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Abstract

A complete understanding of quantum gravity remains an open problem. However, the

AdS/CFT correspondence which relates quantum �eld theories that enjoy conformal

symmetry to theories of (quantum) gravity is proving to be a useful tool in shedding

light on this formidable problem. Recently developed group representation theoretic

methods have proved useful in understanding the large N, but non-planar limit of N = 4

supersymmetric Yang-Mills theory. In this work, we study operators that are dual

to excited giant gravitons, which corresponds to a sector of N = 4 super Yang-Mills

theory that is described by a large N, but non-planar limit. After a brief review of

the work done in the su (2) sector, we compute the spectrum of anomalous dimensions

in the su (2) sector of the Leigh-Strassler deformed theory. The result resembles the

spectrum of a shifted harmonic oscillator. We then explain how to construct restricted

Schur polynomials built using both fermionic and bosonic �elds which transform in the

adjoint of the gauge group U (N) . We show that these operators diagonalise the free

�eld two point function to all orders in 1/N. As an application of our new operators,

we study the action of the one-loop dilatation operator in the su (2|3) sector in a large

N, but non-planar limit of N = 4 super Yang-Mills theory. As in the su (2) case, the

resulting spectrum matches the spectrum of a set of decoupled oscillators. Finally, in

an appendix, we study the action of the one-loop dilatation operator in an sl (2) sector

of N = 4 super Yang-Mills theory. Again, the resulting spectrum matches that of a

set of harmonic oscillators. In all these cases, we �nd that the action of the dilatation

operator is diagonalised by a double coset ansatz.
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Chapter 1

Introduction

Quantum gravity, a quantum theory incorporating gravity, remains an open problem

today. A leading candidate for such a theory is string theory which was originally

developed to describe the strong nuclear force. A string theory description of the strong

interaction was abandoned for two reasons: quantum chromodynamics was discovered

and immediately received experimental support in deep inelastic scattering, and string

theory was found to contain gravitons. Today, string theory is our best hope for unifying

general relativity and quantum mechanics.

Unfortunately, because of the limitations of perturbative analyses, we are currently

unable to understand the strong coupling limit of string theory directly. The same

is true for strongly coupled gauge theories. Fortunately, the conjectured AdS/CFT

correspondence [1, 2, 3], described more fully in Section 1.3, is teaching us that the two

problems are actually complementary. More concretely, the AdS/CFT correspondence

claims an exact equivalence between string theory and gauge theory. The correspondence

relates the strongly coupled gauge theory to string theory on a weakly curved background

and vice-versa. This way, we can still use tools appropriate for weak coupling on one

side to learn non-trivial lessons about the other side.

In string theory, open strings start and end on p-dimensional objects called Dp-

branes whose low-energy world volume dynamics is given by supersymmetric versions of

Yang-Mills theories. For type IIB string theory, the open strings start and end on D3-

branes whose low energy world volume theory is N = 4 super Yang-Mills (SYM) theory,

a superconformal �eld theory. It was through studies of the near horizon limit of D3

branes that the AdS/CFT duality between N = 4 super Yang-Mills theory and type IIB

string theory on asymptotically AdS5 × S5 spacetime was discovered [1]. This remains

the simplest and most completely understood example of a gauge/gravity duality.

There are other examples of this correspondence, including the one involving ABJM

theory [4], a (2 + 1)-dimensional supersymmetric Chern-Simons-matter theory. This

9



CHAPTER 1. INTRODUCTION 10

theory has attracted considerable interest for two reasons. First, it is a candidate for

the worldvolume dynamics of M -theory two branes and second, it has the potential to

teach us something about the strong coupling limit of certain condensed matter systems.

In this work, we will discuss both of these examples of the gauge/gravity duality.

1.1 Conformal symmetry

The quantum �eld theories that enter the AdS/CFT correspondence enjoy conformal

symmetry. Here, we give a short description of this symmetry. For a more detailed study,

[5], Chapter 3 of [6] and Chapter 3 of [7] plus references therein are recommended.

The conformal group is bigger than the Poincare group. The most general element

of the conformal group can be obtained by composing

i) translations, generated by

Pµ = −i∂µ, (1.1)

ii) rotations and boosts, generated by

Lµν = i (xµ∂ν − xν∂µ) , (1.2)

iii) scale transformations (or dilations), generated by

D = −ixµ∂µ (1.3)

and

iv) special conformal transformations generated by

Kµ = −i
(
2xµx

ν∂ν − x2∂µ
)
. (1.4)

On a conformally �at1 D-dimensional manifold, there are

1

2
(D + 2) (D + 1) (1.5)

linearly independent in�nitesimal conformal transformations. The Lie algebra closed

by these generators is so (D, 2) in Lorentzian signature, and so (D + 1, 1) in Euclidean.

Introduce

J−1,µ =
1

2
(Pµ −Kµ) , (1.6)

J0,µ =
1

2
(Pµ +Kµ) , (1.7)

1A D-dimensional manifold is said to be conformally �at if its metric is proportional to the �at
metric, i.e. gµν = eω(x)gflatµν .



CHAPTER 1. INTRODUCTION 11

J−1,0 = D, (1.8)

Jµν = Lµν , (1.9)

with µ, ν = 0, 1 . . . , D − 1. The commutation relations obeyed by these generators are

[Jab, Jcd] = −i (ηadJbc + ηbcJad − ηacJbd − ηdbJac) , (1.10)

where

Jab = −Jba

and a, b = −1, 0, . . . D. We changed from Greek to Roman indices because we are intro-

ducing an extra value for the indices. The structure constant η is diag (−1,−1,+1, . . .) .

Quantum �eld theories with conformal symmetry have a conserved energy-momentum

tensor. In addition, their β-functions are zero, implying that the trace of the energy mo-

mentum tensor vanishes at the quantum level. Another important consequence of the

conformal symmetry enjoyed by the theory is the fact that the S-matrix is not observ-

able, since the notion of a distant past and distant future is spoiled by scale invariance.

There is therefore no notion of asymptotic states which are a key ingredient in de�n-

ing the S-matrix. Instead of the S-matrix, we compute correlators of gauge-invariant

operators. As an example of an observable, the two-point function is given by

〈O1 (x1)O2 (x2)〉 ∼ 1

|x1 − x2|∆+γ
, (1.11)

where γ, the anomalous dimension, is a quantum correction to the scaling dimension ∆.

The combination ∆ + γ is known as the conformal dimension of the local operator of

the theory. For BPS operators

γ = 0

and we say that the dimension is protected against quantum corrections.

1.2 CFTs and �xed points2

Conformal �eld theories can be used to describe critical phenomena, such as the region

near second order phase transitions in condensed matter physics. In such cases, the

anomalous dimension of the conformal �eld theory determines the scaling behaviour of

thermodynamic variables.

According to the renormalisation group (RG), the value of the coupling �ows along

2This section is based on [8] and p84 of [6].
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the RG trajectory in response to changes in the scale µ of the e�ective �eld theory.3

The behaviour of the coupling λ is encoded in the β-function

β (λ) ≡ µ∂λ
∂µ
. (1.12)

At the �xed point,

β (λ) = 0 (1.13)

and the coupling takes a speci�c value - we say the coupling does not run.

The fact that the β-functions vanish implies that we have a scale invariant quantum

�eld theory. Although it has not been proved in more than two dimensions, it is expected

that whenever a theory enjoys both Poincare and scale invariance, it enjoys the full

conformal symmetry.

1.3 The AdS/CFT correspondence

The AdS/CFT correspondence relates (D + 1)-dimensional theories of (quantum) grav-

ity on anti-de Sitter (AdS) space4 to D-dimensional quantum �eld theories. The extra

dimension on the gravity side sets the scale at which we probe the string theory.

As we have explained already, there are various examples of this conjecture, but

the most studied one concerns N = 4 SYM in D = 4 dimensions. Another interesting

example is ABJM theory [4]. In this section, we will discuss both dualities.

1.3.1 N = 4 SYM and type IIB string theory

N = 4 SYM theory is a (3 + 1)-dimensional conformal �eld theory. We will focus

on the case of gauge group U (N) . This theory has sixteen supercharges and a gauge

coupling g2
YM which is independent of the renormalisation scale µ. The �eld content of

the theory is a vector �eld Aµ, six scalar �elds φi, i = 1, . . . 6 and four two-component

Weyl fermions λaα, a = 1 . . . 4, α = 1, 2. The �elds are all in the adjoint of the gauge

group. The symmetry of the theory includes the conformal group SO (4, 2) and the

R-symmetry5 SO (6) ' SU (4) . The Yang-Mills coupling constant is related to the 't

Hooft coupling constant by

λ = g2
YMN (1.14)

3The e�ective �eld theory description is applicable on length scales larger than µ−1.
4Anti-de Sitter space is a background with constant negative curvature [9].
5R-symmetry is a symmetry that does not commute with the supersymmetries, but does commute

with the Poincare group. See page 641 of [7].
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and to the string coupling constant by

g2
YM = 4πgs. (1.15)

In this particular case, the dual gravitational theory lives on AdS5 × S5 with AdS

radius

R = λ
1
4 ls, (1.16)

where ls is the string length scale.6

One consequence of the AdS/CFT correspondence is [2, 3]〈
exp

(
−
ˆ
φ0Oφ

)〉
CFT

= Zquantum gravity [φ0] . (1.17)

where O is a local operator on the conformal �eld theory, φ is a �eld on the gravity side

and φ0 is a boundary condition for φ. Concretely, when we compute the right hand side

of equation (1.17) in a path integral approach, we integrate over all �elds φ that take the

value φ0 on the boundary of the spacetime. As we explain later, both the CFT and the

gravity side share the same global symmetries. This implies that the two sides have the

same conserved quantum numbers, which we use to build a dictionary. As an example,

if O (in equation (1.17)) has scaling dimension ∆ and the �eld φ in AdSd+1 has mass

m, then

∆ =
d

2
+

√
d2

2
+R2m2. (1.18)

Equation (1.17) relates the generating functional of correlators in the conformal �eld

theory on the left hand side, to the partition function of the quantum gravity theory on

the right hand side. We emphasise the fact that the source of the operator in the con-

formal �eld theory generating functional is the boundary condition of the corresponding

�eld on the gravity side.

In what follows, we motivate the AdS/CFT correspondence, following the discussion

of [10]. Consider N parallel D3-branes sitting very close together, i.e. separated by

distances less than the string length ls.
7 These branes extend in a (3 + 1)-dimensional

plane within a (9 + 1)-dimensional spacetime. With this set-up, we get two kinds of

excitations, namely closed strings and open strings stretching between the branes. The

closed strings are the excitations of empty space, while the open strings describe the

excitations of the branes.

In the low-energy limit, i.e. energies lower than the string scale 1/ls, only massless

6The string length scale is a scale equal to the length of fundamental strings. This is in the region
of the Planck length, ∼ 10−33cm. This scale sets the energy of the �rst stringy excitation.

7The fact that the branes are separated by ls means that there are string states corresponding to
strings stretching between branes, with energies low enough that they survive the low energy limit.
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string states can be excited and we can write an e�ective theory for these states. The

massless states for the closed strings give a gravity supermultiplet in 10 dimensions

whose e�ective Lagrangian is that of type IIB supergravity. On the other hand, the

open string massless states give an N = 4 vector multiplet in (3 + 1)-dimensions. In the

low-energy limit, the e�ective Lagrangian is N = 4 U (N) SYM theory [11].

The complete low-energy e�ective action for the massless states takes the form

S = Sbulk + Sbrane + Sint, (1.19)

where Sbulk is the action of the ten dimensional supergravity in �at, ten dimensional

Minkowski space. Sbrane is the brane action de�ned on the (3 + 1)-dimensional world-

volume. It consists of N = 4 SYM and some higher derivative corrections. Sint describes

the interactions between the brane and the bulk modes.

The bulk action can be expanded as a free quadratic part that describes the propa-

gation of the free massless modes plus some interactions. Let us focus on the dynamics

of the graviton. Expanding about �at space gives

Sbulk ∼
1

2κ2

ˆ
√
gR ∼

ˆ
(∂h)2 + κ (∂h)2 h+ · · · , (1.20)

where

κ =
√

8πGN , (1.21)

GN is Newton's constant and R is the Ricci scalar. In equation (1.20) we have written

the metric as

g = η + κh, (1.22)

with η the metric of �at Minkowski space. The interaction term, Sint, is proportional to

positive powers of κ. In the low-energy limit, all the terms proportional to κ drop out.

To see this more clearly, we can keep the energy �xed and send ls → 0, i.e. α′ → 0,

keeping all the dimensionless parameters �xed (including gs and N). This way, the

string vibrations admit no more than the lowest vibration mode. This follows from

dimensional analysis: sending ls → 0 means that the energy of the �rst mode will be

in�nite. We then have

κ ∼ gsα′2 → 0 (1.23)

in the low-energy limit, where

α′ = l2s (1.24)

is the Regge slope parameter and has dimensions of length squared. The interaction

Lagrangian involving the bulk and the brane vanishes.
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Also, all the higher derivative terms in the brane action vanish at low energies. This

leaves only the pure N = 4 U (N) gauge theory in 3+1 dimensions. We therefore realise

two decoupled systems in the low energy limit: free supergravity theory on one hand

and four dimensional gauge theory on the other.

This far, we have argued for the emergence of decoupled systems by studying the

dynamics of a D-brane in string theory on ten dimensional Minkowski space. Thus our

description includes both open and closed strings. Let us now consider the same system

from a di�erent point of view, i.e. by considering a description that uses closed strings

only.

The sources for supergravity �elds are massive, charged objects known as p-branes.

These p-branes are conjectured to be the same as D-branes. We can �nd a p3-brane

solution of the form

ds2 = f−
1
2
(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+ f

1
2
(
dr2 + r2dΩ2

5

)
, (1.25)

with a �ve-form �ux

F5 = (1 + ?) dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ df−1, (1.26)

where

f = 1 +

(
R

r

)4

(1.27)

and

R4 ≡ 4πgsα
′2N. (1.28)

Since gtt is not constant, the energy Ep of an object as measured by an observer at a

constant position r and the energy E measured by an observer at in�nity are related by

the redshift factor

E = f−
1
4Ep. (1.29)

This means that the same object brought closer and closer to r = 0 would appear to

have lower and lower energy for the observer at in�nity. Let us take the low energy limit

in the background described by equation (1.25). From the point of view of an observer

at in�nity, there are two kinds of low energy excitations, namely

i) massless particles propagating in the bulk with wavelengths that become very

large, and

ii) any kind of excitation that we bring closer and closer to r = 0.

These two excitations decouple from one another in the low-energy limit. The bulk

massless particles decouple from the near horizon region (around r = 0) because the low
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energy absorption cross-section goes like

σ = ω3R8, (1.30)

where ω is the energy. In this limit, the wavelength of the low energy supergravity modes

becomes much bigger than the typical gravitational size of the brane. The excitations

that live very close to r = 0 �nd it hard to climb the gravitational potential and escape

to the asymptotic region. Therefore, the low-energy theory consists of two decoupled

pieces, namely free bulk supergravity and the other piece in the near-horizon region of

the geometry. In the near-horizon region, r � R and

f ∼
(
R

r

)4

(1.31)

so that the metric (1.25) becomes

ds2 =
r2

R2

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+R2dr

2

r2
+R2dΩ2

5 (1.32)

which is the geometry of AdS5 × S5 spacetime.

We see here that either approach gives us two decoupled systems in the low-energy

limit. In both cases, one of the decoupled theories is supergravity in �at space. It is

therefore natural to identify the other decoupled systems. As a result, we can conjecture

that (3 + 1)-dimensional N = 4 SYM theory with gauge group U (N) is dual to type

IIB superstring theory on AdS5 × S5 [1].

The isometries of AdS space are in one-to-one correspondence with the generators

of the conformal group of the �eld theory. The CFT is de�ned on R3,1 with metric

ds2 = dt2 − dx2
1 − dx2

2 − dx2
3. (1.33)

By Wick rotating we get the metric of R4,

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4

= dr2 + r2dΩ2
3, (1.34)

where we have converted to spherical coordinates in the last line. We can substitute

r = et̃, dr = et̃dt̃ (1.35)

to get

ds2 = e2t̃
(
dt̃2 + dΩ2

3

)
. (1.36)
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Performing a conformal transformation gives us

ds2 = dt̃2 + dΩ2
3 (1.37)

which is the metric of R × S3. In other words, we see here that the CFT can also be

written on R× S3.

The global symmetry on the CFT side includes scalings

r = et̃ → et̃+a = ear (1.38)

in terms of which the t̃ coordinate is translated

t̃→ t̃+ a. (1.39)

The generator of scale transformations on the CFT is the dilatation operator D.

On the gravity side, the boundary of AdS5 × S5, written ∂
(
AdS5 × S5

)
, is R× S3.

We can perform a time translation on R,

t→ t+ a. (1.40)

The generator of this time translation is the Hamiltonian. We can thus identify the

dimensions of operators in the CFT with the energy of states in the string theory.

On the string theory side, N is the �ux of the �ve-form Ramond-Ramond �eld

strength on S5, ˆ
S5

F5 = N. (1.41)

This N arises in the string theory because the branes each carry unit charge. Stacking

N of them together leads to equation (1.41). The same N arises on the CFT side as the

rank of the gauge group U (N) .

The string theory has a parameter α′ that does not appear on the gauge theory

side. The ratio of the radius of curvature to α′ does appear as a parameter in the gauge

theory. As a result, α′ sets the units for any physical quantity computed. The radius of

curvature is usually set to one in gravity calculations by writing the metric as

ds = R2ds̃. (1.42)

In that case,

α′ ∼ 1√
gsN

(1.43)

which implies that any quantity computed without taking into account stringy e�ects
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will be independent of gsN. It will depend only on N. α
′ corrections to this gravity result

will be proportional to powers of 1/
√
gsN.

Perturbative Yang-Mills theory can be trusted when

g2
YMN ∼ gsN ∼

R4

l4s
� 1. (1.44)

On the other hand, a classical gravity description is reliable when the radius of curvature

R (of AdS5 as well as of S5) is very large compared to the string length ls, i.e.

R4

l4s
∼ gsN ∼ g2

YMN � 1. (1.45)

We see from this that when one theory is strongly coupled, the other is weakly coupled

and vice-versa. This is the point that makes the duality both useful and di�cult to

prove. Here, we have assumed that gs < 1. The radius of curvature, in Planck units, is

R4

lp
∼ N. (1.46)

It is therefore necessary, but not su�cient, to have large N in order to have a weakly

coupled supergravity description. The strongest version of the AdS/CFT correspond-

ence claims equivalence for all values of N and gs.

1.3.1.1 Symmetry matching8

One piece of evidence for the duality is symmetry matching. On both sides of the duality,

the complete symmetry is given by the superalgebra PSU (2, 2|4) . A superalgebra of the

form SU (m|n) has bosonic subalgebra SU (m) × SU (n) × U (1) . For the special case

m = n, the U (1) factor decouples from the rest of the algebra. P tells us that this U (1)

factor is not there. The bosonic subgroup for this superalgebra is SU (2, 2)× SU (4) .

In addition to conformal symmetry, N = 4 SYM theory is also invariant under su-

persymmetry transformations. There are eight supercharges that, together with their

conjugates, generate the supersymmetry transformations. Combining these supercharges

with the generators of the conformal group we discussed in Section 1.1, gives the super-

conformal algebra. Thus in addition to the conformal algebra, we now have the following

commutation and anti-commutation relations{
Qaα, Q̃

b
α̇

}
= γµαα̇δ

ab̄Pµ, (1.47)

8This discussion is based on [7, 12, 10].
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Qaα, Q

b
β

}
=
{
Q̃āα̇, Q̃

b
β̇

}
= 0, (1.48)

[Pµ, Q
a
α] =

[
Pµ, Q̃

ā
α̇

]
= 0, (1.49)

[D,Qaα] = − i
2
Qaα, (1.50)[

D, Q̃āα̇

]
= − i

2
Q̃āα̇, (1.51)

[Lµν , Qaα] = iσµναβε
βγQaγ , (1.52)

[
Lµν , Q̃āα̇

]
= iσµν

α̇β̇
εβ̇γ̇Q̃āγ̇ , (1.53)

[Kµ, Qaα] = γµαα̇ε
α̇β̇S̃a

β̇
, (1.54)

and [
Kµ, Q̃āα̇

]
= γµαα̇ε

αβSāβ, (1.55)

where α, α̇, β, β̇ = 1, 2 label the fundamental representations of the two independent

SU (2) algebras that make up the four-dimensional Lorentz group. The indices a, ā, b, b̄ =

1, . . . 4 label the fundamental and anti-fundamental representations of an internal SU (4) '
SO (6) symmetry known as R-symmetry. Sāα and S̃aα̇ which obey{

Sāα, S̃
b
α̇

}
= γµαα̇δ

ābKµ (1.56)

and {
Sāα, S

b̄
α

}
=
{
S̃aα̇, S̃

b
α̇

}
= 0, (1.57)

are special conformal supercharges. Together with the other supercharges, they give a

total of 32 supercharges. The two types of supercharges satisfy{
Qaα, S

b̄
β

}
= −iεαβσijab̄Rij + σµναβδ

ab̄Lµν − εαβδab̄D (1.58)

and {
Q̃āα̇, S̃

b
β̇

}
= +iεα̇β̇σ

ij
ābRij + σµν

α̇β̇
δābLµν − εα̇β̇δ

ābD (1.59)

from which we get a new set of generators Rij with i, j = 1, . . . 6. These generate the

SU (4) R-symmetry. The matrices σijāb are the SO (6) generators in the fundamental

representation.

On the string theory side, the AdS5 space has isometry SO (2, 4) which follows from

the fact that (p+ 2)-dimensional anti-de Sitter space (AdSp+2) can be represented as
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the hyperboloid

X2
0 +X2

p+2 −
p+1∑
i=1

X2
i = R2 (1.60)

in a �at (p+ 3)-dimensional space with metric

ds2 = −dX2
0 − dX2

p+2 +

p+1∑
i=1

dX2
i . (1.61)

By construction, this space has isometry SO (2, p+ 1) in addition to being homogeneous

and isotropic. In our special case, p = 3, the SO (4, 2) isometry is the same as the

conformal group in 3 + 1 dimensions.

There is also an SO (6) symmetry that rotates the S5 sphere. This SO (6) symmetry

can be identi�ed with the SU (4) R-symmetry group we have seen in the �eld theory.

The SO (2, 4) isometry of AdS5 has a supersymmetric extension known as an AdS

supergroup. We will explain how this enhencement is realised for N = 1 supergravity

with cosmological constant Λ [13]

S =

ˆ
d4x

(
−√g (R− 2Λ) +

1

2
εµνρσψ̄µγ

5γνD̃ρψσ

)
, (1.62)

where

D̃µ = Dµ +
i

2

√
Λ

3
γµ, (1.63)

Dµ is the standard covariant derivative, R is the Ricci scalar, g is the determinant of the

metric and γ5 and γµ are gamma matrices. The local supersymmetry transformation

for the vierbein Vaµ and the gravitino ψµ are

δVaµ = −iε̄ (x) γaψµ (1.64)

and

δψµ = D̃µε (x) , (1.65)

where ε is a spinor. To realise a global supersymmetry of the supergravity background,

the gravitino variation must vanish, i.e.

δψµ = 0. (1.66)

This is the Killing spinor equation. There are as many solutions to the equation as there

are independent components of the spinor. Since the theory has fermions that belong to

spinor representations, it is better to refer to groups SU (2, 2) and SU (4) instead. This

way, the bosonic subgroup of the supergroup is realised geometrically.
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OnAdS5, there areN = 2, 4, 6, 8 gauged supergravities9 with supersymmetry SU (2, 2|N/2)

[14]. The N = 8 case [15, 16] is the one that is conjectured to be dual to N = 4 SYM

theory in four dimensions. It is known to have a gauge group SU (4) ' SO (6) .

As we have explained, on the gauge theory side, the SU (4) symmetry arises as the

global SU (4) R-symmetry, while SO (4, 2) is the conformal group. Bringing everything

together, we get the PSU (2, 2|4) supergroup.

1.3.1.2 Large N limit

We study operators

O = tr (Zn) tr (Zm) · · · tr (Y ZnY mZ) (1.67)

that are made ofN×N matrices, Z, Y. There are various largeN limits that one can take.

In each of the examples we consider, we take the limit N → ∞ while holding λ �xed.

With this condition, we can keep the number of �elds inside O �xed, i.e. n, m ∼ O (1) .

We can also consider n, m ∼ O
(√

N
)
, n, m ∼ O (N) or n, m ∼ O

(
N2
)
.10

When we take N →∞ while keeping λ �xed, the Feynman diagrams arrange accord-

ing to their genus. In particular, the leading order terms will consist of planar diagrams

and so forth. By planar diagrams we mean diagrams that can be drawn on a plane

without their ribbons crossing.11

Since the string coupling gs is related to the 't Hooft coupling λ through

gs ∼
λ

N
, (1.68)

the 1/N expansion at �xed λ corresponds to the loop expansion of the dual string theory.

1.3.2 ABJM theory

ABJM theory [4], which bears the names of its authors, is a (2 + 1)-dimensional super

Chern-Simons-matter theory with N = 6 superconformal symmetry and gauge group

U (N)k × U (N)−k . Here, k is the Chern-Simons level which sets the coupling strength

of the theory. When k is large, the theory is weakly coupled.

The theory is conjectured to be dual to gravitational theories describing N parallel

M2-branes stacked together. The R-symmetry of the gauge theory is SU (4) . When

k = 1, the theory is conjectured to describe N M2 branes in �at space.

9Gauged supergravities are supergravity theories with non-Abelian gauge �elds in the supermultiplet
of the graviton [10].

10What each of these limits corresponds to is mentioned in Section 1.6.
11Since the �elds are matrices, the Feynman diagrams have double lines for propagators. It is these

double lines that we call ribbons.
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The �eld content of the Chern-Simons theory includes two gauge �elds Am and Ām,

complex scalar �elds Y I as well as Majorana spinors ΨI , where I = 1, . . . 4 for both

�elds.

The corresponding 't Hooft coupling for this theory is

λ =
N

k
. (1.69)

The 't Hooft limit takes N →∞ and k →∞, while holding λ �xed.

Unlike the D3-brane case discussed above, the U (N) × U (N) theory describes the

low energy limit of N M2-branes probing a C4/Zk singularity. At large N and k � N,

the theory is dual to M -theory on AdS4×S7/Zk. In the 't Hooft limit described above,

the theory is conjectured to describe N D2-branes in �at space. In this limit, the theory

is dual to type IIA string theory on AdS4 × CP3 background.

1.4 Giant gravitons

Giant gravitons are given by Dp-branes wrapping some sphere. Their excited states are

described by attaching strings. Giant gravitons play a central role in this thesis.

Consider a massless particle (a graviton) moving along a circle in S5. It has been

shown in [17] that as the momentum of the particle is increased, the coupling of the

particle to the background �ux becomes more important for the dynamics of the particle.

As a result of the coupling, the particle expands into a sphere inside the S5 of AdS5×S5.

There is a cut-o� on the size of the giant graviton arising because the S3 is contained

inside the S5. A particle in this state is known as a giant graviton.

We can also have a dual giant graviton [18, 19] if the expansion happens in the AdS5

space. In this case, there is no upper bound on the size of the giant graviton. Such a

particle is called a dual giant graviton.

1.4.1 Sphere giants

Let us start by reviewing the giant gravitons expanding in the sphere part of the geo-

metry. The discovery draws much from non-commutative �eld theory [20, 21]. The

particles described by such theories have a spatial extension which is proportional to

their momentum.

Let us consider a pair of unit charges of opposite sign moving on a plane with a con-

stant magnetic �eld B. The coordinates of these charges are x1 and x2. The Lagrangian

is

L =
m

2

(
ẋ2

1 + ẋ2
2

)
+
B

2
εij

(
ẋi1ẋ

j
1 − ẋ

i
2ẋ
j
2

)
− K

2
(x1 − x2)2 , (1.70)
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where the �rst term is the kinetic energy, the second is the interaction of the charges

with the magnetic �eld and the last term is the harmonic potential between the charges.

Let us assume that the mass is small enough to be ignored so that the �rst term in the

Lagrangian can be neglected.

Let us now introduce the centre of mass and relative coordinates

X =
x1 + x2

2
& 4 =

x1 − x2

2
(1.71)

in terms of which the Lagrangian becomes

L = BεijẊ
i4j − 2K42. (1.72)

Here, 4j refers to the component form of the coordinates. The variables X and 4 do

not commute. Instead, they satisfy

[
Xi,4j

]
= i

εij
B
. (1.73)

The momentum conjugate to X is

Pi = Bεij4j . (1.74)

Therefore, when moving with momentum P in a particular direction, the dipole is

stretched to a size

|4| = |P |
B

(1.75)

in the perpendicular direction. This is true because 4 gives the relative coordinates of

the two charge system.

Now let us allow the dipole to move on the surface of a sphere of radius R and

magnetic �ux N. This can be realised by placing a magnetic monopole of strength

2πN = Ω2BR
2 (1.76)

at the centre of the sphere. When the momentum of the dipole reaches 2BR, the dipole

is as big as the sphere. The angular momentum of the dipole at this point is maximum,

L = PR ∼ BR2, (1.77)

which is order N, the total �ux through the surface of the sphere. This rough analysis

agrees with the results of a more precise analysis from which we learn that the angular

momentum is exactly cut o� at N.
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In the case of AdS5 × S5, the radius of the �ve sphere is

R = (4πgsN)
1
4 ls, (1.78)

where the symbols used have already been de�ned. Let us consider the 't Hooft limit

N →∞ with

λ = gsN

�xed and large. With this set up, let us consider the exact classical analysis of a D3

brane wrapping an S3 that moves inside the S5. The bosonic Lagrangian, which is the

sum of the Dirac-Born-Infeld and Chern-Simons terms, is

L = LDBI + LCS = −TD3Ω3r
3
√

1− (R2 − r2) φ̇2 + φ̇N
r4

R4
, (1.79)

where

TD3 =
1

(2π)3 l4sgs

is the tension of the D3 brane. Using equation (1.78), we write

TD3Ω3 =
N

R4
, (1.80)

and get the angular momentum

L =
∂L
∂φ̇

=
mφ̇

(
R2 − r2

)√
1− (R2 − r2) φ̇2

+N
r4

R4
, (1.81)

where

m = TD3Ω3r
3 =

Nr3

R4
. (1.82)

Since

0 ≤ r ≤ R

and

0 ≤ φ̇R ≤ 1,

the angular momentum is again bounded by N.

The energy of this con�guration is

E =

√
m2 +

(L−Nr4/R4)2

R2 − r2
. (1.83)
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Varying this energy with respect to r for �xed L, we �nd a stable minimum at

r2 =
L

N
R2 (1.84)

corresponding to

E =
L

R
(1.85)

for large L. This matches the BPS bound of the energy.

1.4.2 AdS (Dual) giants

Following the discovery of the sphere giants whose size is bounded by the �ve-sphere,

[18] and [19] independently discovered stable giants expanding in the AdS part of the

geometry. These so-called dual giants are not bounded by the space in which they

expand since AdS space is not bounded.

Let us consider a spherical D3 brane in AdS5 moving along the equator of S5. If the

angular velocity of the brane is φ̇, the Lagrangian of the con�guration is

L = −TΩ3R
4

(
tan3 ρ

√
sec2 ρ− φ̇2 − tan4 ρ

)
(1.86)

and the corresponding energy is

E = N

(
sec ρ

√
L2

N2
+ tan6 ρ− tan4 ρ

)
(1.87)

with

TΩ3R
4 = N. (1.88)

The Lagrangian (1.86) comes from embedding a D3-brane wrapping the Ω3 of the AdS5

background. Working in global coordinates, the Dirac-Born-Infeld Lagrangian for this

con�guration is

L = −
(
T
√

(−gtt − ω2gΩ5Ω5) g3
Ω3Ω3

− CtΩ3Ω3Ω3

)
(1.89)

where

CtΩ3Ω3Ω3 = TR4 tan4 ρ.

The metric of AdS5 in these coordinates is

ds2 =
R5

cos2 ρ

(
−dτ2 + dρ2 + sin2 ρdΩ2

3

)
+R2dΩ2

5. (1.90)
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This then leads to equation (1.86).

The energy corresponding to the local minima

tan ρ = 0 & tan ρ =

√
L

N
(1.91)

is

E =
L

R
. (1.92)

We see here that the quantum numbers of the two giant gravitons match and are

equal to that of the point-like graviton. In addition to the maximum sizes of the giants,

another di�erence is that the sphere giant couples magnetically to the background �eld,

while the dual (AdS) couples electrically. In other words, the AdS giant can be thought

of as a dielectric brane that couples electrically to the background �eld, while the sphere

giant behaves as a diamagnetic brane.

1.5 Planar limit

A lot of work has been done, employing integrability to solve N = 4 SYM theory in the

planar limit. As we explain elsewhere, the planar limit consists of Feynman diagrams

whose ribbons do not cross when drawn on a plane. In this section, we review the work

done in the planar limit using integrability. For a more comprehensive review, the reader

is referred to [22].

1.5.1 N = 4 SYM theory and type IIB string theory (AdS5/CFT4)

Let us start by elucidating the conjectured relationship between N = 4 SYM theory and

type IIB string theory. On the gauge theory side, one can perform a 1/N expansion in

the limit N → ∞ for �xed λ. The graphs whose ribbons do not cross when drawn on

a plane - the so-called planar diagrams - constitute the leading terms. The non-planar

diagrams represent quantum corrections. In other words, the planar limit in �gure 1.1

(taken from [22]) consists of these planar diagrams.

When λ is small, the gauge theory is weakly coupled and the background of the string

theory is highly curved. On the other hand, when λ is very large, the gauge theory is

strongly coupled and the background of the dual string theory is weakly curved. This

radius of curvature R is related to the e�ective string tension T through

T =
R2

2πα′
. (1.93)
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Figure 1.1: The parameter space of N = 4 SYM theory and type IIB string theory (from
[22]).

In the weak coupling regime,12 perturbation theory in terms of Feynman diagrams

provides a good approximation of the gauge theory. Through the AdS/CFT correspond-

ence, this gives reliable results for the string theory on the highly curved background. In

contrast, the same perturbative expansion breaks down in the strong coupling limit of

the gauge theory. However, since the string theory background is weakly curved in this

region, perturbative string theory is applicable, i.e. we can expand the string theory in

terms of the tension. The number of handles can be increased by expanding in terms of

the string coupling gs. The results obtained from this expansion can again be transferred

to the strongly coupled gauge theory through the AdS/CFT correspondence.

In the planar limit of N = 4 SYM, it has been possible to compute observables at

arbitrary gauge coupling λ. The central idea that is employed in this large N limit of the

theory is the identi�cation of the dilatation operator D, with the Hamiltonian of an in-

tegrable spin system.13 Integrability predicts the spectrum of planar scaling dimensions

for local operators as a function of λ. According to the AdS/CFT correspondence, this

spectrum is dual to the energy spectrum of the free string states, i.e. strings that neither

break apart nor join together. The results obtained using integrability match on either

side of the correspondence, i.e. the energy spectrum obtained on the string theory side

12Referring to the gauge coupling λ.
13We review this for the su (2) sector of SYM theory in Appendix B.
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agrees with the spectrum of anomalous dimensions computed on the gauge theory side.

Furthermore, the results obtained using integrability agree with those obtained by the

actual computation of the Feynman diagrams in the weak coupling limit of the gauge

theory. Similarly, in the strong coupling limit, integrability agrees with perturbative

string theory.

1.5.2 ABJM theory and type IIA string theory (AdS4/CFT3)

Some work has been done in the weak coupling limit of ABJM theory as well. Speci�cally,

this is in the limit in which ABJM theory is dual to type IIA string theory on AdS4×CP 3

spacetime. In this limit, the same approach used to study N = 4 SYM theory has been

applied to the case of ABJM theory with appropriate modi�cations. In particular, the

dilatation operator of ABJM theory in this limit is mapped to the Hamiltonian of an

integrable spin chain.

In the AdS5/CFT4 case we had type IIB string theory on AdS5 × S5 with the self

dual �ve-form �ux ˆ
F (5) ∼ N

through AdS5 and S5. We now have type IIA string theory on AdS4 × CP 3 with four

form �ux ˆ
F (4) ∼ N

through AdS4 and two-form �ux14

ˆ
F (2) ∼ k

through a CP 1 ⊂ CP 3. D3 branes are replaced by M2 branes.

In the AdS5/CFT4 case, the gauge theory is N = 4 SYM theory with coupling gYM

and gauge group U (N) on R1,3. In the AdS4/CFT3 case this is replaced by ABJM

theory which is N = 6 superconformal Chern-Simons-matter theory with gauge group

U (N)× U (N) on R1,2. The Yang-Mills coupling gYM is replaced by the Chern-Simons

level k. After rescaling the �elds in ABJM theory in particular way, all interactions are

suppressed by powers of 1/k so that large values of k correspond to the weak coupling

regime. One can take a planar limit in which

k, N →∞
14Where k is the Chern-Simons level.
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and

λ ≡ N

k

is held constant. It has been shown that in this limit, weakly coupled ABJM theory can

be mapped onto a spin chain problem whose Hamiltonian is known to be integrable [23].

In the planar limit, the string coupling gs goes to zero and the strings do not split or

join. When λ is small, the background is highly curved and the strings get large quantum

corrections. On the other hand, when λ is very large, the background is weakly curved

and the strings behave classically.

Whereas one has all spins pointing in one direction in the N = 4 SYM case and then

considers one excitation moving through the spin chain, in ABJM theory the integrable

spin chain has alternating spins. This means that the ABJM spin chain must have an

even number of spin sites.

1.6 Non-planar limit

As we have already mentioned, the AdS/CFT dictionary identi�es the conformal di-

mension of the �eld theory operators with the energy of the corresponding state in the

quantum gravity. Operators with dimension ∼ 1 are identi�ed with point-like gravitons

[3, 2]. If the dimension is
√
N then they are string states [24]. More interestingly,

operators with dimension N are identi�ed with D-brane states [25, 26, 27], while new

geometries are associated with operators with dimension N2 [28, 29]. The large N limit

of the last two operators is not captured by summing planar diagrams only [25]. This is

because large combinatoric factors that arise from many �elds enhance the non-planar

contributions [30]. We therefore need to work in a large N, but non-planar limit.

Since summing the large number of Feynman diagrams is such a daunting task, a

new approach is needed. By using Schur polynomials,15 it has been shown how all

possible diagrams can be summed in a much easier way [26] in the free �eld theory, in a

half-BPS sector. In this basis, the two-point function of the theory is diagonal and the

higher-point correlators take a simple form. These results were then explained in terms

of projection operators in [31].

Operators that are dual to excited giant gravitons, restricted Schur polynomials,

were �rst proposed in [32]. Using the technology developed in [33, 34, 35], the two-point

function of these restricted Schur polynomials was computed in the free �eld theory

limit [36]. These operators provide a basis for gauge invariant operators built using

only scalar �elds [37]. These operators are equally good for describing gauge invariant

operators with more scalar [38] and fermionic �elds [39], as well as gauge �elds [39]. In

15Explained in Chapter 2.
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the basis of these operators, the two-loop dilatation operator has also been studied [40].

As a basis, the restricted Schur polynomials diagonalise the two-point function in the

free �eld theory and they mix weakly at one loop [34, 35], an important property which

we explain in Chapter 2.

In [41, 42], numerical studies of the spectrum of anomalous dimensions were carried

out, and the results resembled a set of decoupled harmonic oscillators. This inspired

analytic work on the action of the dilatation operator on the restricted Schur polyno-

mials. Initially, this work concentrated on two sphere or two AdS giants [43] before

considering a more general number of branes [44]. One main di�erence between these

two cases is that in the two giant graviton case, the problem is simpli�ed by the absence

of multiplicity indices. We will explain this simpli�cation in Chapter 2.

The analytic study of the action of the dilatation operator makes use of the rela-

tionship between symmetric and unitary group. In particular, it employs the so-called

Schur-Weyl duality. We will explain this important concept in Sections 2.6 and 3.2.2.

Analytically, the dilatation operator acting on the restricted Schur polynomials has

been diagonalised in [43, 44, 38, 39]. In all these cases, restricted Schur polynomials built

from a large number of �elds, Z, doped slightly with impurities was considered. The

diagonalisation problem separated into two problems, one associated with the impurities

and the other associated with the Z �elds. The diagonalisation problem associated with

the Z �elds was solved in [45], while the one associated with the impurities is solved

through a double coset asantz [46]. The result of the diagonalisation is a spectrum of

a set of decoupled oscillators. This signals integrability in this large N, but non-planar

limit. In other words, it is found that N = 4 SYM theory is integrable beyond the

planar limit.

ABJM theory has also been written in terms of restricted Schur polynomials which

diagonalise the free �eld theory [47]. Again, the spectrum of anomalous dimensions was

computed and was found to resemble the spectrum of a set of decoupled oscillators.

This was done for systems of two excited giant gravitons represented by two long rows

or columns. Interestingly, the technology developed to study the su (2) sector of SYM

theory is su�cient to handle this case. Complications immediately arise the moment

one considers more than two rows. It is not yet known if the action of the dilatation

operator is diagonalised by the double coset ansatz developed for N = 4 SYM theory.

1.6.1 Large N, but non-planar limit

As we explain in Section 1.5 and Appendix B.3, in the case of single trace operators built

using O (1) matrix �elds, it is su�cient to sum only the planar diagrams in the large N

limit. These operators are dual to point gravitons. On the contrary, operators that are
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dual to giant gravitons are made of O (N) �elds. To compute the anomalous dimensions

of these large operators, one needs to sum both the planar and the non-planar diagrams.

In this thesis, we work in this large N, but non-planar limit. This point will become

much clearer in the next chapter.

1.7 Outline of this thesis

In this work, we compute the spectrum of anomalous dimensions for a marginally de-

formed super Yang-Mills theory as well as the su (2|3) and sl (2) sectors of N = 4 SYM

theory. The tool we employ is the group representation theory of symmetric and unitary

groups reviewed in Chapter 2. The gauge invariant operators we will study are restric-

ted Schur polynomials built from O (N) scalar �elds Z, doped with a smaller number,

but O (N) impurity �elds. In each case, we will notice that the action of the dilatation

operator always factorises into a problem associated with the Z �elds and a problem

associated with the impurities. Each of these two parts will be diagonalised.

We will then take the continuum limit for each of the problems we study. This will

help us to see any hints of integrability clearly. At large N, since there are order N boxes

in each row of the Young diagram, row lengths e�ectively become continuous variables

and a continuum limit is justi�ed.

Our calculations do not depend on the spacetime coordinates. If needed, the space-

time dependence can easily be incorporated at the end. As a result, we will not include

the spacetime dependence in our calculations [26].

1.7.1 Marginally deformed N = 4 SYM

Studying N = 4 SYM theory may give some insight into quantum chromodynamics and

related theories. However, this theory is maximally super-symmetric and conformally

invariant, while quantum chromodynamics is not. A natural course to take therefore,

is to break some of the supersymmetry - we do not break the conformal symmetry and

consequently, the gravitational theories we consider are on AdS backgrounds. There is

a deformation that breaks the supersymmetry in N = 4 SYM theory down to N = 1.

This example was �rst introduced by Leigh and Strassler in [48]. This is the case we

study here, i.e. we will consider the action of the deformed dilatation operator on the

restricted Schur polynomials in the su (2) sector. This work, reported here in Chapter

3 was published in [49]. It is my original work.

A gravitational dual for this theory was found by Lunin and Maldacena in [50].

The key idea they employed was that marginal deformations of a conformal �eld theory

preserve the conformal symmetry. The conformal group is SO (2, 4) and is the isometry
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of the gravity dual. This isometry gives us AdS5 spacetime. As a result, Lunin and

Maldacena only deformed the S5 part of the AdS5 × S5 spacetime. In particular, they

performed a T-duality, followed by a shift and �nally by another T-duality (a TsT

transformation) on the �ve-sphere. The result was a theory on the deformed spacetime,

AdS5 × S̃5.

Generalisations of this deformation to non-supersymmetric cases exist [51]. In this

case, one obtains the Lunin-Maldacena example by equating all the deformation param-

eters, i.e. by setting γi = γ.

1.7.2 su (2|3) sector

The beautiful work done on the SU (2) sector of N = 4 SYM only includes two scalar

�elds. Three scalar �elds do not make up a closed sector because these �elds mix with

fermions. The next closed sector therefore consists of three scalars and two fermions,

the so-called su (2|3) sector [52].

In order to �rmly establish the existence of integrability in the large N, but non-

planar limit of the theory, we need to include fermions and gauge �elds in our study.

Chapter 4, published in [39], �lls this important gap - this is my original work. In

particular, we will explain how to construct restricted Schur polynomials that include

both fermions and bosons. These restricted Schur polynomials continue to diagonalise

the free �eld two point function to all orders in 1/N. We �nd that these new restricted

Schur polynomials continue to diagonalise the free �eld two point function. In addition,

the number of these polynomials matches the expected number of multi-�eld multi-trace

gauge invariant operators. We also show how to transform between the trace basis and

the basis provided by the polynomials we construct.

As an application of our results, we study the su (2|3) sector of the theory. It is

closed to all orders under the action of the dilatation operator [52, 53]. At the one

loop level, the dilatation operator has a simple action in this sector. We explain how to

construct the restricted Schur polynomials for the su (2|3) sector and then compute the

action of the dilatation operator in this sector. The problem associated with the Z �elds

in this case is similar to the one solved in [45]. As a result, we only need to diagonalise

the impurity problem, which we accomplish by employing a slightly modi�ed version of

the double coset ansatz.

1.7.3 The sl (2) sector

There is another closed sector of N = 4 SYM theory that consists of one type of scalar

�eld Z, say, and covariant derivatives - the sl (2) sector [54]. In Appendix C we diag-

onalise the one-loop dilatation operator acting on restricted Schur polynomials in this
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sector of the theory. These operators were built in [38]. In this work, we only complete

that work by writing the action of the dilatation operator in the Gauss graph basis. We

�nd that this sector is also diagonalised by the double coset ansatz. This too, is my own

original work.

Finally, we conclude our work in Chapter 5.



Chapter 2

Group representation theory

In this chapter we review the tools used to study the large N, but non-planar limits of

Yang-Mills theories. These tools include the group representation theory of symmetric

and unitary groups, as well as the relationships between them. We use the same tools,

with appropriate modi�cations, in the chapters that follow. In this chapter, we will only

review the components that are necessary to understand the chapters that follow. The

rest will be similar to what we have in Chapter 3.

2.1 Multi-trace operators and gravity

As we discussed in Chapter 1, the gauge invariant operators we wish to study are multi-

trace operators. In the su (2) sector of N = 4 SYM theory, we study operators built

from N × N complex scalar �elds Z and Y. There are n Z �elds and m Y �elds. We

compute correlators of the form

〈On,m〉 =
〈
OnOmO†n+m

〉
, (2.1)

where the operator On is

On =
1√
nNn

tr (Zn) . (2.2)

Our goal here is to �nd a (simple) formula for (2.1). To proceed, let us study a simpler

problem �rst, i.e. we consider the case n 6= 0 and m = 0〈
tr (Zn) tr

(
Z†n

)〉
.

Let us start with n = 1 and increase the values of n until we notice a pattern. To

compute the correlators in each case, we consider all possible contractions between the

Z and Z† �elds (by Wick's theorem), draw the corresponding Feynman diagrams and

34
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then count the number of closed loops for each case. For each closed loop we write down

a factor of N. The case in which n = 1 gives one Feynman diagram with one closed loop.

We therefore �nd 〈
tr (Z) tr

(
Z†
)〉

= N. (2.3)

Similarly, when n = 2, we get two Feynman diagrams from the two possible contractions.

Each of these diagrams has two closed loops. We therefore �nd〈
tr
(
Z2
)
tr
(
Z†2
)〉

= 2N2. (2.4)

For n = 3 we get three N3 diagrams as well as three other diagrams with one closed

loop. We therefore �nd 〈
tr
(
Z3
)
tr
(
Z†3
)〉

= 3N3 + 3N. (2.5)

The n = 4 case gives 〈
tr
(
Z4
)
tr
(
Z†4
)〉

= 4N4 + 20N2. (2.6)

At this stage we notice pattern for the leading term. To leading order, we can write1〈
tr (Zn) tr

(
Z†n

)〉
= nNn. (2.7)

This is where the normalisation in equation (2.2) comes from.

We can also derive equation (2.7) in a second way. We use the following identity

ˆ [
dZdZ†

] d

dZij

{
tr (Zn)

(
Z†n−1

)i
j
e−tr(ZZ

†)
}

= 0. (2.8)

Using
d

dZij
e−tr(ZZ

†) = −
(
Z†
)j
i
e−tr(ZZ

†) (2.9)

and
d

dZij
tr (Zn) = n

(
Zn−1

)j
i

(2.10)

we �nd

ˆ [
dZdZ†

]{
ntr

(
Zn−1Z†n−1

)
− tr (Zn) tr

(
Z†n

)}
e−tr(ZZ

†) = 0 (2.11)

1The subleading terms are suppressed by powers of N2 when compared to the leading term.
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which we rewrite as 〈
tr (Zn) tr

(
Z†n

)〉
= n

〈
tr
(
Zn−1Z†n−1

)〉
. (2.12)

the left hand side is what we originally want to compute. A question we can ask at

this point is whether we have cast the problem into a simpler form. It turns out that

we have. The trace on the right hand side gives fewer Feynman diagrams than the left

hand side. In particular, we get only one diagram that has n loops, i.e. there is only one

diagram which gives us Nn, the leading term.2 We have therefore recast the problem

into a simpler one and to leading order, we write (as we found earlier)〈
tr (Zn) tr

(
Z†n

)〉
= n

〈
tr
(
Zn−1Z†n−1

)〉
= nNn. (2.13)

Having computed the easier problem,〈
tr (Zn) tr

(
Z†n

)〉
,

let us now turn our attention to our original problem, equation (2.1). Disregarding the

normalisation for the time being, we compute

ˆ [
dZdZ†

] d

dZ†ij

{
tr (Zn)

(
Zm−1

)i
j
tr
(
Z†n+m

)
e−tr(ZZ

†)
}

= 0 (2.14)

which gives〈
tr (Zn) tr (Zm) tr

(
Z†n+m

)〉
=
〈

(n+m) tr (Zn) tr
(
Z†n+m−1Zm−1

)〉
. (2.15)

Now,

tr
(
Z†n+m−1Zm−1

)
= mtr

(
Z†n

)
. (2.16)

To see this, we can study the m = 3 and n = 4 case. In this case we have

tr
(
Z†n+m−1Zm−1

)
= tr

(
Z†6Z2

)
(2.17)

and the only planar contraction that we get has two closed loops resulting from con-

tracting the two Zs with two of the six Z†s. Each of the closed loops gives a factor of

N, while the remainder of the Z†s give us a factor of tr
(
Z†4
)
. We therefore have

tr
(
Z†6Z2

)
= N2tr

(
Z†4
)
. (2.18)

2This follows immediately upon noting that only one of the diagrams contributing to the right hand
side of (2.12) is planar.
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The 4 in tr
(
Z†4
)
is the di�erence between the n+m− 1 and m− 1.

Substituting equation (2.16) into equation (2.15) yields〈
tr (Zn) tr (Zm) tr

(
Z†n+m

)〉
= m (n+m)Nm−1

〈
tr (Zn) tr

(
Z†n

)〉
. (2.19)

Using equation (2.13) we get〈
tr (Zn) tr (Zm) tr

(
Z†n+m

)〉
= mn (n+m)Nn+m−1. (2.20)

Finally, including the normalisation we arrive at

〈
OnOmO†n+m

〉
=

√
mn (n+m)

N
. (2.21)

To complete our motivation, we also need〈
OnO†m

〉
= δmn + subleading terms (2.22)

which agrees with

〈p2|p1〉 = δp1p2 . (2.23)

Looking at equation (2.21) we see that〈
OnOmO†n+m

〉
= 0 (2.24)

when m, n = O (1) and N →∞. Similarly,〈
On1On2 . . .OnlO

†
m1
O†m2

. . .O†mk
〉

= 0 (2.25)

when

l 6= k, mi 6= ni

for i = 1 . . . l. Thus the multi-trace operators do not mix.

We now propose a dictionary between the single trace operators and the supergravity

Fock space. If we think of ni as momenta and also consider

〈p2,p3|p1〉 = 0, (2.26)

we see that the number of traces should be identi�ed with the number of particles.

This reproduces the supergravity Fock space. We know that gravitational interaction

increases as energy increases. Therefore a bigger n implies more momentum, more energy

and therefore more interaction.
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When

n ∼ m ∼ O
(
N

2
3

)
, (2.27)

we have 〈
OnOmO†n+m

〉
6= 0

and the traces begin to mix.

We see from this section that we can learn something about supergravity by studying

multi-trace operators.

2.2 Action of σ ∈ Sn.

To study the multi-trace operators, we will develop a description motivated by the

representation theory of symmetric and unitary groups. With this in mind, we now

introduce some notation and study the action of the symmetric group on the trace

operator.

Consider a matrix Z that acts on an N -dimensional vector space V as follows

Z : V → V,

i.e.

|w〉 = Z |v〉 , (2.28)

where

|w〉 , |v〉 ∈ V.

We can also consider an Nn-dimensional vector space V ⊗n, with elements

|u〉 ⊗ |v〉 ⊗ |w〉

for n = 3. In this case,

Z⊗3 |u〉 ⊗ |v〉 ⊗ |w〉 = Z |u〉 ⊗ Z |v〉 ⊗ Z |w〉 . (2.29)

We can rewrite these relationships in index notation as

wi = Zijv
j (2.30)

for (2.28), and

Zi1j1Z
i2
j2
Zi3j3u

j1vj2wj3 (2.31)

for (2.29), where repeated indices are summed.
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Now, we can consider the action of σ ∈ Sn on the vector space V ⊗n. Considering in

particular σ = (12) , which swaps elements 1 and 2 around, we have

(12)uj1vj2wj3 = uj2vj1wj3 . (2.32)

We can therefore write

(12)IJ = δi1j2δ
i2
j1
δi3j3 . (2.33)

In general, we can write

σ (v1 ⊗ v2 ⊗ . . . vn) = vσ(1) ⊗ vσ(2) ⊗ . . . vσ(n) (2.34)

with

(σ)IJ = δi1jσ(1)δ
i2
jσ(2)

. . . δinjσ(n) . (2.35)

Using this notation, we can write

tr
(
σZ⊗n

)
= σIJ

(
Z⊗n

)J
I

= Zi1iσ(1)Z
i2
iσ(2)

. . . Ziniσ(n). (2.36)

As an example, we can consider the case n = 3 for which the possible values of σ are

σ = 1, (12) , (13) , (23) , (123) , (132) . (2.37)

For these values of σ, we �nd

tr
(
1 · Z⊗3

)
= tr (Z)3 , (2.38)

tr
(
(12) · Z⊗3

)
= tr

(
(13) · Z⊗3

)
= tr

(
(23) · Z⊗3

)
= tr

(
Z2
)
tr (Z) (2.39)

and

tr
(
(123) · Z⊗3

)
= tr

(
(132) · Z⊗3

)
= tr

(
Z3
)
. (2.40)

We learn here that the conjugacy classes of the symmetric group correspond to

speci�c multi-trace structures.

2.3 Correlation functions

We would like to write down a general formula for computing the n-point function for

the case in which we have one type of �eld. We know that the two point function of our

�elds is 〈
ZijZ

†k
l

〉
= δilδ

k
j .
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Similarly, 〈
Zi1j1Z

i2
j2
Z†k1l1

Z†k2l2

〉
= δi1l1 δ

i2
l2
δk1j1 δ

k2
j2

+ δi1l2 δ
i2
l1
δk1j2 δ

k2
j1
. (2.41)

Looking at the right hand side of equation (2.41) carefully, we notice that the lower

indices in the �rst term are numbered exactly as the upper indices, while in the second

term, the l labels are permuted relative to the i labels. The same follows for the k′s

and j′s. This action is similar to that of σ ∈ Sn. However, studying the n = 3 case

establishes the fact that the j′s are actually acted on by σ−1, while the l′s are acted on

by σ. We can therefore write the 2n-point function as〈
Zi1j1 . . . Z

in
jn
Z†k1l1

. . . Z†knln

〉
=
∑
σ∈Sn

δi1lσ(1) . . . δ
in
lσ(n)

δk1jσ−1(1)
. . . δknjσ−1(n)

≡
∑
σ∈Sn

(σ)IL
(
σ−1

)K
J
. (2.42)

We can also write a general formula for〈(
Z⊗n ⊗ Y ⊗m

)I
J

(
Z†⊗n ⊗ Y †⊗m

)K
L

〉
as we did in equation (2.42). By studying the n = 3, m = 2 case for example, we learn

that〈(
Z⊗n ⊗ Y ⊗m

)I
J

(
Z†⊗n ⊗ Y †⊗m

)K
L

〉
=

∑
σ∈Sn×Sm

δi1lσ(1) . . . δ
in
lσ(n)

δ
in+1

lσ(n+1)
. . . δ

in+m
lσ(n+m)

× δk1jσ−1(1)
. . . δknjσ−1(n)

δ
kn+1

jσ−1(n+1)
. . . δ

kn+m
jσ−1(n+m).

(2.43)

In general, we see that the correlation function for the multi-trace operators can be

expressed entirely in terms of the symmetric group elements.

2.4 Schur polynomials

If we consider operators constructed using one type of �eld Z, a class of operators we

can build are the Schur polynomials de�ned as

χR (Z) ≡ 1

n!

∑
σ∈Sn

χR (σ) tr
(
σZ⊗n

)
, (2.44)

where

χR (σ) = tr (ΓR (σ)) (2.45)
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is the character of the group element σ ∈ Sn in representation R. ΓR (σ) is a matrix

representing σ in representation R. In the case n = 3, there are six distinct permutations

σ, but only three distinct trace structures

tr
(
σZ⊗3

)
= Zi1iσ(1)Z

i2
iσ(2)

Zi3iσ(3) (2.46)

and we have three distinct Schur polynomials. Let R1 be the trivial representation,

R2 be the sign representation and R3 be the standard representation of S3. The Schur

polynomials we have are

χR1 (Z) =
1

3!

{
(trZ)3 + 3tr (Z) tr

(
Z2
)

+ 2tr
(
Z3
)}
, (2.47)

χR2 (Z) =
1

3!

{
(trZ)3 − 3tr (Z) tr

(
Z2
)

+ 2tr
(
Z3
)}

(2.48)

and

χR3 (Z) =
1

3

{
(trZ)3 − tr

(
Z3
)}
. (2.49)

Now, 〈
χR1 (Z)χ†R1

(Z)
〉

= N3 + 3N2 + 2N (2.50)

and 〈
χR1 (Z)χ†R3

(Z)
〉

= 0. (2.51)

The right hand side of equation (2.50) is actually the product of the factors of the

irreducible representation (irrep) R, fR. In order to understand what these factors are,

let us consider an example. Let us compute the fR for the Young diagram of S3 shown

in �gure 2.1. We label the top left hand box N, then as we move to the right, we add

one and subtract one when we move down. This way, the factors of the Young tableaux

shown in �gure 2.1 are N, N + 1 and N − 1 as indicated. The product of factors for this

Young tableaux is therefore

fR = N (N + 1) (N − 1) . (2.52)

Both equations (2.50) and (2.51), follow from the more general formula of the two

point function 〈
χR (Z)χ†S (Z)

〉
= δRSfR. (2.53)

A more general proof of equation (2.53) will be presented in Section 2.4.2.

As we recounted in Chapter 1, these Schur polynomials were �rst studied in the

context of giant gravitons in [26].
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Figure 2.1: The standard Young tableaux for S3.

2.4.1 Projectors

Let us de�ne the operator

PR =
1

n!

∑
σ∈Sn

χR (σ)σ. (2.54)

If γ ∈ Sn also, then PR commutes with γ, i.e.

PR · γ = γ · PR. (2.55)

To verify this, we can compute both sides of equation (2.55) for the group S3. In par-

ticular, if we may consider the standard representation of S3 with

σIJ = δi1jσ(1)δ
i2
jσ(2)

δi3jσ(3) (2.56)

and

γJK = (23)JK = δj1k1δ
j2
k3
δj3k2 (2.57)

we �nd that

PR · γ =
1

3!
{2γ − (13)− (12)} (2.58)

which indeed agrees with γ · PR.
For the more general proof we can write

PR · γ =
1

n!

∑
σ∈Sn

χR (σ)σγ (2.59)

and introduce a change of variable

ψ = γ−1σγ (2.60)
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to get

PR · γ =
1

n!

∑
ψ∈Sn

χR
(
γψγ−1

)
γψγ−1γ

=
1

n!

∑
ψ∈Sn

tr
(
ΓR
(
γψγ−1

))
γψ

=
1

n!

∑
ψ∈Sn

tr
(
ΓR
(
γ−1γψ

))
γψ

= γ
1

n!

∑
ψ∈Sn

χR (ψ)ψ

= γ · PR (2.61)

which completes the proof.

Using the fundamental orthogonality relation of a group G, we can also show that

PR · PS =
1

dR
δRSPR, (2.62)

where dR is the dimension of the Young diagram R. Thus we see that the operators PR

are projection operators. For an Sn group,

dR =
n!

hooksR
, (2.63)

where hooksR stands for the product of hook-lengths of the Young diagram R a repre-

sentation of Sn. The fundamental orthogonality relation of a group G states that

∑
g∈G

ΓR (g)ab ΓS
(
g−1
)
cd

=
|G|
dR

δRSδadδbc, (2.64)

where |G| is the order of the group. For the symmetric group we have

|Sn| = n!. (2.65)

Setting G = Sn and g = σ in our case, we compute

PR · PS =
1

n!n!

∑
σεSn

∑
γ∈Sn

tr (ΓR (σ)) tr (ΓS (γ))σ · γ. (2.66)

Further, we set

γ = σ−1ρ (2.67)
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and use

ΓR (γ) = ΓR
(
σ−1ρ

)
= ΓR

(
σ−1

)
ΓR (ρ) (2.68)

together with equation (2.64) to get

PR · PS =
1

n!dR
δRSδlj

∑
ρ∈Sn

ΓS (ρ)jl ρ (2.69)

which simpli�es to equation (2.62).

We can also use the fact that χR (U) (a Schur polynomial evaluated with Z = U ∈
U (N)) equals the character of the group element U in irrep R to evaluate the trace of

the projector PR. In this case,

χR (U) =
1

n!

∑
σ∈Sn

χR (σ) tr
(
σU⊗n

)
. (2.70)

One element of the unitary group U (N) that we know is the identity 1. Its character is

the dimension of the irrep R, i.e.

χR (1) = DimN (R) . (2.71)

If we consider σ = (12) ,

(σ)IJ = δi1j2δ
i2
j1

(2.72)

and

tr ((12)) = N (2.73)

while

tr (1) = N2. (2.74)

From this, we can see that the power of N equals the number of cycles of σ, C (σ) . Thus

tr (σ) = NC(σ). (2.75)

We also know that

tr (σ · 1) = tr (σ) . (2.76)
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Using these results, we can calculate the trace of the projector PR,

tr (PR) =
1

n!

∑
σ∈Sn

χR (σ) tr (σ)

=
1

n!

∑
σ∈Sn

χR (σ) tr (σ1)

= χR (1)

= DimN (R) , (2.77)

where

DimN (R) =

∏
i,j

(N − i+ j)

hooksR
(2.78)

is the dimension of the Young diagram R as a representation of the group U (N) .

2.4.2 The two-point function of Schur polynomials

We now derive the two-point function of Schur polynomials, equation (2.53), by following

the original argument given in [26]. We will also need∑
σ∈Sn

χR
(
σ−1

)
χS (σ) = n!δRS (2.79)

which also follows from the fundamental orthogonality relation, equation (2.64), as well

as the delta function of a group,

δ (ρ) =
1

n!

∑
R

dRχR (ρ) . (2.80)

To prove equation (2.53), we �rst convert the sum over contractions to a sum over
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symmetric groups. Thus

〈
χR (Z)χ†S (Z)

〉
=

〈∑
σ∈Sn

χR (σ)

n!
tr (σZ)

∑
τ∈Sn

χ?S (τ)

n!
tr
(
τ−1Z†

)〉

=
∑
σ∈Sn

∑
τ∈Sn

χR (σ)

n!

χS
(
τ−1

)
n!

〈
Zi1iσ(1) . . . Z

in
iσ(n)

Z†j1jτ−1(1)
. . . Z†jnjτ−1(n)

〉
=
∑
α∈Sn

∑
σ∈Sn

∑
τ∈Sn

χR (σ)

n!

χS
(
τ−1

)
n!

δi1jατ−1(1)
. . . δinjατ−1(n)

δj1iα−1σ(1)
. . . δjniα−1σ(n)

=
∑
α∈Sn

∑
σ∈Sn

∑
τ∈Sn

χR (σ)

n!

χS
(
τ−1

)
n!

δ
iτα−1(1)

j1
. . . δ

iτα−1(n)

jn
δj1iα−1σ(1)

. . . δjniα−1σ(n)

=
∑
α∈Sn

∑
σ∈Sn

∑
τ∈Sn

χR (σ)

n!

χS
(
τ−1

)
n!

δ
iτα−1(1)

iα−1σ(1)
. . . δ

iτα−1(n)

iα−1σ(n)

=
∑
α∈Sn

∑
σ∈Sn

∑
τ∈Sn

χR (σ)

n!

χS
(
τ−1

)
n!

δ
iσ−1ατα−1(1)

i1
. . . δ

iσ−1ατα−1(n)

in

=
∑
α∈Sn

∑
σ∈Sn

∑
τ∈Sn

χR (σ)

n!

χS
(
τ−1

)
n!

tr
(
σ−1ατα−1

)
=
∑
α∈Sn

∑
σ∈Sn

∑
τ∈Sn

χR (σ)

n!

χS
(
τ−1

)
n!

NC(σ−1ατα−1), (2.81)

where we have used equation (2.42) to write the third equality and equation (2.75) to

get the last line. At this stage, let us introduce a new variable

ρ = σ−1ατα−1 (2.82)

in terms of which the two-point function (2.81) becomes

〈
χR (Z)χ†S (Z)

〉
=
∑
ρ∈Sn

∑
α∈Sn

∑
σ∈Sn

∑
τ∈Sn

χR (σ)

n!

χS
(
τ−1

)
n!

NC(ρ)δ
(
ρ−1σ−1ατα−1

)
=
∑
ρ∈Sn

∑
α∈Sn

∑
σ∈Sn

χR (σ)

n!

χS
(
α−1ρ−1σ−1α

)
n!

NC(ρ). (2.83)

Summing over α ∈ Sn in this case gives a factor of n! so that we have〈
χR (Z)χ†S (Z)

〉
=

1

n!

∑
ρ∈Sn

∑
σ∈Sn

χR (σ)χS
(
ρ−1σ−1

)
NC(ρ). (2.84)



CHAPTER 2. GROUP REPRESENTATION THEORY 47

Writing this in matrix notation gives〈
χR (Z)χ†S (Z)

〉
=

1

n!

∑
ρ∈Sn

∑
σ∈Sn

ΓR (σ)ii ΓS
(
σ−1

)
jk

ΓS
(
ρ−1
)
kj
NC(ρ). (2.85)

Now we can apply the fundamental orthogonality relation (2.64) in order to perform the

over σ ∈ Sn. This yields〈
χR (Z)χ†S (Z)

〉
=
δRS
dR

∑
ρ∈Sn

χS
(
ρ−1
)
NC(ρ). (2.86)

Using the result (2.77) then yields

〈
χR (Z)χ†S (Z)

〉
=
n!δRSDimN (R)

dR
. (2.87)

From equations (2.63) and (2.78),

n!DimN (R)

dR
=
∏
i,j

(N − i+ j) ≡ fR. (2.88)

Putting this into equation (2.86) yields precisely the correlation function (2.53) and this

concludes the proof.

2.5 Restricted Schur polynomials

N = 4 super Yang-Mills theory has six hermitian Higgs �elds φi, with i = 1, 2, . . . 6. It

is from these �elds that we build the complex matrices

Z = φ1 + iφ2, X = φ3 + iφ4, Y = φ5 + iφ6. (2.89)

The space of 1/2 BPS representations in N = 4 SYM theory is in one-to-one corres-

pondence with the Schur polynomials built using Z [26]. Furthermore, these Schur

polynomials have diagonal two-point functions as we have seen in Section 2.4. Employ-

ing insights from the dual quantum gravity theory, restricted Schur polynomials were

identi�ed as the excitations of these 1/2 BPS states [32]. Given a Schur polynomial, a

restricted Schur polynomial is obtained by attaching (or replacing some of the Z �elds

with) impurities or open string words W. The letters of these open string words can be

fermions, gauge �elds or any of the other Higgs �elds. If the word W contains O
(√

N
)

letters, it is dual to an open string. With O (N) �elds, the restricted Schur polynomial

is dual to a membrane with open strings attached, while O
(
N2
)
�elds describe strings
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moving in a new geometry.

In the su (2) sector of N = 4 SYM theory, we can de�ne the following restricted

Schur polynomial,

χR,(r,s)µ1µ2
(
Z⊗n, Y ⊗m

)
=

1

n!m!

∑
σ∈Sn+m

χR,(r,s)µ1µ2 (σ)Tr
(
σZ⊗nY ⊗m

)
, (2.90)

in which the irrep (r, s) is one of the irreps that arises when R, an irrep of Sn+m, is

restricted to the subgroup Sn × Sm. We can remove m boxes from the Young diagram

R to remain with the Young diagram r ` n. Assembling these m boxes gives the Young

diagram s. In general, the irrep (r, s) occurs with some multiplicity. The indices µ1 and

µ2 tell us which copy of (r, s) we are considering. The restricted trace

χR,(r,s)µ1µ2 (σ) = Tr
(
PR→(r,s)µ1µ2ΓR (σ)

)
(2.91)

is taken over the space labelled by the Young diagrams r and s. To ensure this, we have

a projector PR→(r,s)µ1µ2 that takes us from the space labelled by R to that labelled by

(r, s) . In this case, we are interested in the case in which both n and m are order O (N) ,

with n� m.

The Young diagrams r and s are subduced from R ` n+m with some multiplicities

speci�ed by µ1 and µ2. Starting with a Young diagram R ` n + m, we can remove m

boxes associated to the impurity labels, to remain with r ` n. Assembling the m boxes

we removed gives us the diagram s in more ways than one. To specify the particular copy

of s we are considering, we have the multiplicity indices µ1 and µ2. More information

about this is provided in Chapter 3.

2.5.1 Projectors for restricted Schurs

Strictly speaking, the projectors that appear in restricted Schur polynomials are inter-

twinners3 that bear some of the properties of projectors. The term projector in this case

is therefore used loosely. We consider

PR,(r,s)αβ ≡
1

(n+m)!

∑
σ∈Sn+m

χR,(r,s)αβ (σ) · σ (2.92)

3An interwtinner is a map between isomorphic irreps.
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where R is an irrep of Sn+m while (r, s) is an irrep of Sn×Sm. The restricted character4

in equation (2.92) is de�ned as

χR,(r,s)αβ (σ) ≡
∑
i

〈i, (r, s)α|ΓR (σ) |i, (r, s)β〉 (2.93)

where α and β specify which copies of (r, s) we take. The index i is a state label.

It is of interest to compute the product of these projectors. To this end, we compute

PR,(r,s)αβPT,(t,u)γδ =
1

(n+m)!
· 1

(n+m)!

∑
σ,τ∈Sn+m

∑
i,j

〈i, (r, s)α|ΓR (σ) |i, (r, s)β〉

× 〈j, (t, u) γ|ΓT (τ) |j, (t, u) δ〉στ

=
1

(n+m)!
· 1

(n+m)!

∑
σ,τ∈Sn+m

∑
i,j

〈i, (r, s)α|ΓR (σ) δrtδsuδβγδij

× ΓT (τ) |j, (t, u) δ〉στ. (2.94)

Setting

τ = σ−1µ (2.95)

yields

PR,(r,s)αβPT,(t,u)γδ =
1

(n+m)!
· 1

(n+m)!

∑
σ,µ∈Sn+m

δrtδsuδβγ
∑
i

〈i, (r, s)α|ΓR (σ)

× ΓT
(
σ−1

)
ΓT (µ) |i, (t, u) δ〉µ. (2.96)

Using the fundamental orthogonality relation (2.64) to sum over σ ∈ Sn+m gives

PR,(r,s)αβPT,(t,u)γδ =
1

dR
δrtδsuδβγ

1

(n+m)!

∑
µ∈Sn+m

∑
i

〈i, (r, s)α|ΓT (µ) |i, (t, u) δ〉µ

(2.97)

in which we recognise the de�nition of the projector. Writing this out, the product of

the projectors then works out to

PR,(r,s)αβPT,(t,u)γδ =
δRT δrtδsuδβγ

dR
PT,(t,u)αδ. (2.98)

To compute the trace of the projector, we use the properties of Jucys-Murphys

4Restricted characters were �rst studied in [33].
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elements. This was done in Appendix F of [33] whose result we now use. We obtain

Tr
(
PR,(r,s)αβ

)
=

1

(n+m)!

∑
σ∈Sn+m

χR,(r,s)αβ (σ) tr (σ)

=
1

(n+m)!

∑
σ∈Sn+m

χR,(r,s)αβ (σ)NC(σ)

=
1

(n+m)!
drdsδαβfR. (2.99)

2.5.2 Two-point function

To compute the two-point function of restricted Schur polynomials, we will proceed as

we did with Schur polynomials. In what follows, the sum over Wick contractions is

performed by a sum over Sn × Sm. Using the free �eld result, equation (2.43), we have

〈
χR,(r,s)αβ

(
Z⊗n, Y ⊗m

)
χ†T,(t,u)δγ

(
Z⊗n, Y ⊗m

)〉
=

∑
σ,τ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χ†T,(t,u)δγ (τ)

n!m!

×
〈
Zi1iσ(1) · · ·Z

in
iσ(n)

Y
in+1

iσ(n+1)
· · ·Y in+m

iσ(n+m)
Z†j1jτ−1(1)

· · ·Z†jnjτ−1(n)
Y
†jn+1

jτ−1(n+1)
· · ·Y †jn+mjτ−1(n+m)

〉
=

∑
ξ∈Sn×Sm

∑
σ,τ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χT,(t,u)γδ

(
τ−1

)
n!m!

δi1jξτ−1(1)
· · · δin+mjξτ−1(n+m)

δj1iξ−1σ(1)
· · · δjn+miξ−1σ(n+m)

=
∑

ξ∈Sn×Sm

∑
σ,τ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χT,(t,u)γδ

(
τ−1

)
n!m!

δ
iτξ−1(1)

j1
· · · δ

iτξ−1(n+m)

jn+m
δj1iξ−1σ(1)

· · · δjn+miξ−1σ(n+m)

=
∑

ξ∈Sn×Sm

∑
σ,τ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χT,(t,u)γδ

(
τ−1

)
n!m!

δ
iτξ−1(1)

iξ−1σ(1)
· · · δ

iτξ−1(n+m)

iξ−1σ(n+m)

=
∑

ξ∈Sn×Sm

∑
σ,τ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χT,(t,u)γδ

(
τ−1

)
n!m!

δ
iσ−1ξτξ−1(1)

i1
· · · δ

iσ−1ξτξ−1(n+m)

in+m

=
∑

ξ∈Sn×Sm

∑
σ,τ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χT,(t,u)γδ

(
τ−1

)
n!m!

tr
(
σ−1ξτξ−1

)
=

∑
ξ∈Sn×Sm

∑
σ,τ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χT,(t,u)γδ

(
τ−1

)
n!m!

NC(σ−1ξτξ−1). (2.100)

Introducing a new variable

ρ = σ−1ξτξ−1, (2.101)
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equation (2.100) becomes〈
χR,(r,s)αβ

(
Z⊗n, Y ⊗m

)
χ†T,(t,u)δγ

(
Z⊗n, Y ⊗m

)〉
=

∑
ξ∈Sn×Sm

∑
σ,τ,ρ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χT,(t,u)γδ

(
τ−1

)
n!m!

NC(ρ)δ
(
ρ−1σ−1ξτξ−1

)
=

∑
ξ∈Sn×Sm

∑
σ,ρ∈Sn+m

χR,(r,s)αβ (σ)

n!m!

χT,(t,u)γδ

(
ξ−1ρ−1σ−1ξ

)
n!m!

NC(ρ)

=
1

n!m!

∑
σ,ρ∈Sn+m

χR,(r,s)αβ (σ)χT,(t,u)γδ

(
ρ−1σ−1

)
NC(ρ), (2.102)

where the sum over ξ ∈ Sn × Sm gives n!m! again. We now use the fundamental

orthogonality relation to sum over σ ∈ Sn+m. The result is〈
χR,(r,s)αβ

(
Z⊗n, Y ⊗m

)
χ†T,(t,u)δγ

(
Z⊗n, Y ⊗m

)〉
=

δRT
n!m!dR

∑
ρ∈Sn+m

Tr
(
PR,(r,s)αβPT,(t,u)γδΓT

(
ρ−1
))
NC(ρ). (2.103)

Using equation (2.98) yields〈
χR,(r,s)αβ

(
Z⊗n, Y ⊗m

)
χ†T,(t,u)δγ

(
Z⊗n, Y ⊗m

)〉
=

(n+m)!

n!m!dR
δRT δrtδsuδβγ

∑
ρ∈Sn+m

Tr
(
PT,(t,u)αδΓT

(
ρ−1
))
NC(ρ)

=
(n+m)!

n!m!dR
δRT δrtδsuδβγ

∑
ρ∈Sn+m

χT,(t,u)αδ

(
ρ−1
)
NC(ρ). (2.104)

Finally, using Appendix F of [33] and simplifying, we get〈
χR,(r,s)αβ

(
Z⊗n, Y ⊗m

)
χ†T,(t,u)δγ

(
Z⊗n, Y ⊗m

)〉
= δRT δrtδsuδβγδαδ

hooksR
hooksrhookss

fR.

(2.105)

The calculation given here closely follows the original derivation in [36].

2.5.3 Action of the dilatation operator

The dilatation operator acts on the restricted Schur polynomials in the su (2) sector of

N = 4 SYM theory to give [46]

DOR,(r,s)µ1µ2 = −g2
YM

∑
u,ν1,ν2

∑
i<j

M (ij)
sµ1µ2;uν1ν24ijOR,(r,u)ν1ν2 , (2.106)
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Figure 2.2: An example of a valid open string con�guration consisting of p = 3 branes
and m = 7 strings.

whereM
(ij)
sµ1µ2;uν1ν2 is a matrix that acts only on the impurity labels and4ij acts only the

Young diagrams R, r associated with the Z �elds. Because the action of the dilatation

operator is thus factorised, we can diagonalise the impurity labels separately from the Z

�elds. The problem of diagonalising the impurity labels was solved by means of a double

coset ansatz [46], reviewed in Section 2.6. On the other hand, the problem associated

with the Z �elds was solved in [45]. Notably, on the R, r labels, the action of the

dilatation operator reduces to the Hamiltonian of a set of decoupled oscillators. Because

the harmonic oscillator is known to be integrable, we conclude that the su (2) sector of

N = 4 SYM theory is integrable in the non-planar limit.

2.6 Double coset ansatz

In this section we review the double coset ansatz [46] for the su (2) sector of N = 4

SYM theory. We �rst argue that the number of states of an excited system of separated

giant gravitons is equal to the number of restricted Schur polynomials that are labelled

by Young diagrams in the widely separated corners limit.

2.6.1 Gauss graphs

The giant gravitons we discussed in Section 1.4 have compact world volumes. For com-

pact world volumes, Gauss law implies that the total charge on the giant graviton's world

volume must vanish. This gives a constraint on the number of open string con�gurations

that are allowed since the open string ends are charged. In particular, the number of

strings emanating from a given giant graviton must equal the number of strings termin-
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Figure 2.3: A labelled graph for the open string con�guration shown in �gure 2.2.

ating on it. For each allowed con�guration, we can draw a Gauss graph. An example is

shown in �gure 2.2 in which the dots represent the giant gravitons and the directed lines

are the open strings. The arrows on the open strings strings show the string orientation.

A mathematical description of the Gauss graphs can be achieved by labelling the

graphs with some numbers. Let us say we have p branes and m strings which we 'cut'

into halves. Let us label the half outgoing strings with numbers 1, . . .m and the half

incoming strings with the same set of numbers. The way in which these two sets of

strings are joined is provided by the permutation σ ∈ Sm. Let us also label the branes

with numbers 1, . . . p so that the number of incoming (or outgoing) strings on the pth

brane is mp. It should be clear that

m1 +m2 + · · ·mp = m. (2.107)

Further, let the labelling on the strings be such that the strings emanating from the pth

brane are mp−1 + 1, mp−1 + 2, . . .mp. This way, the con�guration shown in �gure 2.2

can be mapped into the labelled graph shown in �gure 2.3. In this case (�gure 2.3), the

top bold line must be identi�ed with the bottom bold line.

As we have already mentioned, the structure of the labelled graph is encoded in the

permutation σ ∈ Sm, but there is a redundancy in the coding since the incoming strings

that terminate on the pth giant are indistinguishable. In other words, labelled graphs

which di�er only by swapping the end points that connect to the same brane give the

same con�guration. This is immediately clear from �gure 2.3. One way to resolve this

is to relabel the outgoing half-strings by permutations in their symmetry group
∏
i
Smi .

This results in the multiplication of σ from the left. Doing the same with the incoming

half-strings results in multiplying σ from the right. This way, we see that the open string
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con�gurations are in one-to-one correspondence with the elements of the double coset

H \ Sm/H, (2.108)

where

H = Sm1 × Sm2 × · · ·Smp . (2.109)

Each element of the double coset gives a distinct Gauss graph.

Through the Burnside Lemma [55], the number of open string con�gurations (or

Gauss graphs) is

NC =
1

|H|2
∑
α1∈H

∑
α2∈H

∑
σ1∈Sm

δ
(
α2σ

−1
1 α−1

1 σ1

)
. (2.110)

The delta function of the symmetric group

δ (ρ) =
1

n!

∑
R

dRχR (ρ) , (2.111)

where R is a Young diagram with n boxes, is de�ned to be one when ρ ∈ Sn is identity

and zero otherwise. Using this together with the fundamental orthogonality relation,

equation (2.110) can be written as

NC =
1

|H|2
∑
α1∈H

∑
α2∈H

∑
s`m

χs (α2)χs (α1) . (2.112)

The sums over α1 and α2 give projection operators which project onto the trivial rep-

resentation of H. Equation (2.112) is equivalent to

NC =
∑
s`m

(
Ms

1H

)2
(2.113)

whereMs
1H

is the multiplicity of the of the one-dimensional representation of H when

the irreducible representation s of Sm is decomposed into representations of the subgroup

H.

2.6.2 Counting

In this section, we show that the number of restricted Schur polynomials, the operators

that describe the giant gravitons with strings attached (as reviewed in Section 1.6), is

equal to the number of Gauss graph operators, equation (2.113). To start with, we

recall that the Young diagram R ` n+m that appears in restricted Schur polynomials,

equation (2.90), can be decomposed into smaller Young diagrams r ` n and s ` m. We

can restrict any irrep of Sn+m to its Sn× Sm subgroup. Generically, we will get a redu-
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3 1
2

4

Figure 2.4: A Young diagram with p = 3 rows and m = 4 impurity boxes.

cible representation. Irreducible representations into which this reducible representation

decomposes are labelled by (r, s) . This is accomplished by removing m boxes from R

to remain with r, and then assembling the m boxes into a diagram s. In general, there

are various ways of obtaining the same diagram s. The particular copy of the diagram s

is speci�ed by the multiplicity labels µ1µ2. The Young diagrams s label a vector space

V ⊗mp for which there are two ways to decompose. The vector space Vp can be written

as a sum of one-dimensional vector spaces Vi, i.e.

Vp =
p
⊕
i=1
Vi. (2.114)

In the restricted Schur polynomial for long rows, a state in Vi corresponds to an impurity

box in the ith row. As an example, consider a Young diagram with p = 3 rows, in which

we label the impurity boxes as shown �gure 2.4. The m = 4 impurity boxes in the

diagram correspond to  1

0

0

⊗
 0

1

0

⊗
 1

0

0

⊗
 0

0

1

 . (2.115)

Using Schur-Weyl duality5, we can write V ⊗mp in terms of irreps of the groups U (p)

and Sm,

V ⊗mp = ⊕
s`m,c1(s)≤p

V U(p)
s ⊗ V Sm

s , (2.116)

where c1 (s) is the number of parts of s. If the way in which we remove the m boxes

from the Young diagram R ` n+m is given by ~m with

p∑
i=1

mi = m, (2.117)

then we can write equation (2.116) as

V ⊗mp = ⊕
s`m,c1(s)≤p

⊕
~m

m
⊗
1
V Ui(1)
mi ⊗ V U(p)→U(1)p

s→~m ⊗ V Sm
s . (2.118)

5We review Schur-Weyl duality in Section 3.2.2.
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Here, we decomposed the U (p) irrep into U (1)p irreps, summing over all the irreps of

this group labelled by ~m (which gives the U (1) charges). V
Ui(1)
mi is the one-dimensional

irrep which transforms with charge i under the ith U (1) . In the language of restricted

Schur polynomials, these are the numbers of boxes in the ith row. Each set of the

U (1) charges ~m comes with a multiplicity label as we have already explained above.

the multiplicity labels span a vector space V
U(p)→U(1)p

s→~m , whose dimension is the number

of times the irrep ~m appears when irrep s is decomposed under the subgroup U (1)p .

These are the Kostka numbers [56], Ks~m, which are reviewed in Appendix B of [46].

Since the restricted Schur polynomials are labelled by a pair of multiplicity labels, the

total number of restricted Schur polynomials is given by the sum of the squares of the

Kostka numbers,

NC =
∑

s`m,c1(s)≤p

(Ks~m)2 . (2.119)

To complete our proof, we now need to show that equation (2.119) is equivalent to

equation (2.113). Our proof hinges on the Schur-Weyl duality which we now develop

more fully. We will work at the level of a basis for V ⊗mp in which case the reduction

coe�cients that arise in the �nal step are branching coe�cients for irrep s of U (p) into

the irrep ~m of H ≡ U (1)p . Let

|I〉 ≡ |i1, i2, . . . ip〉 (2.120)

be a basis for the tensor product. We know from Schur-Weyl duality that there is a

change of basis to

|I〉 =
∑

s,ms,Ms

|s,Ms,ms〉 〈s,Ms,ms|I〉 , (2.121)

where Ms is a state label for the U (p) irrep s, corresponding to semi-standard Young

tableaux [44]. In the same vein, ms is a state label for the irrep s of Sm, which can be

described by standard Young tableaux. Decomposing into U (1)p , we get

|I〉 =
∑
~m,ν

∑
s,ms,Ms

C ~m,ν
Ms
|s,Ms,ms〉 〈s,Ms,ms|I〉 , (2.122)

where the coe�cient C ~m,ν
Ms

gives the decomposition of a U (p) irrep into U (1)p irreps,

and ν is a multiplicity label which labels states in V
U(p)→U(1)p

s→~m .

We have decomposed V ⊗mp into irreps ofH in one way which is equivalent to equation

(2.118), but there is another way which uses permutations of Sm. Our choice of ~m implies

that there arem1 copies of v1, m2 copies of v2 and so forth, where vi is a vector belonging
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to Vi. One state we can have this way is

|v̄, ~m〉 ≡
∣∣∣v⊗m1

1 ⊗ v⊗m2
2 ⊗ · · · v⊗mpp

〉
. (2.123)

All other states are related to (2.123) by permutations, i.e. we can write the general

state as

|vσ〉 ≡ σ
∣∣∣v⊗m1

1 ⊗ v⊗m2
2 ⊗ · · · v⊗mpp

〉
, (2.124)

where

σ
∣∣vi1 ⊗ vi2 ⊗ · · · vip〉 =

∣∣∣viσ(1) ⊗ viσ(2) ⊗ · · · viσ(p)〉 . (2.125)

We note that not all σ ∈ Sm give independent vectors since

|vσ〉 = |vσγ〉 , (2.126)

with γ ∈ H. We can also write

|vσ〉 =
1

|H|
∑
γ∈H
|vσγ〉 , (2.127)

which demonstrates that the states correspond to elements of Sm/H.

Using this notation, we can write the representation basis as6

|vs,i,j〉 =
∑
σ∈Sm

Γ
(s)
ij (σ) |vσ〉

=
1

|H|
∑
σ∈Sm

∑
γ∈H

Γ
(s)
ij (σ) |vσγ〉

=
1

|H|
∑
σ∈Sm

∑
γ∈H

Γ
(s)
ij (σγ) |vσ〉

=
1

|H|
∑
σ∈Sm

∑
γ∈H

Γ
(s)
ik (σ) Γ

(s)
kj (γ) |vσ〉 . (2.128)

We can decompose the matrix of the H projector using

1

|H|
∑
γ∈H

Γ
(s)
ik (γ) =

∑
µ

Bs→1H
iµ Bs→1H

kµ , (2.129)

where µ is a multiplicity index for the trivial representation of H under the reduction

6Repeated indices are summed.
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of irrep s from Sm → H and Bs→1H
iµ is a branching coe�cient, to get

|vs,i,j〉 =
∑
σ∈Sm

∑
µ

Γ
(s)
ik (σ)Bs→1H

kµ Bs→1H
jµ |vσ〉 . (2.130)

We can now introduce

|~m, s, µ; i〉 ≡
∑
j

Bs→1H
jµ |vs,i,,j〉 =

∑
j

Bs→1H
jµ

∑
σ∈Sm

Γ
(s)
ij (σ) |vσ〉 , (2.131)

which is equivalent to the decomposition

V ⊗mp = ⊕
~m
⊕
s
V Sm
s ⊗ V Sm→H(~m)

s→1

p
⊗
i=1

V U(1)p

mi . (2.132)

Comparing equations (2.118) and (2.132), we deduce that

Ms
1H
≡
∣∣∣V Sm→H(~m)
s→1

∣∣∣ =
∣∣∣V U(p)→U(1)p

s→~m

∣∣∣ ≡ Ks~m, (2.133)

which concludes the proof that the number of Gauss graphs is equivalent to the number

of restricted Schur polynomials that label the open string con�gurations.

2.6.3 Gauss graph operators

Having proved the equivalence between the Gauss graphs and restricted Schur polyno-

mials, we would like to exploit this basis to diagonalise the dilatation operator. In order

to do so, we now construct the operators in the Gauss graph basis, the Gauss graph

operators, that provide an alternative basis to the restricted Schur polynomials.

Given an object Oτ that is determined by a permutation τ, we can form linear

combinations Osij that are labelled by an irrep s and state labels i, j, i.e.

Osij =
∑
σ∈Sm

Γ
(s)
ij (σ)Oσ. (2.134)

These matrix elements provide a resolution of the delta function on the group since

∑
s

ds
m!

Γ
(s)
ij (σ) Γ

(s)
ij (τ) = δ

(
στ−1

)
,

and behave like Fourier coe�cients. If Oτ is invariant under left and right multiplication

of τ ∈ Sm by γ1, γ2 ∈ H, where

H = H (~m) =
∏
i

Smi , (2.135)
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we can write7

Oτ =
1

|H|2
∑

γ1,γ2∈H
Oγ1τγ2

=
1

|H|2
∑
s

ds
m!

∑
γ1,γ2∈H

Γ
(s)
ij (γ1τγ2)Osij

=
1

|H|2
∑
s

ds
m!

∑
γ1,γ2∈H

Γ
(s)
ik (γ1) Γ

(s)
kl (τ) Γ

(s)
lj (γ2)Osij . (2.136)

Using equation (2.129), we get

Oτ =
∑
s

∑
µ1,µ2

(√
ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

)(√
ds
m!
Bs→1H
iµ1

Bs→1H
jµ2

Osij

)

=
∑
s

∑
µ1,µ2

√
ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

Osµ1µ2 , (2.137)

where we have de�ned

Osµ1µ2 =

√
ds
m!
Bs→1H
iµ1

Bs→1H
jµ2

Osij . (2.138)

We now show that the group theoretic coe�cients

Csµ1µ2 (τ) = |H|
√
ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

(2.139)

provide an orthogonal transformation between double coset elements σ and Osµ1µ2 . The
normalisation |H| is placed here for convenience. We can show that

Csµ1µ2 (τ)Csµ1µ2 (σ) = |H|2
∑
s

ds
m!

Γ
(s)
kl (τ)Bs→1H

kµ1
Bs→1H
lµ2

Γ(s)
pq (σ)Bs→1H

pµ1 Bs→1H
qµ2

=
∑
s

∑
γ1,γ2∈H

ds
m!

Γ
(s)
kl (τ) Γ

(s)
kp (γ1) Γ

(s)
lq (γ2) Γ(s)

pq (σ)

=
∑
s

∑
γ1,γ2∈H

ds
m!
χ
(
γ1σγ

−1
2 τ

)
=

∑
γ1,γ2∈H

δ
(
γ1σγ

−1
2 τ

)
(2.140)

which expresses orthogonality since the right hand side is the delta function on the

double coset.

A natural form of the Gauss graph operators (that are dual to the Gauss con�guration

7All Latin indices are summed.



CHAPTER 2. GROUP REPRESENTATION THEORY 60

σ) is8

OR,r (σ) =
|H|√
m!

∑
jk

∑
s`m

∑
µ1,µ2

√
dsΓ

(s)
jk (σ)Bs→1H

jµ1
Bs→1H
kµ2

OR,(r,s)µ1,µ2 , (2.141)

where OR,(r,s)µ1,µ2 is a restricted Schur polynomial. Using〈
OR,(r,s)µ1,µ2O

†
T,(t,u)ν1,ν2

〉
= δRT δrtδsuδµ1ν1δµ2ν2 (2.142)

we compute the two-point function of the Gauss graph operators. We get

〈
OR,r (σ1)O†T,t (σ2)

〉
=
|H|2

m!

∑
s,u`m

∑
µ1µ2ν1ν2

√
dsduΓ

(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

× Γ
(s)
lm (σ2)Bs→1H

lν1
Bs→1H
mν2

〈
OR,(r,s)µ1,µ2O

†
T,(t,u)ν1,ν2

〉
=
|H|2

m!

∑
s`m

∑
µ1µ2

dsΓ
(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

Γ
(s)
lm (σ2)Bs→1H

lµ1
Bs→1H
mµ2

=
1

m!

∑
s`m

∑
γ1γ2∈H

dsΓ
(s)
jk (σ1) Γ

(s)
jl (γ1) Γ

(s)
lm (σ2) Γ

(s)
mk (γ2)

=
1

m!

∑
s`m

∑
γ1γ2∈H

dsχ
(
σ−1

1 γ1σ2γ2

)
=

∑
γ1,γ2∈H

δ
(
σ−1

1 γ1σ2γ2

)
. (2.143)

Again, the right hand side is the delta function on the double coset that sets σ1 = σ2

so that if σ1 and σ2 are the same double coset element, the two-point function is one,

otherwise it is zero.

8The overall factor is chosen for convenience.



Chapter 3

Leigh-Strassler deformed SYM

In this chapter that is based on [49] and is my original work, we use group representation

theory to compute the spectrum of anomalous dimensions of the marginally-deformed

super Yang-Mills (SYM) theory. As we mentioned earlier, understanding N = 4 SYM

theory may contribute to the direction of understanding better quantum chromody-

namics (QCD) and related theories, but one major di�erence is that it is maximally

super-symmetric and conformally invariant, while QCD is not. To move closer to QCD

and/or QCD-like theories, we can consider breaking at least some of the supersymmetry

in N = 4 SYM theory. The special case we consider here is a marginally-deformed

theory, for which a corresponding gravity dual is known.

As we have already discussed in the �rst chapter, the most studied example of the

AdS/CFT correspondence relates type IIB string theory on AdS5×S5 to N = 4 super-

Yang-Mills theory. The marginal deformations we consider were �rst studied in [48]

and the gravity dual of the deformed gauge theory was found by Lunin and Maldacena

in [50]. The deformed theory studied by Lunin and Maldacena preserves some of the

supersymmetry, in particular, the gauge theory has N = 1 superconformal invariance.

The idea employed by Lunin and Maldacena is motivated by the fact that marginal

deformations of a conformal �eld theory preserve conformal symmetry. The conformal

group is SO (2, 4) , which must be the isometry of the gravity dual. This isometry gives

us AdS5 spacetime. As a result, Lunin and Maldacena only introduced the deformation

on the S5 part of the AdS5×S5 spacetime. To do so, they performed a T-duality, followed

by a shift and �nally by another T-duality (a TsT transformation) on the �ve-sphere.

The result was a theory on the deformed spacetime, AdS5 × S̃5.

Generalisations of this deformation to non-supersymmetric cases exist [51]. In this

case, one obtains the Lunin-Maldacena solution by equating all the deformation param-

eters, i.e. by setting γi = γ.

In [17], a giant graviton (D3 brane) sitting at the center of AdS5, wrapping an S3

61
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onto the S5 part of the geometry was found. It had exactly the same quantum numbers

as those of a graviton. The energy of this giant graviton was found to be

E =
J

R
, (3.1)

where J is its angular momentum and R is the radius of the background.

In [18] and [19], dual giant gravitons were found in the undeformed theory. These

dual giants extend into the AdS part of the geometry and their energy is also given by

equation (3.2): both giants saturate a BPS bound for their energy.

More recently, Pirrone [57] found stable (dual) giants in a non-supersymmetric de-

formed background. By setting all the deformation parameters equal to each other,

Pirrone's result gives stable (dual) giants in the Lunin-Maldacena background as well.

In what follows, we will review Pirrone's discussion and quote his results before

carrying out our calculation on the gauge theory side. In the conclusion, we will compare

our results in the case of a single giant to the string theory case reported by Pirrone.

3.1 The string theory case1

The metric of the AdS5 × S̃5 can be written as a sum of the metric of the AdS5 and

that of the deformed �ve-sphere S̃5. In the string frame, and setting α′ = 1, we have

ds2 = ds2
AdS5

+ ds2
S̃5 , (3.2)

where

ds2
AdS5

= −
(

1 +
l2

R2

)
dt2 +

dl2

1 + l2

R2

+ l2
(
dα2

1 + sin2 α1

(
dα2

2 + sin2 α2dα
2
3

))
(3.3)

and

ds2
S̃5 = R2

(
dr2

R2 − r2
+
r2

R2
dθ2 +G

3∑
i=1

ρ2
i dϕ

2
i

)
+R2Gρ2

1ρ
2
2ρ

2
3

(
3∑
i=1

γidϕi

)2

. (3.4)

In equation (3.4),

G−1 = 1 + γ2
1ρ

2
2ρ

2
3 + γ2

2ρ
2
1ρ

2
3 + γ2

3ρ
2
1ρ

2
2 (3.5)

and ρi are the cartesian coordinates of the sphere which we can parametrise as

ρ2
1 = 1− r2

R2
,

1This whole section is due to [57].
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ρ2
2 =

r2

R2
cos2 θ

and

ρ2
3 =

r2

R2
sin2 θ.

These coordinates satisfy
3∑
i=1

ρ2
i = 1.

Also,

0 ≤ r ≤ R.

The dilaton of the deformed background, φ, is related to that of the undeformed back-

ground, φ0, by

e2φ = e2φ0G (3.6)

and the 't Hooft coupling is, as usual,

λ = 4πeφ0N = R4. (3.7)

The non-zero NS-NS2 two-form is

B = R2G
(
γ2

3ρ
2
1ρ

2
2dϕ1 ∧ dϕ2 + γ2

1ρ
2
2ρ

2
3dϕ2 ∧ dϕ3 + γ2

2ρ
2
1ρ

2
3dϕ3 ∧ dϕ1

)
and the non-zero Ramond-Ramond (R-R) forms are

C2 = −4R2e−φ0ω1 ∧
3∑
i=1

γidϕi,

dω1 =
r3

R4
sin θ cos θdr ∧ dθ

and

C4 = e−φ0
l4

R
sin2 α1 sinα2dt ∧ dα1 ∧ dα2 ∧ dα3 + 4R4e−φ0Gω1 ∧ dϕ1 ∧ dϕ2 ∧ dϕ3.

The �ve-form �eld strength of the background is given by

F5 = dC4 − C2 ∧ dB

and it satis�es

?F5 = F5.

2NS stands for Neveu-Schwarz.
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This set-up reduces to the Lunin-Maldacena background when γi = γ as we have already

mentioned.

Because in the undeformed background AdS5 × S5 there are three di�erent particle

states characterised by the same quantum numbers, one considers here three similar

scenarios, as we discuss below.

3.1.1 Rotating point particle

In this case, one considers a massless point particle rotating on the S̃5, minimising its

energy in this space. It is convenient to consider �rst a point particle of mass M, which

can then be set to zero at the end. In ten spacetime dimensions, the action is

S = −M
ˆ
dt
√
−g

where

g = GMNẊ
MẊN

and M, N = 0, . . . 9. This particle sits at the centre of the AdS5 space and spins in the

ϕ1 direction. This implies that

g = Gtt +Gϕ1ϕ1ϕ̇
2
1

so that the action becomes

S = −M
ˆ
dt
√

1−Q2ϕ̇2
1, (3.8)

where we have introduced the positive quantity

Q2 = R2G2ρ2
1

(
1 + γ2

1ρ
2
2ρ

2
3

)
.

The action (3.8) does not have explicit ϕ1 dependence, we can replace ϕ̇1 by its conjugate

momentum

J =
∂L

∂ϕ̇1
=

Q2Mϕ̇1√
1−Q2ϕ̇2

1

, (3.9)

where L is the Lagrangian.

The Hamiltonian of the theory is

H = ϕ̇1J − L =
J

Q
(3.10)

in the limit M → 0.

The minimum of this Hamiltonian is when Q is maximum, i.e. when r = 0 and
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Q = R. The energy (minimum) of the rotating point particle is therefore

E =
J

R
. (3.11)

In other words, this energy is equal to the angular momentum of the particle in units of
1
R . It is the same as that of a graviton in the undeformed theory.

3.1.2 Giant graviton

In this case we consider a D3 brane (wrapping an S3) expanding in the deformed S̃5

and sitting at the centre of the AdS5 space.

The dynamics of any D3 brane in a given background is given by [58]

S = SDBI + SWS , (3.12)

where the Dirac-Born-Infeld [59, 60] part is

SDBI = −T3

ˆ
∑

4

dτd3σe−φ
√
−det (gab + Fab) (3.13)

and the Wess-Zumino term is [61, 62, 63]

SWS = T3

ˆ
∑

4

P

[∑
q

Cqe
−B

]
e2πF , (3.14)

where P [. . .] is the pullback3 and

F = dA+A2.

T3 =
1

(2π)3

is the tension of the brane and
∑

4 is its worldvolume.

gab = GMN∂aX
M∂bX

N

and

Fab = 2πFab − bab
3If ϕ : M → N is a smooth map between smooth manifolds M and N, then there is an associated

linear map from the space of 1-forms on N to the space of 1-forms on M. This linear map is what is
known as the pullback (by ϕ). In general, any covariant tensor �eld � any di�erential form � on N may
be pulled back to M using ϕ.
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(with Fab the gauge �eld strength and bab = BMN∂aX
M∂bX

N ) is the modi�ed �eld

strength.

On the deformed background one chooses a static gauge such that

τ = t, σ1 = θ ∈
[
0,
π

2

]
, σ2 = ϕ2 ∈ [0, 2π] , σ3 = ϕ3 ∈ [0, 2π] .

Keeping only scalar �eld contributions as well as terms quadratic in the wedge product

from the Wess-Zumino term, (3.12) becomes

S = −T3

ˆ
∑

4

dtdθdϕ2dϕ3e
−φ√−det (gab − bab) + T3

ˆ
∑

4

P [C4 − C2 ∧B] . (3.15)

One way of embedding the brane that gives a minimum energy con�guration is to have

the graviton of constant radius, r0, orbit the S̃
5 in the ϕ1 direction at a constant angular

velocity ω0. This leads to an ansatz

r = r0, ϕ1 = ω0t, l = α1 = α2 = α3 = 0

which leads to the Lagrangian

L = −h
√

1− a2ϕ̇2
1 +mϕ̇1, (3.16)

where

h = N
r3

0

R4
, a2 = R2 − r2

0, m = N
r4

0

R4
.

To get this result we also use

A3T3e
−φ0 =

N

R4
,

where A3 is the area of a unit 3-sphere.

The size of the brane cannot exceed the radius of the space containing it. This

implies that r0 ≤ R and a2 ≥ 0. Interestingly, this Lagrangian matches that of the

undeformed case [17, 18, 19] and one �nds the Hamiltonian

H = ϕ̇1J − L =

√
h2 +

(J −m)2

a2
(3.17)

with

J =
∂L

∂ϕ̇1
=

ha2ϕ̇1√
1− a2ϕ̇2

1

+m

being the angular momentum of the D3 brane.

Di�erentiating the Hamiltonian (3.17) with respect to r0, one �nds minima at r0 = 0
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and r0 = R
√

J
N . The corresponding energy is the same as that of the single graviton we

studied above. The angular velocity is

ω0 = ϕ̇1 =
1

R
. (3.18)

3.1.3 Dual giant graviton

In this case, we consider a D3 brane expanding in the AdS5 part of the geometry. In

other words, we consider a D3 brane wrapping a 3-sphere (α1, α2, α3) contained in AdS5.

One chooses static gauge for the worldvolume coordinates

τ = t, σ1 = α1 ∈ [0, π] , σ2 = α2 ∈ [0, π] , σ3 = α3 ∈ [0, 2π] .

This so-called dual giant graviton has constant radius l0 and orbits the S̃5 in the same

direction ϕ1 and constant angular velocity ω0. This leads to the ansatz

l = l0, ϕ1 = ω0t, r = ϕ2 = ϕ3 = 0, θ =
π

4

which in turn leads to the e�ective Lagrangian

L = −h̃
√
b̃2 −R2ϕ̇2

1 + m̃, (3.19)

where

h̃ = N
l0
R4

, b̃2 = 1 +
l0
R2

, m̃ = N
l40
R5

.

Again, this Lagrangian agrees with the undeformed case [18, 19].

The conjugate momentum for this case is

J =
∂L

∂ϕ̇1
=

h̃R2ϕ̇1√
b̃2 −R2ϕ̇2

1

so that the Hamiltonian is given by

H = ϕ̇1J − L = b̃

√
h̃2 +

J2

R2
− m̃. (3.20)

Di�erentiating (3.20) respect to l0, we �nd minima at l0 = 0 and l0 = R
√

J
N . The

minimum energy as well as the angular velocity agree with the previous section. In this

case though, the energy of the giant graviton is not bounded because AdS5 space is not

compact.
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3.1.4 Stability of the (giant) gravitons

This far, we have reviewed the existence of the graviton, giant graviton and dual giant

graviton in the deformed space as reported in [57]. A natural question to ask is whether

or not these giant gravitons are stable. The answer is found in the same reference [57].

To answer this question, Pirrone perturbed the giants about their equilibrium positions

X = X0 + εδX (t, σi) , (3.21)

where X0 is a classical solution to the equations of motion and ε is a small perturbation

parameter. He then expanded the action of the probe brane in powers of ε to get

S =

ˆ
dtd3σ

(
L0 + εL1 + ε2L2 + · · ·

)
. (3.22)

Here, L1 tells us whether or not the solutions obtained earlier really minimise the action,

while L2 tells us whether the con�gurations obtained earlier are stable or not, amongst

other things. In both cases (for the giant and the dual giant gravitons), L1 vanishes

telling us that we are indeed expanding about a solution to the equations of motion.

As far as L2 is concerned, Pirrone found real and non-negative frequencies for both

cases which imply that the giant gravitons as well as the dual giant gravitons are stable.

However, in the giant graviton case, the frequencies depend on the radius of the giants, r0,

in the deformed theory, which is not the case in the undeformed theory. The frequencies

of the dual giants are independent of the radius l0, and agree with the undeformed case.

All in all, both the giant gravitons and the dual giant gravitons were found to be

stable in [57].

3.2 The gauge theory

After deformation, the superpotential depends on three parameters

W = iκ

[
Tr (XY Z − qXZY ) +

h

3
Tr
(
X3 + Y 3 + Z3

)]
. (3.23)

In this work, we consider the simplest case of a β-deformation for which

q = e−2iπγ , h = 0

and γ is real. This deformation preserves integrability [64, 65, 66, 67].

With this deformation, the dilatation operator we consider is [64]

Dγ = −g2
YMTr

(
ZY ∂Y ∂Z + Y Z∂Z∂Y − ZY ∂Z∂Y e2πiγ − Y Z∂Y ∂Ze−2πiγ

)
. (3.24)
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We would like to determine the action of Dγ on restricted Schur polynomials

χR,(r,s)µ1µ2
(
Z⊗n, Y ⊗m

)
=

1

n!m!

∑
σ∈Sn+m

χR,(r,s)µ1µ2 (σ)Tr
(
σZ⊗nY ⊗m

)
(3.25)

where the restricted character is

χR,(r,s)µ1µ2 (σ) = Tr(r,s)µ1µ2 (ΓR (σ)) = Tr
(
PR→(r,s)µ1µ2ΓR (σ)

)
(3.26)

and

Tr
(
σZ⊗nY ⊗m

)
= Zi1iσ(1) · · ·Z

in
iσ(n)

Y
in+1

iσ(n+1)
· · ·Y in+m

iσ(n+m)
. (3.27)

When the partial derivatives in Dγ act on χR,(r,s)µ1µ2 (Z⊗n, Y ⊗m) we get the following

terms

Tr (ZY ∂Y ∂Z)Tr
(
σZ⊗nY ⊗m

)
= n·m (ZY )iniσ(n+1)

δ
in+1

iσ(n)
Zi1iσ(1) · · ·Z

in−1

iσ(n−1)
Y
in+2

iσ(n+2)
· · ·Y in+m

iσ(n+m)
,

T r (Y Z∂Z∂Y )Tr
(
σZ⊗nY ⊗m

)
= n·m (Y Z)

in+1

iσ(n)
δiniσ(n+1)

Zi1iσ(1) · · ·Z
in−1

iσ(n−1)
Y
in+2

iσ(n+2)
· · ·Y in+m

iσ(n+m)
,

T r
(
ZY ∂Z∂Y e

2πiγ
)
Tr
(
σZ⊗nY ⊗m

)
= n ·m (ZY )

in+1

iσ(n)
δiniσ(n+1)

e2πiγZi1iσ(1) · · ·Z
in−1

iσ(n−1)

× Y in+2

iσ(n+2)
· · ·Y in+m

iσ(n+m)

and

Tr
(
Y Z∂Y ∂Ze

−2πiγ
)
Tr
(
σZ⊗nY ⊗m

)
= n ·m (Y Z)iniσ(n+1)

δ
in+1

iσ(n)
e−2πiγZi1iσ(1) · · ·Z

in−1

iσ(n−1)

× Y in+2

iσ(n+2)
· · ·Y in+m

iσ(n+m)
.

By setting

σ = ρ (n, n+ 1)
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we can write

1

n!m!

∑
σ∈Sn+m

Tr(r,s)µ1µ2 (ΓR (σ))Tr (ZY ∂Y ∂Z)Tr
(
σZ⊗nY ⊗m

)
=

1

(n− 1)! (m− 1)!

∑
ρ∈Sn+m

Tr(r,s)µ1µ2 (ΓR (ρ (n, n+ 1)))Zi1iρ(1) · · ·Z
in−1

iρ(n−1)
(ZY )iniρ(n)

× δin+1

iρ(n+1)
Y
in+2

iρ(n+2)
· · ·Y in+m

iρ(n+m)

for the �rst term.

In the second term we use the following identity

n∏
j=1

Z
ij
iβ(j)

=
n∏
j=1

Z
iψ(j)

iβ(ψ(j))
=

n∏
j=1

Z
iβ−1(j)

ij
(3.28)

which teaches us that operating on the lower indices with an element of the symmetric

group is equivalent to operating on the upper indices with the inverse of the group

element. To get the last equality in equation (3.28) we set ψ = β−1. The �rst equality

follows from the fact that the permutation ψ (which acts on both the upper and the

lower indices) only changes the order in which the product appears, but it does not

change the overall value of the product.

With this lesson in mind, we then set

σ = (n, n+ 1) ρ

and change the sum over σ ∈ Sn+m to a sum over ρ ∈ Sn+m. It now appears that we

are acting with (n, n+ 1) on the lower indices. This is equivalent to operating on the

upper indices by the inverse of (n, n+ 1) which swaps the nth and the (n+ 1)th indices

in the upper indices. This way, the second term can be written as

1

n!m!

∑
σ∈Sn+m

Tr(r,s)µ1µ2 (ΓR (σ))Tr (Y Z∂Z∂Y )Tr
(
σZ⊗nY ⊗m

)
=

1

(n− 1)! (m− 1)!

∑
ρ∈Sn+m

Tr(r,s)µ1µ2 (ΓR ((n, n+ 1) ρ))Zi1iρ(1) · · ·Z
in−1

iρ(n−1)
(Y Z)iniρ(n)

× δin+1

iρ(n+1)
Y
in+2

iρ(n+2)
· · ·Y in+m

iρ(n+m)
.
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The third term can be manipulated in the same way we did the second to get

1

n!m!

∑
σ∈Sn+m

Tr(r,s)µ1µ2 (ΓR (σ))Tr
(
ZY ∂Z∂Y e

2πiγ
)
Tr
(
σZ⊗nY ⊗m

)
=

1

(n− 1)! (m− 1)!

∑
ρ∈Sn+m

Tr(r,s)µ1µ2 (ΓR ((n, n+ 1) ρ))Zi1iρ(1) · · ·Z
in−1

iρ(n−1)
(ZY )iniρ(n)

× δin+1

iρ(n+1)
e2πiγY

in+2

iρ(n+2)
· · ·Y in+m

iρ(n+m)
,

while the last term can be manipulated as we did the �rst to get

1

n!m!

∑
σ∈Sn+m

Tr(r,s)µ1µ2 (ΓR (σ))Tr
(
Y Z∂Y ∂Ze

−2πiγ
)
Tr
(
σZ⊗nY ⊗m

)
=

1

(n− 1)! (m− 1)!

∑
ρ∈Sn+m

Tr(r,s)µ1µ2 (ΓR (ρ (n, n+ 1)))Zi1iρ(1) · · ·Z
in−1

iρ(n−1)
(Y Z)iniρ(n)

× δin+1

iρ(n+1)
e−2πiγY

in+2

iρ(n+2)
· · ·Y in+m

iρ(n+m)
,

respectively.

To enable us to do the sum over ρ we �rst write∑
ρ∈Sn+m

→
∑

ρ∈Sn+m−1

in which case the latter sum runs over the elements that leave n + 1 inert.4 Following

the reduction rule for restricted Schur polynomials [68, 33] we get

DγχR,(r,s)µ1µ2
(
Z⊗n, Y ⊗m

)
=

−g2
YM

(n− 1)! (m− 1)!

∑
ρ∈Sn+m−1

∑
R′

cRR′

×
[
Tr(r,s)µ1µ2 (ΓR′ (ρ) ΓR ((n, n+ 1)))Zi1iρ(1) · · ·Z

in−1

iρ(n−1)

(
(ZY )iniρ(n) − (Y Z)iniρ(n) e

−2πiγ
)

× Y in+2

iρ(n+2)
· · ·Y in+m

iρ(n+m)

+ Tr(r,s)µ1µ2 (ΓR ((n, n+ 1)) ΓR′ (ρ))Zi1iρ(1) · · ·Z
in−1

iρ(n−1)

(
(Y Z)iniρ(n) − (ZY )iniρ(n) e

2πiγ
)

× Y in+2

iρ(n+2)
· · ·Y in+m

iρ(n+m)

]
(3.29)

where cRR′ is the weight of the single box that must be removed from the Young diagram

4This choice to leave n + 1 inert is not unique. We could have chosen to leave any of the other Y
�elds inert, but not a Z �eld slot. This is because from our Young diagram R, we can remove any of
the Y boxes, but not the Z ones. In other words, this (n+ 1)th slot may correspond to the �rst box we
remove from the Young diagram R to get r.
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R to obtain R′. The sum over R′ follows from writing the sum over Sn+m as a sum over

the subgroup Sn+m−1 and its cosets. The subgroup Sn+m−1 keeps only the permutations

that leave n+ 1 inert.

Now writing5

(ZY )iniρ(n) = Ziniρ(n+1)
Y
in+1

iρ(n)

and

(Y Z)iniρ(n) = Y in
iρ(n+1)

Z
in+1

iρ(n)

followed by swapping the indices again allows us to write equation (3.29) as

DγχR,(r,s)µ1µ2
(
Z⊗n, Y ⊗m

)
=

−g2
YM

(n− 1)! (m− 1)!

∑
ρ∈Sn+m−1

∑
R′

cRR′

×
[
Tr(r,s)µ1µ2 (ΓR′ (ρ) ΓR ((n, n+ 1)))

×
(
Tr
(
ρ (n, n+ 1)Z⊗nY ⊗m

)
− e−2πiγTr

(
(n, n+ 1) ρZ⊗nY ⊗m

))
+ Tr(r,s)µ1µ2 (ΓR ((n, n+ 1)) ΓR′ (ρ))

×
(
Tr
(
(n, n+ 1) ρZ⊗nY ⊗m

)
− e2πiγTr

(
ρ (n, n+ 1)Z⊗nY ⊗m

))]
.

(3.30)

We now use the identity [37]

Tr
(
ψZ⊗nY ⊗m

)
=

∑
T,(t,u)ν2ν1

dTn!m!

dtdu (n+m)!
χT,(t,u)ν2ν1

(
ψ−1

)
χT,(t,u)ν1ν2 (Z, Y ) (3.31)

in equation (3.30) to get

DγχR,(r,s)µ1µ2
(
Z⊗n, Y ⊗m

)
=

∑
T,(t,u)ν2ν1

MR,(r,s)µ1µ2;T (t,u)ν2ν1χT,(t,u)ν1ν2 (Z, Y ) (3.32)

5We can do this because ρ (n+ 1) = n+ 1.
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where

MR,(r,s)µ1µ2;T (t,u)ν2ν1 =
−n ·mg2

YM

(n+m)!

∑
ρ∈Sn+m−1

∑
R′

cRR′
dT
dtdu

×
[
Tr(r,s)µ1µ2 (ΓR′ (ρ) ΓR ((n, n+ 1)))

×
(
χT,(t,u)ν2ν1

(
(n, n+ 1) ρ−1

)
− e−2πiγχT,(t,u)ν2ν1

(
ρ−1 (n, n+ 1)

))
+ Tr(r,s)µ1µ2 (ΓR ((n, n+ 1)) ΓR′ (ρ))

×
(
χT,(t,u)ν2ν1

(
ρ−1 (n, n+ 1)

)
− e2πiγχT,(t,u)ν2ν1

(
(n, n+ 1) ρ−1

))]
.

(3.33)

We now do the sum over ρεSn+m−1 using the fundamental orthogonality relation (to-

gether with equation (3.26))

∑
ρ∈Sn+m−1

ΓR′ (ρ)ab ΓT ′
(
ρ−1
)
cd

=
(n+m− 1)!

dR′
δR′T ′δadδbc

=
(n+m− 1)!

dR′
δR′T ′ (IR′T ′)ad (IT ′R′)cb (3.34)

where IR′T ′ is an intertwiner that takes us from R′ to T ′. The result we get is

MR,(r,s)µ1µ2;T (t,u)ν2ν1 = −g2
YM

∑
R′

cRR′
dTn ·m

dR′dtdu (n+m)
δR′T ′

×
[
Tr
((

ΓR ((n, n+ 1))PR→(r,s)µ1µ2

)
IR′T ′

(
PT→(t,u)ν2ν1ΓT ((n, n+ 1))

)
IT ′R′

)
− e−2πiγTr

((
ΓR ((n, n+ 1))PR→(r,s)µ1µ2

)
IR′T ′

(
ΓT ((n, n+ 1))PT→(t,u)ν2ν1

)
IT ′R′

)
+ Tr

((
PR→(r,s)µ1µ2ΓR ((n, n+ 1))

)
IR′T ′

(
ΓT ((n, n+ 1))PT→(t,u)ν2ν1

)
IT ′R′

)
− e2πiγTr

((
PR→(r,s)µ1µ2ΓR ((n, n+ 1))

)
IR′T ′

(
PT→(t,u)ν2ν1ΓT ((n, n+ 1))

)
IT ′R′

)]
.

(3.35)

Finally, in order to compute the spectrum of anomalous dimensions, we use normalised

operators OR,(r,s)µ1µ2 (Z⊗n, Y ⊗m) rather than χR,(r,s)µ1µ2 (Z⊗n, Y ⊗m) . The two-point

function for restricted Schur polynomials has been found to be〈
χR,(r,s)µ1µ2 (Z, Y )χT,(t,u)ν1ν2 (Z, Y )†

〉
= δRT δ(r,s)(t,u)δµ1ν2δµ2ν1fR

hooksR
hooksrhookss

(3.36)

where fR is the product of weights of the Young diagram R and hooksR is the product

of hook-lengths of diagram R. In computing this two-point function, the order in which
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the Greek indices appear is related to our convention

χT,(t,u)ν1ν2 (Z, Y )† ≡ 1

n!m!

∑
σ∈Sn+m

Tr
(
PT→(t,u)ν1ν2ΓT (σ)

)
Tr
(
σZ†⊗nY †⊗m

)
. (3.37)

From equation (3.36) we deduce that

χR,(r,s)µ1µ2 (Z, Y ) =

√
fRhooksR

hooksrhookss
OR,(r,s)µ1µ2 (Z, Y ) . (3.38)

In terms of these normalised operators, the action of the dilatation operator is

DγOR,(r,s)µ1µ2
(
Z⊗n, Y ⊗m

)
=

∑
T,(t,u)ν2ν1

NR,(r,s)µ1µ2;T (t,u)ν2ν1OT,(t,u)ν1ν2 (Z, Y ) (3.39)

where

NR,(r,s)µ1µ2;T (t,u) = −g2
YM

∑
R′

cRR′
dTn ·m

dR′dtdu (n+m)
δR′T ′

√
fThooksThooksrhookss
fRhooksRhooksthooksu

×
[
Tr
((

ΓR ((n, n+ 1))PR→(r,s)µ1µ2

)
IR′T ′

(
PT→(t,u)ν2ν1ΓT ((n, n+ 1))

)
IT ′R′

)
− e−2πiγTr

((
ΓR ((n, n+ 1))PR→(r,s)µ1µ2

)
IR′T ′

(
ΓT ((n, n+ 1))PT→(t,u)ν2ν1

)
IT ′R′

)
+ Tr

((
PR→(r,s)µ1µ2ΓR ((n, n+ 1))

)
IR′T ′

(
ΓT ((n, n+ 1))PT→(t,u)ν2ν1

)
IT ′R′

)
− e2πiγTr

((
PR→(r,s)µ1µ2ΓR ((n, n+ 1))

)
IR′T ′

(
PT→(t,u)ν2ν1ΓT ((n, n+ 1))

)
IT ′R′

)]
.

(3.40)

We will now evaluate equation (3.40) under the following conditions

i) n� m,

ii) we assume that the Young diagram R has p long rows,

iii) p is held �xed while we take N →∞ and

iv) R has well separated corners.

3.2.1 The traces

The projectors take us from a space labeled by R, a representation of Sn+m, to a space

labeled by (r, s) , a representation of Sn × Sm. To construct these projectors we �rst go

from Sn+m to Sn× (S1)m and then, by employing Schur-Weyl duality, from Sn× (S1)m

to Sn × Sm.
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Sn+m to Sn × (S1)m

This step is accomplished by pulling o� m boxes from the Young diagram R, leaving a

representation of Sn, r ` n. There are di�erent ways of pulling o� the same set of m

boxes from R that always leave the same diagram r. These di�erent ways of pulling o�

the m boxes give us a di�erent sub-spaces with the same irreducible representation r.

This multiplicity is resolved by specifying the order in which we pull o� the m boxes

from R. This can be done by numbering the m boxes 1 to m, where box number 1 is to

be pulled o� �rst and box number m is pulled o� last. The numbering should be such

that each time we pull o� a box we remain with a legal Young diagram.

Now what remains is assembling the individual boxes we pulled o� R to get irre-

ducible representations of the Sn × Sm sub-group. To do so, we employ the Schur-Weyl

duality.

3.2.2 Schur-Weyl duality

The Schur-Weyl duality we discuss here relates the actions of unitary and symmetric

groups on a vector space. We follow the discussion given in [44].

Let us consider a Young diagram R with p rows and built from n+m ∼ O (N) boxes,

where m� n. We also want each row in the diagram to consist of O (N) boxes. Let us

label m of the boxes as we described earlier. Two boxes in two di�erent rows will then

have factors ci and cj if they carry labels i and j, respectively, such that

ci − cj ∼ O (N) . (3.41)

If we think of the partially labeled diagram as a Young-Yamonouchi state and let Sm (a

sub-group of Sn+m) act on these states, (3.41) results in a signi�cant simpli�cation in

the representations of Sm. When adjacent permutations (i, i+ 1) act on the boxes that

belong to the same row, the diagram is unchanged, and when the diagrams belong to

di�erent rows, the boxes are swapped.

Considering the diagram with p rows, there are pm di�erent ways of removing m

boxes from the same diagram R. This gives us pm di�erent partially labeled diagrams.

We can associate a p dimensional vector to each box that is labeled, giving a total

of m vectors −→v (i) , where i = 1, 2, . . .m. Let us denote the components of these vectors
−→v (i)n , where n = 1, . . . p. This way, if we pull box i from the jth row, we have

−→v (i)n = δni.

For each labeled box we have a vector space Vp. The tensor product of these vector

spaces is another vector space V ⊗mp .
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Now, σ ∈ Sm has the following action on V ⊗mp

σ · (−→v (1)⊗−→v (2)⊗ · · ·−→v (m)) = −→v (σ (1))⊗−→v (σ (2))⊗ · · ·−→v (σ (m)) . (3.42)

In other words, the symmetric group element moves vectors between slots, but it does

not permute elements of a vector.

The action of the unitary group U (p) on V ⊗mp is

U ·(−→v (1)⊗−→v (2)⊗ · · ·−→v (m)) = D (U)−→v (1)⊗D (U)−→v (2)⊗· · ·D (U)−→v (m) , (3.43)

where D (U) is the p × p unitary matrix representing group element U ∈ U (p) in the

fundamental representation. We see here that the unitary group element U ∈ U (p)

changes the value of the vector in the ith slot, but it does not move it to another slot.

The action of the unitary group element U ∈ U (p) therefore commutes with that of the

symmetric group element σ ∈ Sm, i.e.

U · (σ · (−→v (1)⊗−→v (2)⊗ · · ·−→v (m))) = U · (−→v (σ (1))⊗−→v (σ (2))⊗ · · ·−→v (σ (m)))

= D (U)−→v (σ (1))⊗D (U)−→v (σ (2))⊗ · · ·D (U)−→v (σ (m))

= σ · (D (U)−→v (1)⊗D (U)−→v (2)⊗ · · ·D (U)−→v (m))

= σ · (U · (−→v (1)⊗−→v (2)⊗ · · ·−→v (m))) .

As a result, we can write

V ⊗mp = ⊕
s
V U(p)
p ⊗ V Sm

p , (3.44)

i.e. the vector space V ⊗mp built using the m boxes we removed can be written as a

tensor product of a vector space V
U(p)
p that is labeled by representations of the unitary

group and another vector space V Sm
p labeled by representations of the symmetric group

Sm. The Young diagrams s are representations of both the unitary and the symmetric

groups.

The dimension of the vector space V ⊗mp can also be written in terms of the unitary

group representation, Dim (s) , and that of the symmetric group representation, ds,

where s is the Young diagram subduced from R in the way we described earlier. We

have

pm =
∑
s

Dim (s) · ds. (3.45)

Thus to identify states with good Sm labels we only need to identify states with good

U (p) labels, and vice-versa.
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Sn × (S1)m to Sn × Sm

Thus far, we have constructed an Sn × (S1)m subgroup of Sn+m by removing m boxes

from the Young diagram R, with the di�erent ways of removing the boxes giving us

di�erent sub-spaces. Assembling the m boxes together gives us a Young diagram s, an

irreducible representation of Sm. From the Schur-Weyl duality we discussed above, the

diagram s is also a good label for the unitary group U (p) , where p is the number of

rows in R. The projectors PR→(r,s)µ1µ2 carry good labels for U (p) and can therefore be

constructed solely from U (p) group theory.

To evaluate the action of the dilatation operator we remove m + 1 boxes, i.e. we

remove all the Y boxes and one Z box. Each box is represented by a vector in Vp, allowing

us to easily evaluate the action of ΓR ((n, n+ 1)) and ΓT ((n, n+ 1)) in equation (3.40).

The Young diagrams R and T di�er at most by the placement of one box. After

removing this single box from R (to get R′) and T (to get T ′), R′ and T ′ agree. The

intertwiner IR′T ′ can then be written as E
(n+1)
ij if one box is removed from the ith row

of R and the other from the jth row of T. E
(n+1)
ij can be written as

∑
l

E
(n+1)
ij E

(n)
ll

so that

E
(n+1)
ij ΓR ((n, n+ 1)) =

∑
l

E
(n+1)
ij E

(n)
ll ΓR ((n, n+ 1))

=
∑
l

E
(n+1)
il E

(n)
lj

and

ΓR ((n, n+ 1))E
(n+1)
ij = ΓR ((n, n+ 1))

∑
l

E
(n+1)
ij E

(n)
ll

=
∑
l

E
(n+1)
lj E

(n)
il .

This is how we will manipulate the traces in equation (3.40) to �nd the action of

Γ ((n, n+ 1)) on the intertwiners. We will also write the projectors PR→(r,s)µ1µ2 and

PT→(t,u)ν2ν1 as

P−→m;R,(r,s)µ1µ2 = 1r ⊗ |−→m, s, µ1; a 〉〈−→m, s, µ2; a| (3.46)

and

P−→n ;T,(t,u)ν2ν1 = 1t ⊗ |−→n , u, ν2; b 〉〈−→n , u, ν1; b| , (3.47)
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respectively. Here, −→m and −→n specify how we remove boxes from R and T respectively.

In this notation, the Greek indices are multiplicity labels while a and b label the states

of s and u. These state labels are summed.

Case 1: R = T

Let us consider �rst, the case when R = T. In this case, we obtain R′ and T ′ by removing

single boxes from the same row in R as in T and

cRR′

√
fT
fR

= cRR′ . (3.48)

For a non-zero result, r = t because the product

1r1t = δr,t

appears when we multiply the projectors.6 In other words, since we start with the Young

diagrams R = T, these diagrams must still agree after we remove the m = n boxes from

each.

Tr
((

ΓR ((n, n+ 1))P−→m;R,(r,s)µ1µ2

)
IR′T ′

(
P−→n ;T,(t,u)ν2ν1ΓT ((n, n+ 1))

)
IT ′R′

)
= Tr

(
P−→m;R,(r,s)µ1µ2E

(n+1)
ii P−→n ;T,(t,u)ν2ν1ΓT ((n, n+ 1))E

(n+1)
ii ΓR ((n, n+ 1))

)
=
∑
l

Tr
(
P−→m;R,(r,s)µ1µ2E

(n+1)
ii P−→n ;T,(t,u)ν2ν1ΓT ((n, n+ 1))E

(n+1)
ii E

(n)
ll ΓR ((n, n+ 1))

)
=
∑
l

Tr
(
P−→m;R,(r,s)µ1µ2E

(n+1)
ii P−→n ;T,(t,u)ν2ν1E

(n+1)
ll E

(n)
ii

)
= δ−→m,−→n δr,t

∑
j

Trr

(
E

(n)
ii

)
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

= δ−→m,−→n δr,t
∑
j

δs,udr′(i) 〈−→m, s, µ2; a|E(n+1)
ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

jj |−→m, s, µ1; a〉 .

6See equations (3.46) and (3.47).
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Similarly,

Tr
((
P−→m;R,(r,s)µ1µ2ΓR ((n, n+ 1))

)
IR′T ′

(
ΓT ((n, n+ 1))PT→(t,u)P−→n ;T,(t,u)ν2ν1

)
IT ′R′

)
=
∑
l

Tr
(
P−→m;R,(r,s)µ1µ2ΓR ((n, n+ 1))E

(n+1)
ii E

(n)
ll ΓT ((n, n+ 1))P−→n ;T,(t,u)ν2ν1E

(n+1)
ii

)
= δ−→m,−→n δr,t

∑
j

Trr

(
E

(n)
ii

)
〈−→m, s, µ2; a|E(n+1)

jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii |−→m, s, µ1; a〉

= δ−→m,−→n δr,t
∑
j

δs,udr′(i) 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉 ,

e−2πiγTr
((

ΓR ((n, n+ 1))P−→m;R,(r,s)µ1µ2

)
IR′T ′

(
ΓT ((n, n+ 1))P−→n ;T,(t,u)ν2ν1

)
IT ′R′

)
= e−2πiγ

∑
l,k

Tr
(
P−→m;R,(r,s)µ1µ2E

(n+1)
ii E

(n)
ll ΓT ((n, n+ 1))P−→n ;T,(t,u)ν2ν1E

(n+1)
ii E

(n)
kk ΓR ((n, n+ 1))

)
= e−2πiγ

∑
l,k

Tr
(
P−→m;R,(r,s)µ1µ2E

(n+1)
il E

(n)
li P−→n ;T,(t,u)ν2ν1E

(n+1)
ik E

(n)
ki

)
= e−2πiγδ−→m,−→n δr,tTrr

(
E

(n)
ii

)
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii |−→m, s, µ1; a〉

= e−2πiγδ−→m,−→n δr,tdr′(i) 〈−→m, s, µ2; a|E(n+1)
ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉

and

e2πiγTr
((
P−→m;R,(r,s)µ1µ2ΓR ((n, n+ 1))

)
IR′T ′

(
P−→n ;T,(t,u)ν2ν1ΓT ((n, n+ 1))

)
IT ′R′

)
= e2πiγ

∑
l,k

Tr
(
P−→m;R,(r,s)µ1µ2ΓR ((n, n+ 1))E

(n+1)
ii E

(n)
ll P−→n ;T,(t,u)ν2ν1ΓT ((n, n+ 1))E

(n+1)
ii E

(n)
kk

)
= e2πiγδ−→m,−→n δr,tTrr

(
E

(n)
ii

)
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii |−→m, s, µ1; a〉

= e2πiγδ−→m,−→n δr,tdr′ 〈−→m, s, µ2; a|E(n+1)
ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉 .

Summing everything together, we obtain for R = T,

δ−→m,−→n δr,t
∑
j 6=i

dr′(i)δs,u

[
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉

+2(1− cos (2πγ)) 〈−→m, s, µ2; a|E(n+1)
ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
.

(3.49)
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Case 2: R 6= T

In this case, we can obtain R′ = T ′ if we remove one box from row i of Young diagram

R and one box from row j of Young diagram T, where i 6= j. Also, from the coe�cient

that we compute in Section 3.2.3

cRR′

√
fT
fR

=
√
cRR′cTT ′ . (3.50)

For a non-zero result,7 r′ (i) = t′ (j) emanating from the trace over r subspace. Each of

the non-zero traces come multiplied by δr′(i),t′(j). In other words, since the diagrams R

and T disagree by the placement of a single box, they still disagree (in the same way)

after we remove the �rst m = n boxes to get r and t. However, if we remove the one

extra box from row i of r and one from row j of t to get r′ and t′, the diagrams then

agree.

We therefore have

e−2πiγTr
((

ΓR ((n, n+ 1))P−→m;R,(r,s)µ1µ2

)
IR′T ′

(
ΓT ((n, n+ 1))P−→n ;T,(t,u)ν2ν1

)
IT ′R′

)
= e−2πiγ

∑
l,k

Tr
(
P−→m;R,(r,s)µ1µ2E

(n+1)
ij E

(n)
ll ΓT ((n, n+ 1))P−→n ;T,(t,u)ν2ν1E

(n+1)
ji E

(n)
kk ΓR ((n, n+ 1))

)
= e−2πiγ

∑
l,k

Tr
(
P−→m;R,(r,s)µ1µ2E

(n+1)
il E

(n)
lj P−→n ;T,(t,u)ν2ν1E

(n+1)
jk E

(n)
ki

)
= e−2πiγδ−→m,−→n

∑
l,k

Trr

(
1rE

(n)
lj 1tE

(n)
ki

)
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

= e−2πiγδ−→m,−→n δr′(i),t′(j)dr′(i) 〈−→m, s, µ2; a|E(n+1)
ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

jj |−→m, s, µ1; a〉

and

e2πiγTr
((
P−→m;R,(r,s)µ1µ2ΓR ((n, n+ 1))

)
IR′T ′

(
P−→n ;T,(t,u)ν2ν1ΓT ((n, n+ 1))

)
IT ′R′

)
= e2πiγ

∑
l,k

Tr
(
P−→m;R,(r,s)µ1µ2ΓR ((n, n+ 1))E

(n+1)
ij E

(n)
ll P−→n ;T,(t,u)ν2ν1ΓT ((n, n+ 1))E

(n+1)
ji E

(n)
kk

)
= e2πiγ

∑
l,k

Tr
(
P−→m;R,(r,s)µ1µ2E

(n+1)
lj E

(n)
il P−→n ;T,(t,u)ν2ν1E

(n+1)
ki E

(n)
jk

)
= e2πiγδ−→m,−→n

∑
l,k

Trr

(
1rE

(n)
il 1tE

(n)
jk

)
〈−→m, s, µ2; a|E(n+1)

jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii |−→m, s, µ1; a〉

= e2πiγδ−→m,−→n δr′(i),t′(j)dr′(i) 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉 .

7A note on notation: r′ (i) means that we are removing one box (represented by one ′) from row i
of Young diagram r.
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We write δr′(i),t′(j) in the last line because we are removing one box from row i of Young

diagram r and one box from row j of Young diagram t.

The other two traces evaluate to zero since

1r1t = δr,t = 0

and

P−→n ;T,(t,u)ν2ν1E
(n+1)
ii P−→m;R,(r,s)µ1µ2 = 1r1t ⊗ |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii

× |−→m, s, µ1; a〉 〈−→m, s, µ2; a|

= 0. (3.51)

This is because r and t are di�erent subspaces in this case.

Thus, when R 6= T, the sum of the traces is

−dr′(i)δ−→m,−→n δr′(i),t′(j)
[
e−2πiγ 〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+e2πiγ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
.

(3.52)

3.2.3 The coe�cient

Now we calculate the coe�cient

cRR′
dTn ·m

dR′dtdu (n+m)

√
fThooksThooksrhookss
fRhooksRhooksthooksu

for N →∞. Let us start by writing the coe�cient as

cRR′

√
fT
fR
· dTn ·m
dR′dtdu (n+m)

√
hooksThooksrhookss
hooksRhooksthooksu

(3.53)

and then write out

dT =
(n+m)!

hooksT
, dR′ =

(n+m− 1)!

hooksR′
, dt =

n!

hookst
.
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After some simpli�cation, this gives

cRR′

√
fT
fR
· m

dr′du

√
hookss
hooksu

= cRR′

√
fT
fR
· m
dr′

√
1

d2
u

hookss
hooksu

= cRR′

√
fT
fR
· m
dr′

√
1

du

hooksu
m!

hookss
hooksu

= cRR′

√
fT
fR
· m
dr′

√
1

du

hookss
m!

= cRR′

√
fT
fR
· m
dr′
· 1√

dsdu
. (3.54)

3.2.4 Action of the dilatation operator

Bringing everything together, the action of the dilatation operator can be written as

DγOR,(r,s)µ1µ2 = −g2
YM

∑
uν1ν2

m√
dsdu

δ−→m,−→n

p∑
i=1

×
[ p∑
j 6=i

(〈−→m, s, µ2; a|E(n+1)
ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

jj |−→m, s, µ1; a〉

+ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉)∆0
ijδr,t

− (e−2πiγ 〈−→m, s, µ2; a|E(n+1)
ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

jj |−→m, s, µ1; a〉

+ e2πiγ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉)

×∆−ijδr′(i),t′(j)

−
(
e−2πiγ + e2πiγ − 2

)
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii

× |−→m, s, µ1; a〉∆0
iiδr,t

]
OR,(r,u)ν1ν2 , (3.55)

where we have introduced

∆0
ij & ∆±ij .

In order to explain this notation, let ri be the row length of Young diagram r. Further,

let r+
ij be the diagram obtained by moving a box from row j to row i and r−ij be the

diagram obtained by moving a box from row i to row j. We then have

∆0
ijOR,(r,s)µ1µ2 = (2N + ri + rj)OR,(r,s)µ1µ2 (3.56)

for the case in which R = T.
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When R 6= T we have

∆+
ijOR,(r,s)µ1µ2 =

√
(N + ri) (N + rj)OR+

ij ,(r
+
ij ,s)µ1µ2

(3.57)

and

∆−ijOR,(r,s)µ1µ2 =
√

(N + ri) (N + rj)OR−ij ,(r
−
ij ,s)µ1µ2

. (3.58)

The sum over i follows from the sum over R′ which encodes the various ways of removing

a single box from Young diagram R.

In equation (3.55), the sum over j 6= i can be written as a sum over j > i as follows.8

p∑
i=1

p∑
j 6=i

[
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
∆0
ij

=

p∑
i=1

p∑
j>i

[
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
∆0
ij

+

p∑
i=1

p∑
j<i

[
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
∆0
ij .

Swapping i and j in the
p∑
j<i

term then allows us to write the sum over j 6= i as

p∑
i=1

p∑
j>i

[
〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
∆0
ij . (3.59)

8In what follows, we will not explicitly write δr,t and δr′(i),t′(j).
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Similarly,

p∑
i=1

p∑
j 6=i

[
e−2πiγ 〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+e2πiγ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
∆−ij

=

p∑
i=1

p∑
j>i

[
e−2πiγ 〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+e2πiγ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
∆−ij

+

p∑
i=1

p∑
j<i

[
e−2πiγ 〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

+e2πiγ 〈−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
∆−ij .

In this case, we are removing a single box from the ith row of Young diagram r and we

have ∆−ij . If the box comes from row j of diagram r we have ∆+
ij . With this in mind,

swapping i and j changes ∆−ij to ∆+
ij . Doing this for the

p∑
j<i

term and simplifying yields

p∑
i=1

p∑
j>i

[
(e−2πiγ∆−ij + e2πiγ∆+

ij) 〈
−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

(e−2πiγ∆+
ij + e2πiγ∆−ij) 〈

−→m, s, µ2; a|E(n+1)
jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉
]
.

(3.60)

Now, substituting expressions (3.59) and (3.60) into equation (3.55) then yields

DγOR,(r,s)µ1µ2 = −g2
YM

∑
uν1ν2

m√
dsdu

δ−→m,−→n

p∑
i=1

[ p∑
j>i

×
(

(∆0
ij − (e−2πiγ∆+

ij + e2πiγ∆−ij)) 〈
−→m, s, µ2; a|E(n+1)

jj

× |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii |−→m, s, µ1; a〉

+ (∆0
ij − (e−2πiγ∆−ij + e2πiγ∆+

ij)) 〈
−→m, s, µ2; a|E(n+1)

ii

× |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

)
−
(
e−2πiγ + e2πiγ − 2

)
〈−→m, s, µ2; a|E(n+1)

ii

× |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii |−→m, s, µ1; a〉∆0

ii

]
OR,(r,u)ν1ν2 . (3.61)
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We notice here that in each of these three terms, the action of the dilatation operator

factorises into a part that acts on the R, r&T, t labels and a part that acts only on the

s, u labels. In the next section we will take a continuum limit for the R, r & T, t part.

3.2.5 The continuum limit

The continuum limit we take here is such that

N + b0 →∞

while the variables

xi =
li√

N + b0

are held constant. Here, b0 is the length of the bottom most row in our Young diagrams

so that the lengths of the other rows are b0 + li. In spacetime, this corresponds to having

giant gravitons that are very close to one another.

For operators of a good scaling dimension we can make the ansatz

O =
∑

b0,l1,...lp−1

f (b0, l1, . . . lp−1)O (b0, l1, . . . lp−1) ,

where p is the number of rows in each Young diagram. This way, we can write

∆ijO =
∑

b0,l1,...lp−1

f (b0, l1, . . . lp−1) ∆ijO (b0, l1, . . . lp−1)

=
∑

b0,l1,...lp−1

∆̃ijf (b0, l1, . . . lp−1)O (b0, l1, . . . lp−1)

where

∆̃ijf (b0, l1, . . . lp−1) = (2N + 2b0 + li + lj) f (b0, l1, . . . lp−1)

for

∆̃ij = ∆0
ij

for example.

First term: ∆0
ij − (e−2πiγ∆+

ij + e2πiγ∆−ij)

Here,

∆0
ijf (b0, l1, . . . lp−1) = (2N + 2b0 + li + lj) f (b0, l1, . . . lp−1) (3.62)
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as we have already mentioned, while

∆+
ijf (b0, l1, . . . lp−1) =

√
(N + b0 + li) (N + b0 + lj)f (b0, . . . , li + 1, . . . , lj − 1, . . .)

(3.63)

and

∆−ijf (b0, l1, . . . lp−1) =
√

(N + b0 + li) (N + b0 + lj)f (b0, . . . , li − 1, . . . , lj + 1, . . .) .

(3.64)

Expanding

√
(N + b0 + li) (N + b0 + lj) = N + b0 +

xi + xj
2

√
N + b0 −

(xi − xj)2

8
+ . . .

and

f (b0, . . . , li + 1, . . . , lj − 1, . . .)→ f

(
b0, . . . , xi +

1√
N + b0

, . . . , xj −
1√

N + b0
, . . .

)
= f (b0, . . . , xi, . . . , xj , . . .) +

1√
N + b0

∂f

∂xi
− 1√

N + b0

∂f

∂xj

+
1

2 (N + b0)

∂2f

∂x2
i

+
1

2 (N + b0)

∂2f

∂x2
j

− 1

N + b0

∂2f

∂xi∂xj
+ . . .

followed by taking the continuum limit gives(
∆0
ij − (e−2πiγ∆+

ij + e2πiγ∆−ij)
)
f = (2N + 2b0 + li + lj) f

− cos (2πγ)

(
2N + 2b0 + (xi + xj)

√
N + b0 −

(xi − xj)2

4

)
f

+ i sin (2πγ)
(

2
√
N + b0 + xi + xj

)( ∂

∂xi
− ∂

∂xj

)
f

− cos (2πγ)

(
∂

∂xi
− ∂

∂xj

)2

f

which we can re-write as(
∆0
ij − (e−2πiγ∆+

ij + e2πiγ∆−ij)
)
f = (2N + 2b0 + li + lj) (1− cos (2πγ)) f

+ i sin (2πγ)
(

2
√
N + b0 + xi + xj

)( ∂

∂xi
− ∂

∂xj

)
f

+ cos (2πγ)

(
(xi − xj)2

4
−
(
∂

∂xi
− ∂

∂xj

)2
)
f.

(3.65)
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Second term: ∆0
ij − (e−2πiγ∆−ij + e2πiγ∆+

ij)

In this case we get(
∆0
ij − (e−2πiγ∆−ij + e2πiγ∆+

ij)
)
f = (2N + 2b0 + li + lj) f

− cos (2πγ)

(
2N + 2b0 + (xi + xj)

√
N + b0 −

(xi − xj)2

4

)
f

− i sin (2πγ)
(

2
√
N + b0 + xi + xj

)( ∂

∂xi
− ∂

∂xj

)
f

− cos (2πγ)

(
∂

∂xi
− ∂

∂xj

)2

f

in the continuum limit. We can also re-write this equation as(
∆0
ij − (e−2πiγ∆−ij + e2πiγ∆+

ij)
)
f = (2N + 2b0 + li + lj) (1− cos (2πγ)) f

− i sin (2πγ)
(

2
√
N + b0 + xi + xj

)( ∂

∂xi
− ∂

∂xj

)
f

+ cos (2πγ)

(
(xi − xj)2

4
−
(
∂

∂xi
− ∂

∂xj

)2
)
f.

(3.66)

Last term: (e−2πiγ + e2πiγ − 2) ∆0
ii

This term yields

(
e−2πiγ + e2πiγ − 2

)
∆0
iif = 2 (2N + 2b0 + 2li) (cos (2πγ)− 1) f. (3.67)

Thus, putting everything together, the action of the dilatation operator in the con-
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tinuum limit is

DγO = −g2
YM

∑
b0,l1,...lp−1

∑
uν1ν2

m√
dsdu

δ−→m,−→n

p∑
i=1

[ p∑
j>i

[((2N + 2b0 + li + lj) (1− cos (2πγ))

+ i sin (2πγ)
(

2
√
N + b0 + xi + xj

)( ∂

∂xi
− ∂

∂xj

)
+ cos (2πγ)

(
(xi − xj)2

4
−
(
∂

∂xi
− ∂

∂xj

)2
)

)M (ji)
sµ1µ2;uν1ν2

+ ((2N + 2b0 + li + lj) (1− cos (2πγ))

− i sin (2πγ)
(

2
√
N + b0 + xi + xj

)( ∂

∂xi
− ∂

∂xj

)
+ cos (2πγ)

(
(xi − xj)2

4
−
(
∂

∂xi
− ∂

∂xj

)2
)

)M (ij)
sµ1µ2;uν1ν2 ]

− 2 (2N + 2b0 + 2li) (cos (2πγ)− 1)M (ii)
sµ1µ2;uν1ν2

]
× f (b0, . . . , xi, . . . , xj , . . .)O (b0, l1, . . . lp−1) , (3.68)

where

M (ji)
sµ1µ2;uν1ν2 = 〈−→m, s, µ2; a|E(n+1)

jj |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii |−→m, s, µ1; a〉 ,

M (ij)
sµ1µ2;uν1ν2 = 〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
jj |−→m, s, µ1; a〉

and

M (ii)
sµ1µ2;uν1ν2 = 〈−→m, s, µ2; a|E(n+1)

ii |−→n , u, ν2; b 〉〈−→n , u, ν1; b|E(n+1)
ii |−→m, s, µ1; a〉 .
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Simplifying yields

DγO = −g2
YM

∑
b0,l1,...lp−1

∑
uν1ν2

m√
dsdu

δ−→m,−→n

p∑
i=1

[ p∑
j>i

[
((2N + 2b0 + li + lj) (1− cos (2πγ))

+ cos (2πγ)

(
(xi − xj)2

4
−
(
∂

∂xi
− ∂

∂xj

)2
)

)
(
M (ij)
sµ1µ2;uν1ν2 +M (ji)

sµ1µ2;uν1ν2

)
− i sin (2πγ)

(
2
√
N + b0 + xi + xj

)( ∂

∂xi
− ∂

∂xj

)(
M (ij)
sµ1µ2;uν1ν2 −M

(ji)
sµ1µ2;uν1ν2

)]
− 2 (2N + 2b0 + 2li) (cos (2πγ)− 1)M (ii)

sµ1µ2;uν1ν2

]
× f (b0, . . . , xi, . . . , xj , . . .)O (b0, l1, . . . lp−1) . (3.69)

3.2.6 Gauss graph operators

In this section, we compute the matrix elements of the deformed dilatation operator,

Dγ , in the Gauss graph basis 〈OT,t (σ2)DγOR,r (σ1)〉. The Gauss graph operators can

be written as

OR,r (σ1) =
|H|√
m!

∑
j,k

∑
s`m

∑
µ1,µ2

√
dsΓ

(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

OR,(r,s)µ1µ2 , (3.70)

where

H = Sm1 × Sm2 × . . . Smp

is a sub-group of the symmetric group Sm and Bs→1H
jµ1

is a branching coe�cient that

allows us to project from s, an irrep of Sm, to 1H , a one-dimensional representation of

H. ds is the dimension of the irrep s. The order of the sub-group H is

|H| =
p∏
i=1

mi!. (3.71)
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From the �rst term in equation (3.61) we have9

〈
O†T,t (σ2)DγOR,r (σ1)

〉
1

=
|H|2

m!

∑
s,u`m

∑
µ1,µ2,ν1,ν2

√
dsduΓ

(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

× Γ
(u)
lm (σ2)Bu→1H

lν1
Bu→1H
mν2

〈
O†T,(t,u)ν1ν2

DγOR,(r,s)µ1µ2

〉
1

= −g2
YM

|H|2

m!

p∑
i=1

p∑
j>i

∑
s,u`m

∑
µ1,µ2,ν1,ν2

Γ
(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

× Γ
(u)
lm (σ2)Bu→1H

lν1
Bu→1H
mν2 (∆0

ij − (e−2πiγ∆+
ij + e2πiγ∆−ij))

×m 〈−→m, s, µ2; a|E(n+1)
jj |−→m,u, ν2; b 〉〈−→m,u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉 .
(3.72)

Let us sum over u �rst. We study

∑
s,u`m

∑
µ1,µ2,ν1,ν2

Γ
(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

Γ
(u)
lm (σ2)Bu→1H

lν1
Bu→1H
mν2

×m 〈−→m, s, µ2; a|E(n+1)
jj |−→m,u, ν2; b 〉〈−→m,u, ν1; b|E(n+1)

ii |−→m, s, µ1; a〉 . (3.73)

and use the following de�nition for the ket [46]

|−→m,u, ν2; b〉 ≡
∑
p

∑
σ∈Sm

Bu→1H
pν2 Γ

(u)
bp (σ) |vσ〉 , (3.74)

where

|vσ〉 = σ |v〉 = σ
∣∣∣v⊗m1

1 ⊗ v⊗m2
2 ⊗ · · · v⊗mpp

〉
. (3.75)

We also de�ne the bra as [46]

〈−→m,u, ν1; b| ≡ du
m! |H|

∑
q

∑
τ∈Sm

〈vτ |Γ(u)
bq (τ)Bu→1H

qν1 , (3.76)

where

〈vτ | = 〈v| τ−1 =
〈
v⊗m1

1 ⊗ v⊗m2
2 ⊗ · · · v⊗mpp

∣∣∣ τ−1. (3.77)

Using this together with

1

|H|
∑
γ∈H

Γ
(u)
ik (γ) =

∑
ν1

Bu→1H
iν1

Bu→1H
kν1

, (3.78)

9In what follows, we will not explicitly write out the sum over the matrix indices, but they must be
understood as summed.
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expression (3.73) becomes

mdu

|H|3m!

∑
s,u`m

∑
σ,τ∈Sm

∑
γ1,γ2∈H

∑
µ1,µ2

Γ
(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

Γ
(u)
lm (σ2) Γ

(u)
ql (γ1)

×Γ(u)
pm (γ2) Γ

(u)
bp (σ) Γ

(u)
bq (τ) 〈−→m, s, µ2; a|E(n+1)

jj |vσ 〉〈 vτ |E(n+1)
ii |−→m, s, µ1; a〉

=
mdu

|H|3m!

∑
s,u`m

∑
σ,τ∈Sm

∑
γ1,γ2∈H

∑
µ1,µ2

Γ
(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

Γ
(u)
bp (σ) Γ(u)

pm (γ2)

×Γ
(u)
ml

(
σ−1

2

)
Γ

(u)
lq

(
γ−1

1

)
Γ

(u)
qb

(
τ−1

)
〈−→m, s, µ2; a|E(n+1)

jj |vσ 〉〈 vτ |E(n+1)
ii |−→m, s, µ1; a〉

=
mdu

|H|3m!

∑
s,u`m

∑
σ,τ∈Sm

∑
γ1,γ2∈H

∑
µ1,µ2

Γ
(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

×χu
(
σγ2σ

−1
2 γ−1

1 τ−1
)
〈−→m, s, µ2; a|E(n+1)

jj |vσ 〉〈 vτ |E(n+1)
ii |−→m, s, µ1; a〉

=
m

|H|3
∑
s`m

∑
σ,τ∈Sm

∑
γ1,γ2∈H

∑
µ1,µ2

Γ
(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

×δ
(
σγ2σ

−1
2 γ−1

1 τ−1
)
〈−→m, s, µ2; a|E(n+1)

jj |vσ 〉〈 vτ |E(n+1)
ii |−→m, s, µ1; a〉 .

To get the last line, we used the de�nition of the delta function for the symmetric group

Sm, ∑
u

du
m!
χu (στ) = δ (στ) . (3.79)

The sum over s can be done in exactly the same way. The result is

m

|H|6
∑

α,β,σ,τ∈Sm

∑
γi∈H

δ
(
γ3σ1γ

−1
4 β−1α

)
δ
(
σγ2σ

−1
2 γ−1

1 τ−1
)
〈vβ|E

(n+1)
jj |vσ 〉〈 vτ |E(n+1)

ii |vα〉

(3.80)

which we can re-write as

m

|H|6
∑

α,β,σ,τ∈Sm

∑
γi∈H

δ
(
γ3σ1γ

−1
4 β−1α

)
δ
(
σγ2σ

−1
2 γ−1

1 τ−1
)
〈v|β−1E

(n+1)
jj σ

× |v 〉〈 v| τ−1E
(n+1)
ii α |v〉

=
m

|H|6
∑

α,β,σ,τ∈Sm

∑
γi∈H

δ
(
γ3σ1γ

−1
4 β−1α

)
δ
(
σγ2σ

−1
2 γ−1

1 τ−1
)
〈v|Eβ

−1(n+1)
jj β−1σ

× |v 〉〈 v|Eτ
−1(n+1)
ii τ−1α |v〉 . (3.81)

The delta functions are non-zero when

α−1 = γ3σ1γ
−1
4 β−1
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and

σ−1 = γ2σ
−1
2 γ−1

1 τ−1

from which we deduce

α = βγ4σ
−1
1 γ−1

3

and

σ = τγ1σ2γ
−1
2 .

Using this together with the invariance of |v〉 under H, we get

m

|H|4
∑

β,τ∈Sm

∑
γ1,γ4∈H

〈v|Eβ
−1(n+1)

jj β−1τγ1σ2 |v 〉〈 v|Eτ
−1(n+1)
ii τ−1βγ4σ

−1
1 |v〉 . (3.82)

Now, 〈v|Eβ
−1(n+1)

jj gives 〈v| if β−1 (n+ 1) belongs to a set of integers Sj in the range

(m1 +m2 + · · ·mj−1 + 1) , . . . , (m1 +m2 + · · ·mj) ,

both inclusive. Also, (3.82) gives zero except when

β−1 (n+ 1) ∈ Sj

and

τ−1 (n+ 1) ∈ Si.

Using this in conjunction with

〈v|σ |v〉 =
∑
γ∈H

δ (σγ) (3.83)

we get

m

|H|4
∑

β,τ∈Sm

∑
γi∈H

δ
(
β−1τγ1σ2γ2

)
δ
(
τ−1βγ4σ

−1
1 γ3

) ∑
k∈Si

∑
l∈Sj

δ
(
τ−1 (n+ 1) , k

)
δ
(
β−1 (n+ 1) , l

)
.

(3.84)

At this point, we can introduce β → β−1α and τ−1 → τ−1α, where α ∈ Zm.10 This adds
up to replacing n+ 1 by α (n+ 1) in (3.84). The sum over α ∈ Zm is normalised by 1

m .

10Here, Zm is a group of products of cyclic permutations.
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Performing this sum gives us

1

|H|4
∑

β,τ∈Sm

∑
γi∈H

δ
(
β−1τγ1σ2γ2

)
δ
(
τ−1βγ4σ

−1
1 γ3

) ∑
k∈Si

∑
l∈Sj

δ
(
β−1τ (k) , l

)
=

m!

|H|4
∑
β∈Sm

∑
γi∈H

δ
(
β−1γ1σ2γ2

)
δ
(
βγ4σ

−1
1 γ3

) ∑
k∈Si

∑
l∈Sj

δ
(
β−1 (k) , l

)
.

At this point, we realise the number of strings leaving brane i and terminating on brane

j

n+
ij

(
β−1

)
=
∑
k∈Si

∑
l∈Sj

δ
(
β−1 (k) , l

)
(3.85)

yielding

m!

|H|4
∑
β∈Sm

∑
γi∈H

δ
(
β−1γ1σ2γ2

)
δ
(
βγ4σ

−1
1 γ3

)
n+
ij

(
β−1

)
=

m!

|H|4
∑
γi∈H

δ
(
γ4σ

−1
1 γ3γ1σ2γ2

)
n+
ij

(
γ4σ

−1
1 γ3

)
.

Finally, n+
ij (σ) is invariant under left and right multiplication by H so that we get11

m!

|H|2
∑

γ1,γ2∈H
δ
(
σ−1

1 γ1σ2γ2

)
n+
ij (σ1) . (3.86)

With this result, equation (3.72) becomes

〈
O†T,t (σ2)DγOR,r (σ1)

〉
1

= −g2
YM

p∑
i=1

p∑
j>i

∑
γ1,γ2∈H

δ
(
σ−1

1 γ1σ2γ2

)
n+
ij (σ1)

× (∆0
ij − (e−2πiγ∆+

ij + e2πiγ∆−ij)). (3.87)

11Since n+
ij

(
σ−1
1

)
= n+

ij (σ1) .
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From the second term in equation (3.61) we get

〈
O†T,t (σ2)DγOR,r (σ1)

〉
2

=
|H|2

m!

∑
s,u`m

∑
µ1,µ2,ν1,ν2

√
dsduΓ

(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

× Γ
(u)
lm (σ2)Bu→1H

lν1
Bu→1H
mν2

〈
O†T,(t,u)ν1ν2

DγOR,(r,s)µ1µ2

〉
2

= −g2
YM

|H|2

m!

p∑
i=1

p∑
j>i

∑
s,u`m

∑
µ1,µ2,ν1,ν2

Γ
(s)
jk (σ1)Bs→1H

jµ1
Bs→1H
kµ2

× Γ
(u)
lm (σ2)Bu→1H

lν1
Bu→1H
mν2 (∆0

ij − (e−2πiγ∆−ij + e2πiγ∆+
ij))

×m 〈−→m, s, µ2; a|E(n+1)
ii |−→m,u, ν2; b 〉〈−→m,u, ν1; b|E(n+1)

jj |−→m, s, µ1; a〉
(3.88)

which we evaluate in exactly the same way we did (3.72). The analog of equation (3.86)

in this case is
m!

|H|2
∑

γ1,γ2∈H
δ
(
σ−1

1 γ1σ2γ2

)
n−ij (σ1) , (3.89)

where

n−ij (σ1) ≡
∑
k∈Si

∑
l∈Sj

δ
(
σ−1

1 (l) , k
)

(3.90)

is the number of strings emanating from brane j and terminating on brane i. Equation

(3.88) then gives

〈
O†T,t (σ2)DγOR,r (σ1)

〉
2

= −g2
YM

p∑
i=1

p∑
j>i

∑
γ1,γ2∈H

δ
(
σ−1

1 γ1σ2γ2

)
n−ij (σ1)

× (∆0
ij − (e−2πiγ∆−ij + e2πiγ∆+

ij)). (3.91)

Similarly, the last term in equation (3.61) gives

〈
O†T,t (σ2)DγOR,r (σ1)

〉
3

= −g2
YM

p∑
i=1

p∑
j>i

∑
γ1,γ2∈H

δ
(
σ−1

1 γ1σ2γ2

)
×
(
e−2πiγ + e2πiγ − 2

)
nii (σ1) ∆0

ii, (3.92)

where nii (σ1) is the number of strings that begin and end on the same brane.

With this, the action of the dilatation operator in the Gauss graph basis can be
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written as

DγOR,r (σ1) = −g2
YM

p∑
i=1

[

p∑
j>i

[n+
ij (σ1) (∆0

ij − (e−2πiγ∆+
ij + e2πiγ∆−ij))

+ n−ij (σ1) (∆0
ij − (e−2πiγ∆−ij + e2πiγ∆+

ij))]

+ nii (σ1)
(
2−

(
e−2πiγ + e2πiγ

))
∆0
ii]OR,r (σ1) . (3.93)

3.2.7 Continuum limit in the Gauss graph basis

Taking the continuum limit in the Gauss graph basis gives

DγO (σ1) = −g2
YM

∑
R,r

∑
b0,l1,...lp−1

p∑
i=1

[ p∑
j>i

[((2N + 2b0 + li + lj) (1− cos (2πγ))

+ cos (2πγ)

(
(xi − xj)2

4
−
(
∂

∂xi
− ∂

∂xj

)2
)

)nij (σ1)

− i sin (2πγ)
(

2
√
N + b0 + xi + xj

)( ∂

∂xi
− ∂

∂xj

)(
n−ij (σ1)− n+

ij (σ1)
)

]

+ 2 (2N + 2b0 + 2li) (1− cos (2πγ))nii (σ1)

]
×OR,r (σ1) , (3.94)

where

nij (σ1) = n−ij (σ1) + n+
ij (σ1) (3.95)

is the total number of strings stretching between branes i and j.

The eigenvalue problem

DO = ΓO (3.96)
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implies that

g2
YM

p∑
i=1

p∑
j=i+1

n−ij

[
((2N + ri + rj) (1− cos (2πγ)) f (r0, l1, . . . , lp−1)

− i sin (2πγ)
(

2
√
N + r0 + xi + xj

)( ∂f
∂xi
− ∂f

∂xj

)
+ cos (2πγ)

(
(xi − xj)2

4
−
(
∂

∂xi
− ∂

∂xj

)2
)
f

]

+ g2
YM

p∑
i=1

p∑
j=i+1

n+
ij

[
((2N + ri + rj) (1− cos (2πγ)) f (r0, l1, . . . , lp−1)

+ i sin (2πγ)
(

2
√
N + r0 + xi + xj

)( ∂f
∂xi
− ∂f

∂xj

)
+ cos (2πγ)

(
(xi − xj)2

4
−
(
∂

∂xi
− ∂

∂xj

)2
)
f

]

+ 4g2
YM sin2 (πγ)

p∑
i=1

(N + ri)niif (r0, l1, . . . , lp−1) = Γf (r0, l1, . . . , lp−1) , (3.97)

where we have written

O =
∑

r0,l1,...lp−1

f (r0, l1, . . . , lp−1)O (σ, r0, l1, . . . , lp−1) (3.98)

Using the trig identity

sin2 θ =
1− cos 2θ

2
(3.99)

and introducing a set of coordinates

yi =
√
N + r0 + xi (3.100)
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we get

g2
YM

p∑
i=1

p∑
j=i+1

n−ij

[
((2N + ri + rj) 2 sin2 (πγ) f

− sin (2πγ) (yi + yj)Pijf

+ cos (2πγ)

(
y2
ij

4
+ P 2

ij

)
f

]

+ g2
YM

p∑
i=1

p∑
j=i+1

n+
ij

[
((2N + ri + rj) 2 sin2 (πγ) f

+ sin (2πγ) (yi + yj)Pijf

+ cos (2πγ)

(
y2
ij

4
+ P 2

ij

)
f

]

+ 4g2
YM sin2 (πγ)

p∑
i=1

(N + ri)niif = Γf, (3.101)

where

Pij = i

(
∂

∂yi
− ∂

∂yj

)
(3.102)

and

yij = yi − yj . (3.103)

Rearranging gives

g2
YM

p∑
i=1

p∑
j=i+1

[
nij cos (2πγ)

(
y2
ij

4
+ P 2

ij

)
f +

(
n+
ij − n

−
ij

)
sin (2πγ) (yi + yj)Pijf

]

+ 2g2
YM

p∑
i=1

p∑
j=i+1

sin2 (πγ) (2N + ri + rj)nijf = Γf. (3.104)

In the last line, we have included the term proportional to nii thereby changing the sum

over j. This gives the partial di�erential equation that must be solved in order to obtain

the anomalous dimensions for the deformed theory.

In the undeformed case, con�gurations with nij = 0 and nii 6= 0 correspond to

BPS operators. One of the implications of this is that any excitation of a single giant

graviton, i.e. any restricted Schur polynomial built using only Zs and Y s, labelled by

Young diagrams that have only a single row or column are BPS. In the deformed case,

we see that this is not so, i.e. nii 6= 0 leads to operators that are not BPS. In other

words, in the deformed case, the excitations of a single giant graviton are not BPS.
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3.2.8 Spectrum

Equation (3.104) can now be written as

Hf = Γ̃f (3.105)

with

H = g2
YM

p∑
i=1

p∑
j=i+1

[
nij cos (2πγ)

(
P 2
ij +

1

4
y2
ij

)
+
(
n+
ij − n

−
ij

)
sin (2πγ) (yi + yj)Pij

]
(3.106)

and

Γ̃ = −2g2
YM

p∑
i=1

p∑
j=i+1

sin2 (πγ) (2N + ri + rj)nij + Γ. (3.107)

We note that yi + yj commutes with H and hence is a constant of the motion. It thus

makes sense to shift

Pij → Pij + α (yi + yj) . (3.108)

By choosing

α =

(
n−ij − n

+
ij

)
tan (2πγ) (yi + yj)

2nij
(3.109)

we �nd

H = g2
YM

p∑
i=1

p∑
j=i+1

nij cos (2πγ)

(
P 2
ij +

1

4
y2
ij

)
−

(
n+
ij − n

−
ij

)2
sin2 (2πγ) (yi + yj)

2

4nij cos (2πγ)

 .
(3.110)

The second term inside the square braces commutes with the Hamiltonian and is thus

a constant. Noting that [
Pij ,

yi − yj
2

]
= i, (3.111)

it is clear that H is equivalent to a (shifted) harmonic oscillator whose spectrum depends

on the parameter γ. We also note that from the result (3.110) there appears to be a

singularity in H at

γ =
1

4
. (3.112)

Looking back at equation (3.106), we see that at this value of γ the term that is quadratic

in the momenta vanishes, leaving only a term linear in Pij . At this point, since yi + yj is

a constant of motion, the Hamiltonian becomes proportional to Pij and the operators of

a good scaling dimension are plane waves. We need to require that these wavefunctions

vanish whenever yi = yj . This boundary condition will quantise the Pij momentum



CHAPTER 3. LEIGH-STRASSLER DEFORMED SYM 99

eigenvalues so that we obtain an evenly spaced spectrum. Intuitively, since the original

Hamiltonian depends smoothly on γ, we expect that there is nothing singular about the

point γ = 1/4.

3.3 Discussion

Our goal has been to compute the spectrum of anomalous dimensions of the Leigh-

Strassler deformed N = 4 super-Yang Mills theory. The operators we have studied are

AdS/CFT dual to systems of giant gravitons. This implies that although we work at

large N, we are not in the planar limit of the theory.

We found that the action of the dilatation operator continues to to factorise into an

action on the impurity labels sµ1µ2;uν1ν2 (associated with the Y �elds) and an action on

the R, r;T, t labels associated with the Z �elds. The deformed dilatation operator picks

up an extra term when compared to the undeformed case. This extra term is diagonal

in the Gauss graph basis so that the double coset ansatz continues to diagonalise the

impurity labels.

We also studied the diagonalisation problem associated to the Z �elds. Though this

problem is di�erent from the undeformed case, we �nd that it can be reduced to a set of

decoupled oscillators. However, the deformed dilatation operator picks up an additional

term which produces an extra shift in the anomalous dimension. The shift is positive as

it should be - a negative shift would produce operators with a dimension less than their

R-charge which is not possible in a unitary conformal �eld theory. This predicts that

all excitations of the giant gravitons in the deformed theory are not BPS. In a system

of p = 2 giant gravitons for example, we have

Γk = 4g2
YM (N + r1)n11 sin2 (πγ) + 4g2

YM (N + r2)n22 sin2 (πγ)

+ 2g2
YM (2N + n)n12 sin2 (πγ) + 4g2

YMn12 cos (2πγ) k, (3.113)

where k is any non-negative integer. When γ = 0 we recover the anomalous dimensions

of the undeformed theory [43].

Since our operators are not BPS, their anomalous dimensions are not protected

quantities. Owing the strong/weak coupling duality of the AdS/CFT correspondence,

a direct comparison of our results with those of AdS/CFT predictions [50, 57, 69] is

almost sure to fail. More precisely, the dual gravitational system is de�ned in the

limit of large 't Hooft coupling λ and small γ (γ2λ is �xed) while our �eld theory

computation is valid for small λ and arbitrary γ. However, since the quantum numbers

of our operators become parametrically large with N, a comparison may still be possible

[24, 70, 71, 72, 73]. We leave this interesting question for future research.



Chapter 4

Including fermions

In this chapter, we study large operators built using both bosonic and fermionic �elds.

The operators we study are dual to excited giant gravitons. In this case, the large N and

planar limits do not coincide, meaning that to compute the large N observables, we need

to sum more than just the planar diagrams. This problem can be solved completely by

using the group theory of symmetric and unitary groups as well as the relations between

them. Using representation theory, the two point functions can be solved exactly in the

free �eld limit [26, 33, 74, 75, 76, 77, 36, 78, 79, 80, 81, 82].

In what follows, we explain how to build the restricted Schur polynomials that in-

corporate both bosons and fermions. We show that the number of these polynomials

matches the number of multi-�eld, multi-trace gauge invariant operators. We also show

how to transform between the trace basis and the basis provided by the restricted Schur

polynomials that we construct.

As a concrete application of our results, we study the su (2|3) sector of SYM theory.

This sector consists of operators built from two fermions and three bosons, hence the

name. The su (2|3) sector is closed to all orders under the action of the dilatation

operator [52, 53]. At the one loop level, the dilatation operator has a simple action in

this sector - see formula (2.1) of [53] or the H2 piece in Table 1 of [52]. After explaining

how to build restricted Schur polynomials for this sector, we compute the action of the

dilatation operator on these polynomials. Finally, we show that the double coset ansatz

[46] diagonalises the dilatation operator in this sector of the theory. This chapter is

based on a paper that I published [39] - it is my original work.

100
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4.1 Warm up: single fermion

Consider a single fermion ψij transforming in the adjoint of the gauge group U (N) . The

relevant two point function is 〈
ψij

(
ψ†
)k
l

〉
= δilδ

k
j . (4.1)

The fermionic �elds are Grassman valued, so that swapping them costs a minus sign.

Our conventions for ordering the �elds are as follows

(
ψ⊗n

)I
J

= ψi1j1ψ
i2
j2
· · ·ψinjn (4.2)

(
ψ†⊗n

)K
L

= ψ†knln
· · ·ψ†k2l2

ψ†k1l1
. (4.3)

We then see that 〈(
ψ⊗n

)I
J

(
ψ†⊗n

)K
L

〉
=
∑
σ∈Sn

sgn (σ)σIL
(
σ−1

)K
J
, (4.4)

where sgn (σ) is the sign of the permutation σ which is computed by decomposing the

permutation into a product of transpositions. This decomposition is not unique. Then

sgn (σ) = (−1)m , (4.5)

where m is the number of transpositions in the product. sgn (σ) is well de�ned, i.e. it

does not depend on the speci�c decomposition of σ into transpositions. The ordering in

equation (4.3) is used to ensure that no extra n dependent phases appear in equation

(4.4).

The Grassman nature of ψ implies that the trace of an even number of �elds vanishes.

As an example, consider

Tr
(
ψ4
)

= ψijψ
j
kψ

k
l ψ

l
i = −ψjkψ

i
jψ

k
l ψ

l
i = ψjkψ

k
l ψ

i
jψ

l
i = −ψjkψ

k
l ψ

l
iψ
i
j = −Tr

(
ψ4
)
. (4.6)

Further, the product of two traces with the same number of �elds in each trace vanishes,

e.g.

Tr
(
ψ3
)
Tr
(
ψ3
)

= ψijψ
j
kψ

k
i Tr

(
ψ3
)

= −ψijψ
j
kTr

(
ψ3
)
ψki = ψijTr

(
ψ3
)
ψjkψ

k
i

= −Tr
(
ψ3
)
ψijψ

j
kψ

k
i = −Tr

(
ψ3
)
Tr
(
ψ3
)
. (4.7)

Let us now consider polynomials built from the adjoint fermion. Since we want a
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gauge invariant operator, consider polynomials built as a linear combination of traces1∑
σ∈Sn

CσTrV ⊗n
(
σψ⊗n

)
. (4.8)

By changing the summation variables to γ−1σγ and using the Grassman nature of the

fermionic �elds we �nd∑
σ∈Sn

CσTrV ⊗n
(
σψ⊗n

)
=

∑
σ,γ∈Sn

Cγ−1σγTrV ⊗n
(
σγψ⊗nγ−1

)
=

∑
σ,γ∈Sn

Cγ−1σγsgn (γ)TrV ⊗n
(
σψ⊗n

)
. (4.9)

Thus the coe�cients used to de�ne our polynomial must obey

Cγ−1σγ = sgn (γ)Cσ. (4.10)

A natural way to achieve this is to consider

χFR (ψ) =
∑
α∈Sn

S
[1n]RR
m′mΓRm′m (α)TrV ⊗n

(
αψ⊗n

)
, (4.11)

where ΓRm′m (α) is the matrix representing α ∈ Sn in irrep R and S
[1n]RR
m′m is the Clebsch-

Gordan coe�cient for R×R to couple to the antisymmetric irrep [1n] . This formula can

be viewed as a �degeneration� of the operators constructed in [75, 76],∑
σ∈Sn

BjβS
τ ;ΛRR
j pq ΓΛ

pq (σ)TrV ⊗n
(
σXµ⊗n) , (4.12)

which provides a basis for M species of complex matrix (di�erent species indexed by

µ). The basis thus obtained has good U (M) quantum numbers (see the �rst formula in

Section 1.1 of [75]. Since [1n] appears only once in R⊗R the analogue of the multiplicity

label τ which appears in (4.12) is not needed in (4.11). Equation (4.11) is the simplest

way to turn the �counting formula� (equation (106) of [75]) into a �construction formula�.

To simplify the notation, we write the Schur polynomials for fermions as

χFR (ψ) =
∑
σ∈Sn

CσTrV ⊗n
(
σψ⊗n

)
=
∑
α∈Sn

Tr
(
OΓR (α)

)
TrV ⊗n

(
αψ⊗n

)
, (4.13)

where

Omm′ = S
[1n]RR
m′m.

1Each of these single traces in V ⊗n can give rise to any multi-trace structure involving the n �elds.
Here, V is isomorphic to the carrier space of the fundamental representation of U (N) .
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The Clebsch-Gordan coe�cients of the symmetric group obey (see formula (7-186) of

[83])

Γµij (σ) Γνkl (σ)Sλτλµνs jl = Γλτλs′s (σ)Sλτλµνs′ ik. (4.14)

To specialise this to our problem, let us �rst replace µ, ν by R and λ by [1n] . There is no

need for the multiplicity label τλ. Also, because [1n] is one dimensional, there is no need

for indices s, s′ and we replace Γλτλs′s (σ)→ sgn (σ) . The equation for the Clebsch-Gordan

coe�cients becomes

ΓRij (σ) ΓRkl (σ)S
[1n]RR
jl = sgn (σ)S

[1n]RR
ik . (4.15)

Since we may assume without loss of generality that we have an orthogonal representa-

tion, equation (4.15) implies that

S
[1n]RR
ml ΓRlk (σ) = sgn (σ) ΓRmi (σ)S

[1n]RR
ik . (4.16)

This proves that

ΓS (σ)O = sgn (σ)OΓS (σ) . (4.17)

Clearly then, O2 commutes with every element of the group and is proportional to the

identity matrix (by Schur's Lemma). Thus, (perhaps after a normalisation) we have

O2 = 1. (4.18)

This immediately implies that characters for all odd elements (those with sign −1) of

the symmetric group vanish since

Tr
(
ΓR (σ)

)
= Tr

(
O2ΓR (σ)

)
= sgn (σ)Tr

(
OΓR (σ)O

)
= sgn (σ)Tr

(
OOΓR (σ)

)
= sgn (σ)Tr

(
ΓR (σ)

)
, (4.19)

where we have used equation (4.17) and the cyclicity of the trace. The representation

sT which is conjugate to s is de�ned by �ipping the Young diagram as shown in �gure

4.1. O can only be non-zero for self conjugate irreps because it is only for these that the

characters of all odd elements vanish. Indeed, S
[1n]RR
mm′ is only non-zero for self-conjugate
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Figure 4.1: Relationship between the Young diagrams s and sT .

irreps. The above observations all follow from

Cγ−1σγ = Tr
(
OΓR

(
γ−1σγ

))
= Tr

(
OΓR

(
γ−1

)
ΓR (σ) ΓR (γ)

)
= sgn (γ)Tr

(
ΓR
(
γ−1

)
OΓR (σ) ΓR (γ)

)
= sgn (γ)Cσ (4.20)

which proves that the coe�cients of our polynomials do indeed obey (4.10).

Spelling out index structures, our conventions are

χR (ψ) =
1

n!

∑
σ∈Sn

Tr
(
OΓR (σ)

)
ψi1iσ(1) · · ·ψ

in
iσ(n)

(4.21)

and

χ†R (ψ) =
1

n!

∑
σ∈Sn

Tr
(
ΓR (σ)O

)
ψ†iniσ(n) · · ·ψ

†i1
iσ(1)

. (4.22)

One di�erence between fermionic variables and bosonic variables is that fermionic vari-

ables anti-commute. As a result, di�erent choices for populating the slots with fermionic

�elds can di�er by a sign. It is for this reason that we must spell things out.
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The two-point function of the fermionic Schur polynomials is〈
χRχ

†
S

〉
=

1

(n!)2

∑
σ,ρ,γ∈Sn

Tr
(
OΓR (σ)

)
Tr
(
ΓS (ρ)O

)
sgn (γ)TrV ⊗n

(
γσγ−1ρ

)
=

1

(n!)2

∑
β,ρ,γ∈Sn

Tr
(
OΓR

(
γ−1βγ

))
Tr
(
ΓS (ρ)O

)
sgn (γ)TrV ⊗n (βρ)

=
1

(n!)2

∑
β,ρ∈Sn

Tr
(
OΓR (β)

)
Tr
(
ΓS (ρ)O

)
TrV ⊗n (βρ)

=
1

n!

∑
ψ,ρ∈Sn

Tr
(
OΓR (ψ) ΓR

(
ρ−1
))
Tr
(
ΓS (ρ)O

)
TrV ⊗n (ψ)

=
δRS
dR

∑
ψ∈Sn

Tr
(
ΓR (ψ)

)
TrV ⊗n (ψ)

= δRSfR. (4.23)

This completes the construction of Schur polynomials for a single fermion. We now

want to construct restricted Schur polynomials for an arbitrary number of fermionic

and bosonic matrix �avors. We will �rst consider the counting of these operators. For

the counting relevant for a single fermionic variable, see equation (106) of [75]. As we

highlighted earlier, our construction is motivated by this counting and the number of

operators we have matches this counting.

4.2 Counting

We will start with a quick review of counting for bosons [84]. Thereafter, we will consider

the counting of operators built from fermions and bosons.

4.2.1 Warm up: bosons

We will count the number of operators built with k species of bosonic �elds. This should

equal the number of restricted Schur polynomials χR,(r1,r2,...rk). Let us start from the

U (N) partition function as quoted in [85], equation (3.7), for the case of k bosonic �elds

ZU(N) (t) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
) k∏
j=1

N∏
r,s=1

1

1− tjzrz−1
s
. (4.24)

Using the Cauchy-Littlewood formula

L∏
i=1

M∏
j=1

1

1− xiyj
=

∑
r,l(r)≤min(L,M)

χr (x)χr (y) (4.25)
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we write the partition function as

ZU(N) (t) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
) k∏
j=1

∑
rj ,l(rj)≤N

χrj (tjz)χrj
(
z−1
)
. (4.26)

Since the Schur polynomial χr (z) is a homogeneous polynomial of order |r| ≡ the number

of boxes in r, we know that

ZU(N) (t) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
) k∏
j=1

∑
rj ,l(rj)≤N

(tj)
|rj | χrj (z)χrj

(
z−1
)
.

(4.27)

Using the Littlewood-Richardson rule to perform the product of the Schur polynomials

we �nd

ZU(N) (t) =
1

(2πi)N N !

∑
r1,...,rk+2,l(ri)≤N

(t1)|r1| (t2)|r2| · · · (tk)|rk| g (r1, r2, . . . rk, rk+1)

× g (r1, r2, . . . rk, rk+2)

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
)
χrk+1

(z)χrk+2

(
z−1
)
. (4.28)

Now,

〈g, h〉N ≡
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
)
g (z)h

(
z−1
)

(4.29)

and

〈χr, χt〉N = δrt (4.30)

so that

ZU(N) (t) =
1

(2πi)N N !

∑
r1,...,rk,R,l(ri)≤N,l(R)≤N

(t1)|r1| (t2)|r2| · · · (tk)|rk| (g (r1, r2, . . . rk, R))2 .

(4.31)

From the coe�cient of (t1)n1 (t2)n2 · · · (tk)nk we learn how many operators can be built

using nk �elds of species k. This is in turn equal to the number of restricted Schur

polynomials χR,(r1,r2,...rk) with ri ` ni and R ` n1 + n2 + · · ·nk [84].

4.2.2 One fermion and one boson

In this subsection, we will count the number of operators built with one bosonic species

and one fermionic species of �eld. We will use r for the bosonic and s for the fermionic

Young diagrams. Again, we start from the U (N) partition function as quoted in formula
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(3.13) of [85] for the case of one bosonic �eld and one fermionic �eld

ZU(N) (f, b) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
) N∏
r,s=1

1− fzrz−1
s

1− bzrz−1
s
. (4.32)

Using the Cauchy-Littlewood formula (4.25) and Littlewood's formula

L∏
i=1

M∏
j=1

1 + xiyj =
∑

s,l(s)≤L,l(sT )≤M

χs (x)χsT (y) , (4.33)

where sT is conjugate to s, the partition function (4.32) becomes

ZU(N) (f, b) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
)

×
∑

r,s,l(r)≤N,l(s)≤N,l(sT )≤N

χr (bz)χr
(
z−1
)
χs (fz)χsT

(
z−1
)
. (4.34)

Since the Schur polynomial χt (z) is a homogeneous polynomial of order |t| ≡ the number

of boxes in t, we know that

ZU(N) (f, b) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
)

×
∑

r,s,l(r)≤N,l(s)≤N,l(sT )≤N

b|r|f |s|χr (z)χr
(
z−1
)
χs (z)χsT

(
z−1
)
. (4.35)

Using the Littlewood-Richardson rule to perform the product of the Schur polynomials,

we get

ZU(N) (f, b) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
) ∑
r,s,l(r)≤N,l(s)≤N,l(sT )≤N

×
∑

R1,R2,l(Ri)≤N

b|r|f |s|g (r, s, R1) g
(
r, sT , R2

)
χR1 (z)χR2

(
z−1
)
. (4.36)

Finally, using (4.30), we obtain

ZU(N) (f, b) =
∑

r,s,l(r)≤N,l(s)≤N,l(sT )≤N

∑
R,l(R)≤N

b|r|f |s|g (r, s, R) g
(
r, sT , R

)
. (4.37)

Equation (4.37) re�ects the fermionic statistics. Since the fermionic matrix is a

matrix of Grassman variables, any product with more than N2 factors of the fermionic

matrix will vanish. We note that since both l (s) ≤ N and l
(
sT
)
≤ N, s can have at
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most N2 boxes, i.e. we never get operators with a product of more than N2 factors of

the fermionic matrix. We also note that in general

g (r, s, R) 6= g
(
r, sT , R

)
(4.38)

so that this counting is genuinely di�erent from (4.31).

4.2.3 Fermions and bosons

We will now count the number of operators built with nb species of bosonic �elds and

nf species of fermionic �elds. Again, we start from the U (N) partition function for nb

bosons and nf fermions, formula (3.13) in [85],

ZU(N) (f, b) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
) nf∏
j=1

nb∏
k=1

N∏
r,s=1

1− fjzrz−1
s

1− bkzrz−1
s
. (4.39)

Using the Cauchy-Littlewood formula (4.25) and Littlewood's formula (4.33), we rewrite

this partition function as

ZU(N) (f, b) =
1

(2πi)N N !

˛ N∏
i=1

dzi
zi
4 (z)4

(
z−1
) nf∏
j=1

nb∏
k=1

∑
rk,sj ,l(rk)≤N,l(sj)≤N,l(sTj )≤N

× χrk (bkz)χrk
(
z−1
)
χsj (fjz)χsTj

(
z−1
)
. (4.40)

Again, since the Schur polynomial χt (z) is a homogeneous polynomial of order |t| and
using the Littlewood-Richardson rule to perform the product of the Schur polynomials,

we �nd

ZU(N) (f, b) =
1

(2πi)N N !

∑
r1,...rnb ,l(ra)≤N,

∑
s1,...snf ,l(sb)≤N,l(s

T
b )≤N

∑
R1,R2,l(Ri)≤N

× (f1)|s1| · · ·
(
fnf
)∣∣∣snf ∣∣∣ (b1)|r1| · · · (bnb)|

rnb |

× g
(
r1, . . . rnb , s1, . . . snf , R1

)
g
(
r1, . . . rnb , s

T
1 , . . . s

T
nf
, R2

)
×
˛ N∏

i=1

dzi
zi
4 (z)4

(
z−1
)
χR1 (z)χR2

(
z−1
)
. (4.41)
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Using equation (4.30) again yields

ZU(N) (f, b) =
∑

r1,...rnb ,l(ra)≤N,

∑
s1,...snf ,l(sb)≤N,l(s

T
b )≤N

∑
R,l(R)≤N

(f1)|s1| · · ·
(
fnf
)∣∣∣snf ∣∣∣ (b1)|r1| · · · (bnb)|

rnb |

× g
(
r1, . . . rnb , s1, . . . snf , R

)
g
(
r1, . . . rnb , s

T
1 , . . . s

T
nf
, R
)
. (4.42)

We note again that in general,

g
(
r1, . . . rnb , s1, . . . snf , R

)
6= g

(
r1, . . . rnb , s

T
1 , . . . s

T
nf
, R
)
. (4.43)

4.3 Restricted Schurs for su (2|3)

Now that we have learnt how to count the operators built using both fermionic and

bosonic �elds, we now consider their construction.

4.3.1 Preliminary comments

How many times does [1n] appear in s⊗ sT ? In general, we have

s⊗ sT = ⊕tatt. (4.44)

To determine the positive integer at with t = [1n] , we start from the formula for the

character of a direct product representation

χs (g)χsT (g) =
∑
t

atχt (g) (4.45)

and use the character orthogonality relation

1

|G|
∑
g∈G

χR (g)χS
(
g−1
)

= δRS (4.46)
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to obtain

a[1n] =
1

|G|
∑
g

χs (g)χsT (g)χ[1n]

(
g−1
)

=
1

|G|
∑
g

χs (g)χsT (g) sgn (g)

=
1

|G|
∑
g

χs (g)χs (g)

=
1

|G|
∑
g

χs
(
g−1
)
χs (g)

= 1. (4.47)

Thus there is no need for a multiplicity label. To get the third line we used

χsT (g) sgn (g) = χs (g) , (4.48)

and to get fourth equality we used

χs (g) = χs
(
g−1
)
. (4.49)

In this case, Hammermesh's formula reads

Γsij (σ) Γs
T

kl (σ)S
[1n]ssT

jl = sgn (σ)S
[1n]ssT

ik . (4.50)

Using the fact that we have an orthogonal representation we �nd

Γsij (σ) Ôjp = sgn (σ) ÔikΓ
sT

kp (σ) , (4.51)

where

Ôjl = S
[1n]ssT

jl . (4.52)

Ôjl is a map from sT to s. ÔT Ô maps from sT to sT and commutes with all elements

of the group. Therefore, it is proportional to the identity. ÔÔT maps from s to s and

commutes with all elements of the group. Similarly, it is proportional to the identity.

By normalising correctly, we can choose

ÔT Ô = 1sT & ÔÔT = 1s. (4.53)

In what follows we will subduce two irreps from R, namely (r, sα) and
(
r, sTβ

)
,

where α and β are multiplicity labels. To spell out the fact that these multiplicity labels
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belong to s and sT rather than [1n] , we will write

Ôjl
(
sα; sTβ

)
≡ S[1n]s,α sT ,β

j l . (4.54)

Making use of the operators (4.54) is the simplest way to turn the counting formula

(4.37) into a construction formula.

4.3.2 Construction

In terms of the operators

PR,(r,s)αβ = 1r ⊗ Ô
(
sα; sTβ

)
P †R,(r,s)αβ = 1r ⊗ Ô

(
sTβ; sα

)
(4.55)

we can write the restricted Schur polynomials as

χR,(r,s)αβ (Z,ψ) =
1

n!m!

∑
σ∈Sn+m

Tr
(
PR,(r,s)αβΓR (σ)

)
ψi1iσ(1) · · ·ψ

im
iσ(m)

Z
im+1

iσ(m+1)
· · ·Zim+n

iσ(m+n)

(4.56)

and

χ†R,(r,s)αβ (Z,ψ) =
1

n!m!

∑
σ∈Sn+m

Tr
(
P †R,(r,s)αβΓR (σ)

)
ψ†imiσ(m)

· · ·ψ†i1iσ(1)Z
im+1

iσ(m+1)
· · ·Zim+n

iσ(m+n)
.

(4.57)

The speci�c choice of which slots we use for Z or ψ is unimportant - they are related by

performing an automorphism on Sn+m, which is a symmetry of the Schur polynomial.

The ordering of the Z �elds is completely arbitrary, while the ordering of the ψ �elds

�xes a sign. We note that

PR,(r,s)αβΓr (σ1) ◦ Γs
T

(σ2) = sgn (σ2) Γr (σ1) ◦ Γs (σ2)PR,(r,s)αβ (4.58)

which implies that PR,(r,s)αβ is an intertwining map in the carrier space of R from the

subspace
(
r, sT

)
to the subspace (r, s) . Further,

PR,(r,s)αβP
†
T,(t,u)δγ = δRT δrtδsuδβγP̄R,(r,s)αδ (4.59)

where

P̄R,(r,s)αδ = 1r ⊗
∑
j

|s, α; j〉 〈s, δ; j| . (4.60)
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It is now easy to show that〈
χR1,(r1,s1)αβ (Z,ψ)χ†R2,(r2,s2)γδ (Z,ψ)

〉
= δR1R2δr1r2δs1s2δβδδαγ

fR1hooksR1

hooksr1hookss1
.

(4.61)

The generalisation to many fermions and bosons is straight forward. For the su (2|3)

sector in particular, we have

P
R,(~r,~s)~α~β

= 1r1 ⊗
∑
j

|r2, α1; j〉 〈r2, β1; j| ⊗
∑
k

|r3, α2; k〉 〈r3, β2; k|

⊗ Ô
(
s1α3; sT1 β3

)
⊗ Ô

(
s2α4; sT2 β4

)
. (4.62)

We have written this with a speci�c procedure for the construction of P
R,(~r,~s)~α~β

in mind.

We imagine that boxes are removed from the Young diagram R until r1 is remains. The

boxes that are removed are then assembled to produce the representations r2, r3, s1, s2.

Following this construction, r1 has no multiplicities, r2 has multiplicities α1 and β1,

r3 has multiplicities α2 and β2, s1 has multiplicity α3, s
T
1 has multiplicity β3, s2 has

multiplicity α4 and sT2 has multiplicity β4. Our conventions for the ordering of the

fermionic �elds are

χ
R,(~r,~s)~α~β

(Z,X, Y, ψ1, ψ2) =
1

n1!n2!n3!m1!m2!

∑
σ∈Sn1+n2+n3+m1+m2

Tr
(
P
R,(~r,~s)~α~β

ΓR (σ)
)

× ψi11iσ(1) · · ·ψ
im1
1iσ(m1)

ψ
im1+1

2iσ(m1+1)
· · ·ψim1+m2

2iσ(m1+m2)
X
im1+m2+1

iσ(m1+m2+1)
· · ·

(4.63)

and

χ†
R,(~r,~s)~α~β

(Z,X, Y, ψ1, ψ2) =
1

n1!n2!n3!m1!m2!

∑
σ∈Sn1+n2+n3+m1+m2

Tr
(
P †
R,(~r,~s)~α~β

ΓR (σ)
)

× ψ†im1+m2
2iσ(m1+m2)

· · ·ψ†im1+1

2iσ(m1+1)
ψ
†im1
1iσ(m1)

· · ·ψ†i11iσ(1)
X
†im1+m2+1

iσ(m1+m2+1)
· · ·

(4.64)

As far as the bosons go, the X �elds occupy slots m1 +m2 + 1 to m1 +m2 + n2, the Y

�elds occupy slots m1 + m2 + n2 + 1 to m1 + m2 + n2 + n3, while the Z �elds occupy

slots m1 +m2 +n2 +n3 + 1 to m1 +m2 +n2 +n3 +n1. As is evident in equation (4.64),

the boson slots are not reordered by †. The two-point function that follows from (4.63)
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and (4.64) is 〈
χ
R,(~r,~s)~α~β

(Z,X, Y, ψ1, ψ2)χ†
T,(~t,~u)~γ~δ

(Z,X, Y, ψ1, ψ2)

〉
= δRT

3∏
i=1

δriti

2∏
j=1

δsjuj

4∏
k=1

δαkγk

4∏
l=1

δβlδl
fRhooksR∏

m hooksrm
∏
n hookssn

. (4.65)

4.4 Action of dilatation operator in the su (2|3) sector

We now want to compute the action of the dilatation operator on the restricted Schur

polynomials of the su (2|3) sector of SYM theory. To simplify the formula of the one

loop dilatation operator, we set φ1 ≡ Z, φ2 ≡ X and φ3 ≡ Y. From formula (2.1) of [53]

or the H2 piece of table 1 in [52], we �nd the following one loop dilatation operator

D = −g2
YM (

3∑
i>j=1

Tr
(
[φi, φj ]

[
∂φi , ∂φj

])
+

3∑
i=1

2∑
a=1

Tr ([φi, ψa] [∂φi , ∂ψa ])

+ Tr ({ψ1, ψ2} {∂ψ1 , ∂ψ2})). (4.66)

We will study the limit in which the number of φ1s (n1) is much greater than the

number of φ2s (n2) , φ3s (n3) , ψ1s (m1) and ψ2s (m2) . In this limit, we can simplify the

dilatation operator to

D = −g2
YM (

3∑
j=2

Tr
(
[φ1, φj ]

[
∂φ1 , ∂φj

])
+

2∑
a=1

Tr ([φ1, ψa] [∂φ1 , ∂ψa ]) . (4.67)

This simpler expression (4.67) is obtained from (4.66) simply by noting that a derivative

with respect to φ1 will generate n1 terms. Since n1 � n2, n3,m1,m2, this is a lot more

terms than is generated by di�erentiating with respect to any other �eld.

The simplest example to start with is when the operator is built using only one

fermion ψ1 and one boson φ1 ≡ Z. One of the terms we need to evaluate is

Zijψ
j
1k

d

dZ lk

d

dψi1l

 1

n!m!

∑
σ∈Sn+m

Tr(r,s)αβ

(
ΓR (σ)

)
ψi11iσ(1) · · ·ψ

im
1iσ(m)

Z
im+1

iσ(m+1)
· · ·Zim+n

iσ(m+n)

 .

(4.68)

To take this derivative, we need to use the product rule and hit each of the m factors of

ψ1 and each of the n factors of Z.We know that the contribution from each Z derivative

is the same so that we simply get an overall n multiplied by the term obtained when

the derivative hits (say) the Z in slot m + 1. The �rst thing we want to argue is that

the contribution from each ψ1 derivative is also the same so that we can write these m
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terms as m multiplied by the term obtained when the derivative hits (say) the ψ1 in slot

1. Let us start by thinking of

ψj1k
d

dψi1l
(4.69)

as our operator. It is Grassman even so it commutes with all other variables. This

allows us to move it into any slot without costing any signs. We now consider∑
ρ∈Sn+m

Tr
(
PR,(r,s)αβΓR ((1,m+ 1) ρ)

)
δi1iρ(1)ψ

i1
1iρ(m+1)

ψi21iρ(2) · · ·ψ
im
1iρ(m)

Z
im+1

iρ(1)
Z
im+2

iρ(m+2)
· · ·Zim+n

iρ(m+n)

=
∑

ρ∈Sn+m

Tr
(
PR,(r,s)αβΓR ((1,m+ 1) ρ)

)
δi1iρ(1)TrV ⊗n+m

(
ρ (1,m+ 1)ψ⊗m1 Z⊗n

)
.

(4.70)

We can now change variable from ρ to γ = (1, l) ρ (1, l) to obtain∑
γ∈Sn+m

Tr
(
PR,(r,s)αβΓR ((1,m+ 1) (1, l) γ (1, l))

)
δiliγ(l)TrV ⊗n+m

(
(1, l) γ (1, l) (1,m+ 1)ψ⊗m1 Z⊗n

)
.

(4.71)

Now,

TrV ⊗n+m
(
(1, l) γ (1, l) (1,m+ 1)ψ⊗m1 Z⊗n

)
= TrV ⊗n+m

(
γ (l,m+ 1) (1, l)ψ⊗m1 Z⊗n (1, l)

)
= ψil1iγ(m+1)

ψi21iγ(2) · · ·ψ
il−1

1iγ(l−1)
ψi11iγ(1)ψ

il+1

1iγ(l+1)
· · ·ψim1iγ(m)

Z
im+1

iγ(l)
Z
im+2

iγ(m+2)
· · ·Zim+n

iγ(m+n)

= −ψi11iγ(1)ψ
i2
1iγ(2)

· · ·ψil−1

1iγ(l−1)
ψil1iγ(m+1)

ψ
il+1

1iγ(l+1)
· · ·ψim1iγ(m)

Z
im+1

iγ(l)
Z
im+2

iγ(m+2)
· · ·Zim+n

iγ(m+n)
.

(4.72)

Also,

Tr
(
PR,(r,s)αβΓR ((1,m+ 1) (1, l) γ (1, l))

)
= Tr

(
ΓR ((1, l))PR,(r,s)αβΓR ((1, l) (l,m+ 1) γ)

)
= −Tr

(
PR,(r,s)αβΓR ((l,m+ 1) γ)

)
. (4.73)

Thus we �nd∑
ρ∈Sn+m

Tr
(
PR,(r,s)αβΓR ((1,m+ 1) ρ)

)
δi1iρ(1)ψ

i1
1iρ(m+1)

ψi21iρ(2) · · ·ψ
im
1iρ(m)

Z
im+1

iρ(1)
Z
im+2

iρ(m+2)
· · ·Zim+n

iρ(m+n)

=
∑

γ∈Sn+m

Tr
(
PR,(r,s)αβΓR ((l,m+ 1) γ)

)
δiliγ(l)ψ

i1
1iγ(1)

ψi21iγ(2) · · ·ψ
il−1

1iγ(l−1)
ψil1iγ(m+1)

ψ
il+1

1iγ(l+1)
· · ·ψim1iγ(m)

×Zim+1

iγ(l)
Z
im+2

iγ(m+2)
· · ·Zim+n

iγ(m+n)
. (4.74)

The left hand side of this last identity is obtained when we di�erentiate the ψ1 in slot

1, while the right hand side is obtained by di�erentiating ψ1 in slot l. Thus this last



CHAPTER 4. INCLUDING FERMIONS 115

identity proves that the contribution from each ψ1 derivative is the same. Therefore,

Zijψ
j
1k

d

dZ lk

d

dψi1l

 1

n!m!

∑
σ∈Sn+m

Tr(r,s)αβ

(
ΓR (σ)

)
ψi11iσ(1) · · ·ψ

im
1iσ(m)

Z
im+1

iσ(m+1)
· · ·Zim+n

iσ(m+n)


=

1

(n− 1)! (m− 1)!

∑
ρ∈Sn+m

Tr
(
PR,(r,s)αβΓR ((1,m+ 1) ρ)

)
δi1iρ(1)ψ

j
1iρ(m+1)

ψi21iρ(2) · · ·ψ
im
1iρ(m)

×Zi1j Z
im+2

iρ(m+2)
· · ·Zim+n

iρ(m+n)
. (4.75)

At this point, it is now easy to �nd

DχR,(r,s)αβ (ψ1, Z) = −
2g2
YM

(4π)2 Tr ([Z,ψ1] [∂Z , ∂ψ1 ])χR,(r,s)αβ (ψ1, Z)

=
2g2
YM

(4π)2 (n− 1)! (m− 1)!

∑
ρ∈Sn+m

δi1iρ(1)Tr(r,s)αβ

(
ΓR ([(1,m+ 1) , ρ])

)
× TrV ⊗n+m

(
[(1,m+ 1) , ρ]ψ⊗m1 Z⊗n

)
. (4.76)

Our next task is to express TrV ⊗n+m
(
[(1,m+ 1) , ρ]ψ⊗m1 Z⊗n

)
as a sum over restricted

Schur polynomials. We will generalise the argument given in [37] (and used in Chapter

3) which provides the identity for restricted Schur polynomials built entirely out of

bosonic �elds. First, we need an identity. The irrep (r, s) of Sn × Sm will, in general,

be subduced by irrep R of Sn+m more than once. We label these di�erent copies with

β. It is convenient to switch to a bra-ket notation in which the operators used to de�ne

the restricted Schur polynomials we have constructed are

[
PR,(r,s)αβ

]
JI

=
∑
a,b,i

〈R, J |s, b; r, i;α〉
〈
sT , a; r, i;β|R, I

〉
Oba. (4.77)

We will make use of the identity [75, 37]

∑
β

〈R, I|r, b; s, i;β〉 〈r, a; s, j;β|R, J〉 =
drds
n!m!

∑
α1∈Sm

∑
α2∈Sn

Γs
(
α−1

1

)
ij

Γr
(
α−1

2

)
ab

ΓR (α1 ◦ α2)IJ

(4.78)
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in what follows. Consider the sum∑
R,(r,s)αβ

dRn!m!

drds (n+m)!
χR,(r,s)αβ (τ)χ†R,(r,s)βα (σ)

=
∑

R,(r,s)αβ

dRn!m!

drds (n+m)!
Tr
(
PR,(r,s)αβΓR (τ)

)
Tr
(
P †R,(r,s)βαΓR (σ)

)
=

∑
R,(r,s)αβ

dRn!m!

drds (n+m)!

[
PR,(r,s)αβ

]
IJ

[
ΓR (τ)

]
JI

[
P †R,(r,s)βα

]
KL

[
ΓR (σ)

]
LK

. (4.79)

Rewriting both projectors using bra-ket notation, we �nd

∑
R,(r,s)αβ

dRn!m!

drds (n+m)!
χR,(r,s)αβ (τ)χ†R,(r,s)βα (σ)

=
∑

R,(r,s)αβ

dRn!m!

drds (n+m)!

∑
a,b,i,I,J

〈R, I|s, b; r, i;α〉
〈
sT , a; r, i;β|R, J

〉
Oba

[
ΓR (τ)

]
JI

×
∑

c,d,j,K,L

〈
R,L|sT , d; r, j;β

〉
〈s, c; r, j;α|R,K〉

(
OT
)
dc

[
ΓR (σ)

]
LK

. (4.80)

The sum over the multiplicity labels can now be performed using the identity (4.78).

We get

∑
R,(r,s)αβ

dRn!m!

drds (n+m)!
χR,(r,s)αβ (τ)χ†R,(r,s)βα (σ)

=
∑

R,(r,s)αβ

∑
γ1,τ1∈Sm

∑
γ2,τ2∈Sn

dRdrds
(n+m)!n!m!

Tr (Γr (γ2τ2))Tr
(

Γs
T

(γ1)OTΓs (τ1)O
)

×Tr
(
ΓR (τ · γ1 ◦ γ2 · σ · τ1 ◦ τ2)

)
. (4.81)

In this last expression, we recognise the delta function on the group

∑
R

dR
|G|

χR (σ) = δ (σ) , (4.82)

where R is a complete set of irreps of group G. We therefore now have

∑
R,(r,s)αβ

dRn!m!

drds (n+m)!
χR,(r,s)αβ (τ)χ†R,(r,s)βα (σ)

=
∑

R`n+m

∑
τ1∈Sm

∑
τ2∈Sn

sgn (τ1)
dR

(n+m)!
χR
(
τ · τ−1

1 ◦ τ−1
2 · σ · τ1 ◦ τ2

)
=
∑
τ1∈Sm

∑
τ2∈Sn

sgn (τ1) δ
(
τ · τ−1

1 ◦ τ−1
2 · σ · τ1 ◦ τ2

)
. (4.83)
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This identity is all that is needed to prove that

TrV ⊗n+m
(
σψ⊗m1 Z⊗n

)
=

∑
R,(r,s)αβ

dRn!m!

drds (n+m)!
χ†R,(r,s)αβ (σ)χR,(r,s)βα (ψ1, Z) . (4.84)

Using this, we �nd

DχR,(r,s)αβ (ψ1, Z) =
∑

T,(t,u)γδ

MR,(r,s)αβ;T,(t,u)γδχT,(t,u)γδ (ψ1, Z) , (4.85)

where

MR,(r,s)αβ;T,(t,u)γδ = −g2
YM

∑
R′

cRR′dTnm
dR′dtdu (n+m)

Tr
([

ΓR ((1,m+ 1)) , PR,(r,s)αβ
]
IR′T ′

×
[
ΓT (1,m+ 1) , PT,(t,u)δγ

]
IT ′R′

)
. (4.86)

As before, to obtain the spectrum of anomalous dimensions, it is convenient to

consider the action of the dilatation operator on operators whose two point functions

are normalised to unity. In this particular case, we have

χR,(r,s)αβ (ψ1, Z) =

√
fRhooksR

hooksrhookss
OR,(r,s)αβ (ψ1, Z) . (4.87)

In terms of these normalised operators, the action of the dilatation operator is

DOR,(r,s)αβ (ψ1, Z) =
∑

T,(t,u)γδ

NR,(r,s)αβ;T,(t,u)γδOT,(t,u)γδ (ψ1, Z) , (4.88)

where

NR,(r,s)αβ;T,(t,u)γδ = −g2
YM

∑
R′

cRR′dTnm
dR′dtdu (n+m)

√
fThooksThooksrhookss
fRhooksRhooksthooksu

× TrR⊕T
([

ΓR ((1,m+ 1)) , PR,(r,s)αβ
]
IR′T ′

[
ΓT (1,m+ 1) , PT,(t,u)δγ

]
IT ′R′

)
.

(4.89)

We have explicitly indicated that the last trace is taken over the direct sum of the carrier

spaces of R and T. Remarkably, this takes a very similar form to what was obtained in

the SU (2) sector [86]. As a result, we know that the operators with a de�nite scaling

dimension can be constructed using the ideas of the double coset ansatz [46] reviewed

in Section 2.6. A few of the details are di�erent though, so that it is worth describing

some of the steps involved.

As we have already mentioned, we remove boxes from R to produce r. The number of
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boxes that must be removed from row i of R is mi. The mi can be assembled to produce

the vector label ~m which is conserved by the one loop dilatation operator. There are

two types of branching coe�cients

∑
µ

Bs→1H
kµ Bs→1H

lµ =
1

|H|
∑
γ∈H

Γs (γ)kl (4.90)

and ∑
µ

BsT→1m

kµ BsT→1m

lµ =
1

|H|
∑
γ∈H

sgn (γ) Γs
T

(γ)kl , (4.91)

where

H = Sm1 × Sm2 × · · ·Smp . (4.92)

The branching coe�cients Bs→1H
kµ resolve the multiplicities that arise when we restrict

irrep s of Sm to the identity representation 1H of H for which

Γ1H (γ) = 1, ∀γ. (4.93)

On the other hand, the branching coe�cients BsT→1m

kµ resolve the multiplicities that

arise when we restrict irrep s of Sm to the representation 1m of H for which

Γ1m (γ) = sgn (γ) , ∀γ. (4.94)

Notice that ∑
µ

BsT→1m

kµ BsT→1m

lµ =
1

|H|
sgn (γ)

∑
γ∈H

Γs
T

(γ)kl

=
1

|H|
∑
γ∈H

(
OTΓs (γ)O

)
kl

= OTkm
∑
µ

Bs→1H
mµ Bs→1H

nµ Onl (4.95)

so that we can identify

Bs→1H
nµ Onl = BsT→1m

lµ . (4.96)

This argument suggests that the multiplicity problem of s→ 1H can be identi�ed with

the multiplicity problem of sT → 1m. To prove that this is indeed the case, we denote

the multiplicity of 1H in s by ns1H and the multiplicity of 1m in sT by ns
T

1m . We then
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have

ns1H =
1

|H|
∑
σ

χs (σ)χ1H (σ)

=
1

|H|
∑
σ

χs (σ)

=
1

|H|
∑
σ

χsT (σ) sgn (σ)

=
1

|H|
∑
σ

χsT (σ)χ1m (σ)

= ns
T

1m (4.97)

which completes the proof.

Now, following what was done in the SU (2) sector [46], we identify

|~m, s, µ; i〉 =
∑
j

Bs→1H
jµ

∑
σ∈Sm

Γs (σ)ij |vσ〉 . (4.98)

The components mi of the vector label ~m appearing in the above ket record the number

of boxes that must be removed from row i of R to produce r. These are the basis

vectors in s that are used to construct the projectors appearing in the restricted Schur

polynomials. To construct the projectors, we also need to make use of a basis for sT .

The basis for sT should be constructed using ÔT which provides a map from the carrier

space of sT to the carrier space of s. Using ÔT , we �nd∑
i

(
ÔT
)
ki
|~m, s, µ; i〉 =

∑
j

BsT→1m

jµ

∑
σ∈Sm

sgn (σ) Γs
T

(σ)ij |vσ〉 . (4.99)

Given these bases, it is now easy to verify that the projectors appearing in the restricted

Schur polynomials can be written as

O
(
sα, sTβ

)
=

ds
m! |H|

∑
σ,τ∈Sm

Bs→1H
cα Γsac (σ) |vσ〉 〈vτ |BsT→1m

dβ sgn (τ) Γs
T

bd (τ)OTba. (4.100)

Using these expressions, one can verify that

O
(
sα, sTβ

)
O
(
sTβ, sα

)
= 1s (4.101)

and

O
(
sTβ, sα

)
O
(
sα, sTβ

)
= 1sT . (4.102)
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In terms of the branching coe�cients, let us introduce the quantities

C(s)
µ1µ2 (τ) = |H|

√
ds
m!

(
Γs (τ) Ô

)
km

Bs→1H
kµ1

BsT→1m

mµ2 (4.103)

which de�ne an orthogonal transformation

C(s)
µ1µ2 (τ)C(s)

µ1µ2 (σ) =
∑
s`m

∑
γ1,γ2∈H

|H|2 ds
m!
sgn (γ2)Tr

(
Γs (τ) ÔΓs

T
(γ2) ÔTΓs

(
σ−1

)
Γs (γ1)

)
=
∑
s`m

∑
γ1,γ2∈H

ds
m!
χs
(
τγ2σ

−1γ1

)
=

∑
γ1,γ2∈H

δ
(
τγ2σ

−1γ1

)
. (4.104)

It is then rather natural to build operators that are dual to the Gauss graph con�guration

σ by

OR,r (σ) =
∑
s`m

∑
µ1,µ2

C(s)
µ1µ2 (σ)OR,(r,s)µ1µ2 . (4.105)

Using (4.104) we �nd〈
OR,r (σ1)O†T,t (σ2)

〉
=

∑
γ1,γ2∈H

δ
(
γ1σ1γ2σ

−1
2

)
. (4.106)

At the end of the day, we want to evaluate the action of the dilatation operator

on the Gauss graph operators (4.105). To this end, let us revisit the evaluation of the

dilatation operator on the normalised restricted Schur polynomials OR,(r,s)µ1µ2 , as we

did in Chapter 3. We denote the number of rows in the Young diagram labelling the

restricted Schur polynomials by p. The one loop dilatation operator (4.89) is exact to

all orders in 1/N. To capture the large N (but non-planar) limit we use the displaced

corners approximation. Recall that to subduce r ` n from R ` n + m we remove m

boxes from R. Each box in row i and column j of the Young diagram R can be assigned

a factor which is equal to N − i+ j. The displaced corners approximation applies when

the di�erence between the factors of any two boxes (of the m boxes removed) is of order

N whenever the removed boxes come from di�erent rows. The action of the dilatation

operator simpli�es in this limit because the action of the symmetric group becomes

particularly simple [87]. When the displaced corners approximation holds, we associate

each removed box with a vector in a p-dimensional vector space Vp. This way, the m

removed boxes associated with the ψ1s de�ne a vector in V ⊗mp . The trace over R ⊕ T
factorises into a trace over r ⊕ t and V ⊗mp . The bulk of the work is in evaluating the

trace over V ⊗mp . This trace is evaluated in exactly the same way we followed in Chapter
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3. Doing this, we �nd

DOR,(r,s)µ1µ2 = −g2
YM

∑
uν1ν2

∑
i<j

δ~m,~nM
(ij)
sµ1µ2;uν1ν24ijOR,(r,u)ν1ν2 , (4.107)

where

M (ij)
sµ1µ2;uν1ν2 =

m√
dsdu

[
Tr
(
Ô
(
sµ1; sTµ2

)
E

(1)
ii Ô

(
uT ν2;uν1

)
E

(1)
jj

)
+ Tr

(
Ô
(
sµ1; sTµ2

)
E

(1)
jj Ô

(
uT ν2;uν1

)
E

(1)
ii

)]
(4.108)

acts only on the impurity labels, and

4ij = 4+
ij +40

ij +4−ij (4.109)

acts only on the Young diagrams R, r. To describe the action of 4ij , we introduce a

little bit more notation. As in Chapter 3, we denote the row lengths of Young diagram r

by ri and let r+
ij be the Young diagram obtained by removing a single box from row j of

r and adding it to row i. In the same vein, r−ij is a Young diagram obtained by removing

one box from row i of r and adding it to row j. We then have

40
ijOR,(r,s)µ1µ2 = − (2N + ri + rj)OR,(r,s)µ1µ2 , (4.110)

4+
ijOR,(r,s)µ1µ2 =

√
(N + ri) (N + rj)OR+

ij ,(r
+
ij ,s)µ1µ2

(4.111)

and

4−ijOR,(r,s)µ1µ2 =
√

(N + ri) (N + rj)OR−ij ,(r
−
ij ,s)µ1µ2

. (4.112)

Since the Young diagrams R and r change in exactly the same way, the vector ~m is

preserved by the dilatation operator.

With this, we now proceed with computing the action of the dilatation operator on



CHAPTER 4. INCLUDING FERMIONS 122

the Gauss graph operators (4.105). Towards this end, we consider

〈
O†T,t (σ2)DOR,r (σ1)

〉
=
|H|2

m!

∑
s,u`m

∑
µ1µ2ν1ν2

√
dsdu

(
Γs (σ1) Ô

)
k1m1

Bs→1H
k1µ1

BsT→1m

m1µ2

×
(

Γu (σ2) Ô
)
k2m2

Bu→1H
k2ν1

BuT→1m

m2ν2

〈
O†T,(t,u)ν1ν2

DOR,(r,s)µ1µ2

〉
= −|H|

2

m!
g2
YM

∑
s,u`m

∑
µ1µ2ν1ν2

(
Γs (σ1) Ô

)
k1m1

Bs→1H
k1µ1

BsT→1m

m1µ2

×
(

Γu (σ2) Ô
)
k2m2

Bu→1H
k2ν1

BuT→1m

m2ν2

∑
i<j

4R,r;T,t
ij m

×
(〈

~m, sT , µ2; a
∣∣∣E(1)

ii

∣∣∣ ~m, uT , ν2; b
〉〈

~m, u, ν1; b
∣∣∣E(1)

jj

∣∣∣ ~m, s, µ1; a
〉

+
〈
~m, sT , µ2; a

∣∣∣E(1)
jj

∣∣∣ ~m, uT , ν2; b
〉〈

~m, u, ν1; b
∣∣∣E(1)

ii

∣∣∣ ~m, s, µ1; a
〉)

(4.113)

and focus on the evaluation of

∑
u

∑
ν1,ν2

∣∣~m, uT , ν2; b
〉
〈~m, u, ν1; b|

(
Γu (σ2) Ô

)
k2m2

Bu→1H
k2ν1

BuT→1m

m2ν2

=
∑
u

∑
ν1,ν2

∑
σ,τ∈Sm

du
|H|m!

sgn (τ)BuT→1m

dν2 Γu
T

bd (τ) |vτ 〉Ocb 〈vσ|Γuce (σ)Bu→1H
eν1

×
(

Γu (σ2) Ô
)
k2m2

Bu→1H
k2ν1

BuT→1m

m2ν2

=
∑
u

∑
σ,τ∈Sm

∑
γ1,γ2∈H

du

|H|3m!
sgn (τ) sgn (γ2) |vτ 〉 〈vσ|

× Tr
(

Γu (γ1) Γu
(
σ−1

)
ÔΓu

T
(τ) Γu

T
(γ2) ÔTΓu

(
σ−1

2

))
=
∑
u

∑
σ,τ∈Sm

∑
γ1,γ2∈H

du

|H|3m!
|vτ 〉 〈vσ|χu

(
γ1σ

−1τγ2σ
−1
2

)
=

∑
σ,τ∈Sm

∑
γ1,γ2∈H

1

|H|3
|vτ 〉 〈vσ| δ

(
γ1σ

−1τγ2σ
−1
2

)
. (4.114)

From this point on, the evaluation proceeds exactly as in [46] (or as we did in Chapter

3 with γ = 0). The result is〈
O†T,t (σ2)DOR,r (σ1)

〉
= −g2

YM

∑
γ1,γ2∈H

δ
(
γ1σ2γ2σ

−1
1

)∑
i<j

nij (σ1)4R,r;T,t
ij (4.115)

or

DOR,r (σ1) = −g2
YM

∑
i<j

nij (σ1)4ij , (4.116)
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where nij (σ1) is the number of strings stretching between branes i and j. This proves

that the Gauss graph operators (4.105) indeed diagonalise the impurity labels. The

remaining eigenproblem that must be solved has been studied in detail in [45] from

which we know that the spectrum of D reduces to the spectrum of set of decoupled

oscillators. This signals integrability.

We now consider the general case with three bosons φ1, φ2, φ3 and two fermions

ψ1, ψ2. After a rather lengthy calculation that resembles what we have already done, we

�nd that the action of the dilatation operator (4.67) is given by

DO
R,(~r,~s)~α~β

=
∑

T,(~t,~u)~γ~δ

N
R,(~r,~s)~α~β;T,(~t,~u)~γ~δOT,(~t,~u)~γ~δ, (4.117)

where

N
R,(~r,~s)~α~β;T,(~t,~u)~γ~δ = −g2

YM

∑
R′

cRR′dTn1

dR′
∏
n dtn

∏
m dum (n1 +K)

√
fThooksT

∏
a hooksra

∏
b hookssb

fRhooksR
∏
c hookstc

∏
d hookssd

×
[
m1Tr

([
ΓR (1,K + 1) , P

R,(~r,~s)~α~β

]
IR′T ′

[
ΓT (1,K + 1) , P

T,(~t,~u)~γ~δ

]
IT ′R′

)
+m2Tr

([
ΓR (m1 + 1,K + 1) , P

R,(~r,~s)~α~β

]
IR′T ′

[
ΓT (m1 + 1,K + 1) , P

T,(~t,~u)~γ~δ

]
IT ′R′

)
+n2Tr

([
ΓR (m1 +m2 + 1,K + 1) , P

R,(~r,~s)~α~β

]
IR′T ′

[
ΓT (m1 +m2 + 1,K + 1) , P

T,(~t,~u)~γ~δ

]
IT ′R′

)
+n3Tr

([
ΓR (K − n3,K + 1) , P

R,(~r,~s)~α~β

]
IR′T ′

[
ΓT (K − n3,K + 1) , P

T,(~t,~u)~γ~δ

]
IT ′R′

)]
(4.118)

and K = n2 +n3 +m1 +m2 is the total number of impurities. The projectors P
R,(~r,~s)~α~β

and P
T,(~t,~u)~γ~δ were de�ned in equation (4.62). We note that these projectors factorise

into a product of factors and that in each term above, the product of all but the Z

projector and one other have a trivial action. As an example, in the trace

T = Tr
([

ΓR (1,K + 1) , P
R,(~r,~s)~α~β

]
IR′T ′

[
ΓT (1,K + 1) , P

T,(~t,~u)~γ~δ

]
IT ′R′

)
(4.119)

the swap (1,K + 1) only has a non-trivial action on slots 1 and K+1. Slot 1 is populated

by ψ1 and corresponds to representation s1. Slot K + 1 is populated by φ1 = Z and

corresponds to representation r1. The traces over r2, r3 and s2 are trivial while the trace

over r1 ⊕ s1 is performed exactly as we described earlier. Trace (4.119) then gives

T = ds2dr2dr3dr′1δs2u2δr2t2δr3t3δr′1t′1(Tr
(
Ô
(
s1µ1; sT1 µ2

)
E

(1)
ii Ô

(
uT1 ν2;u1ν1

)
E

(1)
jj

)
+ Tr

(
Ô
(
s1µ1; sT1 µ2

)
E

(1)
jj Ô

(
uT1 ν2;u1ν1

)
E

(1)
ii

)
. (4.120)
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De�ning Gauss graph operators for this general case now involves an element of a double

coset for each type of impurity. We denote the total number of (φ2, φ3, ψ1, ψ2) impurities

by (n2, n3,m1,m2) and describe the number of boxes removed row i of R for each

impurity type by the vectors (~n2, ~n3, ~m1, ~m2) .2 As an example, we now have a subgroup

H~n2
= S(n2)1

× S(n2)2
× · · ·S(n2)p

. (4.121)

The relevant cosets are

φ2 ↔ σφ2 ∈ H~n2
\Sn2/H~n2

φ3 ↔ σφ3 ∈ H~n3
\Sn3/H~n3

ψ1 ↔ σψ1 ∈ H~m1
\Sm1/H~m1

ψ2 ↔ σψ2 ∈ H~m2
\Sm2/H~m2

. (4.122)

The orthogonal transformation from the restricted Schur basis to the Gauss graph uses

both the group theoretic coe�cients of [46]

C(ri)
µ1µ2 = |H~ni |

√
dri
ni!

Γ(ri) (τ)kmB
ri→1H~ni
kµ1

B
ri→1H~ni
mµ2 (4.123)

to transform the φ2 and φ3 labels, as well as the group theoretic coe�cients we have

introduced in this chapter

C(si)
µ1µ2 = |H~mi |

√
dsi
mi!

(
Γ(si) (τ) Ô

)
km

B
si→1H~mi
kµ1

B
sTi →1

mi
H~ni

mµ2 . (4.124)

In terms of these coe�cients, the Gauss graph operators are

OR,r1 (~σ) =
∑
r2`n2

∑
r3`n3

∑
s1`m1

∑
s2`m2

∑
~µ,~ν

C(r2)
µ1ν1 (σφ2)C(r3)

µ2ν2 (σφ3)C(s1)
µ3ν3 (σψ1)C(s2)

µ4ν4 (σψ2)OR,(~r,~s)~µ~ν .

(4.125)

The action of the dilatation operator in the Gauss graph basis then becomes

DOR,r1 (σ) = −g2
YM

∑
i<j

(nij (σφ2) + nij (σφ3) + nij (σψ1) + nij (σψ2))4ijOR,r1 (σ) .

(4.126)

Using the results from [45], we see here that the spectrum of the dilatation operator

again reduces to a set of decoupled oscillators. This is a clear indication of integrability

in this large N limit of the su (2|3) sector.

2This way, ~m2 has components (m2)i with i = 1, 2, . . . p and
∑
i (m2)i = m2.
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4.5 Discussion

In this chapter, we have studied a large N, but non-planar limit of the correlation

functions of a class of operators that are AdS/CFT dual to systems of excited AdS

giant gravitons. In particular, we have included adjoint fermions for the �rst time.

We started by explaining how to construct restricted Schur polynomials that include

both adjoint bosons and adjoint fermions. These operators diagonalise the free �eld two

point functions to all orders in N and are a complete set of local operators. We then

explored the one loop anomalous dimensions of these operators. Our study shows that

the action of the one loop dilatation operator acting on a sector that includes fermionic

�elds is diagonalised by a natural extension of the double coset ansatz [46]. The resulting

spectrum is identical to the spectrum of a set of decoupled oscillators, clearly indicating

integrability in this large N limit of the su (2|3) sector of super Yang-Mills theory.



Chapter 5

Conclusion

Gauge/gravity duality relates gravitational theories on backgrounds with constant neg-

ative curvature (AdS space) to conformal �eld theories living on the boundary of these

curved backgrounds. In the case of the most studied example of this duality, when the

AdS space is highly curved so that we are unable to perform gravity calculations, the

dual gauge theory is weakly coupled. Conversely, when the gauge theory is strongly

coupled, the gravity theory reduces to classical supergravity. We have worked on the

gauge theory side which has the potential to provide non-trivial lessons about the gravity

theory.

The two sides of the AdS/CFT correspondence are related by a dictionary according

to which states in the gravity theory are dual to operators in the gauge theory. The

energies of these states are dual to the scaling dimensions of the operators. To compute

the energy spectrum of the states of the gravity theory, one can therefore compute the

spectrum of anomalous dimensions on the gauge theory side.

5.1 En-route to restricted Schur polynomials

An important step towards computing the physical observables in the �eld theory is

constructing gauge invariant operators, since all physical observables are gauge invariant.

N = 4 super Yang-Mills theory has gauge group U (N) . For this reason, the (scalar)

�elds are N × N complex matrices. One can use O (1) such scalar �elds to construct

single-trace gauge invariant operators that are dual to string states. In the limit N →∞,
it turns out that one needs to sum only planar diagrams in order to compute the one-loop

anomalous dimensions. This problem is solved by identifying the dilatation operator here

with the Hamiltonian of an integrable spin chain.

In our work, we were more interested in large, multi-trace operators built using O (N)

�elds, that are dual to giant graviton states. Excited giants correspond to these large

126



CHAPTER 5. CONCLUSION 127

operators doped with impurities. To compute the one-loop anomalous dimensions for

these operators, it is no longer su�cient to sum only the planar diagrams. This leads to

a breakdown of the spin chain approach for this class of operators. It therefore becomes

imperative to develop a new set of tools that are capable of handling this problem.

Our approach is to exploit the representation theory of symmetric and unitary groups

as well as the relations between them and the operators we study are restricted Schur

polynomials.

5.2 Our results

It is possible to deform the AdS5 × S5 background on which type IIB string theory sits

in order to study giant gravitons on a Lunin-Maldacena background, AdS5 × S̃5, [50].

On the gauge theory side, this amounts to introducing a real deformation parameter

(�rst catalogued by Leigh and Strassler [48]) into the theory. The result is an N = 1

SYM theory from N = 4 SYM theory. This is the subject of Chapter 3 published in

[49].

In particular, we computed the spectrum of anomalous dimensions of restricted Schur

polynomials in the SU (2) sector of the deformed theory. We found that the action of

the dilatation operator factorises into a problem that is associated with the Z �elds and

a problem associated with the impurities. The problem associated with the impurities

was diagonalised by the double coset ansatz of [46]. The problem associated with the Z

�elds generalised the corresponding problem in the undeformed theory. We managed to

write this problem as the Hamiltonian of a shifted harmonic oscillator, thereby signalling

integrability in this sector of the deformed theory.

In Chapter 4 published in [39], we explained how to build restricted Schur polyno-

mials that include both fermions and bosons. These new restricted Schur polynomials

continue to diagonalise the two point function in the free �eld limit. The number of these

polynomials is equal to the number of multi-trace operators. We also explained how to

transform between the trace basis and the basis provided by the Schur polynomials that

we constructed. As a concrete application of our results, we studied the su (2|3) sector

of N = 4 SYM theory. This sector consists of operators built using two fermions and

three bosons and it is closed to all orders under the action of the dilatation operator.

After building the restricted Schur polynomials for the su (2|3) sector, we computed

the spectrum of anomalous dimensions in this sector. We found that the action of the

dilatation operator again factorised into a problem associated with the Z �elds and

another associated with the impurities. The problem associated with the Z �elds was

similar to the one studied to in the SU (2) sector [45]. The impurity problem was solved

by a slightly modi�ed version of the double coset ansatz. The resulting spectrum is
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identical to the spectrum of a set of decoupled oscillators which is a clear indication of

integrability in the large N, but non-planar limit of the su (2|3) sector.

In Appendix C, we computed the spectrum of anomalous dimensions in the sl (2)

sector of N = 4 SYM theory. This action of the dilatation operator in this sector of the

theory is again diagonalised by the double coset ansatz.

5.3 Some open problems

While group representation theory has proved to be a very powerful tool in studying the

large N, but non-planar limit of N = 4 SYM theory as well as its deformations, there

are questions that we did not answer.

First, we did not compare our results from Chapter 3 with the predictions of the

gravity theory. A direct comparison seemed almost sure to fail since the AdS/CFT

correspondence is a weak/strong duality. More precisely, the dual gravitational system is

de�ned in the large 't Hooft coupling λ and small deformation parameter γ (γ2λ is �xed),

while our �eld theory calculation is valid when λ is small and γ is arbitrary. However,

since the quantum numbers of our operators become parametrically large with N, a

comparison may still be possible. We left this interesting problem for future research.

Second, there are reasonably small corrections that we dropped in the su (2|3) cal-

culation. We did not check whether they are integrable or not.

Lastly, our results suggest that the double coset ansatz of [46] together with the

extension we described in Chapter 4, may diagonalise the complete one-loop dilatation

operator. Since the double coset ansatz is a direct result of Gauss's law, we also expect

that it (maybe in a modi�ed version) should diagonalise the dilatation operator even

when integrability is not present. It would be nice to verify these two points.

5.4 Conclusion

Though this may be a small step, we hope that we have contributed something to the

ultimate understanding of quantum gravity. In particular, we hope that our results

do shed light on the properties of excited giant gravitons in type IIB string theory.

Undoubtedly, more work still remains to be done in order to understand the problem in

its entirety.



Appendix A

Proof that C commutes with all

σεSn.

In this appendix we prove that

C =
∑
i>j

(ij)

commutes with all σεSn.

We start by noting that in the symmetric group Sn, C is a sum of

n (n− 1)

2

terms and then consider

(ij) 6= (kl) .

From here on, we can write

σ (ij) 6= σ (kl)

and

σ (ij)σ−1 6= σ (kl)σ−1.

It therefore follows that ∑
i>j

(ij) = σ
∑
i>j

(ij)σ−1.

Multiplying by σ from the right yields∑
i>j

(ij)σ = σ
∑
i>j

(ij)

which proves that C commutes with σεSn.
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Appendix B

The spin chain

In this Appendix, based on [12, 88], we describe how the anomalous dimensions were

computed in the planar limit of N = 4 super Yang-Mills (SYM) theory. In particular,

we will compute the spectrum of anomalous dimensions in the su (2) sector of the theory.

The gauge invariant operators that we consider, O (x) , are single trace operators. In

the large N and planar limit, the spectrum of local operators comes from these single

trace operators [88].

B.1 One loop anomalous dimensions

As we mentioned in Chapter 1, the two point function of an operator is given by

〈
O (x) Ō (y)

〉
≈ 1

|x− y|24
, (B.1)

where

4 = 40 + γ. (B.2)

is the conformal dimension, 40 is the classical mass dimension and γ is the anomalous

dimension. The anomalous dimension is a quantum correction to the scaling dimension

40.When the Yang-Mills coupling is small, we have γ �40. In this case, the two point

function (B.1) is approximately given by

〈
O (x) Ō (y)

〉
≈ 1

|x− y|240

(
1− γ ln Λ2 |x− y|2

)
, (B.3)

where Λ is a cut-o� scale.
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Figure B.1: Planar (a) and non-planar (b) diagrams contributing to the one-loop piece
of the two point correlator.

We can write down gauge invariant operators of the form

OI1,I2,...IL (x) =

(
4π2
)L/2√

CI1,I2,...ILN
L/2

Tr (φI1 (x)φI2 (x) . . . φIL (x)) , (B.4)

where CI1,I2,...IL is a symmetric factor. For these operators, the leading contribution is

〈
OI1,I2,...IL (x) ŌJ1,J2,...JL (y)

〉
tree

=
1

CI1,I2,...IL

(
δJ1I1 δ

J2
I2
· · · δJLIL + cycles

) 1

|x− y|2L
.

(B.5)

To get the one-loop contribution, we need to sum one-loop diagrams whose form is

shown in �gures B.1 and B.2 (from [88]). In these diagrams, the horizontal lines rep-

resent the operators that enter the two point function, while the vertical lines represent

the �elds that are Wick contracted to get the correlator. Figure B.1 consists of both

planar and non-planar diagrams. If L� N and N →∞, we observe two things. First,

the number of non-planar diagrams will be much smaller than that of the planar dia-

grams. Second, the non-planar diagrams will be suppressed by a factor of 1/N2 when

compared to the planar diagrams. We can therefore drop the non-planar diagrams from

our computation. In other words, the one-loop anomalous dimension can be determined

by summing the planar diagrams only.

Unlike the diagrams in �gure B.1, the gluon diagrams shown in �gure B.2 do not mix

the index structures. They give the same index structures as the free theory diagrams

and are therefore easy to compute.1 Denoting the contribution from these diagrams by

1This is because the R-charge is conserved and gluons do not have an R-charge [88].
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Figure B.2: One loop diagrams that do not change the index structures.

a constant C, the one-loop contribution can be written as [88]

〈
OI1,I2,...IL (x) ŌJ1,J2,...JL (y)

〉
one−loop =

λ

16π2

ln
(

Λ2 |x− y|2
)

|x− y|2L
L∑
l=1

(2Pl,l+1 −Kl,l+1 − 1 + C)

× 1√
CI1,...ILCJ1,...JL

δJ1I1 δ
J2
I2
· · · δJLIL + cycles,

(B.6)

where Pl,l+1 is an exchange operator and Kl,l+1 is a trace operator. Acting on the delta-

functions in equation (B.6), Pl,l+1 exchanges the indices on the l and the l+1 sites inside

the trace, i.e.

Pl,l+1δ
J1
I1
· · · δJlIl δ

Jl+1

Il+1
· · · δJLIL = δJ1I1 · · · δ

Jl+1

Il
δJlIl+1

· · · δJLIL , (B.7)

while Kl,l+1 contracts the indices of neighbouring �elds, i.e.

Kl,l+1δ
J1
I1
· · · δJlIl δ

Jl+1

Il+1
· · · δJLIL = δJ1I1 · · · δIlIl+1

δJlJl+1 · · · δJLIL . (B.8)

These two operators result in operator mixing at the one-loop level.

Adding (B.5) and (B.6) we get

〈
OI1,I2,...IL (x) ŌJ1,J2,...JL (y)

〉
=

1

|x− y|2L

×

(
1− λ

16π2
ln
(

Λ2 |x− y|2
) L∑
l=1

(1− C − 2Pl,l+1 +Kl,l+1)

)
× δJ1I1 δ

J2
I2
· · · δJLIL + cycles. (B.9)

Comparing this result with equation (B.3), we see that the anomalous dimension γ has
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Figure B.3: A spin chain with SO (6) vector sites.

been replaced by the operator

Γ =
λ

16π2

L∑
l=1

(1− C − 2Pl,l+1 +Kl,l+1) . (B.10)

To obtain the one-loop anomalous dimensions, we therefore need to diagonalise Γ.

B.2 Relation to spin chain

The whole class of scalar single trace operators of length L can be mapped to a Hilbert

space which is a tensor product of �nite dimensional Hilbert spaces

V1 ⊗ V2 ⊗ · · · Vl ⊗ · · · VL, (B.11)

where each Vl is a Hilbert space for an SO (6) vector representation. The Hilbert space

(B.11) is the same as the Hilbert space of a one-dimensional spin-chain with L sites

shown in �gure B.3 (from [88]). At each site in �gure B.3, we have an SO (6) vector

spin.

Since the trace is cyclic, the Hilbert space (B.11) must be invariant under the shift

V1 ⊗ V2 ⊗ · · · Vl ⊗ · · · VL → VL ⊗ V1 ⊗ · · · Vl ⊗ · · · VL−1. (B.12)

Γ acts linearly in this space,

Γ : V1 ⊗ V2 ⊗ · · · Vl ⊗ · · · VL → V1 ⊗ V2 ⊗ · · · Vl ⊗ · · · VL. (B.13)

Also, Γ is Hermitian and commutes with the shift (B.12). Putting this together, we

see that Γ can be treated as a Hamiltonian of the spin chain, with the energy eigen-
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states corresponding to the possible anomalous dimensions for the scalar operators. The

Hamiltonian commutes with the shift, so that we can project onto eigenstates that are

invariant under the shift. Since the operators Pl,l+1 andKl,l+1 act on neighbouring �elds,

the Hamiltonian of the spin chain only has nearest neighbour interactions between the

spins.

B.2.1 Determining C

We now compute the value of C by using the properties of BPS operators. Consider

the chiral primary (BPS) operator2

ΨL =

(
4π2
)L/2

√
LNL/2

Tr
(
ZL
)

(B.14)

which is symmetric under the exchange of any �elds. The exchange operator acting on

(B.14) retains ΨL, i.e.

Pl,l+1ΨL = ΨL (B.15)

for all l. This operator, equation (B.14), contains only Z �elds, i.e. there are no Z̄ �elds.

Therefore, the trace operator gives

Kl,l+1ΨL = 0. (B.16)

Putting this together, we �nd

ΓΨL =
λ

16π2

L∑
l=1

(1− C − 2) ΨL. (B.17)

Now, as we mentioned in Chapter 1, the scaling dimensions of BPS operators are

protected by supersymmetry. This implies that

1− C − 2 = 0 (B.18)

in equation (B.17). It therefore follows that C = −1. Putting this into equation (B.10),

we �nd

Γ =
λ

8π2

L∑
l=1

(
1− Pl,l+1 +

1

2
Kl,l+1

)
. (B.19)

2The normalisation is chosen for later convenience.
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B.2.2 In terms of projectors

It is convenient to write the Hamiltonian (B.19) in terms of projectors. We use the

fact that the tensor product of two SO (6) vector representations is reducible into the

traceless symmetric, the antisymmetric and the singlet representations. The operators

that project Vl ⊗ Vl+1 onto these representations are

sym∏
l.l+1

=
1

2
(1 + Pl,l+1)− 1

6
Kl,l+1, (B.20)

as∏
l,l+1

=
1

2
(1− Pl,l+1) (B.21)

and
sing∏
l,l+1

=
1

6
Kl,l+1. (B.22)

In terms of these, we can write equation (B.19) as

Γ =
λ

8π2

L∑
l=1

0

sym∏
l.l+1

+2
as∏
l,l+1

+3

sing∏
l,l+1

 . (B.23)

We see here that only two of the three projectors contribute to Γ.

B.2.3 Comments

The Hamiltonian that corresponds to Γ for the spin chain is integrable [89], meaning

that it can be solved [88], at least in principle. Also, when one goes beyond the �rst loop,

the n-loop contribution to the anomalous dimension can involve up to n neighbouring

�elds in an e�ective Hamiltonian [90, 91, 92]. As the coupling λ grows bigger, these

longer range interactions become increasingly important. At strong coupling, the spin

chain becomes e�ectively long range and the Hamiltonian is not known above the �rst

two loop orders [90, 91, 93].

B.3 The su (2) sector

Thus far, we have mapped the one-loop dilatation operator to the Hamiltonian of an

SO (6) spin chain. We are now in a position to compute the anomalous dimensions of

the O (1) single trace operators in the su (2) sector of SYM theory. As mentioned in

Chapter 1, this sector, consists of two scalar �elds, Z and Y say. These �elds transform

under a doublet of SU (2) so that we can label the Z �eld as spin up (↑) and the Y
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�eld as spin down (↓) . We note that there are no conjugate �elds in the operator - we

only have Z and Y �elds - so that the contribution from Kl,l+1 is zero. Using this, the

Hamiltonian (B.19) becomes

Γsu(2) =
λ

8π2

L∑
l=1

(1− Pl,l+1) . (B.24)

Equivalently, we can write this in terms of spin operators. We have

Γsu(2) =
λ

8π2

L∑
l=1

(
1

2
− 2~Sl · ~Sl+1

)
, (B.25)

which is the Hamiltonian of a Heisenberg spin chain with L lattice sites. The total spin

~S =
∑
l

~Sl (B.26)

commutes with Γ so that the energy eigenstates are also total spin eigenstates [88].

Since the ~Sl · ~Sl+1 term has a negative sign, the corresponding spin chain is ferro-

magnetic. The ground state of a ferromagnet has all the spins are aligned, with a total

spin of L/2 (for L spins). This representation is symmetric and corresponds to the chiral

primary operator. In this case, the energy of the Hamiltonian (B.25) is zero. To get

non-chiral primary operators, we need to excite the spin chain about its ground state.

The total spin of these operators is less than L/2 [89]. We now give a partial description

of how to get these other states using the S-matrix approach [94, 95].

B.3.1 Single magnon state

To start with, we write the ground state as |↑↑↑ · · · ↑↑〉 , corresponding to the chiral

primary operator (B.14). The simplest excited state has one spin pointing down. In

this case, the Hamiltonian (B.24) acts like a constant plus a hopping term that moves

the down spin (magnon) one site to the left or right. If the magnon is at a particular

position l, then (B.24) has the action

Γsu(2)

∣∣∣∣↑ · · · ↑ l↓↑ · · · ↑↑〉 =
λ

8π2

(
2

∣∣∣∣↑ · · · ↑ l↓↑ · · · ↑↑〉− ∣∣∣∣↑ · · · l−1
↓ ↑↑ · · · ↑↑

〉
−
∣∣∣∣↑ · · · ↑↑l+1

↓ · · · ↑↑
〉)

. (B.27)
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We can de�ne the eigenstates

|p〉 ≡ 1√
L

L∑
l=1

eipl
∣∣∣∣↑↑ · · · l↓ · · · ↑↑〉 (B.28)

known as single magnon states with momentum p. In terms of these eigenstates, we have

Γsu(2) |p〉 = ε (p) |p〉 (B.29)

where

ε (p) =
λ

2π2
sin2

(p
2

)
(B.30)

are the eigenvalues. We can quantise the dispersion ε (p) as well as the magnon mo-

mentum p so that |p〉 is invariant under the shift l→ l + L. Thus

p =
2πn

L
. (B.31)

The symmetric state has n = 0 and total spin L/2. The other cases have total spin

L/2− 1. Since the trace is cyclic, our states must be invariant under the shift l→ l+ 1.

This means that the only allowed state has p = 0. For this state, there are no chiral

primary operators with only one Y �eld [88].

B.3.2 Two-magnon state

Let us now consider a two-magnon state which we construct using an argument that was

�rst presented by Yang and Yang [96]. Given at least two down spins in our operator, it is

possible to have excited state that satis�es the trace condition. The argument we follow

considers �rst, an �nite spin - instead of a closed one. An unnormalised two-magnon

state that we can write down is

|p1, p2〉 =
∑
l1<l2

eip1l1+ip2l2

∣∣∣∣· · · l1↓ · · · l2↓ · · ·〉+eiφ
∑
l1>l2

eip1l1+ip2l2

∣∣∣∣· · · l1↓ · · · l2↓ · · ·〉 , (B.32)
where we have assumed that p1 > p2. Equation (B.32) can be thought of as the scattering

state of two magnons, with the �rst term describing the incoming part, while the second

term describes the outgoing part. For this scattering process, the S-matrix - which

we denote S12 - is given by the phase eiφ. When the two magnons are well separated,

i.e. |l1 − l2| � 1, they do not interact with each other. If |p1, p2〉 is an eigenstate of

Γsu(2), the corresponding eigenvalue is a sum of the two non-interacting magnon states

with magnon momenta p1 and p2. By considering all the possible ways of placing the

two magnons next to each other at sites l and l + 1, we �nd that in order to have an
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eigenstate, we must satisfy

eip2
(
2− e−ip1 − eip2

)
+ eip1

(
2− eip1 − e−ip2

)
=
(
4− e−ip1 − eip1 − e−ip2 − eip2

) (
eip2 + eip1eiφ

)
. (B.33)

The solution to this equation is

eiφ = S12 = −e
ip1+ip2 − 2eip2 + 1

eip1+ip2 − 2eip1 + 1
. (B.34)

We now consider a closed spin chain of length L. In this case, the cyclicity of the

trace means that the total momentum must be

p1 + p2 = 0. (B.35)

Now, transporting one magnon around the circle results in the same state. However,

since this process takes the �rst magnon past the second one, the �rst magnon picks up

a phase eiφ. If the magnon that we transported has momentum p1, we have

eip1Leiφ = 1. (B.36)

Using equation (B.35) we get

eiφ = e−ip1 (B.37)

so that the allowed values of p1 are

p1 =
2πn

L− 1
. (B.38)

Therefore, the two magnon state has eigenvalues

γ =
λ

π2
sin2 nπ

L− 1
. (B.39)

Again, the case n = 0 corresponds to the symmetric case with spin L/2. All other values

of n have spin L/2− 2.

B.3.3 M magnons and Bethe equations

It is convenient to de�ne the rapidity u such that

eiφ =
u+ i/2

u− i/2
. (B.40)
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The dispersion relation then becomes

ε (u) =
λ

8π2

1

u2 + 1/4
(B.41)

and the S-matrix for magnons with rapidity uj and uk is

Sjk =
uj − uk − i
uj − uk + i

. (B.42)

For M magnons with momenta p1 > p2 > · · · pM , we have

|p1, p2, . . . pM 〉 =
∑

l1<l2···lM

eip1l1+ip2l2+···ipM lM
∣∣∣∣· · · l1↓ · · · l2↓ · · · lM↓ · · ·〉+ · · · , (B.43)

where the last set of dots denotes all the other possible orderings of the magnons with

appropriate phase factors. These phase factors are products of the two particle S-

matrices [88], implying that the system is integrable. On a circle with lattice sites L,

the quantisation condition for the jth magnon is

(
uj + i/2

uj − i/2

)L
=

M∏
k 6=j

uj − uk + i

uj − uk − i
. (B.44)

The state has energy

γ =
M∑
j=1

ε (uj) (B.45)

where ε (uj) is given by equation (B.41). The trace condition for the total momentum

is
M∏
j=1

uj + i/2

uj − i/2
= 1. (B.46)

Equations (B.44) are known as Bethe equations for the Heisenberg spin chain [97].

For further solutions to these equations, the reader is referred to [89, 98, 99]. The spin-

chain technique in the planar large N limit can be generalised to other sectors of SYM

theory including the full PSU (2, 2|4) . These generalisations are discussed in [100] and

reviewed in [101, 102, 103].



Appendix C

The sl (2) sector1

In this Appendix, we diagonalise the action of the dilatation operator in the sl (2) sector

using the double coset ansatz [46]. This sector was �rst written in the restricted Schur

polynomial basis in [38]. The operators for this sector are built using n Z �elds and m

vector impurities, i.e. we have m covariant derivatives D+ that act on the n Z �elds.

These operators do not mix with other operators under the action of the dilatation

operator. In other words, they form the closed sl (2) subsector [104]. The impurities are

Z(i) with i = 0, 1, 2, . . .m, where

Z(n) =
1

n!
Dn

+Z, (C.1)

Z(n)† =
1

n!
Dn
−Z
† (C.2)

and Z(0) ≡ Z. Denoting the number of Z(i) by ni, the restricted Schur polynomial is

χR,{ri}αβ

(
Z(0), Z(1), . . . Z(m)

)
=

M∏
k=0

1

nk!

∑
σ∈SnZ

χR,{ri}αβ (σ)Tr

σ m∏
j=0

(
Z(j)

)⊗nj .

(C.3)

The label {ri}αβ speci�es an irreducible representation of Sn0×Sn1×· · ·Snm . It consists
of less than m Young diagrams {ri} and a pair of multiplicity labels αβ. As before, a

given Sn0 ×Sn1 × · · ·Snm irrep can be subduced more than once: the multiplicity labels

therefore tell us which of the degenerate copies are being used by the restricted character

χR,{ri}αβ (σ) . The free two point function that follows from (C.3) is

〈
χR,{ri}αβ (P )χ†S,{sj}δγ (Q)

〉
= δRSδ{ri}{sj}δαγδβδ

hooksR
hooks{ri}

fR. (C.4)

1This work was published in [39] - it is my original work.

140
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The delta function δ{ri}{sj} is 1 if the two Sn0 × Sn1 × · · ·Snm irreps speci�ed by {ri}
and {sj} are identical. The corresponding multiplicity labels must also match [36]. The

action of the dilatation operator in this sector then becomes

DχR,(r,s)αβ

(
Z,Z(q)

)
=

∑
S,(t,u)γδ

MR,(r,s)αβ;S,(t,u)δγχS,(t,u)δγ , (C.5)

where

MR,(r,s)αβ;S,(t,u)δγ =
1

q
M

SU(2)
R,(r,s)αβ;S,(t,u)δγ + δMR,(r,s)αβ;S,(t,u)δγ . (C.6)

Here, M
SU(2)
R,(r,s)αβ;S,(t,u)δγ is identical to the usual action of the dilatation operator in the

SU (2) sector. However, we notice that we pick up a correction

δMR,(r,s)αβ;S,(t,u)δγ = g2
YM

(
1

q
−

q∑
i=1

1

i

)
δRSδ(r,s)(t,u)

nm

drds

×
(
δαδχR,(r,s)βγ ((1,m+ 1)) + δβγχR,(r,s)αδ ((1,m+ 1))

)
− g2

YM

(
1

q
−

q∑
i=1

1

i

)∑
R′

cRR′dSnm

dtdu (n+m) dR′

× [Tr
(
IS′R′PR→(r,s)αβ (1,m+ 1) IR′S′ (1,m+ 1)PS→S,(t,u)δγ

)
+ Tr

(
IS′R′ (1,m+ 1)PR→(r,s)αβIR′S′PS→S,(t,u)δγ (1,m+ 1)

)
].

(C.7)

SinceM
SU(2)
R,(r,s)αβ;S,(t,u)δγ is the usual action of the dilatation operator in the SU (2) sector,

we know that moving to the Gauss graph basis will diagonalise M
SU(2)
R,(r,s)αβ;S,(t,u)δγ on its

impurity labels, leaving only the problem considered in [45]. Denoting the piece of the

dilatation operator that leads to δMR,(r,s)αβ;S,(t,u)δγ by δD, we �nd that in the Gauss

graph basis we have

δDOR,r (σ) = 2g2
YMNm

(
q∑
i=1

1

i
− 1

q

)
OR,r (σ) . (C.8)

Thus the double coset ansatz diagonalises the one loop dilatation operator in the sl (2)

sector.
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