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APPENDIX A - INTERNATIONAL STANDARDS RELATING TO THE 
 DESIGN, MANUFACTURING AND TESTING PROCEDURES 
 OF FRP PIPE JOINTS 

 
1. “2001 Boiler and pressure vessel code”, ASME 10 CODES 

2. “Standard specification for fibreglass pressure pipe fittings”, ASTM D5685-95 

3. “Standard specification for contact moulded fibreglass flanges”, ASTM 

D5421-93 

4. “Standard practice for determining dimensions of fibreglass pipes and fittings”, 

ASTM D 3567-97 

5. “Standard practice for selecting bolting lengths for piping system flanged 

joints”, ASTM F704-81 

6. “Standard test method for cyclic pressure strength of reinforced thermosetting 

plastic pipe”, ASTM D2143-00 

7. “Test method for resistance to short time hydraulic pressure of plastic pipe, 

tubing and fittings”, ASTM D1599-99E01 

8. “Test methods for sealability of gasket materials”, ASTM F 37  

9. “AWWA standard for GFR pressure pipe”, ANSI AWWA C950-81, First  

Edition  

10. “ Standard for the design and performance of GRP pipes, and fittings for 

process plants”, BS 6464 

11. “Specification for glass reinforced plastics  pipes, joints and fitting for use for 

water supply or sewerage”, BS 5480 

12. “Code of practice for design and construction of glass-reinforced plastics 

piping systems for individual plants or sites”, BS 7159 

13. “Glass fibre reinforced polyester resin pipe fittings and joints assemblies – 

Requirements for testing of bushes, flanges and flanged laminated joints”, DIN 

16966-7 

14. “Fibre reinforced plastic composites – determination of fatigue properties 

under  cyclic loading “,ISO/FDIS 13003 

15. “Plastics piping systems – glass reinforced thermosetting plastics pipes and 

fittings – test methods to prove the leaktightness of the wall under short-term 

internal pressure”, ISO 7511 
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16. “Fibre reinforced plastic composites – Determination of fatigue properties 

under cyclic loading”, ISO 10350-2 

17. “Plastics piping systems – Glass reinforced thermosetting plastics pipes – 

determination of time to failure under sustained internal pressure”, ISO/DIS 

7509 

18. “Glass reinforced thermosetting plastic pipes and fittings – test methods to 

prove the design of bolted flange joints”, ISO/DIS 8483 

19. “Plastics piping systems – glass reinforced thermosetting plastics pipes and 

fittings – methods for regression analysis and their use”, ISO 10928 
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APPENDIX B - MATERIAL PROPERTIES AND CURING GUIDELINE  
 FOR NCS 993 PA RESIN 

 

The material properties and the curing guideline of the NCS 993 PA resin provided by 

the supplier are listed below. 

 

Table B.1: Properties of Cured NCS 993 PA (unfilled casting) 

 
Temperature of deflection-under load (1,80MPa), °C 89 
Water absorption, mg 35 
Barcol (GYZJ 934-1) hardness 40 
Elongation at break, % (void-free casting) 2.45 
Tensile strength, MPa 76 
Tensile modulus, MPa 3750 
Volume shrinkage, % 7 
Specific gravity @ 25°C, ratio 1.15 

 

 

Table B.2: Conditioning guideline of the NCS 993 PA resin 

 
100 Part NCS 993 PA 
catalysed with 2 phr 
BUTANOX M50 

Gel Time 

Geltime @ 15 °C, minutes 16 
Geltime @ 25 °C, minutes 9 
Geltime @ 35 °C, minutes 5 
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APPENDIX C - DESIGN OF STOPPERS 
 

Steel stoppers were designed to avoid two major effects, namely, excessive 

deformation and failure by fracture. A finite element analysis using MSC 

Patran/Nastran software was conducted to estimate the stresses and deformation 

experienced by the stoppers at different loading conditions. The stress magnitudes 

predicted at different pressures were used to optimize the design of stoppers. Stoppers 

were made thick enough to minimize the deflection between two successive bolt holes. 

This is because an excessive bending effect could detrimentally affect the leak 

tightness of the joint. Adequate safety factors have been used since the consequences 

of failure by fracture of stoppers was not allowed. Two different types of stoppers 

have been designed and fabricated: The 10 bar and 20 bar stoppers (Figure C.1). 

 

 
 

Figure C.1: Steel stopper sealing a 10 bar fabricated pipe flange 

 

For design purposes of the stoppers, the term “safety factor” denotes the ratio of the 

strength of the material to the maximum computed stress when the system is loaded at 

10.00 MPa (8). In equation form, the safety factor is written as follows:  

 

FS = stresscomputedMaximum
stressFailure                                                    (Eq. C.1) 
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Finite element analysis of stoppers 

 
Stoppers were modelled and meshed as a 3D isotropic model. A distributed pressure 

load of 10.00 MPa was applied to the stoppers to simulate the pressure load generated 

by the maximum test pressure. Bolt holes were constraint for translation and rotation 

to simulate the clamping load generated by fasteners. The elastic modulus and the 

Poisson’s ratio assigned to the material were 207 GPa and 0.32 respectively. A linear 

analysis was applied to the model. A sensitivity stress analysis was performed to 

improve the accuracy of the analytical results. The maximum stress results are listed in 

table C.1 while the predicted Von Mises stress-tensor and strain magnitude plots are 

presented in figure C.2 and C.3. 

 

Table C.1: FEA results of stoppers 

 
Stoppers Maximum stress   (MPa) 

10 bar stopper 152 
20 bar stopper 124 

 
 
 

 
 

Figure C.2: Predicted Von Mises stresses for the 10 bar stopper 
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Figure C.3: Predicted strain magnitude for the 10 bar stopper  

 

Calculation of Safety Factor 

 
The estimated safety factors by yielding and fracture listed in table C.2 were 

determined by considering Eq. C.2 and Eq. C.3 respectively. These two equations 

derive from Eq. C.1. In Eq. C.2, the failure stress of the stopper denotes the material 

ultimate strength in tension (340 MPa) whereas in Eq. C.3 it denotes the material 

elastic strength in tension (220 MPa) (18). Therefore, one can write: 

 

Safety factor by fracture          FS = 
stresscomputedMaximum

StrengthUltimate
        (Eq. C.2) 

 

Safety fracture by yielding      FS = 
stresscomputedMaximum

StrengthElastic          (Eq. C.3) 

 

Table C.2 Estimated safety factor of the 10 and 20 bar stoppers  

 
Specimens Safety factor 

by yielding 
Safety factor 
by fracture 

10 bar stopper 1.45 2.23 
20 bar stopper 1.78 2.74 

 

 

 



 95

Figure C.1 and C.2 show that the maximum stress is around the bolt holes. The 

maximum strain is at the centre of the stopper. The holes intended to hold the pressure 

gauge and the pipe connector do not induce detrimental stress concentrations. At the 

seating conditions, the deformation between two successive bolt holes (0.00125 mm) 

was found to be smaller than the thickness of the compressed gasket (4.00 mm). 

Therefore, it was assumed that the seating pressure was evenly distributed.  
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APPENDIX D - DETERMINATION OF THE ESTIMATED INITIAL BOLT 
 LOAD, END LOAD AND CLAMPING LOAD 

 

Calculation of the estimated bolt loads at the initial tightening 

 
The procedure presented below was followed to estimate the axial load experienced by 

bolts at the initial tightening and at different test pressures. M20 Class 8.8 steel bolts 

were used. To simplify the bolt analysis, the following assumptions were made: 

• only the tensile stress was acting through the bolt shank  

• linear elastic behaviour was obeyed. 

 

The bolt torque magnitudes applied to the different joint assemblies were selected 

according to the BS 7159:1989 and BS 6464. 

 

The following formula was used to calculate the estimated bolt load at the initial 

tightening (8) . 

 

T=0.2 DL                                                                                (Eq. D.1) 

 

Where     T = initial bolt torque selected accordingly to BS 7159 

D = nominal diameter of bolts (m) 

L = initial bolt load (N)  

 

Calculation of the axial bolt load and end load at different test pressures  

 
At the initial tightening, the bolt load was calculated following the procedure 

presented above.  

 

As the system is pressurized, the hydrostatic load acting axially on the stopper 

generates the axial load that tends to separate the flange and the stopper.  

This load is expressed as 

 

F = P Π R2                                                                                            (Eq. D.2) 
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Where   P = actual test pressure applied to the joint system 

R = internal radius of the flange  

Π = 3.142 

 

Assuming that the reaction force that balances the load F is evenly distributed through 

each bolt, one can write 

 
n Lb = P  S                                                                                        (Eq. D.3) 

 
Dividing Eq. D.3 by the number of bolts n, one obtains the axial bolt load Lb generated 

by the pressure test. Hence, the total axial load supported by each bolt at a given test 

pressure is calculated by summing up the axial load generated by the internal pressure 

and the initial bolt load. 

 
Lt = Lb + L                                                                                       (Eq. D.4) 

 
Note: L is the initial load of each bolt calculated above (Eq. D.4). 

 

In order to calculate the longitudinal stress σ (end load) acting axially, the axial 

equilibrium state of the system was considered. This requires  

 
P S = σ (2 Π R t)                                                                            (Eq. D.5) 

 
Solving for σ, one obtains  

σ = 
)  tR

SP
π (2

 

Where   t = thickness of the pipe wall 
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The clamping load experienced by the flange was calculated by dividing the resultant 

axial bolt load by the annular area of the contact surface between the backing ring and 

stub.  
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APPENDIX E - PREDICTION OF THEORETICAL MATERIAL  
 PROPERTIES 

 
Introduction 

 
The theoretical analysis based on the strength of materials approach, namely 

Micromechanics theory is one the methods extensively used in the prediction of the 

material properties of a flat and thin laminate. This approach is based on the 

micromechanics analysis of a unidirectional lamina. Taking into account some 

limitations, this concept yields accurate results when it is applied to other structures 

such as shells and beams (21). 

 

Micro and Macromechanics of a unidirectional laminate 

 
Being the starting point of a laminate analysis, the theoretical approach used to 

calculate the engineering constants of a continuous unidirectional fibre reinforced 

plastic requires some restrictions and assumptions that are listed bellow. 

 

• perfect bonding exists between fibres and matrix 

• both fibres and matrix are isotropic and obey Hooke’s law 

• fibres are continuous and parallel  

• different layers of the structure are perfectly bonded together 

• each layer has uniform thickness  

• laminates are initially free of voids and cracks and are in a stress free state 

 

Taking into account the rule of mixtures, the four engineering constants of the 

unidirectional lamina can be expressed in terms the elastic properties and volume 

fractions of different constituents as follows (19): 
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E1 = Ef* Vf+ Em*Vm         Longitudinal elastic modulus 

 

E2 = 
EmVfEfVm

EmEf
+

           Transverse elastic modulus 

 
v12 = vfVf + vmVm             Major Poisson’s Ratio 

 

G12 = 
GmVfGfVm

GmGf
+

         Shear modulus of the lamina 

Gf = 
)1(2 Vf

Ef
+

                     Shear modulus of the fibre 

Gm = 
)1(2 vm

Em
+

                  Shear modulus of the matrix 

v21= v12
E1
E2                     Minor Poisson’s Ratio 

 

Where          Ef  = modulus of the fibre 

 
Em  = modulus of the matrix 

 
vf = Poisson’s ratio of the fibre 

 
vm = Poisson’s ratio of the fibre 

 
Vf = fibre volume ratio 

 

The fibre volume fraction is determined using the following equation 

 

Vf = 
mWffWf

fWf
ρρ

ρ
/)1(/

/
−+

 

 

Where       Wf is the experimental fibre content within the laminate 

 

ρf and ρm are fibre and matrix specific gravity respectively 
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Assuming that the laminate is free of voids, the matrix volume ratio is determined 

using the following equation 

 
Vm = Vf -1 

 
Generally, the resulting force and moment in terms of the midplane strains and 

curvatures of a laminate are expressed in matrix form as (19). 
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Where 

Aij = 
[ ]

k

n

k
Qij∑

=1 ( )1−− kk hh    i = 1,2,3;  j = 1,2,3                                 Eq. E.3 
 
Extensional stiffness matrix that relates the resultant in-plane forces to the in-plane 

strains: 

Bij = [ ]
k

n

k
Qij∑

=1
( )1

22
−− kk hh    i = 1,2,3;  j = 1,2,3                              Eq. E.4 

 

Extension-bending coupling matrix that couples the force and moment terms to the 

midplane strains and midplane curvatures: 
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Dij = [ ]
k

n

k
Qij∑

=1

( )1
33

−− kk hh       i = 1,2,3;  j = 1,2,3                         Eq. E.5 

 

 

Where                 [ ]Qij  = Reduced stiffness matrix 

 
                            [ ]ijQ  = Transformed reduced stiffness matrix 

 
                            hk  = Coordinate location of the k-th layer 

 
                              h = Thickness of the lamina 

 
                              n = Number of lamina in the structure 

 

The thickness of the laminate is determined using the formula: 

 

h=n ⎟
⎠
⎞

⎜
⎝
⎛

+
+
ρmρf
mmf m  

 
Where mf and mm are the aerial masses of the fibre and matrix respectively   

 

Assuming that all laminae (CSM and WR) have practically the same thickness, the 

extensional stiffness matrix, extension-bending coupling matrix and bending stiffness 

matrix can be expressed as:  

 

Aij = [ ]
k

n

k
Qij∑

=1
h 

Bij = [ ]
k

n

k
Qij∑
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h kZ  

Dij = [ ]
k

n

k
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Where kZ  stands for the distance of the mid-surface of the k-th layer lamina to the 

middle surface of the laminate. However, laminate thickness was determined 

experimentally. 

 

 

Calculation of apparent elastic moduli and thermal strains  

 
The theoretical prediction of the material properties for the flange wall and pipe wall is 

based on the Classical Lamination Theory, and was performed using a MATLAB 

computer code. Woven roving and chopped strand mat laminates were modelled as 

[0/90/±45]s and [0/90]s quasi-isotropic laminates respectively. The average 

experimental fibre volume fractions obtained from burn off tests were used to improve 

the model accuracy.  

 

The reduced stiffness matrix Qij of each type of layer (CSM or WR) was determined 

using the four elastic moduli of the corresponding unidirectional lamina. The reduced 

stiffness matrix allowed determining the transformed reduced stiffness matrix of the 

lamina. Taking into account the packing sequence of the laminate, the transformed 

reduced stiffness matrix and the lamina coordinate (coordinate of the top and the 

bottom surface of each layer in terms of the mid-plane of the laminate) were used to 

calculate the extensional stiffness matrix Aij that allowed calculation of the laminate 

engineering constants.  

 

The four apparent engineering constants of the flange wall and the pipe constructions 

were calculated using the equations listed below (19). 

Ex = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

22
1211

2

A
AA / n*h        In-plane longitudinal elastic modulus 

Ey = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

11
1222

2

A
AA / n*h        In-plane transverse elastic modulus 

Gxy = 
hn

A
*
66                              In-plane shear modulus  
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vxy = 
22
12

A
A                                Major Poisson’s ratio 

vyx = 
11
12

A
A                                 Minor Poisson’s ratio 

 

The through thickness Ez was assumed to be similar to that of the corresponding 

unidirectional lamina. The coefficient of thermal expansion of the CSM and WR plies 

were calculated using the following formula [19]: 
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ΔT and ΔC denoted the temperature change and the weight of moisture absorption per 

unit weight of the lamina. ΔC was not taken into account, since the testing time did not 

allow the swelling strains and stresses generated by the moisture change in the flange 

structure to be accounted for. The material properties of resin and E-glass fibre listed 

in table E.1 were used to predict the material properties of different lamina. The 

predicted material properties assigned to the Amitech flange models are listed in table 

E.2. 
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Table E.1: Material properties of Polyester resin and E-glass 
 

 

 

Table E.2: Predicted material properties assigned to Amitech flange models 

 
Material 

Properties of lamina 
CSM lamina 

 
WR lamina Fibre wound 

Pipe construction 
Ex (Gpa) 8.17 13.86 6.93 
Ey (Gpa) 8.17 13.86 13.84 
Ez (Gpa) 4.13 4.12 4.13 

Gxy (Gpa) 3.10 1.90 9.42 
vxy 0.32 0.11 0.42 

Vxz, vyz 0.38 0.37 0.83 
αx (με) 35.33 24.47 16.3 
αy (με) 35.33 24.47 6.95 

Glass content (%) 32 45 68 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specific 
gravity 

Young’s 
modulus 

Tensile 
Strength 

Tensile 
elongation 

CTEMaterial 

 (GPa) (GPa) (%) m/m/°C 
E-Glass 2.60 72.00 1.72 2.40 5.58 
Polyester resin 
NCS 993 PA 

1.15 3.75 0.076 2.45 70.00 
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APPENDIX F - EXPERIMENTAL COEFFICIENTS OF THERMAL   
                           EXPANSION 
 

Axial and circumferential coefficients of thermal expansion determined 

experimentally are listed below. The procedure followed to perform the calibration is 

described in section 3.5. 

 

Table F.1: Experimental coefficients of thermal expansion 

 
         Coefficient of Thermal Expansion α (με  /°C) 

Location 1 Location 2 Location 3 Amitech flanges 
Axial Hoop Axial Hoop Axial Hoop 

10 bar flange 1 20.50 9.92 32.20 11.50 18.56 9.96 
10 bar flange 2 18.92 11.20 30.52 13.30 15.89 10.10 
16 bar flange 1 22.80 10.41 35.40 12.45 23.10 11.02 
16 bar flange 2 18.02 11.30 38.54 15.65 19.42 9.70 
20 bar flange 1 22.40 10.51 32.61 16.45 20.00 10.10 
20 bar flange 2 19.50 9.60 35.90 12.50 18.51 9.78 

Fabricated flanges 
10 bar flange 1 32.12 30.27 35.10 36.20 18.12 10.20 
10 bar flange 2 36.23 32.01 31.20 29.90 16.50 8.56 
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APPENDIX G - COMPARISON OF EXPERIMENTAL STRAINS AT 
 LOCATION 2 BETWEEN AMITECH SPECIMENS 
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Figure G.1: Circumferential strains of flange 1 
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Figure G.2: Axial strains of flange 1 
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Circunferential strain variation
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Figure G.3: Circumferential strains of flange 2 
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Figure G.4: Axial strains of flange 2 
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APPENDIX H - COMPARISON OF EXPERIMENTAL STRAINS AT 
 LOCATION 1 BETWEEN AMITECH SPECIMENS 
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Figure H.1: Circumferential strains of flange 1 
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Figure H.2: Axial strains of flange 1 
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Circumferential strain variation
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Figure H.3: Circumferential strains of flange 2 
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Figure H.4: Axial strains of flange 2 

 

 

 

 
 


