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ABSTRACT 

This research study was motivated by the geological complexity of Konkola 

orebody. It is a well-known fact that the geological complexity of an orebody will 

add to the risk associated with the Mineral Resource estimation of the deposit. In 

this research report the applicability of Ordinary Kriging with a dynamic search 

ellipse is investigated on the Konkola copper orebody where traditionally Ordinary 

Kriging with a fixed global oriented search ellipsoid is applied in the resource 

estimation. The regional and local geology of the mine was studied including 

prominent structures that had potential to affect the final estimates. Exploratory Data 

Analyses were carried out and the orebody was domained into three zones based on 

grade variation and structural orientation. Variograms, capturing the spatial 

correlation of the Total Copper % (TCu%), were calculated and modelled for the 

individual zones, this was followed by a kriging neighbourhood optimisation 

process. Grade interpolation was done using both the interpolation techniques and 

the estimate results were compared to the input sample data. An analysis on the 

financial benefits of adopting Ordinary Kriging with dynamic search was also 

conducted. This research study concludes that it is beneficial to domain the orebody 

and to use Ordinary Kriging with a Dynamic Anisotropic search approach for 

resource estimation and therefore recommends that Konkola Mines adopt this 

methodology to improve its resource estimation and save costs. 
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1 Introduction 

Mineral Resource estimation projects mostly commence with a detailed study of the 

geology surrounding the deposit of interest. The geostatistical work that follows 

afterwards should always be confirmed with the known geological knowledge and 

interpretation before carrying on with the grade interpolation process (Dohm, 

2018b). It is this geological knowledge and interpretation that dictates the estimation 

method to apply on a specific deposit since each deposit is unique and no fixed 

interpolation method applies to all. 

Complexity in the orebody geometry is one of the major factors estimators use to 

make decisions on what types of estimation method to apply on any specific deposit. 

This complexity in geometry can only be fully captured if the geology surrounding 

the deposit is well understood. McArthur, (1988); de Sousa, (1990); Cardwell and 

Cartwright (2016) and Ronald (2018) have all highlighted on the importance of 

having a good understanding of the geology surrounding the deposit in Mineral 

Resources and Reserve estimation. This geological knowledge and understanding 

underpins every Mineral Resource estimation, since estimates are constrained by the 

geological complexity captured within the geological model (Chanderman et al,. 

2017). It is concluded from the foregoing references that many of the problems 

encountered during a resource estimation process arise because of a lack of 

understanding of the geology of the orebody, its structural nature and grade 

continuity. 

In this research a detailed study on the regional and local geology was done to obtain 

a good understanding of the geology surrounding the deposit. The complexity in 

geometry, that is huge variations in dip and dip directions including the folds and 

faults were analysed as well as their potential effect on the final estimation. 

When faced with such complexity in the geology, it can be a daunting task for 

resource geologists when carrying out grade estimation. To circumvent this issue, 

the resource geologist may resort to dividing the deposit into domains, based on the 

structural orientation where a single stationary ellipsoid can be used as reasonable 

representation of the continuity of the enclosed grades. This method may however 
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not always be satisfactory because the actual domains can also be deformed by 

folding, shearing and other structural processes (Machuca-Mory et al, 2015). 

Traditional Ordinary Kriging (OK) has been the main interpolation method used on 

the Konkola deposit for resource estimations. During interpolation, a global oriented 

search ellipse, aligned to the major direction of the continuity of the mineralisation 

is used. The problem with this kind of grade interpolation is that it does not actually 

capture the local changes in the orebody geometry and may also not work well for 

deposits with dome-like shapes and undulating fold structures such as that of the 

Konkola deposit. According to (Zabrusky, 2013), using the OK methodology on 

orebodies with structural complexity may result in grade under-estimation because 

samples that are structurally continuous with the trend being estimated do not fall 

within the rigid search ellipse. The opposite was also found to be true where grades 

are over-estimated by unrelated samples being included in the search volume. 

A more accurate and efficient way of handling orebodies with complex geology is 

to employ the Dynamic Anisotropy (DA) search method in the estimation. This 

methodology allows for the local rotation of angles of the variogram model and 

search ellipsoid with the aim to improve the grade interpolation by following the 

trend of mineralisation for each cell in a block model (CAE Datamine corporate 

Limited, 2014). Each single block within the block model is allocated a specific dip 

and dip direction according to its orientation which is used to align the anisotropic 

search ellipsoid to improve the ability of data capturing. 

This research report is aimed at testing whether the DA grade interpolation 

methodology applied in Ordinary Kriging could significantly improve grade 

estimation on the folded and undulating orebody with a huge variance in dip and dip 

direction on the Konkola copper orebody. The objective of the research was 

achieved, in that the two estimation methodologies; the traditional method of fixed 

search ellipses applied to the two limbs of the orebody and the DA method applied 

to different zones, were carried out and the results compared. Validation of the 

results from both methodologies against the composite data using global statistics, 

swaths plots, scatter plots and the distribution of differences were carried out. Visual 
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inspection was also employed to identify artificial breaks in grade continuity not 

representative of reality as observed from the sample grade distribution. The 

findings from this research formed the basis for recommending to Konkola Mine to 

adopt the DA estimation methodology for future Mineral Resource estimations, as 

it would improve the grade estimation accuracy of this folded and undulating copper 

deposit with its large variance in dip and dip direction.  

It is important to make the reader aware that in this research OK estimation implies 

OK with a search ellipse of static or fixed orientation has been applied and when 

referring to the DA methodology it implicitly means that in the OK estimation 

process a dynamic search ellipse is used based on the local anisotropy. 

1.1 Background Information 

Grade estimation is the cornerstone of several mining activities such as short and 

long-range mine planning, underground and pit designs, mining cost, reserves 

calculations, metal recovery and reporting (Cardwell and Cartwright, 2016). All 

these activities depend upon a reliable grade block model. To create a reliable 

model, comprehensive statistical and geostatistical studies of the deposit need to be 

carried out as the major components in the Mineral Resource Estimation (MRE) 

process. The introduction of Geostatistics in mining has been one of the major steps 

to ensuring that there is improved accuracy in grade estimation.   

De Sousa, (1990) describes Geostatistics as a mathematical technique used to 

perform statistical work on a Regionalized Variable selected from a geological zone 

or a certain population. The theory of Geostatistics was first formalised in the 1960’s 

by George Matheron (Journel and Huijbregts, 1978, Clark, 1979) and is based on 

the theory of Regionalised Variables. Matheron considered the birth of Geostatistics 

the moment people in mining concerned themselves with foreseeing results of future 

mining operations, the moment they started collecting samples and computing mean 

grades for the mine blocks.  

The birth of Geostatistics resulted in the development of several Geostatistical 

interpolation techniques. These techniques consider spatial correlation quantified by 
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the variogram during grade interpolation e.g. Kriging and Simulation techniques. 

Previously, classical statistical methods were the main interpolation methods used 

to estimate resources and reserves. Several authors have highlighted the 

shortcomings of classical statistical methods in resource and reserve estimation 

because unlike geostatistical methods, the classical methods ignore the spatial 

distribution and spatial correlation between sample data, and consequently proved 

to be inaccurate (de Sousa, 1990; Armstrong, 1998; Dohm, 2018b). The use of 

geostatistical investigations has become an important tool to avoid financial failures 

when considering the possibility of investing in a new mining operation or deciding 

on expanding a current mining operation. 

Kriging is one of the most used geostatistical interpolation methods to estimate 

resources and reserves. Sinclair and Blackwell (2002) defines it as a generic term 

applied to a range of methods of estimation that depend on minimising the 

estimation error by a least square procedure. The practical application of Kriging 

are widespread including simulations of deposits, grade estimation at a point or 

block, contouring, grade control and optimal location and spacing of drill holes (Bell 

and Reeves, 1979)  

Kriging might have improved grade estimation but only to some extent. One of the 

areas that needed modification was the carrying out of estimations in folded and 

undulating deposits since kriging is most often based on a static oriented search 

ellipsoid, which cannot cope with the meandering nature of orebodies.  

In reality, most orebodies in nature are either folded or undulating or both. Solving 

this problem required that a detailed geological model was done that captured all the 

necessary geological structures. The introduction of computerised resource and 

reserve software packages in the late 1970‘s (Glacken and Snowden., 2001) made 

the modelling of the 2D and 3D geological models possible and the inclusion of 

such models in computerised geostatistical methods to improve grade estimation. 

To date kriging interpolation techniques have been developed or adapted to cater for 

orebodies with complex geology. 
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1.2 Problem Statement 

The most valuable asset of any mine is its Mineral Resource (MR); hence, it is very 

important that the risk associated with the estimation thereof, is as low as possible 

to avoid surprises during mining such as encountering low grades where high grades 

are expected and/or finding less tonnes than expected. There are three main factors 

that can increase risk in a MR; grade variability within the deposit, assumptions 

made during estimation process and particularly the estimation methodology 

applied (Dohm, 2018b). The estimation methodology employed is to some extent 

dictated by geology of the deposit; different orebodies may require different 

techniques depending on their geological complexity.  

The Konkola copper deposit is one such orebody with complex geology (folded and 

undulating) with large variations in dip and dip directions. Traditionally Ordinary 

Kriging (OK) has been the main interpolation technique used at Konkola Mine. The 

paragraphs that follow explain the complexity of the orebody geometry and the 

difficulties faced when using this traditional interpolation technique. 

The orebody is divided into two, fold-limbs along the fold axis trend in the NW-SE 

direction. The two limbs are the West Limb exploited through number 4 shaft and 

the North Limb accessed through number 3 shaft. The West Limb has a minimum 

dip of about 15° to a maximum of 65° with a dip direction ranging from 215° to 

235°. The North Limb has a minimum dip of 12° to a maximum of 60° with a dip 

direction ranging from 348° to 24°. 

Currently the orebody is domained along the fold axis and variograms are generated 

and modelled separately for each limb, and OK is separately performed on each 

Limb using the respective relevant variogram models, these results are combined to 

produce the resource estimates for the orebody. During interpolation average values 

for the dip and dip direction are used to orient the global search ellipse on each limb 

individually. An average dip of 50° and dip direction of 225° is used on the West 

Limb and an average dip of 45° and dip direction of 6° on the North Limb. Figure 

1.1 shows a global search ellipse with an average dip and dip direction. This 

illustrates how a static fixed search ellipse fails to honour grade continuity.  
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Figure 1. 1 Orientation of the global search ellipse in plan and inserted is a vertical section 

down dip. Sections are from the Konkola orebody wireframes used in this research. 

Using a global search ellipse with an average dip and dip direction does not 

satisfactorily capture the copper grade continuity. Some of the samples may 

inadvertently be excluded during the interpolation process, not because they are 

beyond the range of influence of the variogram but simply because of how the search 

ellipse is oriented in a fixed direction. This will affect the Kriging efficiency (KE) 

and Slope of regression (SLOR) and also influence both the information effect and 

the regression effect purely because of having less samples, and consequently 

having an impact on the grade and tonnage estimates above cut-off. The Information 

Effect is a function of the lack of data at the time of estimation, which is often much 

less than the amount of data available during mining, when decisions are made about 

the destinations of mineralized rock, namely the plant, stockpile or dump (Dohm, 

2018b).  

When estimating a block on a fold crest, the search ellipse may easily capture the 

samples on another crest and ignore the ones nearer in the troughs. There is a 

concern that this may lead to underestimation or overestimation of the grade due to 

incorrect sample selection during grade interpolation. The current methodology also 

creates an artificial break in the grade continuity which is observed in the estimated 

grade values at the fold axis; this is where the two search ellipsoids overlap or meet. 
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1.3 Testing the Dynamic Anisotropy search methodology on the Konkola 

Orebody 

The DA method allows the search ellipse to continuously change orientation i.e. its 

dip and dip direction in accordance with the sampling information, and thus it is 

possible for each estimation block to have a different alignment of the ellipse 

depending on the structural geometry surrounding it. To achieve this, the surfaces 

were created that honour the changes in dip and dip direction of the mineralisation 

as observed in the core logging. Additional attributes were added in the block model 

to store the dip and dip direction from the surfaces geometry. During estimation 

process, these attributes are selected and for each block, the ellipsoid is oriented 

exactly as per the values in the attributes for each block.  It was envisaged that this 

method of interpolation would improve the perceived grade continuity and reduce 

the impact of the information effect that maybe as a result of not capturing enough 

samples. Figure 1.2 shows the orientation of the DA search ellipse and how it is 

following the Konkola copper orebody geometry dynamically thereby improving 

and honouring the grade continuity during the estimation.  

 

Figure 1. 2 Orientation of the DA search ellipse in plan and inserted is a vertical section 

down dip. Sections are from the Konkola orebody wireframes used in this research. 

Using the DA method, the North and West limbs can be estimated together 

improving the efficiency of the estimation process by making it faster and also 
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improve the estimate along the fold axis as there will not be any artificial break in 

grade continuity, as is currently the practice. 

1.4 Literature Review 

1.4.1 Kriging 

Geostatistical interpolation (kriging) was developed in the 1960s by Georges 

Matheron, a French Mining Engineer and Mathematician. Matheron named this 

process of interpolation Kriging after Danie Krige, who had done significant work 

on weighted averages in an attempt to improve resource estimation on the South 

African gold mines in the early 1950’s. Kriging is described as a ‘Best Linear 

Unbiased Estimator’ referred to as BLUE because it is a linear estimator based on 

weights that will give the minimum value of the estimation variance at the same 

time satisfying the condition that the sum of weights add up to 1. There are an 

infinite number of linear unbiased estimators and the best one is defined as having 

the smallest estimation variance. Kriging consists of optimizing the system of 

equations generally referred to as kriging system, under the constraint of minimising 

the estimation variance, and the estimator produced is the kriging estimator with an 

associated estimation variance called the kriging variance. The expression for the 

estimation variance depends on three things: The basic geometry of samples in the 

unknown area, the model of the semi variogram (spatial continuity), and the 

weighting allocated to each sample (Clark, 1979). 

Matheron (1967) defines Kriging as a procedure for estimating the grade of a panel 

by computing the weighted average of available samples, some being located inside 

and others outside the panel. The grades of these samples being x1, x2, …., xn, we 

attempt to evaluate the unknown grade Z of the panel with a linear estimator Z* of 

the form: 

𝑍∗ = ∑𝑎𝑖𝑥𝑖                                                                                                  1     

Where 𝑎𝑖 are the weights assigned to the samples  
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Matheron discusses the two conditions that need to be satisfied to determine the 

suitable weights assigned to each sample. 

i. The first one requires that Z* (the estimate) and z (the sample grade) 

must have the same average value within the whole large field V, this is 

mathematically expressed by the requirement that: 

∑𝑎𝑖 = 1,   where 𝑎𝑖 are the weights assigned to the samples. 

ii. The second condition requires that the weights 𝑎𝑖 have values such that 

estimation variance of Z using Z*, should take the smallest possible 

value, known as the kriging variance. 

1.4.2 Search Radius 

The search radius is used to identify which samples are considered to be relevant for 

a particular block estimate, and on which the kriging system mentioned above is 

based. Khakestar et al. (2013) identifies the search radius as one of the most 

important parameters that needs to be defined in the kriging interpolation. It defines 

the parameters of the search volume and often is determined based on the range of 

influence of the variogram. Not every sample composite within a deposit can be 

used in estimating a block/point. The samples nearest to the block being estimated, 

are selected first up until a maximum search limit is reached or the maximum 

number of samples is reached. These authors pointed out that in OK, the search 

radius or ‘kriging neighbourhood’ is defined by the user and that the definition of 

this search radius can have a significant impact on the outcome of the Kriging 

estimate. In particular, a neighbourhood that is too restrictive can result in serious 

conditional bias. This is to say that arbitrary selecting a search radius can be a risk.  

Besides deciding on the search volume parameters, there are several other steps that 

may need to be taken into consideration to guarantee a good estimation. The 

resource estimation process involves the definition of mineralisation constraints or 

geological domains, the statistical and/or geostatistical analysis of the sample data, 

and the application of a suitable grade interpolation technique (Glacken and 

Snowden, 2001).  
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Due to the importance of search parameters in estimating grades in an undulating 

orebody, the selection thereof is specifically addressed in this research report. 

1.4.3 Dynamic Anisotropy 

The use of DA is gaining ground especially when carrying out interpolation in 

undulating and highly folded orebodies. Machuca-Mory et al. (2015) explained that 

one of the major requirements before using DA, is a model of local anisotropies of 

the spatial continuity of grades. This model would include local angles of spatial 

continuity, and for some methods also the local anisotropy ranges of continuity and 

other parameters. Figure 1.3 below illustrates the difference in orientation between 

the Global Oriented search ellipse and the Dynamic search ellipse. 

 

Figure 1. 3 Anisotropic ellipsoid in the presences of Global oriented search ellipse and 

Dynamic search using locally varying anisotropies. Adapted from Machuca-Mory et al. 

(2015). 

The DA interpolation method has proved to reduce bias in the search parameter 

during estimation. With its ability to follow grade continuity in folded domains, 

much time is saved during estimation as sub-domaining due to geometry may not 

be needed. Gnamien, (2017) provides the four steps that are to be followed in order 

to perform an accurate DA search interpolation. These are summarised below: 

1. Create a trend surface: This surface should honour the different variations in 

dip and dip direction (trend) of the mineralisation. The surfaces created should 
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be the upper hanging wall (HW) and lower (foot wall) (FW) surfaces that define 

the orebody. 

2. Smoothing of local angles: This involves removal of spurious angles caused by 

wrong triangle positioning.  An important point is that Dynamic Anisotropy 

should mainly be based on the structural geology rather than an artefact of the 

domain wireframe. 

3. Add block model attributes: In this step appropriate block model attributes for 

the dip and dip direction are added from the wireframe geometry and is stored 

for each block. 

4. Select attributes during block model estimation: For the estimation of each 

block, the ellipsoid will be set exactly as per the values in the orientation 

attributes for each block, as created in step three above.  

1.4.4 Comparing Estimation results between Traditional method and DA 

method from previous case studies 

At a Fennoscandian Exploration and Mining Conference of 2011 hosted in Perth 

Australia, Glacken and Gray, (2011) discussed several challenges faced when 

carrying out a resource estimation. Of those highlighted, one of the major 

challenges was carrying out resource estimation in flexure, undulating, faulted and 

folded deposits. They mentioned that initially the resource geologist only had three 

options when faced with such a deposit. First was to use a single search ellipse 

throughout the deposit, second was domaining the orebody and thirdly by 

performing a coordinate transformation or unfolding. They then proposed a fourth 

methodology using DA and presented a case study on Kylylahti Copper Gold‐

Cobalt Mine. The DA method of interpolation allowed the search and variogram 

ellipse to rotate according to the dip and dip direction of the wireframes. No 

comparisons were shown between the results from DA and the other methodologies 

in their presentation, but they concluded that the DA methodology offered a quick, 

simple and mostly effective solution compared to other options. 



12 

Zabrusky (2013) presented a study of an epithermal vein system with a significant 

change in dip and dip direction. Two models were created in this study; one using a 

traditional search method and the other based on the DA methodology in Datamine 

Studio 3 software. In the analysis, the author used visual illustrations to compare the 

difference from the two models. Without constraining the estimation to vein 

triangulations, the DA method was able to produce a model with grade distribution 

following the orebody geometry while the model created using the traditional 

method, resulted in an estimated grade distribution that could not be well defined 

nor followed the grade geometry. This explained why the DA methodology had 

more grade continuity in its interpolations compared to the traditional method. The 

author concluded that using a search ellipse with an average value for the two 

distinct dips caused the grade estimation to be less representative than desired and 

that this was due to the irregular geometries in the vein deposit that could not be 

captured by the traditional methodology. 

At the onset of this research report it was thought that the Konkola Mine case study 

presented here would have similar outcomes to that of Zabrusky discussed above, 

and this was confirmed at the end of the investigation. 

Machuca-Mory et al. (2015) carried out a case study using Ordinary Kriging with 

local anisotropy angles applied to a structurally controlled vein gold deposit in 

Ghana. They focused on various practical aspects of the construction of the model 

of local anisotropy angles from geological wireframes. In their final analysis they 

used cross-plots to compare the differences in the estimated gold grades between 

the model built using local anisotropy DA and the model using the Traditional 

Stationary Global Anisotropy. They observed that the differences in the estimated 

grade between the two methods could be as high as ±10 g/t gold which is roughly 

equivalent to 6.5 times the standard deviation of the estimated value.  They 

concluded that the DA method gave a better estimate than the Traditional Stationary 

Global Anisotropy. 

The introduction of the DA methodology caused a significant improvement in terms 

of interpolation as in the cases of Stroet and Snepvangers, (2005); Glacken and 
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Gray, (2011); Morrison and Grant, (2012); Zabrusky, (2013); Machuca-Mory et al., 

(2015) and Cardwell and Cartwright, (2016). This, however, was not the case for 

Mandava, (2016) who did a study on Driefontein Gold deposit to ascertain the 

significance of using the DA methodology to improve the resource estimation as 

compared to the convectional OK which was the estimation method used at the 

mine. The results showed that the DA had no significant improvement on the grade 

estimates compared to the estimates from OK methodology. The author concluded 

that Driefontein Gold mine should continue to use OK as the difference between the 

two methodologies was insignificant. 

The literature reviews discussed above showed that the application of DA on several 

different deposits improved the resource estimation as compared to the traditional 

OK with fixed orientations for the search ellipsoids. However, most of the case 

studies reviewed were on folded and undulating vein type deposits, this research 

will however, focus on a folded and undulating stratiform copper deposit. 

1.5 Plan and Layout of this Research Report 

This research report study aims to investigate whether the application of a DA search 

approach in the ordinary kriging can improve resource estimation when dealing with 

a folded and undulating stratiform copper deposit. The study is supported by an 

industry case study from Konkola Mine located on the Zambian Copperbelt. In 

addition to this first introductory chapter, this research report contains a further four 

chapters. 

Chapter 2 focusses entirely on providing a detailed description of the Konkola Mine 

case study area from which the data used in this research report is sourced. It 

describes the location and brief mining history of the mine since the discovery of 

the deposit to present day situation. Detailed regional geology of the Copperbelt 

province, local geology of the mine including prominent structures present in the 

deposit are all discussed in this chapter. This geological background is particularly 

relevant and significant to this research study as in this geological complexity lies 

the core motivation for the research on improving current estimation practices. The 
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current practice and its associated geological modelling drawbacks are also outlined 

in this chapter. 

Chapter 3 lays out the research methodology used to achieve the objectives of this 

research. A brief theoretical description of each stage of the estimation process is 

also included. Exploratory Data Analysis (EDA), Variography and Quantitative 

Kriging Neighbourhood Analysis (QKNA) are the main topics discussed in this 

chapter. The resource estimation using the traditional Ordinary Kriging (OK) 

method and one using OK with the DA search method concludes the chapter. 

Results from the research methodology are presented and discussed in Chapter 4. 

Both estimation methodologies are compared using techniques such as: Global 

Statistics, Swath Plots, Scatter plots of block estimates vs the average block values 

from samples, Visual inspection and the distribution of differences in block 

estimates are all discussed in the chapter. The similarities and differences between 

the two estimation methodologies as observed from the results obtained are also 

discussed in this chapter including the significant improvement observed from the 

implementation of the DA search methodology. 

Chapter 5 contains the conclusion and recommendations such as putting forward 

that the DA search methodology be adopted hence forth as the interpolation 

technique for resource estimation at Konkola Mine. 

1.6 Study Objectives 

The focus of this research is a comparative analysis of estimations results derived 

from the traditional Ordinary Kriging methodology (currently used at the mine) and 

DA methodology for Konkola Mine. The aim was to find out which of the two 

methodologies gave more accurate estimates when dealing with an orebody that has 

complex geology such as that of Konkola Mine. Stroet and Snepvangers (2005), 

Glacken and Gray (2011), Morrison and Grant (2012), Zabrusky (2013), Machuca-

Mory et al (2015) and Cardwell (2016) applied the DA interpolation technique to 

estimate Mineral Resources. They did a comparative analysis on their results and 
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concluded that the application of DA to the estimation process produced better grade 

estimates. 

In this research study an investigation was done to firstly determine whether the 

folding, undulation and changes in dip and dip direction at Konkola Mine had a 

significant effect on the estimation of the copper resources to warrant the use of the 

DA estimation methodology. This was achieved and gave the reason to proceed with 

the study. Estimate results from the two methodologies were tested by comparing 

with the input sample data both statistically and by visual inspection. Further 

investigations were done to determine the financial benefit of adopting the DA 

methodology as the future estimation technique for the Konkola orebody. 

2 Research Case Study 

2.1 Project Location 

The data set used in this research project was sourced from Konkola Copper mines 

(KCM); a letter of consent to use this data was provided by the company. KCM is 

divided into four business units namely Konkola mine, Nchanga mine, Nkana 

Refinery and Nampundwe mine. The data set is specifically from Konkola mine 

which is an underground mine situated in Chililabombwe district on the Copperbelt 

province. From Lusaka, the capital city of Zambia, Chililabombwe is accessed by 

the Great North Road, via Ndola, Kitwe and Chingola. Chililabombwe is 25km to 

the north west of Chingola Town, the area is also about 15km from Democratic 

Republic of Congo boarder, see Figure 2.1. 
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Figure 2. 1 Location of Konkola Mine in Zambia, Southern Africa. (Konkola Copper Mines, 

2008)  

Konkola Copper mines is a subsidiary of Vedanta Resources, a mining company 

which has its headquarters in London UK. Vedanta owns 79.4% Shares in KCM 

while the rest of the shares are owned by the Zambia Consolidated Copper Mines 

(ZCCM). 

2.2 Mine history of Konkola Mine 

James Williams and Babb in 1924 first discovered Malachite minerals along the 

Kirilabombwe stream in the town now known as Chililabombwe also referred to as 

Bancroft town in older literature. This prompted for further investigation in the area. 

By the late 1920’s, a systematic prospecting campaign was initiated by Dr Austen 

Bancroft that followed up the mineralisation and correlated it with the geological 

sequence known from other parts of the Copperbelt. A diamond drilling program 

for surface exploration drillholes was carried out between 1949 and 1954. The 

drilling campaign proved to be very successful as the grade of the mineralisation 

was found to be good.  The sinking of the first shaft (Shaft 1) commenced in 1953, 
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thereafter ore production started in 1957 (Mwango, 2011) and since then mining 

activities have been going on to date .  

Currently Konkola mine is operating from two Shafts No. 4 and No. 3 for exploiting 

the Orebody from the West and North limbs respectively. Konkola mine is the 

wettest mine on the Zambian Copperbelt, and possibly in the world, and is currently 

pumping approximately 350,000m3 of water per day.  

2.3 Geology of the Copperbelt 

This encompasses the Regional Geologic Setting of the Zambian Copperbelt and the 

Stratigraphic Succession from the Basement Complex to the Katanga Supergroup. 

The Katanga Supergroup is the one that host the copper-cobalt mineralisation for 

both Zambia and Democratic Republic Congo (DRC). This section gives a detailed 

account of the understanding of the geology within Konkola mine and the 

surrounding areas. Geostatistical methods are used for quantifying geology and 

mineralisation by expressing them in numeric form so that financial decisions can 

be made on the viability of deposits (Dohm, 2018b). A good understanding of the 

geological setting, stratigraphy, depositional history and structures is fundamental 

to robust mineral resource estimation .This knowledge and understanding can assist 

in orebody domaining and provide insight into any anisotropy that might appear in 

the experimental variograms. 

2.3.1 Regional Geologic Setting 

The Central African Copperbelt is one of the richest and largest metallogenetic 

provinces in the world largely shared between Zambia and the Democratic Republic 

of Congo (DRC) (Cailteux et al., 2005; Selley et al., 2005; Torremans et al., 2013). 

It is situated on the Lufilian Arc which  is a northward-convex Pan-African orogenic 

belt comprising of the Neoproterozoic metasedimentary rocks of the Katanga 

Supergroup (Binda and Mulgrew, 1974; Unrug, 1983; Kampunzu et al., 2009).  

The Central African Copperbelt is divided into two major Zones, the Northern Zone 

which contains the DRC Copperbelt of tightly folded, thin skinned thrust sheets of 

weakly to non-metamorphosed Katanga strata, and the Southern Zone which 
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contains the Zambian Copperbelt consisting of slightly metamorphosed Katanga 

strata (Hitzman, 2000).  

Earlier Porada (1989), subdivided the Central African Copperbelt into four Zones: 

1) the external arcuate fold-thrust belt; 2) the 'Domes region'; 3) the Synclinorial 

belt; and 4) the 'Katanga high'. The Majority of the mines on the Zambian 

Copperbelt are located in the Domes region and the Synclinorial belt. Figure 2.2 

shows the location of the Copperbelt Regional tectonic setting in Africa and Zambia 

including the four different zones.  

The Zambian Copperbelt is located in the North Western Part of Zambia situated 

along the 800km structural trend of the Lufilian arc fold belt. It extends from Angola 

on the west passing through Solwezi in Zambia and then through Katanga province 

in southern part of DRC then back again into Zambia at Konkola passing through 

the Copperbelt Province into the DRC pedicle. Most of the of the Zambian 

Copperbelt mines are concentrated in the last 200km of the fold belt (Bowen and 

Gunatilaka, 1976). 

 

Figure 2. 2 Location of the Copperbelt tectonic setting in Africa and Zambia (Porada, 

1989; McGowan et al., 2006) 
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The Central African Copperbelt has several prominent structural features formed 

because of the folding and thrusting from the Pan African orogenic event. This event 

resulted into formation of several synclines and anticlines around Region. One of 

the major dominant structural features on the Zambian Copperbelt is the Kafue 

anticline trending north-west to south-east and flanked on the east by the Mufulira 

syncline and on the west by a large Synclinorium type structure (Bowen and 

Gunatilaka, 1976). The other dominant features are the Konkola dome in the 

northwest and the Kirilabombwe dome in the southeast (Konkola Copper Mines, 

2006). Draped around the Kirilabombwe dome is the Konkola orebody. 

The Copperbelt stratigraphy can be subdivided into two major groups the Basement 

Complex overlain by the Katanga Supergroup (McGowan et al. 2006).  The 

basement complex is subdivided into the Lufubu System, the overlaying Muva 

System and the granitic System (Mendelsohn, 1961;Fleischer et al., 1976; cited in 

McGowan et al., 2006) 

The Katanga Supergroup a sedimentary succession ranges from 5km to 10km thick 

(Francois, 1974, 1995 cited in Cailteux et al., 2005) unconformably overlays the 

Basement Complex . It comprises of metasedimentary rocks and is subdivided into 

the Roan, Lower Kundelungu also known as the Nguba and the Upper Kundelungu 

Supergroups (Master et al., 2005).  The sediments of the Katanga Supergroup were 

subjected to a low-level metamorphism characteristic of the green-schist facies. 

However, there is a gradual increase in metamorphic grade towards the south to 

south-westerly direction across the Copperbelt (Bowen and Gunatilaka, 1976). 

2.3.2 Stratigraphic Succession of the Copperbelt 

The stratigraphy of the Copperbelt can be subdivided into two major groups the 

Basement Complex and the Katanga Supergroup (McGowan et al., 2006). 

Basement Complex 

The basement complex of the Copperbelt consists of the pre- Katangan Lufubu 

system, Muva system and the old granites which forms the core of the Kafue 

anticline and the Domes around the region (Bowen and Gunatilaka, 1976). The 
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Lufubu system consists of schist, gneisses and the Intrusive Granitoids (Armstrong 

el al 2005) whereas the Muva system is composed of the quartzitic and metapelitic 

metasediments (Rainaud et al., 2003; Armstrong et al., 2005). The Nchanga Granite 

is the youngest intrusion in the pre-Katangan Basement Complex (Garlick and 

Brummer, 1951; Master et al., 2005). It is a massive coarse-grained peraluminous 

biotitic alkali granite with A-type geochemical characteristics (Tembo et al., 2000 

cited in Master et al., 2005). It is non-conformably overlain by the Katanga 

Supergroup (Master et al., 2005). 

Several writers have regarded the basement complex as the most viable source for 

the metal ore deposit on the Copperbelt (Sweeney et al., 1991; Sweeney and Binda, 

1994; Van Wilderode et al., 2014, Van Wilderode et al.,2015). This is still under 

debate as there are many theories on the possible sources of the Cu-Co 

mineralisation on the Copperbelt. Figure 2.3 depicts the geological map of the 

eastern part of the Zambian Copperbelt showing the basement rocks surrounded by 

the rocks of the Roan and Kundelungu supergroup.  
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Figure 2. 3 Geological map of the eastern part of the Zambian Copperbelt. (Torremans et 

al., 2013)  

Katanga Supergroup 

The Neoproterozoic Katanga Supergroup of the Central African Copperbelt in 

Zambia and the Democratic Republic of Congo (DRC) is the host of the major 

stratiform sediment-hosted Cu–Co deposits, as well as numerous other deposits of 

Cu, U, Zn, Pb, Au, Fe, etc. (Robert, 1956; Mendelsohn, 1961. cited in Armstrong  

et al., 2005). According to Cailteux et al. (2005) it hosts more than half of the 

world’s cobalt with major Cu-Co deposits having more than 10Mt copper. Initially 

defined in the Katanga province of DRC, The Katanga Supergroup is present in two 
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Pan African belts, The Lufilian Arc (DRC, Zambia) and the Zambezi Belt (Zambia, 

Zimbabwe and Mozambique) (Porada, 1989). It was exposed to deformation and 

low-level metamorphism in both belts. 

Unrug, (1988) subdivided the Katanga Supergroup into three major groups, The 

Roan, Nguba (Ex Lower Kundelungu) and Kundelungu (Ex Upper Kundelungu) 

groups. This was consistent with other authors who later subdivided and named the 

groups in a similar manner (Cailteux et al., 1994; cited in Master et al., 2005) and 

(François, 1973, 1987, 1995; Cailteux, 2003; Batumike et al., 2007 cited in 

Kampunzu et al., 2009). Recently the Katanga has been revised taking into account 

major regional unconformities, lithological characteristics, provenance of sediments 

and genetic aspects (Wendorff, 2005). Based on those accounts, Wendorff 

subdivided the Katanga Supergroup into five units ranked as groups: “Roan and 

Nguba which originated in rift depositories, the Kundelungu, Fungurume and 

Plateau both deposited in synorogenic foreland basins”.  

The Roan Group is the lowest unit of the Katanga Supergroup and it represents the 

initial phase of basin formation: uplift and rifting that resulted in the deposition of 

the coarse conglomerates at the base (Unrug, 1988). It forms a continuous 

succession of three lithostratigraphic unit unconformably overlaying the pre- 

Katanga Basement Complex (Binda, 1994 ; Wendorff, 2005): The basal siliciclastic 

unit (Mindolo subgroup), middle siliciclastic and carbonate unit (Kitwe subgroup) 

and an uppermost carbonate unit( Kirilabombwe subgroup) (Kampunzu et al., 

2009). Other literature only subdivide the Roan group into two subgroups the 

siliciclastic Lower Roan and the dolomitic Upper Roan subgroups(Bowen and 

Gunatilaka, 1976; Master et al., 2005). Geologists on the Copperbelt use mostly the 

latter nomenclature than the former. The Roan group is largely composited of 

conglomerates, quartzites, arkoses, shales, siltstones, dolomitic shales and 

anhydrate bearing dolostones (Master et al., 2005). 

The Nguba group is the middle unit of the Katanga stratigraphic sequence and 

represents the second phase of basin formation (Cahen et al., 1984 cited in Unrug, 

1988). It rests with an erosional unconformity on the Upper Roan group rocks and 
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as well as on older Basement rocks in some areas (Wendorff, 2005). The Nguba is 

subdivided into three units: the Mwashya subgroup, formerly regarded as forming 

the top of the Roan Group (Key et al., 2001) now regarded as forming the base of 

the Nguba Group: the mixed siliciclastic-carbonate Muombe subgroup and the 

predominately siliciclastic with minor carbonates Bunkeya subgroup (Kampunzu et 

al., 2009). 

Overlying the Nguba is the Kundelungu which begins with a tectonically induced 

Petit conglomerate of up to 50m and hosts most of the Kakonkwe Limestone 

fragments observed on the Copperbelt region (Porada, 1989). It is subdivided into 

three group: Gombela, Ngule and Biano observed from the DRC side (Batumike et 

al., 2007 cited in Kampunzu et al., 2009). The Gomela subgroup forms the base and 

it consists mainly of siltstones-shales-carbonate units and is marked by the basal 

glaciogenic petitc conglomerate (Kampunzu et al., 2009). The author also discussed 

the composition of the Ngule subgroup as consisting of siltstones, pelites and 

sandstones whereas the Biano subgroup as being an arenaceous unit of 

conglomerate, arkose and sandstone. 

The Kundelungu group is overlain by the Fungurume group which is a newly 

defined unit in the Katanga Supergroup regarded as a syntectonic foreland basin fill 

(Wendorff, 2003). It is characterized by synorogenic conglomerates that came from 

older strata uplifted to the south of the basin. The Katanga Plateau overlays the 

Fungurume group and it is the uppermost group in the stratigraphic sequence 

marked by the appearance of the feldspathic sandstone (Wendorff, 2005). 

The Katanga rocks were deformed and metamorphosed to a lower greenschist facies 

(McGowan et al., 2006). The regional metamorphism however, increases from the 

north to the south (Milesi et al., 2006) changing from a greenschist facies to epidote-

amphibolite facies (Porada, 1989). 

The nomenclature of the Katanga stratigraphic succession remains poor with 

different authors having different names for the same groups, subgroups or 

formations. This is because of the cultural and political divide that separates DRC 
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and Zambian Copperbelt. The other major reason is that the majority of the ore 

deposits are restricted to the lower Roan group therefore little attention has been 

directed to other stratigraphic lithologies beyond these confines (Woodhead, 2013). 

Table 2.1 summaries the Copperbelt stratigraphic succession from the Basement 

Complex to the top of the Katanga Supergroup. 

Table 2. 1 Copperbelt stratigraphic table Modified (Cailteux et al., 2005; Kampunzu et al., 

2009) 

 

2.4 Geology of the Konkola Mine Area 

The rocks of the Konkola mine area belong to the Basement Complex and the 

Katanga Supergroup. They experienced deformation at the same time resulting in 

the formation of anticlines and Synclines with the Basement rocks forming the core 

of the anticlines such as that of the Kafue anticline one of the major structural feature 

on the Copperbelt. The Katanga system comprises rocks of the Roan group also 

known as the Mine series and Kundelungu group separated from the Basement by a 

marked unconformity. The Roan group consists of the Lower Roan and the Upper 

Roan with the Copperbelt ore deposits being chiefly confined to the Lower Roan 

Group (Straskraba et al., 2012).  
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2.4.1 Stratigraphy 

The known Stratigraphy of the Konkola mine starts with the basement complex at 

the base and ends with the Upper Roan group of the Katanga Supergroup. It is only 

the rocks of the Lower roan subgroup exposed in the mine working areas and this is 

why most of the studies have focused on increasing the knowledge of this group 

more than any other group. 

Lower Roan 

The Lower Roan lies uncomfortably on the Basement complex and comprises of 

three formations: Footwall formation, Shale Unit and Hangingwall formation.  The 

footwall formation consists of rocks below the Shale unit namely the Basal 

Conglomerate, Footwall Quartzite, Argillaceous Sandstone and the Footwall 

aquifer. The Basal conglomerate is subdivided in three conglomerate groups; the 

Boulder conglomerate which is the bottom most rock unit exposed in the mine 

workings, the Pebble conglomerate (PBC) which is a coarse, well-cemented, 

quarzitic conglomerate and a slightly weathered Lower porous conglomerate (LPC). 

The LPC is generally leached, porous, poorly cemented and sorted with a micaceous 

clay matrix (Konkola Copper Mines, 2006). 

The Basal Conglomerate is overlain by the Footwall quartzite (FWQ) which is a 

hard, massive, false bedded, grey quartzite with occasional boulder beds (Konkola 

Copper Mines, 2001). It is a competent rock were most of the primary developments 

are done. The Footwall quartzite is overlain by Argillaceous Sandstone a bedded 

sandstone with shale intercalations. On top of the Argillaceous sandstone is the 

Porous Conglomerate, the Footwall sandstone and the Footwall conglomerate, 

which together they make up the Footwall Aquifer, the second major aquifer at 

Konkola mine(Konkola Copper Mines, 2006). The footwall Aquifer is overlain by 

the Ore shale unit (OSU).  

The OSU is a finely laminated, dark grey siltstone to fine sandstone with dolomitic 

bands and varies in thickness 4-20m (Konkola Copper Mines, 2010 cited in 

Torremans et al., 2013). At Konkola mine it is subdivided into five units A to E 
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(Konkola Copper Mines, 2001, 2006, 2007; Cailteux et al., 2005; Torremans et al., 

2013) with each unit having a different characteristics in terms of the amount of 

dolomite, metal concentration and extent of weathering. It host most of the 

economic mineralisation in form of Bornite, Chalcocite and Chalcopyrite with some 

of it present in the immediate Hangingwall and footwall formation (Straskraba et 

al., 2012; Torremans et al., 2013).  

The Hangingwall formation consist of the Hangingwall quartzite which overlays the 

OSU and the Hangingwall Aquifer. The Hangingwall quartzite is a strong massive 

quartzite with interbeds of arkose and occasional fine bands. It is weak in some areas 

as a result of kaonlinisation (Konkola Copper Mines, 2001). It is competent and acts 

as a barrier preventing water from the Hangingwall Aquifer flooding the production 

areas. Overlaying it is the Hangingwall aquifer which is the third major aquifer at 

Konkola mine and comprises of dolomites and interbedded siltstones(Konkola 

Copper Mines, 2006). It is overlain by the Shale with Grit formation which is the 

youngest formation in the Lower Roan Group and is a massive grey siltstone with 

arkosic grit bands (Konkola Copper Mines, 2001). 

Upper Roan 

The upper Roan subgroup is defined as a zone of abundant carbonate rich rocks. It’s  

succession comprises of the lower Bancroft Dolomite Formation and an upper 

poorly-known interval of mixed carbonates breccia and fine-grained siliciclastics 

(Woodhead., 2013) with an intrusion of gabbro and amphibolite sills (Annels 1984; 

Simmonds 1998 cited in McGowan et al.,2006). This unit is considered to have very 

limited economic potential and is the least studied unit of the Roan group (Binda, 

1994). This was earlier confirmed by Woodhead, (2013) when he described the 

upper unit of this subgroup as a poorly known interval. Figure 2.4 summarizes the 

stratigraphic succession of Konkola mine from the Basement Complex to the Upper 

Roan group.  
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 Figure 2. 4 The stratigraphy of Konkola mine (Mackay, 2000). 

2.4.2 Structure of the Orebody 

The Konkola orebody is part of the large Stratiform Cu–Co deposits of the Central 

African Copperbelt hosted in the Neoproterozoic metasediments of the Katanga 

Supergroup. Cailteux et al., 2005. Cited in (Torremans et al., 2013) describes this 
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region as one of the largest and richest metallogenetic provinces in the world which 

is largely shared by the Democratic Republic of the Congo (DRC) and Zambia.  

The Konkola orebody is located in the eastern part of the Zambian Copperbelt, in a 

region commonly referred to as the Domes region. The region has two major Domes 

the Kirilabombwe Dome and 15km to the North West is the Konkola Dome and the 

two are separated by the Kawumbwe syncline.  Draped around the Kirilabombwe 

dome is the Konkola Ore deposit from previous literature (Steel, 1957) referred to 

as Bancroft Orebody with the core of the Anticline comprising of basement rocks. 

The top of the anticline was eroded leaving two limbs jointed at the fold axis. The 

limb lying on the northern region trending from East to west is referred to as the 

North Limb and the other on the western side trending from North to south as the 

West Limb. Below Figure 2.5 shows major structures (faults and folds) as well as 

the position of the two major domes on the Zambian Copperbelt. Draped around the 

Kirilabombwe dome is the Konkola orebody.  

 

Figure 2. 5 Geological map of Konkola area (Mackay, 2000). 
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An analysis on the drillholes along the axis of the anticline and in situ measurements 

reviewed that the Kirilabombwe anticline plunges to the northwest at 10°–15° with 

a N75W strike of the fold axis concluded that: it is a tight and upright anticline with 

a sub vertical axial plane and an interlimb angle of 35°–45°. The prominent 

structures are the faults that occur on the western limb of the anticline at 2200mN 

and 2700mN position with movement of up to 60m. The effects caused by these 

faults are visible from surface and have been intersected at depth of more than 1 km 

from surface. Two other major faults are the Luansobe Fault cutting across the 

Orebody further south of the west limb dipping at 85 degrees to the North and the 

Lubengele Fault dipping at 79 degrees to the south on the north limb side. 

(Torremans et al., 2013) 

There are many other minor faults and folds that may be too small to show on the 

map which might affect the process of Mineral Resource estimation and mining in 

this area.  

2.4.3 Mineralisation 

Having a good understanding on the mineralisation of the deposit before 

commencing with the Mineral Resource Estimation process is beneficial as this 

insight improves the quality of the estimates. For instance appreciating how the 

mineralisation is spatially distributed may assist the resource estimator when 

checking for the assumption of stationarity as well as in the decision of domaining 

the orebody. Furthermore, this understanding can be drawn on in the interpretation 

of the behaviour of the experimental variograms and the selection of the best 

directions to model the spatial correlation of grades in the orebody under study. An 

example would be if the deposit experienced more than one mineralisation episode, 

this should show up in the experimental variogram and the variogram model can 

incorporate this phenomenon by having more than one structure in it (Dohm, 

2018b). Several other behaviours observed in the experimental variogram such as 

cyclicity and trend can also be linked to the mineralisation pattern. This section 

explains the possible sources of copper mineralisation at Konkola, its distribution 
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across the orebody, mineralisation episodes and the structures that control the 

mineralisation. 

Since the early 1900s, several metallogenic hypotheses were proposed to try and 

understand the primary source of copper mineralisation on the Copperbelt province 

(Cailteux et al., 2005). The origin of the metal still remains speculative, with much 

of the debate centred around the following hypothesis: magmatic derived fluids, 

erosion products of the basement complexes, volcaniclastic sediments and 

hydrothermal fluids from the granites-granodiorite-tonalite bodies (Cailteux et al., 

2005; Van Wilderode et al., 2015).  

Economic copper concentration at Konkola is restricted to the Ore shale unit and to 

adjacent parts of formations below and above the Ore shale. The mineralisation 

occurs as finely disseminated in the matrix of the host rock mainly as chalcocite, 

bornite and chalcopyrite (Annels, 1984). The deposition of the metal is suggested to 

be as a result of multiphase mineralisation process (Cailteux et al., 2005; Selley et 

al., 2005) with the Supergene remobilisation constituting a last mineralisation phase  

(Van Wilderode et al., 2015).  

Structural features have a close relationship with higher concentrations of copper 

grades in fold hinges and at the intersections of regional faults with the mineralised 

stratigraphic units. This relationship can be observed from the higher grades where 

they are macro and micro scale structural features suggesting that they played a 

significant role in the mobilisation and subsequent concentration of metals 

(Torremans et al., 2013). They also suggested that the large faults observed at 

2200mN and 2700mN area and the around the fold axis played an important role in 

grade distribution and supergene remobilisation. Figure 2.6 shows the distribution 

of the total copper across the orebody and its subsequent concentration around the 

fault zones.  
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Figure 2. 6 Distribution of percent copper (%Cu) around the mine. After (Torremans et 

al., 2013) 

2.5 Geological Modelling and Interpretation 

The 3D geological models at Konkola mine constitute the geological and assay 

surfaces generated from geological and assay contacts respectively. The geological 

contacts are the contacts between two lithologies extracted from drillhole data, 

crosscut samples and mapped data whereas the assay contacts are defined by the 

cut-off grade from drillholes and crosscut samples. Since the drilling pattern at 

Konkola is not regular, it is practically impossible to model the geological and the 

assay surfaces explicitly by creating sections. The geology surfaces are modelled by 

extracting the points from the lithological contacts and the Digital Terrene Model 

(DTM) is created by a mathematical function using leapfrog software controlled by 

the extracted points. The two assay surfaces (AHW and AFW) are modelled at a 

cut-off grade of 1% TCu using hybrid method. The hybrid method uses both explicit 

and implicit modelling techniques. The assay file is manually coded with AHW for 

the cut-off on the hangingwall side and AFW for the cut-off on the footwall side. 
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An excerpt of the file is shown in Table 2.2. The points are extracted from the codes 

and a mathematical function is used to create the DTM for both assay surfaces. The 

major faults the 2200mN, 2700mN and these along the fold axis are modelled to 

represent a break in both geology and grade continuity. The extent of the boundary 

edge of the surfaces is controlled by the exploration holes drilled from surface. The 

modelled surfaces are used as geozones to constrain the blocks forming the 

foundation of Mineral Resource estimation. 

Table 2. 2 Excerpt of a coded assay file. 

 

3 Methodology and Description of the Theoretical Estimation 

Processes 

3.1 Exploratory Data Analysis 

Exploratory data analysis (EDA) must precede any form of work in geostatistical 

and geological modelling. This is to understand the characteristics of the data and 

increase confidence of the results obtained in the future process. To get a good 

understanding of the data, summarizing it into statistical parameters and graphs is 

the main practice used in EDA. A detailed EDA may start with sample verification 

and validation, carrying out descriptive statistics, plotting of Histograms and 

cumulative frequency curves for distribution analysis, trend analysis, data 

declustering and detecting outliers. Several authors have used EDA for different 

purposes, such as determining cut of grades   (Glacken et al., 2001; Sinclair, 1999; 

Chanderman, 2016), statistical analysis (Mpanza, 2015), domaining (Mandava, 
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2016) etc. Overall, carrying out EDA on the data set improves the quality of the 

variograms and final estimates (Dohm, 2018b)   

Sinclair and Blackwell (2002) listed other benefits of carrying out EDA such as error 

recognition and data validation done on the raw data in the initial steps. They also 

noted that taking time to comprehensively understand the statistical and spatial 

characteristics of the variable of interest was very important. This included 

understanding the inter relationship between variables and checking for any 

systematic spatial variation such as in the grade distribution. They further said EDA 

could be used to check for the assumption of stationarity and to outline the 

geological domains that may require to be evaluated independently. 

3.1.1 Geological Database 

The author of this research report received a Microsoft Excel spreadsheet containing 

the drillhole data of Konkola Mine. The data originated from three sources namely 

Exploration diamond drillholes, Evaluation diamond drill holes and Pseudo 

drillholes. The commodity of interest is percentage Total copper (%TCu). 

Exploration diamond drillholes are holes drilled from surface in the early stages of 

exploration and give an indication of the extent of the deposit. Evaluation drillholes 

are holes drilled from the mining extraction drives perpendicular to the orebody at 

a drilling spacing of 25m. Pseudo drillholes are created from crosscut samples that 

are converted to represent a drillhole. The orebody is sampled across the width, 

starting from the footwall side which is picked by the surveyor as the collar and 

ending in hangingwall picked as end of hole.  

Data from the above-mentioned sources is captured in Excel into four files, the 

Collar file, Survey file, Geology file and Assay file. The collar and survey readings 

are plotted manually on the section plans and in plan-view to verify the coordinates, 

bearing and inclination before being signed off by the senior shaft geologist. The 

senior shaft geologist equally signs off the geology file and the assay files after 

confirmation of the assay QAQC results. 
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3.1.2 Data Validation 

A requirement for reliable estimation is for it  to be based on a clean data set (Dohm, 

2018a). Database validations were carried out on all the samples at sampling average 

interval of 1m. The following validation exercises were undertaken. 

• Check for outliers in terms of spatial location;  

• Check survey data for bearing beyond 360 and inclination beyond 90−
+ ;  

• Check for missing data in collar file, survey file, geology file and assay file; 

• Check for data duplication; 

• Overlapping sample intervals; 

• Consistence in geological coding; and 

• Check that drillhole length is not less than the sampling length. 

Outliers in spatial location, that is drillholes appearing in isolation were validated 

by confirming their coordinates. The locations of the drillholes were plotted on plan 

to check if there were any regions showing drillholes located in isolation from others 

as well as assist to determine the boundary limits. The plot also gave a clear picture 

of how the %TCu grade is spatially distributed and an indication for a decision on 

estimation domaining. Figure 3.1 shows a plot of the drillhole locations and the mine 

boundary limits. From this location plot, two surface drillholes on the southern side 

appeared to be isolated and far from known deposit limits. Verification of these two 

drillholes failed, it was not clear whether the drillhole positions were planned 

positions or whether their collar coordinates were captured incorrectly. The two drill 

holes were removed from the database, as no benefit could be seen in retaining them 

apart from having an increased number of samples on the one hand, and introducing 

unnecessary risk on the other, thus they were considered irrelevant since they are 

located beyond the study area of interest to this research. 
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Figure 3. 1 Konkola drillhole locations highlighting the spatial distribution of the %TCu 

grades 
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3.1.3 Statistical Analysis 

The application of statistical methods to metal grades and other attributes within a 

deposit is mainly concerned with the central tendency, dispersion of values, 

probability density functions (histograms), probability statements and simple 

correlations (Sinclair and Blackwell, 2002). 

Central Tendency 

The mean, median and mode are referred to as measures of the central tendency. 

The mean donated by (“µ”) is the average value of the data set being analysed. It is 

that value every sample would have if the total value was shared equally amongst 

all the samples (Dohm, 2018a) .The mean is calculated using the formula. 

µ =  
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

                                                                   2 

Where 𝑥𝑖 is the sample values and n is the number of observations. The mean gives 

a measure of the central position of the data values and does not account for spread 

of data.  

The median is the middle value within a data set when all the values are arranged in 

ascending or descending order. It is the fiftieth percentile of the data set and divides 

the data in half. It is actually a more reliable measure of central tendency for small 

number of observations than the mean (Sinclair and Blackwell, 2002). The formula 

for calculating the median is as shown below. 

𝑀𝑒 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 [
(𝑛 + 1)

2
]

𝑡ℎ

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑛𝑘𝑒𝑑 𝑑𝑎𝑡𝑎                       3 

The mode is the value that occurs most often in the data set. This can be either the 

most occurring single value or the most occurring range of values. The mode can 

easily be checked by plotting histograms and the highest peak on the graph represent 

the most occurring values representing the mode. Modes are important in signaling 

the possible presence of complex distribution made up of two or more subpopulation 
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and also in understanding outliers especially abnormally high values (Sinclair and 

Blackwell, 2002). 

There is a strong relationship between these three measures of central tendency also 

referred to as the “middles”. In a situation where all the middles are similar, the 

result is a symmetrical distribution of data or a bell shaped. For data with a positve 

skew distribution the Mo < Me < Mean and when the Mean < Me < Mo the 

underlying probability distribution is negatively skewed (Dohm, 2018a). 

Dispersion 

Dispersion is the measure of how spread the data values are in a given data set. The 

degree of dispersion in a data set can be measured from the calculations of the range, 

variance and standard deviation. The range alone is unsuitable for defining 

dispersion because it only looks at the difference of the two extreme values the 

maximum and minimum and ignores the internal variability. Dispersion is therefore 

widely measured by variance and standard deviation.  The calculation of the 

variance and the standard deviation is dependent on the mean as they measure the 

spread of data around the mean as the centre value. Having a majority of very low 

and high values away from the central value might symbolize high variance and 

deviation from the mean. The equation for calculating the variance is as shown 

below and the square root gives the standard deviation of the data set (Dohm, 

2018a). 

𝜎2 =
1

𝑛 − 1
∑(𝑧𝑖 − 𝑧)

2                                               4

𝑛

𝑖=1

 

Where 𝑥𝑖  represents any data value, 𝑧 is the mean and n is the number of 

observations. Low variance and standard deviation signifies that the data values are 

closely related and clustered around the mean. The amount of spread within a dataset 

can also effects the shape of the distribution in terms of the kurtosis and Skewness. 
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Coefficient of Variation 

The coefficient of variation CoV is the ratio of the standard deviation to the mean. 

It also gives a measure of spread of the data. A low (CoV<1) means that the data 

values are not too widely spread and may give a normal distribution. A high value 

(CoV >1) symbolizes a high variability in the data values and most cases data might 

be skewed. The CoV comes in handy when comparing variability between two or 

more datasets. Descriptive statistics were computed for the Konkola dataset. Table 

3.1 shows the summary of the statistics.  

Table 3. 1 Summary of the Descriptive Statistics (%TCu) Cu composites 

 

Normal Distribution 

Also referred to, as the Gaussian distribution is the most widely used theoretical 

distribution in statistics. Its probability density distribution function is defined by 

the mean and standard deviation only, the skewness and kurtosis are constant. The 

normal distribution is defined by the equation: 

𝑓(𝑥) =
1

𝜎√(2𝜋)
𝑒
{−
(𝑥−µ)2

2𝜎2
}
                                                       5 

Where:𝒙𝒊 is any value in the data set, and µ is the mean and 𝞂 is the standard 

deviation of the data set. 

Given the mean and standard deviation of a normal distribution, probabilities can be 

determined by using the standardised normal distribution curve. A standardised 

value is created for each observation by deducting the sample average from it and 

then dividing that answer by the sample standard deviation.   

Variable Nsamples Min Max Mean Median Variance Std Dev CoV

%TCu 15948 0 21.82 4.19 3.96 3.12 1.77 0.42
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Figure 3.2 shows the normal distribution curve and its probabilities representing 

areas under the curve in terms of percentages. 

     

Figure 3. 2  Standardize normal distribution curve source (Dohm, 2018a) 

The assumption of normal distribution can be tested through several techniques. One 

technique is comparing the three measure of central tendency. If the mean, median 

and mode are similar then the data could be having a normal distribution. The other 

method is to plot the distribution of the data to analyse its distribution 

visually/graphically. Plot of histograms, Box plots and cumulative frequency curves 

will depict the frequency distribution of the data and show if the data is normally 

distributed or not. 

Histogram and Probability density plots 

Histograms are graphs of frequency of a variable within a continuous uniform value 

interval known as the class interval. In mineral inventory studies, histograms can be 

useful in determining sampling and analytical errors, and in the determination of 

grade and tonnage above cut-off. A probability density function (PDF) is a 

continuous mathematical model or curve fitted to the shape of the histogram 

(Sinclair and Blackwell, 2002). The histogram shape provides information on data 
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location, spread, skewness, presence of multiple modes symbolising sub populations 

and presence of outliers. (Dohm, 2018a). 

A histogram of the Konkola Mine %TCu population was constructed and the 

outcome supports the descriptive statistics tabulated in Table 3.1. A probability 

density model was fitted to the histogram to represent a continuous distribution of 

data see Figure 3.3. 

 

Figure 3. 3  Histogram and model for Konkola Mine copper %TCu dataset 

Analysis was done on the calculated statistics Table 3.1 to determine how the data 

was distributed. Similarities between the mean and the median showed that the 

position of the mean is almost central depicting the behaviour of a Gaussian 

distribution. A relatively low CoV of 0.42 indicates that there is minimal dispersion 

in the data and supporting that the data could be normally distributed. The range 

highlights the big difference between the minimum 0.0 %TCu and the maximum 

21.8 %TCu. A lower mean value of 4.2 %TCu showed that the majority of data was 

represented by the lower values and the small standard deviation of 1.77 %TCu 

showed that majority of the sample were clustered around the mean value, both 

observations are supported by this shape of the histogram. The analysis further 

revealed the presence of outliers, looking at how high the maximum value is in 
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comparison to a low mean and small standard deviation. A percentile ranking was 

computed to check how the data is distributed as shown in Table 3.2 below. At 99th 

to 100th percentile, a jump in the %TCu value was observed from 9.05%TCu to 

21.82%TCu. This showed that only 1% of the data could contain outliers.  

Table 3. 2  Percentile ranking of the %TCu.  

 

Outliers 

Sinclair and Blackwell (2002) define outliers as “Observations that appear to be 

inconsistent with the vast majority of data”. They can be either extreme low values 

or extreme high values. These values results from several factors that include errors 

in assaying or an indication of a subpopulation within a domain. In mineral deposits, 

the major concern is mostly with the extreme high values within a dataset resulting 

in the distribution having a positively skewed shape. The presence of outliers can 

cause a lot of problems, according to Rossi and Deutsch (2014), outliers can affect 

the basic statistics like mean and variance, correlation coefficient, and measures of 

spatial continuity (variography). The other major effect can occur during the 

estimation process using Kriging when an outlier value is assigned a negative 

weight, this may result in having incorrect estimates (Sinclair and Blackwell, 2002). 

Sinclair and Blackwell have outlined three approaches available for dealing with 

outliers. One option is cutting or capping of data. Reducing the values to some 

acceptable upper limit using experience or by using empirical cutting method to at 

Percentile %Tcu

10 2.14

20 2.60

30 3.03

40 3.47

50  (median) 3.96

60 4.45

70 5.03

80 5.68

90 6.51

95 7.30

97 7.91

98 8.35

99 9.05

100 21.82
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least 95th percentile. Another approach is to omit outliers during the calculation of 

the experimental variograms and modelling thereof, but to use them in Ordinary 

Kriging estimation process. The last choice is to, in a case where the outliers 

represent a separate subpopulation, exclude them during estimation and regard them 

as being independent from the principal domain being estimated.  

Determining of outliers is subjective and may differ from one practitioner to the 

other but there are universal steps that can be followed to assist, identify and analyse 

them. This is because outliers are unique values and can be statistically and spatially 

isolated from other values and action taken.  

The flow chart provided by De-Vitry (2014) in  Figure 3.4 was followed in 

identifying and dealing with outliers in this study. In the place of scatterplots, Box 

and whisker plots were used. 

 

Figure 3. 4  Flow chart identifying and characterizing outliers (De-Vitry, 2014) 

Outliers in many cases are removed from the data set during the variography 

analyses because they have the potential to reduce the quality of the variograms. 

These extreme values maybe used during estimations because they make the deposit 

viable. 
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For Konkola dataset the histogram in Figure 3.3 shows that samples with high values 

and low frequency pull the graph slightly to the right though the majority of the data 

is concentrated around the centre.  

The box and whisker plot in Figure 3.5 gives a clear picture of the outlier values 

above Q4. A combined analysis from the percentile ranking, histogram and box plot 

was used to set the outlier cut off at 9.2 %TCu representing less than 1% of the total 

samples.  

 

Figure 3. 5  Box and Whisker plot 

Samples that were above the Q4 are falling within the outlier section. They will need 

to be domained, capped or the extreme value be cut to avoid producing variograms 

with abnormally high variability caused by only few samples.  

The location of all the outliers identified in this manner are highlighted in Figure 3.6 

with reference to other drillholes. The outlier values are coloured in red and are 

mostly concentrated around the areas affected by faulting which is expected as 

explained in section 2.4.3 under mineralisation. 
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Figure 3. 6 Location of the TCu % outliers highlighted in red 

3.1.4 Domaining 

Domaining is a common practice in the mineral resource process. Deutsch and 

Wilde, (2011) define a domain as a subset of the deposit grouped together for 

common analysis. They are defined as volumes that are statistically and geologically 

homogeneous. In Mineral Resource estimation, domains are demarcated by 

boundaries in the form of strings, 3D surfaces, or solids. Domaining forms the 

foundation of Geostatistics as it improves the quality of variography (Sinclair and 

Blackwell, 2002; Chanderman, 2016, Dohm 2018b). In reality, most of the data will 

tend to have different zones of mineralisation within which the grade characteristics 

vary. If domaining is not applied to the deposit, it can lead to grade smoothing and 
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eventually resulting in wrong estimates. The decision to domain an orebody for 

geostatistical estimation is influenced by, for example, having a mixed population 

which may result in having trend in the data or evaluating a deposit with varying 

geometry which might affect variography, or having different geological zones with 

different statistical and spatial characteristics. All of these factors will result in the 

creation of more spatially homogeneous domains and thereby improve stationarity. 

Abzalov and Humpherys, (2002) did a comparative study on a Mesothermal Gold 

deposit in northern Canada where resources of the same zone were estimated after 

applying domaining and secondly without domaining. Results from their research 

showed that estimates obtained without domaining of mineralisation yielded a 

substantial error due to excessive grade smoothing. 

Using data for analysis and estimation from similar rock volumes reduces the noise 

when doing variography and reduces over smoothing during estimations.  

The Konkola orebody was divided into two-estimation zones; Zone1 and Zone2 

based on the grade distribution and concentration shown in Figure 3.7.  

Zone1 has high-grade concentration compared to Zone2. This also explains why 

most of the outlier samples are concentrated in Zone1 refer to Figure 3.6.  

By analysing Zone1 and Zone2 separately the effect of outliers was reduced and 

their impact within Zone1 was minimised.  
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Figure 3. 7 Estimation domains: Zone1 and Zone2 

To assess whether there was a statistically significant difference in distributions and 

mineral concentration of the two Zones, the %TCu descriptive statistics were 

calculated and are summarised in Table 3.3 and the corresponding %TCu 

histograms shown in Figure 3.8, were generated for the two individual zone.  
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Table 3. 3  Descriptive Statistics for %TCu in Zone1 and Zone2 

 

 

Figure 3. 8 %TCu Histograms and models for Zone1 and Zone2 

From the summary statistics a difference in the mean values is observed, this 

difference is highlighted by the shift in the positioning of the histograms of Zone1 

and Zone2 on the x-axis. The shape of the histograms are similar, however the 

highest frequencies in Zone1 occur between 3 %TCu and 8 %TCu and that in Zone2 

between 2 %TCu and 5 %TCu. This shows that Zone1 has a higher and wider grade 

concentration compared to Zone2 which has a lower and narrower grade 

concentration. The box and whisker plot in Figure 3.9 below clearly confirms this 

observation, seen by shapes or positions of the box and whiskers for each zone.   

Zone Variable Nsamples Min Max Mean Median Variance Std Dev CoV

Zone 1 %TCu 10255 0 21.82 4.67 4.64 3.46 1.86 0.4

Zone 2 %TCu 5666 0.1 16.17 3.35 3.16 3.15 1.18 0.35
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Figure 3. 9 The %TCu Box and Whisker plots for Zone1 and Zone2 

The data in Zone1 has a higher dispersion than that of Zone2 therefore it is expected 

that the variogram for Zone1 to have higher variability when compared to that of 

Zone2. 

Zone2 comprises of the two limbs of a fold therefore estimating the direction of 

greater continuity during variography will be difficult as the two limbs have 

different orientations. For the purpose of creating directional variograms, Zone2 was 

subdivided along the fold axis into two zones taking the total number of zones to 

three.  

This is  similar to the approach explained by Glass and Cornah, (2006) where a 

folded orebody was domained into limbs in order to define the orientation for the 

sake of variography. Individual variograms were then generated with orientation 

matching the dip and dip direction of the domains and the best variogram from the 

two fold limbs could be used to represent the both zones for the variable under study 

in this case %TCu. Figure 3.10 shows the three zones and their descriptive statistics 

summarized in Table 3.4. 
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Figure 3. 10  Estimation and Structural domains: Zone1, Zone2 and Zone3 

Table 3. 4  Descriptive statistics for the %TCu in the Zone1, Zone2 and Zone3 

 

The difference in grades between Zone1 and Zone2 and 3 is relatively high. Zone2 

and Zone3 are very similar with mean values close and both have a low dispersion 

as can be seen from the descriptive statistics in Table 3.4 and the Box and whisker 

plot in Figure 3.11 below, confirm this interpretation graphically. 

Zone Variable Nsamples Min Max Mean Median Variance Std Dev CoV

Zone 1 %TCu 10255 0 21.82 4.67 4.64 3.46 1.86 0.4

Zone 2 %TCu 3322 0.1 10.88 3.28 3.08 1.42 1.19 0.36

Zone 3 %TCu 2344 0.76 16.17 3.43 3.29 1.36 1.16 0.34
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Figure 3. 11  Box and whisker plots for %TCu in the Zone1, Zone2 and Zone3 

Though the Box and Whisker plots show outliers beyond 6.5%TCu for the two 

zones, these were not treated as extreme values as they were so close related to the 

other lower values and the outlier cut remained at 9.2%TCu as previously 

determined. 

Three composite files were then prepared for each domain to use for the variography 

analyses. After domaining, the effect of the outlier values were reduced as the 

majority of them were confined to Zone1, which is the higher grade zone and thus 

keeping the variability in this zone within an acceptable range. Outlier values were 

retained and used in the spatial analysis and grade estimation 

3.2 Geostatistics 

This section focuses on the theory and application of geostatistical methods required 

to improve the understanding and measure of spatial variability within the deposit. 

Two data sets may have the same descriptive statistics but still be different in terms 

of spatial distribution or data roughness. Good understanding of the spatial 

variability within a data set improves prediction of unsampled areas and ultimately 

improve the accuracy of the resource model. Experimental and model variograms 
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will be constructed in this section to produce 3D models of spatial variability and 

later quantify the variability to use in geostatistical interpolation. 

The detailed theory of Geostatistics was first published by Matheron (1963). With 

its advancement over time, the purpose of modern geostatistical study in mining is 

to create high resolution numerical models that will use all available information to 

represent geologically realistic features (Boisvert et al., 2009). Before carrying out 

any serious geostatistical study, it is paramount that the theory of regionalized 

variables (Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; de Sousa, 

1990) together with the four assumptions (Dohm, 2018b) on which all geostatistical 

techniques are based are well understood. Isaaks and Srivastava, (1989) defines a 

regionalized variable as one whose values are randomly distributed in space. These 

values have spatial locations, depend on each other, and specified by a probabilistic 

mechanism known as a random function. 

The four assumptions to be satisfied before doing any geostatistical study are listed 

and described below (Dohm, 2018b): 

1. Sample values must be measured with precision and be reproducible. This can 

be accounted for by administering repeats and duplicates; 

2. Sample values are measured with accuracy and represents the true value of the 

sampled point. Level of accuracy can be checked by use of standards; 

3. Sample collection is from a physically continuous and homogenous population 

of all possible samples. There should not be any sudden changes in the spatial 

characteristics to ensure estimation is done within known geological constraints; 

and 

4. The values at sampled locations are related to values at unsampled locations. 

In addition to the four assumptions, the principle of stationarity has to be satisfied. 

Other factors to identify is the presence of outliers and trend in the data set, may 

affect the spatial variability analysis, if left unchecked. 
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3.2.1 Stationarity 

The main objectives of doing a geostatistical research and modelling is to build 

numerical models, only after decisions relating to stationarity have been addressed. 

Boisvert and Deutsch (2011) defined stationarity as being a decision of how to pool 

available data for analysis. The assumption is that a pool of some data values within 

a given domain are representative of the entire domain. Geostatistical methods rely 

on this assumption, this is critical to ensure that there is representativeness and 

proper use of geostatistical tools available. According to Boyle, (2010), the 

assumption of stationarity is actually far more important in improving accuracy than 

that of determining optimal search radius, sample size, block size and block 

discretization. The level of stationarity may differ from one geostatistical 

interpolation method to the other; some may require strict stationarity (Simple 

kriging) where others may only require quasi-stationarity (Ordinary Kriging) which 

is assumed to exist in practice. Under strict stationarity, the mean of the random 

variable must be independent of location anywhere within the domain and under 

quasi-stationarity the variable is only constant within a limited distance known as 

the range (Journel and Huijbregts, 1978). Ordinary Kriging which is the 

interpolation method used in this research does not strongly emphasise stationarity; 

it depends on the neighbourhood (search range) to estimate the mean value and does 

not follow strict rules on stationarity. 

An effective practice for achieving some level of stationarity is by domaining the 

data. The Konkola orebody was subdivided into three zones refer Section 3.1.4 to 

ensure that only similar data was used for both the variography and interpolation 

processes. 

3.2.2 Variography 

The process of mineral deposition results in a certain mineralisation pattern of 

spatial correlation, which is very important to the Mineral Resource evaluator to 

know and understand, prior to carrying out estimations. Therefore, the description 

and modelling of this spatial correlation pattern gives a better view of the 

mineralisation process and improves prediction of grade at unsampled locations 
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(Rossi and Deutsch, 2013). In order to be able to estimate the spatial correlation 

pattern, it is important to first understand the nature in which grade exists. Grade is 

a Random Variable (RV) whose uncertainty can be determined by a Random 

Function (RF). The RF is restricted to a RV that is within a deposit or domain that 

is considered stationary (Rossi and Deutsch, 2013), that is the RVs under 

consideration belong to the same statistical population. In Geostatistics, the tool 

mostly used to quantify the spatial correlation pattern of the mineralisation is the 

variogram. Barnes, (2004) defines a Variogram as a quantitative descriptive statistic 

represented graphically to characterize the spatial continuity or roughness of a data 

set. It defines the spatial variability between sample pairs within a given domain 

using the function: 

2𝑦(ℎ) =  
1

𝑁(ℎ)
 ∑[𝑧(𝑢𝑖 ) − 𝑧(𝑢𝑖 + ℎ)]

2

𝑁(ℎ)

𝑖=1

                                            6 

Where N(h) is the number of pairs, z(𝑢𝑖) is the sample value at location 𝑢𝑖 and (𝑢𝑖 +

ℎ) is the second sample value at a location separated by the vector h.  

The semi- Variogram serves many purposes during geostatistical estimation process 

as evidenced below:  

• It provides a numerical and graphical measure of the continuity of the variable 

of interest within a deposit (Clark, 2009);  

• The variogram can also be used in defining the block size and other QKNA 

parameters during block modelling (Glacken and Snowden, 2001); 

• To verify the presence of trend in the data set (Deutsch and Wilde, 2011); and 

• Can be used to determine optimum drilling grid for grade estimation. 

When generating a semi variogram, practitioners should always validate the 

variogram with interpretations from the known geology (Dohm, 2018b). The 

variogram investigates and quantifies the geological information in numeric form 

for geostatistical purposes. In a case where a variogram is constructed with scarce 

data, the structural geological knowledge can be used to inform the local variograms 
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(Machuca-Mory et al., 2015).  All effort is required to improve the quality of the 

variogram because it improves the estimation and simulation process. 

3.2.3 Experimental and modelled Variograms  

The variogram is the measure of geological variability over distance (Rossi and 

Deutsch, 2013). From the variogram the variability is measured as γ(𝐡) at a distance 

in a particular direction h see equation 6. The experimental variogram has two major 

components, the random component which gives measure of the nugget effect (𝐶0) 

and the structural component to which the range (a) is defined at a point it reaches 

the sill (𝐶1). 

Three important steps have to be considered before calculating an experimental 

Variogram (Rossi and Deutsch, 2013). 

• The data has to be properly understood from a geological perspective; 

• A coordinate system has to be established because the variogram is computed 

in a coordinate system; and 

• Domaining, Outliers and transformation of data should be considered.  

Before setting up lag distances and directions of the exprimental semi-variogram 

calculations, it is cardinal to understand the drillhole pattern. The lag distance is 

usually set starting with the distance equal to the drillhole spacing or less. It is 

important to start with a smaller lag distance then steadily increase it until a better 

looking experimental variogram is selected. Keep in mind that maximum lag should 

not be more than half the length of the domain in any direction since the semi-

variogram is only valid up to half the domain length. If the experimental semi-

variogram is calculated for lags extending beyond this limit, the number of pairs in 

the calculation of the semi-variogram for theses longer lags reduces, resulting in 

unreliable estimates of the patial relationship for these lags and directions. In most 

cases it’s rare to find all paired samples at equal distance, a lag tolerance is used to 

control the capturing of the data at given lag distances.  

The choice of direction of maximum continuity depends on several factors; The 

understanding of the geological interpretation (Dohm, 2018b), number of samples 
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in the data set and software used (Rossi and Deutsch, 2013). If the deposit has 

anisotropy, three different directional distances will be generated by the variogram 

model that will became the main axes of the ellipsoid used during interpolation 

process. 

Validating the experimental variograms with known geological information is 

important. Discrepancies that may arise between the known geology and the 

interpretation of the variogram model should be resolved before proceeding into 

Mineral Resource estimation. The four basic things to look for in variogram 

interpretation are cyclicity, trend, geometric anisotropy and zonal anisotropy (Rossi 

and Deutsch, 2013). 

After calculation of the experimental variogram, a model is fitted on the 

experimental points to produce a continuous curve of the spatial variability. The 

model is important because Kriging and other geostatistical interpolators require a 

covariance or variogram value at all possible distances  (𝐡) (Dohm, 2018b). The 

model will also guarantee that the Kriging variance is positive (Sinclair and 

Blackwell, 2002; Rossi and Deutsch, 2013) and smoothens out the fluctuations 

which could be as a result of sampling error (Sinclair and Blackwell, 2002). All the 

geological information observed from experimental variogram including nugget 

effects, anisotropy and trend should reflect in the modelled function γ(𝐡) (Rossi and 

Deutsch, 2013). There are several types of the variogram models including the 

Spherical model, Exponential, Gaussian and the linear models. The Spherical model 

is most commonly used model with the equation for a single structured with a nugget 

effect model shown below. 

𝛾(ℎ) =  

{
 
 

 
 0                                                        𝑖𝑓 ℎ = 0        

𝐶0 + 𝐶1  [
3ℎ

2𝑎 
− 

ℎ3

2𝑎3
]          𝑖𝑓 0 < ℎ ≤ 𝑎         

𝐶0                                                       𝑖𝑓 ℎ > 𝑎        

              7  

Where (h) represents variability, 𝐶0 is the nugget effect, 𝐶1 is the sill for structure 

one, 𝑎 and ℎ are the range and separation distances respectively. 
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For each of the three zones identified for Konkola, downhole variograms were 

constructed for estimation of the nugget effects see Appendix 7.1. Variogram maps 

were then generated to assist in determining the directions of maximum continuity 

long range at a low variability. Creating one variogram map for the whole deposit 

was impossible due to the different directions of continuity in each limb. See 

Appendix 7.2 for the variogram maps. Several experimental variograms were 

constructed in each zone and models fitted on them Appendix 7.3. The longest range 

or major (a1) in this case representing grade continuity along strike was selected 

first, and then the semi major (a2) was selected at 90 degrees or close to 90 degrees 

from a1 representing continuity down dip. The software aided the selection of the 

a2. The selected axes were in tune with the expectations from geological 

interpretation of the area. Variograms along the vertical axis (a3) to the orebody did 

not give sensible experimental variograms and their ranges were approximated with 

reference to the orebody thickness in each domain.  Figures 3.12 to 3.14 show the 

experimental variograms and the fitted models from each of the three zones, the 

major: a1 and the semi major: a2.  

 

Figure 3. 12  Experimental variogram with a fitted model on Major and Semi Major for 

Zone1. 
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Figure 3. 13  Experimental variogram with fitted model on Major and Semi Major for 

Zone2. 

 

 

Figure 3. 14  Experimental variogram with fitted model on Major and Semi Major for 

Zone3.  
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The following observations were made from the variogram models. 

• The variograms showed geometric anisotropy behaviour in all on the three 

zones.  Zone2 has the longest range meaning it has highest spatial continuity 

and Zone3 has the shortest range meaning shortest spatial continuity. See Table 

3.5 below for the summary ranges; 

• The variograms showed relatively low nugget effect in all the zones see 

Appendix 7.1 for downhole variograms. Zone1 had a slightly higher nugget and 

this could be as the results of the 2200mN and 2700mN faults that according to 

literature Torremans et al., (2013) played a major role in the redistribution and 

remobilisation of the mineralisation. This could have affected the uniform 

concentration of the minerals in this zone;  

• The variogram models in all the zones were fitted using two structures. This 

could represent the multiphase mineralisation process experienced in this 

region (Cailteux et al., 2005; Selley et al., 2005); 

• All the variograms stabilized at the sill or slightly below the sill which is a sign 

of no trend in the data except for semi major experimental variogram for zone 

3 in Figure 3.14 which drop to zero (h) beyond the range of 150m. This is 

because Zone3 has only few samples down dip and beyond 150m there were no 

pairs thus the semi-variogram could not be calculated hence the zero values. 

The few high-grade outliers in Zone1 around the fault zone did not affect the 

quality of the variogram because of data robustness introduced by separating 

this zone. The importance of robustness in semivariogram construction has 

been explained by Sinclair and Blackwell (2002); and  

The strike, dip and plunge, variograms showed that continuity was along the strike 

of the fold limbs and not down dip. This is in line with literature by Mwango 

(2011) in his report titled “structural and sedimentary controls of the copper-cobalt 

mineralisation at Konkola mine”.   
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Table 3.5 below shows the variogram model parameters that were used in the 

estimation process. 

Table 3. 5  Variogram model parameters of %TCu 

 

3.3 Quantitative Kriging Neighbourhood analysis 

A Quantitative Kriging Neighbourhood analysis (QKNA) is conducted to minimize 

conditional bias that results from smoothing of grade during the Kriging estimation 

process. It is a mandatory step in setting up any Kriging estimate (Vann et al., 2003). 

The process of interpolating grades from the point drillholes to blocks, results in 

conditional bias if the Kriging parameters such as block size, search radius, 

minimum and maximum number of samples and block discretization points are not 

optimum. Therefore, the main objective of QKNA is to determine what optimum 

combination of the kriging parameters is required to minimize conditional bias. 

Conditional bias can be reduced by assessing measures which are calculated for each 

block within a block model. These conditional bias measures are SLOR and the KE 

and the parameters that influence them are the size of the estimation block, the 

search radius, number of samples and percentage of negative weights, block 

discretisation and KV. The weight of the mean in Simple Kriging did not play a role 

in this research report where Ordinary Kriging has been applied.  

These measures and neighbourhood parameters have been discussed by several 

authors and are determined using a QKNA (Vann et al., 2003; Hosken et al., 2006; 

Coombes and Boamah, 2015; Dohm, 2018b). 

In this research, the SLOR and KE were assessed to identify the optimum block size, 

search radius and the minimum and maximum number of samples, least percentage 

negative weights and the block discretization points based on the Kriging Variance. 

Zone Strike Dip Plunge C0 C1 C2 X Y X Y

1 327 55 -0.2 0.255 0.324 0.419 37.96 24.81 447.39 292.41

2 328 34 0 0.186 0.158 0.654 51.19 34.82 735.22 500.15

3 97 67 8 0.201 0.694 0.103 147.22 100.84 236.52 162.00

Range 1 Range 2
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Slope of Regression 

SLOR measures the bias between the theoretical true block grades and the estimated 

block grades (Hosken et al., 2006). They explained that if a 1:1 relationship occurs 

between the true block grades and the estimated block grade then the slope 

approaches one. They further said that when the SLOR approaches zero then the 

estimated block shift towards the global mean grade and the difference between the 

true block grades and the estimated grades is high. The equation of the slope is 

expressed in terms of the covariance of the true block grade and estimated block 

grade and the variance of the estimated block as shown in equation 8.  

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝑎 =  
𝐶𝑜𝑣(𝑍𝑣,𝑍𝑣

∗)

𝑉𝑎𝑟(𝑍𝑣∗)
                                              8 

ZV = true block grades for block volume V 

ZV
* = estimated block grades for block volume V 

To get a SLOR close to one, there should be enough samples in the selection search 

during the estimation process meaning data should not be sparse. Boyle, (2010) 

recommends that if the data are sparse, the search should be increased until 

improvement in estimation and the SLOR is observed. 

Kriging Efficiency 

KE measures how well the histogram of the theoretical block grades matches the 

histogram of the estimated block grades (Hosken et al., 2006). The authors said that 

if the KE approaches 100%, it reflects a high quality estimation and correct 

classification at a given cut off. On the other hand, when KE approaches zero that 

is indicative of a poor estimate and high level of misclassification.   

The equation for KE is expressed as: 

𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝐾𝐸 =  
𝐵𝑉 − 𝐾𝑉

𝐵𝑉
                                              9 
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BV = Block variance for block 

KV = Kriging variance of the estimate 

A systematic approach was followed in carrying out the QKNA in this research and 

is similar to that proposed by Hosken et al., (2006). 

3.3.1 Block Size Optimisation 

The final product of a geostatistical evaluation work is a resource/grade control 

block model that can be used to report in situ resource tonnage and grade estimates. 

Block models are made up of a combination of unit blocks or cells that have a 

centroid (coordinates at the centre of the blocks) which stores all the necessary 

attributes such as the grades, density etc. The decision on how far apart the centroids 

should be depends on the block size selected for the model. Hasty selection of a 

block size may result in conditional bias, affecting the final estimation results. It is 

therefore important to understand that the block size is critical especially in cases 

where a cut-off grade will be applied (Vann et al., 2003). A number of factors 

influences the ultimate selection of block size: 

• Assessing Ordinary Kriging output for example SLOR and KE; 

• Minimum mining width (Stope size or Bench height); and 

• Drilling Spacing. 

A drilling spacing of 25m x 25m x 10m was assumed for the Konkola orebody. A 

block discretization of 5m x 5m x 4m was selected with the minimum number of 

samples fixed at five and maximum at 100 and a search radius equal to the variogram 

ranges. In the QKNA process, tests were then conducted on a range of block sizes 

starting with the smallest block size of 12.5 x 12.5 x 10. As the rule of thumb, the 

smallest block size should not be smaller than half the drilling distance (Dohm, 

2018b). The results of the test have been plotted in Figure 3.15 showing the SLOR 

and KE at different block sizes.   
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Figure 3. 15  Block size optimisation 

A block size of 15 x 15 x 10 was selected as the optimum size. It is observed that 

from the smallest block size up to the selected optimal size there is very little change 

in the SLOR and KE, after that there is a drop in KE as block size increases. This 

block size also suits well with the mining stope sizes, which vary from 15m to 20m.  

3.3.2 Search Radius Optimisation 

All interpolation techniques that seek to estimate grade into a block or point depend 

on some kind of sample search procedure except of nearest neighbour method. The 

search range determines how many samples to include into the estimation though at 

times limited by the maximum number of samples. Most importantly is that it 

determines how far the sample search should go. There is danger in searching 

beyond uniform geological and mineralisation zones and this can cause serious 

errors in the final estimates. In determining the maximum search radius usually the 

variogram range is used as a guide for the limits (Khakestar et al., 2013). The 

selected optimum radius can either be less than or equal to the variogram range. If 

the selected search radius is smaller than the variogram range, one must be mindful 

not to have it too restrictive as it can result in conditional bias. Similarly, if the 

search is unconstrained it may result in conditional bias by over smoothening the 



63 

grade. Kriging is commonly referred to as a ‘minimum variance estimator’ but this 

holds only when the neighbourhood is properly defined (De-Vitry, 2003). 

In the QKNA process, tests were carried out to determine the optimal search radius 

for each zone. The block size was kept at a constant of 15m x 15m x10m at a 

discretization point of 5m x 5m x 4m and the minimum number of samples to five 

and maximum to 100. Figure 3.16 below shows the plot of the results from the 

Ordinary Kriging for the SLOR and KE at different search radii Zone1. 

 

Figure 3. 16  Neighbourhood search radius optimisation Zone1 

For Zone1, the selected optimal search radius is 390m x 255m x 7m. Beyond the 

390m, there is no significant change in the SLOR or the KE therefore increasing the 

radius will not improve the estimation but instead force the ellipsoid to search in 

zones having different characteristics.  

For Zone2, the selected optimal search radius is 520m x 350m x 7m with same 

explanation as that of Zone1, see Appendix 7.4 for the Zone2 and Zone3 plots. For 

Zone3, optimal search radii were identified as 370m x 250m x 7m but this is beyond 

the variogram range of 236m x 162m x 7m. The author decided to use the modelled 

variogram ranges as the optimum for Zone3.  
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3.3.3 Optimisation of the number of samples in the kriging Neighbourhood  

When a constant search radius is applied to all the blocks or points being estimated, 

it is very important that the number of samples used in the estimation be regulated. 

An optimum minimum and maximum number of samples has to be defined so that 

only necessary required sample size is used. Blocks or points that may not reach the 

minimum number of samples are not be estimated and no extra samples are included 

beyond the maximum limit. Too few samples may increase the KV and too many 

samples may increase the number of negative weights and overall increase on 

computing time during interpolation. Increasing the number of samples beyond the 

optimal maximum can greatly affect the estimation results. According to a case 

study done by Boyle, (2010) on the Jura data set, a decrease in the estimation 

accuracy was observed as more samples were used beyond the optimum and 

smoothing of the estimated values increased. 

In the QKNA process, tests were conducted to determine the optimal number of 

samples for each zone. The block size was kept at a constant of 15m x 15m x10m at 

a discretization point of 5m x 5m x 4m and the search radius equal to the variogram 

ranges for each zone. Figure 3.17 below shows the plot of the results from the 

Ordinary Kriging the SLOR, KE and negative weights at different number of 

samples.  

For Zone1, the author selected a minimum of 12 and maximum of 46 as the optimal 

number of samples to be used in an estimation process. Samples below the minimum 

of 12 would give very low SLOR and KE and may ultimately give a wrong estimate. 

At the same time, including samples beyond 46 would not significantly improve the 

estimate as there is little improvement in terms of the SLOR and the KE but instead 

it will only increase the percentage of negative weights. Negative weights are not a 

threat if they represent in small proportion say < 5% of the total weight (Vann et al., 

2003).  
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Figure 3. 17  Sample number optimisation Zone1 

For Zones2 and 3 the author selected 10 and 12 as the optimal minimum, 40 and 44 

as the optimal maximum number of samples see Appendix 7.5 for the plots. 

3.3.4 Block Discretization Number Optimisation 

Discretization of a block in kriging is used to calculate the average values of the 

point block of the covariance or variogram function given as 𝐶̅(𝑥, 𝑉)  𝑜𝑟  𝛾̅(𝑥, 𝑉) 

(Vann et al., 2003). According to them, higher discretization are generally better 

with the only set back being the computing speed.  

In the QKNA process, tests were carried out to determine the optimal number of 

discretization points for the optimal block size. The block size were kept at a 

constant of 15m x 15m x10m with a minimum of five and maximum of 100 number 

of samples and the search radius equal to the variogram ranges. Figure 3.18 shows 

the plot of the results from the Ordinary Kriging variance at varying block 

discretization points. 
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Figure 3. 18  Number of discretization point optimisation 

A discretization point of 5m x 5m x 4m was selected of which five is the highest 

discretizing point that can be accepted in Surpac software version 6.9. 

The final and optimal Kriging neighbourhoods for the different zones are 

summarised in Table 3.7 as determined from the Kriging neighbourhood analyses 

discussed in the previous subsections. 

Table 3. 6 QKNA results  

 

3.4 Grade Estimation  

In reality, only a small percentage of volume from an entire deposit gets to be 

sampled. The grade and other spatially correlated attributes must be estimated in the 

unsampled areas in order to have continuous attribute values at each point within a 

deposit. Grade estimation is very important because it enables segregation between 

waste and ore material and most importantly to predict the future tonnage and grade 

Zone Block Size

Block 

Discretisation Search Radius Sample Min Sample Max

1 390 X 255 X 7 12 46

2 520 X 350 X 7 10 40

3 370 X 250 X 7 12 44

15 X 15 X 10 5 X 5 X 4
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for planning purposes. Estimation processes vary from one deposit to another 

because of the difference and unique geological variability in each deposit. Classical 

and geostatistical studies precede the estimation process and are conducted to 

understand the spatial variability within the deposit, and select the appropriate 

estimation methodology. 

The two types of estimates used are Global estimation and Local Estimation (Dohm, 

2018a, 2018b). Global resource estimation is usually the first step in determining 

the viability of the project. According to Dominy et al., (2002), at this stage the 

objective is to obtain the global resource estimate and an estimate of the grade-

tonnage curve within a deposit. In most cases, there is insufficient data for local 

estimation in the early stages. Local Estimation of resources takes place when there 

is sufficient data to allocate estimates to blocks or SMUs. These estimates are 

required at feasibility and pre-production planning stage for detailed mine design 

and mine scheduling. 

This research report is considering the local resource estimation processes using 

traditional Ordinary Kriging on first model and the DA methodology on the second 

model. Detailed literature on the estimation method is documented under Literature 

review in Chapter one. To ensure that the estimates are correct, carrying out 

estimations within a zone of uniform mineral concentration is necessary. Zone1 and 

Zone2 were separated based on the difference in mineral concentration. In order to 

determine the type of boundary (soft or hard) to be applied between the two zones, 

Contact analysis must be conducted to decide which type of boundary to use. 

3.4.1 Contact Analysis 

Contact analysis is a technique used in deciding on data constraining during 

estimation. The decision on whether to restrict data to a particular zone or allow data 

interpolated across zones is critical. The definition and treatment of boundaries have 

implications on resource estimation such as lost ore, dilution or mixing of geological 

populations (Rossi and Deutsch, 2013). The Contact analysis results reveal the kind 

of boundary to use between zones either a soft or a hard boundary. Soft boundaries 
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allows data from neighbouring zones be used during interpolation whereas hard 

boundaries restrict data to a specific zone. Sometimes the boundaries to use can be 

predicted from the geological knowledge, but it is important that it be confirmed 

with statistical contact analysis (Larrondo and Deutsch, 2005 cited in Rossi and 

Deutsch, 2013). 

The contact analysis methodology followed in this research was along the 

methodology as the one outlined by (Rossi and Deutsch, 2013). They used trend 

analysis to determine what kind of boundary to apply between zones. The analysis 

is done near the boundary of each zone, because that is where data sharing between 

zones usually takes place, and restricted inwards by search radius. If at the contact 

line, the two trends from the zones meet nearly at the same point or grade and show 

at least similar trend near the contact then soft boundaries may apply. If at the 

contact line the trend from the two zones, meet at different points or grades and 

show different trends near the contact, hard boundaries may be the alternative.  

The contact analysis for this research was done to identify the boundary type 

between Zone1 and Zone2. The statistical analysis of the box and whisker plots in 

Section 3.1.3 showed that two zones have different mineral concentrations. A trend 

analysis was done and the graph in Figure 3.19 shows the trend results from the two 

zones intersecting the contact line x= 0. The two zones intersect the contact line at 

different grades and show different trends away from the contact. The author 

decided to use a hard boundary approach between the two zones to avoid 

underestimation in Zone1 and overestimating Zone2.  

A contact analysis for the contact boundary between Zone2 and Zone3 was not done 

as the two were divided on structural basis and they showed to have similar mineral 

concentration as seen from the box and whisker plots in section 3.1.3. The author 

applied a soft boundary between these two zones. 
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Figure 3. 19  Contact Analysis for Zone1 and Zone2 boundary 

A block model was created to estimate TCu_OK using the traditional ordinary 

kriging with fixed search ellipses and another to estimate TCu_DA using the DA 

methodology for estimation. Literature on Ordinary Kriging and DA estimation 

methodology is documented in section 1.4. A systematic process on how to carry 

out the DA interpolation methods is also outlined in the same section. 

4 Comparative Analysis of the Estimation Results based on 

Traditional OK and DA 

This chapter focuses on a comparative analysis of the estimation results derived 

from the traditional OK and DA methods. Adopting a new interpolation method 

does not always mean an improvement in grade accuracy even if the proposed new 

method has a technological advantage over the current method as was the case with 

Mandava, 2016. 

 It was therefore important for the estimates from the proposed new DA method and 

from the current OK method to be compared against the input composite data to 

assess if there is any significant change. These comparative checks were done to 

assess which methodology resulted in more accurate and realistic estimates. Further 
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checks were done to ascertain the financial benefit realised from the adoption of the 

DA methodology for Konkola mine. 

4.1 Estimation Validation 

Five estimation validation checks were performed; four statistical and one visual 

inspection test to validate the estimate results against the input composite sample 

data. For a fair comparison, the validation checks were done only on the blocks that 

contained both OK and DA estimates. The five validation methods used were: 

Global Statistics, Swath Plots, Scatter Plots, Distribution of Differences and Visual 

Inspection 

4.1.1 Global Statistics total area  

Global statistics were calculated to see how the overall statistical parameters from 

the estimates compare with the statistics from the input composite data. Descriptive 

statistics were generated from the OK and DA estimates and these together with the 

composite input data statistics are recorded in Table 4.1 below. 

Table 4. 1 %TCu Global Statistics – all three zones combined 

 

The following observation were made from table 4.1. 

• The estimates gave a higher minimum and a lower maximum values compared 

to the input composite data because of the change of support effect going from 

point to blocks in the estimation process and also due to smoothing effect 

caused by kriging process; 

• The average grade from the estimates is lower than the one from the input 

composite data with a difference of 8.01% and 7.83% for the OK and DA 

Variable Nsamp Min Max Mean Stddev CoV %(Samp mean - Est mean)

TCu sample 15948 0.000 21.819 4.193 1.768 0.422

TCu OK estimate 39062 1.767 7.897 3.857 1.071 0.278 8.01%

TCu DA estimate 39062 1.709 8.184 3.865 1.088 0.281 7.83%
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interpolation respectively. This is because of the smoothing effect from 

Kriging;  

• The global estimates individually do however, compare well 3.857%TCu and 

3.865%TCu for the OK and DA respectively, a difference of 0.008%TCu;  

• The percentage difference between the global estimates using the OK and DA 

methodologies is insignificant at a 0.21%; and 

• The standard deviations and CoV from the estimates is lower than that from 

the input composite data. This is to be expected due to the change in support 

effect which reduced variability between the blocks as compared to the sample 

to sample variability which is high. 

The statistics for the composites in the individual zones were discussed in section 

3.1.4. To assess the estimation methodology results obtained within the three zones 

individually Table 4.2 was generated and shows the statistics from the estimates and 

input composite data for each zone. 

Table 4. 2 %TCu Global Statistics for the individual zones  

 

The following observations were made from Table 4.2. 

• The difference between the kriged estimates and the sample data reduced 

when the zones are considered individually. The calculated difference 

between the estimated means and the sample means reduced to less than 50% 

Zone Variable Nsamp Min Max Mean Stddev CoV %(Samp mean - Est mean)

TCu sample 10,255          0.00 21.82 4.67 1.86 0.40

TCu OK estimate 19,468          2.25 7.90 4.46 1.04 0.23 4.35%

TCu DA estimate 19,468          2.16 8.18 4.48 1.05 0.24 4.07%

TCu sample 3,322             0.10 10.88 3.28 1.19 0.36

TCu OK estimate 15,121          1.77 5.89 3.24 0.71 0.22 1.40%

TCu DA estimate 15,121          1.71 5.72 3.25 0.75 0.23 0.97%

TCu sample 2,344             0.76 16.17 3.43 1.16 0.34

TCu OK estimate 4,556             1.91 6.03 3.33 0.63 0.19 3.00%

TCu DA estimate 4,556             1.99 5.59 3.29 0.61 0.19 4.21%

Zone3

Zone2

Zone1
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than that of the combined global statistics in Table 4.1. In Zone2 the means of 

the estimates and the samples were the closest; 

• The DA estimates gave a closer comparison to the sample data for Zone1 and 

Zone2 whereas the OK estimates gave a better comparison for Zone3; and  

• The percentage difference between the OK and DA with in the individual 

zones are 0.45% in Zone1, 0.31% Zone2 and 1.2% Zone3. Whilst these are 

larger than the difference on a combined global comparison, individually 

within the zones there have been overall improvements in both estimation 

methodologies which are related to the domaining discussed earlier in order 

to achieve homogeneity and stationarity, this increase is not considered to be 

of concern. The information from the global statistics only assisted to 

determine the accuracy of the methodology at a larger scale and any variations 

in estimates resulting from structures embedded with in the global scale could 

not be captured. At this stage, it was very difficult to tell which method was 

more accurate since the results between the estimates were close for both the 

combined global statistics and for the individual zones.  

4.1.2 Swath Plots 

Swath plots compare trends of estimates and sample data to determine how accurate 

the estimation is. It computes the mean grade of the estimates and sample data within 

a defined interval and compares them by producing trend in a chosen direction. 

Swath plots were constructed one for the various zones. The zones were analysed 

separately to cater for the variations in strike and also gave good resolution on the 

local changes. The Zone1 swath were oriented from south to north cutting along 

strike from 3400mN to 37500mN at an interval of 200m. The same orientation and 

interval length was used for Zone2 ranging from 37500mN to 3900mN. Zone3 has 

a different orientation with a strike trending east to west. The swath were aligned 

cutting across the strike from 4200mE to 4600mE at an interval of 200m. Figure 4.1 

shows the swath orientation and spacing for all the three domains. The swath 

validation results for the three zones combined are plotted in Figure 4.2. 
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Figure 4. 1 Swath orientation and spacing 
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Figure 4. 2 Swath plots for Sample data vs OK and DA estimates. 

The following observations were made from Figure 4.2. 

• There is an overall close correlation between the estimates and the sample 

data revealing that the estimation from both methodologies are good. The 

only portion that did not give a good correlation was the southern and 

northern ends of Zone2 which showed a slight overestimation and 

underestimation of grade respectively. 

• Zone1 is a close tie and it was very difficult to tell which method compared 

better with the sample data. For Zone2 the DA showed better results between 

38800mN and 39000mN though it could not be justifiable due to a low 

number of samples. OK estimate in Zone3 showed a closer trend to the 

sample data which was in connection to the zone3 global statistics. 
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• The relationship between the OK and the DA swath was very tight, and it 

was still difficult to tell which method was more accurate at this point. 

The swath plot interval of 200m was at a much smaller scale of analysis as compared 

to the global statistics. The plots assisted to determine accuracy at specific locations 

across the deposit. The two methodologies both gave a close trend to the sample 

data and it was difficult to actually tell which methods did better overall. There was 

no exact position that gave a significant difference between the two methods to 

justify accuracy. 

From the swath plots results, it was still not easy to distinguish which methodology 

gave more accurate estimates. An attempt to reduce the interval spacing produced 

plots with very random sample trend which were not very useful. A better option 

was to extract the estimates and sample data at a smaller interval and represented it 

inform of scatter plots.  

4.1.3 Scatter Plots 

Scatter plots are simple but very effective way to determine the correlation between 

different datasets. The strength of the relationship is determined by observing how 

clustered together or scatter the points are. Clustered points mean good correlation 

and scattered points mean poor correlation between datasets. The relationship can 

be quantified by calculating the correlation coefficient R which ranges from -1 to 

+1 depending on the kind of relationship between the datasets being examined.  R 

value close to +1 mean a positive relationship and a value approaching -1 indicate a 

negative correlation between datasets. A linear regression line y=x is inserted for 

the bias fit between the two data sets. 

The mean values were extracted at every 20m interval throughout the deposit to 

produce three data sets containing sample values and estimates from the OK and 

DA interpolation. Two scatter plots were generated for the samples vs OK estimates 

and for samples vs DA estimates. A linear regression line was inserted, and 

correlation coefficients calculated. The two scatter plots are shown in Figure 4.3. 
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Figure 4. 3 Scatter plot Sample data vs estimates, OK on the left and DA on the right 

The following observations were made from Figure 4.3. 

• Both scatter plots show a strong relationship between the estimates and the 

samples. Sample vs OK gave R of 0.9471 and sample vs DA gave R of 

0.9476; 

• No biasness was observed between the sample and estimates as the scatter 

points plotted along the line of regression; and 

• The DA gave a better R value with a 0.005% difference which was 

insignificant to ultimately conclude whether the DA is a better method than 

the OK. 

Even after reducing the scale to a smaller interval of 20m, there was still very little 

difference between the estimates of the two methodologies. The DA gave a slight 

better R but the difference of 0.005% in R between the two methodologies was not 

significant to make any justifications. It was still very difficult to make a decision 

on which one was a more accurate methodology based on the scatter plots. Reducing 

the interval from 20m to 10m did not significantly affect the difference between the 

R values from both estimates.   
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4.1.4 Distribution of Differences 

The distribution of differences is expressed as a relative frequency polygon were the 

relative frequency plots on the y axis and the x-axis is the class midpoint of the 

differences. If the mean value for the distribution plots at zero or close to zero with 

a narrow sharp and a high relative frequency, then there is very little difference 

between datasets in this case the estimate values are close to the input sample values.  

The sample data and block estimate average grade were extracted at every 10m 

interval to produce three datasets, sample, OK and DA. The average OK and DA 

estimate values were then subtracted from the average samples for the 

corresponding interval to produce two datasets of differences. Relative polygonal 

plots were then generated from the datasets as shown in Figure 4.4. 

 

Figure 4. 4 Distribution of Differences for samples and estimates. 

The following observations were made from the plots 

• Both plots show mean values close to zero indicating that the majority of the 

estimates and the sample data are similar to each other; and  

• There is, however, a marked difference between the shapes of the two 

individual difference distributions. The DA difference has a higher relative 

modal frequency (0.55) positioned just to the right of 0, this distribution is 



78 

more peaked. The OK difference distribution is broader and lower modal 

relative frequency of 0.48 just to the left of the zero position.  

This visual comparison of the difference distributions shows a significant difference 

between the two estimation methods. This showed that by analysing the distribution 

of differences between the average of samples in the DA block and the OK block 

estimates at the local block scale i.e. at a closer resolution it is possible to distinguish 

a difference between the two methodologies. These results showed that The DA 

search OK estimates were more accurate compared to a static search OK estimates 

at a closer scale. The above comparison only revealed which of the two methods 

had more accurate estimates but did not look at the spatial distribution of the 

estimates. The spatial distribution was checked using the visual inspection process 

described below.  

4.1.5 Visual Inspection of the spatial distribution of estimates 

Visual inspection is an important validation method as it helps to identify spatial 

distribution anomalies in the estimate that cannot be picked up from statistical 

checks, which ignore the position of the data and the blocks. The spatial distribution 

of grade estimates are checked with spatial distribution of the sample grades and 

also verified against what is expected from the literature on the deposit 

mineralisation. Another validation point is to lookout for an artificial break in the 

spatial grade distribution due to the influence of the alignment of the ellipsoids.  

The spatial grade distribution, the OK static search and DA search estimates were 

plotted and checked against the sample distribution and to identify any artificial 

break in estimated grade continuity. To ensure compatibility between samples and 

the two estimates, the same grade intervals have been applied as shown in the 

legends of Figure 4.5 and Figure 4.6 for the OK static search and DA search, 

respectively. 
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Figure 4. 5 Grade distribution Sample vs OK static search estimates 

 

Figure 4. 6 Grade distribution Sample vs DA search estimates 

The following observations were made from the visual inspections. 

• The spatial distribution of the OK static search estimates does not compare 

well with that of the sample spatial distribution. There are artificial breaks 
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in grade shown as alternating lines of high and low grades. The breaks have 

been emphasised in red dotted lines in Figure 4.5; 

• The DA search estimates showed a smooth spatial distribution of the grades 

which corresponds with that of sample grades; 

• Elongated grade stripes aligned in the direction of the search ellipse are 

noticeable in the spatial distribution of the OK static search estimates. This 

phenomenon is not present in the spatial distribution of the DA search 

estimates; 

• The OK method gives a spatially different picture from what is to be 

expected from the sample distribution;  

• It is observed from this spatial presentation of the grade estimates that they 

were to some extent affected by the orientation of the ellipse in the OK 

estimation process;  

• The fold axis which separated the two zones must have had an influence on 

the OK estimates as it separated the two search ellipse with different 

orientations. The two fixed orientated search ellipsoids reflect grade 

estimates as strips aligned in the same direction;  

• The fold axis did not have any influence on the DA estimates because of the 

ability for the search ellipse to change direction and follow mineralisation 

continuity;  

• The DA ellipse was able to curve and follow the trend of the fold. The DA 

gave a favourable outcome because in reality the fold axis is an imaginary 

line and should not have an effect on the grade distribution rather the effect 

should be across the entire fold zone not a line; and  

• Therefore, the OK method is not suitable for the areas affected by folding 

resulting in changes in the strike and dip.  

Around the fault zones between 2200mN and 2700mN a high-grade area, the 

OK estimates resulted in spatially elongated grades areas aligned to the direction 

of the search ellipsoid see Figure 4.7 (left) below. 
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Figure 4. 7 Spatial Grade distribution OK (left) and DA estimates (right) 

The dip around this area is shallower than the rest of Zone1 because it is closer to 

the fold axis area where the orebody is flat. The average oriented search ellipse used 

in the OK was dipping steeper, the kriging neighbourhood defined by it failed to 

capture relevant down dip samples and only some on-strike samples, this caused the 

spatially strip like grade distribution elongated in the direction of the search ellipse. 

In comparison, the distribution of the DA search estimates followed the orientation 

of the mineralisation, because this methodology is able to adapt to changes in the 

dip and therefore able to capture samples down dip as well as along strike during 

the estimation. The DA estimates did not result in the artefacts introduced by the 

traditional OK estimates Figure 4.7 (right). 

Getting the spatial distribution of the estimated grades right is fundamental, it shows 

the flow of the mineralisation which is important to mine planning. In this case using 

OK method resulted in overestimating some low grade blocks as a result of 

stretching of the grade distribution. It can be concluded that using the DA search 

interpolation method gives an improved and therefore a better and realistic grade 

distribution compared to the traditionally used OK interpolation. 

4.2 Financial benefit from the use of DA method for estimation 

Mining companies are often looking for effective and efficient new techniques that 

will help improve productivity and ultimately increase profits. New improved 

techniques, if properly utilised may assist the company gain financially by reducing 
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production cost and still be able to execute the task as planned before. In short, 

management focusses on maximising the output results with minimal inputs.  The 

cost of acquiring information especially drillhole data is very high. The drilling 

information though costly, is necessary to reduce risk during Mineral Resource 

estimation. Therefore, an interpolation technique that utilises the sample data 

correctly, that is in a relevant and appropriate way, in the estimation process may be 

preferred to maximise outputs at a fairly lower cost and not result in inappropriate 

mine planning for example: 

Tests were done to establish how adopting the DA would benefit the company 

financially as compared to the OK. Two test were done to investigate the following: 

1. If the DA method utilised sample data effectively compared to the OK 

methodology to help cost save on acquiring too much information; and 

2. If the DA had a higher output in terms of the metal tonnes compared to OK 

for the same number of samples in both interpolations, because more blocks 

were estimated using this methodology. 

Histograms were plotted to assess data usage between the two methodologies. Both 

OK and DA used the maximum number of samples (46) on most of the estimated 

blocks. Figure 4.8 below is the histogram for the number of samples used by DA 

and OK methodologies for Zone1. See Appendix 7.6 for Zone2 and Zone3 

histograms. 

 

Figure 4. 8 Number of samples Zone1 
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The total number of samples used in the estimation which accessed only the 

maximum number of samples was 15,316 and 17,436 for OK and DA respectively. 

The DA used an extra 2,120 samples for maximum number of samples interpolation 

for Zone1 only. This was attributed to its dynamic nature that allows the ellipsoid to 

meander through complex geology and increase the ability of capturing more data 

during an interpolation process. The rigidity nature of the traditional OK ellipsoid 

applied reduced its potential to fully utilise the information during interpolation 

process. Assuming the number of samples required for an interpolation was set to 

46 samples, OK method would not account for the 2,120 samples after the 

estimation. It was noticed that the OK method would require more information than 

the DA to achieve a similar task. 

The effect of data usage by the two methodologies was further analysed using the 

Lagrange Multiplier values Figure 4.9. Low Lagrange values indicate that the blocks 

have sufficient samples in the Kriging neighbourhood and a high Langrage values 

indicate that the block have limited information in the Kriging neighbourhood and 

more weight should go to the mean and Simple Kriging might be a better option 

(Dohm, 2018b). Therefore an interpolation methodology that produces a lower 

Lagrange values have the ability to capture sufficient data during the estimation 

process.  

The distribution of the Lagrange values for the OK and DA method were plotted to 

establish which method gave a lower Lagrange value across the distribution. 
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Figure 4. 9 Lagrange distribution for OK (left) and DA (right) 

From the plots, The DA methodology had lower Lagrange values compared to the 

OK methodology. Areas with rapid changes in structural orientations such as the 

fault zone, fold axis area and the north limb gave distinctive high Lagrange values 

for the OK than the DA. This was because the OK ellipsoid was unable to capture 

as many samples in these areas due to its rigid nature of not adapting to changing 

structural orientation. The DA showed favourable results as the Lagrange values 

were kept low even in areas with rapid changes in orientation and highlights the 

advantages of following this estimation methodology.  

The test on affective data usage favoured the DA methodology, the DA method 

would therefore assist the company in cost saving because with the same amount of 

samples it performed better in terms of sample utilization as seen from the Lagrange 

values. 

A second test was conducted to determining how much copper metal tonnes would 

be realised from DA method taking into account its ability to maximise data usage. 

The estimated tonnes and grade were generated from the OK and DA estimated 

blocks. Table 4.3 shows the tonnes, grade and %TCu metal from the estimated 
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blocks of the two methodologies including the extra tonnes gained from DA 

estimates.  

Table 4. 3 Tonnes and Grade for OK and DA   

 

The comparisons done between the DA and OK methodologies were within the first 

pass search radius to maintain the same level of confidence in the estimation 

process.  

The DA estimated 4,836,675 tonnes Cu metal compared to the OK which estimated 

4,076,094 tonnes Cu metal. This showed that with the same amount of data, same 

variogram and optimal Kriging neighbourhood parameters and within the same level 

of confidence, DA method produced more Cu metal tonnes than the OK method by 

over 760,582 tonnes. It is likely that these extra tonnes will be realised because of a 

better grade estimation methodology implemented thereby extending the life of 

mine for Konkola mine. 

The OK technique estimated 8,877 less blocks than the DA resulting in fewer 

tonnes. To determine what could have caused loss in tonnes for the OK 

methodology, a section was cut at 5100mE across the two block model. A 

comparison was made by highlighting the estimated blocks for both OK and DA 

methodology. 

The OK method left gaps which meant blocks around those portions were not 

estimated. The gaps were seen to be around the fold hinge where the two fold limbs 

intersect. The portions have sufficient data but because of changing structural 

orientation, the traditional search ellipse (refer to figure 1.1) which were aligned to 

the average global orientation of the limbs were unable to estimate the blocks around 

Method Estimated Blocks Tonnes %Tcu Tcu Metal

OK 41,762                      106,148,273        3.84 4,076,094            

DA 50,639                      126,614,534        3.82 4,836,675            

Extra DA Tonnes (8,877)                       (20,466,262)        3.72 (760,582)              
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the hinge zone.  The DA had all the blocks estimated because the ellipsoids are 

dynamic and not fixed and are able to rotate depending on the block orientation. 

From this research it is clear that the ability of DA interpolation to maximise on 

information usage will assist Konkola Mine to save cost on the need to drill more 

drillholes and also realise more tonnes and copper than if OK methodology was 

employed. Figure 4.10 below shows a cross section view of the estimated blocks for 

the traditional OK and the DA methodology.  

 

Figure 4. 10 Cross section view of estimated blocks 
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5 Conclusion and Recommendations 

Carrying out Mineral Resource estimation in folded and undulating orebodies has 

always posed a challenge to the resource geologist. Structural complexity has to be 

well understood and represented in 3D geological models as surfaces or solids. The 

resource block model is constrained in the geological models of complexity and the 

individual blocks of the resource block model take up different orientations 

depending on the complexity of the geological model. When it comes to grade 

interpolation, it maybe be challenging if the block model has blocks of varying 

orientation due to structural complexity and a fixed search ellipsoid is applied. The 

DA methodology has proved to be a better option when carrying out interpolation 

in such orebodies as it offers a most effective, efficient and fast way of grade 

estimation. 

Konkola Mine has been using OK methodology for its resource estimation despite 

having an orebody which is folded with a huge variation in dip and dip direction. 

The author decided to employ the DA method on the orebody by carry out a study 

if there be any significant improvement compared to the current OK methodology. 

Grade was interpolated into the blocks using OK method (TCu_OK) and using DA 

(TCu_DA). The results from the interpolations were compared with the input 

composite data to determine which methodology gave more accurate estimates. Five 

comparison check methods where used; Global statistics, Swath plots, scatter plots, 

distribution of differences and visual inspections.  

Even though results from the Global statistics, Swath plots and scatter plots on most 

test favoured the DA method, the difference was insignificant as the scale used for 

the spatial comparison was too big to capture the differences between the two 

methods. The final statistical analysis done using the distribution of differences was 

able to highlight a valid difference between the two methodologies with the DA 

estimates comparing better to sample data than the OK. Apart from the statistical 

comparisons, visual inspection proved that the DA method was a better interpolation 

method for this orebody than OK. The DA grade distribution compared well with 

the sample distribution and no artificial breaks or spread in the grade distribution 
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due to the influence of the rigidity of the search ellipsoid were observed as was the 

case with the traditional OK methodology. The OK estimates showed strips of grade 

that were clearly as a result of rigid search ellipsoid. The OK grade distribution was 

seen to be affected by the fold axis where the two ellipse from the west and north 

limb intersect which was not the case with the DA method. These results showed 

that the DA method produces estimates which are closer to sample grades and an 

improved grade representation as compared to the OK methodology. Adopting DA 

interpolation method would mean having more realistic planning and reduced risks 

in the ore extraction that may result from grade uncertainty. A better grade 

distribution from the DA method will greatly improve mine planning and scheduling 

and cut down on surprises because what will be mined will relate closer with the 

real in situ distribution. 

Other tests were done to determine the financial benefits of adopting the DA 

methodology as the main interpolation technique. It was observed that the DA had 

better usage of information because of its dynamic nature with the ability to capture 

more information better that OK. The cost of acquiring data can be very high and 

therefore adopting a more efficient and effective interpolation methodology to make 

maximum use of the available data is paramount. This methodology should also be 

used to determine where future drilling might be most beneficial by looking at the 

Kriging efficiency, Slope of Regression and kriging variance of pseudo holes 

thereby also managing drilling costs more effectively and reducing risks. 

Using the same number of samples, Variogram and Kriging neighbourhood 

parameters, DA had many blocks estimated compared to OK. The poor sample 

“capturing” from the traditional (fix ellipsoid) OK methodology resulted in some 

blocks around the fold hinge not being estimated therefore having a lower tonnage 

compared to DA. Using the DA method realised an extra 20 million tonnes at 3.72% 

TCu that is 0.76 million tonnes of copper metal in the resource estimate, that was 

previously ignored or not known. 

The benefits of adopting DA methodology were significant and beneficial compared 

to the OK method. The author recommended the adoption of DA interpolation 
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method for the Mineral Resource Estimation of copper at Konkola Mine. The author 

further recommends its adoption for grade control models as well to ensure a 

realistic grade distribution for short term mine planning.  
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Appendix 7.2:  Varmap 
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Appendix 7.3: Zone 1 Directional Variograms 

  



99 

Appendix 7.3: Zone 2 Directional Variograms
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Appendix 7.3: Zone 3 Directional Variograms 
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Appendix 7.4: Search Radius Optimisation 
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Appendix 7.5:  Sample Number Optimisation 
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Appendix 7.6:  Histograms for Number Samples 

 

 

 

 

 


