these isotopes that many scientists use to 

understand biogeochemical processes (Peterson and Fry 1987). One of the main ways that ecologists 

use isotopes to monitor the movements of elements through an ecosystem is through the use of 

isotope tracers (Fry 2006). Isotopes of an element occur naturally at different abundances in various 

regions of the biosphere (Dawson et al. 2002; Rubenstein and Hobson 2004; Fry 2006). The process 

of isotopic tracing involves adding a known amount of certain isotopes to a natural system, and 

periodically measuring the abundance of the various isotopes of that element throughout the system to 

which the tracer was added.  

The way in which the abundance of the isotopes is measured is through the use of a mass 

spectrometer (Peterson and Fry 1987; Rubenstein and Hobson 2004). The results of the mass 

spectrometry are typically reported as a delta (δ) value, which represents a measurement of the 

difference between the sample and the standard against which each sample is measured (Bender 1971; 

Handley and Raven 1992; Fogel and Cifuentes 1993; Roth and Hobson 2000; Evans 2001; Cerling et 

al. 2006). As a result of the differences between the samples and the standards typically being very 

small, the calculation of the δ value involves a multiplication by 1 000 (Evans 2001; Dawson et al. 
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2002; Fry 2006). The δ value thus signifies a “parts per thousand” measure and this is represented as 

“‰”, “per mil” or “permil” (Cerling et al. 2003; Rubenstein and Hobson 2004; Cerling et al. 2006).  

The calculation of the δ value incorporates the relative proportions of the heavy and light 

isotopes of the element being considered in both the sample and the standard (Handley and Raven 

1992; Fogel and Cifuentes 1993; Cerling et al. 2003). The higher or the more positive the δ value, the 

greater the amount of the heavy isotope present in the sample, while the lower or more negative the δ 

value, the lower the amount of the heavy isotope present in the sample (Fogel and Cifuentes 1993; 

Dawson et al. 2002; Fry 2006). A standard would have a δ value of 0 ‰ as the δ value is calculated 

by comparing a sample to the standard, so in this case comparing the standard to itself, so the 

difference is zero (Handley and Raven 1992; Fry 2006).  

Uses of stable isotopes in ecology 

The elements most commonly used in stable isotope research, which are also the main 

elements involved in most of the elemental cycles that ecologists are most interested in, are hydrogen, 

oxygen, sulphur, carbon and nitrogen. Two of these elements which are of particular interest to 

scientists studying food webs are carbon and nitrogen. Carbon isotope analyses can assist scientists in 

identifying what sources of food contribute to the diet of organisms (Cerling et al. 2003; Cerling et al. 

2006; Fry 2006). Carbon isotopes are particularly useful in identifying what plants contribute to an 

organism’s diet because C3, C4, and CAM plants typically have different carbon isotope compositions 

(Cerling et al. 2003; Cerling et al. 2006; Fry 2006).  In addition to this, carbon isotope analyses, along 

with oxygen isotope analysis, can also further our understanding of the movement of carbon 

(specifically carbon dioxide) throughout the biosphere which is very important in light of our ever-

changing climate (Ciais et al. 1995; Rayner et al. 1999; Fry 2006).  

Nitrogen isotope analyses can provide us with some insight into the cycling of nitrogen in the 

environment (Fry 2006). As nitrogen often limits plant productivity in terrestrial systems, nitrogen 

isotope analyses can be helpful in identifying how the nitrogen isotopes travel through plants 

including how nitrogen is gained and lost by plants (as well as the isotopic signatures of these gains 
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and losses) (Evans 2001; Fry 2006). Nitrogen isotope analyses are also very useful as they can be 

used to indicate where organisms lie within the trophic web, with 2-4 ‰ δ15N enrichment expected at 

each successive trophic level (Minagawa and Wada 1984; Peterson et al. 1985; Robinson 2001; 

Dawson et al. 2002; Post 2002; McCutchan et al. 2003; Fry 2006). 

An organism considered an important part of the trophic web in the region where it occurs is 

the mopane caterpillar, the larval stage of the Anomalous Emperor Moth (Imbrasia belina [Westwood 

1849] (Lepidoptera: Saturniidae)) (Banjo et al. 2006; Hrabar 2006; Akpalu et al. 2007). This species 

has been shown to have formed at least 70 trophic links, with various stages of the species’ life cycle 

being consumed by birds, mammals and other invertebrates (Styles 1995; Styles and Skinner 1996; 

Gaston et al. 1997; Hrabar 2006). Mopane caterpillars are also an important source of food and 

income to many people who live in regions where the caterpillars are present (Frears et al. 1997; 

Barany et al. 2001; Akpalu et al. 2007; Ghaly 2009). Not only are the caterpillars a cheap and rich 

source of protein for those people living in and around areas where the caterpillars occur, but the 

caterpillars are also considered a delicacy in many places, so the caterpillars are often sold or bartered 

(Dreyer 1968; Ditlhogo 1996; Frears et al. 1997; Stack et al. 2003; Banjo et al. 2006; Akpalu et al. 

2007; Dube and Dube 2010; Gondo et al. 2010). 

These mopane caterpillars subsist on a number of plants but their primary food source is the 

mopane tree (Colophospermum mopane) (Pinhey 1972; Ditlhogo 1996; Gaston et al. 1997; Illgner 

and Nel 2000; Mpuchane et al. 2000; Picker et al. 2004). Mopane caterpillars have been known to 

completely defoliate mopane trees during periods of large caterpillar populations (Frears et al. 1997; 

Gaston et al. 1997; Frears et al. 1999; Picker et al. 2004; Hrabar 2006). Following such defoliation, 

mopane trees sometimes produce compensatory growth, which has been found to be nutritious and 

contain a lower tannin and total phenol content than older mopane leaves (Styles and Skinner 1997; 

Hrabar 2006). 

One region of South Africa where both mopane caterpillars and mopane trees co-exist is in 

abundance is in Limpopo Province, South Africa (Picker et al. 2004; Rutherford et al. 2006a). This 
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region is also well known for its many mining operations, and includes one of the world’s largest 

mineral repositories, the Phalaborwa Complex, mined by the Palabora Mining Company (PMC) and 

Foskor (Council for Geoscience 2011; PMC 2012). The Palabora Mining Company shares a border 

with Kruger National Park, and people are often allowed to harvest mopane caterpillars from both 

these areas during the caterpillars’ growth period.  

Aims and objectives 

As mopane caterpillars are valued by people in this region as well as being a pivotal part of 

the food web in the Phalaborwa region, it is important to investigate how the elemental concentrations 

from PMC might be affecting growth of the caterpillars. One factor that could provide this 

information would be the carbon and nitrogen content of the caterpillars’ food which can be used as a 

proxy for the quality of the food. This information may then be able to provide some insight into the 

caterpillars’ growth. The purpose of this aspect of study was to measure the carbon and nitrogen 

isotopes of both mopane caterpillars and mopane trees (specifically the leaves) in the region. This was 

done to gain some insight into the trophic interaction between the mopane caterpillars and mopane 

leaves at an isotopic level. It also provided a means of establishing if elemental concentrations may be 

affecting leaf nutrition and subsequently caterpillar growth. The first objective was to assess if 

information regarding the species’ relative trophic levels could be discerned using nitrogen and 

carbon isotopes, in order to establish if the usual isotopic pattern holds for mopane caterpillars. 

Secondly we wanted to ascertain if there were any differences in carbon and nitrogen isotopes 

between mature mopane leaves and the compensatory growth to ascertain if there was any difference 

in the food quality of the two types of leaves. These sample types were all compared between the 

various study sites on and around PMC and Limpopo Province to establish if relative elemental 

concentrations at each of the study sites may have affected the δ13C and δ15N compositions of the 

mopane leaves. 
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Materials and Methods 

Experimental design 

Where present, mopane caterpillars and mature mopane leaves were collected from 10 

mopane trees at each site. Five caterpillar bodies (MB) and five clusters of mature mopane leaves 

(LM) were collected from each tree. Where possible, five individuals of each of the five mopane 

instars were collected from each tree, but most trees yielded only one or two instars of mopane 

caterpillars. Mopane leaf and mopane caterpillar body samples from each of two to four trees per site 

were selected to be analysed for carbon and nitrogen isotopes. At one of the sites, Rev 3, where all 

mopane caterpillar instars were collected, five bodies of each instar were also measured for carbon 

and nitrogen isotopes. In addition to this, a further two fifth instar caterpillars’ bodies (MB-5*) and 

gut contents (MG-5*), from the same tree at Rev 3, were separately analysed for both nitrogen and 

carbon isotopes.  

As the compensatory growth (LC) on mopane trees is quite small in area, only enough 

material for a single sample was available for each of the three trees from which compensatory 

growth was collected. These compensatory growth samples were also analysed for carbon and 

nitrogen isotopes. The samples selected were all freeze dried and then ground using a ceramic pestle 

and mortar. The ground samples were then sent to IsoEnvironmental cc in the Department of Botany 

at Rhodes University, Eastern Cape Province, South Africa, where the carbon and nitrogen isotopes of 

the samples were analysed using a mass spectrometer.  

Data analysis 

Descriptive statistics were performed using Microsoft Excel (2007). Means and standard errors of the 

carbon and nitrogen compositions were calculated for mature mopane leaves (LM), mopane leaf 

compensatory growth (LC), mopane caterpillar bodies (MB) (for each instar) and mopane caterpillar 

gut contents (MG) per tree selected. Spearman Rank Correlation tests were used to measure the 

relationship between the concentrations of each of the 25 elements measured in Chapter 2, and δ13C 

and δ15N independently to ascertain if any of these elements may be affecting the carbon or nitrogen 
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content of the leaves. Further statistical analyses were not conducted on the carbon and nitrogen 

isotope data owing to the very small sample sizes available here. 

Results 

Mature mopane leaves from Rev 1 had higher δ13C and δ15N (δ13C: -25.21 ± 0.28; δ15N:    

1.01 ± 0.18) values than the compensatory growth (δ13C: -26.46 ± 0.13; δ15N: 0.57 ± 0.32) from Rev 1 

(Figures 3.1 and 3.2). This indicates that the mature mopane leaves contained more of the heavy 

isotopes of carbon and nitrogen respectively than the compensatory growth. Similarly the mature 

mopane leaves from Rev 2 also had higher 13C and δ15N (δ13C: -25.81 ± 0.10; δ15N: 0.49 ± 0.26) 

values than the compensatory growth (δ13C: -26.00; δ15N: 0.15) from Rev 2 (Figures 3.1 and 3.2). 

All the mopane caterpillar bodies and gut contents from Rev 3 had higher δ13C and δ15N 

values than the mature mopane leaves (Figure 3.2). For instars 1 to 3 of Rev 3, δ13C and δ15N values 

were higher and lower respectively between successive instars (Figure 3.2). The δ13C values were 

lower in instar 4 caterpillar bodies (δ13C: -23.86 ± 0.04) than in instar 3 caterpillar bodies (δ13C: -

23.53 ± 0.07), and lower still in instar 5 caterpillar bodies (δ13C: -24.09 ± 0.11) when compared to 

instar 4 caterpillar bodies (δ13C: -23.86 ± 0.04) (Figure 3.2). Values of δ15N in caterpillar bodies 

however were higher in instar 4 caterpillar bodies (δ15N: 2.66 ± 0.17) than in instar 3 caterpillar 

bodies (δ15N: 2.62 ± 0.03), but were again lower in instar 5 caterpillar bodies (δ15N: 2.51 ± 0.15) when 

compared to instar 4 caterpillar bodies (δ15N: 2.66 ± 0.17) (Figure 3.2).  

Two additional fifth instar mopane caterpillars had both their bodies and gut contents 

analysed separately (indicated by MB-5* and MG-5* respectively; Figure 3.2). For these two 

caterpillars, the δ13C values of the caterpillar gut contents (δ13C: -24.83 ± 0.04) were lower than those 

of the caterpillar bodies (δ13C: -24.06 ± 0.05), indicating that the caterpillar gut content contained less 

of the heavy isotope of carbon than the caterpillar bodies. Conversely however, the δ15N values of the 

caterpillar gut contents (δ15N: 3.30 ± 0.01) were higher than those of the caterpillar bodies (δ15N: 2.59 

± 0.01), indicating that the caterpillar gut contents contained more of the heavy isotope of nitrogen 

than the corresponding caterpillar bodies (Figure 3.2). 
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Figure 3.1. The effect of site position on mean (± standard error) stable isotope measures of δ13C and 

δ15N of mature mopane leaves (LM) (triangles), mopane leaf compensatory growth (LC) (diamonds) and 

mopane caterpillar bodies (MB) (circles) from eight sites in Limpopo Province, South Africa. The 

number following “MB” indicates the caterpillar instar.  
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At TSF 1, both the δ13C and δ15N values of the caterpillar bodies were higher than the δ13C 

and δ15N values of the mature mopane leaves from this site (Figure 3.2). The δ13C and δ15N of the first 

(δ13C: -23.99 ± 0.14; δ15N: 4.80 ± 0.18) and fourth (δ13C: -22.68 ± 0.11; δ15N: 4.45 ± 0.44) instars 

mopane caterpillar bodies from TSF 2 were higher than one of the trees sampled (δ13C: -25.33 ± 0.15; 

δ15N: 2.60 ± 0.12) but lower than that of the second tree sampled (δ13C: -26.79 ± 0.07; δ15N: 7.17 ± 

0.14), which had much higher δ15N values than the other mopane leaves from this site (Figure 3.3). 

The δ15N content of this second tree, tree 6, was much higher than that of the other mopane leaves 

from this site. The mopane caterpillars sampled from this tree did however have higher δ13C and δ15N 

values than the leaves of the tree from which they were collected (Figure 3.3). This shows that despite 

changes in δ13C and δ15N in tree 6 of TSF 2, the δ13C and δ15N content of the mopane caterpillars 

closely resembles that of the mopane leaves. The δ15N composition of both the mature mopane leaves 

and the mopane caterpillar bodies from tree 6 of TSF 2 were approximately double that of any other 

mopane leaves and mopane caterpillar bodies respectively from all sites sampled (Figure 3.1).  

At Con 1, the δ13C and δ15N values of the mopane caterpillar bodies were higher than those of 

the mature mopane leaves (Figure 3.2). Con 1 also had mopane leaves with the lowest δ13C value of 

all the sites (δ13C: -27.69 ± 0.31) (Figure 3.1). The mature mopane leaves from Control site 2 had the 

second lowest δ13C values (δ13C: -27.25 ± 0.16) and the lowest δ15N values (δ15N: 0.24 ± 0.11) of all 

the sites (Figure 3.1). The mopane caterpillar bodies from Runde Farm had the highest δ15N values 

(δ15N: 5.10 ± 0.11) apart from those mopane caterpillars from tree 6 of TSF 2 which had much higher 

δ15N compositions.  

The mopane leaves across all the sites, ranged on average from -28 ‰ to -25 ‰ for δ13C and 

0 ‰ to 3 ‰ for δ15N (Figure 3.1) with the exception of the outlying tree from TSF 2. The mopane 

caterpillar bodies from all sites however ranged on average from -27 ‰ to -22 ‰ for δ13C and 2 ‰ to 

6 ‰ for δ15N, again with the exception of the fifth instar caterpillars from the outlying tree of TSF 2 

(Figure 3.3). The δ13C values of the mature mopane leaves were similar across most of the sites, but 

were lowest at the two control sites (Figure 3.1). The δ15N values of the mature mopane leaves were
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Figure 3.3. δ13C and δ15N (mean ± standard error) of mature mopane leaves (LM) (triangles), mopane caterpillar bodies (MB) (circles) and mopane caterpillar guts (MG) 
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lowest at Con 2, and higher δ15N at the reverberator sites, TSF 1, Con 1 and TSF 2 respectively 

(Figure 3.1). Similar to the mature mopane leaves, the mopane caterpillar bodies from Con 1 had the 

lowest δ13C values, along with the caterpillars from tree 6 of TSF 2, while those from the other sites 

were quite similar to each other (Figure 3.1). The δ15N values however of the mopane caterpillar 

bodies were highest at RF, followed closely by Con 1 (Figure 3.1). Although the carbon and nitrogen 

isotopes of the caterpillars were closely linked to the mopane leaves (Figures 3.2 and 3.3), the relative 

carbon and nitrogen compositions of each site did not follow the same trend for mopane leaves as was 

found for mopane caterpillars across the sites.  

Of all the elements sampled in the mopane leaves in Chapter 2, only two elements were found 

to be correlated with the δ13C signatures of the leaves from those sites, while no elements in the 

mopane leaves were correlated with the δ15N signatures of the mopane leaves. The δ13C compositions 

of the mopane leaves were found to be positively correlated with Co (r = 0.79; n = 8; P = 0.048) and 

negatively correlated with Zn (r = -0.79; n = 8; P = 0.048). 

Discussion 

Overall the δ13C and δ15N compositions of mopane caterpillar bodies were higher than their 

diet, mature mopane leaves, as was expected. The δ15N composition of the caterpillars relative to the 

mopane leaf values were however less than the 2 ‰ to 4 ‰ increase in δ15N expected of a consumer’s 

δ15N relative to its diet (Peterson et al. 1985; Robinson 2001; Dawson et al. 2002; Post 2002; 

McCutchan et al. 2003; Fry 2006). Mopane caterpillars are however primary consumers, and 

McCutchan et al. (2003) found that smaller differences in δ15N between consumer and diet will be 

found in primary consumers versus organisms consuming high protein diets. Fry (2006) says that 

small differences in δ15N between consumers and their diet could indicate that those organisms are 

able to assimilate nitrogen more efficiently than other organisms. Behar et al. (2005) found that the 

fruit fly (Ceratitis capitata) contained enterobacteria which mediated nitrogen fixation, and suggest 

that nitrogen fixation may also occur in other insects. If this is the case with mopane caterpillars, the 
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older mopane caterpillars may contain greater amounts of bacteria as a result of the larger size of the 

caterpillar, allowing older caterpillars to assimilate more δ15N than younger caterpillars.  

The caterpillar bodies had different isotopic compositions to the caterpillars gut contents. The 

gut contents of the caterpillars showing higher δ15N values than the mature mopane leaves suggest 

that the nitrogen from the leaves is processed in the gut of the caterpillars, or the gut contents would 

have displayed a similar isotopic composition to the leaves themselves. As seen in plants and other 

animals, the constituent organs of organisms usually have different isotopic signatures, which is due 

to elements being metabolised and incorporated at different rates in different tissues (Tieszen et al. 

1983; Roth and Hobson 2000; Evans 2001, Dawson et al. 2002; Gratton and Forbes 2006). This could 

be the reason for the difference in δ15N between the leaves and the caterpillars being smaller than 

expected, as whole caterpillars were not analysed.  

Both the mature mopane leaves and compensatory growth had δ13C values within the typical 

range of δ13C for C3 plants (-30 ‰ to -20 ‰) (Bender 1971; Fogel and Cifuentes 1993; Fry 2006). 

The δ13C values of the caterpillars did not show a consistent pattern relative to the mopane leaves on 

the trees from which they were collected, as was found by Hobson et al. (1999) when examining 

monarch butterflies (Danaus plexippus) in relation to their diet. The δ15N values calculated for both 

the mature mopane leaves and compensatory growth ranged mostly between -1 ‰ and 4 ‰, well 

within the usual range for plant δ15N (-10 ‰ to 10 ‰) (Evans 2001). Outliers in terms of mopane leaf 

δ15N were however calculated for the mature mopane leaves from tree 6 of TSF 2. These leaves had 

δ15N values of around 7.5 ‰, which were higher than the rest of the mopane leaves, and were closer 

to the upper end of the usual δ15N range.  

Craine et al. (2009) found foliar δ15N to increase with increasing availability of nitrogen. The 

high δ15N levels in tree 6 of TSF 2 could have been caused by that tree being exposed to more 

nitrogen than the trees in the surrounding area. This tree was also in a separate cluster of mopane trees 

that were a short distance away from trees 1 and 2, and different factors at work in each of these two 

areas, such as differing geology and fauna, may have resulted in the difference in nitrogen content 
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between tree 6 and the other trees from TSF 2. Of all the sites examined, the tailings storage facility 

sites had some of the highest δ15N levels. A possible reason for this could be that nitrogen from the 

explosives used in the mining operations at PMC may be reaching the tailings storage facility, and this 

high δ15N content may then be filtering out to the plants and soil surrounding the tailings storage 

facility.  

Compensatory leaf growth of the mopane trees had δ13C and δ15N patterns on the lower end of 

the δ13C and δ15N ranges seen for all the mopane leaves analysed. This indicates that there were less 

of the heavy isotopes of both carbon and nitrogen in these samples. This suggests that lighter isotopes 

of both carbon and nitrogen are deposited in compensatory leaf growth. Additional carbon and 

nitrogen analyses of compensatory growth should be conducted using a bigger sample size. The 

isotopic composition of compensatory growth should also be compared to that of mature mopane 

leaves from the same tree. 

Based on this study, the expected difference in nitrogen isotopes between trophic levels, in 

this case between the mopane leaves and mopane caterpillars, was not found. This may indicate that 

different patterns of nitrogen isotope increases may be found in invertebrate herbivores than were 

found in other groups, as shown by Zanden and Rasmussen (2001) and McCutchan et al. (2003). It 

was thought that the varying levels of contaminants at each site could be affecting the isotopic 

compositions of the mopane leaves and subsequently the mopane caterpillars in this region. Of the 25 

elements analysed however, only Co and Zn concentrations of mopane leaves were found to be 

correlated with the δ13C composition of the leaves. This suggests that elemental concentrations are not 

greatly affecting plant nutrition, and are thus unlikely to be affecting caterpillar growth. The next step 

in investigating the potential effects of the elemental concentrations on the caterpillars was to assess 

the physical growth of the caterpillars by looking at morphological features of the caterpillars. 
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Chapter 4 

Headwidth and mandible wear as a tool to age mopane caterpillars  

(Imbrasia belina) 

Abstract 

As caterpillars grow, their bodies expand and their mandibles need to grow proportionally in order to 

maintain a certain rate of food intake. As a caterpillar’s head capsule is rigid and cannot expand as its 

body does, the only way for a caterpillar to increase the size of its head capsule, and thus of the 

mandibles, is by moulting. This increase in head capsule can thus be used as an indication of the age 

of an individual caterpillar of a particular species. As caterpillars grow in size and wear down their 

mandibles when they feed at each instar, body mass and mandible wear could be used as tools to 

further age the caterpillars within an instar. The purpose of this study was to measure the headwidth, 

body mass and mandible wear of mopane caterpillars (Imbrasia belina) collected from Limpopo 

Province, South Africa. This information would provide indentifying morphological characteristics of 

each instar which could be used to assess caterpillar growth, and compare this growth between sites. 

Headwidths would be able to indicate the instar of an individual while the body mass and mandible 

wear were assessed to see which of these could provide information regarding the age of a caterpillar 

within an instar. Headwidths and body mass of caterpillars were also compared between different 

sources and intensities of contamination. This was done to ascertain if elemental contamination from a 

mine may be affecting caterpillar growth. Five clusters of headwidth measurements were found for 

the mopane caterpillars, and these correspond to the five instars of mopane caterpillars. Headwidth 

was found to be fairly constant between sites while body mass was very variable, which suggests that 

elemental concentrations had little or no effect on the growth and body size of caterpillars. Mandible 

wear was correlated with body mass, suggesting that within an instar, heavier individuals are more 

likely to be older. Mandible wear however was concluded to be the more reliable means of aging 

caterpillars within an instar.  
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Introduction 

Mopane Caterpillars 

Mopane caterpillars, commonly referred to as mopane worms, are the larval stage of the Anomalous 

Emperor moth or Mopane moth (Imbrasia belina [Westwood 1849] (Lepidoptera: Saturniidae)) 

(Ditlhogo 1996).  The species is widespread throughout central and Southern Africa and occurs in 

abundance in Namibia, Zimbabwe, Botswana, Zambia, Angola and South Africa (Picker et al. 2004; 

Banjo et al. 2006; Akpalu et al. 2007; Gondo et al. 2010). Although the name mopane worm is 

derived from the caterpillars’ tendency to defoliate their primary host, the mopane tree 

(Colophospermum mopane) (Gaston et al. 1997; Mpuchane et al. 2000), mopane caterpillars also feed 

on other plant species such as Carissa macrocarpa, Diospyros spp., Ficus spp., Searsia spp., 

Sclerocarya spp., Commiphora glandulosa, Acacia tortilis, Cassia abreviata, Terminalia spp. and 

Trema orientalis (Pinhey 1972; Ditlhogo 1996; Illgner and Nel 2000; Picker et al. 2004).  

Adult mopane moths live for just a few days with the sole purpose of reproducing (Hrabar 

2006; Gondo et al. 2010). After mating has occurred, female moths lay single clusters of eggs on 

leaves or around twigs, with a cluster containing 30 to 335 eggs (Hrabar 2006; Akpalu et al. 2007; 

Gondo et al. 2010). Approximately 10 days after the eggs have been laid, small brown/black larvae 

hatch from the eggs and begin their 4-6 week long larval stage, during which time the larvae pass 

through five larval growth stages, known as instars (Ditlhogo 1996; Klok and Chown 1999). The first 

two larval stages are usually light brown in colour and the last three stages are black with 

aposematically coloured scales which are yellow, white and red in colour (although the colouration of 

the caterpillars does not seem to deter predators)  (Gaston et al. 1997).  During this larval period, 

mopane caterpillars undergo a rapid increase in body size, with fifth instar caterpillars usually 

weighing 12-13g and measuring approximately 80mm in length (Frears et al. 1999; Hrabar 2006). 

This immense increase in body size makes it necessary for the caterpillars to moult between instars as 

chitin is rigid and cannot stretch to accommodate an increase in body size (Merzendorfer and Zimoch 

2003; Gondo et al. 2010). It has however been suggested that discrete growth is restricted to 
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sclerotized structures, and that cuticle expansion occurs continuously during the intermoult period, not 

just before and after moulting (Williams 1980; Nijhout 1998). 

At the end of the fifth instar the larvae descend from the host tree and burrow into the ground 

where they then pupate (Ditlhogo 1996). As mopane moths are bivoltine throughout most of their 

distribution, there are usually two generations each year, but in some regions the species is univoltine 

(Hrabar 2006). For bivoltine populations, pupae will remain underground for either six to seven 

weeks (first generation) or experience a period of diapause where they remain underground for six to 

seven months (second generation) depending on which generation they are from (Gondo et al. 2010). 

The first emergence of mopane moths during their breeding season occurs between October and 

December while the second emergence of moths usually occurs between February and April the 

following year (Frears et al. 1997; Gaston et al. 1997; Hrabar 2006).  

Tools for mopane caterpillar age determination 

Headwidths of successive lepidopteran larval stages have been found to follow a regular 

geometric progression which is said to be roughly constant for all species (Dyar 1890; Hansen et al. 

1981). Many previous studies on caterpillars have used headwidth measurements as a tool to identify 

individual larvae to an instar (Hansen et al. 1981; Daly 1985; Freitas 1993; Floater 1996; Singtripop 

et al. 1999; Stavridis et al. 2003). The head capsule is used as it is rigid and remains constant in size 

over the course of a single instar (Dyar 1890; Nijhout 1975; Daly 1985). In order to go a step further 

and identify the age of caterpillars within an instar, an aspect of a caterpillar’s morphology that 

changes within an instar would need to be identified.  

The body mass of caterpillars increases within an instar as the caterpillars are continuously 

eating and growing. Body mass could therefore be one method of ascertaining the age of a caterpillar 

within an instar. Larvae also moult between instars, primarily to increase the size of the mouthparts as 

this is what limits food intake in larvae (Nijhout 1981; Hutchinson et al. 1997; Etilé and Despland 

2008). This is partially because the size of the mouthparts becomes limiting for food intake and 

reduces the rate of body growth, but also because the mandibles themselves are worn down by the 
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action of the larvae eating, and can eventually no longer cut, tear or grind food as efficiently (Dockter 

1993; de Boer 1995). This is most likely caused by the abrasive action of substances such as silica 

contained in plant material that act as a physical plant defence and have been shown to cause 

increased mandible wear (Massey and Hartley 2009; Reynolds et al. 2009). As this wearing down of 

the mandible would occur gradually between moulting events, the level of mandible wear could 

provide a means for larval aging within an instar. 

Aims and objectives 

The purpose of this aspect of the study was to examine the morphological characteristics of 

mopane caterpillars that could be used to age an individual caterpillar and provide some information 

on the growth of that individual. The first objective was to measure the headwidth and body mass of 

mopane caterpillars which would provide a means of identifying a caterpillars’ instar and a possible 

means of indentifying a caterpillar’s age within an instar. The second objective was to ascertain if 

there was a difference in these measurements at different sites. If there were differences in these 

measures between sites, this may indicate that chemicals present in the area, originating from the 

mine’s activities, could be affecting the growth of the caterpillars. The next objective was to assess 

mandible wear of the caterpillars. As there is existing evidence of mandibular wear in other insect 

larve, this objective served to establish if this process also occurs in mopane caterpillars. If so, 

mandible wear can be used as a tool to classify individual mopane caterpillars into the early or late 

stages within an instar. These three morphological features (headwidth, body mass and mandible 

wear) of the caterpillars could then be used as a means of comparing caterpillar growth between sites. 

Such growth comparisons could subsequently give some indication of whether or not chemical 

contamination from the mine’s activities could be affecting caterpillar growth. Being able to more 

accurately assess the age of an individual caterpillar may also be used to ascertain if caterpillars are 

bioaccumulating elements or eliminating elements when moulting, as chemicals concentrations could 

be measured at different ages within an instar.  
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Materials and Methods 

Experimental design 

Ten trees were chosen at each site and the GPS coordinates of each tree was noted. From each 

tree, 5-10 caterpillars of each instar were collected where possible. All caterpillars were frozen in a 

portable freezer and returned to the laboratory at the University of the Witwatersrand, Johannesburg, 

where measurements were taken for each individual. Headwidth and body mass (wet weight) 

measures were taken. Headwidth was measured in millimetres using dial callipers accurate to one 

decimal place, while body mass, measured in grams, was measured using a Sartorius 2007Mp balance 

accurate to four decimals. 

In order to assess mandible wear, caterpillar heads were first detached from the bodies and the 

mandibles then dissected out. The mandibles were then examined under a dissecting microscope 

((Novel NSZ-606) up to x1000 magnification). An index was created based on the wear to the 

grinding surface of each mandible, and this index was then used to assign a mandible wear score to 

each mandible, with possible scores ranging from 1 to 3. A mandible wear score of 1: indicated 

mandibles with high ridges; 2: mandibles moderately worn with mandible ridges having been worn 

down slightly but that were still raised and obvious; 3: mandibles had been completely worn down 

where ridges could no longer be seen, or where only the outline of where ridges had been could be 

seen.  

Data analysis 

All statistical analyses were completed using R software (R Development Core Team 2011). 

Shapiro-Wilk tests showed that the data did not follow a normal distribution and thus non-parametric 

statistical tests were used. Kmeans cluster analysis (from the package “fBasics” (Wuertz 2010)) was 

used to sort clusters of headwidths and allocate these to instars. The number of clusters chosen for this 

analysis was decided upon by considering both the clustering of the data itself, as well as the number 

of instars indicated by the literature. The average growth ratio of the caterpillars (the average increase 

in headwidth between successive instars) was calculated by dividing the average headwidth of one 
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instar (calculated by averaging the headwidths of all the individuals of a particular instar) by that of 

the previous instar, and then averaging these numbers.  

Means and standard errors (from the package “plotrix” (Lemon 2006)) were calculated for 

both headwidth and body mass per instar and per site. For each instar, Kruskal-Wallis tests were used 

to ascertain if there were statistical differences in body mass and in headwidth between instars as well 

as between sites. Kruskal Multiple Comparison post-hoc tests (from the package “pgirmess” 

(Giraudoux 2011)) were carried out after each Kruskal-Wallis test to show where any differences lay. 

Spearman Rank Correlation tests were then used to measure the relationship between body mass and 

headwidth per site as well as for the overall data set from all six sites. Confidence intervals (from the 

“psychometric” package (Fletcher 2010)) for the above mentioned correlation tests were also 

calculated. Spearman Rank Correlation tests were also performed to show the relationship between 

mandible wear and body mass, and this was done for both left and right mandibles.  

Results 

A total of 733 caterpillars were sampled across the sampling sites but no caterpillars were found at 

Rev 1 and Rev 2. As there was only one site at which mopane caterpillars of a wide size range 

(multiple instars) were found, the data from all sites were considered together to distinguish 

headwidths per instar, but statistical analyses were still conducted between sites to identify possible 

site differences. When the log of body mass was plotted against headwidth, five clusters of 

headwidths were evident (Figure 4.1), so five clusters were chosen to conduct the kmeans analysis. 

The clusters allocated by the kmeans analysis were then labelled as instars 1 to 5 and are referred to as 

such hereafter. 

Headwidths across all sites ranged from 0.5 mm to 8.3 mm (Table 4.1), while body mass 

across all sites ranged from 0.0004 g to 14.57 g (Table 4.1). An average headwidth growth ratio of 

1.65 between successive instars was calculated. Although there was overlap between all the instars in 

terms of body mass (Table 4.1), there was a significant difference in body mass between each instar 

across all sites (Kruskal-Wallis χ2
(4) = 619.8472; n = 733; P < 0.0001). 
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Table 4.1. Measures of mopane caterpillar (Imbrasia belina) body mass (g) and headwidth (mm) from six study 
sites in Limpopo Province, South Africa. The allocation to instars was based on kmeans clustering where five 
clusters had been specified. 

Instar 

Average 
headwidth 

(mm) 
Headwidth range 

(mm) 
Headwidth growth 

ratio 

Average 
body mass 

(g) Body mass range (g) 

1 1.0 0.5 - 1.4 - 0.0073 0.0004 - 0.1940 

2 1.8 1.5 - 2.3 1.80 0.0483 0.0072 - 0.2420 

3 3.2 2.7 - 3.7 1.78 0.2880 0.0400 - 0.7800 

4 5.0 4.2 - 6.0 1.56 1.7100 0.0700 - 8.9600 

5 7.2 6.2 - 8.3 1.44 5.2030 0.1500 - 14.5700 
 

 

Figure 4.1. The relationship between body mass (g) and headwidth (mm) for Imbrasia belina caterpillars 
collected from six study sites in South Africa. 

Instar 1 caterpillars were collected only at Rev 3, TSF 2, and RF (Figure 4.2). The mean 

headwidth of instar 1 caterpillars from TSF 2 (0.8 mm) were smallest while those from RF (1 mm) 

were widest (Kruskal-Wallis χ2
(2) = 23.2606; n = 107; P < 0.0001) (Figure 4.2). Conversely the mean 

body mass of instar 1 caterpillars was highest from TSF 2 (0.0334 g) and lowest from RF (0.0042 g) 

(Kruskal-Wallis χ2
(2) = 42.2881; n = 107; P < 0.0001) (Figure 4.2).  
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Instar 2 caterpillars were collected at all sites except the two tailings storage facility sites 

(Figure 4.2). Mean headwidths of instar 2 caterpillars from RF (1.6 mm) were the smallest, while 

those from Con 2 (2.2 mm) were the widest (Kruskal-Wallis χ2
(3) = 89.7296; n = 138; P < 0.0001) 

(Figure 4.2). Mean body mass of instar 2 caterpillars from RF (0.0329 g) were the smallest while 

those from Con 2 (0.084 g) were the largest (Kruskal-Wallis χ2
(3) = 74.5336; n = 138; P < 0.0001) 

(Figure 4.2). 

Instar 3 caterpillars were found at all sites except RF (Figure 4.2). Mean headwidths of instar 

3 caterpillars were smallest at TSF 1 (3 mm) and widest at Rev 3 (3.3 mm) (Kruskal-Wallis χ2
(4) = 

20.9187; n = 102; P < 0.0005) (Figure 4.2). The mean body masses of instar 3 caterpillars from Con 1 

(0.1937 g) were the lightest, while those from TSF 1 (0.5677 g) were heaviest (Kruskal-Wallis χ2
(4) = 

53.8322; n = 102; P < 0.0001) (Figure 4.2). 

Instar 4 caterpillars were collected at all six sites (Figure 4.2). Mean headwidths of instar 4 

caterpillars from Rev 3 (4.9 mm) were the smallest while those from TSF 1 (5.1 mm) were the widest 

(Kruskal-Wallis χ2
(5) = 18.8052; n = 194; P < 0.005) (Figure 4.2). Mean body masses of instar 4 

caterpillars were smallest from Con 2 (0.538 g) and largest at TSF 2 (2.0733 g) (Kruskal-Wallis χ2
(5) = 

46.1836; n = 194; P < 0.0001) (Figure 4.2). 

Instar 5 caterpillars were collected at all sites except Con 2 (Figure 4.2). Mean headwidths of 

instar 5 caterpillars were smallest at RF (7 mm) and widest at Con 1 (7.5 mm) (Kruskal-Wallis χ2
(4) = 

24.5414; n = 192; P < 0.0001) (Figure 4.2). Mean body mass of instar 5 caterpillars from RF (2.4567 

g) were smallest while those from TSF 1 (7.3769 g) were the largest (Kruskal-Wallis χ2
(4) = 53.5142; 

n = 192; P < 0.0001) (Figure 4.2).  

Of all the sampling sites, Rev 3 had the strongest positive correlation (r = 0.93; CI = 0.90 – 

0.94; n = 158; P < 0.0001) between body mass and headwidth. The poorest correlation between body 

mass and headwidth was seen with individuals from TFS 1, but this was still a strong positive 

correlation (r = 0.71; CI = 0.57 – 0.81; n = 68; P < 0.0001). A very strong positive correlation was 

also seen between body mass and headwidth for individuals from TSF 2 (r = 0.87; CI = 0.82 – 0.90; n 

= 137; P < 0.0001),  Con 1 (r = 0.88; CI = 0.84 – 0.92; n = 140; P < 0.0001) and Con 2 (r = 0.87; CI = 

0.72 – 0.94; n = 25; P < 0.0001), and RF (r = 0.88; CI = 0.84 – 0.90; n = 205; P < 0.0001).  
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Figure 4.2. Effect of site position on mean (± standard error) headwidth (mm) and mean (± standard error) body 
mass (g) of all mopane caterpillar (Imbrasia belina) instars collected from six sites in Limpopo Province, South 
Africa. Shared letters above the bars in each graph indicate sites that were not significantly different. 
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Of the mandibles examined, 80.7 % were assigned a mandible wear score of 3, 13 % assigned 

a mandible wear score of 2, and 6.3 % assigned a mandible wear score of 1 (Figure 4.3). At least 65 % 

of samples at each of the sites were assigned mandible wear scores of 3 (Figure 4.3). TSF 2 and RF 

however had the highest percentages of caterpillars with a mandible wear score of 3, while Rev 3 had 

the lowest percentage of caterpillars with a mandible wear score of 3 (Figure 4.3). The highest 

percentage of caterpillars with mandibles wear scores of 1 were found at TSF 1 (Figure 4.3). 

 

 

For instar 2 caterpillars, the majority of mandibles sampled (~70 %) from Rev 3 were 

assigned mandible wear scores of 2, while almost 100 % of caterpillars from Con 2 and RF were 

assigned mandible wear scores of 3 (Figure 4.4). All instar 3 caterpillars sampled from TSF 1, TSF 2 

and Con 2 were assigned mandible wear scores of 3 (Figure 4.4). Approximately  30 % of instar 3 

caterpillars from Rev 3 and Con 1 were assigned mandible wear scores of 2, while the majority of the 

remaining instar 3 caterpillar mandibles from these sites were assigned mandible wear scores of 3 

(Figure 4.4).  
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Figure 4.3. Mandible wear of mopane caterpillar (Imbrasia belina) mandibles of instars 2 to 4 (both 
right (R) and left (L)), from six study sites in Limpopo Province South Africa. A mandible wear score of 
1 indicates minimal wear; 2 indicates moderate wear; and 3 indicates high wear. 
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At all sites except Con 2, at least 50 % of instar 4 caterpillars were assigned mandible wear 

scores of 3 (Figure 4.4). Approximately 50 % and 35 % of instar 4 caterpillars sampled from Con 2 

and Rev 3 respectively were assigned mandible wear scores of 2, while approximately 45 % of instar 

4 caterpillars from TSF 1 were assigned mandible wear scores of 1 (Figure 4.4). No less than  75 % of 

instar 5 caterpillars were assigned a mandible wear score of 3 at each site, but approximately 25 % of 

instar 5 caterpillars sampled from TSF 1 were assigned a mandible wear score of 1 (Figure 4.4). 

Mandible wear was positively correlated with body mass across all six sites where caterpillars 

were sampled for both the left mandibles (r = 0.42; CI = 0.34 – 0.49; n = 503; P < 0.0001) and the 

right mandibles (r = 0.42; CI = 0.34 – 0.49; n = 503; P < 0.0001). At Rev 3, mandible wear was 

positively correlated with body mass for both the left mandibles (r = 0.69; CI = 0.59 – 0.78; n = 125; 

P < 0.0001) and the right mandibles (r = 0.72; CI = 0.62 – 0.79; n = 125; P < 0.0001). At TSF 1, there 

was also a positive correlation between mandible wear and body mass for both the left mandibles (r = 

0.44; CI = 0.23 – 0.62; n = 67; P < 0.005) and the right mandibles (r = 0.44; CI = 0.23 – 0.62; n = 67; 

P < 0.005).  

 At Con 1, there was a positive correlation between mandible wear and body mass for both 

the left mandibles (r = 0.61; CI = 0.47 – 0.72; n = 102; P < 0.0001) and the right mandibles (r = 0.61; 

CI = 0.47 – 0.72; n = 102; P < 0.0001) for the 102 caterpillars sampled at this site.  At Con 2 however, 

there was a negative correlation between mandible wear and body mass for both the left mandibles (r 

= -0.55; CI = -0.82 – -0.10; n = 17; P < 0.05) and right mandibles (r = -0.63; CI = -0.85 – -0.22; n = 

17; P < 0.05), but there was a low sample size at this site. Lastly at RF, a poor positive correlation 

between mandible wear and body mass was found for both the left mandibles (r = 0.27; CI = 0.03 – 

0.48; n = 67; P < 0.05) and right mandibles (r = 0.27; CI = 0.03 – 0.48; n = 67; P < 0.05).  
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Figure 4.4. Mandible wear of mopane caterpillar (Imbrasia belina) mandibles (both right (R) and left (L)), of instars 2 to 4, from six study sites in Limpopo 
Province South Africa. A mandible wear score of 1 indicates minimal wear; 2 indicates moderate wear; and 3 indicates high wear. 
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Discussion  

There was little variation in headwidth for each instar across the sites, with the headwidths being 

grouped into five distinct size classes. There was however some variation in the ranges of headwidth 

measures at each of the different sites per instar but these ranges were similar at each of the sites. 

Although using headwidths as a tool in larval aging of caterpillars is not novel (Hansen et al. 1981; 

Freitas 1993; Stavridis et al. 2003), the five headwidth size classes found in this study provide further 

evidence that there are indeed five larval instars of mopane caterpillars (Ditlhogo 1996; Klok and 

Chown 1999; Gondo et al. 2010).  

Mopane caterpillars in this study were also found to have an average growth ratio of 1.65 with 

growth ratios between successive instars ranging from 1.44 to 1.8. This disagrees with those studies 

that refer to Dyar’s Rule (1890) and state that the head capsule of caterpillars increases by a constant 

ratio in the region of 1.4 between successive instars (Wigglesworth 1942; Hansen et al. 1981; Irigaray 

et al, 2006). This study is instead in agreement with those studies which prove there to be a variable 

growth ratio between successive instars within a species (Gaines and Campbell 1935; Beck 1950; 

Calvo and Molina 2008). Studies by Ripley (1923), Gaines and Campbell (1935), Byrne (1988), Jobin 

et al. (1992) and Calvo and Molina (2008) have actually found that the growth ratio tends to decrease 

overall between successive instars as larvae grew older, which corresponds with what was found here 

with the mopane caterpillars.  

In addition to providing an average growth ratio for mopane caterpillars, this study also 

provides ranges and averages for headwidths of each of the five mopane instars, which may be a 

useful tool in identifying the age of mopane caterpillars in future studies. As headwidth was fairly 

consistent between sites for each instar, this measure seems to provide a fairly simple and accurate 

method of aging caterpillar larvae to instars. As the headwidths are quite consistent between sites, this 

also indicates that elemental concentrations at the sites do not seem to be affecting caterpillar growth. 

As the caterpillars progressed through the five instars, there was an exponential increase in 

body mass. This was expected as caterpillars increase substantially in size over the duration of their 
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larval growth (Gondo et al. 2010). The masses of caterpillars at the two tailings storage facility sites 

were often the heaviest within each instar but caterpillars from the two control sites were also heavier 

than the instars from Rev 3 and RF for some instars. Caterpillars from RF however were usually the 

smallest per instar. There was large variation in body mass, in instar 4 caterpillars from RF, shown by 

the large standard error. A possible reason for this great variation could have been the difference in 

diet between the caterpillars from RF and those from the other sites, as most of the caterpillars 

collected from RF were not collected on mopane trees, but on other tree species. This suggestion is 

corroborated by Gaines and Campbell (1935) who found that many factors, such as the caterpillars’ 

diet, can result in variability of caterpillar growth. Although caterpillar body mass was seen to be 

positively correlated with caterpillar headwidth across all sites, the high variability of body mass 

within and between instars makes this a fallible measure to age caterpillars within an instar on its 

own.  

Mandible wear was used to age individuals within an instar. It was initially expected that 

mopane caterpillars would have scissor-like mandibles such as those found in Eldana saccharina 

(Smith et al. 2007; Kvedaras et al. 2009). Instead it was found that mopane caterpillars have molar-

like, ridged, grinding mandibles. Although Bernays and Janzen (1988) found this in other Saturniid 

caterpillars, they classified Saturniid caterpillars as having snipping versus chewing mandibles 

because there was no further processing of food once bitten off. Observations in the current study 

however indicate that mopane caterpillars may mechanically process leaf particles after biting off 

pieces of leaves.  

Unlike the Saturniids examined by Bernays and Janzen (1988) that bit off leaf particles that 

were strongly correlated with the size of the mandibles of the caterpillars, the leaf material found 

between the mouthparts of the mopane caterpillars was often smaller than the size of the caterpillars’ 

mandibles. Saturniid caterpillars are known to feed on mature, tough leaves (Bernays 1998), so if the 

mopane caterpillars do mechanically process leaves further before they are digested, it may be in 

reaction to the mopane leaves being particularly hard. Bernays and Janzen (1988) did find that there 

was variability in the types of mandibles within a family, so unlike the majority of Saturniidae that 
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that Bernays and Janzen (1988) found to have snipping mandibles, mopane caterpillars may have 

evolved differently to other members of the family to better process the tough leaves on which they 

feed. This would however have to be further examined.  

Mopane caterpillars from Rev 3 were expected to have the highest percentage of individuals 

with high mandible wear as it was thought that the dust fallout here from the reverberator would 

adversely affect their mandibles by making them more brittle or causing them to wear faster. 

Caterpillars from this site however had the lowest percentage of high mandible wear compared to the 

other sites. If the pollutants were positively affecting mandible wear by strengthening the hardness of 

mandibles, the highest percentage of individuals with low mandible wear would have been expected 

to be found at Rev 3, but this was also not the case. This suggests that the level of pollutants that the 

mopane caterpillars were exposed to did not affect the wear of the caterpillars’ mandibles. 

The positive correlation between mandible wear scores and caterpillar body mass at most sites 

indicates that the size of an individual caterpillar of a particular instar could act as a proxy for 

mandible wear and thus age of an individual within an instar. Individuals that had recently moulted 

(indicated by the soft, lighter heads and often ecdysed skin still attached to the body in places) were 

seen to have mandibles that were highly ridged albeit still not fully hardened. As it was known that 

these individuals had very recently moulted, it was certain that those individuals were at the early 

stages of that particular instar and the ridged mandibles indicated a new set of mandibles. These 

newly moulted caterpillars, although accounting for some of the individuals with the lowest mass 

within an instar, were not the least heavy individuals within each instar. Although caterpillar body 

mass was correlated with mandible wear, the high variability of body mass and the differences in 

body mass of caterpillars found between sites makes body mass an unreliable measure of within instar 

age. Mandible wear on the other hand is a more consistent measure to age caterpillars within an instar 

as it cannot vary as much as body mass can.   

In individuals preparing to moult (indicated by head capsules being easily removed from the 

caterpillar and being much thinner and more brittle than other individuals) a similar observation was 
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made, where a worn down, smooth pair of mandibles was found on the head capsule itself, but a 

second pair of larger mandibles were found beneath the head capsule and these underlying pairs of 

mandibles were highly ridged. This demonstrates that an individual in the later stages of an instar has 

mandibles which are smooth and visibly worn in comparison to the highly ridged mandibles of 

caterpillars early in an instar which corresponds with studies by Dockter (1993), de Boer (1995) and 

Kvedaras et al. (2009). This would indicate that mandible wear, along with headwidth, can be very 

useful tools in ascertaining how far along within an instar an individual mopane caterpillar may be.  
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Chapter 5 

Conclusion 

Elemental concentrations at The Palabora Mining Company (PMC) were found to be highest close to 

the reverberator for almost half the elements measured, with elemental concentrations decreasing with 

increased distance from the smelter for many of these elements. This is in line with evidence 

presented by Cartwright et al. (1977), Kuo et al. (1983), McMartin et al. (1999) and Belskaya and 

Vorobeichik (2013) regarding other smelters. As the two sites closest to the reverberator were less 

than 2 km away from the reverberator itself, it was expected that these two sites would also have low 

numbers of mopane caterpillars present as a result of the high levels of dust in this region from the 

reverberator, as particulate pollutants have previously been linked to the decline of insect numbers 

(Alstad and Edmunds 1982; Korunic 1998; Glenn 1999).  

No caterpillars were found at these two reverberator sites, which could be as a result of the 

dust (particulate pollutants) present at these sites, as previous studies have found that this dust can 

result in desiccation and sometimes even death in insects (Alexander et al. 1944; Kalmus 1944; 

Wigglesworth 1944). Further tests would however need to be conducted to ascertain if dust did play a 

role in the absence of mopane caterpillars at Rev 1 and Rev 2. The fact that mopane leaves from the 

two reverberator sites closest to the reverberator had the highest mean concentrations of 14 of the 25 

elements measured, and that no caterpillars were found at these two sites, but were found at all the 

other sites sampled, strongly suggests that the levels of pollution at these two sites, in terms of the 

elemental concentrations or amount or type of dust, may be too high to sustain the mopane 

caterpillars. Mopane caterpillars were however found at other sites on and around PMC and were able 

to survive at these sites, which suggests that the levels of pollution at these sites are not high enough 

to have caused in any adverse effects on the caterpillars which may have resulted populations of the 

species to decline.  

The concentrations of the elements measured in the mopane caterpillars were found to be 

within acceptable levels for human consumption (EFSA 2006; Wood and Ronnenberg 2006; ATSDR 
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2011, 2014), indicating that the potential pollutants at these sites where the caterpillars were found, 

would not pose a risk to humans consuming caterpillars from these areas. As for the caterpillars 

themselves, if elemental concentrations were affecting the caterpillars’ growth, headwidth would be 

expected to vary between sites in relation to the elemental concentrations at each site. This was seen 

in studies by Savopoulou-Soultani and Tzanakakis (1990) and Calvo and Molina (2008) who found 

that diet affected the headwidths of Lobesia botrana and Streblote panda caterpillars respectively. 

There was however very little variation in headwidth between sites, which suggests that the elemental 

concentrations in those regions were not adversely affecting the caterpillars’ growth.  

In addition to this, the quality of food available to the caterpillars (using δ13C and δ15N as a 

proxy for food quality) did not appear to differ greatly between sites, also suggesting that growth 

should have been similar between sites, as was found. Isotopic compositions measured were also not 

significantly correlated with elemental concentrations, except for two elements that were correlated 

with δ13C. These results seem to suggest that the elemental concentrations of the mopane leaves at the 

sites on and around PMC had no noticeable effect on the quality of the caterpillars’ food, or in turn 

the growth of the caterpillars’ themselves. If the different elemental concentrations at the different 

sites had some effect on the mopane leaves, we would again have expected differences in the 

development of the caterpillars as found by Savopoulou-Soultani and Tzanakakis (1990) and Calvo 

and Molina (2008).  

Mandible wear was another physical feature of the mopane caterpillars expected to be 

affected if elemental concentrations or dust (particulate pollutants) had any negative impact on the 

caterpillars. It was expected that mopane caterpillars from the Rev 3 area would have the highest 

percentage of highly worn mandibles as the reverberator sites are exposed to most of the dust fallout, 

and particles such as silica have been found to cause mandible wear (Massey and Hartley 2009; 

Reynolds et al. 2009). The highest mean concentration of silicon in the mopane leaves was also found 

at Rev 3, further suggesting that mandible wear may have been high at this site. The majority of 

mandibles sampled across all PMC sites however were highly worn, suggesting that dust and 

elemental concentrations were not specifically affecting mandible wear, which could have 



 
 

Page 89 of 112 
 

subsequently affected caterpillar growth. If mandibles had been more worn down at some sites, this 

would have reduced the efficiency of an individual caterpillar to ingest food, and would thus likely 

result in caterpillars of smaller mass at those sites (Dockter 1993; de Boer 1995).  

With regards to caterpillar body mass, some of the heaviest caterpillars collected for this 

study were from sites on and around PMC. As caterpillars collected from the RF control site often 

weighed less than caterpillars of the corresponding instar collected on and around PMC, the elemental 

concentrations on and around PMC may even be promoting growth in mopane caterpillars. Zvereva et 

al. (1995) and Scheirs et al. (2006) suggest that moderate levels of pollution may benefit 

phytophagous insects. The large weights measured in the mopane caterpillars at the two TSF sites 

could thus be as a result of exposure to moderate levels of elemental concentrations. This large 

caterpillar size would translate into larger female moths, and larger female body size in insects has 

been linked to greater fecundity (Honěk 1993; McIntyre and Hutchings 2003). This suggests that the 

mopane moths at the two TSF sites, which were moderately polluted in comparison to the 

reverberator sites, may express increased fecundity than at sites with low or high levels of elemental 

concentrations.  

This study was able to provide data on the physical characteristics of individual mopane 

caterpillar instars, which will be a very useful tool for further studies examining mopane caterpillar 

morphology. Although large quantities of data were gathered to measure both the elemental 

concentrations and physical caterpillar characteristics, further strengthening the validity of the 

findings related to those data, multiple additional replicates of these data as well as more data relating 

to isotopes and compensatory growth should be gathered in order to supply more conclusive results on 

these topics. As demonstrated by Luyssaert et al. (2003), this will decrease the variance in the data, as 

well as allowing for a more precise assessment of what the minimum effect of some ecological 

significance may be. In addition to this, a number of further studies could be conducted to make more 

in depth assessments of the elemental concentrations around the PMC region, as well as in other 

areas, using the tools provided in the current study, such as the tools for aging caterpillar instars. 
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Being able to distinguish between early- and late-stage instars provides a useful tool with 

which to assess whether or not mopane caterpillars bioaccumulate elements or if they eliminate excess 

amounts of elements. If elemental concentrations of caterpillars increase from early within an instar to 

later in the same instar, as well as from one instar to the next that would suggest that the caterpillars 

may be bioaccumulating these elements. If however the elemental concentrations of caterpillars in the 

early stages of an instar are lower than they were in the late stage of the previous instar, that would 

suggest that the caterpillars are eliminating excess elements, as was shown by Raubenheimer and 

Simpson (2004) and Lee et al. (2002) who found that a generalist locust (Schistocerca gregaria) and a 

generalist caterpillar (Spodoptera littoralis) respectively were able to eliminate excess nutrients. 

These data would be of great value, as they could provide more information on what elements may be 

bioaccumulated by the mopane caterpillars. As there could subsequently be biomagnification of these 

elements along trophic levels (Woodwell 1967; Connolly and Pedersen 1988; Laskowski 1991; Gobas 

et al. 1993), other species that form part of the same food web as the mopane caterpillars should also 

be examined to measure the elemental concentrations in their tissues. 

As Rev 1 and Rev 2 are located less than 2 km from the reverberator, the high dust fallout 

must be considered as a possible reason for the species not being able to establish at these two sites, as 

previous studies have shown it to affect insect survival (Alexander et al. 1944; Kalmus 1944; 

Wigglesworth 1944; Korunic 1998; Glenn 1999). To investigate this, mopane caterpillars could be 

reared in a laboratory and fed washed and unwashed mopane leaves collected from these two 

reverberator sites. If the caterpillars are able to survive in both the washed and unwashed leaf 

treatments, and the species is able to persist, then the dust fallout and not the elemental concentrations 

themselves could be the reason that the caterpillars do not survive at these sites. If only caterpillars 

from the washed leaf treatment are able to survive and persist, the presence of dust in general, not 

specifically airborne dust could be affecting the species survival. If no caterpillars from either of these 

treatments survived, it could then be that it is simply the elemental concentrations of their food source 

that is affecting their survival. This type of experiment would be similar to studies conducted by 

Yoshida et al. (1995), Tillman et al. (2002), and Lahtinen et al. (2004), who tested for various 
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substances on the surface of leaves, and if these had any effect on aspects such as insect preference, 

growth and survival.  

If this appears to be the case, each element could then be tested separately to establish which 

of the elements present at these two sites may be causing the species not to survive here. This would 

provide information on the elements that need to be targeted for future revisions to gaseous waste 

release from the reverberator. The caterpillars could be fed concentrations that range between the 

lower of the two concentrations found in the mopane leaves from Rev 1 and Rev 2, and the highest of 

the concentrations found in the mopane leaves at all other sites. This would then provide threshold 

values, for each of the 25 elements measured, at which mopane caterpillars can or cannot survive. If 

none of these elements are found to be limiting to the caterpillars, other elements and other leaf 

attributes, such as the amount of dust present on leaves, could then be examined.  

Overall it is clear that Rev 1 and Rev 2 are the two sites with highest elemental 

concentrations, and were also the two sites where no mopane caterpillars were collected. Further 

research as suggested above should be undertaken as they could provide further insight into the 

possible reasons for why mopane caterpillars were not found at these two sites. If corrective actions to 

reduce elemental concentrations from PMC’s activities were to be considered, these should likely be 

focused at the sites where mopane caterpillars have been found in order to minimise the caterpillars’ 

exposure to contaminants at these sites in the future. 
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